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Abstract 

The incessant technology scaling has enabled the integration of functionally complex 

System-on-Chip (SoC) designs with a large number of heterogeneous systems on a single 

chip. The processing elements on these chips are integrated through on-chip 

communication structures which provide the infrastructure necessary for the exchange of 

data and control signals, while meeting the strenuous physical and design constraints. The 

use of vast amounts of on chip communications will be central to future designs where 

variability is an inherent characteristic. For this reason, in this thesis we investigate the 

performance and variability tolerance of typical on-chip communication structures. 

Understanding of the relationship between variability and communication is paramount for 

the designers; i.e. to devise new methods and techniques for designing performance and 

power efficient communication circuits in the forefront of challenges presented by deep 

sub-micron (DSM) technologies.  

The initial part of this work investigates the impact of device variability due to Random 

Dopant Fluctuations (RDF) on the timing characteristics of basic communication elements. 

The characterization data so obtained can be used to estimate the performance and failure 

probability of simple links through the methodology proposed in this work. For the 

Statistical Static Timing Analysis (SSTA) of larger circuits, a method for accurate 

estimation of the probability density functions of different circuit parameters is proposed. 

Moreover, its significance on pipelined circuits is highlighted. Power and area are one of 

the most important design metrics for any integrated circuit (IC) design. This thesis 

emphasises the consideration of communication reliability while optimizing for power and 

area. A methodology has been proposed for the simultaneous optimization of performance, 

area, power and delay variability for a repeater inserted interconnect. Similarly for multi-

bit parallel links, bandwidth driven optimizations have also been performed. Power and 

area efficient semi-serial links, less vulnerable to delay variations than the corresponding 

fully parallel links are introduced. Furthermore, due to technology scaling, the coupling 

noise between the link lines has become an important issue. With ever decreasing supply 

voltages, and the corresponding reduction in noise margins, severe challenges are 

introduced for performing timing verification in the presence of variability. For this reason 

an accurate model for crosstalk noise in an interconnection as a function of time and skew 

is introduced in this work. This model can be used for the identification of skew condition 

that gives maximum delay noise, and also for efficient design verification. 
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Introduction 

 

As transistor gate lengths continue to shrink according to Moore’s law [1], designers are 

able to integrate increasingly complex systems in a single microchip. Although in principle 

it is possible to construct a multi-billion transistor chip in today's technology, the practical 

problems faced while designing and testing such designs have proven to be too arduous, as 

evidenced by the increasing designer's productivity gap [50]. Techniques, such as SoC 

design, where the design complexity is managed by the use of a hierarchy of 

interconnected modules, have been introduced to overcome this limitation. A typical SoC 

may include different functional units (FUs) like Microprocessors �μPs
, Digital Signal 

Processors (DSPs), Random Access Memory (RAM), Read only Memory (ROM), Digital 

to Analog Converters (DACs), Analog to Digital Converters (ADCs), Video Controllers 

(VCs) and several other Intellectual Property (IP) elements, which typically have already 

been designed and validated independently (perhaps by third parties). The current state-of-

the-art SoCs allow the design and integration of highly diversified and complex systems 

using adaptive circuits and increased parallelism [2]. Figure 1.1 shows the example of a 

SoC with diversified functionalities. For such systems, the designer still faces a number of 

challenging problems in the design, project management, simulation and verification of 

these devices. For instance, as the number of FUs integrated into a SoC increases, the role 

played by the on-chip communication structures becomes progressively important. 

However the semiconductor industry predicts that future generation of SoCs may possibly 
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contain several thousands of cores. According to the International Technology Roadmap 

for Semiconductors (ITRS), on-chip communication is becoming the limiting factor in 

designing high performance and power efficient SoCs. 

 

Figure 1.1: Typical system implementation of Marvell 88F6282 SoC [3]. 

1.1 Interconnect-Centric Design Paradigm 

Historically, the performance of designs was limited by that of the individual functional 

units, as communication (through wires) was substantially faster than computation (via 

transistors). However, the effect of technology scaling is not equally favourable for 

transistors and wires. With technology scaling, the performance of the devices is 

continuously improving, whereas the wires are becoming relatively slower, as highlighted 

by the ITRS [4] and shown in Figure 1.2. Several clock cycles are required for the signals 

to travel across newer chips. Therefore modern SoC designs, which are abundant with 

interconnects, are faced with the difficult task of orchestrating the computation of a large 

number of fast local islands, across the whole chip, by using (relatively) progressively 

slower interconnects. In order to mitigate this problem, the design paradigm has shifted 

from computation-centric to interconnect centric, in-line with the SoC methodology as we 

have seen. In DSM region, the interconnect has become the main bottleneck in the 

designing of high performance and complex SoCs [5], [6]. The design of efficient 

interconnects is affected by many issues, as detailed in the following subsections. 
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Figure 1.2: Projected relative delay of devices and interconnects (local and global) for different technology 

generations. The relative performance of the global interconnect is decreasing with technology scaling. 

1.1.1 Scaling 

The objective of the technology scaling is to produce faster devices, increase on-chip 

component density and reduce energy per storing [7]. The impact of technology scaling on 

the computational units is that they can now be constructed in smaller sizes (due to device 

scaling) with same or even with much more functionalities. Therefore the local wires in the 

cores reduce. However, the global wires which are used to connect cores do not reduce. 

This allows the cores to operate at a higher frequency, whereas the communication 

between the cores do not speeds up in the same proportion [8]. Again according to ITRS 

the interconnect width and pitch decreases with technology scaling, while chip size 

increases. The result is that the devices and local wires scales with the process technology, 

whereas the global interconnect do not improve much [9]. 

1.1.2 Power Dissipation 

The circuits are designed to operate at higher and higher frequencies in the interest of 

improved performance. However very dense interconnects switching at high frequencies 

becomes a major source of power consumption in the circuits and this trend is continuously 

growing with technology scaling. It has been reported that in a 130nm microprocessor, 

about 50% of the total power is consumed in the interconnect [10]. In circuit designing, 

power consumption is taken as a design constraint [11] and designers are always struggling 
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to reduce it. However, in DSM technologies, reducing power consumption is quite 

challenging. The supply voltages are decreasing with technology scaling, requiring 

threshold voltages to decrease to prevent junction breakdown due to higher fields. 

However, there is an exponential dependence of the leakage current on the threshold 

voltage so it is expected to become the prevailing part of the total power [12]. Thus the 

dynamic power which was the dominant component of the power dissipation may not 

account for the maximum share of the total power in DSM technologies. 

1.1.3 Crosstalk 

In order to incorporate more and more functionality, the number of transistors on a chip is 

continuously increasing for every new generation of SoCs [13]. Reduction in the gate delay 

of devices has made it possible to switch the circuits at higher frequencies to obtain higher 

performance. But this has introduced an important issue of Crosstalk, which can introduce 

functional noise and delay variation. The main reason behind the emergence of crosstalk in 

DSM region is the increase of capacitive and inductive coupling due to the shrinkage of 

geometries. The functional noise can cause a glitch on the victim line which can travel to 

the dynamic node causing circuit state to change and resulting in functional failures. Each 

victim line in a bus may experience different coupling capacitance due to which their 

propagation delay may vary significantly under different switching patterns of the 

neighbouring lines. Therefore, this introduces uncertainty in the timing of the signals, thus 

affecting the communication reliability. As we will demonstrate, crosstalk failures are 

particularly sensitive to skew variations, which are of course a prevailing characteristic of 

future designs. 

1.1.4 Variability 

In the semiconductor industry, variability is often defined as the deviation of the process 

parameters from their intended or designed values. It has always been an important aspect 

of semiconductor manufacturing, process control and circuit design. As the semiconductor 

feature sizes continue to shrink with every new technology generation, the importance of 

the underlying variability is increasing; so much in fact that in DSM region, variability has 

become one of the major design challenges and is considered as the hindrance in the way 

of technology scaling [14]-[16]. The variability affects devices as well as interconnects 

causing significant unpredictability in the performance and power characteristics of the 

integrated circuits (ICs). This can lead to certain undesirable effects such as malfunctioning 

of circuits or performance degradation. 
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Amongst various sources of device variability, intrinsic parametric fluctuations play an 

increasingly important role in contemporary and future CMOS devices [17]. These 

variations are introduced due to the discreteness of charge and matter and cannot be 

controlled or diminished by tightening the process tolerances. Some of the sources of 

intrinsic device variability are 

• Random dopant fluctuation (RDF) 

• Local oxide thickness variation (OTV) 

• Gate line edge roughness (LER) 

• Strain variations 

For state-of-the-art nano-scale circuits and systems, intrinsic parametric fluctuations have 

significantly affected the signal system timing [18] and behaviour of the circuits at higher 

frequencies [19]-[20]. In the circuits, it results in component mismatch and thus can reduce 

the yield and performance. 

 
Figure 1.3: Random discrete dopant effects in deep sub-micrometer CMOS devices [21]. The figure on the 

left hand side is a solid model of a CMOS transistor and that on the right side is its transparent version 

showing the discreteness due to dopants in the channel region. 

One of the most important sources of intrinsic parameter fluctuations is random dopant 

fluctuation (RDF) [17] which is caused by the randomness of the dopant position and 

number in the devices, thus making every device microscopically different from its 

counterparts. Therefore, the devices which are macroscopically identical will have 

different performance characteristics, mainly due to the variation in the threshold voltage 

(Vt
. Figure 1.3 shows the significance of RDF in deep sub-micrometer CMOS 

technologies. The normalized magnitude of the variations due to random dopant 
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fluctuations increases steadily with technology scaling; as fewer number of dopant atoms 

are now left in smaller devices (see Figure 1.4 and [21]). 

 

Figure 1.4: Impact of technology scaling on the average number of dopant atoms in the channel. 

Variability is also affecting interconnects in deep submicron technologies causing variation 

in their width, spacing, thickness and inter-layer dielectric thickness. However, there could 

exist strong spatial pattern dependencies, especially when interconnect variability in 

chemical mechanical polishing (CMP) is considered. Therefore, total variability can be 

classified into systematic and random components. A significant portion of the systematic 

component of variations can be modelled by analyzing the layout characteristic; whereas 

random variations cannot be modelled.  

1.2 Research Overview 

The challenges imposed by interconnects in the development of high performance SoCs, 

and ways to overcome them are an active field of academic research. The aim of this thesis 

is to advance this effort, in particular on understanding how variability intrinsically affects 

communication performance, fault tolerance, signal integrity, area and power consumption 

of the interconnect. To achieve this goal the following objectives are defined. 

1.2.1 Research Objective 1 

On-chip communication involves the use of different circuit elements and interconnects to 

move data from one location of the circuit to another. The communication performance 

entirely depends on these elements. The intrinsic device variability cannot be eliminated in 

nanometer CMOS devices as it is process independent. This defines a minimum amount of 
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variations in the circuit parameters for a particular size of the devices. In order to design 

communication structures for DSM technologies, an accurate and realistic estimation of the 

delay performance of all related circuit elements is required. Unfortunately, there is 

insufficient data available in this regard. Therefore the objective is: 

Accurate characterization of the delay performance of on-chip communication circuit 

elements for future CMOS technologies in the presence of variability due to RDF.  

This data is required to estimate the performance of a complete channel. Based on this 

information, it is possible to explore and design circuit level fault tolerant communication 

(sub) systems. 

1.2.2 Research Objective 2 

In the presence of characterization data of circuit elements, it is more convenient to use 

computationally efficient analysis techniques like Static Timing Analysis (STA) or 

Statistical Static Timing Analysis (SSTA). Presently, SSTA is preferred over STA, being 

computationally efficient and more accurate than STA. The SSTA technique can be used to 

evaluate the performance of a communication link. However, its accuracy strongly depends 

on accurate representation of the characterization data of the associated circuit elements. 

So far, underlying timing distributions are assumed to be Normal, but its validity needs to 

be investigated in DSM technologies. Therefore objective 2 of this thesis is: 

Study the nature of the timing distributions of communication elements and try to find their 

accurate probability density function. Once this is done, apply these distributions for the 

SSTA of a large communication channel. 

1.2.3 Research Objective 3 

As pointed out in [10], as much as 50% of the chip power is consumed by the global 

interconnects. This power is mainly dissipated in the drivers and repeaters used to improve 

the delay performance of interconnects. Different coding techniques are used at software 

level for efficient data transmission [22], [23]. A power optimal repeater insertion 

technique proposed in [24] is commonly used along with data coding. This technique gives 

excellent results in terms of power and area savings at the cost of nominal performance 

degradation. However, the implications of this technique are yet to be investigated for 

DSM technologies where variability and leakage power effects become quite prominent. 

Therefore objectives 3 of this thesis is: 
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To measure different components of power dissipation in repeaters of future technology 

generations. This data can be useful by the designers to make a choice between low 

activity parallel links or high activity serial links (as low activity parallel links will 

dissipate a large amount of the leakage power as compared to the serial links, for 

particular data requirements). Similarly, a power-optimal repeater insertion technique 

which accounts for delay variability is required to be developed. 

1.2.4 Research Objective 4 

Quite significant amount of academic work has been undertaken in finding the optimum 

configuration of a multi-bit communication channel for best possible performance under 

power and area constraints [25]-[27]. Again very little work is found in this area 

considering variability in the figure of merit. So objective 4 is: 

Find the optimum configuration of the channel link which gives best bandwidth under 

power, area and variability constraints. Moreover, a comparison of serial and parallel 

links is also required to be made in this perspective. 

1.2.5 Research Objective 5  

In order to ascertain signal integrity in the channel bus, accurate modelling of the crosstalk 

in aggressor and victim lines is required. In the past, many researchers have published 

crosstalk analysis models and algorithms [28]-[30] but all of them either require numerical 

techniques to solve them or do not give sufficient insight into the underlying crosstalk 

effects on signal responses. In order to reduce this difficulty, this thesis aims: 

To find closed form expressions that give accurate voltages for the aggressor and victim 

lines in time domain, as a function of wire length, due to switching transitions on them. 

Also study the effect of variability on the delay performance of interconnects in the 

presence of crosstalk. 

2.1 Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter 2- In the beginning of the chapter, different structures used for on-chip 

communication are briefly discussed. Subsequently, different performance metrics that 

have been used throughout the thesis to evaluate the performance of on-chip 

communications are defined. 

Chapter 3- In this chapter, the performance of on-chip communication structures under 

device variability has been characterized through HSPICE simulations. The 
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characterization results of all the basic elements have been included and discussed. At the 

end of the chapter, a methodology is given that can be used to estimate the performance of 

a complete channel link using the characterization data. Moreover, link failure probability 

has been estimated using this approach. 

Chapter 4- If we talk about core-to-core or router-to-router (for NoCs) communication 

links, flip-flops are normally used at the input and output of the functional units. Therefore, 

the output of a router or functional unit is emitted from the flip-flops and is then amplified 

through the tapered buffer drivers before transmitting through the link. Similarly, at the 

receiving end, flip-flops are used at the input of the functional unit or router. Again, flip-

flops are also used in pipelined interconnects. Therefore, in order to estimate the 

performance of a link using Statistical Static Timing Analysis (SSTA), accurate 

representation of the characterization data of the timing parameters of the flip-flops (in the 

form of PDFs) is required. Furthermore, accurate approximation of the probability 

distribution functions is also required. In this chapter, this aspect has been described in 

detail and its application in pipelined communication circuits has been discussed. 

Chapter 5- In the start of this chapter, the measurement results for the power dissipation in 

repeaters for the given three technology generations have been presented. The impact of 

device variability on the leakage power has also been studied and its implication on NoC 

links has been discussed. In the next part of this chapter, the optimization of the 

performance of a single wire link under area, power and variability constraints has been 

described. The impact of repeater size and inter-repeater segment length on the delay, 

power, area and variability has been discussed and an optimization scheme has also been 

proposed. 

Chapter 6- This chapter describes the performance of a multi-bit parallel link under area 

and power constraints. The optimization of bandwidth under area, power and variability 

constraints has been discussed. Moreover, a comparison of parallel vs. serial links has also 

been described. 

Chapter 7- In this chapter analytical model for the voltages at aggressor and victim lines 

under crosstalk effects have been presented. The validity of the data through comparison 

with the simulation results has been demonstrated. Moreover, the effect of crosstalk on 

input skew variability has been studied. 

Chapter 8- This chapter makes a conclusion of the study and also mentions some future 

work. 
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On-Chip Communication 

Structures 
 

 

A SoC design typically consists of many functional units (FUs) that work together to 

perform desired functions. The FUs always need to communicate with each other during 

the execution of the application and it is the responsibility of the on-chip communication 

structure/ architecture to provide a mechanism for the correct and reliable transfer of 

information from the source units to the destination units [31]. In addition to this, the on-

chip communication structure must satisfy certain metrics like latency, bandwidth, area and 

power dissipation. The performance of SoC designs largely depends on the choice and 

design of the underlying communication architecture. Therefore, depending upon the 

performance requirements, a suitable communication architecture is designed or selected 

for the SoC design. 

2.1 Communication Architectures for SoCs  

2.1.1 Buses 

The simplest on-chip communication architecture which is widely used in SoCs is the bus 

interconnection network [8]. In its simplest form, a bus is a group of wires which provides 
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a communication media for the exchange of data between different functional units 

connected to it. Figure 2.1 [31] shows the example of a simple system with many 

functional units connected through on-chip buses. 

 

Figure 2.1: A SoC in which different components are integrated through the bus communication architecture. 

There are several types of bus configurations used in SoCs and the simplest one is called 

simple shared bus, as shown in Figure 2.2. In this case only one FU at a time has a control 

over the bus and transfers data. If some other unit also tries to use the bus at the same time 

in order to transfer data, this will cause bus contention. Arbitrators are used to resolve the 

conflict who gives the control to one of the units on the basis of the assigned priorities. In 

bus based systems, this is one of the major problems and efforts have been made to reduce 

this problem. 

 

Figure 2.2: A simple shared bus, allowing different FUs to share the same communication channel. 
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In such systems, every unit attached to the bus adds capacitance which results in large 

delays and large power consumption. This allows only a limited number of components to 

be attached with the bus in order to keep the delay and power consumption within 

permissible limits. Due to this reason, the simple bus architecture is not scalable. 

 

Figure 2.3: A bus divided into two sub-buses using a bridge. 

This difficulty is typically reduced by dividing a common bus into several buses using 

bridges [32]. Figure 2.3 shows a bus split up into two sub-buses using a bridge. The 

implementation of bridges is fairly simple if it connects buses with same protocols and 

operating frequencies. There are also other types of bus configurations used in SoCs. 

Amongst them, Advanced Microcontroller Bus Architecture (AMBA) from ARM [33] 

defines several bus types which are widely used in SoCs. AMBA proposes various bus 

solutions for SoCs ranging from simple bus architectures to multi-master high performance 

bus structures. An example of an AMBA bus is shown in Figure 2.4. 

 

Figure 2.4: An example of AMBA bus. The bridge provides an interface to connect two different types of 

buses. 
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2.1.2 Point-to-Point Direct Links  

In this architecture, each functional unit is directly connected with a subset of other 

functional units on the chip, as shown in Figure 2.5. The point-to-point communication 

architecture eliminates the contention problem of shared medium (buses). Each functional 

unit, in this architecture, has a network interface block, usually called a router and is 

directly connected with the neighbouring functional units through the communication 

links. These links can either be of input, output or bidirectional type. Unlike buses, as the 

number of routers (nodes) in this architecture increases, the total bandwidth increases. This 

property makes point-to-point links suitable to make large scale systems [34]. 

Unfortunately the number of links (and hence the power and area) grows with the square of 

the number of functional units. Hence this architecture is not promising for very large 

systems. 

 

Figure 2.5: A point-to-point communication architecture. 

2.1.3 Network Architecture 

Network-on-Chip (NoC) has been proposed as a promising solution for on-chip 

communication in large SoC designs, where the complexity of the design is managed by 

the use of a number of networked, but self contained blocks [35], [36]. NoC provides a 

generalized scheme for on-chip global communication. Routing nodes (R) are spread over 

the chip and connected by point-to-point communication links. The resources or IP blocks 

are connected to NoC through network adapters (NAs), as shown in Figure 2.6. In a 
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Network-on-Chip, data is exchanged amongst computing elements (IP blocks) by 

transmitting and relaying data packets through the interconnection network. There are 

similarities between the conventional computer networks and NoC, like layered 

communication models and decoupling of computation and communication. However, 

there are also some differences which are mainly due to the difference in the cost ratio of 

wiring and processing resources [37].  

Memory

DSP

UART

uP

CPU

Router

Network Adapters

Link

 

Figure 2.6: A conceptual realization of a NoC [34]. 

In NoC the whole chip can be partitioned into several regions, each of which contains one 

(or several) IP block(s). These IP blocks can operate with their own clocks and exchange 

data with other IPs through the switches and communication links. In this way the 

requirement of a global synchronization is relaxed. Computations are undertaken within 

locally synchronous IP blocks, and global synchronization is obtained by the execution of 

semantics embedded within the global communications network. Similarly, in addition to 

communication infrastructure, NoC can also provide standard IP interfaces which will 

facilitate the reuse of already verified IP resources [37]. This can simplify the design 

process and also reduce verification efforts. Due to a layered structure, the signal integrity 

issues can be addressed at physical, data-link or any higher layer [38]. 

NoC can be constructed in different types of topologies such as 2D mesh, Star, Torus, 

Octagon, Hypercube [37], [39]. The topology defines the connectivity and layout of the 

nodes and links on the chip. A 4 � 4 grid topology is shown in Figure 2.7 which presents a 

regular structure. The topology can be application specific having an irregular structure. 
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Depending upon the specific requirements of, say bandwidth, the protocol dictates how the 

nodes and links of NoC will be utilized in the operation. 

 

Figure 2.7: A 4×4 grid structured NoC. Each intellectual property (IP) block is connected to a router through 

a network interface (NI) adapter. The routers are connected with each other through communication links in a 

certain topology. 

2.2 Link as an important Communication Media 

In all communication architectures, the underlying communication links between the 

functional units or between the functional units and routers are always used. These links 

form the backbone of any communication architecture. These links can be synchronous, 

asynchronous or self-timed. However, in this thesis we have chosen to focus on 

synchronous links due to their prevalence in the industry. Ideally these links should consist 

of a certain number of parallel wires running between the source and destination. However, 

in practical circuits (especially in DSM technologies), their construction is not so simple in 

order to meet certain design requirements. Therefore, it is of great importance to study 

these links in detail to design high efficiency links. 

A link can be bidirectional or unidirectional as shown in Figure 2.8 and 2.9 respectively 

[40]. A bidirectional link allows the signals to travel in either direction. This provides a 

flexibility in the routing of interconnects and makes it possible to effectively use available 

metal tracks on the chip. The implementation of this approach requires the use of tristate 

buffers on transmitter and receiver sides, as shown in Figure 2.8. 
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Figure 2.8: A bidirectional link. There is a shared interconnect between the transmitter and receiver. 

A unidirectional channel allows the signals to travel only in one direction and thus suggest 

that a pair of wires should be used in each channel. This approach is less flexible than the 

bidirectional approach for routing the tracks on the chip, however it provides less 

contention and more bandwidth. 

 

Figure 2.9: A unidirectional link. 

Furthermore, in each interconnect line, different circuit elements like tapered buffer 

drivers, repeaters and flip-flops are used and there are two basic designs for the 

interconnect-repeater inserted interconnects and flip-flop (or latch) inserted pipelined 

interconnects, as shown in Figure 2.10 and 2.11 respectively.  

 

Figure 2.10: Repeater inserted interconnect. 
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Figure 2.11: Flip-flop inserted pipelined interconnect. 

2.3 Performance of On-Chip Communication  

The performance of on-chip communication in the physical layer can be evaluated from 

several aspects. In this thesis, however, we consider the metrics exposed in this chapter as 

important for interconnect centric circuits. We start with a short review on interconnect 

design. Subsequently, some basic concepts and the mathematical equations describing 

these metrics are provided. We will make use of these metrics in subsequent chapters for 

evaluating the merits of different interconnects and for quantifying the effects that 

variability introduces in the design. 

2.4 Interconnect Modelling in DSM Technologies  

In early days of VLSI design, the clock speeds and integration densities on the chip were 

low and so the signal integrity effects were minimal. However, with rapid evolution of the 

semiconductor technology, several important issues associated with interconnects in deep 

sub-micron technologies have emerged that are effecting the performance of high speed 

circuits. The problems such as interconnect delay, device and interconnect variability, 

power dissipation, crosstalk, substrate coupling, inductive coupling and IR drop are among 

the many emergent challenges which the circuit designers are facing [5], [6].  

The fundamental parameters influencing the interconnect delay are on-resistance of the 

driver, output capacitance of the driver and wire parasitics. The interconnect parasitics of 

interest are the wire resistance and the wire capacitance (and inductance for very high 

frequency signalling). These parasitics are a function of the physical properties of the 

construction and layout of the wires, and will act as an RC load increasing the propagation 

delay. 

A simple lumped element model is not sufficiently accurate to model state of the art 

interconnects, which of course are formed by continuously distributed RC (or RLC) 

elements in space. For simulation purposes, an approximation to a distributed element 
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model can be formed by breaking the interconnect into a large number (N) of smaller 

identical lumped sections (RLC cells). Some possible models are shown in Figure 2.12 

[41]. The accuracy of the simulation results depends on the number of RLC cells 

(segments) used (i-e the resolution of the lumped RLC model). However, this number is 

limited in practice by the correspondingly large simulation time of the model. 

 

C/2 C/2

R L

   

(a)     (b)      (c) 

 

      (d) 

Figure 2.12: Different interconnect models, (a) the ‘T’, (b) the ‘pi’ and (c) the ‘ladder’. A long wire is divided 

into N segments using ladder model and is shown in (d). 

2.4.1 Parasitic Resistance 

The signal speed through a wire depends, to a first order approximation, to the distributed 

RC constants in it, and hence to the parasitic resistance. The resistance depends on the wire 

dimensions and the type of the material used (gold, aluminium, copper or polysilicon). For 

an interconnect having thickness T and width W, the resistance can be calculated as [41] 

� � � ���                                                                    �2.1
 
where � is the resistivity and � is the length of the interconnect. Using this formula, the 

parasitic resistance of a wire of given dimensions can be estimated. 

With technology scaling, the wires are becoming thinner and so the parasitic resistance per 

unit length is increasing for minimum wire widths (according to ITRS). 

2.4.2 Parasitic Capacitance 

The accurate estimation of the parasitic capacitances of the interconnects in DSM 

technologies is a complex task. This is due to the fact that each interconnect is a three 

dimensional metal structure surrounded by a number of other interconnects with significant 

variations of shape, width, thickness and spacing with respect to other conductors and 
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ground planes [42]. Unlike the simplest way of calculating the capacitance of a parallel 

plate capacitor, the capacitance measurement in integrated circuits require the 

consideration of other factors like coupling capacitance and fringe capacitance in addition 

to ground capacitance, as shown in Figure 2.13. It has been observed that the contribution 

of the coupling capacitance in the total interconnect capacitance is increasing rapidly with 

technology scaling due to the reduction of interconnect spacing and an increased aspect 

ratio of wires. 

 

Figure 2.13: The cross-sectional view of an interconnect surrounded by two parallel similar interconnects 

over a ground plane (in the top global layer) showing different components of capacitance. 

An accurate estimation of the parasitic capacitance can be made by solving Maxwell’s 

equations in three dimensions, provided all material and geometrical details are available. 

Presently, computer aided software tools like Raphael [43] and FASTCAP [44] are 

available which are based on 2D or 3D field solvers which can calculate the parasitic 

capacitance with reasonable accuracy. However, some important aspects of interconnect 

parasitic capacitance can also be calculated using closed form models such as [45] as 

follows- The ground capacitance per unit length (considering the fringe flux) to the 

underlying plane is given by 

�� � � ���  3.28# ��  2�$%.%&' # ((  2�$).)*+                                �2.2
 
Where � is the dielectric constant of the insulating material and �,�, ( and � are the 

geometrical dimensions shown in Figure 2.13. Similarly the coupling capacitance per unit 

length is given by 
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�- � � �1.064#�($ # �  2��  2�  0.5($%.*12  # ��  0.8($).3)34 # �  2��  2�  0.5($%.4%3
 0.831# ��  0.8($%.%22 # 2�2�  0.5($'.23&5                                          �2.3
 

The total capacitance of the wire can be calculated as 

�678 � ��  2�-                                                             �2.4
 
Typically such derivations are limited to particular domains. In this case the valid range for 

using the approximation is 

0.3 9 �� 9 10, 0.3 9 (� 9 10, TH 9 10 

Other closed form capacitance models with different interconnect configurations are also 

given in [46], [47], [134]. 

2.4.3 Inductance 

Inductance is another important parasitic. It can be described by the magnetic flux 

generated due to the flow of current in a loop. In integrated circuits several electrical loops 

can exist which produce inductive parasitic effects. At high enough operational frequencies 

of the circuits, the inductive impedance associated with interconnects become comparable 

or prevail over the resistive part [48]. The inductive interference caused due to the 

interaction of the magnetic fields can affect the signal integrity in the form of signal 

distortion, delay variation, crosstalk noise and glitches.  

In this research we have ignored the effects of inductance due to the following reasons: 

(a) The interconnect delay is not significantly effected by the inductive effects. For 

scaled global interconnects, the line resistance per unit length increases (according 

to the ITRS) and so the effects of inductance on the performance of global 

interconnects actually diminishes [49]. This is true, especially for the technologies 

and interconnect geometries we have considered in this thesis. Using the delay 

models of [143] for RC and RLC interconnects, it has been found that the percent 

increase in the propagation delay caused by neglecting inductance and considering 

an RLC line as an RC line, is nominal. For instance, for the global interconnects of 

25, 18 and 13 nm technology generations at S=1Smin and W=1Wmin, this increase is 

1.74%, 1.25% and 1.16% respectively. Similarly for the fastest interconnects with 
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S=10Smin, W=10Wmin (we used in this thesis), the maximum increase in delay is 

14.2%, 10.92% and 10.01% for the corresponding technologies. 

(b) The inductive effects have much longer spatial range in contrast to the capacitive 

effects which primarily depends on features in close proximity. The inductance 

matrix generally becomes very dense and is difficult to specify in a straightforward 

way. Therefore, accurately simulating inductive effects might not be practical [48]. 

(c) The effective interconnect inductance in a chip environment is very difficult to 

predict accurately. For the estimation of the inductance associated with a wire, the 

return current path should be defined. However, the return current path can be 

dynamic in a real chip environment, as it depends strongly on the signal condition 

and the overall layout and configuration of the integrated circuit. 

2.4.4 Impact of Technology Scaling on Interconnect Parasitics 

In order to study the impact of technology scaling on interconnect resistance and 

capacitance parasitics, particular interconnect parameters have been taken from the 

International Technology Roadmap for Semiconductors (ITRS) [50] for the technology 

generations of 25, 18, 13 and 10 nm. These are given in Table 2.1. It is important to 

mention that these lengths (technologies) correspond to the MPU physical gate length. The 

data shows that interconnect pitch is reducing and height is increasing with technology 

scaling for all three wiring tiers. The parasitics have been calculated using equations (2.1)-

(2.4) for minimum wire width and pitch and are plotted in Figure 2.14 as a function of the 

technology generation. 

Table 2.1: Interconnect Technology Parameters for the Three Wiring Tiers 

Parameter/ Technology Generation 25nm 18nm 13nm 10nm 

Local wiring pitch (nm) 136 90 64 50 

Local wiring aspect ratio 1.7 1.8 1.9 1.9 

Intermediate wiring pitch (nm) 136 90 64 50 

Intermediate wiring aspect ratio 1.8 1.8 1.9 1.9 

Global wiring pitch (nm) 210 135 96 75 

Global wiring aspect ratio 2.3 2.4 2.5 2.6 

Metal Resistivity (µΩ-cm) 2.2 2.2 2.2 2.2 

Dielectric Constant 2.5-2.9 2.3-2.7 2.1-2.5 1.9-2.3 

On-chip local clock frequency (MHz) 4,700 5,875 7,344 8,522 

Chip Size at production (mm2)  310 310 310 195 
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The curves show that the interconnect resistance is increasing more rapidly as compared to 

the capacitance which is decreasing (as wire widths are decreasing) with technology 

scaling. This indicates that RC delay increases with technology scaling and will contribute 

a larger portion of the path delay. 

        

(a)                                                                                 (b) 

Figure 2.14: Impact of technology scaling on interconnect resistance and capacitance per unit length (Fig. (a) 

and (b) respectively) for local, intermediate and global interconnects with minimum width and pitch. 

2.5 Performance Metrics 

2.5.1 Signal Delay 

Signal delay is the most important parameter describing the performance of on-chip 

communication, as it determines the maximum possible speed at which communication can 

be made. For reliable communication, it is required that the signals reach their destinations 

within the specified timing constraints. Consider the simple circuit of Figure 2.15 where a 

signal propagates through two buffers via the interconnect. The signal delay depends on 

the interconnect RC, the driver resistance and load capacitance.  

If <=>?@A  is the time between the step input voltage excitation Vin and output voltage Vout 

reaching 90 percent (0-90%) of the final value then according to Bakoglu [51], the signal 

delay to the first order is given by 

<=>?@A � 0.7�CD8�E  0.4�CD8�CD8  0.7�8F�E  0.7�8F�CD8                       �2.5
 
Where different interconnect parameters have been shown in the equivalent circuit in 

Figure 2.15 and are defined as follows: 
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�CD8 � total interconnect resistance, �8F= on-resistance of the transistors in the buffer, �CD8 � total interconnect capacitance, �E � load capacitance (capacitance of the output buffer). 

 

Figure 2.15: The circuit used for the derivation of the delay expression, where an interconnect is driven by an 

input buffer and at the output another buffer is connected.  

It is assumed that when nMOS transistor in the buffer turns ON, the pMOS transistor 

immediately turns OFF and vice versa (so no cross-bar current occurs). The on-resistance 

of nMOS and pMOS transistors can be approximated as 

�8FD � �>GGHD�7I�JKK L J6D
�                                              �2.6
 
and  

�8FM � �>GGHM�7INJKK L J6MO�                                              �2.7
 
where, �>GG � transistor gate length, � � transistor width, H � mobility of carriers in the transistor, �7I � gate capacitance per unit area. 

If the interconnect is long such that �CD8 P �E, then equation (2.5) reduces to 
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<=>?@A � 0.4�CD8�CD8  0.7�8F�CD8                                                 �2.8
 
The expressions given above can provide a qualitative idea of the effects of different 

parameters on the delay. Moreover, they help to understand how variations in these 

parameters can affect the delay characteristics. 

It may be noted that the delay given by the expressions (2.5) and (2.8) is the Elmore delay 

[52]. Elmore delay is the most common and fastest approach for computing the signal 

delay of a wire. However, it accounts for only the first order moment and thus gives an 

approximation of the actual RC delay. When better accuracy in delay estimation is 

required, higher moments will have to be included using SPICE simulation. 

2.5.2 Skew 

The difference in the arrival times amongst a group of signals (at a specific location) is 

defined as the skew in the group. The skew is a critical parameter for high speed circuits, 

as it can limit their performance. Therefore its minimization is emerging as a difficult 

engineering challenge to afford proper circuit operation under the tight design margins left 

by the increasingly short clock period. Traditionally, skew has always been a point of 

concern for the clock distribution network in synchronous circuits. However, it is also 

becoming an important parameter to control in high speed data transmission between 

different functional blocks on the chip. 

2.5.2.1 Clock Skew 

There is a fundamental difference between clock distribution and data distribution because 

clock signal is periodic and predictable and every sequential element in a synchronous 

circuit needs it. Generally, the delay of the clock signals does not matter, as long as the 

clock signal reaches all circuit locations simultaneously [53]. However, in all practical 

systems (especially large synchronous systems), the clock signals do not exactly arrive at 

the same time at different spatial locations, and hence are skewed. Figure 2.16 gives an 

illustration of clock skew in a simple H-tree clock distribution network (CDN). 

The possible causes of skew in the clock signals may be the mismatch of the signal path 

length in the clock tree, imbalance of loads at different nodes of CDN, or process 

variations in the devices and interconnects. Clock drivers (buffers) of different sizes are 

used in the CDN which can be a potential source for introducing skew (due to device 

variability) along with the interconnect variability. 
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(a) 

(b) 

Figure 2.16: (a) A simple H-tree with 16 nodes, and (b) an illustration of skew in the clock signals due to 

difference in their arrival times at location 1 and location 16 of the H-tree.  

2.5.2.2 Skew in Data Links 

With the speed increase of digital systems, the demand for high speed links used for the 

exchange of data between different functional blocks on the chip has also increased. The 

link can consist of a single wire, a group of wires forming a parallel link or a more 

complex serial link. However, all these links have to perform the difficult task of 

orchestrating fast computation and data transfers through the functional units connected to 

them. 

The serial links use a small number of wires and usually operate at high frequency to meet 

bandwidth requirements. The overall bandwidth of serial links depend on the 

characteristics of the interconnect and the abilities (complexity) of the receiver (and 

transmitter).  

A high speed differential serial link is shown in Figure 2.17. Ideally, the differential signals 

travelling on two separate lines should remain synchronous at any time until they reach the 

receiver. However, in reality there are certain factors such as mismatching of wire lengths 
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due to routing constraints, variability in interconnects and/ or devices, due to which the 

signals arrive at slightly different times. This effect causes skew in differential pairs as 

shown in the figure. Skew beyond a certain value may not be tolerable for proper 

functioning of the receiver. Thus the skew beyond permissible limits can either limit the 

speed of these links or can cause functional errors. 

S(t)

-S(t)

Differential Channel

S(t)

-S(t)

No skew Skew  

Figure 2.17: A high speed differential serial link. The skew beyond a limit can also effect its functioning. 

Alternatively, parallel links can also be used for data communication. Here a group of bits 

is simultaneously transferred through a number of wires (typically the number of bits is 

equal to the word size). Ideally, all the bits arrive simultaneously and are sampled with the 

arrival of a clock edge. Again, in reality this is an idealization and in reality signals 

travelling through different wires of a parallel link arrive at the destination at slightly 

different time instant as shown in Figure 2.18. 

 

Figure 2.18: An N-bit parallel link. The skew reduces the amount of the bit overlap. 
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Due to the presence of the skew in the signals, the amount of overlap at the destination 

reduces, thereby increasing the probability of data sampling error. The skew can either 

reduce the operational distance or the throughput of a parallel link. If left unbounded, data 

corruption and functional errors will ensue.  

2.5.3 Delay Variability 

The variability in the devices and/ or interconnect has a direct impact on the performance 

of circuits. In the presence of variability, the signal delay no longer remains a deterministic 

fixed quantity and so the arrival times of signals can vary significantly. Thus the signal 

paths which are not critical in a circuit design may become critical under the impact of 

variability and can result in the malfunctioning of the circuit; in other words, there ceases 

to exist a unique critical path. On-chip communication circuits may also suffer from such 

variability issues and can affect the performance of circuits.  The delay variability is, 

therefore, an important design metric and should be considered in the design process for 

making accurate signal timing plans. 

Under the impact of variability, the signal delay becomes a random variable (RV). The 

characteristics of this RV can be determined by computing its probability distribution 

function (PDF) or cumulative distribution function (CDF).  The moments of the probability 

distribution function represents their different characteristics. For instance, the first 

moment represents the mean value (µ) and the second moment gives the dispersion of the 

distribution about the mean (in terms of the standard deviation, σ). Similarly, other aspects 

of the distribution such as whether the distribution is skewed or peaked are described by 

higher moments.  

The delay variability is defined as (3σ/µ) where σ is the standard deviation and µ is the 

mean value of a set of delay data. It provides a measure of the dispersion of delay values 

about the mean value. This metric should be as small as possible for the circuits. 

Depending upon the shape of the distribution, other higher moments are also required for 

accurate timing analysis. 

2.5.4 Crosstalk 

Crosstalk arises when a neighbouring wire (aggressor) unintentionally affects (couples 

energy into) another wire (victim). It occurs due to the coupling between the neighbouring 

wires and can be classified into functional noise and delay variation. Functional noise 

refers to a fluctuation in the signal state of a quiet wire (non-switching) due to switching in 
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the neighbouring wire. This noise produces a glitch that may propagate through the 

interconnect to the dynamic node or a latch and may tend to change the signal state. This is 

illustrated in Figure 2.19, where the effect is shown on a quiet victim line due to the 

switching in a neighbouring aggressor line. 

 

(a) 

 

(b) 

Figure 2.19: Two RC coupled interconnects. Due to switching of the aggressor line, a voltage is induced in 

the victim line as shown in (a). The equivalent circuit of the crosstalk model is given in (b). 

Crosstalk can also cause variation in the delay of signals depending on the phases of the 

aggressor and victim line signals. If the aggressor and victim lines switch in the same 

phase, the signal speed on the victim line will increase and this is called in-phase crosstalk. 

On the other hand, if the two signals switch in the opposite phase, the crosstalk will reduce 

the signal speed in the victim line and this is called out-of-phase crosstalk [54]. On a chip, 

an interconnect may have multiple couplings with neighbouring wires and simultaneous 

switching on these wires will increase the magnitude of the crosstalk, thereby affecting the 

propagation delay and introducing delay variations [55]. These delay variations may result 

in timing failures. Therefore, crosstalk effects are very critical in the designing of high 

performance circuits.  

There are several publications [30], [56], [57] which have discussed crosstalk in 

interconnects and have derived analytical expressions. A relatively simple expression used 
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to calculate the induced voltage due to a rising step of amplitude J==  and rise time �F at 

aggressor driver output, in an RC coupled interconnect is given by [58] and is 

JI � �Q�-J==R%�F SR) TUV8 WXY L UV�8V6Z
 WXY 5 L R& TUV8 W[Y L UV�8V6Z
 W[Y 5\   ,      < ] �F       �2.9
 
The equivalent circuit of the crosstalk model is shown in Figure 2.19(b), where �@, �@ , �Q 
and �- are respectively the aggressor line resistance, total capacitance of the aggressor line, 

total capacitance of the victim line and coupling capacitance between the two lines. �QVCD8 
is the victim line resistance and �I is the driver resistance of the victim line. The victim 

resistance �Q is �QVCD8  �I. The time constants R%, R), and R& are given by 

R% � _`& L 4a                                                          �2.10
 
R) � 2a`  R%                                                                 �2.11
 
R& � 2a` L R%                                                                  �2.12
 

where, 

` � �Q��Q  �-
  �@��@  �-
                                                 �2.13
 a � �Q�@��@�-  �@�Q  �-�Q
                                                 �2.14
 
The above expressions clearly show the dependence of crosstalk noise on interconnect and 

device parameters.  

With technology scaling, signal speeds are increasing, interconnect aspect ratios are 

increasing and also interconnects are coming closer. Moreover, the supply voltages and 

also the design margins are reducing. More importantly, variability is also influencing 

crosstalk effects. Therefore, it is important to analyse the performance of on-chip 

communication networks in crosstalk environment under the impact of variability. 

2.5.5 Power Dissipation 

Buffer (repeater) insertion is a common technique to optimize the performance of global 

interconnects for on-chip communication networks. With technology scaling, more and 

more functionality is being integrated and thus on-chip communication networks are also 

growing rapidly. Moreover, the number of optimal buffers per unit interconnect length are 

also increasing (due to progressively resistive interconnect) and therefore very large 

number of these buffers are used in high performance designs [59]-[60]. Optimal repeaters 
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are used to construct delay optimal interconnections and are of a significant size. Thus they 

consume a proportionally large portion of the silicon and power [61]. The power 

dissipation has been pointed out as the main limiting factor in the scaling of the future 

CMOS circuits [62]. Therefore, power estimation for on-chip communication (and the 

whole chip) is an important metric to consider during the design process. 

The power dissipation in CMOS circuits comprises: (1) the dynamic (switching) power �bcd
, (2) the short circuit power �bce
 and (3) the leakage power �b?>@f
. The average 

power can be expressed as the sum of these three components  

b678@? � bcd  bce  b?>@f                                                    �2.15
 
A brief description of these power components is given below [24], [42]: 

2.5.5.1 Switching Power 

Switching power is the power dissipation whenever there is a state transition, from low-to-

high or from high-to-low, in the circuit. The energy during this transition is actually 

consumed in charging or discharging (low-high or high-low) the load capacitance 

connected at the output of the driver (a buffer). In deep sub-micron on-chip communication 

networks, the load capacitance consists primarily of the interconnect and gate capacitance. 

The switching power dissipation in a buffer driving an interconnect of length � having 

resistance g and capacitance  per unit length is given by [24] 

bcd � `hiN%  MO  �jJ==& keEl                                              �2.16
 
where 

% �input capacitance of a minimum sized buffer, M � output parasitic capacitance of the minimum sized buffer, keEl � clock frequency, J== � power supply voltage, i � buffer size, ` � switching or activity factor and gives the fraction of buffers switching during an 

average clock cycle. 

The switching power is independent of the rise or fall time of the input waveform. The 

expression of bcd (Eq. 2.16) shows that the switching power can be reduced by reducing 

the supply voltage J== . However, this is at the cost of increased delay. 



Chapter 2                                                                       On-Chip Communication Structures 

 

31 
 

2.5.5.2 Short Circuit Power 

The buffers or repeaters which are used to drive interconnects consist of inverters 

constructed with nMOS and pMOS devices. If the input to a buffer has a finite rise time 

and fall time, then during the switching process both nMOS and pMOS transistors may 

conduct simultaneously for a short interval of time, forming a direct path between the 

supply and ground for the flow of the current. The short circuit power is that dissipated 

during this eventuality. Unlike the switching power, the rise time and fall time play an 

important role in the determination of the magnitude of the short circuit power. If J6D and J6M are the threshold voltages of the nMOS and pMOS transistors respectively, then 

following condition holds during the short circuit phase 

J6D m Jno m J== L pJ6Mp 
Approximating the short circuit current by a triangular waveform, the total short circuit 

power is given by [24] 

bce � `<FJ==�DqrsitcekeEl                                                �2.17
 
where 

�Dqrs �minimum width of the nMOS transistor, 

i � transistor size 

tce u 65Hv/H�  across all technologies. 

<F is given by 

<F � TgxN%  MO  gxi �  g�i%  12 g�&5 ln3                                 �2.18
 
If the input rise and fall times are much larger than the output rise and fall times, the 

transistors will conduct for longer time and therefore short circuit current will increase. It is 

proposed in [63] that the short circuit current can be eliminated if the power supply voltage 

is adjusted such that 

J== m J6D  pJ6Mp 
Under this condition, both nMOS and pMOS transistors will not be ON simultaneously for 

any input voltage. However, this technique will make the circuit more vulnerable to noise 

effects due to reduced signal to noise ratio. 
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Figure 2.20 shows a rough sketch of the voltage and current waveforms of a simple buffer 

(inverter) circuit during its switching. Figure 2.20(b) shows the short circuit current and 

Figure 2.20(c) shows the switching current. Note that short circuit current is much smaller 

as compared to the switching current. 

2.5.5.3 Leakage (static) Power 

Ideally, the power dissipation in CMOS circuits is thought to occur only during their state 

transitions and once the circuits are in a stable state, there should not be any power 

dissipation. However, a leakage current flows through the CMOS circuits during any of the 

states. This constitutes an increasingly important component of the total power dissipation-

called leakage power.  
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Figure 2.20: (a) A rough sketch of voltage and current waveforms of a simple buffer circuit, (a) input and 

output voltage waveforms, (b) the short circuit current peaks appear when both nMOS and pMOS conduct, 

and (c) the switching current used for the charging and discharging of the capacitive load. 

Five major sources of leakage power in CMOS devices are [64] 

(i) Sub-threshold leakage, �t({|
 
(ii)  Gate oxide tunneling leakage, �t}
 
(iii)  Reverse bias junction leakages, �t�~J
 
(iv) Gate induced drain leakage, �t�t��
 
(v) Gate current due to hot carrier injection, �t�
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These effects are becoming more important as the devices are miniaturized with 

technology scaling and so leakage power is rapidly increasing and dominating in the 

CMOS circuits [65]. 

The buffers used in on-chip communication also exhibit this mode of power dissipation. 

According to [24], the average amount of leakage power in the buffers inserted in the 

interconnect is given by 

b?>@f � J==t?>@f                                                                     �2.19
 
� J== 12 �t7GGs�Dqrs  t7GG��Mqrs� i                    �2.20
 

where, t?>@f � leakage current through the buffer, t7GGs �t7GG�� � leakage current per unit width of nMOS (pMOS) transistor, �DqrsN�MqrsO � width of the nMOS(pMOS) transistor in a minimum size buffer(inverter). 

Like delay, statistical device variability has also introduced variability in the leakage power 

and has become a point of serious concern in deep sub-micron technologies.  Both delay 

and leakage power variability, are seriously effecting the performance, yield and reliability 

of the circuits and seems to be an obstacle in the progression of designing power-

constrained high performance circuits using miniaturized devices [65]-[67]. 

2.5.6 On-Chip Area 

On-chip communication networks are deeply spread over the whole chip to provide 

communication media to the functional units. However, as previously stated, they consume 

a larger portion of the chip area due to large number of buffers. In future technology 

generations, unconstrained optimal buffering of interconnects might require up to 80% of 

the total on-chip area [68]. 

The area of the on-chip communication network is simply the area occupied by the wires 

and the area of CMOS circuitry used to drive these wires (line drivers, buffers, switches, 

etc.). The total area of the repeaters of size i placed at regular intervals of length � in an 

interconnect of length � can be estimated as 

vF>M>@8>Fx � ��>GGi�                                                                �2.21
 
where, �>GG  is the effective transistor gate length. (This is actually a lower bound; routing 

might add more area). 
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Limited area resources available on the chip have made this metric very important for the 

present and future system designs. 

2.5.7 Throughput 

Throughput is one of the important parameters of interest and is defined as the average rate 

of error free delivery of data over a communication channel. It is generally measured in 

bits per second (bps) or data packets per second. 

2.5.8 Bandwidth 

Bandwidth refers to the maximum capacity of error free data transmission over a 

communication channel. The higher the bandwidth, better will be system performance and 

so there are always been design efforts to maximize it. 

2.5.9 Parametric Yield 

Due to process variations, the uncertainty in the performance and power characteristics of 

the designs is increasing [69].  This can lead to a significant deviation of the manufactured 

products from their actual designs.  

Parametric yield is defined as the percentage of the manufactured dies which meet the 

specified frequency and power consumption requirements [70]. It can be calculated as 

bN� 9 �6@F�>8O � � ���
��                                              �2.22
���Z���
%  

where, � is the observed delay or power dissipation and �6@F�>8  is the corresponding 

constraint. 

The yield measurement could result in discarding a large number of dies which do not meet 

the performance or power criteria, even if they are otherwise functional. This results in 

parametric yield loss. Since power dissipation and delay are negatively correlated, fast 

designs may consume more power, causing an increased yield loss. Similarly, power 

efficient designs may not fulfill the performance requirements and again result in yield 

loss. Therefore, careful consideration of this metric is required in the designs. 

2.6 Performance Characterization Methodology 

In some recent studies, the effect of intrinsic parameter fluctuations introduced due to RDF 

and other sources, on the performance of CMOS circuits has been studied for the future 

technology generations [71]-[73]. The 3-D atomistic simulation method [74], [75] is used 
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to study the effect of different sources of variability at device level. However, this method 

is not feasible for circuit level analysis, being computationally expensive.  

In this research, the performance of on-chip communication circuits for the future 

technology generations of 25, 18 and 13 nm physical gate length bulk MOSFETs has been 

accurately characterized using Monte Carlo (MC) method and HSPICE simulations of a 

large number of distinct realizations of the circuit under investigation. The industry 

standard BSIM4 model card libraries have been used for the given technology generations 

[76]. These model card libraries are developed through parameter extraction strategy [77] 

in which the comprehensive Glasgow 3D statistical physical device simulations are 

performed and fluctuation information due to random dopant fluctuation (RDF) is 

transferred into the model card libraries. 

The devices in each library are macroscopically similar but are microscopically different 

due to the difference in the number and position of the dopant atoms in the channel. So all 

the devices in each library have different characteristics due to statistical variations in the 

device parameters and the distribution of these variations represents the distribution of 

variations found in the general population. For the statistical analysis, a Monte Carlo 

simulation method has been used (as previously stated) with random selection of the 

devices from the given model card libraries, while constructing different circuit 

realizations. The circuits are biased with a supply voltage of 1.1V, 1.0V and 0.9V for the 

technology generations of 25, 18, and 13 nm, respectively [78]. Different delay 

measurements taken during this study correspond to 50% of the signal levels during the 

transitions. Power measurements for the circuits have also been made through this 

methodology. Several sets of HSPICE simulations have been performed for the transient 

analysis of the circuits. 

2.6.1 Extraction of I-V Characteristics of MOSFETs 

The dependence of the device drain current on the gate voltage is given by the I-V 

characteristic curves. In order to validate the test methodology, the IV characteristics of the 

devices in the library has been measured. These curves have been plotted for the nMOS 

and pMOS devices of the given three technology generations and are shown in Figure 2.21. 

Each set of the curves is plotted for 200 devices taken from the model card libraries. The 

blue curve (with symbols) over the red curves and red curve (with symbols) over the blue 

curves is for the uniformly doped devices. These curves match the data in [145] and show 

that I-V characteristics of the devices in the model card libraries differ from each other 
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under the impact of RDF and lie on both sides of the uniformly doped device curves. It 

may also be noted that the spread of these curves increases with technology scaling. This 

hints that the delay characteristics of the devices (and circuits) will certainly be affected 

due to the variability in the I-V performance. 

Gate Voltage, V
G 
(V)  

 

 

Figure 2.21: I-V characteristic curves of 200 devices for each of nMOS (left) and pMOS (right) for the 

technology generations of 25, 18 and 13nm. Along with each set of curves, the characteristic curve for the 

uniformly doped device is also plotted and the dispersion of other curves around this curve shows the effect 

of variability due to RDF. 
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2.7 Summary 

This chapter gives an introduction to the on-chip communication structures used in SoCs. 

In all the structures, the underlying communication links play an important role in their 

design. Therefore, modeling of interconnects used in these links is first presented. 

Subsequently, different performance metrics used to evaluate the performance of the 

communication structures in DSM regions have been discussed. Finally, the methodology 

used in this thesis to characterize the performance of different circuits is outlined. 
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Chapter 3 
 

Communication Structures under 

Device Variability 
 

 

A clock distribution network (CDN) and a data channel (DC) consists of basic circuit 

elements like tapered buffer drivers, buffers (repeaters), flip-flops (or latches) and 

interconnects, as shown in Figure 3.1. Hence the performance of CDN and DC (and 

consequently the synchronous system) depends on the performance of these circuit 

elements. 

The performance of on-chip communication circuits (CDN or DCs) can be estimated either 

through modelling or simulation. However, it is very difficult (if possible) to accurately 

model these circuits while considering variability effects due to different parameters. In 

this situation, simulation can provide accurate results. The performance can be 

characterized by simulating the complete communication network or from the known 

performance of the individual communication elements. Again, evaluating the performance 

of a complete communication network through simulation is computationally very 

expensive and might not be feasible for large systems. Therefore, the performance of such 

large systems can be estimated with reasonable accuracy using the performance of the 

individual communication structures in some statistical framework. 
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Figure 3.1: Communication structures in CDN and data channels: (a) an H-type CDN, (b) a repeater inserted 

synchronous data channel, (c) a flip-flop based pipelined data channel.  
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In this chapter we present a systematic study to investigate the effect that variability will 

introduce in the communication structures for future technology generations. Such a study 

becomes important for designers and academia so that they can formulate efficient design 

methodologies for the coming technology generations under tight design margins and other 

technology challenges. 

3.1 Technology Scaling and Gate Delay 

In a particular technology generation, the maximum clock speed and the speed at which 

computation can be performed, is determined by the gate delay. On-chip communication 

will need to be designed to support these speeds in order to preclude data starvation. Due to 

statistical variation in the devices, gate delay is no longer a fixed quantity, but a random 

variable (RV) which follows a given distribution. For better estimation of the maximum 

clock speed, statistically accurate description of the delay is required to be derived with 

consideration of the effects introduced due to variability. In this section, we study the 

impact of device variability in the gate delay of an inverter in a given technology, as 

representative of delay in more complex combinational circuits and gates. This delay has 

been measured in terms of FO4 delay and is used as a reference or benchmark to which we 

can compare the results of the communication structures. The metric FO4 delay or “fan-

out-of-four inverter delay” has been used elsewhere [6] and is a quite reasonable metric, as 

four is the typical average gate connectivity in a digital circuit [79]. This is defined as the 

delay through an inverter driving four copies of itself. Since the effect of variability is 

more pronounced in smaller geometries, FO4 delay has been measured corresponding to 

 
Figure 3.2: The definition of FO4 delay. 
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the delay of minimum sized inverters, as shown in Figure 3.2. Here we have used 

minimum sized inverters of size ��CD=25, 18 and 13 nm for the given three technology 

generations of 25, 18 and 13 nm, respectively. 

HSPICE simulations were performed (using the Monte Carlo method, described in section 

2.6) and FO4 delay measurements were taken for the given technology generations. The 

mean value of the FO4 delay is plotted for the three technologies and results are shown in 

Figure 3.3. The standard deviation of the FO4 delay is also represented in the form of error 

bars. It can be seen that the mean value of the FO4 delay decreases, whereas the delay 

variability increases, with the decrease of the gate length. This is to be expected. However, 

we are interested in determining the nature of the delay distributions. For this reason, 

histograms are plotted from the measurement data and shown in Figure 3.4. It becomes 

evident that the dispersion of the distributions increases with gate length scaling. 

Moreover, the distributions are asymmetric about the mean delay and the degree of 

asymmetry increases with the decrease of the gate length. The positively skewed nature of 

the distributions has a detrimental impact on the performance of the circuits as a significant 

number of samples beyond the nominal value imply a long tail which will certainly limit 

the speed of the circuits and also introduces reliability issues. 
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Figure 3.3: FO4 delay for different technology generations. The error bars represent the uncertainty in 

delay��1σ
. 
More importantly, it becomes obvious that the dispersion and the worst case of FO4 delay 

grow hyper-linearly as the technology scales down. Due to this fact, the performance of 
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circuits will certainly be affected unless some corrective measures are not incorporated in 

their design. The effect becomes more important in the design of synchronous systems 

under the tight design margins typical of high performance circuits. It is obvious then, that 

variability in the devices warrants a careful consideration during the design of high 

performance circuits. 
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Figure 3.4: Delay distribution of minimum sized inverters with a fan-out of four for the technology 

generations of 25, 18, and 13 nm. 

3.2 Delay Uncertainty in Buffers 

The efficiency of high performance circuits not only depends on the performance of 

computational elements but also depends greatly on the communication network 

responsible for the exchange of data between the computational elements. Delay 

uncertainty in the clock signal can produce setup and hold time violations at the data 

registers. Similar violations can also occur in the data signals. A large number of buffers 

are used in these communication networks that can introduce delay uncertainty in the 

signals. For designing high performance circuits (with correspondingly tight timing 

constraints), the delay uncertainty will have to be reduced. Therefore, design 

methodologies that reduce delay uncertainty should be explored. 
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The delay of a CMOS buffer (inverter) to the first order, as given by Bakoglu [51] is <= � 0.7�=FQ�E                                                                      �3.1
 
where �=FQ  is the on-resistance and �E is the capacitive load at the output of the inverter. 

The inverter resistance �=FQ , which is approximated by averaging the drain currents at the 

extreme points (0 and JKK) of the high-to-low and low-to-high transitions, is given by 

�=FQ � ��H�7I�JKK L J6
                                                     �3.2
 
where, � � transistor gate length, � � transistor gate width, �7I � gate capacitance per unit area, H � mobility of the transistor, JKK= supply voltage. 

A variation in these factors will cause the inverter resistance (and consequently the drain 

current) to change and eventually will result in variability of the gate delay. In deep sub-

micron (DSM) region, it is impossible to precisely control all transistor parameters during 

the fabrication process. Therefore in a batch of similar transistors, different parameters can 

have a complete distribution with some nominal value and a wide spread about this 

nominal value. For instance, due to variations (in particular to random dopant fluctuations), 

the threshold voltage J6 of the transistors will have some distribution (wider or narrower). 

Hence, the on-resistance of the transistors can no longer be treated as a fixed quantity; 

rather it will follow a distribution, resulting in the distribution of the inverter delay. Let �=>Q represents the effect of RDF on J6, then the on-resistance of the inverter will be given 

by 

�=FQ � ��H�7I�JKK L J6�=>Q
                                                �3.3
 
Therefore, 

<= � 0.7��E�H�7I�JKK L J6�=>Q
                                                �3.4
 
In order to evaluate the effect of variations in J6 on the delay of the inverter, we 

differentiate <=  with respect to �=>Q , yielding �<=��=>Q � 0.7�J6�E�H�7I�JKK L J6�=>Q
&                                            �3.5
 
This shows that the sensitivity of the inverter delay is inversely proportional to the size 

(width) of the inverter. In the same way, the delay sensitivity to other transistor parameters 
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can be determined. Therefore, we can deduce that the simple technique of circuit scaling 

can be used to minimize the effect of RDF on delay variability. 

We proceed to quantify the effect of RDF on the delay performance of individual buffers 

of different sizes. To this end SPICE models are developed for the buffers of sizes 1, 2, 3, 

5, 7, 10, 15, 20, and 25 times ��CD, with a load of a 25��CD buffer connected at their 

output (where ��CD = size of the minimum sized buffer = 25, 18 and 13 nm for the given 

three technology generations). The results of Monte Carlo simulations are shown in Figure 

3.5, where mean delay and delay variability are plotted for the given buffer sizes. It can be 

seen that the buffer delay and dispersion in delay is inversely proportional to the buffer 

size, as expected from equation (3.4) and (3.5). More importantly, the relation is not linear 

and a small increase in the size of the buffer can give us significant advantage towards the 

improvement in delay and delay variability, especially at smaller buffer sizes. 

It has also been found that there is a difference in the amount of delay variability for low-

to-high and high-to-low transitions, as shown by the dashed lines in Figure 3.6. For 

instance, it is larger during high-to-low transitions and the effect is more prominent at 

smaller buffer sizes. This is due to the inherent nMOS and pMOS asymmetries i-e the size 

of the pMOS transistor is normally taken as twice the size of the nMOS transistor to make 

identical delay in both swings. Therefore, while considering delay variability, its 

magnitude in both swings is required to be considered. 

   
(a)                                                                                    (b) 

Figure 3.5: Mean buffer delay (a), Delay variability (b), plotted as a function of buffer size for 18 nm 

technology generation. The curves have been plotted for the average response in low-to-high and high-to-low 

transitions. 
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If we assume that delay variations in buffers of different sizes are independent of each 

other and if J=�1��CD
 � 3��1��CD
 H�1��CD
⁄  is the delay variability of a minimum 

sized inverter in a given technology generation, then the delay variability of an inverter of 

size ���CD can be approximated as 

J=����CD
 � 3�����CD
H����CD
 u 3��1��CD
 H�1��CD
⁄√�                                  �3.6
 
(due to properties of the normal distribution). This relation can be used to make an estimate 

of the delay variability in a buffer of given size. It is, however, important to mention that 

equation (3.6) gives only an approximate result, especially in deep sub-micron 

technologies because this relation is valid for the distributions which are close to the 

normal distribution. However, we have seen that the delay distributions under RDF are 

skewed and the degree of skewness increases with scaling down of the technology.  

 

Figure 3.6: Delay variability plotted against buffer size for 18 nm buffers. The smaller dashed lines represent 

delay variability for low-to-high transition and bigger dashed lines for high-to-low transition. Similarly, the 

solid lines are for the average response. 

3.2.1 Skewness of Delay Distributions 

Skewness is a measure of the degree of asymmetry (lack of symmetry) of a probability 

distribution of a real valued random variable. The skewness of a distribution can be 

positive or negative or zero. If the tail on the right side of the probability density function 

is more pronounced than the left tail, the distribution is said to have positive skewness. In 

this case, the bulk of the values lie to the left of the mean. If the reverse is true, it is said to 
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have negative skewness. Zero skewness indicates that the values are relatively evenly 

distributed on both sides of the mean. The skewness of a distribution is defined as 

�) � H'H&' &Y  

where HC is the ith central moment. 

As we have mentioned earlier, delay distributions of the buffers under RDF are positively 

skewed. The degree of skewness, however, depends on the size of the buffers. Figure 3.7 

shows the dependence of the skewness on the size of the buffers for 13 nm technology 

generation. The curve shows that the delay distributions corresponding to small buffers are 

significantly skewed and the degree of skewness decreases as the size of the buffers 

increases. Thus for larger buffers, the delay distributions tend to approximate Gaussian 

distribution. 

We will discuss skewness in more detail in Chapter 4. 

 

Figure 3.7: Skewness of delay distributions as a function of the buffer size for 13 nm technology. 

3.3 Ring Oscillator (RO) 

A ring oscillator is a type of test structure which is commonly used [80]-[81] for timing 

tests. It requires only one input start up signal (or no signal in case of self oscillating) and 

gives output in the form of frequency. This circuit can be used to assess the performance of 

buffers under the impact of RDF for a certain input signal and load conditions. A five stage 
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ring oscillator is shown in Figure 3.8 where the inverters have been constructed of 

minimum sized square devices and interconnect capacitance have been assumed to be 

negligible. 
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Figure 3.8: A five-stage ring oscillator circuit constructed of minimum sized devices. 

The netlists for the ring oscillator were generated with random selection of the 

devices from the model card libraries and HSPICE simulations were performed. The 

results show that the average delay of a five-stage ring oscillator for 25 and 18 nm 

technology generation is 20.4 ps and 16.6 ps, which corresponds to a frequency of 

24.5GHz and 30.1GHz respectively. However, due to RDF, the frequency has a 

spread with standard deviation of 0.8GHz and 1.67GHz (corresponding to a five-stage 

delay variation of σ=0.67ps and σ=0.925ps), respectively for 25 and 18nm technology 

generations. This shows that the uncertainty in the timing signals increases with 

technology scaling. 

3.4 Tapered Buffer Drivers 

In CMOS integrated circuits, large capacitances are common in large fan-out circuits and/ 

or in long range interconnects. Therefore, in order to source and sink a relatively large 

amount of current, a tapered buffer system is used to drive such circuitry, especially where 

the load is predominantly capacitive. For instance, in a clock distribution network, such 

drivers are used to power up the clock source signal. As in any element, device variability 

will introduce delay uncertainty in these drivers resulting in the introduction of skew in 

clock distribution networks and in on-chip communication networks, thus limiting the 

performance and yield. 

Such drivers are composed of a chain of cascaded inverters with increasing buffer sizes as 

shown in Figure 3.9. The drivers are sized according to [82] with total number of inverters 
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in the system equal to � such that the last inverter in the chain can drive the load 

connected at its output. For the optimal delay performance of tapered buffers, a logarithmic 

tapering factor (a � U � 2.72
 has been proposed [83], though in practice this value is 

seldom used. 

 

Figure 3.9: Tapered buffer driver system. 

While using such buffers in the circuits, their delay performance under device variability 

needs to be known. Therefore, in this work we have investigated their delay performance 

when implemented in the given three technologies. A chain of five inverters (the first stage 

being of minimum size) has been used for this study and adjacent inverters in the driver 

chain are sized with a tapering factor β equal to 3. The delay performance of the drivers 

has been studied during low-to-high and high-to-low input transitions. 

 

Figure 3.10: Cumulative mean delay in tapered buffer drivers of the given three technology generations along 

with the delay uncertainty shown as error bars (corresponding to 1σ). 
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The results show that as we proceed along the chain of inverters, the cumulative mean 

delay increases at each next stage, in a linear manner, as shown by the straight lines in 

Figure 3.10. However, the slope of these lines decreases with technology scaling, which 

means that tapered buffers can be constructed with relatively lesser delay penalty for 

smaller technologies. However due to device variability, the inverters used in the tapered 

buffer drivers introduce delay uncertainty at each stage which accumulates statistically and 

appears at the output of the driver. The amount of this delay variability increases in a non 

linear fashion with the number of stages and is shown in the form of error bars in Figure 

3.10. This delay variability will have a detrimental effect in the designing of high speed 

circuits. The tapered buffer drivers from all the given technology generations show the 

same response and maximum delay variability has been observed in 13 nm drivers. 
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Figure 3.11: Delay variability introduced by different stages of the tapered buffer driver for low-to-high input 

transition. 

Since inverters of different sizes are used in the driver chain, the share of each stage 

towards delay variability cannot be the same. The results show that earlier stages of the 

tapered buffer drivers contribute a major portion of the delay variability (as shown in 

Figure 3.11), because they are constructed with relatively smaller transistors. Again, it has 

also been found that the delay uncertainty introduced by each stage is different during low-

to-high and high-to-low transitions due to the reason mentioned before. However, this 

difference reduces as we move along the chain towards larger sizes. This fact is shown in 

Figure 3.12 where the gap between the two solid lines gradually decreases with stage 
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number and finally the lines almost coincide after the fifth stage. The difference developed 

in all the stages travels through the chain and accumulates accordingly, thus making a 

difference in the delay variability at the output of the 	8� stage, depending upon the type of 

the input transition. For instance, the difference in the delay variability for low-to-high and 

high-to-low input transitions at the output of the 3rd and 5th stages is about 9% and 5%, 

respectively, for 13 nm drivers. It is also observed that maximum delay variability 

appears in the cumulative and stage delays for low-to-high input transitions, as shown in 

Figure 3.12. 

 

Figure 3.12: Cumulative and stage delay variability during low-to-high and high-to-low transitions for 13 nm 

tapered buffer driver. 

As previously stated, during the circuit design, a tapering factor a � U is not always the 

best choice and so tapered buffers with different tapering factor are used. Therefore, we 

have extended the study on tapered buffers to see the effect of a on their delay 

characteristics. The results are shown in Figure 3.13, where delay variability has been 

plotted for the tapered buffers having tapering factors of two, three and four for the given 

three technology generations. In all these cases, tapered buffers are so constructed that their 

first stage is a minimum sized inverter (��CD = 25, 18 and 13 nm for the technology 

generation of 25, 18 and 13 nm, respectively) with number of stages equal to 6, 4 and 3 

corresponding to the tapering factor of 2, 3, and 4, respectively. All these tapered buffers 

are driving a load equivalent to a 64��CD inverter in the corresponding technology. 
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An interesting observation has been made on the results that delay variability increases 

with the increase of tapering factor and this effect becomes more prominent for smaller 

technology generations. This is to be expected since the majority of variability is 

introduced by the smaller inverters. As discussed before, the delay variability is different 

for low-to-high and high-to-low transitions for even properly T-sized devices in the 

inverters (for identical performance in both swings). However, it has been observed that 

this difference in performance also increases with the increase of the tapering factor and 

becomes worse for smaller technologies at larger tapering factors. 

 

Figure 3.13: Delay variability of tapered buffer drivers for different tapering factors during high-to-low and 

low-to-high input transitions. 

Larger tapering factors are sometimes attractive for power and area efficient designs. 

However, in the presence of device variability, the designers will have to make a trade-off 

between these parameters and the amount of tolerable delay variability (larger β means 

lesser power and area requirement as compared to smaller β, but greater delay variability). 

If 	 is the stage number in the tapered buffer driver, then its size will be given by 

��	
 � βDV)                                                                   �3.7
 
Due to random dopant fluctuations, the delay uncertainty introduced by each stage of the 

tapered buffer driver is independent of each other (independent RVs). Therefore, the delay 

uncertainty introduced by the 	8� stage can be approximated by 
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�=�	
 u ��1��CD 
_��	
                                                       �3.8
 
For optimally sized chain of buffers (according to a) in the tapered buffer driver, the mean 

value of the delay at 	8� stage is  

<=q��s�	
 u n � <=q��s�1��CD
                                        �3.9
 
By using equation (3.8) and (3.9), the delay variability at the 	8� stage of the tapered 

buffer driver can be approximated in first order as 

J=�	
 u ��
��3�� &�1
  � &�2
  � &�3
… � &�n
<=q��s�	
 ¢£

£¤                                         

J=�	
 u ��
��3�∑ � &�i
§̈©)<=q��s�	
 ¢£

£¤                                                                   �3.10
  
The denominator of equation (3.10) increases linearly whereas the numerator increases as a 

square root with the increase of the number of stages in a tapered buffer driver. This means 

that the delay variability decreases with the increase of buffer stages; however at the cost 

of a relatively slower driver. 

3.5 Repeaters 

Owing to the technology scaling, the interconnect is becoming slower relative to the 

devices. Therefore, the use of repeaters is very common in long interconnects for reducing 

the dependence of the interconnect delay on length from quadratic to linear. Although, the 

insertion of repeaters in the interconnect lines reduces the overall delay, it introduces delay 

uncertainty in the lines. In the individual interconnect lines, the effect of the delay 

uncertainty introduced by the repeaters is that the bandwidth will have to be reduced in 

order to obtain a particular yield. In clock distribution networks, the delay variation due to 

these repeaters can produce skew across various branches and will limit its performance. 

This delay variation is particularly unfavourable in wider communication channels because 

in synchronous links, the speed of the link is limited by the slowest line in the complete 

channel. Due to statistical variations in the devices, the cumulative delay at the receiving 

end of the communication channel will become a random variable. Moreover, the delay 

characteristics of the same communication channel on different chips produced in the same 
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batch will not be the same but randomly distributed. Therefore, while designing such 

communication links, the delay characteristics of the repeaters should be known to explore 

different design options for better performance. 

In this study, we have quantified the amount of delay variability in a chain of repeaters of 

various sizes. Figure 3.14 shows the results for the repeaters constructed with minimum 

sized inverters (MSI). It is evident that the mean cumulative delay increases linearly with 

the increase of the number of repeater stages in the chain. The dispersion (standard 

deviation) of delay also increases as square root of the number of repeater stages. This is 

because statistical variations in each repeater stage are independent of each other and can 

be additive or subtractive towards the cumulative delay. The delay variability on the other 

hand decreases with the number of repeater stages but at the expense of reduced speed of 

the repeater line. 

 

Figure 3.14: Delay variability in a chain of minimum sized repeaters of 13 nm plotted against the number of 

repeater stages. 

If <=ª�« is the mean delay and �=ª�«  is the standard deviation in the delay for every section of 

repeated interconnect line, then the cumulative mean delay at the 	8� stage will be 

<=«¬q�	
 u 	<=ª�«                                                                   �3.11
 
and the standard deviation for cumulative delay at this stage will be 

�=«¬q�	
 u √	�=ª�«                                                               �3.12
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Therefore, the normalized delay variability at the 	8� stage will be 

J=«¬q � 3�=«¬q�	
<=«¬q�	
 u 3√	�=ª�«	<=ª�« � 3�=ª�«√	<=ª�«                                        �3.13
 
Since the magnitude of the delay uncertainty introduced by buffers (inverters) depends on 

their size, a repeater line having large sized repeaters will have less delay variability as 

compared to one constructed with small repeaters driving a particular interconnect load. 

The simulation results shown in Figure 3.15 endorse this fact. Here cumulative delay 

uncertainty has been plotted as a function of repeater size for a chain of 20 repeaters. The 

results demonstrate that a repeater interconnect with large repeaters offers less delay 

uncertainty as compared to the similar chain constructed with small repeaters. However, a 

trade-off will have to be made for getting this advantage, as large sized repeaters consume 

more power and chip area. 

 

Figure 3.15: Cumulative delay variability plotted as a function of repeater size in a chain of 20 repeaters. 

3.6 Data Storage Elements (Flip-flops) 

A common technique to enhance the throughput in synchronous digital circuits is the use 

of Flip-Flops (FFs) to implement pipelined designs. Similarly, flip-flops are also used for 

the storage of different digital signals on the chip, for instance as the last stage of a 

communication channel. Thus clocked storage elements are essential for a digital circuit. 

As a result of this tendency, the number of flip-flops on a chip is growing and therefore 

FFs represent a significant area of the chip. 
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The performance of the circuits incorporating flip-flops as storage elements depends, to a 

great extent, on the timing characteristics of the flip-flops. However, as before, these 

become random variates due to variability. Consequently, the performance of the whole 

circuit is affected by this variability. Hence it becomes imperative to estimate the timing 

characteristics of the flip-flops under the impact of statistical variations in order to design 

high-performance circuits with high yield. 

 

Figure 3.16: Schematic view of a standard CMOS D flip-flop circuit [84]-[85]. 

 
Figure 3.17: Basic timing parameters of a flip-flop. 

In this work, the effect of device variability due to RDF on the timing characteristics of a 

standard CMOS D-flip-flop (DFF) [84]-[85], as shown in Figure 3.16, has been studied. 



Chapter 3                                              Communication Structures under Device Variability 

 

56 
 

Flip-flops are typically characterized by different timing parameters which are pictorially 

represented in Figure 3.17. Since accurate analytical modelling of flip-flops with statistical 

variations in the devices is difficult, transient analysis of the timing parameters of the FFs 

has been performed through HSPICE simulations for accurate results. Although flip-flops 

of various sizes are available in the standard cell libraries used for modern designs, we 

chose to construct them with the minimum size (i-e minimum transistor dimensions). 

3.6.1 Timing Measurement Procedure 

The procedure adopted for the measurement of different timing parameters of the flip-flops 

is given below: 

3.6.1.1 Setup time 

The minimum data-to-clock rising edge time for which the flip-flop correctly latches the 

data is the setup time. In order to find the setup time for a large sample of flip-flops under 

RDF, a rough estimation of it is made first. For this purpose the flip-flop circuit is 

constructed using uniform devices (having uniform dopant fluctuations and is available in 

the device models). The clock pulse width is made sufficiently large and the data is also 

kept stable for sufficiently long time after the arrival of the clock signal. The data is made 

available at the data input D of the flip-flop quite earlier than the arrival of the clock edge. 

Thus the flip-flop safely latches the data at output Q. In the next step, the data at input port 

D is made available with some delay than the previous case and latching of the data at the 

output of the flip-flop is monitored. The process is repeated until the flip- flop is just able 

to hold the data. At this point, the time difference between the arrival of the data and the 

clock signal is the setup time for the uniform devices. This value gives a reference point 

and setup times of large number of devices under RDF are expected to lie around this 

value. 

Now 5500 netlists of the flip-flop circuits were generated with random selection of devices 

from the model card libraries. For each of these netlists, several new netlists were 

generated by gradually delaying the arrival time of the data (with an increment of 0.2ps), 

starting from a large value with reference to the setup time we have already measured for 

the uniform devices. HSPICE simulations were carried out and setup time was measured 

for each of the flip-flops. 

3.6.1.2 Hold Time 

The hold times were measured in a similar way as that of the setup time. During the 

measurements, the setup time and the clock pulse width were made sufficiently large to 
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avoid setup time and other timing violations. The time for which the data remains stable 

after the clock pulse was gradually reduced (starting from a long time) and the hold time 

was measured as the minimum time between the rising edge of the clock and the falling 

edge of the data for which the data at output Q is correctly registered. Again the hold times 

were measured with an accuracy of 0.2ps for the flip-flop circuits used for the setup time 

measurement. 

3.6.1.3 CLK-to-Q time 

The CLK-to-Q time is measured as the time delay between the rising edge of the clock and 

the output Q. Since CLK-to-Q time depends on the arrival time of the data prior to the 

clock edge (D-to-CLK time) as shown in Figure 3.18, therefore in this study CLK-to-Q 

time has been measured for large value of D-to-CLK time. Similarly, the hold time and 

clock pulse width were also made quite large to avoid any of the timing violations due to 

these parameters. These measurements were made for several flip-flops (5500) constructed 

with random selection of devices and CLK-to-Q time is measured with an accuracy of 0.2ps. 
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Figure 3.18: Dependence of CLK-to-Q delay on the D-to-CLK time. 

3.6.1.4 Minimum Clock Pulse Width 

Again for these measurements, the setup time and hold times were made sufficiently large. 

The clock pulse width was gradually reduced to measure minimum clock pulse width for 

which the flip-flop can hold data, similar to the technique used for setup time 

measurement. 
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3.6.2 Results and Discussion 

From the Monte Carlo simulations, different timing parameters of the flip-flops have been 

characterized and are given in Table 3.1 in terms of the first four moments of their 

distribution. The results show that the timing parameters of the flip-flops are very sensitive 

to statistical variation in the devices. It has been observed that while the mean decreases, 

the dispersion of these timing parameters is increased with technology scaling. The 

increase in the standard deviation quantifies this dispersion and warns for careful 

consideration of timing variability analysis during the design of synchronous systems. For 

instance, for 13nm technology generation, the variability (σ/µ) in the setup time increases 

up to 13%. Similarly, the variation in the hold time, the clock-to-Q time and minimum 

pulse width requirement reaches up to 15%, 19% and 22%, respectively. Due to the 

variability in the timing parameters of the flip-flops, extra safety margins will have to be 

assigned, thus slowing the pipeline. Although the hold time is negative for the Master-

Slave flip-flops used, its spread also increases, which suggests transparent latches will be 

affected by this increase. 

Table 3.1: Statistical Analysis of the Timing Parameters of a Standard Flip-flop 

Statistical attribute 
Technology 

Setup Time 
(ps) 

Hold Time 
(ps) 

CLK-Q 
Time 
(ps) 

D-Q Time 
(ps) 

Min. PW 
(ps) 

Mean, µ (ps) 25 nm 17.5 -12.7 13.9 43.7 12.8 

Standard deviation, σ (ps)  0.78 0.72 0.88 4.84 1.10 

Skewness  0.33 -0.32 0.25 1.69 0.09 

Kurtosis  3.46 3.08 3.29 7.32 2.99 

Mean, µ (ps) 18 nm 14.5 -10.2 11.1 36.2 10.4 

Standard deviation, σ (ps)  1.06 0.91 1.09 4.67 1.37 

Skewness  0.53 -0.44 0.36 1.74 -0.385 

Kurtosis  3.81 3.67 3.28 7.87 6.97 

Mean, µ (ps) 13 nm 9.5 -6.38 6.9 23.9 7.54 

Standard deviation, σ (ps)  1.25 0.98 1.29 3.94 1.49 

Skewness  0.94 -0.88 0.88 1.76 -0.17 

Kurtosis  4.46 4.48 4.77 9.40 5.82 

From Figure 3.19, we can see that setup time, hold time and CLK-to-Q time spans a large 

timing space (there appears to be no visible correlation between the parameters) and design 
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margins will have to be chosen while keeping in view this space in order to achieve a 

particular yield. 

 

Figure 3.19: 3D-space occupied by the timing parameters of the DFF. 

Circuits become increasingly faster with technology scaling, demanding a drastic reduction 

in the tolerances allowed to their clocks. However, the magnitude of the timing variability 

we have observed in the flip-flop circuits will certainly tend to reduce the performance of 

the circuits, unless some corrective measures are not taken. 

3.7 Interconnect  

The interconnect also exhibits variation in its characteristics due to the structural variation 

in the lateral and vertical dimensions. Besides material variations, the structural variation 

in the interconnect can appear in conductor thickness��
, the width��
, and interlayer 

dielectric thickness��
. It is important to mention that interconnect spacing is not an 

independent parameter and is automatically effected with the variation in interconnect 

width. In addition, there are other sources of interconnect variability such as surface and 

edge roughness or sidewall thickness but all of these geometrical variations result in the 

deviation of the electrical properties of the interconnect like, the resistance ��
, the 

capacitance ��
 and the inductance ��
. Consequently, this will result in the delay 

variability of interconnects.  

3.8 Performance of Communication Links  

The variability in the delay characteristics of the individual communication circuits 

(discussed above) will cause uncertainty in the signal delay through the complete channel. 
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If the delay of a signal is larger than the nominal value plus the design margin, this will 

introduce a link failure. In order to get the best performance of the design, we need to 

quantify the effect and allow for the expected variation in the design margins. It is 

important that these margins are neither pessimistic (which waste resources) nor optimistic 

(which affect yield). Whatever these margins are, it is certain that under delay variability, 

the throughput of the channel will have to be certainly compromised (as compared to the 

deterministic case) in order to keep the probability of link failure below a certain 

acceptable limit. Conversely, additional resources (area and power) will be required to 

attain the same bandwidth. It is clear then that device variability will contribute 

significantly towards the performance/area/power compromise of clock distribution 

networks and the data links, which are basically composed of these structures.  

3.8.1 Estimation of Link Performance 

A simple communication link is shown in Figure 3.20 which consists of tapered buffer 

drivers, interconnect wires, repeaters and data storage elements. The output of the 

combinational logic is powered up using tapered buffer driver before transmitting it 

through the link. The repeaters are used to improve the delay characteristics, especially in 

predominantly resistive interconnects. Similarly, flip flops or latches are used to hold the 

data at the receiving end. The link operating frequency depends upon the cumulative delay 

introduced by each of these elements plus the setup time of the flip-flop. The nominal 

delay of such a data link from input to output can be calculated using the following 

equation 

�=rs® � <=���¯°¬±±  <=Z��¯rs��Z  <eElV²³³                                        �3.14
  
In the above expression, �=rs®  is the total delay of the link, <=Z��_rs��Z  is the repeater-

inserted interconnect delay and <eElV²³³  is the CLK-Q time of the flip-flop. 

 
 

Figure 3.20: A simple data communication link. The signal coming out from the combinational logic is 

powered up through tapered buffer driver and then it passes through the repeater inserted interconnect to 

reach the input of the flip-flop. 
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Let µ be the number of repeaters (each of size ¶ times the size of the minimum sized 

repeater). In a particular technology, if the output impedance of a minimum sized inverter 

is �=FQ  and output capacitance is �=FQ , then the output impedance of a repeater of size ¶ 

becomes �=FQ ¶⁄  and the output capacitance ¶ · �=FQ . In Figure 3.20, the symbol  

represents a capacitively coupled interconnect. If we assume that � is the interconnect 

resistance, �- is the coupling capacitance with the neighbouring interconnects and �x is the 

self capacitance of the interconnect, the propagation delay of one section of the repeated 

interconnect [86], which is taken to be the time difference of the input and output 

waveforms at 50% of the transition points, is given by <%.2,x>- � 0.7�=FQ��x  �=FQ  2.2 � 2�-
  ��0.4�x  0.58�-  0.7�=FQ
        �3.15
 
The total delay of the interconnect inserted with repeaters is given by 

<%.2 � µ T0.7�=FQ¶ #�xµ  ¶�=FQ  2.22�-µ $  �µ #0.4 �xµ  0.58�-µ  0.7¶�=FQ$5        �3.16
 
Under the assumption of statistical independence, the time delay in the link can be 

calculated from its component’s distributions as follows 

�=rs® u H=���¯°¬±±  H=Z��¯rs��Z  HeElV²³³    ��&=���¯°¬±±  �&=Z��¯rs��Z  �&eElV²³³                                      �3.17
 
This equation consists of two parts, the mean value and standard deviation of the delay 

distribution. The standard deviation has been added in the mean delay in order to estimate 

the maximum delay (3� or 6� can also be used to estimate the worst cases of delay). Two 

parts of the equation (3.17) can be denoted as  

H=rs® � H=���¯°¬±±  H=Z��¯rs��Z  HeElV²³³                                               �3.18
 
�=rs® � ��&=���¯°¬±±  �&=Z��¯rs��Z  �&eElV²³³                                     �3.19
 

Similarly, H=Z��¯rs��Z  and �&=Z��¯rs��Z  are given by H=Z��¯rs��Z � Hx>-)  Hx>-&  Hx>-'  ¸Hx>-o                                                  �3.20
 
and  �&=Z��¯rs��Z �  �&x>-)  �&x>-&  �&x>-'  ¸�&o                                             �3.21
 
where Hx>- and �&x>- represents the mean and variance of the delay of each section of the 

repeater inserted interconnect. 

Now if we have complete description of the delay characteristics of the individual 

communication structures under the impact of device and/ or interconnect variability due to 

any of their parameters, we can approximate the overall performance of the complete link 
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using equations (3.17)-(3.21). The results can also be used to estimate the probability of the 

link failure due to variability, as explained below.  

3.8.2 Link Failure Probability 

Let us assume that the link is operating at a clock frequency k having clock period �eEl . 

For the flip-flop (having setup time �x>8¹M) to correctly latch the data, the delay of the 

interconnect must satisfy the following constraint 

�eEl L �x>8¹M ] <=���¯°¬±±  <=Z��¯rs��Z  
Therefore, the probability that correct data is transmitted between the input and output is 

given by 

º � P��eEl L �x>8¹M ] <=���¯°¬±±  <=Z��¯rs��Z�                          �3.22
 
A design margin is also used to cater for the delay variation due to different circuit 

parameters and let it be ∆�. Therefore, expression (3.22) can be written as 

º � P ��eEl L ∆� L �x>8¹M ] <=���¯°¬±±  <=Z��¯rs��Z�                      �3.23
 
We define the time delay between the input of the tapered buffer driver and the input D of 

the receiving flip-flop to be T ¼½¾¿À . Then the probability that the delay of the link will be 

greater than �eEl L ∆� L �x>8¹M  is given by 

bhT ¼½¾¿À Á �eEl L ∆� L �x>8¹Mj � 1 L bhT ¼½¾¿À m �eEl L ∆� L �x>8¹Mj               
� 1 L �

Â
Ã�eEl L ∆� L µx>8¹M L µ ¼½¾¿À

��σ ¼½¾¿À 
&  �σx>8¹M
& Ä
Å        �3.24
 

 � Æ
Â
Ã�eEl L ∆� L µx>8¹M L µ ¼½¾¿À

��σ ¼½¾¿À 
&  �σx>8¹M
& Ä
Å               �3.25
 

In the above expressions, 

µ ¼½¾¿À � H=���¯°¬±±  H=Z��¯rs��Z 
and σ ¼½¾¿À � ��&=���¯°¬±±  �&=Z��¯rs��Z  

If we assume that the delay variability in the clock signal is �CLK with some mean HeEl , 

Eq. (3.25) will become 
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bhT ¼½¾¿À Á �eEl L ∆� L �x>8¹Mj  � ÆÂ
Ã HeEl L ∆� L µx>8¹M L µ ¼½¾¿À
��σ ¼½¾¿À 
&  �σx>8¹M
&  �σCLK
&Ä

Å              �3.26
 
Again in expressions (3.24)-(3.26), � is the cumulative distribution function of the link 

delay and Æ is the classical error function, respectively. The Borjesson’s approximation 

[87], as given below, can be used to evaluate Æ. 

Æ�Ê
 u � 1�1 L Ë
Ê  Ë√Ê&  Ì+ 1√2Í UVI[ &Y              for Ê ] 0 

with Ë � 1 ÍY  and Ì � 2Í. 

3.8.3 Case Study 

Consider a typical interconnect of length 500 H�, width 0.675 H�, and thickness 0.324 H� in 18 nm technology. The delay characteristics of this interconnect inserted with 10 

repeaters of size 5��CD are given in Table 3.2 along with the performance characteristics 

of the tapered buffer driver and flip-flop used in the complete link. 

Table 3.2: Statistical Delay Characteristics of Different Elements of the Link. These values have been taken 

from the characterization data of different elements. 

 Tapered Buffer Repeater Inserted 

Interconnect 

Flip-Flop Setup 

Time 

Flip-Flop CLK-

Q Time 

Mean, H 20.95 ps 152.9 ps 14.52 ps 11.12 ps 

Standard Deviation, � 1.11 ps 2.12 ps 1.05 ps 1.09 ps 

For a design margin ∆�� 5 ps and an uncertainty in the clock period σCLK � 2 ps, the 

probability of the link failure has been plotted as a function of the operating frequency and 

is shown in Figure 3.21. Both curves, one obtained using equation 3.26 and the other 

through Monte Carlo simulation of the complete channel, are shown for comparison. It has 

been observed that beyond a certain operating frequency, the link failure probability starts 

increasing from zero (observe the slope due to spread in the PDF). These particular curves 

correspond to delay variability due to only RDF in the devices. However in the real case, 

there are other sources of variability in the devices as well as in the interconnect, and 

therefore overall delay variability in the link will be even larger. Thus for a particular link 

failure probability, the operating frequency will have to be reduced, otherwise the yield 

will be reduced for high speed links under tight design margins. 
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Figure 3.21: Link failure probability as a function of link operating frequency, as calculated using the 

analytical model and Monte Carlo simulation. 

It may also be noted in Figure 3.21 that the results of the analytical model slightly deviate 

from the simulation results, especially in the beginning of the curves. This is due to the 

reason that the probability distribution function of the delay of different communication 

structures, for smaller devices, deviate from the normal distribution (as explained before). 

Therefore, the cumulative delay distribution of the complete channel may also be non-

normal (skewed). Hence, in order to obtain accurate results, the delay distributions of all 

the communication structures should be accurately characterised and corresponding 

statistical operators may be used to obtain the cumulative delay distribution.  

3.9 Summary 

In this chapter, we have critically examined the effect of device variability due to RDF on 

the performance of the basic elements of on-chip communication, such as tapered buffer 

drivers with different tapering factor, repeaters of different sizes, and data storage registers 

(FFs). FO4 delay measurements have also been taken, as representative of the logic 

circuitry and results can be used as a performance benchmark. The study revealed that 

RDF has significant impact on the performance of communication structures and their 

performance deteriorates very significantly with technology scaling from 25 to 13 nm. As a 

design methodology, scaling up of circuits in the critical paths can be employed to 

minimize the effects of device variability, in particular, since we have shown that this 

trade-off is not linear and a small increase in the repeater size can give substantial benefit 
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towards the performance. For instance, we have corroborated that large sized repeaters can 

be used in the interconnect to reduce delay variability, however, the power and area 

penalties due to this passive technique of circuit scaling should be compared with active 

countermeasure techniques which can be used to mitigate the delay variability. 

Although NoC is more robust against on-chip communication faults than simpler designs, 

we note that such occurrences have increased hyper-linearly (and will continue to do so) 

due to device variability. In order to evaluate the performance of a typical NoC link, we 

have derived analytical models to predict link failure probability (LFP) using the 

characterization data of the individual on-chip communication elements. The results show 

that link failure probability increases significantly with the increase of device variability 

and is a limiting factor in the maximum operating frequency of a synchronous link.  
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The performance of circuits under variability can be evaluated accurately through 

simulation (as it has been done so far in this thesis). However, for large designs this 

method is not feasible; being computationally expensive. The solution to this problem is 

the use of Statistical Static Timing Analysis (SSTA) which is a powerful analysis tool and 

provides a convenient means of estimating the circuit performance under the impact of 

variability. In this chapter we describe the use of SSTA to examine the performance of 

large on-chip communication networks, formed by the components that have been 

analysed and characterized so far (FFs, Buffers and Tapered Buffers). 

4.1 Introduction to STA 

During the designing of the digital circuits, it is always necessary to ensure that timing 

constraints are met. This requires to find the maximum delay between the inputs and 

outputs along different paths. In the traditional design, this analysis is used to identify (and 

subsequently optimize) a critical path in the circuit. The delay along this path determines 

the maximum operating frequency. Figure 4.1 shows a simple circuit consisting of seven 

combinational blocks between two flip-flops. The critical path for such a circuit can be 
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determined using Static Timing Analysis (STA), in which individual circuit elements are 

pre-characterized through simulation and then delays (corresponding to the worst-case) are 

added up along different paths from input to output. The latest arrival time of the signals 

along different paths for which the data is correctly received at the output is calculated and 

is then compared with the required timing. The difference between these two values is 

signal slack. For the example of Figure 4.1, the latest arrival time of the signal is 4.4. If the 

slack is negative, the circuit will not meet the performance requirements. The minimum 

slack along any of the paths in a circuit is the critical path.  

 

Figure 4.1: Demonstration of static timing analysis of a simple circuit. 

 

Figure 4.2: An example of the timing graph for delay traversal from source to sink. 

A timing graph is very useful for the timing analysis of the circuits and describes the 

timings of the combinational logic between the source and the sink along different paths. It 
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is a Directed Acyclic Graph (DAG), as shown in Figure 4.2. In the timing graph, the signal 

lines are denoted as nodes and input-output transformation through every gate in the circuit 

is shown as an edge. The delay associated with every input-output is represented as the 

weight over the corresponding edge. For STA, the weight over every edge is usually 

corresponds to the worst-case delay. 

4.2 Introduction to SSTA 

In traditional circuit design, corner based approaches are used alongside STA in which the 

best-case or worst-case corner values are identified corresponding to different sources of 

variability. Thus for die-to-die variations, it is then assumed that 3σ deviation of circuit 

parameters for different manufactured circuits will not be beyond these corner values [88]. 

However, due to technology scaling, the magnitude of the variability due to different 

sources is increasing manifold and so guard-banding based on 3σ corners will significantly 

affect the performance due to excessive margins for delay variations. Moreover, in actual 

chips with many sources of variability, it is extremely unlikely of all the factors 

contributing towards delay variability, being at their corner values and so this approach 

produces pessimistic results and too much slack in the design [89]. 

Under the impact of statistical variability, the delay of each gate becomes a random 

variable. Therefore, statistical methods are required to accurately analyze the circuit delay. 

SSTA modifies STA such that the random variations of the delay are considered as random 

variables. During the SSTA of large digital circuits, the probability density function (PDF) 

and cumulative density function (CDF) of the timing parameters of different circuit 

elements are analytically processed to estimate the timing characteristics of the complete 

circuit. Notice then that the design paradigm is shifted from deterministic to stochastic. 

There is no single critical path in the circuit; any path can potentially become the critical 

path. Because of its statistical nature, the accuracy of the analysis depends on the 

characterization data of individual circuit elements, accurate representation of the 

characterization data in the form of PDFs and finally the correctness of different analytical 

operations, like MIN, MAX, or SUM which are applied during the analysis, and are 

usually computed with fast approximations.  

The statistical SUM and MAX operations are used to calculate the PDF of the delay at 

each node of the timing graph. These operations take delay variations of the gates and 

interconnect as input and give that of the outputs. Thus by traversing the timing graph 

using the statistical operations, the overall PDF of different circuit parameters can be 
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calculated. The basic statistical operations (SUM and MAX) are pictorially shown in 

Figure 4.3. For the signal paths in series, the delay at the output is calculated using the 

SUM operation. If the two circuits in series have PDFs as ‘g1’ and ‘g2’ then the PDF of the 

circuit at the output can be calculated using the convolution integration. Similarly, if a gate 

has multiple inputs, the delay distribution at the output is calculated using the MAX 

operation. 
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Figure 4.3: Basic statistical operations used in STA and SSTA. The SUM operation (a), and the MAX 

operation (b) [89]. 

4.3 Representation of Characterization Data 

For the SSTA of circuits, accurate characterization of the timing parameters of the 

combinational logic, interconnect and sequential elements (flip-flops and latches) is vitally 

important [90]. This need becomes more crucial in the design of high speed circuits due to 
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the strict design margins required [91]. The task becomes more challenging when statistical 

device variability effects are also considered. While the maximum achievable performance 

and yield of a circuit depends on the magnitude of the variability in the timing parameters, 

a better estimate of these parameters can only be made by the transient analysis of the 

circuits through the SPICE simulation using detailed device models. In current state-of-the-

art chips, the device count has already exceeded one billion, mandating the estimation of 

the distributions more precisely, especially in the tail regions, as events deep within the 

tails will most likely be realized.  

Parametric analysis, in which a known parametric distribution (e.g. normal) is fitted on the 

experimental data, can be used to undertake this estimation. However, the limitation of this 

approach is that its accuracy depends on the choice of a particular a-priori density function 

[92]. Therefore, the distribution functions may be determined through non-parametric 

estimations. With correct approximation of the density functions, a better estimate of the 

circuit yield can be made which is neither optimistic nor pessimistic and thus helps in 

enhancing circuit performance with minimum yield loss. 

In order to demonstrate the effectiveness of using non-parametric estimations, we use the 

simulation data obtained during the characterization of different timing parameters of the 

CMOS flip-flops (Chapter 3). The histograms of various timing parameters of FFs for 13 

nm technology are shown in Figure 4.4. The histograms indicate that the timing 

distributions are asymmetric (positively skewed except hold time which is negatively 

skewed). The degree of asymmetry (around the mean) and the shape of distributions have 

been measured in terms of skewness and kurtosis and are given in Table 4.1 for all the 

timing parameters. As mentioned earlier, skewness is a measure of the degree of 

asymmetry; whereas kurtosis is a measure of whether the data is peaked or flat relative to a 

normal distribution (high kurtosis means peaked distribution). The non-zero value of 

skewness and kurtosis confirms that the distributions are not normal, supporting our 

conclusion drawn from the visual inspection of the distributions. Similar asymmetry has 

recently been reported for the distribution of J8 in 65nm technology generation [93] and in 

35nm channel length MOSFETs [94]. The increasing value of these parameters with 

technology scaling shows that the asymmetry increases as the technology scales. 

The characterization of these timing parameters can be used alongside SSTA to determine 

analytically the impact that variability will impair in a more complex circuit.  This is done 

by determining its probability distribution function (PDF). For instance, the timing analysis 
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of flip-flop based sequential circuits involve the timing characteristics of the sequential 

elements and circuit elements pertaining to a clock network, in addition to the 

combinational logic.  
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Figure 4.4: Histograms of observed data taken through Monte Carlo simulations for the timing parameters of 

the FFs of 13 nm. 

Table 4.1: Statistical Analysis of the Timing Parameters of the Standard Flip-flop shown in Figure 3.16 

Statistical attribute 
Technology 

Setup Time 
(ps) 

Hold Time 
(ps) 

CLK-Q 
Time 
(ps) 

D-Q Time 
(ps) 

Min. PW 
(ps) 

Skewness 25 nm 0.33 -0.32 0.25 1.69 0.09 

Kurtosis  3.46 3.08 3.29 7.32 2.99 

Skewness 18 nm 0.53 -0.44 0.36 1.74 -0.385 

Kurtosis  3.81 3.67 3.28 7.87 6.97 

Skewness 13 nm 0.94 -0.88 0.88 1.76 -0.17 

Kurtosis  4.46 4.48 4.77 9.40 5.82 

Most of the previous work on statistical static timing analysis (SSTA) is based on the 
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assumption that the underlying distributions are Gaussian (i.e. the distributions of various 

timing, physical and electrical parameters of the devices). Any deviation from normality 

(as for instance the skewness and kurtosis shown in Figure 4.4) in the timing parameters of 

the circuit elements will introduce inaccuracy in the analysis results. However, the use of 

non-Gaussian distributions is likely to pose several challenges for efficient SSTA, as 

analytical results for the combination of non-Gaussian PDFs would need to be determined. 

As a first step into this uncharted territory, it is required to determine an analytical 

distribution which provides a good match to the observed data. 

4.4 Estimation of the Timing Distributions 

Statistical methods can be used to estimate the distributions from the experimental data. As 

mentioned before, parametric estimation of the distributions does not give a satisfactory fit 

to the experimental data (for instance Normal or Gaussian), since higher moments 

(skewness and kurtosis) are not zero in our case. Therefore, in this work we chose to use 

non-parametric statistical methods and found that Pearson and Johnson systems fit the data 

much more precisely, as they have the ability to adapt themselves to the data and do not 

require a priori or a posteriori knowledge of the data-producing process. They have the 

property of being able to capture skew and kurtosis and so provide a good match to the 

data. 

The PDF based on the simulation data has been compared with the normal distribution, 

Pearson and Johnson systems. It has been found that the normal distribution does not 

provide an accurate fit to the simulation data due to its asymmetric nature, whereas Pearson 

type IV from the Pearson system and the SU system from the Johnson family of systems 

closely matches the data. A good description of Pearson and Johnson systems is available 

in [144]. 

4.4.1 Pearson Distributions 

The Pearson distribution is a family of continuous probability distributions to model 

skewed observations. The Pearson system defines a family of distributions parameterized 

on the mean, standard deviation, skewness, and kurtosis. There are seven basic types of 

distributions all available in a single parametric framework [95].  

The Pearson type IV distribution is characterized by four parameters, � � ��, Ò, Ë, Ó
 and 

these parameters uniquely determine the first four moments of the distribution. The 

probability density function of the Pearson type IV distribution can be expressed as [96], [97] 
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��Ê
 � µ��, Ò, Ë
 � �1  #Ê L ÓË $&+V� exp TLÒtanV) #Ê L ÓË $5 ,         #� Á 12$        �4.1
 
Here the parameters Ë and Ó are for the scale and location, whereas the shape parameters � and Ò jointly determine the degree of skewness and kurtosis of the distribution. µ��, Ò, Ë
 is a normalization constant given as 

µ��, Ò, Ë
 � ×��

√ÍË×�� L 12
 Ø

×��  �Ò2 
×��
 Ø&                                   �4.2
 
where × is the Gamma function. 

The maximum likelihood fitting requires minimizing the negative log likelihood [96] given 

below and can be computed numerically. 

Lln � � �Ùln �1  #ÊC L ÓË $&+  o
C©)  ÒÙ tanV) #ÊC L ÓË $ L � �	 µ                           �4.3
o

C©)  

We have used this equation to fit a Pearson type IV distribution for the PDF of the setup 

time from the simulation data of 13 nm flip-flops. This is shown in Figure 4.5 along with 

the normal distribution fit. It can be seen that the Pearson type IV distribution closely 

matches the PDF of simulation data, as determined by the goodness of fit statistics given in 

Table 4.2. This clearly shows that the assumption that the timing distributions are normal is 

not correct and can produce incorrect conclusions. As an example (refer Figure 4.5), 

consider the probability of occurrence of a timing event at <x>8¹M � 12.76 �i 
(corresponding to 3σ of normal distribution). With the assumption of a normal distribution, 

this probability is given by � � 0.0043, whereas it is � � 0.0243 with the Pearson type IV 

estimation (5.6 times higher than the normal case). 

The CDF of Pearson type IV is given by [96] 

P�x
 � ka2mL 1 T1  �x L λa 
&5VÝ exp TLνtanV)�x L λa 
5
� #i L x L λa $ Fà1,m  iν2 ;2m; 21 L i x L λa â                      �4.4
   

where F is a hypergeometric function and can be calculated using the method given in [98]. 

The above function converges for x m λ L a√3. For x Á λ  a√3, the symmetry identity 
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P�x|m, ν, a, λ
 ä 1 L P�Lx|m,Lν, a,Lλ
 can be used and in the case |x L λ| m a√3, the 

linear transformation as given in [99] can be employed. 

 

Figure 4.5: The probability density function of setup time for the 13 nm flip-flops plotted with different 

systems. 

Table 4.2: Goodness of Fit Statistics (for Figure 4.5) in terms of R-Square, Sum of Squares due to Error 

(SSE), Adjusted R-Square, Root Mean Squared Error (RMSE) 

Distribution R-square SSE Adjusted R-square RMSE 

Normal 0.9845 0.004279 0.9826 0.01635 

Pearson type IV 0.9989 0.0002925 0.9986 0.004571 

4.4.2 Johnson Distribution 

Statistician Norman Johnson formulated a system of distributions such that for every valid 

combination of mean, standard deviation, skewness and kurtosis, there is also a unique 

distribution. The Johnson system is based on exponential, logistic, and hyperbolic sine 

transformations, plus the identity transformation [95]. The systems of distributions 

corresponding to these transformations are known as SL, SU, SB and SN, respectively. The 

general form of the three normalizing transformations (exponential, logistic and hyperbolic 

sine) is given by [100] 

å � �  æk Tç L èÓ 5                                                            �4.5
 
Where å is a standard normal random variable, k is the transformation, � and æ are shape 

parameters, Ó is a scale parameter and è is a location parameter. 
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The lognormal system of distributions, SL, is given by 

å � �  ælog Tç L èÓ 5 ,    ç Á è                                       �4.6
 
The unbounded system of distributions SU is defined by 

å � �  æ log êTç L èÓ 5  ëTç L èÓ 5&  1ì) &Y í ,   L ∞ m ç m  ∞           �4.7
 
and the bounded system SB is given by 

å � �  ælog T ç L èè  Ó L ç5 ,      è m ç m è  Ó                      �4.8
 
In order to generate a sample from the Johnson distribution that matches the given data, 

first the sample quantiles of the data for the cumulative probabilities of 0.067, 0.309, 

0.691, and 0.933 are computed. These probabilities correspond to four evenly spaced 

standard normal quantiles of -1.5, -0.5, 0.5 and 1.5 [95]. 

The cumulative distribution function of the experimental data for the setup time of the flip-

flop and Johnson system which matches four evenly spaced standard normal quantiles of -

1.5, -0.5, 0.5, and 1.5 corresponding to the cumulative probabilities of 0.067, 0.309, 0.691, 

and 0.933 are plotted in Figure 4.6. The normal CDF has also been plotted for comparison. 

Again, the type of the distribution within the Johnson family of systems which matches 

these quantiles is the SU system. 
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Figure 4.6: Cumulative delay distribution of setup time of 18 nm flip-flops. The SU system from Johnson 

family of distributions better fits the simulation data as compared to normal distribution. 
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4.5 Estimation of Timing Distributions and Yield 

Accurate estimation of the yield depends significantly on the evaluation of the CDF at the 

tail of the distribution. With a better estimation of the probability distributions with 

Pearson or Johnson systems, the designer can predict the yield of a design more accurately. 

The use of a normal approximation will produce optimistic results, whereas fabricated 

chips will suffer from significant yield loss. For instance, the cumulative distribution 

function (CDF) for the setup time of 13 nm flip-flops is plotted in Figure 4.7. The 

performance yield for the target setup time of 11.5 ps is 96.69% with normal and 91.57% 

with a Pearson IV approximation. Since typical designs include a large number of flip-

flops, and no failures are tolerable, the failure probability for the whole system behaves as 

a power function of the probability of failure of a single device. Therefore even small 

errors in the estimation of this probability are readily scaled up and will provide very 

different failure rates for the complete system. 

 

Figure 4.7: Cumulative distribution functions for the setup time of 13 nm flip-flops with Normal and Pearson 

type IV approximations. 

4.6 Timing Distributions of Pipelined Circuits 

In high performance designs, data and control paths are aggressively pipelined to enhance 

the throughput. The pipelining is realized by inserting sequential elements (flip-flops or 

latches) in the circuit at different locations, thus dividing it into several segments. 
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However, after a certain pipeline depth, the timing overheads of the pipeline become a 

significant bottleneck for the throughput of the circuits [101], so the number of segments 

for maximum throughput is bounded. In any case, a large number of sequential elements 

are used in heavily pipelined designs.  

The effectiveness of high performance system design strongly depends on the timing yield 

of the fabricated chips. The timing yield is defined as the ratio of the chips who meet 

certain target delay (or the target frequency) to the total number of fabricated chips. 

Conventionally, high performance circuits are designed for particular target frequencies. In 

synchronous data transmission through the pipeline, the speed of the circuit is limited by 

the pipe segment which is slowest (having largest delay) amongst the other pipe segments 

[102] in the complete path, which becomes the critical path. However, due to variability 

any pipe segment can potentially be the critical one. Therefore, statistical approaches are 

required to determine the maximum pipeline delay so that an estimation of the maximum 

achievable speed of the circuit can be made under permissible yield loss. From the arrival 

time distributions of different pipeline segments, the maximum arrival time distribution of 

the complete pipeline is computed in SSTA through the use of SUM and MAX operations. 

Most of the existing statistical static timing analysis (SSTA) approaches [103], [104] are 

invariably based on Clark’s approximation [105] to compute the distribution of the 

maximum arrival time. The Clark’s approximation for the MAX operation gives exact 

results for the operands having joint bivariate normal distributions. The MAX operation is 

intrinsically a nonlinear function as the maximum of two normally distributed arrival times 

is typically a positively skewed distribution [106]. Moreover, the variability in the devices 

and interconnect also results in asymmetric non-normal distributions [107], [108]. 

Therefore, performing Clark’s MAX operation by approximating the non-normal 

distributions with normal distributions will produce inaccurate results. 

There are some recent studies [109]-[111] which propose analytical evaluation of SUM 

and MAX operations by approximating the arrival times with skew-normal distributions. 

However, the accuracy of the proposed models strongly depends on how accurate the 

arrival times are represented by the skew-normal distributions. 

4.7 Pipeline Delay 

Consider an N-stage pipeline as shown in Figure 4.8. The flip-flops have been inserted at 

regular intervals to store the signal states. If we denote the delay of the combinational 

logic in the �-th segment by �eEr, the CLK-Q delay of the flip-flop by �eElV²r, and the 
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setup time of the �  1-th flip-flop by �x>8¹MrïX, then the delay of the �-th pipeline segment, �x>�r, will be given by 

�x>�r � �eEr  �eElV²r  �x>8¹MrïX                                            �4.9
 

 

Figure 4.8: N-stage flip-flop based pipeline. 

Under the impact of variability, the delay of each pipeline segment is a random variable 

(RV) with a certain distribution and the delay of the overall pipeline will depend upon the 

distributions of the individual segment delays. 

In order to determine the overall delay of the pipeline, we will make use of the Jensen’s 

inequality [105], [112]. It states that the expected value E of the convex transformation f of 

a random variable x is at least the value of the convex function at the mean of the random 

variable ~ðk�Ê
ñ ] k�~ðÊñ
 
Since “max” is inherently a convex function [112], therefore according to the Jensen’s 

inequality, the overall delay of the pipeline, �òE , will be the maximum of the individual 

pipeline segment delays and a relatively less tight lower bound on the expected maximum 

is given by 

~ ó maxC©),…,o �x>�rô ] maxC©),…,oN~h�x>�rjO                                        �4.10
 
~ ó maxC©),…,o �x>�rô ] maxC©),…,oN~h�eEr  �eElV²r  �x>8¹MrïXjO               �4.11
 

The statistical static timing analysis of the pipelined circuits can be performed using 

numerical integration method, Monte Carlo method, or probabilistic analysis method [106]. 

However, the first two approaches are quite expensive in runtime as compared to the third 

approach. 

The overall pipeline delay can be approximated as [103] 
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�òE � maxh�x>�X, �x>�[ , �x>�õ ,… , �x>�ö¯X,�x>�ö,j                        �4.12
 � max ÷�x>�X , �x>�[, �x>�õ, … , max ��x>�ö¯X , �x>�ö
ø           �4.13
 � maxù�x>�X , �x>�[ , �x>�õ, … ,maxù�x>�ö¯[, úx>�ö¯X,öûû      �4.14
 
where  úx>�ö¯X,ö represents a distribution which is obtained as a result of max operation on �x>�ö¯X and �x>�ö. Now, once úx>�ö¯X,ö  is determined, we can find úx>�ö¯[,ö �max ��x>�ö¯[,úx>�ö¯X,ö
 by iteratively applying the above procedure. Hence by repeating 

this procedure N-1 time, by taking two variables at a time, we can get the overall 

distribution of the pipeline delay in terms of its moments that can accurately represent the 

distribution. 

The maximum of two normally distributed random variables typically produces non-

normal positively skewed distributions [111]. The skewed arrival time distribution 

resulting from the MAX operation at a given node becomes input for the max operation at 

a downstream node. Moreover, due to device and interconnect variability, the timing 

distributions of the circuits themselves are asymmetric (non-normal) [93], [106], [107]. 

Hence, in the pipeline system described above, if Clark’s approximation is used at each 

stage, the final distribution will deviate significantly from the actual distribution. Again, 

there are some recent works [109]-[111] which proposes the evaluation of max function by 

approximating the timing distributions with skew-normal distributions. However, the 

SSTA results entirely depend on how accurately the timing distributions are represented by 

the underlying approximation models. 

4.8 Statistical Analysis of the Timing Yield 

We now proceed to discuss the yield of a pipelined circuit. The timing yield of a pipeline 

depends on the timing constraints introduced due to the setup time and the hold time of the 

sequential elements. The pipeline should be so designed that the signal from one flip-flop 

to the next flip-flop reaches at least one setup time earlier than the next clock edge. 

Moreover, the signal should not be so fast that the second register can not latch the data 

correctly. Under statistical variations, both shortest and longest paths in the pipeline no 

more remain fixed and therefore both setup and hold time constraints need to be considered 

in the statistical analysis and for yield estimation.  

Considering data transmission between flip-flop FF�C
 and FF�Cü)
 such that FF�C
 is the 

source and FF�Cü)
 is receiver, then the constraint introduced by the setup time for proper 

data latching by the FF�Cü)
 is 
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0 9 �eElV²r  �eEr 9 �eEl L �xf>ý L �x>8¹MrïX                         �4.15
 
where �eEl is the clock period, �xf>ýis the skew between the clock signals CLKC and CLKCü). 
In order to avoid race-through condition, the constraint imposed by the hold time is �eEV²r  �eEr ] ��7?=rïX L �xf>ý                                           �4.16
 
The above constraints dictate that, for successful data transmission, the longest path delay 

should be less than and the shortest path delay should be greater than some target values. 

The time margin under setup time constraint for the pipe segment � is given by æ<�x>8¹Mr � �eEl L �xf>ý L �x>8¹MrïX L �eElV²r L �eEr             �4.17
 
Similarly, the time margin under hold time constraint for the pipe segment � is given by æ<��7?=r � �eEV²r  �eEr L ��7?=rïX  �xf>ý                               �4.18
 
In order to minimize the yield loss, both these time margins should be greater than zero for 

all the pipeline segments. Therefore, we need to find the minimum of both the timing 

margins for the whole pipeline so as to check that these are greater than zero.  

All the parameters in the expression of æ<�x>8¹Mr  and æ<��7?=r, except <CLK, are circuit 

dependent and have certain timing distributions that can either be obtained through detailed 

device and circuit modeling or through simulation. From the distributions of timing 

margins of different pipeline segments, the timing margins of the complete pipeline under 

setup and hold time constraints (æ<�x>8¹M� , æ<��7?=�
 can be determined by applying the 

MIN operation over all pipeline segments, following the same procedure as laid down in 

the previous section. Finally, MIN operation is again applied over æ<�x>8¹M� , æ<��7?=� to 

find the combined time margin æ<�-7��  of the pipeline. The MIN operation can be 

performed in the same way as that of MAX: MIN(x1,x2) = -MAX(-x1,-x2). 

The timing yield of the pipeline at a clock period �eElcan then be determined as  

Yield�TCLK
 � b�æ<�-7���TCLK
 Á 0
 
It can be seen that for SSTA, the accuracy of the timing yield depends on how accurately 

the timing distributions are represented and MIN/MAX operations are performed.  

4.9 Experimental Setup and Results 

We used Monte Carlo simulations in HSPICE for the pipeline structure of Figure 4.8 with 

six pipeline stages. The transistor level structure of the single segment of the pipeline is 
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shown in Figure 4.9. The study has been carried out for the technology generations of 18 

and 13 nm. During the simulation of the pipeline, the variation in the clock signal is not 

considered and a common clock signal is applied at all the flip-flops. Large numbers of 

simulations (5000) were run to extract the timing parameters. All timing measurements 

were taken corresponding to 50% of the maximum swing level. 

 

Figure 4.9: Transistor level model of the pipeline segments. 

The CLK-Q delay of each flip-flop and the propagation delay of the combinational logic 

between the flip-flops has been measured. Based on these measurements, the delay 

distribution of the maximum of the complete pipeline, using Clark’s approximation [105], 

has been determined and plotted in Figure 4.10 along with the delay distributions of the 

individual stage delays. It may be observed that the individual stage delays are not 

Gaussian and rather are having skewed distributions, under the impact of RDF. Therefore, 

the maximum delay distribution of the complete pipeline can no longer be Gaussian, as 

expected. However, the Clark’s approximation always gives the results in terms of Normal 

distribution. The maximum delay distribution of the complete pipeline has also been 

obtained through Monte Carlo simulations and is also plotted in Figure 4.10. The visual 

inspection shows that the actual distribution has a long positive tail and significantly differs 

from the Normal distribution. The statistical parameters of the two distributions verify this 

fact. 
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In order to examine the impact of technology scaling on the evaluation of MAX 

distribution, the simulations were performed for the technology generations of 18 and 13 

nm and the results are shown in Figure 4.11. The results show that the asymmetry in 

different timing parameters of the flip-flops and the combinational logic increases with 

technology scaling, resulting in increased asymmetry in the MAX distribution, as is also 

evident from the statistical parameters given in Table 4.3 (for 0-1 input transition). 
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Figure 4.10: MAX delay distributions of individual pipeline stages and overall pipeline for 18nm technology 

generation. 

 

Figure 4.11: Overall pipeline delay distributions of a pipeline consisting of 6 stages simulated for the 

technology generations of 18 and 13 nm. 
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The increased asymmetry means greater deviation from the Gaussian distribution and more 

error in estimating MIN/MAX distribution using Clark’s approximation, as is evident from 

Figure 4.11. Although the Clark’s approximation provides a conveniently fast means of 

finding MAX distribution, but the inaccuracy of results, particularly in the tail section 

makes it not a good choice for the given purpose, as it will give very optimistic results for 

the pipeline delay. Therefore, it will result in yield loss due to difference in the PDFs at the 

tail section. 

Table 4.3: Statistical Parameters of the MAX Delay Distribution of the Complete Pipeline 

Parameters 18 nm 13 nm 

Mean Delay (ps) 25.2 16.93 

Std. Dev. (ps) 0.843 0.994 

Skewness 0.464 0.676 

Kurtosis 0.426 0.922 

It has also been observed that stage delays are different in opposite transitions even if 

NMOS and PMOS transistors are properly T-sized. For instance, the stage delay 

distributions for low-high and high-low transitions are shown in Figure 4.12. Although the 

size of the PMOS transistors is chosen to be double the size of the NMOS transistors to 

keep the circuit delay close in the two swings. However, the delay variability is inversely  

 

Figure 4.12: Maximum delay distributions plotted for low-high and high-low transitions for the 13 nm 

pipeline. 
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proportional to the size of the transistors [107] and therefore the statistical parameters 

(mean, standard deviation, skewness, and kurtosis) are also different for the two 

transitions. Therefore, while determining the MAX distribution, the delay distribution in 

both swings needs to be considered. 

While measuring the timing parameters of the flip-flops, different interdependencies need 

to be considered. These interdependencies also have a negative impact on the shape of the 

distributions due to variability, thus pushing them away from the normal distribution. For 

example, Figure 4.13 shows two histograms for a timing random variable formed by the 

sum of D-CLK time, CLK-Q time and combinational logic delay. The narrow and high 

peak histogram is corresponding to the case when D-CLK time is very large. Similarly, the 

wider histogram is corresponding to the case when D-CLK time is short. The setting of D-

CLK time depends on the clock period and combinational logic delay. However, its value 

greatly affects the shape of the timing distributions and then increased deviation from 

normality for small D-CLK time. 
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Figure 4.13: Histograms of timing variable comprising of D-CLK time, CLK-Q time and combinational 

delay for a 13 nm pipeline. 

As mentioned before, some recently reported works [108], [111], [113] propose to 

approximate skewed arrival time distributions with skew-normal and also present 

analytical models for the computation of the MAX function. However, we have seen in this 

work that skew-normal is also not an appropriate choice for representing skewed timing 
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distributions of highly scaled devices as shown by the probability distributions in Figure 

4.14. The solid curve corresponds to the actual simulation data and the other two curves are 

for the normal and skew-normal approximations. It can be seen that although skew-normal 

distribution better matches the actual data as compared to the normal approximation, but 

still it does not exactly approximate it. Similar discrepancy is also reported in the arrival 

time plots given in [108], [111], [113].  

 

Figure 4.14: Probability density functions for the pipeline delay with a combinational logic of 60 inverters in 

series for 13 nm. 

 

Figure 4.15: Difference in timing yield estimation with normal and skew-normal approximations. 
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The inaccuracy in approximating the arrival times for SSTA has a dreadful impact on yield 

estimation. In Figure 4.15, timing yield loss as a function of operating frequency has been 

plotted for normal and skew-normal distributions for their comparison with the MC 

simulation results. For this purpose, the model laid down in section 4.8 has been followed. 

Again it can be seen that normal approximation produces optimistic results but quite 

different from the MC results. The skew-normal approximation gives relatively better 

results but still with some error. For instance, the yield loss at a frequency of 7GHz is 9.3% 

with MC simulation data, 5.2% with normal and 7.8% with skew normal. This error 

increases to significant levels for deeply pipelined circuits with multiple MIN/MAX 

operations during SSTA. Therefore, in order to keep yield loss below permissible limits, 

operating frequency will have to reduce. 

4.10 Summary 

In this chapter accurate estimation of the shape of timing distributions of flip-flop 

parameters has been discussed. The study of the exact shape of these distributions, 

especially in the tail section, is of fundamental importance in the design and modeling of 

high-performance, reliable, economically feasible circuits. In this chapter, the distribution 

tails are estimated based on simulation data, with the aid of statistical nonparametric 

probability density functions, and it has been found that timing distributions can better be 

represented by certain nonparametric distributions, in particular Pearson and Johnson 

systems. The use of these representations during the statistical static timing analysis will 

provide more accurate results as compared with the normal approximation of distributions 

and will eventually reduce the probability of yield loss. The skew normal distribution 

provides an interesting alternative to represent the skewed data; however, it does not give 

better results than Pearson and Johnson systems. Since in current state-of-the-art systems 

the device count has already crossed several billion, accurate representation of data for 

SSTA is imperative to avoid yield loss. Therefore for such large systems also, Pearson and 

Johnson distributions provide very accurate results as compared to other distributions. 

Under statistical device variations, the delay distributions of the pipeline stages follow a 

skewed distribution in highly scaled devices. Therefore, in order to determine the 

maximum operating frequency of the pipelined circuits, accurate estimation of the slowest 

pipeline stage will have to be determined. This study shows that identifying the slowest 

pipeline stage using Clark’s approximation will produce quite optimistic results and will 

lead to significant yield loss. Moreover, it has been shown that while estimating the yield, 
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the stage delay distributions in both low-to-high and high-to-low transitions need to be 

considered and hold time distributions should also be considered along with setup time 

distributions. 
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5.1 Introduction 

As technology scales, on-chip interconnections are becoming progressively slower when 

normalised by the logic delay. Techniques to manage this discrepancy, and avoid a 

possible bottleneck, are therefore required. The use of caching, and wide buses are all 

possible.  However the most fundamental solution is the use of repeaters inserted in the 

communication links. The placement and size of repeaters can be tuned to construct delay 

optimal interconnections. Again due to technology scaling, the number of optimal repeaters 

per unit length is also increasing. Optimal repeaters are of significantly large size as 

compared to the minimum sized repeaters. Thus they require larger portions of the silicon 

and routing area [114] and a significantly larger portion of the chip power [61]. Due to 

their large number and size, their total power consumption can be as high as 60W [115]. 

For the future technology generations, unconstrained optimal buffering of interconnects 

might require up to 80% of the total on-chip area [68]. The impact of technology scaling on 

the number and size of delay optimal repeaters is shown in Figure 5.1. 
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Figure 5.1: Optimal number and size ����CD
 of uniformly inserted buffers in an interconnect of minimum 

width and spacing for the three technology generations. 

Due to the increasing trend of the on-chip power dissipation, it has been pointed out as the 

main limiting factor in the scaling of CMOS circuits [62]. In previous technology 

generations, the switching power was the dominant component of power dissipation. 

However the relative contribution of different components of power dissipation (switching, 

short circuit, and leakage) is changing along scaling. Therefore, it becomes important to 

determine different components of power dissipation individually, as this approach may be 

helpful in designing more power efficient designs. 

The increasing magnitude of the variability in deep sub-micron (DSM) technologies is not 

only affecting the delay characteristics of the devices but also their power dissipation. In 

this work we will show that RDF causes inherent variability in the power dissipation of the 

devices. Therefore, similar to the operating frequency and yield which are affected by the 

delay variability, the variability in the power dissipation may also affect yield. 

In the first part of this chapter, we present the results for the power measurement in 

repeaters. We used Monte Carlo simulation method for the accurate characterization of 

power dissipation in repeaters of 25, 18 and 13 nm bulk MOSFETs, and to see the effect of 

RDF on all the components of power dissipation. Since repeaters of different sizes are used 

on the chip, therefore, the effect of repeater size on power dissipation has also been 

investigated under the impact of RDF. The results obtained through this study can be used 
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to develop accurate models for other sizes and configuration of devices. Moreover, the 

characterization data so obtained can be used to design more effective power optimal links. 

In the second part of this chapter, we investigate the impact of variability on area and 

power optimal repeater insertion technique for on-chip links. In [116] it has been shown 

that absolute performance is expensive in terms of power dissipation and silicon area and 

we can make significant savings in these parameters at the cost of a little performance 

penalty. However, we argue that in addition to the delay performance, the predictability of 

the timing of the signals for all the wires in a multi-bit link is another important parameter 

for high performance designs. The timing variability not only degrades the system 

performance but can also produce timing violations and system faults, thus reducing 

system yield. With aggressive technology scaling, the variability in the devices and 

interconnect is continuously increasing, posing many challenges for high performance and 

yet reliable designs [117], [118]. The power optimal repeater insertion methodologies in 

[116], [24] suggest the use of smaller sized buffers (and increased inter-repeater segment 

length), whereas it has been shown in [107] that delay variability of the buffers is inversely 

proportional to their size and that this relation is not linear. Therefore, reducing the size of 

the buffers may be of little benefit if variability, reliability and yield are to be maintained 

within certain acceptable limits. Hence, robust designing of communication links require 

the need for studying any power and area efficient methodologies against the reliability of 

the system and any such methodology should also include this metric in the optimization 

process. 

5.2 Methodology for Power Measurement 

The arrangement for the measurement of different components of power dissipation is 

shown in Figure 5.2. Minimum sized inverters (MSI) of 25, 18 and 13 nm technology 

generations were used with a supply voltage of 1.1V, 1.0V and 0.9V, respectively. Based 

on the predictive model card libraries, Monte Carlo simulation method has been used and 

10,000 HSPICE simulations were run for accurate measurements, for each of the given 

technology generations. The measurements were taken during both swings (VHL and VLH) 

for the repeaters switching at a frequency of 2GHz for all the three technology generations. 

The typical value of activity factor 0.15 [119] is used in this study. 

The leakage power of the inverter R is measured using the leakage current flowing through 

zero-volt voltage sources VP and VN in each of its possible states. 
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The short circuit power has been determined by measuring the energy dissipated across the 

supply voltage JKK  by integrating the current over the period ��
 of interest: 

~ � JKK � ��<
�<6
%                                                            �5.1
 

where ��<
 is the short circuit current flowing through the inverter which can be sensed 

through the zero-volt voltage source VN for the LH transition and through the zero-volt 

voltage source VP for the HL transition. The transient analysis was carried out over the 

whole switching period, which was taken to be significantly long to cover the whole 

transition. 

The switching power is determined by first measuring the total energy dissipated by the 

inverter over both transitions and then subtracting the short circuit and leakage 

components. 

 

Figure 5.2: Arrangement for the measurement of power dissipation in the repeater. 

~878@? � JKK � ��ò�<
�<&6
%                                                        �5.2
 

� ~xý�	  ~xý�E  ~x-�	  ~x-	�  2�b?>@f                  
~xýE� � ~xý�E � 12 N~878@? L ~x-�	 L ~x-	� L 2�b?>@fO                  �5.3
 

where ~878@?  , ~xý  , ~x-  are the total, switching and short circuit energies, respectively. The 

subscripts LH and HL represent the transitions from low-high and high-low, respectively. b?>@fis the leakage power.  
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5.3 Results and Discussion 

Different components of power dissipation along with the total power are shown in Figure 

5.3 for the three technology generations. The curves show the trend of these components 

with technology scaling. It may be noted that leakage power increases; whereas the other 

two components decreases, as the technology scales from 25nm to 13nm. The pace at 

which leakage power and short circuit power changes is roughly the same, whereas the 

switching power decreases more rapidly.  

 

Figure 5.3: Different components of power dissipation along with the total power in a minimum sized 

inverter (MSI). The inverter under investigation refers ‘R’ in Figure 5.2 operating at a frequency of 2GHz. 

Technology scaling has made it possible to switch the circuits at higher speeds. As 

mentioned before, the FO4 delay metric can be used to compare the speed of the circuits in 

different technologies. In Figure 5.4, the FO4 delay in the given three technologies has 

been plotted along with the leakage power in MSI of the corresponding technologies. It can 

be seen that the devices become faster with technology scaling, as expected. However this 

gain in performance is associated with dramatic increase in the leakage power. Hence there 

is an inverse correlation between circuit speeds and leakage power. 

The relative contribution of different components of power dissipation in the total power is 

graphically shown in Figure 5.5 and the corresponding data is given in Table 5.1. It has 

been found that leakage power is no more an insignificant quantity in comparison with 

other two components and can affect the performance of high performance designs. The 
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increase in the leakage power is mainly due to the increase of sub-threshold leakage 

current. The short circuit power is decreasing and is due to the reason that devices are 

becoming smaller with technology scaling, having relatively higher output resistance. 

Amongst all components of power dissipation, switching power is the most dominant 

mode of power dissipation. 

 

Figure 5.4: A plot of FO4 delay and the leakage power in MSI. 
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Figure 5.5: Normalized power distribution components in MSI operating at 2GHz. 
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From Table 5.1, we can see that the leakage power represents a very significant portion of 

the total power dissipation. It becomes even more prominent if the system is operating at 

lower frequencies because short circuit and switching power components are frequency 

dependent and become small as frequency decreases. Therefore power optimization 

methodologies should also consider individual power dissipation components along with 

total power dissipation. 

Table 5.1: Statistics of Power Measurements for MSI 

 Tech. Pleak Psc Psw Ptot 

Mean (µW)  0.0125 0.16 1.5 1.67 

St. Dev. (µW) 25nm 0.01 0.004 0.016 0.022 

3σ/ Mean (%)  259.1 7.0 3.3 4.0 

Mean (µW)  0.021 0.0754 0.8701 0.966 

St. Dev. (µW) 18nm 0.021 0.0034 0.0095 0.0209 

3σ/ Mean (%)  303.1 13.7 3.3 6.5 

Mean (µW)  0.0318 0.0285 0.364 0.425 

St. Dev.(µW) 13nm 0.0368 0.0066 0.0121 0.0341 

3σ/ Mean (%)  346.6 69.4 10.0 24.1 

Due to variability in the devices, power dissipation becomes a random variable. For 

instance, due to the variation in the threshold voltage of devices, the leakage current is 

different for different devices on the chip. Similarly, due to the mismatching in the 

switching timing of the NMOS and PMOS devices in the inverter, the short circuit power 

varies for different inverters. However, there is little effect of device variability on the 

switching power. As a result of this behaviour, power dissipation follows a certain 

distribution, with statistical data given in Table 5.1. It may be noted that there is a 

significant variation in the power dissipation, especially in the leakage component. As can 

be seen (Table 5.1), the variability of leakage power in 13nm inverters reaches up to 346% 

with respect to the mean power. 

Figure 5.6 shows the histogram of leakage power in 25nm minimum sized repeaters. The 

spread of the distribution is quite evident which means that the leakage power of a large 

number of repeaters is away from the mean value. Therefore, when considering power 

issues (for instance, in optimizing a circuit for power consumption), the complete 

distribution of power dissipation needs to be considered instead of just the mean value. 

More importantly, it is apparent that the distribution is not normal; rather it is quite 
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asymmetric about the mean value having positive skewness. This implies that some 

devices will dissipate a far larger amount of power than the mean. 

5.3.1 Impact on Repeater Inserted Links 

Due to the long tail in the distribution, a large number of on-chip repeaters will dissipate an 

excessively large amount of power. A similar asymmetry has already been observed in the 

delay distribution of the repeaters [107]. This is relevant, since an inverse correlation 

between the repeater delay and leakage power exists [120], and therefore the simultaneous 

optimization for delay and power becomes challenging. The variability in the devices, with 

asymmetric distributions of delay and power, has serious implications on the yield of the 

chips, as many of the chips would have to be discarded due to unacceptable delays and 

many more due to excessive power dissipation. If spatial correlations exist (due to process 

issues; not due to RDF), there may exist a cluttering of such highly leaky devices on the 

chip which can further create reliability issues. We have also observed that the skewness in 

the leakage power distribution greatly increases with technology scaling which further 

deteriorates the situation. This instigates the use of some preventive measures to control 

the leakage power in the circuits. 

 

Figure 5.6: Histogram of leakage power in 25nm MSIs. The distribution is quite asymmetric about the mean. 

5.3.2 Impact of Repeater Size on Power Dissipation 

In the global interconnect, repeaters of different sizes are used. Therefore, the study has 

been extended to investigate the effect of repeater size on power variability. We have 
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chosen repeaters of sizes 1X, 2X, 4X, 8X and 16X with a similar repeater connected at 

their outputs to act as the load. HSPICE simulations were performed and results are shown 

in Figure 5.7 for 18nm technology. The error bars represent the uncertainty (corresponding 

to 1xsigma) in the leakage power. It can be seen that the leakage power increases linearly 

with repeater size. Similarly, the uncertainty in the leakage power also increases almost 

linearly with the increase in the repeater size. However, we have shown in [107] that 

increasing the size of the repeaters reduces the delay uncertainty but this advantage is not 

achieved in case of power. The normalized leakage power, on the other hand, decreases 

with the increase of repeater size. 

5.3.3 Impact on NoC links 

In Network-on-Chip (NoC), links of different width are designed to achieve a given 

throughput, and latency. The width of a communication link is usually defined in terms of 

the phit size, which determines the number of bits that can be simultaneously transferred 

through the link. In many cases the link utilization rates are not constant and can be very 

low, just a few percents [121]. Large phit sizes are preferred to meet latency requirements 

but such links also remain idle for most of the time. Thus in such links, leakage power will 

be the main contributor of power dissipation. Therefore, a stronger tradeoff will have to be 

made between the power and other performance metrics, in the presence of increased 

variability. 
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Figure 5.7: Effect of repeater size on leakage power. Leakage power and its variability increases with 

repeater size. 
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5.4 Power and Area Optimal Repeater Insertion 

5.4.1 Unconstrained Repeater Insertion 

We consider a global interconnect having resistance g and capacitance  per unit length, 

inserted with repeaters of equal size at equal distance as shown in Figure 5.8. The whole 

interconnect, therefore, consists of 
 wire-segments each with repeater of size i and 

interconnect length � (which is the length of the interconnect between any two repeaters). 

We assume that the output resistance of a minimum sized repeater in a given technology 

generation is gx, the input capacitance is 7, and an output parasitic capacitance is M. These 

values are scaled accordingly for the repeaters of different sizes such that for a repeater of 

size i, the total output resistance becomes �8F � gx iY , the total input capacitance becomes �E � 7i and the total output parasitic capacitance becomes �M � Mi. The delay per unit 

length corresponding to 50% of the full swing voltage is given by [24], [51]. 

�? � #1� gxN7  MO  gxi   gi7  12 g�$ log�2                            �5.4
 

 

Figure 5.8: Buffer inserted interconnect. 

The values of � and i, which gives optimal delay per unit length, are given by [51] 

�7M8 � �2gx�7  M
g                                                       �5.5
 
i7M8 � �gxg7                                                                       �5.6
 

Using �7M8  and i7M8  in equation (5.4), the optimal delay per unit length is given by 

�?V7M8 � 2_gx7g à1  �12 #1  M7$â                                  �5.7
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5.4.2 Repeater Insertion under Area Constraints 

We consider again the interconnect of Figure 5.8. Let i7M8  and �7M8 be the optimal repeater 

size and inter-repeater segment length and let i and � be the corresponding values under 

some area constraint. Then � � `�7M8  and i � ai7M8, where ̀  and a are taken to be ` ] 1 

and 0 m a 9 1. The area required for a repeater inserted interconnect of length � is the 

sum of the area of all the repeaters inserted at a regular interval of length �. The area 

occupied by the interconnect itself is not included in the total area because it remains the 

same in the area constrained and area unconstrained case. Only the number and size of the 

repeaters will be reduced in the area constrained case as shown in Figure 5.9. 

 

Figure 5.9: An interconnect between the transmitter and receiver (a), optimal buffer insertion (b), buffer 

insertion under area constraint (c). 

If v is the total buffer area for the area constrained case and v7M8 is the area for the area-

unconstrained case, then we define the area ratio � � v v7M8⁄ , 0 m � 9 1 [116]. 

� � vv7M8 �
�. �>GG . i �Y�. �>GG . i7M8 �7M8 � i i7M8Y� �7M8Y � à                                        �5.8
 

Using the value of �7M8  and i7M8  from equation (5.5) and (5.6) and performing some simple 

mathematical steps, we can find the optimal values of ` under the area constraint as 

follows. 
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`7M8& ��
 � �
1  M 7Y  √2�V)
�1  M 7Y  √2 �                                        �5.9
 

The value of ̀7M8��
 can be used in equation (5.8) to get the value of a7M8��
 such that 

a7M8��
 � �`7M8��
                                                              �5.10
 
The speed at which the signal travels through the interconnect of length � in time � is the 

signal velocity �. Under area constraint, the delay per unit length given by equation (5.7) 

can be used to derive the optimum value of reciprocal velocity, which can be written as 

�7M8V) � �Ugk�g�Ë	UV)
� 2 log�2
 �gxg
) 3Y   
·��_7  M√2  _7� � #�_gxg7  1√2�gxg�7  M$                     �5.11
 

Now for any value of �, there will be a combination of `7M8 and a7M8 (equation (5.9) and 

(5.10)) that will give the best possible performance through equation (5.11), as shown in 

Figure 5.10. 

 

Figure 5.10: Optimal repeater size and inter-repeater segment length (both normalized) for different area 

ratios. 
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5.4.3 Repeater Insertion under Power Constraint 

The power dissipation in repeaters �bF>M
 consists of three components namely, short 

circuit power (bx-), switching power (bxý) and leakage power (b?>@f) such that the total 

power is  

bF>M � bx-  bxý  b?>@f                                                   �5.12
 
In an interconnect of length � having 
 uniformly inserted repeaters, the power dissipation 

per unit length is given by [24] 

bF>MÀ � 
. bF>M� � T`<FJKK�Dqrstx-keEl  `N7  MOJKK& keEl  12JKK�t7GGs�Dqrs
 t7GG��Mqrs
5 i�  `JKK& keEl                                                                      �5.13
 

bF>MÀ � 
bF>M� � µ) i�  µ&,                                          �5.14
 
where µ1 and µ2 are constants. But � � `�7M8  and i � ai7M8 , therefore,  

bF>MÀ � 
bF>M� � µ) ai7M8`�7M8  µ&                                                    �5.15
 
This expression shows that in order to reduce power dissipation per unit length (due to 

repeaters), the ratio 
�� will have to be minimized. This will simultaneously reduce the area 

because 
�� � �����. 

5.4.4 Communication Reliability 

Reducing the repeater size seems attractive in terms of the silicon area and power savings. 

However in deep sub-micron region, reducing the size of the repeaters for area and/ or 

power savings will increase variability and produce reliability issues in data transmission. 

This is because the delay variability is inversely proportional to the size of the repeaters 

and spread in the delay distribution increases with technology scaling [107]. The variability 

in the devices and interconnect can produce uncertainty in the arrival times of the signals 

with respect to target values and thus can cause critical data loss. In this section we will 

determine the probability of such a failure in a single line interconnect. 

We again consider Figure 5.8, where at the receiving end of the interconnect, a positive-

edge triggered D-flip-flop (DFF) is used to register the data. For the DFF, let Rx>8¹M be the 

setup time and RMF7M be the propagation delay from D to Q after the positive clock edge 
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and RýCF> be the propagation delay of the interconnect of length �. We assume that the link 

is operating at a clock frequency keEl  having period �eEl. 

For a data bit meeting the desired timing constraint to reach the output of the FF, the 

following delay constraint must be satisfied 

0 9 RýCF> 9 �eEl L Rx>8¹M L RMF7M                                        �5.16
 
The probability of correct data transmission can, therefore, be expressed as follows 

º � PrN0 9 RýCF> 9 �eEl L Rx>8¹M L RMF7MO                             �5.17
 
where the clock period �eEl, wire delay RýCF>, propagation delay RMF7M , and setup time of 

the DFF, Rx>8¹M are random variables. Therefore, the total delay through the interconnect 

(from source to receiver output) will also be a random variable. This distribution can be 

determined analytically (by considering all possible sources of variability) or through 

simulation (as in this work). This relies on accurate characterization of the underlying 

distributions. Let H-� and �-� be the mean and standard deviation of resultant pdf of ��k���gU
  ��k�iU<��
  ��k��g��
 L ��k���

, then the probability of correct 

data transmission is given by the error function [122] 

º � 12  erf #H-��-�$                                                             �5.18
 
where erf�Ê
 � )√&� � exp �L 8[&I% 
�< 
and the probability of failure for the data bit transmitted through the on-chip 

communication channel is then given by 

b�� � 1 L º                                                                        (5.19) 

5.5 Optimization Methodology 

The design objective can either be the optimization of area, power or performance, under 

the permissible limits of delay variability. These metrics are coupled with each other so a 

trade-off will need to be established. For a particular communication link design, a unique 

cost function is established.  For this function an optimum configuration is found, which 

will give the best results in terms of the given parameters. This optimum is determined 

though a standard optimization technique using the trade-off curves connecting these 

parameters. 
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5.5.1 Case Study 

We used Monte Carlo simulation method to perform experiments for this optimization 

study under the impact of device variability due to RDF. The interconnect structure is such 

that the middle wire under consideration is surrounded by two similar wires. The width of 

each wire and interspacing between them was kept at 0.048 Hm for 13 nm and 0.0675 Hm 

for 18 nm technology generation. The interconnect parameters were taken from ITRS 2007 

[50] and interconnect capacitances have been derived using the analytical models given in 

[45]. The wires are modelled as distributed RC interconnect with 100 ladder-segments. The 

variability in the interconnect wires is not considered in this study. The buffer size and 

inter-repeater segment length for optimal repeater insertion is i7M8=140 and �7M8= 80.67 Hm for 13 nm and i7M8=137 and �7M8= 152.1 Hm for 18 nm technology generation. A 

supply voltage of 0.9V for 13 nm and 1.0V for 18 nm circuits was used. A large number of 

HSPICE simulations (6000) were performed and delay-power measurements were taken 

during each run. The delay measurements were made corresponding to 50% of the 

maximum swing level. The total power measurement results are based on leakage, 

switching and short circuit power components at a frequency of 2GHz.  

Based on the simulation data, the delay variability (�=>?@A H=>?@A⁄ ) is determined and 

plotted in Figure 5.11(a) for the given technologies. It can be seen that the delay variability 

increases rapidly with the decrease of repeater size and also increases with technology 

scaling. In the presence of other sources of variability, the delay variability increases to  

 

(a)                                                                                   (b) 

Figure 5.11: Delay variability as a function of different ratios of repeater size, in the absence of crosstalk (a), 

Dependence of delay variability on repeater size and inter-repeater segment length (b). 
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greater extent. The dependence of delay variability on i and � is also shown in Figure 

5.11(b) for 13 nm technology. It may be noted that delay variability not only increases with 

the decrease of repeater size but also with the increase of interconnect segment length. For 

using this trade-off in the optimization process, the surface plot can be converted into an 

empirical expression using multiple regression techniques. This helps to understand how 

the typical value of the dependent variable (for instance, delay variability) changes when 

any one of the independent variables (l and S) is varied over a particular range. 

As we have already seen, in order to reduce area, we need to increase � �7M8⁄  and decrease ( (7M8⁄  ratios according to Figure 5.10 for getting the optimum performance for a 

particular configuration. The performance degradation due to different values of ( and � 
with respect to (7M8  and �7M8  can be predicted using equation (5.11). In Figure 5.12, these 

predictions are compared with the simulation results which matches very well at most of 

the area ratios. The model, however, deviates slightly from the simulation results at smaller 

area ratios. This is because at smaller repeater sizes, the delay distributions deviate from 

normality due to RDF [93], [94] and show some asymmetry. Figure 5.12 also shows the 

effect of area scaling on delay uncertainty. It can be seen that the standard deviation of the 

delay increases almost 3 times with v vM8⁄ =0.2. 

 

Figure 5.12: Comparison between analytical model and simulation results for performance degradation due to 

area scaling. 
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In Figure 5.13 different trade-off curves have been plotted together to explore different 

design choices. The area, power and performance curves show that in order to get ultimate 

performance, we will have to consume significant amount of power and area. However, 

with only 4% of performance degradation, we can reduce 30% power dissipation and 40% 

area. Whereas, in the presence of variability, an adverse effect of this trade-off is that delay 

certainty (defined as the reciprocal of delay variability) will reduce by 24% from the 

optimum level. This will increase the probability of failure of the link at a particular 

frequency, which can be estimated using equation (5.18)-(5.19). Therefore, the speed of the 

link will be limited in order to keep the probability of link failure below some acceptable 

limits. This problem will aggravate in high speed wider links where the skew amongst 

various wires in the link will play a detrimental role in determining its performance. This 

effect will be considered in Chapter 6. It becomes evident then that during the optimization 

process, the delay variability should also be considered in the figure of merit; otherwise the 

yield will be badly affected.  

 

Figure 5.13: Performance, area, power and performance certainty trade-off curves. 

5.6 Summary 

In the first part of this chapter we have measured power dissipation in repeaters of given 

three technology generations under RDF. The results show that the relative proportion of 

different components of power dissipation is changing and leakage power is emerging as a 
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serious problem in the designing of high performance and power optimal chips. Therefore, 

design methodologies should consider individual components of power dissipation along 

with the total power. Wider links in NoCs, which are preferred for better latency, will 

consume more power due to higher leakage currents at low activity levels.  

The variability in the devices which is affecting the delay characteristics is also effecting 

the distribution of power dissipation. A significant asymmetry has been observed in the 

distribution of leakage power and hence effectively, leakage is increasing more rapidly 

than anticipated. This in turn, is badly affecting the yield. It will be more advantageous to 

consider power variability along with delay variability while making different circuit 

optimizations. Active countermeasures, such as the use of sleep transistors, could be a 

possible solution against leakage power. 

In the second part of this chapter, we have analysed the impact of device variability on the 

performance of on-chip single bit data links. We emphasize that due to increasing trend of 

the variability, power and area optimal repeater insertion methodologies should also 

consider performance variability. Analytic models for area, power, performance and 

probability of link failure have been presented in terms of the size of the repeaters and 

inter-repeater segment length. It has been found that beyond a certain reduction in the size 

of the repeaters, the delay variability may exceed acceptable limits while still satisfying 

other constraints. Therefore, while optimizing area, power and performance of on-chip 

communication links, delay (and power) variability should also be included in the figure of 

merit. 
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6.1 Inter-Resource Communication 

Different functional units in SoCs communicate with each other through the 

communication infrastructure, consisting of several links. The inter-resource 

communication link usually consists of a large number of parallel interconnects, as shown 

in Figure 6.1(a), which are coupled with each other (RC/RLC) along the length of the 

channel. In a Network-on-Chip (NoC) platform, the functional units are connected to the 

routers through such communication links. Similarly, the routers are also connected with 

each other, in a certain topology, through another group of communication channels, as 

shown in Figure 6.1(b). The communication channels can be wider or narrower in terms of 

the number of lines they contain and this determines the phit size. 

In order to reduce the resistance-capacitance (RC) delay of interconnects, low resistivity 

and low dielectric constant materials are used [124], [125]. A common technique to reduce 

the delay of the global interconnects is the use of repeaters and increasing the width of the 

wires [126]. However, increasing the width of the wires may reduce the channel capacity, 

as fewer wires can then be accommodated in the same channel width��e
. Similarly, 
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interconnect spacing also effects the delay and bandwidth (since the coupling capacitance 

changes with spacing). The literature is abundant with several works on the optimization of 

the performance of global interconnects considering different metrics [24], [25], [127]-

[129]. However, most of the literature ignores variability and sources of noise (for 

instance, crosstalk), during their proposed optimization techniques. 

Core Core

L

W
C

LINK/

CHANNEL

 

(a) 

Router

FUFU FU

FU FU FU

FU FU FU

Router

Router

Router

 

(b) 

Figure 6.1: Simple Core-Core link consisting of multiple interconnects (a), Functional unit-Router and 

Router-Router links in a Network-on-Chip (b). 

As the process dimensions are shrinking to the nanometer region, the impact of variability 

has become extremely critical to the performance of the communication channels. The 

variability is affecting both the device (front-end of the line) and interconnect (back-end of 

the line) [130] resulting in the performance degradation of the whole channel. Moreover, 

under device scaling, leakage power is becoming an important source of power dissipation 
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alongside the switching power and therefore channel designers should also consider these 

aspects during optimization for a certain parameter. Although some recent work has been 

done on the modelling and analysis of the global interconnects with the consideration of 

variability [131]-[133], but no comprehensive work on the optimization of the data 

channels under different trade-offs for future technologies, where these effects are quite 

prominent, has been published.  

6.2 Channel Configuration and Modelling 

 

(a) 

 

(b) 

Figure 6.2: Structure of a multi-bit bus, where the number of interconnects in a fixed channel width �e  

depends on the interconnect width and spacing. (a) the cross-sectional view showing different dimensions 

and (b) the top view of the bus indicating outer and middle lines. The input signals on any two adjacent lines 

are opposite in phase, thus simulating the worst case of crosstalk. Each line in the bus can be considered as an 

aggressor or victim, as they can affect the performance of each other. 

The performance of a data channel strongly depends on its geometry. There are several 

possible configurations of a channel corresponding to different values of interconnect 
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width (W), spacing (S), thickness (T) and dielectric thickness (H), as shown in Figure 6.2. 

The variation of these parameters affects the capacitance, resistance and inductance of 

interconnects, which in turn changes the delay and other metrics. Inductance is less of an 

issue for interconnects under consideration due to the reasons mentioned in section 2.4.3. 

Amongst these geometrical parameters, T and H are technology dependent and so the 

designers have only the choice of varying W and S to design a channel for the required 

performance. While designing such channels, these parameters are set at the designed 

values. However, these parameters are also affected due to process variations, thus 

affecting the geometrical dimensions of interconnects. These changes are process 

dependent and controllable only to some extent.  

6.2.1 Interconnect Resistance 

In a given technology generation, only interconnect width (W) affects the resistance (T and 

H are assumed to be fixed). The interconnect resistance for a given geometry can be 

calculated using equation (2.1). 

6.2.2 Interconnect Capacitance 

The capacitance of an interconnect in the channel comprises of the fringe capacitance, the 

coupling or mutual capacitance and parallel plate capacitance. The fringe capacitance and 

parallel plate capacitance add up to form the self or ground capacitance. In order to 

investigate the characteristics of the interconnect capacitance, we will use the electrical 

model of [134] as it closely matches the actual situation for interconnects in a bus. 

The capacitance of a global interconnect for 18 nm technology with minimum width has 

been plotted as a function of the spacing between the neighbouring interconnects in Figure 

6.3. The technology parameters have been taken from the ITRS 2007 [50]. The curves 

show that the coupling capacitance quickly drops with the increase of the spacing. 

Similarly, the ground capacitance increases with the increase of the spacing. The reason for 

the increase of ground capacitance with spacing is not very obvious. Actually the parallel 

plate capacitance is not affected with the increase or decrease of the spacing; however the 

fringe capacitance of interconnects (except at outer edges of the bus) increases with the 

increase of the interconnect spacing. This results in the increase of the ground capacitance 

with spacing. The effect of spacing on the coupling capacitance is more dominant than the 

ground capacitance and therefore the total capacitance decreases with the increase of the 

spacing. Consequently, the signal delay through widely spaced interconnects is less than 

the closer interconnects. 
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Figure 6.3: Capacitance curves for minimum width global interconnects of 18nm plotted as a function of 

interconnect spacing. 

The impact of line width variation on the capacitance is shown in Figure 6.4. The total 

capacitance increases linearly with the increase of the interconnect width. The main 

contributor of this increased capacitance is the parallel plate capacitance, whereas the 

coupling capacitance remains almost constant due to the obvious reason of constant 

spacing.  
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Figure 6.4: Capacitance curves for 18nm global interconnects plotted as a function of width at minimum 

interconnect spacing. 
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Figure 6.5: The total capacitance of an interconnect (not at the outer edge) of a bus in 18 nm technology 

plotted as a function of the interconnect spacing and width. 

A 3D surface plot of the total capacitance of a bus interconnect as a function of the width 

and spacing is shown in Figure 6.5. The surface plot shows that the interconnect 

capacitance is largest for wider interconnects running parallel to each other at shorter inter-

spacing. Both resistance and capacitance affect the delay. 

6.2.3 Interconnect Delay 

We assume that all lines in the channel bus are uniformly coupled with two neighbouring 

aggressor lines. The lines at the extreme-edges are, however, coupled with only one line. 

We also assume that the length of the bus is � and all lines in the bus have the same 

designed geometrical dimensions. Let �, �x, and �- be the total interconnect resistance, 

self capacitance and coupling capacitance of each line, respectively. Now for a step input, 

the delay corresponding to 50% transition level for the middle and outer edge conductors 

in the bus has been approximated by a simple linear model in [135] as 

��C= � 0.4��x  �C��-                                                           �6.1
 
�7¹8>F � 0.4��x  �C� #�-2 $                                                    �6.2
 

In equation (6.1) and (6.2), the coefficient �C is selected according to the type of the 

switching activity in the neighbouring aggressor lines. [135] gives six possible cases 

corresponding to which the values of Ó is given in Table 6.1. 

Case 1: Both the neighbouring aggressors switch from state 1 to state 0. 
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Case 2: One aggressor is quiet and the other switches from state 1 to sate 0. 

Case 3: Both the aggressors are quiet. 

Case 4: One aggressor switches from 0 to 1 and the other switches from 1 to zero. 

Case 5: One of the aggressors switches from 0 to 1 and the other remains quiet. 

Case 6: Both the aggressors switch from 0 to 1. 

Table 6.1: Coefficients of the delay model for different switching patterns [135]. 

Case 

i 

Switching 

pattern 

 

�� 
 

�� 
1 (a) 1.51 2.20 

2 (b) 1.13 1.50 

3 (c) 0.57 0.65 

4 (d) 0.57 0.65 

5 (e) N/A N/A 

6 (f) 0 0 

If the victim line switches from zero to one then Case 1&2 will slow down the victim line 

and Case 5&6 will speed up it. For the time being, we consider Case 3 only to find the 

reference delay. In this case, equation (6.1) and (6.2) will reduce to  

��C= � 0.4��x  0.57��-                                                           �6.3
 �7¹8>F � 0.4��x  0.285��-                                                         �6.4
 

 

Figure 6.6: Propagation delay of the middle interconnect of minimum width of a bus for the given three 

technologies plotted as a function of the spacing between the conductors. 
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Using these equations, the delay of the bus interconnects has been estimated for the three 

technology generations. Also the dependence of the delay on interconnect spacing and 

width has been studied and results are shown in Figures 6.6 & 6.7. The curves show that 

the interconnect delay can be reduced by increasing the interconnect width and/or by 

increasing the spacing between the neighbouring conductors. It is, however, important to 

note that increasing the spacing beyond certain value is not very beneficial in terms of the 

delay because coupling capacitance effects are minimal after some interconnect spacing. 

Increasing spacing beyond this point will simply waste chip area. 

 

Figure 6.7: Propagation delay of the middle interconnect of a bus with neighbouring interconnects at 

minimum spacing for the given three technologies plotted as a function of the width of the conductors. 

On the other hand, increasing width may improve delay performance over some large 

range of width as compared to the spacing. The decrease in the delay is due to the decrease 

of the interconnect resistance but at the same time the ground capacitance also increases 

with the increase of the width. The increase of the width has a negative effect as the 

switching power increases with the increase of the capacitance. Therefore, there will be 

some optimum value of the spacing and width that will give the best delay performance 

under some area and/or power constraints.  

6.3 Repeater Insertion 

The delay of the long interconnect can be reduced by inserting repeaters at appropriate 

locations along its length, thus dividing it into small sections. For such a system, the delay 

of each section can be approximated by [135] 
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<x>- � 0.7�=FQ��x  �=FQ  HC � 2�-
  ��0.4�x  ÓC � �-  0.7�=FQ
                     �6.5
 
where the coefficients HC and ÓC are given in Table 6.1. �=FQ  and �=FQ are driver output 

resistance and capacitance respectively. 

The total delay of an interconnect of length � is given by 

<E � µ S0.7�=FQq¶ #�xµ  ¶�=FQq  HC 2�-µ $  �µ #0.4�xµ  ÓC �-µ  0.7¶�=FQq$\  <F2   �6.6
 
where �=FQq  and �=FQq  are the output resistance and capacitance of a minimum sized 

repeater, ¶ is the size of the repeaters and µ is the number of repeaters inserted in the 

interconnect. <F refers to the rise time of the signal. The optimal values of ¶ and µ are 

obtained by taking the partial derivative of equation (6.6) with respect to µ and ¶ and 

equating it to zero 

�<E�µ � 0     �   µ7M8 � �0.4��x  ÓC��-0.7�=FQq�=FQq                                                        �6.7
 
�<E�¶ � 0     �    ¶7M8 � �0.7�=FQq�x  1.4HC�=FQq�-0.7��=FQq                                 �6.8
 

 

Figure 6.8: Optimum number of repeaters for minimum interconnect delay for different lengths of the global 

interconnect plotted as a function of the interconnect width. The interconnect is of 13 nm technology and the 

spacing between interconnects is Smin. 
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The optimal value of the delay can be obtained by using the value of ¶7M8 and µ7M8 in 

equation (6.6). For different interconnect lengths, the optimum number of required 

repeaters are plotted in Figure 6.8 as a function of the line width. It is shown that the 

number of repeaters which minimizes the propagation delay of the signals decreases with 

the increase of the line width for all lengths of the interconnect. The results also show that 

the maximum line length for an interconnect of width=25Wmin, which requires no repeater 

or only one driver is 0.152 mm. Therefore for typical interconnect lengths, large number of 

repeaters are required for optimum signalling (particularly as chip sizes are increasing). 

As we increase the interconnect width for faster signalling, the line capacitance per unit 

length increases. Although fewer repeaters are required to drive wider lines, each repeater 

will have to drive a larger section of the interconnect. Therefore, in order to drive large 

interconnect sections of greater width, the repeaters will have to drive large capacitances. 

So the repeaters will be of large size to reduce the overall delay. Figure 6.9 clearly shows 

that the repeater size for optimum delay is an increasing function of the interconnect width. 
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Figure 6.9: Optimum repeater size for minimum interconnect delay for different interconnect widths (global 

interconnect) for 13 nm technology. The spacing between interconnects is Smin. 

6.4 Bandwidth Estimation 

If � is the minimum pulse width that can be transmitted through the channel interconnects 

and correctly registered at the receiving register, then the bandwidth of a single 

interconnect is given by 
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|�ýCF> � 1�                                                                     �6.9
 
If <F is the rise time of the signal from 10% to 90%, then the duration of a good signal is at 

least 3<F [136]. The rise time of the signal can be approximated from the RC time constant R as <F � 2.2R [6]. Since 0-50% time <%.2 � 0.69R, therefore <F � 3.188<%.2. and � u9<%.2. The pulse width of the signals in the bus interconnects will then be 

�M,�C= � 9��C=                                                             �6.10
 
�M,7¹8>F � 9�7¹8>F                                                             �6.11
 

For � conductors in the channel bus, the total bandwidth is given by 

|�878@? � � L 2�M,�C=  2�M,7¹8>F                                           �6.12
 
Equation (6.4) shows that the outer edge wires will offer less delay as compared to the 

middle wires and thus can give larger bandwidth. However, when a complete data word is 

transmitted over all the lines, the early arrival of the data bits travelling on the outer edge 

lines may not be very beneficial until the complete word is registered at the receiver (or 

complex receivers will be required). Therefore, we will estimate the worst case bandwidth 

due the middle wires.  

|�878@? � �max ð�M,�C=, �M,7¹8>Fñ � ��M,�C=     

 

Figure 6.10: Data rate per wire of a channel bus in 13nm technology plotted as a function of spacing and 

width. 
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Figure 6.10 shows the possible data rate per wire for a 13nm technology bus plotted as a 

function of the interconnect spacing and width without using repeaters. The plot shows that 

the bandwidth per wire can be increased by increasing wire width and/or spacing. 

6.4.1 Bandwidth as a Function of Length 

It is obvious that the interconnect delay increases with length (with and without the use of 

repeaters). This will directly impact the bandwidth. Repeater inserted interconnects provide 

more bandwidth as compared to interconnects without repeaters, as shown in Figure 6.11. 

The maximum allowed interconnect length corresponding to some desired bandwidth, with 

and without the use of repeaters, is plotted in Figure 6.11. The use of repeaters is more 

beneficial for the bandwidth at larger interconnect lengths. The curves also show that the 

interconnect become slower with technology scaling and provides reduced bandwidth for 

the same length. 

 

Figure 6.11: Maximum allowed interconnect length for a particular bandwidth with and without the use of 

repeaters for the given three technologies. These curves have been plotted for minimum interconnect width 

and spacing. 

6.5 Channel Performance under Variability 

In practical circuits, the performance of the communication links is always affected by the 

device and interconnect variability. Similarly due to the capacitive coupling, the switching 

activity in the neighbouring interconnects affects the delay characteristics of an 

interconnect (crosstalk effects). Therefore, in order to make a realistic estimate of the 

channel performance, both these effects should be considered in the analysis.  
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In order to study the worst case due to the crosstalk effect on the victim line, we consider 

Case 1 in section 6.2.3 where both the neighbouring aggressor lines switch simultaneously 

in opposite direction with respect to the victim line. This will slow down the victim line 

and thus will reduce its bandwidth. The delay equation (6.6) will then be modified 

accordingly using the appropriate coefficients from Table 6.1 corresponding to Case 1. 

6.5.1 Sensitivity Analysis of the Delay under Varia bility  

The uncertainties in the communication structures (drivers, interconnects, repeaters FFs) 

introduce uncertainty in the delay characteristics of the interconnect-buffer system. We will 

study the impact of process variations in the interconnect and statistical device variations on 

the delay performance of the link. The variation in the width, spacing, thickness and ILD 

thickness are taken into consideration. It is assumed that every part of bus wires is 

uniformly fluctuated. The primary interconnect parameters have been extracted from the 

ITRS2007 [50] and are given in Table 6.2 along with some device parameters. Since the 

actual levels of interconnect variability are not available from the manufacturing industry 

for the future technology generations, we assume three cases of the interconnect variability 

in which the 3� percentage variation for the given dimensions of the interconnect are kept 

at 5%, 10% and 15% of their mean value corresponding to case 1, 2 and 3 respectively. We 

also assume that the variation in these parameters follow Gaussian distribution. 

Table 6.2: Primary interconnect and device parameters based on the ITRS and the device model cards [76], 

[77]. The device parameters are for the uniformly doped devices. 

Technology Generation/ Parameters 25nm 18nm 13nm ��CD �	�
 105 67.5 48 b�CD �	�
 210 135 96 v/� 2.3 2.4 2.5 � �	�
 241.5 162 120 ��	�
 241.5 162 120 �F 2.5 2.3 2.1 ��10V4HΩ. �
 2.2 2.2 2.2 gx  �Ω
 18487 21166 23936 %�k�
 0.1436 0.086592 0.046315 M�k�
 0.0425 0.083741 0.029071 �¶�� i��U Ë< �g���<��	 ���&
 310 310 310 J==�J
 1.1 1.0 0.9 

The interconnect capacitance and resistance are not statistically independent. Figure 7.12 

shows the relation between interconnect resistance and capacitance for 5% thickness 

variation in the global interconnect of minimum width. Similarly, Figure 7.13 shows the 

similar graph for a variation of 5% in the width and thickness. Both these plots show that 
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with the increase of width and thickness, interconnect resistance decreases but capacitance 

increases. 

 

Figure 6.12: Scatter plot of interconnect resistance and capacitance with thickness variation of 3σ=5% in a 

13nm technology interconnect of 1mm length. 

 

Figure 6.13: Scatter plot of interconnect resistance and capacitance with width and thickness variation of 

3σ=5% in a 13nm technology interconnect of length 1mm. 

The variability in the geometrical dimensions of the interconnect and repeaters affect the 

delay in different proportions and a comparison is shown in Figure 6.14. In the plot, the 

impact of variation for 3�=5% in W, S, T and H (separately and all variations together) in 

the interconnect and due to RDF in the repeaters, on the delay of an interconnect of 

minimum dimensions has been shown in the form of a bar chart. The interconnect with and 
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without the use of repeaters have been considered. The results have been obtained by first 

transforming the interconnect geometrical variations into the electrical variations (using the 

analytical models) and then modelling and simulating the interconnect in HSPICE using 

MC simulations. From the results, it can be clearly inferred that the interconnect delay is 

more sensitive to width and thickness variation. The effect of RDF is least as compared to 

other sources of variation due to large size of the delay optimal repeaters. It may also be 

noted that interconnects without the use of repeaters are more vulnerable to delay 

variability. Moreover, a small variation in all interconnect parameters together can 

introduce significant variability in the delay.  
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Figure 6.14: Contribution of different parametric variations on the delay of a bus line of length 1mm of 

minimum width and spacing in 13nm technology. 

6.6 Area Constrained Channel Bandwidth 

On chip area is a precious resource and is not freely available. Therefore, on-chip 

communication channels are also designed with optimum use of area. During floor-

planning, a fixed area is allocated to each link and a particular number of lines are fitted 

into this area. In order to minimize the effects of capacitive coupling, shielding wires are 

also used along the signal wires. The shielding wires are normally used with minimum 

width as permitted by the technology generation, independent of the size of the signal 

wires. In this way, an effective shielding against RC coupling can be achieved with 

minimum area consumption. 

Let �- be the channel width and � be the number of lines, each having width � and 

interspacing (. Then the constraints relating these quantities are approximated by [137] for 

the shielded and unshielded wires respectively. 
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�- � ��  �� L 1
(                                                             �6.13
 
�- � ��xC�D@?  �� L 1
�2(  �x�C>?=
                           �6.14
 

In the following sections we will explore the impact of variability on channel performance 

under fixed channel width �- for the channel without shielded wires. 

6.6.1 Experimental Setup and Simulation Results 

We consider a channel bus consisting of 128 lines connecting two cores or NoC routers. 

The physical width of the channel is assumed to be �- � 128 � b�CD, where b�CD is the 

minimum allowable pitch in the given technology generation. The wires have been 

considered as parallel global copper traces placed over a ground plane. Interconnect 

geometrical and material parameters have been extracted from the ITRS2007 and given in 

Table 6.2 along with the device parameters. The interconnects have been designed with 

and without the use of repeaters. The variability in the devices due to RDF and due to 

variations in the width, spacing, thickness and ILD thickness of interconnects has been 

considered. Again we consider the following three cases of interconnect variability: 

Case 1: 3�ý � 5%,  3�x � 5%, 3�6 � 2%, 3�� � 5%, 3�K>Q � vi Ë<�Ë� �	 �U��Ui 
Case 2: 3�ý � 10% ,  3�x � 10%, 3�6 � 2%, 3�� � 10%, 3�K>Q � vi Ë<�Ë� �	 �U��Ui 
Case 3: 3�ý � 15%,  3�x � 15%, 3�6 � 2%, 3�� � 15%, 3�K>Q � vi Ë<�Ë� �	 �U��Ui 
These values are with respect to the minimum interconnect dimensions in the 

corresponding technology. It is also assumed that variability follows Gaussian distribution. 

The repeaters have been constructed using the model card libraries with RDF effects. The 

bus length is taken to be 1mm in this study and worst case crosstalk effects (aggressor lines 

switch in opposite direction with reference to the victim line) are considered. 

The objective of this study is to explore the channel configuration which gives optimum 

performance under the impact of variability and its relation with the power and area. For 

this purpose several experiments were designed and extensive Monte Carlo simulations 

performed to get the results. The circuit netlists were generated and HSPICE simulations 

were performed until convergence (~6000 simulations in each case). In order to simulate 

the distributed nature of interconnects, each wire has been made up of 250 ladder 

segments. 

6.6.2 Results 

Here we present results for Case 1 of variability for 13nm technology, as the results for the 

other cases are similar. 
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6.6.2.1 Delay 

The mean delay, the standard deviation and delay variability of the channel bus at different 

values of the interconnect width and spacing are shown in Figure 6.15, 6.16 and 6.17 

respectively. The actual data is given in Tables A.1, A.2 and A.3 respectively and placed in 

the Appendix-A. As expected, the delay decreases both with the increase of the 

interconnect spacing and width. However, increasing interconnect width is more beneficial 

as compared to spacing in order to improve delay performance under the same channel 

width. In the same way, the standard deviation and delay variability decreases more rapidly 

with the increase of the interconnect width than the spacing. 

 

Figure 6.15: Mean delay (in picoseconds) of interconnects (without repeaters) in the channel bus of 13 nm for 

different geometrical configurations under variability Case 1.  

 

Figure 6.16: The standard deviation (in picoseconds) of the delay of interconnects (without repeaters) in the 

channel bus of 13nm for different geometrical configurations under variability Case 1. 
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Figure 6.17: Delay variability (%) of interconnects (without repeaters) in the channel bus of 13nm for 

different geometrical configurations under variability Case 1. 

The simulations were also performed to find the performance of the channel inserted with 

optimal repeaters. The size and number of repeaters depends on the geometrical 

dimensions of the interconnect (width, spacing, etc) and the parameters of minimum sized 

repeater in a given technology. For 13 nm technology, the number and size of the repeaters 

per unit length of the interconnect is shown in Figure 6.18 and 6.19, respectively. The 

corresponding data is given in Tables A.4 and A.5 respectively. 

 

Figure 6.18: The number of repeaters per unit length required for different interconnect dimensions (width 

and spacing) for a 13 nm bus under worst crosstalk. The numbers have been rounded-off. 
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The mean delay, the standard deviation and delay variability have been measured for 

different configurations of the bus inserted with repeaters and the results are shown in 

Figure 6.20, 6.21 and 6.22 respectively. The corresponding data is given in Table A.6, A.7 

and A.8 respectively. The results show that the delay of interconnects improves with the 

insertion of the repeaters, as expected. More importantly, the delay variability also 

decreases as compared to the case when repeaters are not used. 

 

Figure 6.19: The size of the repeaters for different interconnect dimensions (width and spacing) for a 13 nm 

bus under worst crosstalk. The repeater sizes have been rounded-off. 

 

Figure 6.20: Mean delay (in picoseconds) of interconnects (with repeaters) in the channel bus of 13nm for 

different geometrical configurations under variability Case 1. 
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Figure 6.21: The standard deviation (in picoseconds) of the delay of interconnects (with repeaters) in the 

channel bus. 

 

Figure 6.22: Delay variability (%) of interconnects (with repeaters) in the channel bus of 13nm for different 

geometrical configurations under variability Case 1. 

6.6.2.2 Bandwidth 

Using the data of Table A.1 and A.6, the bandwidth of the individual lines of the bus has 

been calculated with and without repeaters and results are shown in Figure 6.23 and 6.24 

respectively. The corresponding data is given in Table A.9 and A.10 respectively. The 

results clearly show that the bandwidth can be increased by increasing the width of the 

interconnect and/or by increasing the spacing between interconnects. Moreover, the 

insertion of repeaters further increases the bandwidth. 
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Figure 6.23: Bandwidth of the individual interconnect lines (without repeaters) in Gb/s given as a function of 

the interconnect width and spacing for 13 nm. 

 

Figure 6.24: Bandwidth of the individual interconnect lines (with repeaters) in Gb/s given as a function of the 

interconnect width and spacing for 13 nm. 

For a channel link, it is important to determine the total bandwidth which it can support. In 

order to meet high bandwidth requirements under un-constrained area, the configuration of 

the bus interconnects which gives maximum bandwidth of the individual lines (large value 

of W and S) is used to get the maximum total bandwidth through a particular channel 

width (no. of lines). But this may occupy sufficiently large chip area. However in the 

actual designs, only a limited area budget is allocated for the channel links. Therefore, in 

this situation the bandwidth will be less than the unconstrained area case. Hence some sort 

of optimization is required to obtain the best possible bandwidth within the available area 

budget. During this optimization process, the delay variability as well as the power 
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dissipation is required to be considered, because these quantities may become worse while 

looking for a configuration which gives best bandwidth. 

In this study, we have explored the geometrical space of interconnects which gives 

optimum total bandwidth under a channel area constraint. The total bandwidth has been 

calculated using equation (6.12), where the value of � has been computed from equation 

(6.13) for different values of � and (. The results are shown in Figure 6.25 (without 

repeaters case) and Figure 6.26 (with repeaters case) and corresponding data is given in 

Table A.11 and Table A.12.  

 

Figure 6.25: Total bandwidth (Gb/s), without repeaters, plotted as a function of interconnect width and 

spacing. 

 

Figure 6.26: Total bandwidth (Gb/s), with repeaters, plotted as a function of interconnect width and spacing. 
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From the results, it can be seen that there is a clear optimum point which gives the 

maximum total bandwidth. For the channel bus with no repeaters used, this point 

corresponds to � � 4��CD and ( � 2(�CD. Similarly, for the channel bus when repeaters 

are used, the optimum bandwidth is achieved at ( � (�CD and � � ��CD. 

6.6.2.3 Power Dissipation 

Total power dissipation (switching) in the channel bus for maximum throughput in each of 

the bus configuration is given in Table A.13 (for the bus without repeaters) and in Table 

A.14 for the bus with repeaters. The results are shown in Figure 6.27 and 6.28. The power 

dissipation increases with the increase of the interconnect width due to increased wire 

capacitance. From the results, the additional power dissipation in the repeaters may also be 

observed. It is important to mention that this power dissipation is corresponding to the 

maximum bandwidth of the channel. 

 

Figure 6.27: Power dissipation (mW) at maximum bandwidth for the interconnect of 13 nm technology 

without repeaters. 

The cost of data transfer in terms of power consumption is measured as the total bandwidth 

per unit power and is shown in Figure 6.29 (see Table A.15) for the repeater inserted case. 

It can be inferred from the results that transferring data from one point to the other through 

widely spaced interconnects is cheaper in terms of power consumption. This cost is 

different for different channel configurations. 
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Figure 6.28: Power dissipation (mW) at maximum bandwidth for the interconnect of 13 nm technology with 

repeaters. 

 

Figure 6.29: Total bandwidth per unit power (Gb/s.mW) consumption for interconnects with repeaters. 

6.6.2.4 Area 

The area consumed by interconnects and repeaters in the channel bus is given by vgUËd� � �ýCF>��?CD>x                                                     �6.15
 vgUË� � �ýCF>��?CD>x   �7M8�(7M8�>GG(�CD
�?CD>x                              �6.16
 
where  vgUËd�= Total area when repeaters are not used, 
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vgUË�= Total area when repeaters are used, �ýCF> � Wire width, �= Bus length, �?CD>x= No. of interconnect lines in the channel, �7M8=No. of optimal repeaters per unit interconnect length, (7M8= Size of the optimal repeaters, �>GG= Effective gate length, i�CD= Width of a minimum sized repeater. 

 

Figure 6.30: Surface plot of the area consumed by the channel bus interconnects, with and without repeaters. 

Figure 6.30 shows that maximum area is required when we use wider wires at minimum 

spacing. The area required with repeater insertion is larger than the case when no repeaters 

are used. However, the major portion of the area is consumed by the wires. Figure 6.30 

may be compared with Figures 6.15 and 6.20 to see the relation between performance and 

area cost. 

6.7 Optimization under Different Trade-offs 

An ideal data channel is expected to give the maximum bandwidth, small latency per unit 

length and minimum uncertainty in the arrival times of the signals at the receiver with 

minimum area and power costs. However, there are trade-offs between delay performance, 
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bandwidth, area and power. Therefore the aim of an optimization study can be the 

maximization of one or more parameters.  

We define a figure of merit � to achieve the most desired objectives 

� � |6 6� � b � v � J                                                             �6.17
 
Where � is the delay, J is the delay variability, b is the power dissipation and v is the 

area. For the repeater inserted interconnect, the figure of merit � is shown in figure 6.31. 

Again one can find an optimum interconnect configuration for maximum figure of merit. 

For instance, for the channel configuration under consideration, the optimum value of � is 

corresponding to ( � 4(�CD and � � 5��CD. 

 

Figure 6.31: The figure of merit � plotted as a function of spacing and width for the repeater inserted 

interconnect. 

6.8 Failure of Channels under Variability 

During the optimization of the channel, the magnitude of the delay variability should also 

be considered in conjunction with other parameters like delay, power and area. In a 

sequential channel link, the data from the transmitter moves through the interconnect lines 

to the receiver simultaneously with a common synchronous clock, as shown in Figure 6.32. 

As we have seen, variability in the devices and interconnects introduces delay variability; 

this will produce data skew at the receiving end of the channel. The skew beyond a certain 
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acceptable limit can result in data loss. This may also result in timing failures, as the data 

may not be properly latched at the receiving register. 

Let �x>8¹Mr  be the setup time of the � L <¶ flip-flop, �ýCF>r be the delay of the � L <¶ 

interconnect line, the clock frequency keEl and �eEl be the clock period. 

b1

b2

b3

bN-1

bN

CLK

bi

 

Figure 6.32: A multi-bit communication link. Tapered buffers have been used on the transmission side, 

whereas flip-flop registers have been used at the receiving end. 

For proper latching of the data bit, the following delay constraint must be satisfied 

0 9 �ýCF>r 9 �eEl L �x>8¹Mr                                                  �6.18
 
The probability of correct data transmission can, therefore, be expressed as follows 

º � PrN0 9 �ýCF>r 9 �eEl L �x>8¹MrO                                    �6.19
 
Since �ýCF>r, �eEl and �x>8¹Mr are random variables, therefore æ � �ýCF>r  �x>8¹Mr  �L�eEl
 will also be a random variable with a p.d.f b�æ
 � bN�ýCF>rO · bN�x>8¹MrO ·b�L�eEl
, where (*) is the convolution operator. If the flip-flops used in the receiving 

register are of large size, the timing distribution of the setup time will be Normal. 

Similarly, due to sufficiently large size of the optimal repeaters (see Table A.4), the delay 

distribution of the repeaters will also be normal. Also the delay distribution of 

interconnects under variability is assumed to be Normal. Then 

H! � HýCF>  Hx>8¹M L HeEl                                                �6.20
 
�!& � �ýCF>&  �x>8¹M&  �eEl&                                                �6.21
 

and the probability of correct data transmission is given by the error function [20] 
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º � 12  erf #H!�!$                                                      �6.22
 
where 

erf�Ê
 � 1√2Í� exp �L <&2I
% 
�<                                        �6.23
  

The probability of failure for one data bit transmitted through the interconnect is given by 

b��xCD�?> � 1 L º                                                          �6.24
 
In a multi-bit link consisting of � channel lines, if the signal timing does not meet the 

target value in one or more lines, the communication link fails. So the probability of failure 

in such a link is given by 

b���¹?8CM?> � 1 L ºo                                               �6.25
 
As we have seen that the magnitude of the delay variability also depends upon the channel 

configuration (width, spacing), this will directly impact the link failure probability; 

otherwise the operating frequency of the link will have to be reduced. The maximum 

frequency at which a link can operate depends upon the delay of interconnects. Tables A.6 

gives the delay and A.7 gives the standard deviation of the associated delay variability as a 

function of the interconnect width and spacing. At the receiving end of the channel, flip-

flop registers have been used having setup time Hx>8¹M � 12.1�i and �x>8¹M � 0.15�i. 
The probability of failure (PoF) has been calculated using equation (6.24) at 5% below the 

maximum possible frequency of the link with a particular geometrical configuration and 

results are given in Table A.16. The results show that b�� is highest for S=1X and W=1X 

due to large variability in this configuration and decreases with the increase of width 

and/or spacing. The operating frequency of the link and b�� depends on the delay and 

delay variability as shown in Figure 6.33. 

As the channel width increases, the b�� increases and is governed by equation (6.25). In 

an area constrained channel, the b�� is given in Table A.17 using equation (6.25) while 

considering the possible number of lines in the given area. The results show that b�� is 

extremely large for the wider links. Therefore, while optimizing a channel for any of the 

parameters, the b�� should also be considered in the figure of merit. Otherwise, the 

channel speed and hence performance frequency will not be met. This is obviously 

undesirable for high performance designs. 
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Figure 6.33: Probability of link failure as a function of operating frequency. 

6.9. Channel Serialization 

The channel width (bit-width) determines the size of the physical transfer unit (phit) or 

vice versa. The data packet is accordingly divided into smaller units and transmitted 

through the on-chip communication network. If the bit-width of a processing unit (PU) is 

larger than the phit size of the channel, some sort of serialization will be required by the 

factor of: 

�U"gUU �k (Ug�Ë���Ë<��	 � t #⁄ Ì�<���<¶�¶�< i��U  

The throughput is the average rate of successful data transmission over a communication 

channel. The throughput is usually less than the bandwidth; which is the maximum 

capacity of a channel. In a throughput centric design, the channel can be designed in such a 

way that the desired throughput requirements can be achieved at optimum power and area 

consumption. In this section, we will investigate the effect of channel serialization on 

throughput, area and power consumption. 

6.9.1 Concept 

The power dissipation in a repeater-interconnect system is given by 

b�>MVnD8 � bxýC8-�CD�  bx�7F8V-CF-¹C8  b?>@f@�>                               �6.26
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The switching power is the most dominant component of power dissipation and strongly 

depends on the interconnect capacitance (along with the size and input/output capacitances 

of the driver) and is governed by the following expressions 

bxýC8-�CD�VýF �  ��x  2-
J==& k-?f � �?CD>x                                 �6.27
 
bxýC8-�CD�VF>M � �` �iNM  7O  ��x  2-
�J==& k-?f� � µ7M8 � �?CD>x          �6.28
 

where 

bxýC8-�CD�VýF= switching power of the bus without repeaters, bxýC8-�CD�VF>M= switching power of the bus with repeaters, 7= input capacitance of the repeater, M � output parasitic capacitance of the repeater, x= self capacitance per unit length of the interconnect, -= coupling capacitance per unit length of the interconnect, �= interconnect length between repeaters, �= total interconnect length, µ7M8=number of optimal repeaters per unit length, `=switching activity, k-?f=clock frequency, �?CD>x= number of lines in the bus. 

Equations (6.27) & (6.28) dictate that in order to reduce bus power, the coupling 

capacitance (principal component of the bus capacitance) should be reduced. This is 

possible by increasing the spacing between interconnects and so the bit-width will have to 

reduce in area-constrained design. This motivates to use Serial links. 

6.9.2 Channel Structure 

The conceptual diagram of a serial data channel is given in Figure 6.34. Multi-bit parallel 

data (having U-bits) from the computational unit (or a router in NoC) is transformed into 

the serial data (having V-bits) using a special unit called the Serializer. The degree of 

serialization is defined as Ó � {/J. The serial data moves through interconnects which are 

widely spaced as compared to the parallel case. The serial data before entering the receiver 

is converted back into U-bits of parallel data through a special unit called De-serializer. In 

this way, the serializer and de-serializer provide an interface between the computational 

units and the link. The serializer is based on a chain of multiplexers in conjunction with 
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flip-flops as shown in Figure 6.35. A more intelligent serializer and deserializer (SerDes) is 

shown in Figure 6.36. 

 

Figure 6.34: Structure of a semi-serial communication channel. 
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Figure 6.35: Conventional shift-register type SerDes. 
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Figure 6.36: Wave front train Serializer and Deserializer [138]. 

The throughput of the parallel link ��M@F
 and serial link ��x>F
 can be calculated as 

follows �M@F � kM@F � ÓJ                                                            �6.29
 �x>F � kx>F � J                                                               �6.30
 
To obtain the same throughput from the serial link as that of the parallel link kx>F � ÓkM@F                                                                     �6.31
 
Therefore the serial bus will have to operate Ó times faster than the parallel bus. 

The total power dissipation in a parallel and serial link is given by bM@FV?CDf � b=FCQ>Fx  bF>M                                           �6.32
 bx>FV?CDf � b=FCQ>Fx  bF>M  bc>FK>x                          �6.32
 
Note that the power dissipation in parallel links does not include the power dissipation in 

the SerDes (Serializer-Deserializer). The power dissipation in the repeaters, drivers and 

SerDes is mainly due to the switching and leakage power. The short-circuit power has a 

relatively less contribution in the total power during bus operation and therefore can be 

neglected. 

Using equation (6.28), the switching power dissipation in a repeater inserted parallel link is 

given by  

bxýC8-�CD�VM@F � �` �iNM  7O  �NxVM@F  2-VM@FO� J==& kM@F� � µ7M8 �{       �6.33
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bxýC8-�CD�Vx>F � �` �iNM  7O  ��xVx>F  2-Vx>F
� J==& kx>F� � µ7M8 � J           �6.34
  
Equation (6.33) and (6.34) show that the switching power of a serial bus is less than the 

parallel bus by a factor �-VM@F/-Vx>F
. 
6.9.3 Experimental Results 

The performance of the parallel and serial buses constrained in width �- for the same 

throughput has been calculated and results are given in Table 6.3. The results show that for Ó � 2, (W=Wmin, S=3Smin) the power dissipation decreases by 55.21% and 47.05% for the 

bus with and without repeaters respectively. Excluding the area of SerDes, the area of the 

serial bus is 34.57% and 33.21% less than the area of the corresponding parallel buses. 

Although interconnect spacing is a weak function of delay variability, the serial bus has 

less variability effects as compared to the parallel bus. Similarly, a serial bus will also be 

less vulnerable to the crosstalk effects due to increased interconnect spacing. Additional 

advantages of serial links are the minimization of skew between different lines of the link 

due to the reduced number of wires. The operational duty of a parallel link is less than a 

serial link and therefore leakage power becomes a significant portion of the total power in 

parallel links. Again, a serial bus reduces leakage power.  

Table 6.3: Performance of a parallel and a serial bus of degree 2 for the same throughput 

Parameters Parallel Bus Serial bus of degree 2 

 Without 

Repeaters 

With 

Repeaters 

Without 

Repeaters 

With 

Repeaters 

Interconnect Width 1(�CD 1(�CD 1(�CD 1(�CD 

Interconnect Spacing �H�
  1(�CD 1(�CD 3(�CD 3(�CD 

Number of Interconnects 128 128 64 64 

Throughput (Gb/s) 66.23 154.8 66.23 154.8 

Frequency (GHz) 0.5174 1.2093 1.0349 2.4194 

Power Dissipation (Watt) 0.008499 0.014289 0.0045 0.0064 

Area (mm2) 0.02511 0.05229 0.01677 0.03421 

Delay Variability (%) 18.16 14.35 10.13 7.39 

By considering all possible geometrical configurations of the bus (space spanned by W and 

S), we can explore different possibilities which can give best performance for a particular 

parameter and accordingly the serialization degree may be ascertained. The extreme case 

of serialization is the conversion of a multi-bit link to a single wire link. For instance, a 

serialization degree of 1, 1.5, 2.0, …,4.5 can be obtained either by increasing interconnect 
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spacing from 1Smin to 8Smin (keeping width constant at Wmin) or by increasing the width 

from 1Wmin to 8Wmin (keeping spacing constant at Smin). Now if we want to operate the link 

at a bandwidth of 87.9 Gb/s, the channel performance in the two cases will be different as 

shown in Figure 6. 37. The results show that the serial bus using wide interconnects is 

efficient in terms of signal speed and delay variability and inefficient in terms of power and 

area, as compared to the bus with widely spaced interconnects. Also observe the reduction 

in bandwidth capacity in the two cases. Therefore, depending upon the metrics of interest 

and constraints, the channel configuration for serialization can be selected. 

       

(a) 

       

(b) 

Figure 6.37: Different performance metrics for a bus with different serialization ratios (1, 1.5, 2.0…, 4.5 

corresponding to S= 1Smin to 8Smin or W= 1Wmin to 8Wmin), (a) by increasing spacing and keeping width 

constant, (b) by increasing width and keeping spacing constant. 

6.10 Link Utilization and Power Dissipation 

As we have already seen that leakage power is increasing significantly with technology 

scaling, especially in the circuits where the activity level is low. In a SoC and NoC, 
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different link types with various utilization rates are used which can be as low as few 

percent [121]. It has been reported that average activity level of microprocessor nets is 

4.5% [123], however some links may operate at higher utilization rates approaching 100%.  

In order to investigate the impact of link utilization on the total power consumption, we 

have considered two types of links (S=Smin, W=Wmin and S=Smin, W=5Wmin) and 

contribution of leakage power in the total power dissipation has been measured 

corresponding to different link utilization rates. The results are shown in Figure 6.38. It can 

be seen that contribution of the leakage power in the total power dissipation increases as 

the link utilization rates reduce. The leakage power becomes the dominant source of power 

dissipation at very low link utilization rates. 

 

Figure 6.38: Leakage power normalized with the total power for different link utilization rates. 

NoC links are designed to operate at low utilization rates in order to meet the stringent 

requirements for latency. Moreover the links with higher bandwidth capacity are used to 

reduce packet collisions [146]. For such designs, leakage power may become a critical 

design parameter and therefore, a careful consideration of all the performance parameters 

will help to achieve better optimization. 

6.11 Summary 

In this chapter we have discussed the performance of multibit links under the impact of 

variability. We started with the modelling of interconnects in DSM region and then 

simulation results for the delay and power measurement have been presented. From these 
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results several plots for the delay, delay variability, bandwidth and power dissipation have 

been presented. A figure of merit has been introduced for the optimization of channel 

performance under delay, power, area, and variability constraints. Then the failure of 

channels under variability has been discussed. In the end, it has been shown that channel 

serialization is an attractive approach for power, area and variability efficient designs for 

throughput centric systems. Moreover, it has been demonstrated that leakage power 

becomes an important component of power dissipation for the links operating at low 

activity levels. Therefore, this consideration may also be very beneficial for power-

efficient link designs. 
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Crosstalk in Coupled Interconnects 
 

 

7.1 Introduction 

Coupling capacitances have increased due to reduced interspacing and larger aspect ratios 

of wires in progressive DSM technologies. The technology scaling results in the increased 

dominance of coupling capacitance and it can be as high as 80% of the total wire 

capacitance [139]. 

The technology scaling has also pushed the signal frequencies to the gigahertz region and 

at such high speeds the transmission line effects such as crosstalk, distortion and reflection 

are becoming evident. Crosstalk represents the situation when a neighbouring wire 

unintentionally affects the performance of another wire through electromagnetic field 

interaction. It occurs due to coupling between the neighbouring wires and can be classified 

into functional noise and delay noise. Functional noise refers to a fluctuation in the signal 

state of a quiet wire (non-switching) due to switching in the neighbouring wire. This noise 

produces a glitch that may propagate through the interconnect to the dynamic node or a 

latch and may tend to change the signal state. Excessive noise will change the signal state 

and will result in circuit malfunction depending on the noise margin available. Crosstalk 

can also cause variation in the delay of signals depending on the phases of the aggressor 

and victim line signals. On a chip, an interconnect may have multiple couplings with 
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neighbouring wires and simultaneous switching on these wires will effect propagation 

delays, thereby resulting in delay variations [55], referred to as delay noise. The delay 

noise (variations) may result in timing failures. The delay noise is contributing a significant 

fraction of the circuit delay [140]. Therefore, crosstalk effects need serious considerations 

during the design process, otherwise, the system will suffer from performance degradation 

or even system failure. 

In actual circuits there are equal chances that the signal transitions on the victim and 

aggressor lines appear simultaneously or with some skew. Similarly, process variations in 

the circuits are translated into delay variations resulting in the introduction of skew at the 

input of aggressor and victim drivers. It has been observed that the amount of the delay 

noise on the victim line depends on the victim-aggressor skew [140]. This will cause delay 

variability at the receiver. Under these situations, signal delay noise and crosstalk are 

seriously affecting the performance of high performance designs. Accurate estimation of 

these effects is necessary for the design of high performance systems otherwise the 

designers will have to go through the extra design iterations which are computationally and 

time wise expensive [28]. 

In the past, many researchers have published crosstalk analysis models and algorithms 

[28]-[30], [141] but all of them either require numerical techniques to solve them or do not 

give sufficient insight into the underlying crosstalk effects on signal responses. Therefore, 

we present closed form expressions that give accurate voltages for the aggressor and victim 

lines in time domain, as a function of wire length, due to switching transitions on them. 

Extension to this work is continued to derive analytical expressions in order to determine 

the conditions that gives maximum crosstalk effects under the impact of variability. 

7.2 Coupled RC Transmission Lines 

Consider a coupled RC transmission line consisting of two signal conductors and a ground 

line with distributed RC parameters amongst them. A lumped element representation is 

shown in Figure 7.1, where the capacitance (x, -) are the self and coupling capacitance 

(per unit length), and the resistance R is the series resistance per unit length for each line. 

We are interested in determining the transient behavior of the system when the lines are 

driven by a unit step input at the source (x=0), corresponding to a high/low or low/high 

transition in any combination. In real digital systems, transition of the line drivers do not 

occur concurrently, but rather the transitions are mutually delayed by a short time æ, called 

the skew of the lines. The skew is not maintained constant throughout the line, but rather it 
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is increased or decreased depending on specific conditions. The aim of this study is to 

determine those conditions and to quantify the amount of passive skew amplification or 

reduction in such a system (defined as the ratio between the input and output skew). As a 

first step towards this objective, an accurate crosstalk model has been developed that can 

be used to determine those conditions. Here we will skip the derivation and present only 

the final results of this model [142].  

 

Figure 7.1: Coupled RC transmission line model with distributed RC parameters. 

7.2.1 Voltage Representation 

The voltage on the victim line as a function of the interconnect length and time is given 

below for up-up and up-down transitions 
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and describe the signals in the wires due to a skewed input. Notice the response is formed 

by two functions which act at different times. When the input to the aggressor line is turned 

on at t = 0, a transitory waveform, �)�Ê, <
 L �&�Ê, <
 is induced in the victim line. 

Similarly, the switching in the victim line induces a transient response in the aggressor line 

whose magnitude is |�)�Ê, <
 L �&�Ê, <
|, when it is switched at < � æ. In both cases, the 

steady state solution is started in each line when its corresponding input switches. 

�) and �& used in expression (7.1) and (7.2) can be calculated for the following two cases: 

7.2.1.1 Finite Line with Open end 

For the finite line with open end, the vector % is given by 
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%& � H�<
'1 L 4ÍÙËC(

C©) UV�r[8) sin `CÊ*                               �7.3
 
where ËC � �2� L 1
V) and ̀ C � Í�2� L 1
/2�. 
The eigenvalues + (used in (7.3)) are given below in the form of a column vector 

+ � T ��x���x  2�-5                                                   �7.4
 
7.2.1.2 Finite Line with Capacitive Load 

Similarly, the vector % for finite lines with capacitive loads connected at their output is 

given by  

%, � 1 LÙ-C
(

C©) UV�r[8) sin.CÊ                                             �7.5
 
The coefficients of the series are given below 

vC � 2�.C&  /&
.Cð��.C&  /&
  0ñ                                                    �7.6
 
where the parameter è ä  λ/CL and is related to 1 through the following equation 

1 tan�1 �
 � ξ                                                                  �7.7
 
There are an infinite number of such roots from which we only need to choose the positive 

ones as the proposed solution is an even function. The periodicity of the tangent function 

implies that the i-th root is within 
��CV)
E m `C m ��&CV)
&E  for � ] 1 and so numerical 

solutions can be easily found by the bisection method. 

7.2.2 Model Validation 

For the validation of the proposed model, we consider victim and aggressor line 

configuration of Figure 7.1. The interconnects of length 1mm from 25 nm technology 

generation have been used having � � 867.6Ω, �� � 22.3 ��, �- � 88.8 ��. The victim 

and aggressor lines are excited by the step inputs and the signal on the victim line appears 

0.1 nsec later than the signal on the aggressor line. The response of the system using our 

model for the finite line with open end is shown in Figure 7.2 and 7.3 for the up / up and up 

/ down transitions respectively. HSPICE simulation results are also shown in the same 

figures. The curves clearly show that the model accurately matches with the simulation 

results and confirms its validity.  
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Figure 7.2: Typical responses of aggressor and victim lines during up/up transitions for finite lines with open 

ends. 

 

Figure 7.3: Typical responses of aggressor and victim lines during up/down transitions for finite lines with 

open ends. 

Similarly, the response of the model for finite lines with capacitive loads is plotted in 

Figure 7.4 and 7.5 for the up / up and up / down transitions respectively. Again the 

responses accurately match the simulation results shown along with the model curves.  
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Figure 7.4: Typical responses of aggressor and victim lines during up/up transitions for finite lines with 

capacitive loads. 

 

Figure 7.5: Typical responses of aggressor and victim lines during up/down transitions for finite lines with 

capacitive loads. 

7.3 Skew Amplification under Variability 

As mentioned before, the skew amplification is defined as the ratio between the input and 

output skew. The analytical model and the plots show that the arrival time of the signals at 
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the output of the victim line depends on the input skew. The arrival time will be maximized 

(or minimized) when the skew in its driver occurs at the same time at which the aggressor 

line has managed to couple the maximum amount of energy into the victim. Under this 

condition, the input skew is amplified at the far end of the interconnect. Now, in a 

particular circuit configuration, if the signal transitions in the aggressor and victim lines 

always occur such that this condition is satisfied then a constant skew will be observed at 

the output of the channel. However, in the presence of variability, the output skew (and 

hence the skew amplification) will be in the form of a probability distribution. Therefore, 

under this condition, the uncertainty in the arrival time will also be amplified. As stated 

before, analytical expressions are being developed to determine the conditions and also to 

quantify the effects. In order to emphasise its significance, a case study is given below. 

We consider three coupled interconnects such that the victim line is surrounded by two 

aggressor lines. The resistance, self capacitance and coupling capacitance of the 

interconnect lines are taken to be 92.22 ohms/mm, 126.99 fF/mm and 39.26 fF/mm 

respectively. The supply voltage is taken to be 1.15V. The system response can either be 

measured using our proposed model or using simulations. Here we used Monte Carlo 

simulation method to incorporate the variability effects. We assume that due to variability 

the arrival time of the signals at the input of the victim line driver follows a normal 

distribution with standard deviation equal to 3ps. The system response has been measured 

corresponding to different values of input skew (taken as the time between the aggressor 

switching and mean of the arrival time distribution for the victim line). The delay 

measurements have been taken between the input and output of the victim line 

corresponding to 95% of the voltage levels. The results are shown in Table 7.1. 

The victim delay has been measured in the absence of X-talk for reference and is about 

81.34ps. Then an input signal is applied on the victim line with input skew=0 and standard 

deviation of the input delay=3ps. In order to simulate the in-phase X-talk situation, both 

aggressors were allowed to switch simultaneously in-phase with the victim line. It has been 

observed that the mean delay reduces to 72.25ps due to in-phase crosstalk. However, 

variability of 3ps in the input signal is amplified by 20.83% as the variability in the output 

signal increases to 3.625ps. However, the amplification in the delay variability reduces as 

the input skew is either increased or decreased from the zero value.  

Similar experiments were repeated to measure the effect on delay variability due to out-of-

phase crosstalk. It may be noted that the input delay variability is amplified as the input 
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skew increases from negative values. The negative values of offset shows the situation 

when the aggressor switches prior to the victim switching. An amplification of input delay 

variability up to 43.46% has been observed with input skew of 60ps. 

Table 7.1: Monte Carlo simulation results for studying the effect of input signal variability on skew 

amplification. 

No X-
talk In-Phase X-Talk Out of phase X-talk. 

Mean Input Mean Mean 
delay 
(ps) 

Skew  
(ps) 

delay 
(ps) 

Increased 
stdev(ps) 

% age 
increase 

delay 
(ps) 

Increased 
stdev(ps) 

% age 
increase 

81.34 60     105.9 1.304 43.46 

81.34 50 63.78 0.863 28.76 101.48 1.216 40.53 

81.34 40 65.513 0.844 28.13 98.21 1.019 33.96 

81.34 30 68.17 0.470 15.66 95.4 0.696 23.20 

81.34 20 69.07 0.227 7.56 93.15 0.572 19.06 

81.34 10 70.26 0.483 16.10 91.14 0.606 20.20 

81.34 0 72.24 0.625 20.83 89.09 0.543 18.10 

81.34 -10 70.26 0.480 16.00 87.27 0.44 14.66 

81.34 -20 76.32 0.460 15.33 85.82 0.375 12.50 

81.34 -30 77.722 0.316 10.53 84.71 0.284 9.46 

81.34 -40 78.744 0.254 8.466 83.82 0.217 7.23 

81.34 -50 79.46 0.184 6.133 83.07  0.173  5.70  

7.4 Summary 

In this chapter we have presented a crosstalk model that can be used to accurately describe 

the signals in the aggressor and victim lines under crosstalk effects due to RC coupling. 

Then we have shown that under crosstalk conditions, the delay variability in the arrival 

times of the signals is also amplified and can result in increased failure rates. 
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Conclusions and Future Work 
 

 

8.1 Conclusions 

Since variability is a major constraint in the design of state of the art systems, especially in 

deep sub-micron technologies, and technology scaling has caused communication to slow 

relative to computation. Future designs will require to enhance the on-chip 

communications while tolerating the inherent variability present in the system. Regardless 

of the communication architecture employed, this study has shown that variability in the 

communication infrastructures can compromise the ability to meet the designed targets, 

unless due attention to it is given during the design phase. In particular, we have critically 

examined the effect of device variability due to RDF on the performance of the basic 

elements of on-chip communication structures, such as tapered buffer drivers with different 

tapering factor, repeaters of different sizes, and data storage registers (FFs). FO4 delay 

measurements have also been taken, as representative of the logic circuitry and results can 

be used as a performance benchmark. The study revealed that RDF has significant impact 

on the performance of communication structures and their performance deteriorates very 

significantly with technology scaling from 25 to 13 nm.  

A simple design methodology, scaling up of circuits in the critical paths can be employed 

to minimize the effects of device variability, in particular, since we have shown that this 



Chapter 8                                                                                  Conclusions and Future Work 

 

151 
 

trade-off is not linear and a small increase in the repeater size can give substantial benefits 

towards performance. In a real system, however, the power and area penalties due to this 

passive technique of circuit scaling should be compared with any active countermeasure 

techniques which can be used to mitigate the delay variability. 

Although NoC is more robust against on-chip communication failure than simpler designs, 

we note that such occurrences have increased hyper-linearly (and will continue to do so) 

due to device variability. In order to evaluate the performance of a typical point-to-point 

link, we have derived analytical models to predict link failure probability (LFP) using the 

characterization data of the individual on-chip communication elements. The results show 

that link failure probability increases significantly with the increase of device variability 

and is a limiting factor in the maximum operating frequency of a synchronous link.  

It has also been observed that the timing distributions of different communication circuits 

are non-Gaussian, especially for smaller geometries. We have extended the study of these 

distributions on flip-flops and flip-flop based pipelined circuits. The simulation data shows 

that the timing distributions of FFs are positively skewed (except for the hold time, which 

is negatively skewed) and present nonzero higher moments, such as Kurtosis, which 

increase as the technology scales. The accurate estimation of the shape of the distributions, 

especially in the tail sections, is of great importance for large circuit designs, to improve 

performance and reliability in the presence of variability. The use of Gaussian 

approximation is common in SSTA (mainly because the necessary SSTA operations are 

known and easy to compute). However, as this work shows, the real distributions of the 

timing parameters deviate significantly from normality in the region of interest (the tail of 

the distribution) and hence will ultimately produce inaccurate results. The use of the skew-

normal distribution is an interesting alternative; however, it lacks enough degrees of 

freedom to fit the fourth moment of the distribution. Furthermore, it has been argued that 

the skewed distributions of arrival times are not represented accurately by it. Pearson and 

Johnson systems have enough degrees of freedom and can provide a very good fit to the 

timing distributions of FFs as shown in this thesis, and therefore their use during SSTA 

will provide improved results and significantly reduce the probability of yield loss. 

However, for this approach to be fully successful, it is required that different SSTA 

operations (e.g., SUM, MIN, or MAX) be analytically formulated for Pearson and Johnson 

systems, to allow efficient analysis. 
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The implications of skewed timing distributions on SSTA of pipelined circuits have also 

been discussed in this thesis. Due to skew in the timing distributions of FFs, the pipeline 

segment delay distributions are positively skewed about the mean and the degree of 

skewness increases with technology scaling. Therefore, in this situation determining the 

slowest pipeline segment (which determines the operating frequency of the pipeline) 

during SSTA using Clark’s approximation is not a good choice and will give wrong 

results, which will result in yield loss. Again, the skew-normal distribution is not a very 

ideal choice for approximating the timing distributions in highly scaled device, especially 

where the device count on a chip has jumped to several billions of devices. This is because 

a small deviation of the approximation from the actual results will produce significant yield 

loss. 

Power dissipation is an important design metric which plays a critical role in the design of 

on-chip communication architectures. The impact of technology scaling on power 

dissipation of buffers has been investigated in this thesis. The results show that the relative 

proportion of different components of power dissipation is changing and leakage power is 

emerging as a serious problem in the design of high performance and power optimal chips. 

Therefore, design methodologies should consider individual components of power 

dissipation along with the total power. Wider point-to-point links which are preferred for 

better latency, will consume more power due to higher leakage currents at low activity 

levels.  

The variability in the devices which is affecting the delay characteristics is also effecting the 

distribution of power dissipation. Since there is an inverse correlation between delay 

performance and leakage power, a significant asymmetry has also been observed in the 

distribution of leakage power. This in turn, will badly affect the yield in addition to delay 

variability. Therefore, it will be more advantageous to consider power variability along with 

delay variability while making different circuit optimizations. Active countermeasures, such 

as the use of sleep transistors, could be a possible solution against leakage power. 

In this thesis we emphasize that due to variability, power and area optimal repeater 

insertion methodologies should also consider variability in their optimization methodology. 

Analytical models for area, power, performance and probability of link failure have been 

presented in terms of the size of the repeaters and inter-repeater segment length. It has been 

found that beyond a certain reduction in the size of the repeaters, the delay variability may 

exceed acceptable limits while still satisfying other constraints. For instance, with only 4% 
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of performance loss due to the use of smaller repeaters, almost 30% of power and 40% of 

area savings can be achieved; however timing certainty is reduced by 24%. Therefore, 

while optimizing area, power and performance of on-chip communication links, delay (and 

power) variability should also be included in the figure of merit; performance and area 

alone are no longer a suitable metric. 

The performance of multi-bit parallel links under the impact of variability has also been 

discussed in this thesis. Based on the simulation data, optimum channel configuration for 

maximum bandwidth has been determined under area and power constraints. It has been 

found that delay variability also depends on the channel configuration (interconnect width 

and spacing) and so it determines the link operating frequency and the link failure 

probability. Moreover, the link failure probability also increases under variability as the 

number of lines in the channel increases. We have also compared the performance of 

parallel and semi-serial (serial) links for a particular throughput under some area 

constraint. This thesis proposes the use of semi-serial links for power efficient and fault 

tolerant links; these also have the additional benefit of less vulnerability to crosstalk effects 

due to larger interconnect spacing. Moreover, it has also been shown that leakage power 

becomes an important component of power dissipation for the links operating at low 

activity level and therefore this aspect needs to be considered in the link optimization 

methodology. 

In DSM technologies, the effects of crosstalk cannot be avoided and crosstalk severely 

affects the performance of data links. Analytical models have been presented in this thesis 

that can be used for accurate analysis of crosstalk effects in RC coupled interconnects. The 

simulation results confirm their validity for different channel configurations. The models 

are computationally efficient, more accurate and give direct outputs in the time domain. 

These models can be very effective for the design of variability tolerant links. This work 

also shows that crosstalk increases the input skew as well as skew variability. 
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8.2 Future Work 

Although the research work that was undertaken in the beginning is extensive for this 

thesis, there are still several dimensions in which this research can be extended. The 

suggested areas for future work are as follows: 

• The variability effects due to other sources can also be considered to evaluate the 

performance of on-chip communication architectures in DSM region. 

• Using the characterization data of communication structures and applying methods 

proposed in this thesis, variability tolerant network-on-chip can be designed along 

with its performance evaluation with different network topologies. 

• Complete set of statistical analysis tools can be developed that could work with 

skewed distributions of Pearson and Johnson systems for the accurate statistical 

static timing analysis (SSTA) in deep submicron technologies. 

• It would be an interesting area of research to devise active fault tolerant techniques 

that could effectively minimize the communication errors against increased level of 

variability in DSM circuits. Similarly, there is a need to develop circuit level 

techniques which could reduce leakage power, being a significant component of 

power dissipation in future technologies. 
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Appendix A 

The following tables are related to Chapter 6 

Table A.1: Mean delay (in picoseconds) of interconnects (without repeaters) in the channel bus of 13nm for 
different geometrical configurations under variability Case 1. The columns of the table show the interconnect 
spacing and the rows show the width. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 180.7 121.4 107.4 102.1 99.53 97.95 97.01 96.46 95.98 95.59 

2X 97.51 67.25 60.27 57.6 56.29 55.52 55.08 54.66 54.49 54.24 

3X 69.81 49.32 44.57 42.79 41.93 41.41 41.08 40.86 40.7 40.53 

4X 55.92 40.36 36.75 35.38 34.72 34.33 34.08 33.93 33.79 33.69 

5X 47.59 34.95 32.05 30.96 30.4 30.09 29.89 29.73 29.67 29.58 

6X 42.08 31.39 28.95 28.00 27.53 27.27 27.09 26.97 26.9 26.84 

7X 38.11 28.84 26.66 25.87 25.47 25.24 25.13 25.03 24.93 24.87 

8X 35.15 26.92 25.02 24.31 23.96 23.72 23.6 23.55 23.45 23.4 

9X 32.82 25.41 23.71 23.05 22.75 22.58 22.48 22.39 22.33 22.26 

10X 30.97 24.23 22.68 22.08 21.79 21.63 21.51 21.46 21.4 21.36 

Table A.2: The standard deviation (in picoseconds) of the delay of interconnects (without repeaters) in the 
channel bus of 13nm for different geometrical configurations under variability Case 1. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 10.94 5.95 5.14 4.98 4.84 4.79 4.78 4.74 4.72 4.72 

2X 4.27 1.93 1.85 1.79 1.78 1.79 1.78 1.77 1.79 1.77 

3X 2.65 1.28 1.27 1.28 1.29 1.28 1.28 1.25 1.28 1.24 

4X 2.03 1.05 1.08 1.08 1.09 1.11 1.10 1.08 1.10 1.09 

5X 1.67 0.96 1.00 1.00 1.02 1.03 1.02 1.00 1.02 1.00 

6X 1.47 0.90 0.93 0.93 0.96 0.95 0.95 0.94 0.96 0.95 

7X 1.29 0.87 0.89 0.91 0.93 0.92 0.92 0.91 0.91 0.91 

8X 1.22 0.85 0.87 0.88 0.89 0.87 0.89 0.89 0.88 0.88 

9X 1.11 0.83 0.84 0.85 0.87 0.87 0.87 0.88 0.85 0.86 

10X 1.05 0.81 0.83 0.84 0.85 0.84 0.85 0.85 0.85 0.85 

Table A.3: Delay variability (%) of interconnects (without repeaters) in the channel bus of 13nm for different 
geometrical configurations under variability Case 1. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 18.16 14.7 14.35 14.65 14.59 14.67 14.78 14.74 14.75 14.81 

2X 13.12 8.632 9.219 9.322 9.5 9.686 9.68 9.718 9.837 9.776 

3X 11.4 7.81 8.554 8.955 9.199 9.276 9.328 9.211 9.42 9.202 

4X 10.89 7.793 8.826 9.154 9.436 9.671 9.657 9.536 9.747 9.717 

5X 10.51 8.241 9.317 9.736 10.08 10.22 10.26 10.1 10.27 10.17 

6X 10.46 8.587 9.671 9.989 10.47 10.49 10.56 10.47 10.67 10.64 

7X 10.19 9.024 10.05 10.54 10.95 10.89 11.03 10.88 10.94 11.02 

8X 10.38 9.453 10.45 10.85 11.13 10.98 11.3 11.31 11.29 11.33 

9X 10.14 9.847 10.68 11.08 11.46 11.5 11.58 11.76 11.48 11.54 

10X 10.13 9.974 11.01 11.47 11.71 11.7 11.91 11.84 11.93 11.87 
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Table A.4: The size of the repeaters for different interconnect dimensions (width and spacing) for a 13 nm 

bus under worst crosstalk. The repeater sizes have been rounded-off. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 266 199 172 157 148 141 136 133 130 128 

2X 384 289 252 231 218 209 203 198 194 192 

3X 479 364 319 294 278 267 260 254 250 247 

4X 563 431 379 351 333 321 313 306 302 298 

5X 640 494 436 405 386 373 363 356 351 347 

6X 713 553 491 458 436 422 412 405 399 395 

7X 783 611 545 508 486 471 460 452 446 442 

8X 850 667 597 558 535 519 508 499 493 488 

9X 916 722 648 608 583 566 554 546 539 534 

10X 980 776 698 656 630 613 601 592 585 579 

 

Table A.5: The number repeaters per unit length required for different interconnect dimensions (width and 

spacing) for a 13 nm bus under worst crosstalk. The numbers have been rounded-off. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 30 23 20 18 17 17 16 16 15 15 

2X 22 16 14 13 13 12 12 12 12 11 

3X 18 14 12 11 11 10 10 10 10 9 

4X 16 12 11 10 10 9 9 9 9 9 

5X 15 11 10 9 9 9 9 8 8 8 

6X 13 11 10 9 9 8 8 8 8 8 

7X 13 10 9 9 8 8 8 8 8 8 

8X 12 10 9 8 8 8 8 7 7 7 

9X 12 9 8 8 8 7 7 7 7 7 

10X 11 9 8 8 7 7 7 7 7 7 

 

Table A.6: Mean delay (in picoseconds) of interconnects (with repeaters) in the channel bus of 13nm for 

different geometrical configurations under variability Case 1. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 70.57 52.95 45.93 42.08 39.65 37.99 36.83 35.97 35.3 34.77 

2X 50.91 38.49 33.65 30.99 29.31 28.18 27.39 26.77 26.33 25.97 

3X 42.37 32.31 28.4 26.27 24.94 24.05 23.41 22.93 22.58 22.28 

4X 37.38 28.73 25.39 23.57 22.44 21.68 21.14 20.74 20.44 20.2 

5X 34.03 26.34 23.39 21.79 20.79 20.13 19.65 19.3 19.04 18.83 

6X 31.62 24.63 21.96 20.52 19.62 19.02 18.6 18.29 18.05 17.87 

7X 29.76 23.32 20.87 19.55 18.74 18.19 17.81 17.53 17.31 17.14 

8X 28.31 22.3 20.02 18.81 18.05 17.54 17.19 16.94 16.73 16.58 

9X 27.09 21.46 19.34 18.19 17.5 17.03 16.71 16.46 16.28 16.12 

10X 26.1 20.77 18.77 17.7 17.04 16.6 16.29 16.07 15.89 15.76 
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Table A.7: The standard deviation (in picoseconds) of the delay of interconnects (with repeaters) in the 

channel bus. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 2.384 1.412 1.133 1.011 0.935 0.894 0.874 0.854 0.837 0.829 

2X 1.338 0.581 0.445 0.387 0.363 0.36 0.353 0.354 0.359 0.358 

3X 0.998 0.39 0.289 0.258 0.254 0.256 0.26 0.261 0.272 0.27 

4X 0.851 0.317 0.233 0.217 0.22 0.229 0.237 0.242 0.25 0.256 

5X 0.747 0.278 0.213 0.205 0.216 0.225 0.234 0.238 0.248 0.251 

6X 0.687 0.256 0.207 0.201 0.214 0.222 0.233 0.238 0.249 0.253 

7X 0.624 0.244 0.201 0.205 0.22 0.226 0.237 0.242 0.248 0.256 

8X 0.594 0.234 0.205 0.208 0.219 0.225 0.239 0.246 0.251 0.257 

9X 0.552 0.235 0.208 0.208 0.223 0.233 0.242 0.252 0.251 0.258 

10X 0.523 0.228 0.206 0.215 0.227 0.234 0.247 0.251 0.258 0.262 

 

Table A.8: Delay variability (%) of interconnects (with repeaters) in the channel bus of 13nm for different 

geometrical configurations under variability Case 1.  

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 10.13 8.003 7.398 7.208 7.074 7.062 7.12 7.12 7.112 7.15 

2X 7.881 4.527 3.964 3.745 3.717 3.828 3.866 3.962 4.084 4.133 

3X 7.067 3.619 3.049 2.943 3.051 3.194 3.334 3.408 3.612 3.631 

4X 6.829 3.31 2.75 2.763 2.939 3.172 3.36 3.496 3.672 3.805 

5X 6.585 3.163 2.726 2.826 3.117 3.349 3.577 3.705 3.913 3.993 

6X 6.514 3.117 2.821 2.931 3.276 3.506 3.763 3.91 4.134 4.255 

7X 6.295 3.134 2.894 3.145 3.517 3.723 3.989 4.135 4.299 4.472 

8X 6.297 3.148 3.07 3.319 3.633 3.839 4.172 4.361 4.506 4.652 

9X 6.11 3.279 3.23 3.436 3.817 4.11 4.344 4.595 4.632 4.798 

10X 6.009 3.294 3.285 3.636 3.997 4.222 4.54 4.692 4.877 4.987 

 

Table A.9: Bandwidth of the individual interconnect lines (without repeaters) in Gb/s given as a function of 

the interconnect width and spacing for 13 nm. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 0.615 0.915 1.035 1.088 1.116 1.134 1.145 1.152 1.158 1.162 

2X 1.14 1.652 1.844 1.929 1.974 2.001 2.017 2.033 2.039 2.048 

3X 1.592 2.253 2.493 2.597 2.65 2.683 2.705 2.72 2.73 2.742 

4X 1.987 2.753 3.024 3.141 3.2 3.236 3.26 3.275 3.288 3.298 

5X 2.335 3.179 3.467 3.589 3.655 3.692 3.718 3.737 3.746 3.757 

6X 2.641 3.54 3.838 3.968 4.036 4.074 4.102 4.12 4.13 4.14 

7X 2.916 3.853 4.168 4.295 4.362 4.402 4.422 4.439 4.458 4.468 

8X 3.161 4.127 4.44 4.571 4.638 4.683 4.707 4.718 4.738 4.748 

9X 3.385 4.374 4.687 4.82 4.884 4.921 4.943 4.963 4.975 4.991 

10X 3.588 4.585 4.9 5.032 5.1 5.138 5.165 5.178 5.193 5.202 
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Table A.10: Bandwidth of the individual interconnect lines (with repeaters) in Gb/s given as a function of the 

interconnect width and spacing for 13 nm. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 1.574 2.099 2.419 2.641 2.802 2.925 3.017 3.089 3.147 3.195 

2X 2.183 2.887 3.302 3.586 3.79 3.943 4.057 4.15 4.219 4.279 

3X 2.622 3.439 3.912 4.229 4.454 4.621 4.747 4.845 4.922 4.986 

4X 2.972 3.867 4.377 4.714 4.951 5.125 5.256 5.356 5.437 5.501 

5X 3.265 4.218 4.751 5.099 5.343 5.521 5.654 5.756 5.835 5.9 

6X 3.514 4.511 5.059 5.415 5.663 5.841 5.975 6.076 6.155 6.219 

7X 3.734 4.764 5.324 5.682 5.93 6.108 6.238 6.337 6.419 6.482 

8X 3.925 4.983 5.549 5.908 6.155 6.334 6.464 6.56 6.641 6.703 

9X 4.101 5.179 5.746 6.107 6.351 6.524 6.651 6.75 6.826 6.891 

10X 4.257 5.349 5.919 6.278 6.521 6.694 6.822 6.916 6.992 7.052 

 

Table A.11: Total bandwidth (Gb/s) through the bus constrained in channel width �-, without repeaters in 

13nm. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 78.70 78.10 66.23 55.72 47.63 41.49 36.65 32.77 29.64 27.05 

2X 97.62 106.16 94.77 82.62 72.47 64.29 57.60 52.24 47.64 43.87 

3X 102.66 116.26 107.21 95.70 85.46 76.92 69.78 63.78 58.69 54.41 

4X 102.93 118.83 111.88 101.69 92.10 83.82 76.76 70.68 65.51 61.01 

5X 101.18 118.09 112.66 103.69 95.03 87.27 80.55 74.75 69.56 65.12 

6X 98.46 115.49 111.31 103.56 95.76 88.60 82.35 76.80 71.86 67.53 

7X 95.49 112.17 109.20 102.31 95.24 88.72 82.76 77.53 72.99 68.86 

8X 92.37 108.54 106.17 100.17 93.84 87.98 82.54 77.55 73.30 69.38 

9X 89.38 104.96 103.12 97.89 92.10 86.61 81.56 77.07 72.97 69.35 

10X 86.43 101.25 99.88 95.24 90.09 85.10 80.51 76.24 72.43 68.93 

 

Table A.12: Total bandwidth (Gb/s) through the bus constrained in channel width �-, with repeaters in 

13nm. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 201.5 179.1 154.8 135.2 119.6 107.0 96.6 87.9 80.6 74.4 

2X 187.0 185.5 169.7 153.6 139.2 126.7 115.9 106.7 98.6 91.6 

3X 169.1 177.5 168.2 155.9 143.7 132.5 122.5 113.6 105.8 99.0 

4X 154.0 166.9 162.0 152.6 142.5 132.7 123.8 115.6 108.3 101.8 

5X 141.5 156.7 154.4 147.3 138.9 130.5 122.5 115.1 108.4 102.3 

6X 131.0 147.2 146.7 141.3 134.4 127.0 119.9 113.3 107.1 101.4 

7X 122.3 138.7 139.5 135.3 129.5 123.1 116.7 110.7 105.1 99.9 

8X 114.7 131.0 132.7 129.5 124.5 119.0 113.3 107.8 102.7 97.9 

9X 108.3 124.3 126.4 124.0 119.8 114.8 109.7 104.8 100.1 95.7 

10X 102.5 118.1 120.7 118.8 115.2 110.9 106.3 101.8 97.5 93.4 
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Table A.13: Power dissipation (mW) at maximum bandwidth for the interconnect of 13 nm technology 

without repeaters. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 10.13 6.29 4.46 3.43 2.78 2.34 2.01 1.77 1.58 1.43 

2X 13.38 9.33 7.06 5.67 4.74 4.07 3.57 3.19 2.87 2.62 

3X 14.90 11.08 8.77 7.25 6.19 5.42 4.82 4.34 3.95 3.63 

4X 15.78 12.21 9.95 8.43 7.32 6.49 5.84 5.30 4.87 4.50 

5X 16.33 13.01 10.84 9.34 8.23 7.38 6.69 6.13 5.66 5.26 

6X 16.71 13.58 11.52 10.06 8.97 8.12 7.42 6.84 6.35 5.93 

7X 16.99 14.03 12.07 10.66 9.60 8.75 8.04 7.46 6.95 6.52 

8X 17.20 14.38 12.52 11.17 10.13 9.29 8.59 8.00 7.50 7.06 

9X 17.35 14.68 12.90 11.61 10.59 9.76 9.08 8.49 7.98 7.54 

10X 17.49 14.92 13.23 11.97 10.99 10.19 9.52 8.93 8.42 7.98 

 

Table A.14: Power dissipation (mW) at maximum bandwidth for the interconnect of 13 nm technology with 

repeaters. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 18.55 9.50 6.35 4.76 3.81 3.18 2.72 2.39 2.12 1.91 

2X 18.01 10.51 7.54 5.92 4.89 4.17 3.64 3.23 2.91 2.65 

3X 17.00 10.70 8.05 6.52 5.51 4.79 4.24 3.81 3.46 3.17 

4X 16.13 10.67 8.30 6.89 5.93 5.22 4.68 4.24 3.88 3.58 

5X 15.42 10.58 8.44 7.14 6.23 5.55 5.02 4.58 4.22 3.92 

6X 14.83 10.47 8.52 7.32 6.47 5.82 5.30 4.87 4.51 4.21 

7X 14.36 10.36 8.58 7.46 6.65 6.03 5.53 5.11 4.76 4.46 

8X 13.96 10.26 8.61 7.56 6.80 6.21 5.73 5.32 4.98 4.68 

9X 13.63 10.18 8.64 7.65 6.93 6.36 5.90 5.50 5.17 4.87 

10X 13.35 10.10 8.66 7.73 7.04 6.50 6.05 5.67 5.34 5.05 

 

Table A.15: Total bandwidth per unit power (Gb/s.mW) consumption for interconnects with repeaters. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 10.86 18.84 24.37 28.38 31.38 33.66 35.43 36.83 37.95 38.85 

2X 10.38 17.64 22.5 25.95 28.47 30.37 31.83 32.98 33.89 34.63 

3X 9.947 16.59 20.89 23.89 26.06 27.67 28.9 29.85 30.61 31.23 

4X 9.545 15.65 19.51 22.14 24.03 25.42 26.46 27.27 27.91 28.43 

5X 9.176 14.81 18.29 20.63 22.29 23.49 24.4 25.11 25.65 26.1 

6X 8.831 14.06 17.21 19.31 20.78 21.84 22.64 23.26 23.73 24.11 

7X 8.513 13.38 16.27 18.15 19.46 20.41 21.11 21.65 22.08 22.42 

8X 8.216 12.77 15.41 17.12 18.3 19.16 19.79 20.26 20.64 20.94 

9X 7.942 12.21 14.64 16.2 17.28 18.04 18.61 19.04 19.38 19.65 

10X 7.684 11.69 13.94 15.38 16.36 17.05 17.57 17.96 18.26 18.5 
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Table A.16: Probability of link failure (in parts per thousand) of the individual lines of the channel under 

variability. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 34.29 8.02 3.81 2.69 2.06 1.88 1.89 1.81 1.72 1.75 

2X 6.92 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

3X 2.31 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

4X 1.34 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

5X 0.77 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

6X 0.58 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

7X 0.35 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

8X 0.31 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

9X 0.21 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

10X 0.16 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

 

Table A.17: Probability of link failure (in parts per thousand) for the channel under area constraint. 

S/W 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 

1X 988.51 496.90 216.64 128.74 84.38 66.34 58.87 50.19 43.21 40.02 

2X 448.43 3.69 2.73 2.27 1.94 1.70 1.51 1.36 1.24 1.14 

3X 138.36 2.73 2.28 1.95 1.71 1.52 1.37 1.24 1.14 1.05 

4X 67.18 2.28 1.96 1.71 1.52 1.37 1.25 1.14 1.06 0.98 

5X 32.93 1.97 1.72 1.53 1.38 1.25 1.15 1.06 0.98 0.92 

6X 21.48 1.73 1.54 1.38 1.26 1.15 1.06 0.99 0.92 0.86 

7X 11.53 1.54 1.39 1.26 1.16 1.07 0.99 0.93 0.87 0.82 

8X 9.11 1.39 1.27 1.16 1.07 1.00 0.93 0.87 0.82 0.78 

9X 5.47 1.27 1.17 1.08 1.00 0.93 0.87 0.82 0.78 0.74 

10X 3.90 1.17 1.08 1.00 0.94 0.88 0.83 0.78 0.74 0.71 
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