4,533 research outputs found

    Successful object encoding induces increased directed connectivity in presymptomatic early-onset Alzheimer's disease

    Get PDF
    Background: Recent studies report increases in neural activity in brain regions critical to episodic memory at preclinical stages of Alzheimer’s disease (AD). Although electroencephalography (EEG) is widely used in AD studies, given its non-invasiveness and low cost, there is a need to translate the findings in other neuroimaging methods to EEG. Objective: To examine how the previous findings using functional magnetic resonance imaging (fMRI) at preclinical stage in presenilin-1 E280A mutation carriers could be assessed and extended, using EEG and a connectivity approach. Methods: EEG signals were acquired during resting and encoding in 30 normal cognitive young subjects, from an autosomal dominant early-onset AD kindred from Antioquia, Colombia. Regions of the brain previously reported as hyperactive were used for connectivity analysis. Results: Mutation carriers exhibited increasing connectivity at analyzed regions. Among them, the right precuneus exhibited the highest changes in connectivity. Conclusion: Increased connectivity in hyperactive cerebral regions is seen in individuals, genetically-determined to develop AD, at preclinical stage. The use of a connectivity approach and a widely available neuroimaging technique opens the possibility to increase the use of EEG in early detection of preclinical AD.Postprint (author's final draft

    Effects of force load, muscle fatigue and extremely low frequency magnetic stimulation on EEG signals during side arm lateral raise task

    Get PDF
    Objective: This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. Approach: EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. Main results: The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p    0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p    0.05, except between non-fatigue and fatigue with magnetic stimulation in gamma band of C3-EEG at 1 kg, and in the SampEn at 1 kg and 3 kg force loads from C4-EEG). Significance: Our study comprehensively quantified the effects of force, fatigue and the ELF magnetic stimulation on EEG features with difference forces, fatigue status and ELF magnetic stimulation

    Connectivity differences between Gulf War Illness (GWI) phenotypes during a test of attention

    Get PDF
    One quarter of veterans returning from the 1990–1991 Persian Gulf War have developed Gulf War Illness (GWI) with chronic pain, fatigue, cognitive and gastrointestinal dysfunction. Exertion leads to characteristic, delayed onset exacerbations that are not relieved by sleep. We have modeled exertional exhaustion by comparing magnetic resonance images from before and after submaximal exercise. One third of the 27 GWI participants had brain stem atrophy and developed postural tachycardia after exercise (START: Stress Test Activated Reversible Tachycardia). The remainder activated basal ganglia and anterior insulae during a cognitive task (STOPP: Stress Test Originated Phantom Perception). Here, the role of attention in cognitive dysfunction was assessed by seed region correlations during a simple 0-back stimulus matching task (“see a letter, push a button”) performed before exercise. Analysis was analogous to resting state, but different from psychophysiological interactions (PPI). The patterns of correlations between nodes in task and default networks were significantly different for START (n = 9), STOPP (n = 18) and control (n = 8) subjects. Edges shared by the 3 groups may represent co-activation caused by the 0-back task. Controls had a task network of right dorsolateral and left ventrolateral prefrontal cortex, dorsal anterior cingulate cortex, posterior insulae and frontal eye fields (dorsal attention network). START had a large task module centered on the dorsal anterior cingulate cortex with direct links to basal ganglia, anterior insulae, and right dorsolateral prefrontal cortex nodes, and through dorsal attention network (intraparietal sulci and frontal eye fields) nodes to a default module. STOPP had 2 task submodules of basal ganglia–anterior insulae, and dorsolateral prefrontal executive control regions. Dorsal attention and posterior insulae nodes were embedded in the default module and were distant from the task networks. These three unique connectivity patterns during an attention task support the concept of Gulf War Disease with recognizable, objective patterns of cognitive dysfunction

    An analysis of MRI derived cortical complexity in premature-born adults : regional patterns, risk factors, and potential significance

    Get PDF
    Premature birth bears an increased risk for aberrant brain development concerning its structure and function. Cortical complexity (CC) expresses the fractal dimension of the brain surface and changes during neurodevelopment. We hypothesized that CC is altered after premature birth and associated with long-term cognitive development. One-hundred-and-one very premature-born adults (gestational age <32 weeks and/or birth weight <1500 ​g) and 111 term-born adults were assessed by structural MRI and cognitive testing at 26 years of age. CC was measured based on MRI by vertex-wise estimation of fractal dimension. Cognitive performance was measured based on Griffiths-Mental-Development-Scale (at 20 months) and Wechsler-Adult-Intelligence-Scales (at 26 years). In premature-born adults, CC was decreased bilaterally in large lateral temporal and medial parietal clusters. Decreased CC was associated with lower gestational age and birth weight. Furthermore, decreased CC in the medial parietal cortices was linked with reduced full-scale IQ of premature-born adults and mediated the association between cognitive development at 20 months and IQ in adulthood. Results demonstrate that CC is reduced in very premature-born adults in temporoparietal cortices, mediating the impact of prematurity on impaired cognitive development. These data indicate functionally relevant long-term alterations in the brain’s basic geometry of cortical organization in prematurity

    Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks

    Full text link
    One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to inter- and intra-subject differences, as well as to inherent noise associated with such data. Herein, we propose a novel approach for learning such representations from multi-channel EEG time-series, and demonstrate its advantages in the context of mental load classification task. First, we transform EEG activities into a sequence of topology-preserving multi-spectral images, as opposed to standard EEG analysis techniques that ignore such spatial information. Next, we train a deep recurrent-convolutional network inspired by state-of-the-art video classification to learn robust representations from the sequence of images. The proposed approach is designed to preserve the spatial, spectral, and temporal structure of EEG which leads to finding features that are less sensitive to variations and distortions within each dimension. Empirical evaluation on the cognitive load classification task demonstrated significant improvements in classification accuracy over current state-of-the-art approaches in this field.Comment: To be published as a conference paper at ICLR 201

    The role of multi-scale phase synchronization and cross-frequency interactions in cognitive integration

    Get PDF
    Neuronal processing is distributed into anatomically distinct, largely specialized, neuronal populations. These populations undergo rhythmic fluctuations in excitability, which are commonly known as neuronal oscillations. Electrophysiological studies of neuronal activity have shown that phase synchronization of oscillations within frequencies characterizes both resting state and task execution and that its strength is correlated with task performance. Therefore phase-synchronization within frequencies is thought to support communication between oscillating neuronal populations and thereby integration and coordination of anatomically distributed processing in cognitive functions. However, it has remained open if and how phase synchronization is associated with directional flow of information. Furthermore, oscillations and synchronization are observed concurrently in multiple frequencies, which are thought to underlie distinct computational functions. Little is known how oscillations and synchronized networks of different frequencies in the human brain are integrated and enable unified cognitive function and experience. In the first study of this thesis, we developed a measure of directed connectivity in networks of coupled oscillators, called Phase Transfer Entropy (Phase TE) and tested if Phase TE could detect directional flow in simulated data in the presence of noise and signal mixing. Results showed that Phase TE indeed reliably detected information flow under these conditions and was computationally efficient. In the other three studies, we investigated if two different forms of inter-areal cross-frequency coupling (CFC), namely cross-frequency phase synchrony (CFS) and phase-amplitude coupling (PAC), could support integration and coordination of neuronal processing distributed across frequency bands in the human brain. In the second study, we analyzed source-reconstructed magneto- and electroencephalographic (M/EEG) data to investigate whether inter-areal CFS could be observed between within-frequency synchronized networks and thereby support the coordination of spectrally distributed processing in visual working memory (VWM). The results showed that CFS was increased during VWM maintenance among theta to gamma frequency bands and the strength of CFS networks predicted individual VWM capacity. Spectral patterns of CFS were found to be different from PAC, indicating complementary roles for both mechanisms. In the third study, we analyzed source-reconstructed M/EEG data to investigate whether inter-areal CFS and PAC could be observed during two multi-object visual tracking tasks and thereby support visual attention. PAC was found to be significantly correlated with object load in both tasks, and CFS in one task. Further, patterns of CFS and PAC differed significantly between subjects with high and low capacity for visual attention. In the fourth study, we analyzed intracerebral stereo-electroencephalographic data (SEEG) and source-reconstructed MEG data to investigate whether CFS and PAC are present also in resting state. Further, in order to address concerns about observations of CFC being spurious and caused by non-sinusoidal or non-zero mean signal waveforms, we introduced a new approach to identify true inter-areal CFC connections and discard potentially spurious ones. We observed both inter-areal CFS and PAC, and showed that a significant part of connections was unambiguously true and non-spurious. Spatial profiles differed between CFS and PAC, but were consistent across datasets. Together, the results from studies II-IV provide evidence that inter-areal CFS and PAC, in complementary ways, connect frequency-specific phase-synchronized networks that involve functionally specialized regions across the cortex to support complex functions such as VWM and attention, and also characterize the resting state. Inter-areal CFC thus may be crucial for the coordination and integration of spectrally distributed processing and the emergence of introspectively coherent cognitive function.Keskeinen kysymys aivotutkimuksessa on, kuinka ajattelu ja kognitio syntyvät ihmisaivojen 10^15 hermosolussa. Informaation käsittely aivoissa tapahtuu suurissa hermosolupopulaatioissa, jotka ovat toiminnallisesti erikoistuneita ja anatomisesti eroteltuja eri aivoalueille. Niiden aktivaatiorakenteiden jaksollisia muutoksia kutsutaan aivorytmeiksi eli oskillaatioiksi. Hermosolupopulaatioiden välistä viestintää edesauttaa niiden toiminnan samantahtisuus eli synkronoituminen. Sähköfysiologisissa tutkimuksissa on havaittu aivorytmien synkronoituvan sekä lepomittausten että tehtävien suorituksen aikana siten että tämä synkronoituminen ennustaa kognitiivissa tehtävissä suoriutumista. Oskillaatioiden vaihesynkronia ei kuitenkaan kerro niiden välisen vuorovaikutuksen suunnasta. Tämän lisäksi oskillaatioita ja niiden välistä synkroniaa havaitaan yhtäaikaisesti lukuisilla eri taajuuksilla, joiden ajatellaan olevan vastuussa erillisistä laskennallisista ja kognitiivisista toiminnoista. Toistaiseksi on kuitenkin jäänyt kartoittamatta, miten informaation käsittely eri taajuuksilla yhdistetään yhtenäisiksi kognitiivisiksi toiminnoiksi, ja havaitaanko myös eri taajuisten oskillaatioverkkojen välillä synkroniaa. Väitöskirjan ensimmäisessä osatyössä on kehitetty uusi tapata mitata oskillaattoriverkkojen vuorovaikutusten suuntia, jonka toimivuus todennettiin simuloimalla synkronoituneita hermosolupopulaatioita. Väitöskirjan muissa osatöissä on tutkittu havaitaanko ihmisaivoissa eri taajuisten oskillaatioiden välistä synkronoitumista. Erityisesti tutkittiin kahta erilaista synkronian muotoa, joista ensimmäinen (’cross- frequency phase synchrony’,CFS) mittaa kahden oskillaation välistä vaihesuhdetta ja toinen (’phase-amplitude coupling’, PAC) vaiheen ja amplitudin suhdetta. Väitöskirjan toisessa osassa tutkittiin, selittääkö CFS koehenkilöiden suoriutumista näkötyömuistitehtävässä. Tutkimukseen osallistuneilta koehenkilöiltä mitattiin aivosähkökäyrä (EEG) ja aivomagneettikäyrä (MEG), joiden avulla selvitettiin havaitaanko aivoalueiden välistä synkroniaa (CFS). Tutkimustulokset osoittivat, että koehenkilöiden CFS oli korkeampi näkötyömuistitehtävän mielessä pitämisen aikana theta-taajuuksista gamma-taajuuksiin asti ja että CFS-verkkojen vahvuus ennusti yksilöllistä työmuistikapasiteettia. Kolmannessa tutkimuksessa analysoitiin MEG- ja EEG-aivokuvantamislaitteita käyttäen onko aivoalueiden välillä CFS:ä ja PAC:a kahdessa näkötarkkaavaisuustehtävässä. PAC lisääntyi tilastollisesti merkitsevästi tehtävän vaikeuden mukaan kummassakin tehtävässä, kun taas CFS lisääntyi yhdessä tehtävässä. Lisäksi CFS ja PAC taajuusparit olivat erilaisia hyvin suoriutuvien koehenkilöiden sekä heikosti suoriutuvien koehenkilöiden välillä. Neljännessä tutkimuksessa tutkittiin havaitaanko CFS:ä ja PAC:a aivojen lepotilassa. Aivokuoren aktiivisuutta mitattiin MEG:llä sekä epilepsiapotilailta aivoihin kirurgisesti asetetuilla elektrodeilla. CFS:ä sekä PAC:a havaittiin kummallakin menetelmällä. Lisäksi kehitimme menetelmän joka vähentää väärien havaintojen todennäköisyyttä ja lisää aitojen CFS ja PAC yhteyksien havaitsemista. Tulokset osoittavat, että merkittävä osuus yhteyksistä aivoalueiden välillä on aitoja. CFS- ja PAC-profiilit erosivat toisistaan, mutta olivat samanlaisia eri menetelmillä tutkittaessa. Yhdistettynä tulokset tutkimuksista II–IV viittaavat siihen, että CFS ja PAC yhdistävät eri taajuuksille ja aivoalueille hajautettua informaation käsittelyä. CFS:sää ja PAC:ia havaittiin aivojen lepotilassa mutta myös tarkkaavaisuus- ja näkötyömuistitehtävän aikana. CFS ja PAC saattavat mahdollistaa eri taajuisten aivorytmien ja hajautettujen prosessien koordinaation ja yhdistämisen

    A morphospace of functional configuration to assess configural breadth based on brain functional networks

    Get PDF
    The best approach to quantify human brain functional reconfigurations in response to varying cognitive demands remains an unresolved topic in network neuroscience. We propose that such functional reconfigurations may be categorized into three different types: i) Network Configural Breadth, ii) Task-to-Task transitional reconfiguration, and iii) Within-Task reconfiguration. In order to quantify these reconfigurations, we propose a mesoscopic framework focused on functional networks (FNs) or communities. To do so, we introduce a 2D network morphospace that relies on two novel mesoscopic metrics, Trapping Efficiency (TE) and Exit Entropy (EE), which capture topology and integration of information within and between a reference set of FNs. In this study, we use this framework to quantify the Network Configural Breadth across different tasks. We show that the metrics defining this morphospace can differentiate FNs, cognitive tasks and subjects. We also show that network configural breadth significantly predicts behavioral measures, such as episodic memory, verbal episodic memory, fluid intelligence and general intelligence. In essence, we put forth a framework to explore the cognitive space in a comprehensive manner, for each individual separately, and at different levels of granularity. This tool that can also quantify the FN reconfigurations that result from the brain switching between mental states.Comment: main article: 24 pages, 8 figures, 2 tables. supporting information: 11 pages, 5 figure

    Task-load-dependent activation of dopaminergic midbrain areas in the absence of reward

    Get PDF
    Dopamine release in cortical and subcortical structures plays a central role in reward-related neural processes. Within this context, dopaminergic inputs are commonly assumed to play an activating role, facilitating behavioral and cognitive operations necessary to obtain a prospective reward. Here, we provide evidence from human fMRI that this activating role can also be mediated by task-demand-related processes and thus extendsbeyondsituationsthatonlyentailextrinsicmotivatingfactors. Using a visual discrimination task in which varying levels of task demands were precued, we found enhanced hemodynamic activity in the substantia nigra (SN) for high task demands in the absence of reward or similar extrinsic motivating factors. This observation thus indicates that the SN can also be activated in an endogenous fashion. In parallel to its role in reward-related processes, reward-independent activation likely serves to recruit the processing resources needed to meet enhanced task demands. Simultaneously, activity in a wide network of cortical and subcortical control regions was enhanced in response to high task demands, whereas areas of the default-mode network were deactivated more strongly. The present observations suggest that the SN represents a core node within a broader neural network that adjusts the amount of available neural and behavioral resources to changing situational opportunities and task requirements, which is often driven by extrinsic factors but can also be controlled endogenously

    Effects on Task Performance and Psychophysiological Measures of Performance During Normobaric Hypoxia Exposure

    Get PDF
    Human-autonomous systems have the potential to mitigate pilot cognitive impairment and improve aviation safety. A research team at NASA Langley conducted an experiment to study the impact of mild normobaric hypoxia induction on aircraft pilot performance and psychophysiological state. A within-subjects design involved non-hypoxic and hypoxic exposures while performing three 10-minute tasks. Results indicated the effect of 15,000 feet simulated altitude did not induce significant performance decrement but did produce increase in perceived workload. Analyses of psychophysiological responses evince the potential of biomarkers for hypoxia onset. This study represents on-going work at NASA intending to add to the current knowledge of psychophysiologically-based input to automation to increase aviation safety. Analyses involving coupling across physiological systems and wavelet transforms of cortical activity revealed patterns that can discern between the simulated altitude conditions. Specifically, multivariate entropy of ECG/Respiration components were found to be significant predictors (p< 0.02) of hypoxia. Furthermore, in EEG, there was a significant decrease in mid-level beta (15.19-18.37Hz) during the hypoxic condition in thirteen of sixteen sites across the scalp. Task performance was not appreciably impacted by the effect of 15,000 feet simulated altitude. Analyses of psychophysiological responses evince the potential of biomarkers for mild hypoxia onset.The potential for identifying shifts in underlying cortical and physiological systems could serve as a means to identify the onset of deteriorated cognitive state. Enabling such assessment in future flightdecks could permit increasingly autonomous systems-supported operations. Augmenting human operator through assessment of cognitive impairment has the potential to further improve operator performance and mitigate human error in safety critical contexts. This study represents ongoing work at NASA intending to add to the current knowledge of psychophysiologically-based input to automation to increase aviation safety
    corecore