18,905 research outputs found

    On the stimulus duty cycle in steady state visual evoked potential

    Get PDF
    Brain-computer interfaces (BCI) are useful devices that allow direct control of external devices using thoughts, i.e. brain's electrical activity. There are several BCI paradigms, of which steady state visual evoked potential (SSVEP) is the most commonly used due to its quick response and accuracy. SSVEP stimuli are typically generated by varying the luminance of a target for a set number of frames or display events. Conventionally, SSVEP based BCI paradigms use magnitude (amplitude) information from frequency domain but recently, SSVEP based BCI paradigms have begun to utilize phase information to discriminate between similar frequency targets. This paper will demonstrate that using a single frame to modulate a stimulus may lead to a bi-modal distribution of SSVEP as a consequence of a user attending both transition edges. This incoherence, while of less importance in traditional magnitude domain SSVEP BCIs becomes critical when phase is taken into account. An alternative modulation technique incorporating a 50% duty cycle is also a popular method for generating SSVEP stimuli but has a unimodal distribution due to user's forced attention to a single transition edge. This paper demonstrates that utilizing the second method results in significantly enhanced performance in information transfer rate in a phase discrimination SSVEP based BCI

    Defining brain–machine interface applications by matching interface performance with device requirements

    Get PDF
    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications. © 2007 Elsevier B.V. All rights reserved

    Chapter 15 Matching Brain–Machine Interface Performance to Space Applications

    Get PDF
    A brain-machine interface (BMI) is a particular class of human-machine interface (HMI). BMIs have so far been studied mostly as a communication means for people who have little or no voluntary control of muscle activity. For able-bodied users, such as astronauts, a BMI would only be practical if conceived as an augmenting interface. A method is presented for pointing out effective combinations of HMIs and applications of robotics and automation to space. Latency and throughput are selected as performance measures for a hybrid bionic system (HBS), that is, the combination of a user, a device, and a HMI. We classify and briefly describe HMIs and space applications and then compare the performance of classes of interfaces with the requirements of classes of applications, both in terms of latency and throughput. Regions of overlap correspond to effective combinations. Devices requiring simpler control, such as a rover, a robotic camera, or environmental controls are suitable to be driven by means of BMI technology. Free flyers and other devices with six degrees of freedom can be controlled, but only at low-interactivity levels. More demanding applications require conventional interfaces, although they could be controlled by BMIs once the same levels of performance as currently recorded in animal experiments are attained. Robotic arms and manipulators could be the next frontier for noninvasive BMIs. Integrating smart controllers in HBSs could improve interactivity and boost the use of BMI technology in space applications. © 2009 Elsevier Inc. All rights reserved

    A Classical Probabilistic Computer Model of Consciousness

    Get PDF
    We show that human consciousness can be modeled as a classical (not quantum) probabilistic computer. A quantum computer representation does not appear to be indicated because no known feature of consciousness depends on Planck's constant h, the telltale sign of quantum phenomena. It is argued that the facets of consciousness are describable by an object-oriented design with dynamically defined classes and objects. A comparison to economic theory is also made. We argue consciousness may also have redundant, protective mechanisms

    Can intelligence explode?

    Get PDF
    The technological singularity refers to a hypothetical scenario in which technological advances virtually explode. The most popular scenario is the creation of super-intelligent algorithms that recursively create ever higher intelligences. It took many decades for these ideas to spread from science fiction to popular science magazines and finally to attract the attention of serious philosophers. David Chalmers' (JCS, 2010) article is the first comprehensive philosophical analysis of the singularity in a respected philosophy journal. The motivation of my article is to augment Chalmers' and to discuss some issues not addressed by him, in particular what it could mean for intelligence to explode. In this course, I will (have to) provide a more careful treatment of what intelligence actually is, separate speed from intelligence explosion, compare what super-intelligent participants and classical human observers might experience and do, discuss immediate implications for the diversity and value of life, consider possible bounds on intelligence, and contemplate intelligences right at the singularity

    Performance assessment in brain-computer interface-based augmentative and alternative communication

    Full text link
    Abstract A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems.http://deepblue.lib.umich.edu/bitstream/2027.42/115465/1/12938_2012_Article_658.pd
    • 

    corecore