21 research outputs found

    Advance sales system with price-dependent demand and an appreciation period under trade credit

    Get PDF
    [[abstract]]With globalization, companies are facing fierce competition. Offering an appreciation period has become a commonly adopted method by retailers to sustain competitive advantage. During the appreciation period, customers can request to return products for any reason. In addition, retailers provide advance sales to attract additional customers. The supplier usually provides the retailer with a trade credit, which they can use as a type of price reduction to attract additional customers. Price is viewed as an important vehicle to sell products and enhance revenues. Therefore, in this article, we establish an inventory model with price-dependent demand for a retailer who simultaneously receives trade credit from its supplier, and offers advance sales and an appreciation period to its customers. We first establish a proper model and then provide an easy-to-use method to obtain an ordering policy for the retailer to achieve its maximum total profit. Finally, numerical examples are given to illustrate the solution procedure

    Optimal dynamic pricing and replenishment policies for deteriorating items

    Get PDF
    Marketing strategies and proper inventory replenishment policies are often incorporated by enterprises to stimulate demand and maximize profit. The aim of this paper is to represent an integrated model for dynamic pricing and inventory control of deteriorating items. To reflect the dynamic characteristic of the problem, the selling price is defined as a time-dependent function of the initial selling price and the discount rate. In this regard, the price is exponentially discounted to compensate negative impact of the deterioration. The planning horizon is assumed to be infinite and the deterioration rate is time-dependent. In addition to price, the demand rate is dependent on advertisement as a powerful marketing tool. Several theoretical results and an iterative solution algorithm are developed to provide the optimal solution. Finally, to show validity of the model and illustrate the solution procedure, numerical results are presented

    Inventory ordering policies for mixed sale of products under inspection policy, multiple prepayment, partial trade credit, payments linked to order quantity and full backordering

    Get PDF
    The situation where serviceable products are sold together with a proportion of deteriorating products to consumers is rarely discussed in the literature. This article proposes an inventory model with disparate inventory ordering policies under a situation where a portion of serviceable products and a portion of deteriorating products are sold together to consumers (i.e. mixed sales). The ordering policies consider a hybrid payment strategy with multiple prepayment and partial trade credit schemes linked to order quantity under situations where no inventory shortage is allowed and inventory shortage is allowed with full backorder. The hybrid payment policy offered by a supplier is introduced into the classical economic ordering quantity model to investigate the optimal inventory cycle and the fraction of demand that is filled from the deteriorating products under inspection policy. Further, a new solution method is proposed that identifies optimal annual total profit with mixed sales assuming no inventory shortage and inventory shortage with full backorder. The impact of an inspection policy is investigated on the optimality of the solution under hybrid payment strategies for the deteriorating products. The validation of the proposed model and its solution method is demonstrated through several numerical examples. The results indicate that the inventory model along with the solution method provide a powerful tool to the retail managers under real-world situations. Results demonstrate that it is essential for the managers to consider inclusion of an inspection policy in the mixed sales of products, as the inspection policy significantly increases the net annual profit

    A Fuzzy EPQ Model for Non-Instantaneous Deteriorating Items where Production Depends on Demand which is Proportional to Population, Selling Price as well as Advertisement

    Get PDF
    The inventory system has been drawing more intrigue because this system deals with the decision that minimizes the total average cost or maximizes the total average profit. For any farm, the demand for any items depends upon population, selling price and frequency of advertisement etc. Most of the model, it is assumed that deterioration of any item in inventory starts from the beginning of their production. But in reality, many goods are maintaining their good quality or original condition for some time. So, price discount is availed for defective items. Our target is to calculate the total optimal cost and the optimal inventory level for this inventory model in a crisp and fuzzy environment. Here Holding cost taken as constant and no-shortages are allowed. The cost parameters are considered as Triangular Fuzzy Numbers and to defuzzify the model Signed Distance Method is applied. A numerical example of the optimal solution is given to clarify the model. The changes of different parameters effect on the optimal total cost are presented and sensitivity analysis is given.JEL Classification: C44, Y80, C61Mathematics Subject Classification: 90B0

    Inventory Model for Quadratic Demand and Deteriorating Items Following Weibull Distribution with Trade Credit Policy

    Get PDF
    In this paper, an inventory model for deteriorating items following two parameter Weibull distribution with trade credit policy is developed, while demand is viewed as quadratic function of time. The supplier gives the retailer a trade credit period. Trade credit is a frequently used method of payment implemented by suppliers, and it generally leads to greater revenue and ultimately, higher income. The suggested inventory model seeks to calculate the ideal replenishment cycle duration in order to maximize the overall profit per unit of time.  Shortages are permitted and partially backlogged. Two categories are applied to the mathematical model. Case I: When the payment to settle the account is made on or before the positive inventory. Case II: When the payment to settle the ac-count is made after the inventory reaches to zero. The model is illustrated through numerical experiments, sensitivity analysis, and graphical depiction

    A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items

    Get PDF
    In this study, we develop an inventory model for deteriorating items with stock dependent demand rate. Shortages are allowed to this model and when stock on hand is zero, then the retailer offers a price discount to customers who are willing to back-order their demands. Here, the supplier as well as the retailer adopt the trade credit policy for their customers in order to promote the market competition. The retailer can earn revenue and interest after the customer pays for the amount of purchasing cost to the retailer until the end of the trade credit period offered by the supplier. Besides this, we consider variable holding cost due to increase the stock of deteriorating items. Thereafter, we present an easy analytical closed-form solution to find the optimal order quantity so that the total cost per unit time is minimized. The results are discussed with the help of numerical examples to validate the proposed model. A sensitivity analysis of the optimal solutions for the parameters is also provided in order to stabilize our model. The paper ends with a conclusion and an outlook to possible future studies.Publisher's Versio

    Modelling and Determining Inventory Decisions for Improved Sustainability in Perishable Food Supply Chains

    Get PDF
    Since the introduction of sustainable development, industries have witnessed significant sustainability challenges. Literature shows that the food industry is concerned about its need for efficient and effective management practices in dealing with perishability and the requirements for conditioned storage and transport of food products that effect the environment. Hence, the environmental part of sustainability demonstrates its significance in this industrial sector. Despite this, there has been little research into environmentally sustainable inventory management of deteriorating items. This thesis presents mathematical modelling based research for production inventory systems in perishable food supply chains. In this study, multi-objective mixed-integer linear programming models are developed to determine economically and environmentally optimal production and inventory decisions for a two-echelon supply chain. The supply chain consists of single sourcing suppliers for raw materials and a producer who operates under a make-to-stock or make-to-order strategy. The demand facing the producer is non-stationary stochastic in nature and has requirements in terms of service level and the remaining shelf life of the marketed products. Using data from the literature, numerical examples are given in order to test and analyse these models. The computational experiments show that operational adjustments in cases where emission and cost parameters were not strongly correlated with supply chain collaboration (where suppliers and a producer operate under centralised control), emissions are effectively reduced without a significant increase in cost. The findings show that assigning a high disposal cost, limit or high weight of importance to perished goods leads to appropriate reduction of expected waste in the supply chain with no major cost increase. The research has made contributions to the literature on sustainable production and inventory management; providing formal models that can be used as an aid to understanding and as a tool for planning and improving sustainable production and inventory control in supply chains involving deteriorating items, in particular with perishable food supply chains.the Ministry of Science and Technology, the Royal Thai Government

    Grocery omnichannel perishable inventories: performance measures and influencing factors

    Get PDF
    Purpose- Perishable inventory management for the grocery sector has become more challenging with extended omnichannel activities and emerging consumer expectations. This paper aims to identify and formalize key performance measures of omnichannel perishable inventory management (OCPI) and explore the influence of operational and market-related factors on these measures. Design/methodology/approach- The inductive approach of this research synthesizes three performance measures (product waste, lost sales and freshness) and four influencing factors (channel effect, demand variability, product perishability and shelf life visibility) for OCPI, through industry investigation, expert interviews and a systematic literature review. Treating OCPI as a complex adaptive system and considering its transaction costs, this paper formalizes the OCPI performance measures and their influencing factors in two statements and four propositions, which are then tested through numerical analysis with simulation. Findings- Product waste, lost sales and freshness are identified as distinctive OCPI performance measures, which are influenced by product perishability, shelf life visibility, demand variability and channel effects. The OCPI sensitivity to those influencing factors is diverse, whereas those factors are found to moderate each other's effects. Practical implications- To manage perishables more effectively, with less waste and lost sales for the business and fresher products for the consumer, omnichannel firms need to consider store and online channel requirements and strive to reduce demand variability, extend product shelf life and facilitate item-level shelf life visibility. While flexible logistics capacity and dynamic pricing can mitigate demand variability, the product shelf life extension needs modifications in product design, production, or storage conditions. OCPI executives can also increase the product shelf life visibility through advanced stock monitoring/tracking technologies (e.g. smart tags or more comprehensive barcodes), particularly for the online channel which demands fresher products. Originality/value- This paper provides a novel theoretical view on perishables in omnichannel systems. It specifies the OCPI performance, beyond typical inventory policies for cost minimization, while discussing its sensitivity to operations and market factors

    Sustainable Inventory Management Model for High-Volume Material with Limited Storage Space under Stochastic Demand and Supply

    Get PDF
    Inventory management and control has become an important management function, which is vital in ensuring the efficiency and profitability of a company’s operations. Hence, several research studies attempted to develop models to be used to minimise the quantities of excess inventory, in order to reduce their associated costs without compromising both operational efficiency and customers’ needs. The Economic Order Quantity (EOQ) model is one of the most used of these models; however, this model has a number of limiting assumptions, which led to the development of a number of extensions for this model to increase its applicability to the modern-day business environment. Therefore, in this research study, a sustainable inventory management model is developed based on the EOQ concept to optimise the ordering and storage of large-volume inventory, which deteriorates over time, with limited storage space, such as steel, under stochastic demand, supply and backorders. Two control systems were developed and tested in this research study in order to select the most robust system: an open-loop system, based on direct control through which five different time series for each stochastic variable were generated, before an attempt to optimise the average profit was conducted; and a closed-loop system, which uses a neural network, depicting the different business and economic conditions associated with the steel manufacturing industry, to generate the optimal control parameters for each week across the entire planning horizon. A sensitivity analysis proved that the closed-loop neural network control system was more accurate in depicting real-life business conditions, and more robust in optimising the inventory management process for a large-volume, deteriorating item. Moreover, due to its advantages over other techniques, a meta-heuristic Particle Swarm Optimisation (PSO) algorithm was used to solve this model. This model is implemented throughout the research in the case of a steel manufacturing factory under different operational and extreme economic scenarios. As a result of the case study, the developed model proved its robustness and accuracy in managing the inventory of such a unique industry
    corecore