The best approach to quantify human brain functional reconfigurations in
response to varying cognitive demands remains an unresolved topic in network
neuroscience. We propose that such functional reconfigurations may be
categorized into three different types: i) Network Configural Breadth, ii)
Task-to-Task transitional reconfiguration, and iii) Within-Task
reconfiguration. In order to quantify these reconfigurations, we propose a
mesoscopic framework focused on functional networks (FNs) or communities. To do
so, we introduce a 2D network morphospace that relies on two novel mesoscopic
metrics, Trapping Efficiency (TE) and Exit Entropy (EE), which capture topology
and integration of information within and between a reference set of FNs. In
this study, we use this framework to quantify the Network Configural Breadth
across different tasks. We show that the metrics defining this morphospace can
differentiate FNs, cognitive tasks and subjects. We also show that network
configural breadth significantly predicts behavioral measures, such as episodic
memory, verbal episodic memory, fluid intelligence and general intelligence. In
essence, we put forth a framework to explore the cognitive space in a
comprehensive manner, for each individual separately, and at different levels
of granularity. This tool that can also quantify the FN reconfigurations that
result from the brain switching between mental states.Comment: main article: 24 pages, 8 figures, 2 tables. supporting information:
11 pages, 5 figure