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Only a palace, with interior doors, 
Well painted, well gargoyled, with multiple floors. 
Two windows let free this projector machine, 
And a magical world here appears on the screen. 
My servants attend me with tricks of the senses, 
The past and the future and similar tenses. 
And on platters of air they convey me my measure, 
Both gladness and sorrow, I lack not for treasure.  
The lord and his lady are seated within 
In the court of the mind where the song does begin. 
The song is as fine, is as fine, is as follows… 
 
“The Head”, by Robin Williamson, 1968 
  



4 
 

TTable of Contents 
 

Original publications ............................................................................................................ 6 

List of general abbreviations ............................................................................................... 7 

Abstract ............................................................................................................................... 8 

Tiivistelmä .......................................................................................................................... 10 

1. Background ................................................................................................................ 12 

1.1 The organization of the human cortex .............................................................. 12 

1.2 Working memory and attentional functions ..................................................... 13 

1.3 Network interactions in the brain ..................................................................... 14 

1.4 Neuronal oscillations as a mechanism of cortical computations ...................... 14 

1.5 The functional significance of oscillations in cognitive functions ..................... 15 

1.6 Phase synchrony of oscillating neuronal assemblies......................................... 16 

1.7 Cross-frequency coupling .................................................................................. 18 

1.8 Electrophysiological neuroimaging ................................................................... 20 

1.9 Estimation of functional connectivity ................................................................ 21 

1.10 Estimation of directed connectivity .................................................................. 22 

2. Aims ........................................................................................................................... 22 

3. Methods ..................................................................................................................... 23 

3.1 Data acquisition ................................................................................................. 23 

3.1.1 Simulating Data with Neural Mass Models ............................................... 23 

3.1.2 Magneto- and Electroencephalography .................................................... 23 

3.1.3 Stereo-Electroencephalography ................................................................ 23 

3.1.4 Structural imaging ..................................................................................... 24 

3.2 Signal pre-processing ......................................................................................... 24 

3.2.1 Co-registration and inverse modeling ....................................................... 24 

3.2.2 Removal of low-fidelity parcels and connections ...................................... 25 

3.2.3 Frequency filtering ..................................................................................... 25 



5 
 

3.3 Connectivity analysis ......................................................................................... 26 

3.3.1 Metrics of functional connectivity ............................................................. 26 

3.3.2 Estimating directed connectivity with PhaseTE ........................................ 27 

3.3.3 Statistical testing ....................................................................................... 28 

3.3.4 Network analysis and visualization ............................................................ 28 

4. Results ........................................................................................................................ 30 

Study I: Phase transfer entropy: A novel phase-based measure for directed 
connectivity in networks coupled by oscillatory interactions ................................... 30 

Study II: Cross-frequency synchronization connects networks of fast and slow 
oscillations during visual working memory maintenance ......................................... 31 

Study III: Distinct spectral and anatomical patterns of large-scale synchronization 
predict human low and high attentional capacity ..................................................... 35 

Study IV: Inter-areal CFS and PAC in human resting state......................................... 37 

5. Discussion .................................................................................................................. 40 

5.1 Phase Transfer Entropy as a novel method for estimating directed connectivity 
  ........................................................................................................................... 40 

5.2 Inter-areal cross-frequency coupling characterizes neuronal activity in the 
human cortex ............................................................................................................. 41 

5.3 The role of CFC in VWM and attention.............................................................. 41 

5.4 CFS and PAC are distinct complementary processes ........................................ 43 

5.5 True observations of inter-areal cross-frequency coupling .............................. 44 

5.6 Similarities and differences between task and resting state ............................ 44 

5.7 Outlook .............................................................................................................. 46 

6. Conclusion .................................................................................................................. 47 

 

   



6 
 

OOriginal publications 
 

This thesis is based on the following publications: 
 
I. M. Lobier, F. Siebenhühner, S. Palva, J. M. Palva: Phase transfer entropy: A novel 

phase-based measure for directed connectivity in networks coupled by oscillatory 
interactions, NeuroImage 85:853-872, 2014  

II. F. Siebenhühner, S. H. Wang, J. M. Palva, S. Palva: Cross-frequency synchronization 
connects networks of fast and slow oscillations during visual working memory 
maintenance, eLife: e13451, 2016 

III. S. Rouhinen, F. Siebenhühner, J. M. Palva, S. Palva: Spectral and anatomical patterns 
of large-scale synchronization predict human attentional capacity, under preparation 
for re-submission to Cerebral Cortex 

IV. F. Siebenhühner, S. H. Wang, G. Arnulfo, L. Nobili, J. M. Palva, S. Palva: Resting-state 
cross-frequency coupling networks in human electrophysiological recordings, under 
revision for PLoS Biology  

All studies designed and conducted under the active supervision of Satu Palva and J. Matias 
Palva. Author’s contribution to the publications included in the thesis: 

I. The candidate together with ML developed software and performed simulations 
and analyzed simulated data. All authors wrote the manuscript together.  

II. SP and JMP designed the experiment and SP collected M/EEG data. The candidate 
performed data pre-processing, carried out data analysis, and together with SHW 
and JMP developed software for the analysis of cross-frequency interactions. The 
candidate wrote the manuscript together with JMP and SP.  

III. SR collected M/EEG data and analyzed local oscillations and networks of 1:1 phase 
synchronization. The candidate performed analysis of cross-frequency interactions 
and wrote the corresponding parts of the manuscript. The non-CF parts of the 
manuscript were written by SR, JMP and SP. 

IV. The candidate recorded and preprocessed MEG data. SEEG data were collected by 
GA and LN and preprocessed by GA and SHW. The candidate developed the data-
analysis software together with SHW and GA, carried out data analysis, and wrote 
the manuscript together with JMP and SP.  

Publication III was also used in the dissertation of Santeri Rouhinen. 



7 
 

LList of general abbreviations 
 

BOLD  Blood Oxygen Level Dependent 
CF  Cross-Frequency 

CFC   Cross-Frequency Coupling  

CFS  Cross-Frequency Phase Synchrony 
cPLV  complex Phase Locking Value 
AAC  Amplitude-Amplitude Coupling 

EEG  Electroencephalography 
fMRI  functional Magnetic Resonance Imaging 
iEEG  intracranial Electroencephalography 
iPLV  imaginary Phase Locking Value 
HF  High-Frequency 
HR  Hit Rate 
LF  Low-Frequency 
LFP  Local Field Potential 

MEG  Magnetoencephalography 
M/EEG  Magneto- and electroencephalography 
MI  Mutual Information 
MRI  Magnetic Resonance Imaging 
PAC  Phase-Amplitude Coupling 
PFC  Prefrontal cortex 
PPC   Posterior Parietal Cortex 
PLV  Phase Locking Value  

PS  Phase Synchrony 
SEEG  Stereo-Electroencephalography 
SNR  Signal-to-Noise-Ratio 
TE  Transfer Entropy 
VC  Volume Conduction 
VWM  Visual Working Memory 
WM  Working Memory 
wPLI  weighted Phase-Lag Index 
 



8 
 

AAbstract 
 
Neuronal processing is distributed into anatomically distinct, largely specialized, neuronal 
populations. These populations undergo rhythmic fluctuations in excitability, which are 
commonly known as neuronal oscillations. Electrophysiological studies of neuronal activity 
have shown that phase synchronization of oscillations within frequencies characterizes 
both resting state and task execution and that its strength is correlated with task 
performance. Therefore phase-synchronization within frequencies is thought to support 
communication between oscillating neuronal populations and thereby integration and 
coordination of anatomically distributed processing in cognitive functions. However, it has 
remained open if and how phase synchronization is associated with directional flow of 
information. Furthermore, oscillations and synchronization are observed concurrently in 
multiple frequencies, which are thought to underlie distinct computational functions. Little 
is known how oscillations and synchronized networks of different frequencies in the human 
brain are integrated and enable unified cognitive function and experience.  

In the first study of this thesis, we developed a measure of directed connectivity in 
networks of coupled oscillators, called Phase Transfer Entropy (Phase TE) and tested if 
Phase TE could detect directional flow in simulated data in the presence of noise and signal 
mixing. Results showed that Phase TE indeed reliably detected information flow under 
these conditions and was computationally efficient. 

In the other three studies, we investigated if two different forms of inter-areal cross-
frequency coupling (CFC), namely cross-frequency phase synchrony (CFS) and phase-
amplitude coupling (PAC), could support integration and coordination of neuronal 
processing distributed across frequency bands in the human brain.  

In the second study, we analyzed source-reconstructed magneto- and 
electroencephalographic (M/EEG) data to investigate whether inter-areal CFS could be 
observed between within-frequency synchronized networks and thereby support the 
coordination of spectrally distributed processing in visual working memory (VWM). The 
results showed that CFS was increased during VWM maintenance among theta to gamma 
frequency bands and the strength of CFS networks predicted individual VWM capacity. 
Spectral patterns of CFS were found to be different from PAC, indicating complementary 
roles for both mechanisms.  

In the third study, we analyzed source-reconstructed M/EEG data to investigate whether 
inter-areal CFS and PAC could be observed during two multi-object visual tracking tasks and 
thereby support visual attention. PAC was found to be significantly correlated with object 
load in both tasks, and CFS in one task. Further, patterns of CFS and PAC differed 
significantly between subjects with high and low capacity for visual attention.  
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In the fourth study, we analyzed intracerebral stereo-electroencephalographic data (SEEG) 
and source-reconstructed MEG data to investigate whether CFS and PAC are present also in 
resting state. Further, in order to address concerns about observations of CFC being 
spurious and caused by non-sinusoidal or non-zero mean signal waveforms, we introduced 
a new approach to identify true inter-areal CFC connections and discard potentially 
spurious ones. We observed both inter-areal CFS and PAC, and showed that a significant 
part of connections was unambiguously true and non-spurious. Spatial profiles differed 
between CFS and PAC, but were consistent across datasets. 

Together, the results from studies II-IV provide evidence that inter-areal CFS and PAC, in 
complementary ways, connect frequency-specific phase-synchronized networks that 
involve functionally specialized regions across the cortex to support complex functions such 
as VWM and attention, and also characterize the resting state. Inter-areal CFC thus may be 
crucial for the coordination and integration of spectrally distributed processing and the 
emergence of introspectively coherent cognitive function. 
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TTiivistelmä 
 

Keskeinen kysymys aivotutkimuksessa on, kuinka ajattelu ja kognitio syntyvät ihmisaivojen 
10^15 hermosolussa. Informaation käsittely aivoissa tapahtuu suurissa 
hermosolupopulaatioissa, jotka ovat toiminnallisesti erikoistuneita ja anatomisesti 
eroteltuja eri aivoalueille. Niiden aktivaatiorakenteiden jaksollisia muutoksia kutsutaan 
aivorytmeiksi eli oskillaatioiksi. Hermosolupopulaatioiden välistä viestintää edesauttaa 
niiden toiminnan samantahtisuus eli synkronoituminen. Sähköfysiologisissa tutkimuksissa 
on havaittu aivorytmien synkronoituvan sekä lepomittausten että tehtävien suorituksen 
aikana siten että tämä synkronoituminen ennustaa kognitiivissa tehtävissä suoriutumista. 

Oskillaatioiden vaihesynkronia ei kuitenkaan kerro niiden välisen vuorovaikutuksen 
suunnasta. Tämän lisäksi oskillaatioita ja niiden välistä synkroniaa havaitaan yhtäaikaisesti 
lukuisilla eri taajuuksilla, joiden ajatellaan olevan vastuussa erillisistä laskennallisista ja 
kognitiivisista toiminnoista. Toistaiseksi on kuitenkin jäänyt kartoittamatta, miten 
informaation käsittely eri taajuuksilla yhdistetään yhtenäisiksi kognitiivisiksi toiminnoiksi, ja 
havaitaanko myös eri taajuisten oskillaatioverkkojen välillä synkroniaa. 

Väitöskirjan ensimmäisessä osatyössä on kehitetty uusi tapata mitata oskillaattoriverkkojen 
vuorovaikutusten suuntia, jonka toimivuus todennettiin simuloimalla synkronoituneita 
hermosolupopulaatioita. 

Väitöskirjan muissa osatöissä on tutkittu havaitaanko ihmisaivoissa eri taajuisten 
oskillaatioiden välistä synkronoitumista. Erityisesti tutkittiin kahta erilaista synkronian 
muotoa, joista ensimmäinen (’cross- frequency phase synchrony’,CFS) mittaa kahden 
oskillaation välistä vaihesuhdetta ja toinen (’phase-amplitude coupling’, PAC) vaiheen ja 
amplitudin suhdetta. 

Väitöskirjan toisessa osassa tutkittiin, selittääkö CFS koehenkilöiden suoriutumista 
näkötyömuistitehtävässä. Tutkimukseen osallistuneilta koehenkilöiltä mitattiin 
aivosähkökäyrä (EEG) ja aivomagneettikäyrä (MEG), joiden avulla selvitettiin havaitaanko 
aivoalueiden välistä synkroniaa (CFS). Tutkimustulokset osoittivat, että koehenkilöiden CFS   
oli korkeampi näkötyömuistitehtävän mielessä pitämisen aikana theta-taajuuksista gamma-
taajuuksiin asti ja että CFS-verkkojen vahvuus ennusti yksilöllistä työmuistikapasiteettia. 
Kolmannessa tutkimuksessa analysoitiin MEG- ja EEG-aivokuvantamislaitteita käyttäen 
onko aivoalueiden välillä CFS:ä ja PAC:a kahdessa näkötarkkaavaisuustehtävässä. PAC 
lisääntyi tilastollisesti merkitsevästi tehtävän vaikeuden mukaan kummassakin tehtävässä, 
kun taas CFS lisääntyi yhdessä tehtävässä. Lisäksi CFS ja PAC taajuusparit olivat erilaisia 
hyvin suoriutuvien koehenkilöiden sekä heikosti suoriutuvien koehenkilöiden välillä. 
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Neljännessä tutkimuksessa tutkittiin havaitaanko CFS:ä ja PAC:a aivojen lepotilassa. 
Aivokuoren aktiivisuutta mitattiin MEG:llä sekä epilepsiapotilailta aivoihin kirurgisesti 
asetetuilla elektrodeilla. CFS:ä sekä PAC:a havaittiin kummallakin menetelmällä. Lisäksi 
kehitimme menetelmän joka vähentää väärien havaintojen todennäköisyyttä ja lisää aitojen 
CFS ja PAC yhteyksien havaitsemista. Tulokset osoittavat, että merkittävä osuus yhteyksistä 
aivoalueiden välillä on aitoja. CFS- ja PAC-profiilit erosivat toisistaan, mutta olivat 
samanlaisia eri menetelmillä tutkittaessa. 

Yhdistettynä tulokset tutkimuksista II–IV viittaavat siihen, että CFS ja PAC yhdistävät eri 
taajuuksille ja aivoalueille hajautettua informaation käsittelyä. CFS:sää ja PAC:ia havaittiin 
aivojen lepotilassa mutta myös tarkkaavaisuus- ja näkötyömuistitehtävän aikana. CFS ja PAC 
saattavat mahdollistaa eri taajuisten aivorytmien ja hajautettujen prosessien koordinaation 
ja yhdistämisen. 
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11. Background 

How does cognition arise from the activity of hundreds of billions of neurons? This question 
has occupied and puzzled researchers and interested laypeople ever since the existence of 
the neuron as the fundamental unit of the brain was proven in the 19th century by Santiago 
Ramón y Cajal (López-Muñoz et al., 2006). Neurons are known to communicate via 
electrical and chemical signaling, however cognitive function can only be understood by 
studying their collective behaviour in neuronal populations and the interactions between 
these populations. Advances in neuroimaging techniques, which allow to record the 
electrical activity of populations of neurons with high temporal and spatial precision, 
together with advanced  computational hard- and software for the analysis of such signals, 
have allowed researchers in the last decades to elucidate basic principles of large-scale 
communication between neuronal populations. In particular, the study of oscillatory 
activity of neuronal populations and synchronization between these has provided evidence 
that task-specific phase-synchronized networks in different frequency bands support 
cognitive functions. However, many questions have remained unanswered, such as how 
information transfer can be measured in networks of oscillations, and how distinct phase-
synchronized networks at different frequencies in the human brain are integrated to enable 
unified cognitive functioning and experience.  

 The organization of the human cortex 

The human brain is comprised of the cerebral cortex, the cerebellum and subcortical 
structures. The cerebral cortex is the seat of higher cognitive functions such as attention, 
conscious awareness, working memory, language, problem solving, and deliberate decision-
making, while the cerebellum is thought to primarily support motor function, and 
subcortical structures are associated with a variety of functions such as relaying sensory 
information, maintaining homeostasis, consciousness regulation, emotional reactions, 
motor control and memory. The cerebral cortex is layered and has two main components 
the allocortex, and the neocortex. The allocortex, comprising of the hippocampus and the 
olfactory cortex consists of 3 to 4 layers, whereas the neocortex consists of 6 layers, of 
which I is the most superficial and VI the deepest. The different types of neurons found in 
the cerebral cortex are distributed differentially across cortical layers. The cortex is folded, 
and the main gyri and sulci (ridges and grooves) are used as anatomical landmarks in 
parcellations of the brain. The most basic division of the cortex is that into the four lobes, 
namely the frontal, occipital, parietal and temporal lobes. Individual regions of the cortex 
are functionally specialized and complex functions such as attention, working memory, 
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language, arithmetics and decision-making arise from the interplay of several regions in 
functional networks. Communication between neurons takes place at synapses, which 
connect a terminal on the presynaptic axon and a target on the postsynaptic neuron. There 
are two major types of synapses: Electric synapses, where an electric current is transmitted 
across a gap junction channel, and which are only involved in short-range communication. 
In contrast, axons for chemical signaling span the whole cortex and allow signaling between 
distant neurons at chemical synapses, where chemical transmitters are released from the 
presynaptic cells, diffused across the synaptic cleft and bind to receptors on the surface of 
the postsynaptic cell. Within neurons, signals travel along the axon in form of an action 
potential, and a neuron emitting an action potential is also said to “fire” or “spike”. 

 WWorking memory and attentional functions   

Two important cognitive higher-order functions realized in the cerebral cortex are working 
memory and attention. Working memory (WM) denotes the storage of information for 
immediate access and utilization over a short time of up to a few seconds. The short-term 
maintenance of visual information and visual object representations is called visual working 
memory (VWM). VWM may be studied using e.g. delayed match-to-sample tasks, in which a 
multi-object stimulus must be kept in memory and then compared to a second version of 
the stimulus, where some objects may have been altered. Its capacity, i.e. the number of 
objects that can be stored reliably in VWM, varies between individuals, but in delayed 
match-to-sample VWM tasks the capacity is typically between 3 and 4 (Luck and Vogel, 
1997).  

The neuronal mechanism of VWM has been investigated in a number of studies using 
functional magnetic resonance imaging (fMRI). These studies have shown that VWM 
involves concurrent neuronal activity of many brain regions. While the maintenance of 
perceived objects is generally localized to the visual cortex (Emrich et al., 2013; Kravitz et al., 
2013; Riggall and Postle, 2012), central executive control, i.e. regulation, manipulation and 
utilization of objects stored in VWM for subsequent action, has been shown to be localized 
to the frontal cortex, particularly to the lateral prefrontal cortex (lPFC) (Markowitz et al., 
2015; Rowe et al., 2000; Sreenivasan et al., 2014). Memory retrieval, in contrast, has been 
associated with the posterior parietal cortex (Jones and Berryhill, 2012; Munk et al., 2002). 

Visual attention denotes the maintained focus on one or more selected objects in the visual 
representation of the environment. Similarly to VWM, the capacity of objects that can 
effectively be attended simultaneously is 2-4 (Pylyshyn and Storm, 1988; Treisman, 2006). 
Also similarly to VWM,  fMRI studies have shown that activity in the visual, prefrontal and 
posterior parietal regions has been correlated with performance in visual attention tasks 
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(Alnaes et al., 2015; Culham et al., 1998; Howe et al., 2009; Jovicich et al., 2001). In addition 
to the two functions being based on similar cortical regions, the individual capacities of 
VWM and visual attention have also been found to be correlated (Oksama and Hyona, 
2004). 

 NNetwork interactions in the brain 

Since higher-order cognitive functions are enabled by regions that are not directly adjacent, 
but distributed over the cortex, it has been proposed that the brain is organized into 
functional networks consisting of different regions which are connected by long-range 
axons tracts, and signaling along these tracts enables communication between these 
regions, allowing for the emergence of complex cognitive functions. In resting-state studies 
with functional magnetic resonance imaging (fMRI) several networks were identified whose 
regions showed correlations of blood oxygen level dependent (BOLD) signal fluctuations 
(Fox et al., 2005; Raichle et al., 2001). Some of these resting-state networks (RSNs) were 
found to exhibit high similarity to stipulated networks for particular cognitive functions or 
sensory processing. For example, there were identified two distinct, but interacting, 
networks supporting attention in the human cortex, a dorsal network for top-down 
modulation including the intraparietal cortex and superior frontal cortex; and a ventral 
salience network for detection of salient or unexpected relevant stimuli including the 
temporoparietal cortex and inferior frontal cortex (Corbetta and Shulman, 2002; Corbetta 
et al., 2008; Fox et al., 2006). Other networks include the frontoparietal control network, 
visual, auditory and sensorimotor networks, as well as the so-called default mode network 
which is particularly active during the resting state itself, but attenuated during task 
execution (Raichle et al., 2001; Raichle, 2015). 

 Neuronal oscillations as a mechanism of cortical computations 

Neuronal processing is distributed into anatomically distant neuronal populations that 
largely fulfill specialized functional roles. Such populations exhibit neuronal oscillations, i.e. 
collective rhythmic fluctuations in excitability and firing patterns. Such coordinated activity 
within populations has also been described as local synchronization (Engel et al., 2001; 
Singer, 1999), which must not be confused with large-scale synchrony between populations 
(see 1.6). Hence, oscillations impose excitability windows that regulate neuronal activity in 
local networks. In such population oscillations, the individual neurons’ firing patterns can 
be but need not be periodical, but crucially the collective firing patterns are described 
stochastically by a sine function. Oscillatory activity in a group of neurons can be entrained 
by an external input, e.g. gamma oscillations induced by visual stimuli (Gray et al., 1989), 
but can also arise intrinsically through various mechanisms involving locally interconnected 
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groups of excitatory neurons, of inhibitory neurons or both (Fries, 2015; Wang, 2010). 
Unlike individual spikes, which can only be seen in single-cell recordings, postsynaptic 
currents from many spiking neurons whose collective firing is ruled by oscillations can be 
detected with large-scale electrophysiological neuroimaging methods such as MEG and EEG 
(see 1.8 and 3.1.2). 

Oscillations can be characterized by their amplitude, phase and frequency. While the 
frequency of an oscillation denotes the inverse of a length of a cycle, the phase indicates 
the current position on the sine wave and the amplitude its maximal absolute value. In 
neuronal oscillations, the overall excitability of a population is highest at the peak and 
lowest at the through and a larger amplitude reflects larger local synchronization.   

 TThe functional significance of oscillations in cognitive functions  

Neuronal oscillations are grouped into frequency bands. This grouping is historical and the 
range of individual bands can vary in the literature. In this thesis, the following ranges are 
used: Delta ( ): 1-4 Hz, theta ( ): 4-8 Hz, alpha ( ): 8-15 Hz, beta ( ): 15-30 Hz, gamma ( ): 
30-120 Hz. Importantly, oscillatory activity can also be present at frequencies that do not 
show a clear peak in the amplitude spectrum in electrophysiological neuroimaging.  

Alpha ( ) oscillations, which are clearly visible in EEG recordings and strongest in occipital 
and parietal cortices (Groppe et al., 2013), are particularly prominent during drowsy and 
inattentive states, but also during some highly demanding tasks. One prominent hypothesis 
about  oscillations is that their primary function is inhibition of task-unrelated regions 
(Jensen and Mazaheri, 2010; Klimesch et al., 2007). Indeed, task performance is correlated 
with suppression of  amplitudes in early sensory regions that process task-irrelevant 
information (Händel et al., 2011; Sauseng et al., 2009) or motor regions (Hummel et al., 
2002). However,  oscillations have also been found to exhibit positive correlations with 
task-related neuronal processing in higher-level sensory as well as attentional and 
executive regions (Jensen et al., 2015; Klimesch, 2012; Palva and Palva, 2007; Palva and 
Palva, 2011; Sauseng et al., 2005; Sauseng et al., 2005; Schroeder et al., 2018). Additionally, 
there is evidence that  oscillations provide the rhythm for sampling of visual information 
(Busch and VanRullen, 2010; Drewes and Vanrullen, 2011; Dugue et al., 2011; Hanslmayr et 
al., 2013; Mathewson et al., 2009). 

Below the  band, theta ( ) oscillations have been studied extensively in rodent 
hippocampus, where they span the range 4-12 Hz and are associated with navigation, and 
memory formation (O'Keefe and Recce, 1993; Vanderwolf, 1969; Vertes, 1977; Winson, 
1974). In humans,  oscillations span the range 4–8 Hz. Similarly to rodents, hippocampal 
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theta in humans has been shown to support navigation and memory formation (Bohbot et 
al., 2016; Bush et al., 2017; Lega et al., 2012). However,  oscillations in the human cortex 
are considered a different phenomenon than those in the hippocampus.  oscillations of 
the frontal cortex have been implicated as essential for cognitive control and decision-
making (Cavanagh and Frank, 2014; Cohen and Donner, 2013) and underlying the 
perceptive rhythm in two-object attention (Fiebelkorn et al., 2013; Herrmann et al., 2016; 
Landau and Fries, 2012; Landau et al., 2015). Also,  oscillations may underlie memory 
formation (Axmacher et al., 2006). 

Delta ( ) oscillations have been associated with stimulus selection and entrainment to 
rhythmically appearing stimuli in primates (Lakatos et al., 2008) and humans (Besle et al., 
2011).  oscillations and even slower rhythms (<1 Hz) also are observed during slow-wave 
sleep, where they may support memory consolidation (Maquet, 2001). 

Beta ( ) oscillations have been associated both with sensorimotor and cognitive function, 
and have been suggested to underlie maintenance of the current sensorimotor or cognitive 
state (Engel and Fries, 2010). Further,  oscillations have been shown to support time 
evaluation (Kulashekhar et al., 2016) and, in a primate study, the evaluation of task-
relevant information (Haegens et al., 2017).  

Gamma ( ) oscillations have been linked to representation and maintenance of sensory 
information of perceived (Busch et al., 2006; Honkanen et al., 2015; Michalareas et al., 
2016) and attended stimuli (Rouhinen et al., 2013; Vidal et al., 2006) in attention and 
working memory as well as multimodal integration, consciousness and motor-planning 
(Fries, 2015; Herrmann et al., 2004; Jensen et al., 2007; Tallon-Baudry and Bertrand, 1999; 
Uhlhaas et al., 2009). It has been proposed that the  cycle acts as a fundamental 
computational mechanism for fast adaptive processing (Fries et al., 2007). Proposed 
mechanisms for the generation of  oscillations involve local circuits of either inhibitory 
interneurons alone or of interneurons and excitatory pyramidal neurons, and different 
mechanisms might underlie the slower and faster  oscillations (Murty et al., 2018). 

 PPhase synchrony of oscillating neuronal assemblies 

Oscillations are directly associated with rhythmic membrane potential fluctuations 
(Schroeder et al., 2008) so that neuronal excitability and neuronal firing follow the 
oscillatory phase, and is highest around the peak and lowest around the through of the 
oscillation cycle. This means that inputs that arrive in a population at a phase of high 
excitability are more likely to evoke downstream action potentials. Also, inputs that arrive 
simultaneously have better chances of evoking action potentials in a downstream target 
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neuron than asynchronous inputs because post-synaptic potentials are integrated non-
linearly (Azouz and Gray, 2003; Konig et al., 1996; Singer, 1999; Singer, 2009). Thus, 
synchronization of excitability and firing patterns enhances signaling between neuronal 
populations. Based on this, the ‘communication through coherence’ hypothesis states that 
phase synchronization (PS), i.e. a sustained constant phase relationship between 
populations, enables constant spike time relationships and therefore effective 
communication and information transfer between them. (Fries, 2005; Fries, 2015).  

Large-scale networks of PS at different 
frequencies are considered crucial for cognitive 
functions (Palva and Palva, 2012; Petersen and 
Sporns, 2015; Singer, 1999; Singer, 2009) and 
have been proposed to serve both for “bottom-
up” and ”top-down” processing of information 
in the brain, that are, respectively: the 
“feedforward” integration of sensory data and 
its influence on top-level cognition and 
decision-making; and the “feedback” control 
and gating of lower sensorimotor circuits by 
executive function and decisions (Jensen et al., 
2015; Michalareas et al., 2016).  

In particular, stimulus-driven synchronization in 
 frequencies has been proposed to serve the 

maintenance of sensory object representation 
and feature binding (Engel and Singer, 2001; 
Singer, 1999) as well as the bottom-up 
processing of sensory information, while  
or  synchronization are assumed to underlie 
top-down cognitive control (Bastos et al., 2015; Buschman and Miller, 2007; Jensen et al., 
2015; Palva and Palva, 2007; Voloh et al., 2015). In line with this view,  band synchrony has 
been found to be stronger in the more forward-projecting superficial cortical layers, 
whereas  and  synchrony on the other hand are stronger in the deep cortical, backwards-
projecting layers (Fries, 2015). 

Consequently, complex functions such as working memory and attention have been shown 
to involve PS networks in various frequency bands. In particular, maintenance of visual 
information is correlated with  and  PS in visual and parietal regions (Salazar et al., 2012; 
Tallon-Baudry et al., 2001; Tallon-Baudry et al., 2004), whereas fronto-parietal  networks 

Figure 1: Phase synchrony, n:m cross-frequency phase 
synchrony and phase-amplitude coupling. Adapted 
from Palva 2012. 
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have been shown to underlie attentional and executive control, facilitating the processing 
of relevant and the suppression of irrelevant information (Freunberger et al., 2009; 
Glennon et al., 2016; Palva et al., 2010; Sadaghiani et al., 2012, van Driel 2014). Further, it 
has been proposed that synchrony exerts a top-down control function from the 
prefrontal cortex on parietal and temporal regions and facilitates task switching during WM 
(Griesmayr et al., 2014; Sauseng et al., 2005; Sauseng et al., 2006; Sauseng et al., 2010) and 
also underlies attention reorienting (Senoussi et al., 2018). Similarly, visual attention has 
been implicated to be facilitated by PS in  bands among frontal, posterior parietal, and 
visual regions (Doesburg et al., 2016; Doesburg et al., 2009; Lobier et al., 2017; Siegel et al., 
2008). 

PS can be quantified using various metrics, the best known of which is the phase-locking-
value (PLV) (Lachaux et al., 1999). Other metrics, such as the weighted Phase-Lag Index 
(wPLI) (Vinck et al., 2011) or the imaginary part of the complex phase-locking value (iPLV) 
(Palva et al., 2018) only take into account the imaginary part of the signal, which is not 
affected by volume conduction, and thus report fewer artificial interactions (see also 3.3.1). 

 CCross-frequency coupling 

While phase synchronization within frequency bands can achieve spatial integration, it does 
not explain how interactions between phase-synchronized networks of different 
frequencies can be achieved and hence what are the mechanisms that underlie the 
interplay of top-down and bottom-up processing. These interactions have been suggested 
to be mediated by several putative forms of cross-frequency coupling (CFC): phase-
amplitude coupling (PAC), also sometimes called “nested oscillations” (Axmacher et al., 
2010; Bahramisharif et al., 2018; Canolty et al., 2006; Cohen et al., 2009a; Cohen et al., 
2009b; Keitel et al., 2018; Lakatos et al., 2005; Lakatos et al., 2013; Park et al., 2015; Park et 
al., 2016; Roux et al., 2013; Vanhatalo et al., 2004), phase-phase coupling, which we here 
refer to as cross-frequency phase synchrony (CFS) (Besle et al., 2011; Chaieb et al., 2015; 
Palva et al., 2005; Sauseng et al., 2008; Tass et al., 1998), amplitude-amplitude coupling 
(AAC) and phase-frequency coupling (PFC) (Hyafil et al., 2015).  

An important distinction that has often not been made clear in past discussions of CFC is 
that between local and inter-areal interactions. Whereas local CFC is estimated between 
time series at different frequencies of the same neuronal population, inter-areal CFC is 
measured between time-series of different populations and different frequencies.  

In the past, most research has focused on PAC, where the amplitude of a faster oscillations 
is modulated by the phase of a slower oscillation, to such an extent that the term “cross-
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frequency coupling” has sometimes been used synonymously for PAC. Of these studies, 
most have focused on local PAC only, and the probably most studied form of CFC is local 
PAC in the rodent hippocampus (Belluscio et al., 2012; Roopun et al., 2008; Scheffer-
Teixeira et al., 2012; Scheffer-Teixeira and Tort, 2017; Tort et al., 2008; Tort et al., 2010; Xu 
et al., 2013). Local PAC has also been observed in human intracranial EEG (Axmacher et al., 
2010; Bahramisharif et al., 2018; Canolty et al., 2006; Jiang et al., 2015; van der Meij et al., 
2012; Watrous et al., 2015) and M/EEG data (Berman et al., 2015; Keitel et al., 2018; Roux 
and Uhlhaas, 2014) and few studies have identified inter-areal PAC in human intracranial 
(Chaieb et al., 2015; van der Meij et al., 2012) and M/EEG (Florin and Baillet, 2015; Park et 
al., 2015; Park et al., 2016). PAC is thought to reflect how sensory information processing in 
 oscillations is regulated by excitability fluctuations imposed by  and  oscillations 

(Canolty and Knight, 2010; Fell and Axmacher, 2011; Hyafil et al., 2015; Jensen and Colgin, 
2007; Lisman and Jensen, 2013; Palva and Palva, 2012; Roux and Uhlhaas, 2014; Schroeder 
and Lakatos, 2009). 

Another form of CFC that has been receiving increasing attention is cross-frequency phase-
phase coupling, for which we introduced the term cross-frequency phase synchrony (CFS) in 
study II. Similar to phase synchrony, in CFS there exists a consistent spike-time relationship 
between two oscillations, but at two different frequencies f1 and f2, where f1:f2 = m:n. For 
example, if f1:f2 = 1:4, the peaks of both oscillations’ phases will coincide in every fourth 
cycle of the faster oscillation. CFS can thus regulate neuronal communication at the speed 
of the higher frequency through consistent spike time relationships. In contrast, neither 
PAC nor AAC involve the phase of the faster oscillation; thus, these interactions operate on 
the slower time scale of the slower oscillation (Palva and Palva, 2012). Local CFS has been 
observed in human M/EEG data during rest (Besle et al., 2011; Jirsa and Muller, 2013; 
Nikulin and Brismar, 2006; Palva et al., 2005) and attentional and working memory (WM) 
tasks (Akiyama et al., 2017; Palva et al., 2005; Sauseng et al., 2008; Sauseng et al., 2009) as 
well as in LFPs in the rat hippocampus (Belluscio et al., 2012; Xu et al., 2013; Zheng and 
Zhang, 2013) and in intracranial data during WM (Chaieb et al., 2015). Inter-areal CFS has 
been studied in M/EEG data in rest and attentional and numeric tasks (Isler et al., 2008; 
Palva et al., 2005; Sauseng et al., 2008). 

Less attention has been given to amplitude-amplitude coupling (AAC), in which the 
amplitudes of the fast and slow oscillations are coupled and phase-frequency coupling (PFC), 
where the frequency of the faster oscillation is modulated by the phase of the slower 
oscillation. AAC has been observed in neuroimaging studies (Bruns and Eckhorn, 2004; de 
Lange et al., 2008; Helfrich et al., 2017), but its functional relevance remains unclear, since 
such coupling is independent of spike time relationships per se (Palva and Palva, 2017) and 
PFC is difficult to study in EEG and MEG data, where instantaneous frequency peaks are 
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difficult to determine, although there have been studies using intracranial recordings (Ray 
and Maunsell, 2010; Roberts et al., 2013).  

The relationship between the different forms of CFC has remained unclear; it has both been 
theorized that they may fulfill distinct roles, and that they are just different observable 
aspects of the same underlying mechanism. Different forms of CFC have been observed 
concurrently and there is evidence that they may interact and influence each other (Hyafil 
et al., 2015). 

In recent years, concerns have been voiced that observations of CFC may be spurious and 
caused at least partially by non-sinusoidal signals (Aru et al., 2015; Cole and Voytek, 2017; 
Gerber et al., 2016; Kramer et al., 2008; Lozano-Soldevilla et al., 2016; Scheffer-Teixeira and 
Tort, 2016). Such spurious observations can arise from non-sinusoidal signals that are 
created by non-stationary processes leading to higher-frequency artefacts (Aru et al., 2015; 
Cole and Voytek, 2017; Gerber et al., 2016; Kramer et al., 2008; Lozano-Soldevilla et al., 
2016; Scheffer-Teixeira and Tort, 2016; van Driel et al., 2015) or from recurring non-zero-
mean sharp waveform deflections leading to spurious lower-frequency artefacts (Nikulin et 
al., 2007). Therefore, it is necessary to investigate whether different forms of CFC can be 
observed concurrently and whether they are likely to represent one underlying mechanism 
or two separate complementary ones; and whether it can be shown that observations of 
CFC represent true and not spurious interactions. 

 EElectrophysiological neuroimaging 

Neuronal oscillations can be investigated using electrophysiological neuroimaging methods, 
where signals are recorded with high temporal resolution (typically 600 or 1000Hz).  

Magneto- and electroencephalography (MEG and EEG) are non-invasive methods of 
recording neuronal human brain activity. In EEG, pioneered by Hans Berger in 1924 (Berger, 
1929), electrodes are attached to the human scalp that measure differences in electric 
potential on the surface of the head, this technique was first used. In MEG, which was first 
recorded by David Cohen in 1968 (Cohen, 1968), magnetic fields and field gradients outside 
the head are measured with magnetic coils, for which today superconducting quantum 
interference devices (SQUIDs) are used. (Hamalainen and Sarvas, 1989a; Hamalainen and 
Ilmoniemi, 1994). The electromagnetic fields and currents underlying the signals recorded 
with MEG and EEG are thought to be generated primarily by coherent postsynaptic currents 
in large sheets of co-linearly oriented pyramidal neurons (Palva and Palva, 2012). 

Electrical neuronal activity can also be recorded invasively through electrodes implanted 
temporally or permanently in the brain. In humans, such studies are most commonly 
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carried out on patients with epilepsy in order to identify epileptic zones prior to surgery 
aiming to stop of relieve symptoms. In electrocorticography (ECoG), electrodes are places 
either on the dura, the outermost membrane layer surrounding the brain, or on the pia, the 
innermost layer. Single-or multi-contact electrodes can also be implanted deep into the 
cortex, cerebellum or subcortical structures in stereo-electroencephalography (SEEG, see 
3.1.3) (Pesaran et al., 2018). Each of these electrodes possesses several contact points, in 
this manuscript referred to as channels, at which the local field potential (LFP) is recorded. 
The position of these can be localized using a stereotactical frame attached to the head and 
CT and/or MRI scans. (Cardinale et al., 2013; Pesaran et al., 2018) 

With the exception of single-cell recordings, recorded electrophysiological signals always 
represent the activity of groups of neurons. The magnitude of these numbers scales with 
the recording modality, so that the time series obtained with EEG or MEG comprise a much 
larger number of (potentially) contributing neurons than the time series from ECoG or SEEG 
contacts. Further, neurons may contribute unequally to such signals, for example MEG 
signals are thought to be dominated by the activity of large pyramidal neurons in layers 2/3 
and particularly layer 5 (Murakami and Okada, 2006; Pesaran et al., 2018).  

 EEstimation of functional connectivity 

The term functional connectivity (FC) denotes correlations between the time series of 
distinct sensors or brain areas, which are taken as a measure of communication between 
them. While in fMRI, FC is estimated as correlations of BOLD signal fluctuations, in 
electrophysiological neuroimaging data it can be estimated by a variety of metrics which 
are based on aspects of neuronal oscillations. These include spectral coherence (Nolte et al., 
2004; Nunez et al., 1997), correlations of the amplitude envelope (Brookes et al., 2012; 
Bruns et al., 2000; de Pasquale et al., 2010; Hipp et al., 2012; O'Neill et al., 2015), or phase 
synchronization (Lachaux et al., 1999; Palva et al., 2005; Stam et al., 2007; Vinck et al., 2011) 
between neuronal oscillations of the same frequency. In MEG/EEG data analysis, volume 
conduction causes spurious observations of FC (see 4.1.2). Some FC metrics have been 
designed specifically to be less likely to report spurious connections (Colclough et al., 2016; 
Palva and Palva, 2012; Vinck et al., 2011), although none can alleviate the problem entirely 
(Palva et al., 2018). The metrics used in studies II-IV to quantify phase synchronization and 
amplitude correlations are described in section 3.3.1. 
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 EEstimation of directed connectivity 

Measures of functional connectivity do not inform about in which direction information is 
transferred between connected regions. Directionality of interactions and information flow 
can be measured using metrics of directed connectivity. Methods used to estimate directed 
connectivity include Granger causality (Granger, 1969) and transfer entropy (TE) (Schreiber, 
2000), which are based on information theory (Shannon, 1948) and Wiener’s principle 
(Wiener, 1956) of observational causality. According to this principle, a signal A influences a 
signal B, if the future of B can be predicted better knowing the past of A, than knowing only 
the past of B. This can be expressed using Shannon Entropy, which quantifies the 
uncertainty of a signal’s distribution of values. These existing implementations however 
have been shown to be sensitive to noise and linear mixing (Nalatore et al., 2007; Nolte et 
al., 2010) that occur in EEG and MEG recordings (Palva and Palva, 2012) and they have not 
been designed to analyze phase-specific interactions. In study I, we introduce Phase TE, a 
phase-based metric for estimating directed connectivity EEG and MEG data (see section 
3.3.2). 

2.  Aims 
 

Study I: The aim of this study was to develop and test Phase Transfer Entropy (Phase TE), a 
novel method for estimating directed connectivity among oscillations in MEG and EEG data. 

Study II: The aim of this study was to investigate using source-reconstructed M/EEG data 
whether CFS supports the integration of synchronized networks in distinct frequency bands 
during visual working memory (VWM) maintenance in a match-to-sample task. We 
predicted that CFS if underlies the integration of sensory and executive control functions in 
VWM, it should be observable and dependent on VWM object load, connect task-relevant 
networks and predict individual VWM performance.  

Study III: The aim of this study was to investigate in source-reconstructed M/EEG data if PS, 
CFS and/or PAC support visual attention during two multi-object tracking tasks, and are 
correlated with subjects’ individual attentional capacity.  

Study IV: The aim of this study was to investigate whether non-spurious CFS and PAC can 
be observed during resting state in source-reconstructed MEG and in localized SEEG data. 
Also, we aimed to address concerns that had been brought up about the possibility that 
observations of CFC might be spuriously caused by filtering artefacts stemming from non-
sinusoidal or non-zero-mean signals.  
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33.  Methods 

This section describes the most important steps of data acquisition, preprocessing and 
analysis. More detailed descriptions are found in the method sections of the individual 
publications.  

3.1 Data acquisition 

3.1.1 Simulating Data with Neural Mass Models 

We generated signal pairs with a coupled dual-kinetic 2-area neural mass model (NMM) 
described by David and Friston (David et al., 2004). Long-range interactions between two 
cortical areas (Area 1 driving Area 2) were modeled by excitatory connections between two 
extended Jansen models (representing each cortical area) (David et al., 2003). The model 
parameters were chosen to obtain relatively broadband neuronal-like signals with a power 
spectrum peaking in the  frequency band (15–30 Hz). Noise time series with the same 
power spectrum as the original signals were created using frequency-domain phase 
shuffling (Hurtado et al., 2004) and linear mixing was simulated by linear addition of the 
signals. 

3.1.2 Magneto- and Electroencephalography 

Recordings of MEG and EEG for studies II-IV were carried out at Helsinki University Central 
Hospital. For studies II and III, MEG (204 planar gradiometers and 102 magnetometers) 
data and EEG data (60 channel electrode cap) were recorded concurrently (M/EEG) with a 
Vectorview system (Elekta Neuromag Ltd., Finland) at 600 Hz sampling rate from 12 and 19 
healthy subjects, respectively. For study IV, MEG data (204 planar gradiometers and 102 
magnetometers) was recorded from 23 healthy subjects at 1000 Hz sampling rate with a 
Triux system (Elekta Neuromag Ltd). 

3.1.3 Stereo-Electroencephalography 

For study IV, we also used SEEG data that had been recorded from 59 subjects affected by 
drug resistant focal epilepsy undergoing pre-surgical clinical assessment at Claudio Munari 
Epilepsy Surgery Centre, Niguarda Hospital, Milan, Italy. Anatomical positions and numbers 
of electrodes varied according to surgical requirements (Cardinale et al., 2013). One 10-
minute set of eyes-closed resting state data was recorded from each subject with a 192-
channel SEEG amplifier system (NIHON-KOHDEN NEUROFAX-110) at a sampling rate of 
1000 Hz (Arnulfo et al., 2015).  
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33.1.4 Structural imaging 

In order to localize recorded signals correctly in the brain, anatomical scans need to be 
recorded and co-registered with the positions of the sensors or electrodes. For MEG source 
reconstruction in studies II-IV, T1-weighted anatomical magnetic resonance imaging (MRI) 
scans were recorded at Meilahti hospital, Helsinki, at a resolution of 1x1x1 mm with a 1.5 T 
MRI scanner (Siemens, Germany). For localization of SEEG contacts in study IV, 
computertomographic (CT) scans and structural MRIs were recorded on-site after 
implantation (Cardinale et al., 2013; Narizzano et al., 2017). 

3.2 Signal pre-processing 

3.2.1 Co-registration and inverse modeling 

Source reconstruction allows the reconstruction of cortical activity from measured MEG 
and EEG signals and the anatomical MRI images and thus can shed light on the activity of 
brain regions and their interactions with greater precision than sensor-level analysis. 
Furthermore, in connectivity analysis, source reconstruction can alleviate some of the 
signal-mixing problems that arise due to volume conduction and reduce the number of 
reported artificial connections (Palva et al., 2018; Palva and Palva, 2012). However, the 
computation is not straightforward, as this so-called “inverse problem” is ill-posed and has 
no unique solutions. Still, numerous approaches have been brought forward to obtain good 
estimates of neuronal activity, among them minimum-norm estimates (MNE) (Hamalainen 
and Ilmoniemi, 1994). 

We first used Maxfilter software (Elekta Neuromag Ltd) to suppress extra-cranial noise and 
lo-localize recordings in signals space, and then removed ocular artefacts with independent 
component analysis based on the Matlab software package FieldTrip (Oostenveld et al., 
2011). Source reconstruction from MEG and EEG data was performed with FreeSurfer 
software (Fischl, 2012) (http://surfer.nmr.mgh.harvard.edu/) for volumetric segmentation 
of MRI data, surface reconstruction, flattening, cortical parcellation, and neuroanatomical 
labeling with the 148-parcel Destrieux atlas. (Dale et al., 1999; Destrieux et al., 2010; Fischl 
et al., 2002). We obtained more fine-grained cortical parcellations of 200 and 400 parcels 
by iteratively splitting the largest parcels of the Destrieux atlas along their most elongated 
axis at the group-level (Korhonen et al., 2014; Palva et al., 2010; Rouhinen et al., 2013).  

MNE software (http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php) 
was used to create head conductivity models and cortically constrained source models with 
5000-8000 sources/hemisphere as well as for the co-localization and for the preparation of 
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the forward and inverse operators (Hamalainen and Ilmoniemi, 1994; Hamalainen and 
Sarvas, 1989b). 

33.2.2 Removal of low-fidelity parcels and connections 

One major confounding factor in synchrony analysis of collapsed parcel time series data are 
spurious edges resulting from signal mixing between neighbouring brain regions in data 
acquisition and source reconstruction (Palva et al., 2018; Palva and Palva, 2012). One first 
step to reduce spurious observations is to remove those parcels or parcel pairs where 
observations are the least reliable. We assessed the reliability of data based on phase 
correlations between real and simulated data. Parcel fidelity (fid) was defined as the phase 
correlation between the original true parcel time series and the forward-inverse modeled 
parcel time series (Korhonen et al., 2014). Parcel cross-talk (ct), was taken as the phase 
correlation between the forward-inverse modeled parcel time series with the original true 
time series of all other parcels. For each parcel, we calculated c as the average of fid values 
with all other parcels. Parcel spread (spr) for each parcel p was calculated as the mean fid of 
all other parcels with the original time series of parcel p and hence reveals parcels 
generating signals that are spuriously reflected in many other parcels. By excluding parcels 
with low fid, and high spr, as well as parcel pairs with high ct between them, the probability 
of spurious synchronization and anatomically misplaced connections can be reduced. These 
parcels are located mostly in deep and/or inferior sources, which are known to generate 
the least reliable signals in M/EEG and hence are most likely to incorrectly reflect signals 
that are generated elsewhere (Korhonen et al., 2014). 

3.2.3 Frequency filtering 

In order to extract the individual frequency components from the measured broadband 
signal, a filter is applied. In all studies, we filtered time series using Morlet Wavelets so that 
the filtered time series X(t,f) were obtained by convolution of the original time series x(t) 
with Morlet wavelets w(t,f):  for each wavelet frequency fmin ≤ f ≤ 
fmax, where: 

 , where , , i is the 

imaginary unit, and the Morlet parameter m was  (Tallon-Baudry et al., 1996). 

We used log-linearly spaced center frequencies ranging from 3–90 Hz, 3–120 Hz, and 1-315 
Hz in studies II, III, and IV, respectively.  
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33.3 Connectivity analysis 

3.3.1 Metrics of functional connectivity 

Phase synchronization can be quantified using various metrics, the most common of which 
is the Phase Locking Value (PLV) (Lachaux et al., 1999). However, in data recorded e.g. with 
magnetoencephalography, volume conduction (VC) can lead to detection of artificial 
interactions, i.e. false positives, when the PLV is used as metric (also see 4.1.1). Other 
metrics only take into account the imaginary part of the signal which is not affected by VC, 
and are thus immune to such artificial interactions. Examples include the Phase-lag Index 
(PLI), the weighted Phase-Lag Index (wPLI) (Vinck et al., 2011), and the imaginary part of the 
PLV (Palva et al., 2018). 

From a real times series x(t), one can obtain the analytical time series X(t) can be expressed 
through their amplitude and phase: 

 

The PLV between two parcels or electrode channels i, j was estimated as:  

 

where  and  are the phases of the time series of parcels/channels at one frequency and 
, where Nr is the number of trials r and Nt is the number of samples t within a 

time window 

The wPLI between two parcels or electrodes i, j was estimated as: 

where im(Xij) is the imaginary part of the cross-spectrum of the complex time series, and E{ } 
is the expectancy value operator.  

CFS at ratio 1:m was estimated as follows: 

 

where , where  and  are the respective phases of the time series of 

channels/parcels i, j at frequencies f1, f2,.  
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For estimation of PAC, the same formula as for CFS can be used, only the phase of the 
second time series is replaced with the phase of the filtered amplitude envelope time series 
E(t, f1 f2) that was obtained by convoluting A(t, f2) with the Morlet wavelet w(t,f1):  

. This method of estimating PAC has been shown to have 
small sensitivity to phase-clustering bias (van Driel et al., 2015). 

PAC at ratio 1:m was estimated as: 

 

where  is the phase of the amplitude envelope of the HF time series filtered with at f1. 

Cross-frequency amplitude couplings (AAC) were estimated as the Pearson correlation of 
the amplitude time series:  

 

where  ,   and . 

In studies II & III, these estimations were carried out over short time windows (0.3 and 0.5 s, 
respectively) prior to and past stimulus presentation. In Study IV, estimations were carried 
out over the whole recorded time of about 10 minutes. 

33.3.2 Estimating directed connectivity with PhaseTE 

The uncertainty of a variable X is defined by its Shannon Entropy 
. Shannon entropy of a variable at a given time point can conditioned on 

another variable, or on itself at a different time point: 

 

 
The Transfer Entropy from a signal X to another signal Y can be expressed as the difference 
between the Shannon Entropy of the present of Y (Y(t)) conditioned on its past (Y(t’)) and 
the Shannon Entropy of the present of Y conditioned on both its past and the past of X 
(Schreiber, 2000): 
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In study I, we introduced a new measure of directed connectivity named Phase Transfer 
Entropy (Phase TE). In Phase TE, entropy is estimated not from the signals X, Y, but instead 
from their phases . Accordingly, Phase TE  for a given analysis lag δ is defined as: 

   
where x(t’) and y(t’) are the past states at time point t’=t-δ: x(t’) = x(t-δ) and y(t’) = y(t-
δ)).  
The probabilities necessary for the estimation of TE can be obtained by estimating the 
state-space of the processes underlying time series. This is explained in more detail in the 
methods section of study I. 

33.3.3 Statistical testing 

In study II, statistical significance of connections in was estimated on the group level by 
comparing values during VWM maintenance to those in the pre-stimulus period using a 
two-sided t-test, or correlating them with object load using Pearson’s correlation test. We 
then removed as many positive significant findings as predicted by the alpha-level to be 
false discoveries to compensate for multiple comparisons and to reduce false discovery rate 
(FDR). In study III, significant correlation with load was estimated by a Pearson 
randomization test. In addition to the correction performed in study II, we also estimated a 
FDR-adjusted threshold for the number of significant observations that could be expected 
to arise by chance from graphs of random p-values after the false discovery reduction in 
any single frequency of all wavelet frequencies. In study IV, significance was established by 
comparing observed values of interaction strength and connection strength to values 
obtained using surrogates which were created at the single-subject level by shifting one of 
the time series by a random number of samples. The expected chance level of connection 
density was subtracted from reported values. 

3.3.4 Network analysis and visualization 

Networks can be characterized and analyzed using graph theory (Bullmore and Sporns, 
2009). In doing so, brain regions, e.g. cortical parcels, are the nodes of a network, and the 
interactions/connections between them are the edges. There are several ways in which 
networks can be constructed: Edges can be either binary, taking only values of 0 and 1, or 
weighted, representing the strength of the interaction. A network in which some edges are 
non-existent, i.e. have a value of 0, is called a sparse network. By retaining only edges 
which either are above a certain strength level or alternatively are found to be significant in 
statistical tests, sparse networks can be obtained and can then be characterized by the 
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connection density K, that is the number of existing edges divided by the number of 
possible edges. An individual node can be characterized e.g. by its degree, i.e. the number 
of adjacent edges, by its relative degree, i.e. the number of adjacent edges divided by the 
maximum possible number of adjacent edges, or by its centrality, i.e. how many of the 
shortest paths between other nodes pass through it. Nodes with high degree and/or 
centrality are called hubs and considered important for communication within networks 
and their stability. 
In studies II-IV, we used graph theory to characterize network structure through connection 
density and hubs, and in study IV introduced a new node metric that represented the 
preferred directionality of nodes in CFC interactions. 
In study II, we performed several further analyzes on the networks spanned by significant 
CFS connections. In order to test whether CFS between two frequencies f1 (LF), f2 (HF) 
connected PS networks at these frequencies, we tested whether the degree of LF and HF 
frequency hubs of CFS networks was correlated (Pearson’s correlation test) with their 
degree in LF and HF PS networks. Further, we visualized the major nodes and edges of 
networks as graphs drawn on flattened cortical surfaces, using a novel hyperedge bundling 
technique for improved visualization of CFS connections and minimization of the number of 
2nd order spurious connections (Wang et al., 2018). Finally, to establish functional 
significance of CFS, we estimated the correlation (Pearson’s correlation test) of inter-
individual variability in the summed strength of these networks with the variability in VWM 
capacity, which was obtained from their hit rates at different object loads. 
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Figure 2: Differential Phase TE correctly detects coupling direction 
and increases with coupling strength (A) and distributions of 
differential Phase TE for different coupling values showed only small 
overlap (B). Adapted from study II. 

44. Results 
 

Study I: Phase transfer entropy: A novel phase-based measure for directed 
connectivity in networks coupled by oscillatory interactions 

In this study, we explored phase transfer entropy (Phase TE) as a metric of directed 
connectivity among neuronal oscillations. Transfer entropy (TE), based on information 
theory, estimates whether the future of a time series A can be predicted better knowing 
both its past and the past of another time series B than from only A’s past alone; if so, then 
time series B is found to causally influence signal A. Phase TE quantifies the transfer 
entropy between phase time-series such as those obtained by narrow-band filtering 
neuronal time series. We simulated data with coupled Neuronal Mass Models to both 
evaluate the characteristics of Phase TE and compare it to of a real-valued TE 
implementation. In order to determine directionality between two signals, differential 
Phase TE was computed as the difference of the Phase TE values in both possible directions. 
Differential Phase TE increased monotonically with coupling strength and correctly detec-
ted direction for coupling strengths > 0 (Figure 2).  
 
We found that our metric reliably detected strength and direction of coupling across a wide 
range of parameters, such as analysis lag, samples  size, noise and linear mixing, as can be 
observed in real MEG and EEG recordings, and did so more robustly than real-valued 
broadband or narrowband TE implementations (Figure 3). Further, Phase TE was shown to 
be more computationally efficient than those implementations. We also found that 
appropriate null-hypothesis distributions can be obtained from surrogate data for 
estimation of statistical significance.  
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SStudy II: Cross-frequency synchronization connects networks of fast and slow 
oscillations during visual working memory maintenance 

 

In this study, we analyzed neuronal data recorded with concurrent M/EEG from healthy 
subjects performing a visual working memory (VWM) task (see Figure 4). We hypothesized 
that inter-areal CFS would support integration between the frontoparietal  networks and 
occipitoparietal  and  sensory networks during VWM maintenance and thus predict VWM 
performance. We estimated n:m inter-areal cross-frequency phase synchrony (CFS) among 
cortical parcels in source-reconstructed data during the VWM retention period (from 0.4 s 
after stimulus presentation), in which there is no confound by stimulus-evoked activity. We 
found that inter-areal CFS could be observed among cortical parcels (Figure 4) was 
modulated by task and showed distinct patterns across frequencies and ratios (Figure 5A-D).  

Figure 3: Differential Phase TE detects directed interactions more reliably than 
differential broadband (BB) or narrowband (NB) real-values Transfer Entropy
across different values of SNR and mixing, which is evident both in absolute 
values (A) and in sensitivity estimations (B). Adapted from study II. 
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Connection density of inter-areal CFS was increased between high-  (5-8Hz) and –  and 
between high-  (11-15Hz) and –  frequencies at CF ratios from 1:2 to 1:9 in a harmonic 
structure. Increases in CFS between high-  (10-15 Hz) and higher frequencies were also 
correlated with VWM load at ratios 1:2 – 1:4, indicating relevance of CFS for VWM 
maintenance. CFS between low-  (7-10 Hz) and higher bands was decreased at ratios 1:2 – 
1:9. We also estimated inter-areal phase-amplitude coupling (PAC) similarly to CFS. Inter-
areal PAC was increased among ,  and  bands at ratios 1:2 and 1:3, showing a spectral 
pattern markedly distinct from that of CFS (Figure 5E-H). 
 
To verify that observations of CFS weren’t caused by changes in signal-to-noise ratio (SNR), 
we estimated the SNR from comparisons of experimental and empty-room recordings and 
verified that only a small fraction of CFS could potentially be explained by changes in SNR. 
Further, we tested whether variance of changes of CFS-PLV were correlated with amplitude 
and found no overall correlation. Finally, to rule out that CFS was caused by non-sinusoidal 
waveforms, we computed cross-frequency amplitude-amplitude correlations, which 
showed a different structure from CFS, with no harmonic pattern over low frequencies. 
 
Increased CFS was observed especially among visual, fronto-parietal, and dorsal attention 
networks. LF network hubs in  and  bands that showed increased numbers of CFS 
connections during the VEM maintenance were found mainly in regions belonging to the 
fronto-parietal, dorsal, attention and ventral attention networks, notably including 
prominent hubs in the right PPC, whereas HF hubs were localized mainly to visual regions 
and parts of the dorsal attentional networks. Hubs that were less active during VWM 
maintenance were localized to default and somatomotor networks, which are not thought 
to be involved in VWN. We also computed the correlation of vertex degree between LF and 
HF hubs in CFS and the vertex degree in PS networks at the same frequencies. We found 
that indeed, these values were correlated, supporting the hypothesis that PS networks in 
different frequency bands are connected by CFS. 

 
Finally, we found that inter-individual variability in the strength of CFS networks in ratios 
1:2 – 1:5 over high-  band and in ratios 1:6 – 1:9 over high-  band predicted intra-
individual variability in VWM capacity, indicating that CFS is behaviourally relevant for 
VWM. No such relationship was found for PAC.  
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Figure 4: Inter-areal cross-frequency phase synchrony (CFS) in human cortex is modulated during a visual 
working memory task. A) Illustration of the delayed-match-to-sample experimental paradigm. The sample 
stimulus containing 1–6 colored squares is presented for 0.1s and then after a 1s retention period a test stimulus 
appears and the subject responds whether one of the objects has a different color than in the sample stimulus. 
The flattened cortical surface shows an example of 1:4 CFS (purple line) connection between  (13 Hz) 
oscillations in the right medial frontal sulcus (MFS) with  (54 Hz) oscillations in left occipital pole (Occ.Pole) 
during VWM retention. These  and  oscillations were concurrently also 1:1 synchronized in networks of other 
cortical areas (blue and red lines, respectively). B) The  and  narrowband time series. C) The phase of the 
narrowband signals, with the zoom-in illustrating CFS during the retention period. D) Strength of CFS (top) and of 

 and phase synchrony (middle and bottom). The grey area denotes the 99%-ile confidence intervals of null 
hypothesis PLV values obtained with time-shifted surrogate data. From study II. 
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Figure 5: During VWM retention, inter-areal cross-frequency phase synchrony (CFS) was enhanced across 
ratios over higher  and higher band and suppressed over lower and lower  band. K+ and K- indicate 
fractions of inter-areal CFS connections that were significantly stronger (A) or weaker (C) during VWM 
maintenance than in pre-stimulus baseline; or that were positively (B) or negatively (D) correlated with VWM 
load. Inter-areal Phase-Amplitude Coupling (PAC) was stronger than during baseline (E) at low ratios in  band 
and across ratios in high  suppressed over band across ratios and for medium ratios over low  (F). Positive 
correlations of PAC with load (G) showed similar profile to E, while negative correlations were comparatively 
weak (H). Adapted from Study II. 
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SStudy III: Distinct spectral and anatomical patterns of large-scale 
synchronization predict human low and high attentional capacity   

In this study, we investigated the role of phase-synchronization and CFC in setting the 
capacity limits of visual attention. To this end, we analyzed source-reconstructed M/EEG 
data from healthy subjects performing two multi-object tracking (MOT) tasks which are 
commonly used to study attentional capacity limitations (Bettencourt et al., 2011; Oksama 
and Hyona, 2004; Pylyshyn and Storm, 1988).  In the task, we varied the number of 
attended of visual objects between one and with a maximum of four objects. The visual 
objects were presented either without (T1) or with (T2) the presence of differently colored 
distractor among the targets (see Figure 6). We then estimated phase synchrony and CFS 
and PAC networks for frequencies from 3–120 Hz and for all cortical parcels of the source-
reconstructed MEG data.  

 

 Figure 6: Multi-object tracking tasks. A) Task 1, with 3 out of possible 4 objects moving on the screen. B) Task 2, 
with two target (pink) and two distractor (yellow) objects. C) Example paths of target and distractor objects over 
a 45 second period. Adapted from Study III. 

We found that PS in  band (T1&T2) and in low-  band (L , 30-60 Hz) in T1 and in high-  
band (H , 60-120 Hz) in T2 preceding the target event was stronger for correct target 
detection. Further, PS was positively correlated with attentional load in  and H  bands in 
T1 and with low-  and H  bands in T2. When subjects were divided into two groups based 
on their attentional capacity, significant different spectral patterns of PS were observed in 
multiple frequency bands.  

We further observed significant inter-areal CFC to be correlated with task performance. In 
both tasks, , ,  and L :H  coupling were observed across many ratios, but after 
correcting for false discovery rate only  and L  1:2 CFS in T2 remained. Importantly, 
visual inspection implicated that CFS differed between high- and low-capacity subjects. 
Notably, and L  1:2 CFS was stronger at higher frequencies for high-capacity subjects 
than low capacity subjects, however these results were significant in a group permutation 
test for only few individual frequency ratios. (Figure 7A-B). In addition to CFS, we also 
observed significant inter-areal PAC that connected ,  and  bands at ratios 1:3 – 1:6 (T1) 
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and 1:2 – 1:8 (T2) for high-capacity subjects that was largely absent in subjects with low 
capacity (Figure 7C-D). Importantly, these findings were found to be significant in group 
permutation testing for a number of frequency ratios. 

 

Figure 7: Connection Density (K) of inter-areal CFS connections whose strength was positively correlated with 
load in (A) T1 and (B) T2 (Pearson’s randomization test across loads 2-4). Values are shown in color-scale when p 
< 0.05 and when K was > 0.33%, and in grayscale when p < 0.05 but K < 0.33%, with 0.33% representing the FDR-
adjusted threshold for significant K values. Inter-areal PAC coupled the phase of  and low-  band oscillations 
with high-capacity subjects at ratios 1:3 - 1:6 in T1 (C) and at ratios 1:2 - 1:8 in T2 (D). Green outlines show 
where group differences between high- and low-capacity subjects were found to be significantly different in a 
group permutation test (N=200). From study III. 
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SStudy IV: Inter-areal CFS and PAC in human resting state 

In this study, we aimed to identify if true, non-spurious inter-areal CFS and PAC, 
characterize human resting state activity. We analyzed SEEG data from 59 epileptic patients 
and source-reconstructed MEG data from 23 healthy subjects. We estimated PS, and both 
local and inter-areal CFS and PAC at ratios 1:2 – 1:7 from both MEG and SEEG data. We 
observed robust inter-areal  and  CFS and PAC at ratios 1:2 and 1:3 in both MEG and 
SEEG data. In SEEG data, also  CFS at these ratios and higher-ratio PAC were 
observed Further, coupling between  and very high  (>120 Hz) was observed in MEG data 
at rations 1:2 and 1:3 for CFS and 1:2 – 1:7 for PAC (Figure 8). Also, local CFS and PAC were 
observed that showed similar profiles to inter-areal CFC, but at generally higher connection 
densities. However, for local CFC, spurious observations can not be distinguished from true 
ones. 

We addressed concerns that observations of CFC may be spurious if they are caused by 
non-sinusoidal waveforms that are erroneously interpreted as two different processes. We 
posited that for inter-areal CFC, it is possible to show that the two processes between 
which true CFC is observed are separate and not otherwise connected, proving that they 
are true and not spurious; and implemented a method to identify non-spurious connections 
in our data. We removed CFC connections between two narrowband signals at different 
locations if these were also connected by local CFC and PS, and thus could not be safely 
assumed to be independent. Even after removal of possibly spurious observations, 
connection density remained above chance level (Figure 8) for most observed interactions. 
The observed coupling between  and very high  in MEG data however was reduced to 
near zero, which together with the absence of such coupling in SEEG data pointed at an 
artefactual origin of these observations. For local CFC, no correction for spurious 
connections could be done and thus it remains unclear how many of these observations 
represent true CFC.  

We further found in both datasets that connection density of inter-areal CFC was higher 
among short-range connections than long-range ones and in superficial than deep cortical 
layers. Finally, using graph-theory based metrics, we identified low- (LF) and high-frequency 
(HF) hubs for all interactions. We found that in both datasets, LF hubs in CFS were mainly 
localized to lateral prefrontal and medial parietal cortex and HF hubs in posterior parietal, 
somatomotor and temporal cortex, whereas for PAC, the localization was opposite to that 
of CFS (Figure 9). Similar results were found when using a directionality analyses that 
provided an alternative way of identifying LF and HF hubs. 
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Figure 8: Cross-frequency synchrony (A-D) and phase-amplitude coupling (E-H) in SEEG resting state data from epileptic patients 
and source-reconstructed MEG resting state data from healthy subjects. Mean connection density values K are given before and 
after removal of potentially spurious connections. A and B show the same mean values, in A 95% confidence limits are added 
(colored area); the same applies to (C,D), (E,F) and (G,H). Prominent peaks are noted with the frequency bands they connect. 
From study IV. 
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Figure 9: Relative low (f1) vs. high (f2) degree of each brain region (parcel) for CFS and PAC networks.  Relative 
degree values indicate whether parcel is primarily a hub for the low frequency (f1, red) or high frequency (f2, 
blue) in inter-areal CFC. Top row: Brain anatomy of CFS and PAC at ratio 1:2 connecting  and  frequencies. 
Bottom row: Brain anatomy of CFS and PAC networks at ratio 1:3 connecting  and  frequencies. CFS and 
PAC networks show nearly opposite anatomical structures connecting anterior and posterior brain regions.   
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55.  Discussion 

In this thesis work, two main questions were investigated, namely how information flow in 
phase-synchronized networks can be measured, and how such networks are integrated 
across frequency bands.  

In study I, we introduced a novel metric of directed connectivity, Phase TE and tested and 
confirmed its suitability for the analysis of electrophysiological neuroimaging data using 
simulated data generated with neural mass models. 

In studies II-IV, we investigated in electrophysiological neuroimaging data whether two 
forms of cross-frequency coupling (CFC), namely phase-amplitude coupling (PAC) and 
phase-phase coupling or cross-frequency phase synchrony (CFS) could be observed in the 
human cortex during task and rest. We showed in study II that inter-areal CFS and PAC are 
observed during visual working memory (VWM) maintenance and that inter-areal CFS was 
functionally relevant and correlated with subjects’ VWM capacity. In study III, we found 
that inter-areal CFS and PAC supported visual attention in two multi-object tracking tasks. 
In study IV, we observed inter-areal CFS and PAC during the human resting state and used a 
novel graph-based method to confirm that observations reflected true and not spurious 
interactions and found diverging anatomical distributions for CFS and PAC. 

5.1 Phase Transfer Entropy as a novel method for estimating directed 
connectivity 

In Study I, we showed that Phase TE is an appropriate and efficient model for investigating 
directed connectivity in MEG and EEG data. In the analysis of simulated data, Phase TE 
detected strength and direction of connectivity between signal pairs, also for low coupling 
strengths, and in the presence of realistic amounts of noise and mixing. Compared to non-
phase-based transfer entropy, Phase TE showed superior computational efficiency and 
superior performance in detecting direction of information flow among linear mixing and 
noise. Therefore, Phase TE shows great promise for the investigation of information flow in 
M/EEG data.   
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55.2 Inter-areal cross-frequency coupling characterizes neuronal activity in the 
human cortex 

The studies II-IV presented in this thesis have investigated two forms of inter-areal cross-
frequency coupling, namely phase-amplitude coupling (PAC) and phase-phase coupling or 
cross-frequency phase synchrony (CFS).  

While cross-frequency coupling has been investigated for two decades, more attention has 
been given to PAC than CFS and more studies have investigated local CFC than inter-areal 
CFC. Of those inter-areal studies, only few were carried out with source-reconstructed 
M/EEG data (Florin and Baillet, 2015; Park et al., 2015; Park et al., 2016) or intracortical 
recordings (van der Meij et al., 2012). 

In study II, we set out to show that task-relevant increases in inter-areal CFS could be 
observed during a VWM task in source-reconstructed M/EEG data and that they were 
different from inter-areal PAC and related to individual capacity, which was corrobated by 
the results. In study III, we investigated both inter-areal CFS and PAC with source-
reconstructed M/EEG during two visual attention tasks and found task-relevant increases 
for both and different spectral patterns between subjects with low and high attentional 
capacity, indicating that CFC plays a crucial role for visual attention. In study IV, we showed 
that inter-areal CFS and PAC also characterize the human resting state, using both source-
reconstructed MEG and SEEG data. Both CFS and PAC resting-state networks showed 
similarities to known within-frequency resting state networks. We also estimated local CFC 
in this study, which showed similar peaks, but was significant for a higher fraction of parcels 
than the fraction of parcel pairs in inter-areal CFC. However for local CFC, spurious and true 
observations can not be disentangled, unlike inter-areal CFC (see 5.5). 

These findings extend previous reports of inter-areal CFC (Florin and Baillet, 2015; Palva et 
al., 2005; Park et al., 2014; Park et al., 2015; Schack et al., 2005; van der Meij et al., 2012), 
providing further support for the existence and functional relevance of CFC in the human 
brain. 

5.3 The role of CFC in VWM and attention 

Visual working memory and visual attention are two closely related cognitive functions that 
are supported by activity in several regions distributed across the cortex, especially in the 
frontal, posterior parietal and occipital cortices. Several studies have found that 
representation of visually perceived and attended objects is localized in the occipital cortex 
(Emrich et al., 2013; Riggall and Postle, 2012; Sreenivasan et al., 2014) and there enabled by 
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 oscillations (Busch et al., 2006; Honkanen et al., 2015; Michalareas et al., 2016; Rouhinen 
et al., 2013; Vidal et al., 2006) and attended stimuli (Rouhinen et al., 2013; Vidal et al., 
2006). The frontoparietal network, including the lateral prefrontal cortex (PFC) and 
posterior parietal cortex (PPC) has been shown to underlie regulation, manipulation and 
utilization of objects stored in VWM (Harding et al., 2015; Markowitz et al., 2015; Rowe et 
al., 2000; Sreenivasan et al., 2014) and attention by means of  and  connectivity 
(Doesburg et al., 2016; Doesburg et al., 2009; Lobier et al., 2017; Siegel et al., 2008). 

In studies II and III, we set out to investigate whether CFC could underlie the integration of 
oscillations and PS networks across regions and frequency bands to support VWM and 
visual attention, respectively. In study II, we found that inter-areal CFS of  and high-  (10-
15 Hz) bands with harmonic higher frequencies was elevated during VWM maintenance 
period compared to pre-stimulus baseline and also correlated with object load. We 
visualized significant edges and the main hubs that they connected, and found that low-
frequency (LF) hubs in  and high-  were localized mainly in prefrontal and parietal regions, 
that are part of the frontoparietal control network and the ventral and dorsal attention 
networks. High frequency (HF) hubs in  band were found especially belonging in regions to 
the dorsal attention network as well as in occipital regions and some regions of the 
frontoparietal network. We further wanted to analyze whether CFS connected PS networks 
and found that vertex degree, which indicated network hubs, was correlated between LF 
and HF hubs in CFS and hubs in PS networks of the corresponding frequencies, and that 
central hubs included the PPC and frontal regions in  and high- networks. HF hubs in the 
 band were found in the occipital regions and the inferior temporal gyrus, which is 

associated with object recognition and representation. These results indicate that CFS in is 
indeed important for VWM and connects PS networks of different frequency bands. 
Increases in inter-areal PAC and correlations with object load were also found, but mostly 
of the low  band with higher frequencies. Also, we found that inter-individual variability in 
CFS network strength of high-  and higher frequencies at ratios 1:2 – 1:5 and of  band and 
higher frequencies at ratios 1:6 – 1:9 predicted intra-individual variability in VWM capacity, 
indicating that CFS is behaviourally relevant for VWM. No such relationship was found for 
PAC.  

In study III, we found that inter-areal CFS among , low  (L , 30-60 HZ) and high  (H , 60-
120 Hz) at ratios 1:2 and 1:3 in T2 was correlated with load at values of connection density 
surpassing the FDR-adjusted threshold. Findings in task 1 (T1) and at other ratios in task 2 
(T2) did not reach significance after controlling for false discovery rate (FDR). Inter-areal 
PAC connected , , L and  bands in both tasks. Findings of CFC at other ratios did not 
surpass the FDR-adjusted K threshold. Notably, in this study overall connection density 
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values were small compared to the other studies, which may have been influenced by the 
choice of a more fine-grained cortical parcellation or the statistical methods. Analysis of PS 
in that study showed that successful target detection was associated with synchrony 
between regions in frontoparietal and attentional networks for T1 and in frontoparietal and 
visual regions for T2, and for both tasks, with  synchrony between prefrontal and occipital 
regions. Also, synchrony between occipital and frontoparietal regions was correlated with 
object load for both tasks.  

The results from study II imply that CFS connects the integration of attentional and 
representational processing in VWM in a role complementary to that of PAC. In study III 
there were only sparse confirmed observations of CFS and of PAC among  and  bands, 
and observations of  and  CFC were too sparse to pass the adjusted K threshold.  
Nevertheless, these findings along with those of PS in the same study, which showed ,  
and  synchrony among frontoparietal, attentional and occipital regions, and the fact that 
the observed CFS and PAC differed between low- and high-capacity groups, imply that CFS 
and PAC also support for visual attention in a manner similar to VWM.  

55.4 CFS and PAC are distinct complementary processes  

Another question that has remained open is whether CFS and PAC constitute separate 
mechanisms or are just different aspects of one underlying mechanism. In studies II-III, the 
spectral profiles of task-related increases and decreases in CFS and PAC were found to be 
different from each other. Further, in study II variability in CFS but not PAC network 
strength was correlated with variability in individual VWM capacity, whereas in study III, we 
observed differences in spectral profiles between low- and high-capacity subjects in both 
PAC and CFS, but at different frequency ratios. Results from study IV indicate that both CFS 
and PAC also characterize the human resting state, but with differing profiles. In that study, 

hubs of CFS were observed mostly in frontal-medial regions belonging to default, control 
and attentional networks and  and hubs mostly in more posterior regions such as 
sensorimotor, temporal and occipital cortices, whereas the pattern for PAC was opposite to 
that; for both, patterns were consistent across MEG and SEEG data. These results together 
strongly imply that CFS and PAC are indeed distinct mechanisms likely fulfilling different 
complementary roles.  
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55.5 True observations of inter-areal cross-frequency coupling  

One common critique that has been brought up is that observations of CFC might be 
spurious, caused by increases in SNR during task, or by non-sinusoidal or non-zero mean 
waveforms (Aru et al., 2015; Cole and Voytek, 2017; Gerber et al., 2016; Jones, 2016; 
Kramer et al., 2008; Lozano-Soldevilla et al., 2016; Scheffer-Teixeira and Tort, 2016). 

In study II, we performed a number of tests to rule out that the possibility that inter-areal 
CFS might be caused by non-sinusoidal waveforms or changes in amplitude and/or SNR. 
These tests showed that only a small fraction of observed significant CFS connection could 
possibly be explained by these causes, supporting the interpretation that these 
observations indeed reflect true dynamic cross-frequency coupling of neuronal oscillations  
and are not caused by spurious interactions. 

In study IV we also addressed concerns about the possibility of CFC observations being 
spurious and caused by non-sinusoidal waveforms or linear fast components (Aru et al., 
2015; Gerber et al., 2016; Lozano-Soldevilla et al., 2016) or non-zero mean signals (Nikulin 
et al., 2007). In these cases, CFC would be measured between components in different 
frequencies stemming from the same single process. True CFC however connects two 
otherwise independent processes, and while it is not possible to prove the existence of 
such in local CFC, it is possible for inter-areal CFC. Inter-areal CFC can only be spurious 
when the two signals are otherwise connected, via local CFC and within-frequency (1:1) PS. 
We developed a graph-based method to remove all possibly spurious connections and 
showed that for both inter-areal CFS and PAC the connection density in all major peaks 
remained above zero even if all possibly spurious connections were removed. Further, the 
results of this study were also strengthened by the consistency of results between SEEG 
and MEG datasets. 

The results from both study II and IV therefore provide strong support for the existence of 
true inter-areal CFC in both task and resting state.   

5.6 Similarities and differences between task and resting state 

Having established that inter-areal CFC characterizes VWM and visual attention as well as 
the resting state, one important question is whether the observed patterns are similar to 
each other across studies, which would support the fundamental importance of CFC for 
cognitive function.  

In study II, inter-areal CFS was found to be enhanced during VWM retention above baseline 
and correlated with load for  at ratios 1:2-1:9 and H H high , 10-15 Hz) at 
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ratios 1:2-1:7. Also,  CFS was observed at low ratios. In study III, which investigated 
visual attention, we observed that inter-areal  and  and possibly and  coupling 
were correlated with visual object load. Finally, in study IV, we observed significant  and 

inter-areal coupling at ratios 1:2 and 1:3 in both SEEG and MEG data, and additionally 
 coupling at the same ratios in SEEG data.  

Inter-areal PAC was observed in study II to be enhanced above baseline and correlated with 
load between and  bands, with strongest K values for low frequencies around 4Hz and 
ratio 1:2. Notably however, for low frequencies of 6-8 Hz, i.e. at the border of  and  band, 
PAC was observed at all computed ratios up to 1:9. In study III, we observed  
and  coupling correlated with visual object load. In study IV, we observed  coupling 
and  coupling at ratios 1:2 – 1:4 in MEG data and, and coupling at all computed 
ratios 1:2 – 1:7 in SEEG data.  

Together, these results imply that both inter-areal CFS and PAC are present in resting state 
and modulated by task. Although it should be noted that absolute values of the connection 
density K can not be compared directly between these studies because the different used 
cortical parcellations and statistical methods, nevertheless the observations of similar 
frequency ratios in these studies is worthy of emphasis. The most consistent findings across 
resting state and the investigated tasks were that of 1:2 CFS and of  PAC across 
multiple ratios. Other observed frequency ratios, like  CFS and  CFS during VWM 
maintenance in study II, or  and  CFS and PAC during the execution of multi-object 
tracking tasks in study III, indicate that certain frequency combinations may be recruited 
dynamically during task. Also, in study IV, PAC at higher ratios was observed in SEEG 
data. Such PAC is similar to many previous findings of high-ratio ratios in the rat 
hippocampus (Belluscio et al., 2012; Scheffer-Teixeira et al., 2012; Tort et al., 2008; Tort et 
al., 2010) and in human intracranial recordings (Axmacher et al., 2010; Bahramisharif et al., 
2018; Canolty et al., 2006; Chaieb et al., 2015; van der Meij et al., 2012), but might not be 
observable in MEG and EEG recordings because it connects only smaller populations.  

Together, these findings point towards a universal role for CFC in the integration of 
neuronal activity distributed across frequency bands to enable cognition that is dynamically 
modulated by task demands. 
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55.7 Outlook  

In study I, we introduced Phase TE as a metric for directed connectivity and tested its 
suitability using simulated data that was made to realistically recreate properties of real 
EEG and MEG neuroimaging data. We expect that Phase TE will also prove useful in the 
actual analysis of such data, which is to be carried out in future studies. 

In studies II-IV, we showed that true inter-areal CFC in the human cortex is observed during 
VWM and visual attention as well as during resting state. In order to further improve our 
understanding of CFC, future studies should investigate its role during other cognitive 
functions, the relationship between local and inter-areal CFC and the relationship between 
CFC in the cortex and in subcortical structures. 

An interesting – and highly challenging – future project that would combine these two lines 
of research, would be to investigate directionality of cross-frequency interactions with 
Phase TE, to find out where high-frequency oscillatory processes causally influence low-
frequency processes and vice versa. This has remained an open question in the research of 
cross-frequency coupling and answering this question could greatly advance our 
understanding of the coordination of feedforward and feedback processes in the brain.  
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66.  Conclusion 

In order to understand how cognition is achieved in the human brain, we need to 
understand how different, functionally specialized regions communicate with each other. 
Research from over two decades supports the hypothesis that phase synchronization 
between distinct oscillating neuronal populations is a mechanism that facilitates 
communication among them and enables complex cognitive function. 

However, the analysis of within-frequency phase synchronization does not inform us about 
the direction of information flow, nor about how integration is achieved between processes 
in different frequency bands. In study I, we introduced a new, phase-based metric of 
directed connectivity, Phase Transfer Entropy and showed using simulated data that Phase 
TE can be used to study direction of information flow.  

In studies II-IV, we investigated inter-areal cross-frequency coupling during visual working 
memory and visual attention tasks as well as during resting state using data from 
electrophysiological neuroimaging, and showed that inter-areal cross-frequency phase 
synchrony and phase-amplitude coupling characterize these different states, connect 
networks of within-frequency phase synchrony and are functionally relevant. Cross-
frequency coupling may hence be crucial for cognitive function by enabling integration of 
neuronal computations distributed across cortical regions and frequency bands. 
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