6,098 research outputs found

    Design and modelling of variability tolerant on-chip communication structures for future high performance system on chip designs

    Get PDF
    The incessant technology scaling has enabled the integration of functionally complex System-on-Chip (SoC) designs with a large number of heterogeneous systems on a single chip. The processing elements on these chips are integrated through on-chip communication structures which provide the infrastructure necessary for the exchange of data and control signals, while meeting the strenuous physical and design constraints. The use of vast amounts of on chip communications will be central to future designs where variability is an inherent characteristic. For this reason, in this thesis we investigate the performance and variability tolerance of typical on-chip communication structures. Understanding of the relationship between variability and communication is paramount for the designers; i.e. to devise new methods and techniques for designing performance and power efficient communication circuits in the forefront of challenges presented by deep sub-micron (DSM) technologies. The initial part of this work investigates the impact of device variability due to Random Dopant Fluctuations (RDF) on the timing characteristics of basic communication elements. The characterization data so obtained can be used to estimate the performance and failure probability of simple links through the methodology proposed in this work. For the Statistical Static Timing Analysis (SSTA) of larger circuits, a method for accurate estimation of the probability density functions of different circuit parameters is proposed. Moreover, its significance on pipelined circuits is highlighted. Power and area are one of the most important design metrics for any integrated circuit (IC) design. This thesis emphasises the consideration of communication reliability while optimizing for power and area. A methodology has been proposed for the simultaneous optimization of performance, area, power and delay variability for a repeater inserted interconnect. Similarly for multi-bit parallel links, bandwidth driven optimizations have also been performed. Power and area efficient semi-serial links, less vulnerable to delay variations than the corresponding fully parallel links are introduced. Furthermore, due to technology scaling, the coupling noise between the link lines has become an important issue. With ever decreasing supply voltages, and the corresponding reduction in noise margins, severe challenges are introduced for performing timing verification in the presence of variability. For this reason an accurate model for crosstalk noise in an interconnection as a function of time and skew is introduced in this work. This model can be used for the identification of skew condition that gives maximum delay noise, and also for efficient design verification

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Comment: 55 pages, 82 figure

    Reliability-aware and energy-efficient system level design for networks-on-chip

    Get PDF
    2015 Spring.Includes bibliographical references.With CMOS technology aggressively scaling into the ultra-deep sub-micron (UDSM) regime and application complexity growing rapidly in recent years, processors today are being driven to integrate multiple cores on a chip. Such chip multiprocessor (CMP) architectures offer unprecedented levels of computing performance for highly parallel emerging applications in the era of digital convergence. However, a major challenge facing the designers of these emerging multicore architectures is the increased likelihood of failure due to the rise in transient, permanent, and intermittent faults caused by a variety of factors that are becoming more and more prevalent with technology scaling. On-chip interconnect architectures are particularly susceptible to faults that can corrupt transmitted data or prevent it from reaching its destination. Reliability concerns in UDSM nodes have in part contributed to the shift from traditional bus-based communication fabrics to network-on-chip (NoC) architectures that provide better scalability, performance, and utilization than buses. In this thesis, to overcome potential faults in NoCs, my research began by exploring fault-tolerant routing algorithms. Under the constraint of deadlock freedom, we make use of the inherent redundancy in NoCs due to multiple paths between packet sources and sinks and propose different fault-tolerant routing schemes to achieve much better fault tolerance capabilities than possible with traditional routing schemes. The proposed schemes also use replication opportunistically to optimize the balance between energy overhead and arrival rate. As 3D integrated circuit (3D-IC) technology with wafer-to-wafer bonding has been recently proposed as a promising candidate for future CMPs, we also propose a fault-tolerant routing scheme for 3D NoCs which outperforms the existing popular routing schemes in terms of energy consumption, performance and reliability. To quantify reliability and provide different levels of intelligent protection, for the first time, we propose the network vulnerability factor (NVF) metric to characterize the vulnerability of NoC components to faults. NVF determines the probabilities that faults in NoC components manifest as errors in the final program output of the CMP system. With NVF aware partial protection for NoC components, almost 50% energy cost can be saved compared to the traditional approach of comprehensively protecting all NoC components. Lastly, we focus on the problem of fault-tolerant NoC design, that involves many NP-hard sub-problems such as core mapping, fault-tolerant routing, and fault-tolerant router configuration. We propose a novel design-time (RESYN) and a hybrid design and runtime (HEFT) synthesis framework to trade-off energy consumption and reliability in the NoC fabric at the system level for CMPs. Together, our research in fault-tolerant NoC routing, reliability modeling, and reliability aware NoC synthesis substantially enhances NoC reliability and energy-efficiency beyond what is possible with traditional approaches and state-of-the-art strategies from prior work

    Characterization of optical interconnects

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 72-75).Interconnect has become a major issue in deep sub-micron technology. Even with copper and low-k dielectrics, parasitic effects of interconnects will eventually impede advances in integrated electronics. One technique that has the potential to provide a paradigm shift is optics. This project evaluates the feasibility of optical interconnects for distributing data and clock signals. In adopting this scheme, variation is introduced by the detector, the waveguides, and the optoelectronic circuit, which includes device, power supply and temperature variations. We attempt to characterize the effects of the aforementioned sources of variation by designing a baseline optoelectronic circuitry and fabricating a test chip which consists of the circuitry and detectors. Simulations are also performed to supplement the effort. The results are compared with the performance of traditional metal interconnects. The feasibility of optical interconnects is found to be sensitive to the optoelectronic circuitry used. Variation effects from the devices and operating conditions have profound impact on the performance of optical interconnects since they introduce substantial skew and delay in the otherwise ideal system.by Shiou Lin Sam.S.M

    A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach

    Get PDF
    A local-oscillator phase-shifting approach is introduced to implement a fully integrated 24-GHz phased-array receiver using an SiGe technology. Sixteen phases of the local oscillator are generated in one oscillator core, resulting in a raw beam-forming accuracy of 4 bits. These phases are distributed to all eight receiving paths of the array by a symmetric network. The appropriate phase for each path is selected using high-frequency analog multiplexers. The raw beam-steering resolution of the array is better than 10 [degrees] for a forward-looking angle, while the array spatial selectivity, without any amplitude correction, is better than 20 dB. The overall gain of the array is 61 dB, while the array improves the input signal-to-noise ratio by 9 dB

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Novel Front-end Electronics for Time Projection Chamber Detectors

    Full text link
    Este trabajo ha sido realizado en la Organización Europea para la Investigación Nuclear (CERN) y forma parte del proyecto de investigación Europeo para futuros aceleradores lineales (EUDET). En física de partículas existen diferentes categorías de detectores de partículas. El diseño presentado esta centrado en un tipo particular de detector de trayectoria de partículas denominado TPC (Time Projection Chamber) que proporciona una imagen en tres dimensiones de las partículas eléctricamente cargadas que atraviesan su volumen gaseoso. La tesis incluye un estudio de los objetivos para futuros detectores, resumiendo los parámetros que un sistema de adquisición de datos debe cumplir en esos casos. Además, estos requisitos son comparados con los actuales sistemas de lectura utilizados en diferentes detectores TPC. Se concluye que ninguno de los sistemas cumple las restrictivas condiciones. Algunos de los principales objetivos para futuros detectores TPC son un altísimo nivel de integración, incremento del número de canales, electrónica más rápida y muy baja potencia. El principal inconveniente del estado del arte de los sistemas anteriores es la utilización de varios circuitos integrados en la cadena de adquisición. Este hecho hace imposible alcanzar el altísimo nivel de integración requerido para futuros detectores. Además, un aumento del número de canales y frecuencia de muestreo haría incrementar hasta valores no permitidos la potencia utilizada. Y en consecuencia, incrementar la refrigeración necesaria (en caso de ser posible). Una de las novedades presentadas es la integración de toda la cadena de adquisición (filtros analógicos de entrada, conversor analógico-digital (ADC) y procesado de señal digital) en un único circuito integrado en tecnología de 130nm. Este chip es el primero que realiza esta altísima integración para detectores TPC. Por otro lado, se presenta un análisis detallado de los filtros de procesado de señal. Los objetivos más importantes es la reduccióGarcía García, EJ. (2012). Novel Front-end Electronics for Time Projection Chamber Detectors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16980Palanci

    Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    Get PDF
    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each cell also has an 8-bit configuration register which allows masking, test-enabling and 3-bit individual threshold adjust for each discriminator. The chip can be configured in serial mode and readout either serially or in parallel. Measurements show an electronic noise ~160 e- rms with a gain of ~9 mV/ke-. The threshold spread after equalization of ~120 e- rms brings the full chip minimum detectable charge to ~1100 e-. The analog static power consumption is ~8 µW per pixel with Vdda=2.2 V. The Mpix2MXR20 is an upgraded version of the Medipix2. The main changes in the pixel consist of: an improved tolerance to radiation, improved pixel to pixel threshold uniformity, and a 14-bit counter with overflow control. The chip periphery includes new threshold DACs with smaller step size, improved linearity, and better temperature dependence. Timepix is an evolution of the Mpix2MXR20 which provides independently in each pixel information of arrival time, time-over-threshold or event counting. Timepix uses as a time reference an external clock (Ref_Clk) up to 100 MHz which is distributed all over the pixel matrix during acquisition mode. The preamplifier is improved and there is a single discriminator with 4-bit threshold adjustment in order to reduce the minimum detectable charge limit. Measurements show an electrical noise ~100 e- rms and a gain of ~16.5 mV/ke-. The threshold spread after equalization of ~35 e- rms brings the full chip minimum detectable charge either to ~650 e- with a naked chip (i.e. gas detectors) or ~750 e- when bump-bonded to a detector. The pixel static power consumption is ~13.5 µW per pixel with Vdda=2.2 V and Ref_Clk=80 MHz. This family of chips have been used for a wide variety of applications. During these studies a number of limitations have come to light. Among those are limited energy resolution and surface area. Future developments, such as Medipix3, will aim to address those limitations by carefully exploiting developments in microelectronics

    Power Side Channels in Security ICs: Hardware Countermeasures

    Full text link
    Power side-channel attacks are a very effective cryptanalysis technique that can infer secret keys of security ICs by monitoring the power consumption. Since the emergence of practical attacks in the late 90s, they have been a major threat to many cryptographic-equipped devices including smart cards, encrypted FPGA designs, and mobile phones. Designers and manufacturers of cryptographic devices have in response developed various countermeasures for protection. Attacking methods have also evolved to counteract resistant implementations. This paper reviews foundational power analysis attack techniques and examines a variety of hardware design mitigations. The aim is to highlight exposed vulnerabilities in hardware-based countermeasures for future more secure implementations

    Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter

    Get PDF
    A large prototype of 1.3m3 was designed and built as a demonstrator of the semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each unit is built of an active layer made of 1m2 Glass Resistive Plate Chamber(GRPC) detector placed inside a cassette whose walls are made of stainless steel. The cassette contains also the electronics used to read out the GRPC detector. The lateral granularity of the active layer is provided by the electronics pick-up pads of 1cm2 each. The cassettes are inserted into a self-supporting mechanical structure built also of stainless steel plates which, with the cassettes walls, play the role of the absorber. The prototype was designed to be very compact and important efforts were made to minimize the number of services cables to optimize the efficiency of the Particle Flow Algorithm techniques to be used in the future ILC experiments. The different components of the SDHCAL prototype were studied individually and strict criteria were applied for the final selection of these components. Basic calibration procedures were performed after the prototype assembling. The prototype is the first of a series of new-generation detectors equipped with a power-pulsing mode intended to reduce the power consumption of this highly granular detector. A dedicated acquisition system was developed to deal with the output of more than 440000 electronics channels in both trigger and triggerless modes. After its completion in 2011, the prototype was commissioned using cosmic rays and particles beams at CERN.Comment: 49 pages, 41 figure
    corecore