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ABSTRACT 

Inventory management and control has become an important management function, which 

is vital in ensuring the efficiency and profitability of a company’s operations. Hence, several 

research studies attempted to develop models to be used to minimise the quantities of 

excess inventory, in order to reduce their associated costs without compromising both 

operational efficiency and customers’ needs. The Economic Order Quantity (EOQ) model 

is one of the most used of these models; however, this model has a number of limiting 

assumptions, which led to the development of a number of extensions for this model to 

increase its applicability to the modern-day business environment. Therefore, in this 

research study, a sustainable inventory management model is developed based on the 

EOQ concept to optimise the ordering and storage of large-volume inventory, which 

deteriorates over time, with limited storage space, such as steel, under stochastic demand, 

supply and backorders. Two control systems were developed and tested in this research 

study in order to select the most robust system: an open-loop system, based on direct 

control through which five different time series for each stochastic variable were generated, 

before an attempt to optimise the average profit was conducted; and a closed-loop system, 

which uses a neural network, depicting the different business and economic conditions 

associated with the steel manufacturing industry, to generate the optimal control 

parameters for each week across the entire planning horizon. A sensitivity analysis proved 

that the closed-loop neural network control system was more accurate in depicting real-life 

business conditions, and more robust in optimising the inventory management process for 

a large-volume, deteriorating item. Moreover, due to its advantages over other techniques, a 

meta-heuristic Particle Swarm Optimisation (PSO) algorithm was used to solve this model. 

This model is implemented throughout the research in the case of a steel manufacturing factory 

under different operational and extreme economic scenarios. As a result of the case study, 

the developed model proved its robustness and accuracy in managing the inventory of such 

a unique industry.  

 

KEYWORDS: Economic Order Quantity (EOQ), Inventory Management, Large-volume 

Material, Limited Storage, Deteriorating Item, Steel Industry, Closed-loop System, Open-

loop System, Neural Network, Particle Swarm Optimisation (PSO), Sensitivity Analysis  
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NOTATION 

𝑡 Time expressed in weeks 

𝑡 ∈ {1,2,… , 𝑇} The index for time referring to a period of 𝑡 weeks ahead 

𝐻(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 
Heaviside step function 

In each period, the state of a steel manufacturing factory is characterised by several variables 

that are changing over time: 

𝑚(𝑡) Amount of available funds (£) 

𝑟𝑎𝑤(𝑡) Level of raw materials available in storage 

𝑏𝑢𝑦(𝑡) 
Quantity of raw materials to purchase at time 𝑡 (units)  

𝑜𝑟𝑑(𝑡) Amount of production ordered so it will be available at time 𝑡. During 

a specific period 𝑡 ∈ {1,2,… 𝑡𝑙𝑒𝑎𝑑} this value is predefined based on 

the final products’ arrival during first leading time periods (units) 

𝑝𝑟𝑜𝑑(𝑡) Level of the final product available in storage (units) 

𝑖𝑛𝑣(𝑡) Amount of invested money (£) 

𝑠𝑒𝑙𝑙(𝑡) Level of sold final product (units) 

𝑢𝑝(𝑡) Amount of money in up credit (£) 

𝑑𝑜𝑤𝑛(𝑡) Amount of money in down credit (£) 

𝑝𝑟𝑖𝑐𝑒(𝑡) Current selling price that the factory sets for final product (£) 

𝑑𝑒𝑚𝑎𝑛𝑑(𝑡) Demand for the final product as a function of the selling price, 

market demand and market price 

𝑠𝑒𝑛𝑡(𝑡) Raw materials sent to production lines 

Moreover, during each planning period, the factory’s management needs to make control 

decisions, which will affect business performance in the next periods: 

𝑢𝑖𝑛𝑣(𝑡 + 1)  Percentage of available funds to invest at time 𝑡 + 1 (%) 

𝑢𝑏𝑢𝑦(𝑡 + 1) Percentage of money, from the available funds, to spend on 

purchasing raw materials at time 𝑡 + 1 (%) 

𝑢𝑜𝑟𝑑𝑒𝑟(𝑡 + 1) Percentage of raw materials to send to production lines at time 𝑡 

(%) 

 𝑢𝑝𝑟𝑖𝑐𝑒(𝑡 + 1) Percentage of maximum price for which we will sell the final product 

at time 𝑡 + 1 (%) 

The next set of notations describe the stochastic parameters used: 

Related to raw material ordering (demand)   

𝑃𝑑𝑓(𝑡) Probability of delivery failure of the raw materials 

𝐶𝑑𝑓(𝑡) Extra charge incurred by the steel manufacturing factory per unit of 

raw material in case of delivery failure (£)  

𝐶𝑟𝑎𝑤̅̅ ̅̅ ̅̅ (𝑡) Fixed ordering cost of raw materials (£) 

𝐶𝑟𝑎�̃�(𝑡) Basic cost of one unit of materials (£) 

Related to storage 

𝑆𝑟𝑎𝑤(𝑡) Raw materials storage costs per period (£) 

𝑆𝑝𝑟𝑜𝑑(𝑡) Production storage costs per period (£) 

Related to backorders 

𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) Possible raw material shortage for week 𝑡 
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𝐵𝑂𝑙𝑜𝑠𝑠 Backorder loss 

Related to the final product 

𝐶𝑝𝑟𝑜𝑑(𝑡) Selling price of the final product (£) 

𝐷𝑝𝑟𝑜𝑑(𝑡)  Final product’s demand (£) 

Furthermore, the next set of notations describe the fixed variables used, grouped by their 

economic essence and the part of business chain in which they are applied: 

Related to raw material ordering (demand)  

𝑟𝑎𝑤(0) Initial raw material level at the last available time before the 

planning horizon, i.e. at week zero 

𝑑𝑎𝑚
𝑟𝑎𝑤 Discount size, which is the amount of raw materials ordered that 

have to be placed to warrant a discount in cost (units) 

𝑑𝑣𝑎𝑙
𝑟𝑎𝑤 Value of the discount, in %, which will be subtracted from the 

purchase price and applied to the part of the order that exceeded 

discount size (%) 

𝑚𝑖𝑛𝑜𝑟𝑑
𝑟𝑎𝑤 Minimum order quantity (units) 

𝑑𝑓𝑖𝑥
𝑟𝑎𝑤 Small order discount – if a company buys less than this value, the 

fixed cost will be reduced by quadratic dependence (units) 

𝑡𝑑𝑓
𝑟𝑎𝑤  Number of planning periods in which the company will have to pay 

extra costs for raw materials in case of delivery failure (units) 

Related to storage 

𝑐𝑖𝑛𝑣
𝑟𝑎𝑤 Value of each item of raw materials already in inventory 

𝑐𝑖𝑛𝑣
𝑝𝑟𝑜𝑑

 Value of each item of the final product already in inventory 

𝑚𝑎𝑥𝑠𝑡𝑜𝑟
𝑟𝑎𝑤  Maximum storage capacity (units) 

𝑐𝑠𝑡𝑜𝑟
𝑟𝑎𝑤 Cost of additional storage needed in case the company exceeds 

the maximum limit (£) 

𝑓𝑟𝑎𝑐𝑑𝑒𝑡
𝑟𝑎𝑤 Fraction of raw materials that will deteriorate during each period 

𝑓𝑟𝑎𝑐𝑑𝑒𝑡
𝑝𝑟𝑜𝑑

 Fraction of the final product that will deteriorate during each period 

Related to the final product (supply) 

𝑝𝑟𝑜𝑑(0) Initial level of the final products in inventory 

𝑚𝑎𝑥𝑝𝑟𝑜𝑑  The maximum number of units that can be produced daily (units) 

𝑚𝑎𝑥𝑜𝑣𝑒𝑟
𝑝𝑟𝑜𝑑

 The maximum number of units that can be produced overtime 

(units) 

𝑝𝑑𝑒𝑓
𝑝𝑟𝑜𝑑

 Probability of moderate defect 

𝑝𝑐𝑑𝑒𝑓
𝑝𝑟𝑜𝑑

 Probability of major defect 

Financial variables 

𝑚(0) Initial funds available (£) 

𝑐𝑝𝑟𝑜𝑑 Cost of production per unit (£) 

𝑐𝑜𝑣𝑒𝑟
𝑝𝑟𝑜𝑑

 Overtime cost of production per unit (£) 

𝑐𝑑𝑒𝑓
𝑝𝑟𝑜𝑑

 Cost incurred to fix a moderate defect (£) 

𝑐𝑓𝑖𝑥  Fixed costs per period, such as salaries and taxes (£) 

𝑖𝑏𝑎𝑛𝑘 Overdraft rate per period (%) 

𝑖𝑡𝑎𝑥 Tax rate (%) 

𝑖𝑢𝑝 Interest rate for up credit money (%) 

𝑖𝑑𝑜𝑤𝑛 Interest rate for down credit money (%) 
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𝑓𝑟𝑎𝑐𝑢𝑝 Percentage of up credit to repay per period (%) 

𝑓𝑟𝑎𝑐𝑑𝑜𝑤𝑛 Percentage of down credit to repay per period (%) 

𝑐𝑙𝑜𝑠𝑠 Additional penalty for realising losses. If company ends a period in 

loss, then, in some cases, additional penalty is applied (𝑙𝑜𝑠𝑠(𝑇) ⋅

𝑐𝑙𝑜𝑠𝑠) to reflect how much profit can be sacrificed to reduce the 

expected losses by one dollar. (£) 

𝑐𝑚𝑎𝑥
𝑝𝑟𝑜𝑑

 Maximum selling price for the final product (£) 

Related to raw material in storage 

𝑉𝑟𝑎𝑤(𝑚) Volume of raw materials stored for 𝑚 weeks 

Related to the net profit 

𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑡ℎ(𝑡) All the assets of the factory at time 𝑡 

𝑁𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 Net profit to be maximised 

Other parameters 

𝑀 Number of samples in the Monte Carlo method (units) 

𝑇 Number of planning periods (units) 

𝑡𝑙𝑒𝑎𝑑  Lead time (weeks)  

𝜋 Inflation rate per period (%) 

𝑒𝑙𝑐
𝑝𝑟𝑜𝑑

 Demand elasticity per price 

𝑀𝑟𝑎𝑤  Maximum observed maturity for raw products 

𝑀𝑝𝑟𝑜𝑑  Maximum observed final products 

𝑃𝑟𝑎𝑤(𝑚) Proportion of raw materials stored during 𝑚 weeks 

𝑃𝑝𝑟𝑜𝑑(𝑚) Proportion of final products stored during 𝑚 weeks 

𝐷𝑝𝑟𝑜𝑑  Deterioration of final products 

𝐷𝑟𝑎𝑤  Deterioration of raw materials 

𝐿𝑜𝑠𝑠 Loss function 

𝑃𝑙𝑜𝑠𝑠 Probability loss function 

𝑃𝐷 Probability deterioration function 

Related to EOQ assumptions 

𝐷 Constant demand 

p Unit cost 

L Lead time 

S Order size 

r Cost of order holding 

H Expense of holding a unit in inventory for a whole period 

𝑄 Order quantity 

𝑄 ∗ Optimal order quantity 

Related to ANNs 

𝑊𝑖 Weights 

𝑓(⋅)  Function  

𝑋𝑖  Input signals  

𝐵𝑖 Bias 

𝑈 Vector of control variables  

𝑆(𝑥) =
1

𝑒−𝑥 + 1
 

Sigmoid function  

𝑟𝑒𝑙𝑢(𝑥) = max (𝑥, 0) Rectified Linear Unit function  
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I Vector of inputs 

Related to PSO 

pbest Previous best position 

gbest Global best position 

𝑁𝑃  Total number of particles 

𝑓  Fitness function 

𝑃  Position of the particle 

V Velocity of the particle 

𝜔  Inertia weight 

𝑟i  Uniformly distributed random variables within the range of [0, 1] 

𝑐i  Acceleration coefficients 

Related to data processing 

𝜇(𝑡) Mean values 

𝜎(𝑡) Standard deviations 

𝑙𝑏(𝑡)  Lower bound 

𝑢𝑏(𝑡) Upper bound 

𝛼(𝑡) =
𝜇(𝑡) ⋅ (𝜎2(𝑡) + 𝜇2(𝑡) − 𝜇(𝑡))

𝜎2(𝑡)
 

Matlab parameter 

𝛽(𝑡) =
(1 − 𝜇(𝑡)) ⋅ (𝜎2(𝑡) + 𝜇2(𝑡) − 𝜇(𝑡))

𝜎2(𝑡)
 

Matlab parameter 
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 Introduction 

This chapter provides an overview of the research conducted and an introduction to the 

overall study. In Section 1.2, the research background is outlined together with the major 

issues related to this research study. This is followed by highlighting the research problem 

and identifying the research gaps in Section 1.3. The research aims and objectives, as well 

as the research questions, are presented in Section 1.4. In addition, Section 1.5 provides a 

summary of the approach and methodology adopted in this research study, while Section 

1.6 highlights the contribution of this research study to the body of knowledge. Finally, 

Section 1.7 outlines the organisation of this thesis, and Section 1.8 provides a summary and 

conclusion for this chapter. 

 

 Research Background 
Inventory is the quantity of an item or resource utilised by a company (Chase, Jacobs and 

Aquilano, 2007); in other words, inventory can be defined as “the stored accumulation of 

material resources in a transformation system” (Pycraft et al., 2010, p.424). The role of 

inventory is considered extremely significant for the survival and growth of an organisation, 

as the mismanagement of levels of inventory may result in excess stock, which increases 

inventory costs, while, on the other hand, a shortage of inventory can result in operational 

inefficiency and customer dissatisfaction. Moreover, inventory is also important for the 

activities of production and maintenance of the plant and the machinery, along with other 

operational requirements. In many situations, increasing inventory results in restricting the 

money that can be used to invest in some other productive means. Therefore, continuous 

management and control of levels of inventory has become an important management 

function in ensuring the efficiency and profitability of the firm’s operations (Sallemi, 1997). 

As a result, managing the logistics aspect of inventory has gained enormous attention in the 

last few eras, from both managers and researchers, due to the excessive costs associated 

with holding additional inventory in warehouses; consequently, the goal of corporate 

management is to store only the inventory that is essential to satisfy customer requirements 

(Gourdin, 2001).  

According to Wild (2017), the term “inventory control” is widely used to organise the 

procedure of inventory management, so that customers can acquire the products when 

needed. The activities of purchasing, manufacturing, storing and distributing are mainly 
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based on the marketing and sales function of the company; therefore, inventory control 

manages the supply of finished goods, spare parts, raw material, obsolete parts and other 

necessary supplies. In addition, Jaber et al. (2009) argued that the functions of logistics, 

customer services and production are largely dependent on the efficiency of inventory 

control. Several research studies attempted to develop models that can be used to minimise 

the quantities of excess inventory in order to reduce associated costs without compromising 

both operational efficiency and customers’ needs. In that regard, operation management 

research largely focused on inventory control and its valid approaches in different industries. 

Clodfelter (2010) argued that efficient management of the inventory system benefits the 

organisations in: 1) providing satisfactory service provision to customers throughout the 

financial year; 2) reducing the level of investment needed on work through proper planning 

and allocation of inventories; 3) gaining discount on trade purchases; 4) ensuring the 

purchase and storage of material that matches the required product specifications; and 5) 

effectively managing the production schedules and new order procedures. In addition, 

Saxena (2003) argued that the costs incurred due to the shortage or excess of inventory 

need to be minimised, so that inventory control remains effective in managing proper 

inventory turnover. Moreover, cost reduction in inventory control has a major emphasis on 

reduction of the product’s cost to facilitate customer satisfaction and increase sales.  

Nevertheless, effectively managing inventory levels presents its own set of challenges. Due 

to the fact that organisations face conflicting targets of attempting to improve customer 

satisfaction by avoiding under-stocking which can cause deficiency orders, lost deals, sales 

bottlenecks and despondent customers and minimising the expenses associated with the 

production of final products, companies have to carefully manage their levels of inventory to 

achieve equilibrium between these two conflicting targets and ensure the optimal trade-off 

between them. As a result, inventory control is one of the variables which can make or break 

an organisation’s business, and the entire significance of inventory control can be outlined 

by the typical saying that inventories are the burial ground of a business (Mathur, 1994). 

Moreover, Ouyang, Chang and Teng (2005) identified that the genuine dilemma regarding 

inventory control lies in deductively deciding the most ideal inventory measure, and not in 

decreasing its size only. Furthermore, Zinn and Charnes (2005) highlighted that the principal 

goal of inventory control is to give a high stream of good quality, significant and imperative 

material that empower retailers and suppliers to provide non-stop and opportune support to 

the end customers.  
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The next issue in inventory control is material administration. There are four essential 

exercises associated with materials: envisioning the necessity of material, containing and 

sourcing of materials, situation of materials in association, and the status of materials which 

need persistent observing. Federgruen and Zipkin (1984) stated that the elements of 

materials incorporate procurement, warehousing, generation planning, inventory control of 

crude materials, and transportation. Similarly, according to Bowersox et al. (2002), the next 

vital issue of inventory control is procurement. In order for organisations to operate, 

producers, distributers and retailers must purchase materials from outside suppliers. From 

the executives’ point of view, inventory procurement fundamentally puts accentuation on 

connection among purchasers and merchants at key dimensions with higher association of 

both. Another imperative parameter in inventory control is demand forecasting. Demand 

forecasts depend on the currently booked requests, deals history, showcasing activities and 

data gathered from customers over time. 

 

 Statement of the Problem  
To minimise the inventory cost, including ordering, handling and storage costs, many models 

have been developed to determine the optimal inventory levels. The earliest of these 

models, and the one that is considered as the basis for all subsequent models, is the 

Economic Order Quantity (EOQ) model, which was developed by Harris in 1913. This model 

aims at determining the optimal size of the order, which minimises the frequency of the 

orders and achieves the maximum possible cost savings. According to Lucey (1992) and 

Schroeder (2000), the EOQ is defined as the optimal order quantity that balances the 

minimum inventory holding cost with the cost of reordering. However, the EOQ model is 

based on certain specific assumptions that somehow limit its applicability in modern-day 

supply chain problems. The major assumptions of the EOQ model are related to constraints 

on demand, time, availability and costs, being one of its main limitations the assumption of 

a constant, linear and deterministic demand rate over the entire planning horizon. Although, 

according to Silver et al. (1998), the EOQ model can still be applied in the case of small 

variations in demand over a constant interval of time, major changes in the demand rates 

over less time require the model to be modified or extended to hold for these variations. In 

addition, EOQ models assume constant and known lead time, which are other important 

constraints for receiving orders, compromising their accuracy in the presence of variable 

lead times. Furthermore, several cost assumptions which are associated with the EOQ 
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model are not applicable in the current business environment. On one hand, the unit cost 

should stay uniform over the planning horizon, and the cost of inventory purchasing is 

considered fixed. Thus, changes in the exchange rates and the economic conditions of the 

country significantly affect this price constraint. On the other, the annual cost of holding the 

inventory is known and independent of the measure of the quantity ordered. Finally, the cost 

of the firm’s ordering is considered to be self-regulating with the size of the order quantity. 

Despite these limiting assumptions, the EOQ model’s strength and simplicity make it 

function admirably in practice (Drake and Ptak, 1988), being accepted in century-long 

research, establishing the basis for the inventory control procedures at later stages of 

development. Nearly thousands of research studies were directly or indirectly based on the 

EOQ model, using its assumptions to form decision-making models for different situations. 

In fact, only by relaxing one or more of the EOQ’s model assumptions it can be adapted to 

the current business scenario and help companies to reduce their inventory costs. Several 

research studies were devoted to examine which of the EOQ assumptions violate as well as 

how to modify the model accordingly to obtain better results in terms of inventory costs. In 

(Lev and Weiss, 1990), the relaxation of the infinite horizon and static costs to develop a 

model that incorporates both finite and infinite horizons with changes in cost was proposed, 

whereas Cheng (1990) integrated the product pricing and order sizing to maximise profits 

given the storage space and inventory investment constraints. Carlson, Miltenburg and 

Rousseau (1996) extended the EOQ model to include quantity discounts when all costs are 

incurred on different dates, i.e. date-term credit, using the discounted cash flow method. 

Through this model, the researchers found that the optimal order quantity might not occur 

at a breakpoint in the discount schedule under all-units discounts, while under incremental 

quantity discounts, the optimal order quantity might fall at a price break in the schedule. 

Other EOQ extensions apply the model to retail cycle stock inventories (Bassin, 1990), 

account for conditions of a provisional sale for a buyer (Chen and Min, 1995), account for 

imperfect quality items (Salameh and Jaber, 2000; Maddah and Jaber, 2008; Khan et al., 

2010; Hsu and Hsu, 2013), and handle partial backordering increase (Zhang et al., 2011; 

Toews et al., 2011; Chung and Cárdenas-Barrón, 2012; Taleizadeh et al., 2013). In addition, 

several studies extended the EOQ model based on demand as a function of price, 

demand/supply as a function of time and deterioration rates, lead time, space, promotion, 

advertising, quality, and holding and carrying costs. Examples of these models include: Ray 

et al. (2005), Maddah and Noueihed (2017), Shah and Vaghela (2017), Pekgun, Griffin and 
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Keskinocak (2017), Singh, Khurana and Tayal (2016), Giri and Bardhan (2015), Dordevic et 

al. (2017), Farhangi and Mehdizadeh (2016), Rajan and Uthayakumar (2017), Hertini et al. 

(2018), Manna, Dey and Mondal (2017), Hazari et al. (2015), Kumar and Chanda (2017), 

and Liu, Zhang and Tang (2015). Finally, the different extensions of the EOQ model have 

enabled it to be applied to various fields, such as transportation (Munson and Hu, 2010; 

Krichen et al., 2011), supply chain (Hajiaghaei-Keshteli and Fard, 2018; Rezaeiahari and 

Sharifyazdi, 2016; Xu, Yin and Dong, 2016; Yadav, Pareek and Mittal, 2018), manufacturing 

(Taleizadeh, Cárdenas-Barrón and Mohammadi, 2014; Pasandideh et al., 2015; Nobil et al., 

2019; Nobil and Taleizadeh, 2016; Ramezanian and Saidi-Mehrabad, 2012), and 

sustainability (Jain et al., 2018; Benkherouf, Skouri and Konstantaras, 2016; Kozlovskaya, 

Pakhomova and Richter, 2019; Mawandiya, Jha and Thakkar, 2018; Singh, Sharma and 

Kumar, 2016; Demirel, Demirel and Gokcen, 2016; Kozlovskaya, Pakhomova and Richter, 

2015; Liao and Deng, 2018; Hovalaque and Bironneau, 2015). 

Despite the important contributions made in the literature towards extending the EOQ model, 

there are some research gaps that need to be addressed through further research. This is 

particularly noticeable in the case of inventory management application in the steel 

manufacturing industry. This industry has special characteristics in terms of the large volume 

of inventory and the particular storage requirements to avoid deterioration. However, a 

limited number of studies have developed inventory management models to account for 

such special characteristics, as the majority of the manufacturing models available in the 

literature have been developed for a general manufacturing scenario, and not for a specific 

industry. Consequently, there is a lack of specialised models targeted at addressing the 

operations of the steel manufacturing industry. Moreover, the few models in the literature 

that were specifically developed for the steel manufacturing industry assume demand to be 

deterministic, which does neither accurately depict the nature of demand in this industry nor 

the variety of products present in such industry. In this context, an inventory management 

model assuming stochastic demand can help to enhance the operations of the steel 

manufacturing companies. In addition, the problem of shortage of storage space should also 

be taken into account. In order to address such an issue, space-dependent demand models 

that are sensitive to both space and price and have fewer underlying assumptions, can be 

used. Finally, in general, models only consider the cost minimisation as the objective 

function. Nevertheless, in order to accurately depict the real-life scenario, other objectives, 

such as sustainable aspects, in the sense of taking care of the impacts of the current 
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operations without compromising the ability to satisfy future needs, should be also taken into 

consideration. In fact, to the best of the author’s knowledge, no studies have fully explored 

sustainable aspects in terms of the quantity of or reasons behind waste generation for the 

steel manufacturing industry. Nevertheless, the increasing regulations imposed on the 

companies to conduct their business in a sustainable manner make them urged to account 

for environmental aspects, especially in terms of waste reduction and management. 

Based on the above discussion, the main problem in this research study is to manage 

inventory in the presence of large-volume products and raw materials which require a large 

storage area. In particular, this becomes harder within the context of the steel manufacturing 

industry. Such factories need to store a large volume of raw materials, requiring large 

storage space that is specifically equipped to prevent the deterioration of the final product 

as a result of various environmental factors, such as humidity. These special requirements 

prohibit the long-term storage of such products, and increase the storage costs significantly. 

In addition, the demand, supply and backordering (missed orders due to shortage in the 

supply), which influence the quantity of raw materials required, are often stochastic in nature 

in the steel manufacturing industry. Hence, this research’s problem is based on both the 

product’s physical characteristics and its special requirements during the inventory holding 

period. Consequently, there are three sides of the problem regarding the nature of the 

product that should be addressed: 

1. High-volume material that needs a large storage space. Therefore, optimisation 

management is required to optimise the inventory decision on how and when to order 

raw material from the suppliers, based on the production process and the market 

conditions. The aim of this optimisation process is to reduce the storage time needed 

for raw materials and final products to the minimum possible time, in order to reduce 

any waste resulting from long storage periods. 

2. The high level of energy required to avoid harmful environmental effects on the 

product’s physical characteristics. To address this problem, first, the nature of steel 

is studied to determine the amount of energy that is required to keep it safe from the 

effects of humidity and preserve its quality; then, by optimising the storage time for 

raw materials and final products, the amount of energy needed will be reduced, 

having a positive environmental effects. 

3. Increasing the company’s profit. This can be achieved by reducing the storage costs 

and the amount of waste produced. 
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Then, this research study assesses how to model the inventory order decisions for the 

material stock in the steel manufacturing industry under the above circumstances and 

conditions, by optimising the quantity to be ordered in each period over a 52-week time 

horizon, and how do we solve this model.  

 

 Research Aims, Objectives and Questions 
The overall aim of this research study is to develop a sustainable inventory management 

model based on the well-known EOQ concept to study and optimise the inventory and order 

placement decisions over 52-week time horizon periods for high-volume material with limited 

storage space, such as steel, under stochastic demand, supply and backorders. The 

proposed model is expected to minimise the high storage and handling costs associated 

with raw materials and final products of a steel manufacturing company, and to prevent the 

deterioration of this inventory as a result of different environmental factors, thus maximising 

the company’s profits. In order to do so, the proposed model is developed based on a control 

system algorithm capable of providing timely recommendations for the storage quantities of 

both products and raw material. In this way, the decisions regarding the level of investment, 

steel purchasing strategy, and setting of optimal production levels throughout the planning 

horizon are facilitated. In particular, in this research study, two different control system 

approaches, namely, an open-loop and a closed-loop based on Artificial Neural Networks 

(ANNs), are considered. Finally, due to the complexity of the addressed problem and its 

specific characteristics, a PSO technique is used to solve it. 

In order to achieve the above aims, a number of objectives have been set for this research 

study. These objectives are:  

1. Model the stochastic nature of the different inventory parameters, such as 

demand, supply and backorders for high-volume products with limited 

storage space, when taking the sustainability approach into consideration.  

2. Model the manner and nature of the deterioration of the raw materials and 

final products of the steel manufacturing factory, and optimise the storage 

time of the inventory in order to reduce the energy cost and, in turn, the 

storage costs.  

3. Analyse the cash flow cycle of the steel manufacturing company and 

incorporate its different parameters and determinants into the inventory 
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management model, in order to ensure the efficiency of the production 

process and maximise the company’s profit. 

In order to achieve these objectives, this research study is focused on answering the 

following research questions: 

1. How can we develop a model for inventory management within a limited 

storage space for high-volume material based on the stochastic effect for the 

inventory variable (demand and supply)? 

2. What is the most suitable approach to solve this model to meet the stochastic 

nature of demand, supply and backorders in inventory control and 

management? 

3. Is there any evidence to suggest that the developed model is robust and can 

handle different real-life scenarios? 

 

 Proposed Approach 
To achieve the above aim and objectives and answer the research questions, the research 

methodology shown in Figure 1-1 is followed. 
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Figure 1-1. Proposed Research Methodology. 

As seen from Figure 1-1, this research study starts by conducting a comprehensive 

Systematic Literature Review (SLR) of the topics related to the research undertaken in this 

study and the developed model. The SLR explores the current trends in the literature 



 
 

29 
 

regarding inventory management models, analysing the EOQ model, its different types, 

assumptions, extensions and limitations. In particular, since the steel manufacturing industry 

is the subject topic of this research study, special focus is done in studying EOQ model 

applications within this field. In addition, in order to bridge the gap regarding the lack of 

sustainable EOQ models, the SLR also analyses the EOQ model’s influence on different 

sustainability aspects, such as waste management, and environmental impact. Through this 

SLR, the main research gaps are identified and the need for the model developed in this 

study is highlighted.  

The next step in the proposed research methodology is to build a mathematical model that 

reflects the stochastic nature of the inventory parameters, viz., demand, supply and 

backorders, for high-volume material with limited storage space when taking the 

sustainability approach into consideration. As discussed above, the proposed model in this 

research study is based on the EOQ concept and methodology resorting to two different 

control systems, namely the open-loop one and the ANN based closed-loop one,  and solved 

using PSO. Once the proposed model has already been developed, and solved by the 

proposed PSO technique, it is applied to a real-life steel manufacturing industry scenario. In 

order to do so, hypothetical data (Gasior and Recchia, 2019) is generated based on different 

average indicators of the steel industry available in the literature (Pardipto and Lussy, 2019; 

Tseng and Yu, 2019; Tavakoli and Taleizadeh, 2017; Rabieh et al, 2016) as well as on 

historical trends and publicly available business reports, such as the ones in (OECD, 2017; 

World Steel, 2018). The performance of each of the proposed control systems (open-loop 

and ANN) is evaluated in the simulated scenario, in terms of six main parameters, viz., 

maturity and distribution rates, generated profits per storage unit used, profit generated by 

each Monte Carlo run, investment strategy, money management, and learning progress. 

Due to the lack of benchmark results available in the literature, the developed model is 

validated by comparing these two performances, and the most suitable one in terms of 

robustness and accuracy is selected. Finally, a sensitivity analysis, in which the selected 

approach is applied to different real-life scenarios to which a steel-manufacturing company 

might be subjected, is conducted to examine the robustness of the developed model and its 

ability to handle these extreme scenarios. 
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 Contribution to Knowledge 
This research study is aimed at supporting the steel manufacturing companies in their 

inventory management decisions, specifically when they have limited storage space. The 

model developed in this research study is expected to have an impact on:  

1) Reducing the costs of holding inventory for the steel manufacturing companies 

2) Reducing the probability of deterioration of the raw materials and final products of a 

steel manufacturing company as a result of environmental factors 

3) Maximising the profits of such companies 

4) Improving the sustainability of the steel manufacturing industry as a whole, and the 

supply chain of this industry in particular. 

In addition to these expected benefits, the conducted research study will contribute to the 

body of knowledge in the inventory and supply chain management areas; these 

contributions include: 

1. Developing an inventory management model that models the stochastic nature of 

different inventory parameters at the same time. 

Unlike previous models, which modelled only the stochastic nature of demand in 

managing inventory, the model proposed in this research study contributes to the 

body of knowledge by taking into account the stochastic nature of demand, supply 

and backordering all at the same time. 

2. Accounting for the environmental impacts of holding inventory for a steel 

manufacturing company while optimising its inventory management strategy.  

None of the models developed for the steel manufacturing industry considered the 

environmental impacts of holding inventory in their objective functions; however, with 

this factor becoming increasingly important in modern times, the steel manufacturing 

companies need to consider it during all phases of their operations. Therefore, the 

proposed model contributes to the body of knowledge by being the first model to 

include the impact on the environment in the objective function of the inventory 

management of a steel manufacturing company. 

3. Extending the EOQ model to have the capability to incorporate different business 

and economic scenarios, and provide robust and accurate results.  

Several business scenarios were not modelled in the literature, as they were 

considered too complex. Hence, the proposed model contributes significantly to the 
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body of knowledge by incorporating some of these scenarios, such as sudden 

disruption to the supply. 

4. Developing an accurate and robust inventory management model for large volume 

materials based on an ANN control system and solved using the PSO technique.  

The proposed model expands on the models previously developed in the literature 

by depicting demand’s sensitive nature to both space and price, and basing the 

model on fewer assumptions by considering many of the complex factors that impact 

the inventory management of a steel manufacturing company. Moreover, the 

inventory model developed in this research study is more practical than the traditional 

EOQ model. On one hand, it is based on a control system algorithm capable of 

providing timely recommendations for the storage quantities of both products and 

raw material. In this way, the decisions regarding the level of investment, steel 

purchasing strategy, and setting of optimal production levels throughout the planning 

horizon are facilitated. In addition, using ANNs as the control strategy provides a high 

learning and generalisation capability, the possibility of handling non-linear variables 

and missing data, and highly adaptability to changing environments. On the other 

hand, a new meta-heuristic PSO algorithm is used to solve the model which, under 

the consider circumstances, results an unconstrained non-integer nonlinear 

programming model. This algorithm has the capability to provide more accurate 

results within a shorter computational time when compared to any other meta-

heuristic algorithms. 

 

 Thesis Organisation  
This thesis is divided over seven chapters. Chapter 1 has introduced the research topic 

under study. In particular, the main research gaps in the field as well as its main challenges 

have been discussed. Based on them, the research problem has been defined. In this same 

line, the main research aims and objectives, as well as the research questions and 

methodology have also been defined. Chapter 2 provides a comprehensive SLR focusing 

on the topics that are most relevant to this research study. Through this SLR, the application 

of the inventory models not only in the supply chain, transportation and manufacturing fields, 

but also in the fields of sustainability and waste management are examined. In particular, 

since the steel manufacturing industry is the subject topic of this research study, special 

focus is done on the application of inventory management models within its context. In 
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Chapter 3, the detailed research methodology followed in this research study is presented. 

This chapter outlines the process and steps taken in order to develop and validate the 

proposed model, including the collection of the relevant data. Chapter 4 focuses on the 

model development. In the first place, the inventory model is described from the economic 

and business cycle points of view, and the relevant economic variables are defined. Based 

on this analysis, the mathematical model is developed, defining the set of equations that 

extend the EOQ concepts towards reflecting the steel manufacturing industry’s dynamics. 

Then, the control systems used to provide the model with timely data about the business 

environment are described. Finally, the optimisation algorithms used to adjust the model’s 

parameters are introduced. Chapter 5 presents all the details regarding the Matlab 

implementation of the developed model for the case of the steel manufacturing factory. In 

this chapter, the different steps followed for implementing and validating the developed 

model are outlined. In particular, the results of the implementation of the open-loop and 

closed-loop models are compared and contrasted in order to determine the best suited one 

for the addressed application in terms of robustness, accuracy and effectiveness. After 

determining the most suitable model, this model is applied to three different scenarios that 

can occur in the steel manufacturing industry, viz., a fixed demand scenario, a fixed supply 

scenario, and a fully stochastic scenario. The results obtained in each scenario are 

discussed and compare in order to draw valuable conclusions about the performance of the 

developed model. In Chapter 6, the robustness of the model is further explored by 

conducting a sensitivity analysis, where the developed model is implemented in extreme 

business cases that might face the steel manufacturing company. In particular, a sudden 

decrease or interruption in the supply of raw materials, a sudden decrease or interruption in 

demand for final products, and a sudden increase in the costs of raw materials or storage, 

are considered. Finally, Chapter 7 provides a summary of the main findings of the conducted 

research and draws conclusions. In this chapter, the contribution of this research study to 

the body of knowledge as well as its limitations are outlined in detail. In addition, a list of 

recommended future research areas and topics is provided. 

 

  Chapter Summary  
In this chapter, the foundations of this research study have been explained by providing a 

comprehensive background for this study and the problem statement concerning the topic 

under investigation. In particular, after discussing the research gaps and defining the 
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research problem, the research aims and objectives to address this problem have been 

outlined, along with the research questions that will be answered through this research study 

to achieve these objectives. These research goals and objectives will be achieved over the 

following chapters of this research study. 
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 A Systematic Literature Review about Inventory 

Management in the Steel Manufacturing Industry 

 Introduction  
In this chapter, a comprehensive literature review about the current trends in the inventory 

management field is conducted, making special focus on its application within the context of 

the steel manufacturing industry which is the subject topic of this research study. The main 

aim of such literature review is highlighting the previous lessons to be learned and the 

research gaps in the literature towards developing an inventory management model for the 

steel manufacturing industry that can make a valuable contribution to the state-of-the-art.  

The chapter begins with a detailed background for inventory management and control 

provided in Sections 2.2. In particular, the need for inventory management and control are 

highlighted and the basic concepts related to them, including definitions, types, available 

approaches, associated costs, and challenges are introduced. Section 2.3 introduces the 

EOQ model as an inventory management tool, its assumptions, limitations and extensions. 

In Section 2.4, the current trends in the literature regarding EOQ models are explored. In 

particular, special focus is done on the steel manufacturing applications which are the 

subject topic of this research study. In addition, the sustainability aspects of inventory 

management, in terms of the environmental impact of ordering and holding inventory are 

also discussed. Finally, in Section 2.5 the identified research gaps are highlighted and the 

summary and conclusions of the chapter are provided. 

 

 Basics of Inventory 
This section highlights the basic information required to learn about the inventory, its 

management, method of classification, costs encountered, and inventory control techniques. 

 

 Inventory Management 

In the view of Gourdin (2001), the logistics area of inventory has gained enormous 

management attention in the last few decades, since executives realised the excessive 

costs of holding additional stocks in warehouses. Therefore, a number of attempts have 

been made, and management approaches were developed to minimise the excess inventory 

without compromising the customer service domain. Gourdin (2001) also realised the 
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importance of holding stocks in some situations, such as meeting the needs of global 

customers, and hence, the goal of the company’s management is to hold only what is 

necessary to achieve this goal. In this regard, Chase et al. (2007) defined inventory as “the 

stock of any item or resource used in an organisation” (Chase et al., 2007, p.282). According 

to this perspective, the system of inventory needs a proper set of controls and policies to 

measure the inventory levels on a regular basis, and adjust it according to the needs of the 

business. Moreover, the procedures for replenishment and the size of the inventory are also 

considered important in this research (Chase et al., 2007). In addition, a more 

comprehensive definition of inventory was provided by Pycraft et al. (2010), as “the stored 

accumulation of material resources in a transformation system. So, a manufacturing 

company will hold stocks of materials, a tax office will hold stocks of information, and a 

theme park will hold stocks of customers.” (Pycraft et al., 2010, p.424). 

 

 Types of Inventory  

The role of inventory is considered to be significant for the survival and growth of the 

organisation, as improper management of inventory levels may result in excess stock, 

increasing inventory costs, or a shortage of inventory may result in the non-satisfaction of 

customers. In order to realise the importance of inventory in the company financial 

statements, Coyle, Bardi and Langley (2003) stressed the value of inventory as an asset on 

the balance sheet of firms, and used as a means of decline in the investment of the company 

in the fixed assets of the plant machinery, land and other assets. Moreover, inventory is also 

important for the activities of production, maintenance and operations. In many situations, 

increasing inventory resulted in restricting money from being invested in some other 

productive means. In the case of high inventory stocks, the management of assets becomes 

crucial, since the company is left with less resources to use on other assets. Therefore, close 

monitoring is required. 

Sallemi’s (1997) conclusion was that the critical approach of management is required about 

less stock or inventory for production. However, inventory shortage can result in the loss of 

production and occurrence of other costs. Therefore, continuous management and control 

of inventory has become a sensitive management function, and physical material balance 

also requires technology upgrades and improvement of handling procedures.  
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Stock and Lambert (2001) proposed six major forms of inventory, and described their 

importance and use in the manufacturing sector: 

(i) Fluctuation Inventory: Fluctuation inventory can be utilised for unpredicted 

production schedules in situations where predictions of the required quantity of 

finished products cannot be ascertained. However, businesses with dynamic 

demand, with the product life cycle in the growth phase, normally require this 

inventory to manage sudden demands.  

(ii) Anticipation (Speculation) Inventory: This inventory type is formed for 

anticipated demand, or in seasonal businesses that expect large sales in 

particular seasons. The inventory for winter clothing or the Christmas decoration 

items inventory are some examples of speculation inventory. 

(iii) Cycle (Lot-size) Inventory: The demand for the inventory is decided in lots. In 

this type of inventory, the individual units are not considered, as the full lot size 

is the matter of importance. Nevertheless, the inventory size is normally very 

high, but the lot size is predetermined. 

(iv) Transportation (In-Transit) Inventory: In-transit inventories are based on the 

demand type and nature, and involve the transportation of products from one 

location to another. The inventories involved in Work-in-Progress (WIP) are 

considered in this class of inventories, and meant for the type of process of 

design and layout of the plant. 

(v) Decoupling (Buffer Stock) Inventory: Buffer stock inventories are used to 

reduce the burden of stock at various stages of the processes in production. The 

decoupling period of the sales is responsible for the maintenance of these 

inventories. These inventories provide major links in the production system and 

are independent of the other inventories at other stages of the processes. 

(vi) Dead Stock: The unwanted inventory that is not used for any immediate or long-

term purpose. Therefore, more costs are incurred in the storage and 

maintenance of this inventory. The management sometimes stores the inventory 

in anticipation of future increases in demand, or because the cost of disposing of 

the inventory is greater than the cost of storing it. However, customer service is 

one of the primary reasons to store dead inventory, so that an occasional buyer 

can receive goods on demand in the future. 
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 Types of Inventory Costs 

There are different types of costs associated with inventory management. Besides the cost 

of purchasing the storage items themselves, there are other types of costs that are incurred 

by firms when attempting to manage their inventory levels. These costs arise from holding 

and maintaining the inventory, managing it, and ordering it. Hence, other than the inventory 

price, there are three other major types of inventory costs, namely holding costs, ordering 

costs, and shortage costs (Vrat, 2014; Axsater, 2015; Ivanov, Tsipoulanidis and 

Schönberger, 2017). 

(i) Holding Cost: the cost of carrying excess levels of inventory to cover future 

demand and production needs. This type of cost includes all the costs incurred 

as a result of storing the inventory items in the warehouse, inventory handling, 

and the cost of capital tied up in the inventory. It also includes any applicable 

taxes, insurance and costs of damage or obsolescence. These costs are variable 

costs that depend on the quantity of inventory held, and the time span of holding 

it. These costs differ according to the type of industry and location. 

(ii) Ordering Cost: These are fixed costs that are associated with ordering the 

inventory. These costs arise from the administrative efforts required, 

transportation, and material handling during the ordering process. These are 

generally fixed costs and do not depend on the order size or quantity. 

(iii) Shortage Cost: These costs are incurred when an item is required but not 

present in the inventory. In this case, backlogging will occur, which entails 

additional administrative and material handling costs. Moreover, in order to 

convince the customer not to seek another supplier, price discounts might be 

offered. Furthermore, such costs might impact the cost of other operations within 

the supply chain or the production process. 

(iv) Price: This is the actual sum of money paid to acquire the inventory item. If the 

inventory is bought from another company, then this will be the cost per unit of 

that product. If it is produced in-house, then it will be the total of all the direct and 

indirect costs associated with the production of a single unit.   

 

 Inventory Control 

According to Wild (2017), the term “inventory control” is widely used to organise the 

procedure of inventory management so that the customer can gain products when needed. 
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The activities of purchasing, manufacturing, storing, and distributing are mainly based on 

the marketing and sales function of the company. Therefore, inventory control manages the 

supply of finished goods, spare parts, raw materials, obsolete parts, and other necessary 

supplies. Jaber et al. (2009) argued that the functions of logistics, customer services, and 

production are largely dependent on the efficiency of inventory control. Demand cannot be 

fulfilled and customer satisfaction cannot be achieved through the mismanagement of 

inventory, if manufacturing does not coincide with purchasing and sales needs, leaving the 

operation short of stock.  

Operation management research is largely focused on inventory control and its valid 

approaches in different industries. The researchers conclude the importance of inventory 

management, considering the evolution of supply chain management and the strategic 

advantages of inventory control mechanisms. The success of companies from Japan, the 

United States and European countries is largely due to efficient and upgraded systems of 

inventory control. The study of Silver et al. (1998) suggested that firms raised the bar of 

efficiency through coordination-based supply chain activities. However, Mula et al. (2006) 

highlighted the sharing of information and installation of software support, such as Enterprise 

Resource Planning (ERP), to coordinate information of variable anticipated demand. In 

Clodfelter (2010), the benefits of an efficient inventory control system are illustrated. 

According to Clodfelter (2010), these benefits include: satisfactory service provision to 

customers throughout the financial year; reduction in investment on work quantity through 

proper planning and allocation of inventories; discount gained on trade purchases; the 

insurance of the purchase and the storage of material that matches required product 

specifications; and finally, managing effective production schedules and new order 

procedures. Moreover, Clodfelter (2010) asserted that efficient control of inventory assured 

the proper receipt procedures, safe transactions, and proper storage arrangements for 

future purposes. However, the achievement of equilibrium is required for inventory 

purchases and sales of finished goods. Saxena (2003) argued that the costs incurred due 

to shortage or excess of inventory need to be minimised, so that inventory control remains 

effective in managing proper inventory turnover. Moreover, cost reduction in inventory 

control has a major emphasis on reduction of the product cost to facilitate customer 

satisfaction, increase in sales and maximising of profit.  
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 Challenges of Inventory Control 

The primary target of inventory control is to ensure client’s satisfaction, in the sense that an 

inefficient stock management can cause conveyances inaccessibility, deficiency orders, lost 

deals and bottlenecks, which may lead to despondent customers. The second target is to 

advance the productivity underway or acquiring by limiting the expense of giving sufficient 

dimension of client benefit; placing excessive significance on client administration can 

prompt overstocking, which implies that the organisation has excessively tied up its interest 

in inventories (Biswas et al., 2017). These two targets regularly demonstrate logical 

inconsistency. Accomplishing an abnormal level of client benefit by maintaining specific 

inventories results in higher inventory costs and lower productivity. A few times a manager 

selects an ideal dimension of the client’s administration and exercises to control inventory 

in a way that achieves the dimension of the client’s benefit at the lowest cost conceivable. 

Similarly, this dimension is important in inventory levels by avoiding both overstocking and 

under stocking capacity. This is an imperative function of the management of a 

manufacturing firm, ensuring that specific materials are available when the operations need 

them (Mula et al., 2006). This additionally helps in possibilities regarding augmentation of 

economy and minimisation of waste, accordingly decreasing losses in the framework. In this 

way, inventory control is referred to as a framework, which guarantees the supply of the 

required quality and amount of inventory at an ideal time.  

Working capital, which can be lessened by legitimate inventory control, can be enhanced 

with its effective utilisation into the different procedures of the firm. As per Mathur (1994), 

inventory control is one of the variables which can be considered “make or break” for any 

association. The entire significance of inventory control can be outlined by the typical saying 

that “inventories are the burial ground of a business” (Mathur, 1994). Designing an 

appropriate and compelling inventory control framework has significance in the adjustment 

of tasks. It is the basic purpose of numerous divisions with clashing interests and 

contemplations of long and short-range objectives. The entire expectation of inventory 

control frameworks is to maintain a balance between excessive and insufficient levels. 

Budgetary threats are included for an excessive amount of inventory, and insufficient 

inventory may develop issues for smooth and effective generation and aggressive powers. 

However, Ouyang et al. (2005) identified that the genuine issue lies in deciding the most 

ideal inventory measure, and not on decreasing size. This issue is aggravated when the 

wanted inventory items are more than one in number, and thus expand the inventory control 

requirements for the organisation.  
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The adaptability of the firm is influenced by the inventory control productivity it holds. 

Inappropriate procedures and strategies may prompt uneven and undesirable inventory 

estimates. A few things may be overstocked, while a few things may face stock-out 

conditions. In the long run, the benefit of the firm is influenced in light of the fact that 

inefficient inventory control in the firm will expand the venture levels for maintaining 

unreasonable inventory or expanded requesting costs, if there should be an occurrence of 

lower inventory levels with operational bargains. The impact of inventory control and the 

dimension of venture required are opposite sides of a similar coin. Assortments of measure, 

for example, ABC examination alongside obsession of standards for inventory holding and 

reorder costs, helps in legitimate inventory control (Marthur, 1994).  Furthermore, Zinn and 

Charnes (2005) stated that the principal goal of inventory control is to give a high stream of 

good quality, significant and imperative data/material that will empower retailers/suppliers to 

provide non-stop and opportune support to end purchasers. However, sudden and disruptive 

issues, such as stock outs, make inventory management pointless, yet Meng (2006) 

suggested that such various causes may result in the "Bullwhip Effect".  

The next issue in inventory control is material administration. Federgruen and Zipkin (1984) 

assumed that elements of materials incorporate procurement, warehousing, planning, 

inventory control of crude materials, and transportation. There are four essential exercises 

related to material administration: envisioning the necessity of materials, containing and 

sourcing of materials, condition of materials in the organisation, and finally, the status of 

materials which need persistent observation. Bowersox et al. (2002) highlighted the next 

vital inventory control issue, which is the procurement of materials. To help the operational 

exercises, the producer, distributer, retailer and so forth purchase materials from outside 

suppliers. From the inventory executives’ point of view, procurement fundamentally places 

focus on connections among purchasers and merchants at key dimensions with higher 

association of both. Procurement action is the new viewpoint for overseeing inventories. 

Another imperative parameter is determining the required demand. Demand conjectures 

depend on current booked requests, deals history, showcasing activities, and data gathered 

from customers from time to time. Preferably, the required demand is an inward segment of 

the firm; however, outer accomplices, including suppliers and customers, are additionally 

engaged in the procedure of better determining such demand. Criticism from customers 

likewise holds a vital place for showcasing exercises of the organisations. Bowersox et al. 

(2002) illustrated that the required demand and demand estimating are firmly connected to 
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each other. According to Atheize (2001), the real area of worry for logistics is the genuine 

development or the system that moves the item. Methods of transportation utilised in moving 

the item are accounted for by the strategic administrator. Atheize (2001) contended that an 

immediate connection exists between transportation and the number of stockrooms required 

for inventory. Jaillet et al. (1997) distinguished another explanation behind the gathering of 

inventories or crude materials the transportation economies. Lower per-unit transportation 

rates will be realised if the firm is prepared to purchase the full load limit of the shipment.  

 

 EOQ Model 
In this section, the well-known EOQ model, as an inventory management tool, is presented. 

In particular, the development of the EOQ model, its assumptions, limitations and extensions 

are introduced.  

 

 Initial Development of the EOQ Model 

The number of units to order is an important parameter to know at the time of every supply 

decision in every company. In view of this significance, the model of EOQ has gained 

importance over the past century. The initial publication on this topic is found in 1913 by 

Ford W. Harris. The model was based on assumptions of the optimal size of the order to 

minimise the number of orders, and achieve maximum cost saving. The restriction of holding 

cost and trade-off with total ordering size are important measures to consider in any 

inventory control. According to Lucey (1992) and Schroeder (2000), EOQ is defined as the 

optimal order quantity that balances the minimum inventory holding cost with the cost of 

reordering. However, the strength of the EOQ model has been accepted in century-long 

research, and established a basis for the inventory control procedures at later stages of 

development. Nearly thousands of researches were directly or indirectly based on the EOQ 

model, and used its assumptions to form decision-making models in different situations.   

The aim of the actual Harris (1913) EOQ model is to provide managers with guidelines to 

order optimal quantities from suppliers. The determination of production quantity is the basis 

of Harris’ (1913) research titled ‘‘How Many Parts to Make at Once’’. However, the actual 

applicability of the model is widely accepted in the batch processing manufacturing models, 

which require the presence of all materials at the time of processing the production all at 

once. Therefore, an extension of the EOQ model was developed, the model of Economic 
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Production Quantity (EPQ), which governs the optimum batch size. Taft (1918) suggested 

that it is suitable for producing one type of product, one-at-a-time, in which the first formed 

units are meant for customers’ requirements, and the rest are produced to store for the later 

needs of customers.  

 

 History and Evolution of the EOQ Model 

As mentioned earlier, relaxing one or more of the EOQ model’s assumptions can improve 

the model’s performance and help companies to reduce their inventory costs. Thus, several 

research studies were devoted to examining which of these assumptions to violate, how to 

modify the model accordingly, and the results of such violation on the companies’ inventory 

costs. Starting from the late 1950s, such research studies began to gain momentum. The 

earliest study in the field was the one conducted by Vazsonyi (1957). In this study, it was 

observed that utilising the EOQ as the economic lot size had led to some scheduling errors. 

Hence, a nonlinear mathematical programming technique that takes into account the time 

spent and the productivity of labour on each machine was proposed to mitigate these 

scheduling errors. This technique used a well-ordered procedure that calculated the order 

quantities under the previously-mentioned conditions. In the next decade, Crowther (1964) 

derived a formula to calculate cost reductions from the seller and buyer perspectives by 

using the EOQ model for the required quantity to be bought in order to receive a discount. 

At the same time, several other studies aimed at modifying the EOQ after comparing its 

performance against other inventory control methods. For instance, Schussel (1968) 

developed a model called Economic Lot Release Size (ELRS) to determine the ideal lot 

sizes. This model starts at the lowest level of inventory and moves up to the final product; 

at such a point, the lot size and the total cost are calculated. This process is then repeated 

with the use of a developed algorithm, until two consecutive values of the above parameters 

fall within a pre-specified range. Other similar studies include Kaimann (1968), Philips and 

Dawson (1968), and Hoffmann (1969), who pointed out the problems in the EOQ’s model 

formulation, and used a dynamic programming algorithm, as well as Bayesian statistics, to 

increase the accuracy of the calculation of order quantities and reorder points.  

From the beginning of the 1970s, the EOQ research evolved into extending the model 

capabilities to calculate several other parameters. Lippman (1971) extended the original 

EOQ model to include several setup costs, such as transportation costs. Moreover, Moore 

(1971) extended the model to improve the forecasting of replacement items; Trippi and 
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Lewin (1974) included the present value of the discounted costs over an infinite time horizon 

to minimise the holding and ordering costs. Langley (1976) derived three possible values 

from the EOQ model, namely optimistic, pessimistic, and most likely values, by utilising the 

maximax, maximin, and minimax regret strategies and the Laplace criterion, while Ram 

Mohan (1978) included the working capital in the EOQ model formulation. Finally, Liberatore 

(1979) developed a stochastic lead-time generalisation of the EOQ model with demand 

backlogging under the non-interchangeable parts assumption. The developed model 

defines the expected total cost as a function of the constant demand rate, the number of 

time units of demand satisfied by each order, the time differential between the placing of an 

order and satisfying it, and the lead-time probability density function.    

Another type of research, which flourished during this decade, concerns the relationship 

between Materials Requirement Planning (MRP) and the EOQ model. Chamberlain (1977) 

argued that MRP is the best model for inventory control management, and disregarded the 

use of the EOQ. Yelle (1978a; 1978b) examined how the EOQ lot sizing rule compares to 

that of the MRP in the context of a multi-level lot sizing challenge, and suggested the use of 

uneven and expanding lot sizing sequences to minimise the inventory costs. Furthermore, 

Kropp et al. (1979) addressed the MRP’s sensitivity issue by utilising the EOQ model, since 

it is not influenced by any imprecisions in the demand and cost estimates. This field of 

research continued to gain momentum during the 1980s under different contexts. Choi et al. 

(1984) compared the EOQ’s performance with that of the different MRP systems and 

observed that the EOQ was the lesser performer among the MRP systems. On the contrary, 

Rubin et al. (1983) compared the EOQ approach to the Total Setup Lot Sizing (T-S) model 

developed by Kuzdrall and Britney (1982) in the case of quantity discounts, and found that 

a modified EOQ had a better performance than the T-S method; similarly, Boucher (1984) 

found that a modified EOQ was better in the context of group technology systems. Other 

comparisons were made by Drake et al. (1986) and Patterson and LaForge (1985), with a 

fixed charge heuristic and incremental part-period algorithm, respectively. Lastly, Williams 

et al. (1985) compared the performance of the EOQ under conditions of serially correlated 

demand sequences, while Ritchie and Tsado (1986) compared this performance under the 

linear increasing demand.  

Several extensions to the EOQ model were developed. These extensions included: 

accounting for a temporary one-time price discount (Tersine and Price, 1981), adding 

nonlinear holding costs (Weiss, 1982), considering the discounting rates (Gurnani, 1983; 
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Clarke, 1987), adding multiple setup costs (Aucamp, 1984), and including constant inflation 

and simple interest (Kanet and Miles, 1985). Furthermore, Bigham (1986) modelled ordering 

costs as an increasing step function. Lastly, Replogle (1988) developed a modified EOQ 

model that accounts for the impact of reducing setup costs through learning. Other models 

examined how variation in the sizes of production loads impacted inventory costs that were 

derived from the EOQ, while taking into account the impact of overtime use whenever the 

regular capacity is exceeded (Axsater, 1980; 1981; Goyal and Evans, 1981). At the same 

time, other research studies extended the use of the EOQ model to other areas, such as the 

impact of these models on deteriorating items, which was accomplished by considering the 

changes in products’ shortages and deterioration rates under both deterministic and 

probabilistic demand conditions (Elsayed and Teresi, 1983). Das (1984) suggested that 

changing price rates, supply conditions and expansion issues found in the developing 

countries recommended modifications to the traditional EOQ.  

During the 1990s, developing extensions to the EOQ model remained the most researched 

area; some examples of these extensions follow. Lev and Weiss (1990) relaxed the infinite 

horizon and the static costs to develop a model that incorporates both finite and infinite 

horizons with changes in cost. Cheng (1990) integrated the product pricing and order sizing 

to maximise profits given the storage space and inventory investment constraints. Carlson 

et al. (1996) extended the EOQ model to include quantity discounts when all costs are 

incurred on different dates, i.e. date-term credit, using the discounted cash flow method. 

Through this model, the researchers found that the optimal order quantity might not occur 

at a breakpoint in the discount schedule under all-units discounts, while under incremental 

quantity discounts, the optimal order quantity might fall at a price break in the schedule. 

Other extensions offered by research studies include: applying the model to retail cycle stock 

inventories (Bassin, 1990), and accounting for conditions of a provisional sale for a buyer 

(Chen and Min, 1995).  

Finally, in the new millennium other EOQ research has been published, such as extending 

the model for imperfect quality items (Salameh and Jaber, 2000; Maddah and Jaber, 2008; 

Khan et al., 2010; Hsu and Hsu, 2013). Moreover, interest in models that handle partial 

backordering increased, as reflected by the cases of Zhang et al. (2011), Toews et al. 

(2011), Chung and Cárdenas-Barrón (2012), and Taleizadeh et al. (2013). 
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 Assumptions of EOQ Models 

The major assumptions of the EOQ model determine the constraints for demand, time, 

availability and unit costs. The notation of the equations followed in this model is generated 

with the help of these constraints, as explained below: 

• Constant demand (D): The constant, linear and deterministic demand is assumed for 

items in the EOQ over a certain time period. Sometimes period demand variability, such 

as seasonal changes in demand, affect the applicability of the model. The argument of 

Silver et al. (1998) holds that a small variation in demand over a constant interval of time 

is considered fit for applicability, as demand is near linear. However, the major changes 

over less time need a model that holds for variations, for instance, the use of the 

Wagner–Whitin algorithm in a model. 

• The unit cost (p): This unit cost should stay uniform over a certain period of time and 

consider transactions at a fixed price. Long-term contracts with suppliers to gain raw 

materials or goods at a certain price can help in fulfilling this assumption. However, 

changes in exchange rates and the economic conditions of the country significantly 

affect this price constraint.   

• Lead times (L): Constant and known lead time is another important constraint for 

receiving orders. For close and large suppliers, this assumption is valid, as large 

quantities can be delivered on time, but for far away suppliers or seasonal products, the 

supply cannot remain constant with time. Therefore, the variable lead times result in 

lower applicability of the EOQ model.  

• Order size (S): The cost of the firm’s ordering is considered to be self-regulating and 

self-regulating with the size of the order quantity.  

• Cost of order holding (r): The company's yearly holding cost rate is settled and 

independent of the measure of the quantity ordered. Subsequently, the expense of 

holding a unit in inventory for a whole period (indicated by H) can be computed as per 

Equation 2-1: 

𝐻 = 𝑟 ∗ 𝑝 2-1 

where r is the cost of order holding, and p is the unit cost. 

• No financial or capacity limitations apply for the firm or its supplier. This is 

particularly applicable for make-to-stock products where accessibility is prompt in a 

supplier's dispersion focus. It is additionally applicable for cheap things for which the firm 

has adequate money stores to pay for orders (Teng, 2009).  
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The firm looks to determine the optimal order quantity (Q*) in light of these assumptions, 

which minimises its aggregate yearly inventory costs. The total amount of money that the 

firm should pay to the supplier (p*D) for the periodic supply of the inventory is not related to 

the order quantity, since there are no quantity limits in the original model. In a similar way, 

stock-out expenses are not critical in light of the fact that the firm is expected to fulfil the 

majority of the interest when it happens. Yearly ordering expenses and the yearly holding 

costs are the two remaining components of the aggregate yearly applicable expense. We 

can set up the following capacity representing the aggregate yearly pertinent expense as an 

element of any order quantity, Q, as shown in Equation 2-2: 

𝑇𝐴𝑅𝐶 (𝑄) = (
𝑆 ∗ 𝐷

𝑄
) + (

𝐻 ∗ 𝑄

2
) 2-2 

       

The main term above represents the yearly ordering expense by multiplying the expense 

per order, S, by the quantity of orders per year, D/Q. The second term is the yearly holding 

cost, which is the product of the expense of holding a unit in inventory for a year, H, and the 

average inventory level, Q/2. The holding cost is applied based on the normal inventory 

level, on the grounds that the quantity of units in inventory is always changing: a few units 

spend a significant amount of time in inventory, while others spend just a little time.  

The second subsidiary is positive for all estimations of Q, i.e. the aggregate yearly important 

cost work above is raised; along these lines, the expense minimising estimation of Q can be 

found by setting the first derivative of Equation 2-2 equal to zero and solving for Q*. While 

Harris (1913) utilised this math-based approach to determine the optimal quantity, 

succeeding specialists have utilised different techniques to obtain the equivalent optimal 

arrangement (Minner, 2007). Every one of these arrangement approaches yields the 

following optimal order quantity (Equation 2-3), which is regularly mentioned as the EOQ.  

𝑄∗  =  √
2𝐷𝑆

𝐻
   

                                  

2-3 

Thus, the EOQ model is considered to be a crucial part of the historical backdrop of 

operations reviewed, since it is one of the principal published applications of a scientific 

model in business basic leadership. The original EOQ model is still significant on the 

grounds that it is still generally utilised in practice. Despite everything, due to its strength 

and simplicity, it functions admirably in practice, although some organisations utilise this 



 
 

47 
 

model incorrectly in circumstances where it is not the best practical arrangement (Drake and 

Ptak, 1988).  

 

 EOQ Model Implementation 

The limiting nature of the early assumptions of the EOQ model make the model applicable 

to few items in real business practice. The criticism from Woolsey (1988) shows that the 

parameters set in this EOQ model design are very difficult to use, and shows the 

inappropriateness of the model to all products. For instance, the inaccurate modelling of the 

holding cost, which does not consider obsoletion or deterioration, makes it essential to 

estimate this cost from previous performance data of inventory control. The study of Woolsey 

suggested the use of Uniform Order Quantity (UOQ) for the determination of best order size 

that matches the whole supply chain. Moreover, in other situations in which the performance 

of the EOQ model is argued by the researchers to be effective, this performance was only 

possible after ignoring or violating certain conditions to fulfil the technical requirements.  

The application of the EOQ model is still found in abundance, as compared to the newly 

formed complex models. This is based on the reason that the costs incurred in the 

application of EOQ in real business situations are lower compared to the amplified costs 

incurred while applying complex models. According to Fulbright (1979), the EOQ model is 

actually robust with regard to errors during estimation of the cost parameters, as opposed 

to the criticism raised by Woolsey (1988). The cause of this discrepancy is the relative 

difference in the importance and preferences of any item kept in the company inventory. 

Many items are unimportant in view of the competition faced by the company, and do not 

require the application of complex models to estimate the cost of inventory, despite the 

significant cost savings generated by the latest complex models of inventory control. The 

vast majority of material required on a regular basis in the production process is insignificant. 

However, for important and preferred products, more complex models should be used in 

place of the EOQ model.  

The associated risk is discussed in the study of Wilson (1977). Regarding restrictions on 

production capacity of batch size, obsolescence risk, and lack of coordination in production 

scheduling, the importance of the EOQ model is significant compared to the complex 

models, but needs adjustments to manage constraints in real business situations. Thus, 

Fuller (2003) expressed that the application of the EOQ model shows that EOQ is the Order 
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Quantity for minimisation of carrying costs and ordering costs. However, Morrison and 

Jossep (1994) discussed the application of EOQ as the means of minimising the acquisition 

cost and the whole annual cost. Nevertheless, the argument of Sallem (2003) is based on 

the fact that the obsolescence of inventory storage and spoilage costs makes it inefficient to 

store inventory for a long time. Therefore, time is another important factor to consider when 

appraising the EOQ model. Similarly, Cannon and Crandall (2004) declared that the recent 

complex models share the same goals as the EOQ model: to balance the ordering and 

inventory holding costs. The research of Wilson (1977) illustrated that recent models, as well 

as EOQ, assist in providing a better explanation of inventory costs trade-off.  

Regarding the universal applicability of the EOQ model besides the shortfall of rigid 

conditions, Cannon and Crandall (2004) provided scenarios in which EOQ can be widely or 

sporadically used: the model is found ultimately useful in establishing inventory cost 

estimates for make-to-stock items carrying uniform demand with stable holding and ordering 

costs for a long period of time. However, the customization of the EOQ model was suggested 

in the case of variable quantity discounts involvement and variable shipments of a single 

order made by suppliers; thus, the production and shipment constraints affect the inventory’s 

holding and ordering costs. 

In conclusion, the application of EOQ in the industry for over a century is evident, but 

modifications and variations in the constraints are implemented by the researchers. The 

customization of the model with respect to the conditions of the business is also found in the 

literature. Moreover, the researchers also expressed concerns over the performance of the 

adapted model of EOQ over the original developed model of Harris (1913). 

 

 Types of Inventory Models  

Across the history of EOQ model research, several studies extended the model by relaxing 

one or more of its original assumptions. In this section, studies that extended the model 

based on demand as a function of price, demand/supply as a function of time and 

deterioration rates, lead time, storage space, rebate offered, product quality, and service 

quality are examined in detail. After examining these different models, a background on how 

the EOQ model can be extended to minimise costs and maximise profits is presented, which 

will help in revealing the various methodologies that can be used to develop the subject 

model of this research study.  
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 Inventory Models with Various Price-Dependent Demand Rate 

One of the first areas in which several extensions of the EOQ model were developed is the 

area of demand for a product changing with the price of that product. In these models, the 

relationship between the price and consumer demand, and the optimal pricing strategy for 

the firms were explored. Ladany and Sternlieb (1974) conducted one of the first studies that 

extended the EOQ model to include demand rates that vary according to the selling price of 

the product. In their model, they took into consideration the interaction between the EOQ 

and different pricing policies to determine the order quantity that maximises the net profit for 

the company. Before developing the model, several assumptions were made, including the 

assumptions that the demand has a deterministic rate that depends on the selling price; that 

the demand depends on a demand curve that has uniform elasticity; that the supply is 

ordered in a single batch; that the selling price is based on a fixed mark-up; and that the unit 

cost decreases either linearly or hyperbolically. Through this model, the computed net profit 

was greater than that computed with the original EOQ model. 

Ray, Gerchak and Jewkes (2005) conducted a more recent study that examined the 

relationship between the demand for a product and its selling price and incorporated this 

relationship in the EOQ model. In this study, the researchers considered a case of a firm 

selling a single product based on mark-up pricing and developed an extension to the EOQ 

model. Moreover, linear and log-linear demand functions were considered in this study. 

Through this model, it was proved that, from a profit point of view, for highly price-sensitive 

customers with non-linear demand, managers should not reduce the price too much and try 

to be aggressive. In addition, if managers did not determine the optimal batch size, the 

impact of such an action on the profits is not significant in a model where demand varies 

according to the selling price, except for cases when the setup cost is high, or the demand 

is not linear. 

The following research studies extended the EOQ model by investigating demand as a 

function of the selling price, while assuming the demand function to be deterministic: Fibich 

et al. (2003) and Chou and Parlar (2006), who used a linear deterministic demand function; 

Jeuland and Shugan (1988) and Agrawal and Ferguson (2007), who used a power 

deterministic demand function; Hanssens and Parsons (1993) and Song et al. (2008), who 

expressed the deterministic demand function in an exponential manner; Chen et al. (2006), 

who used a logarithmic deterministic demand function; and Chen and Simchi-Levi (2012), 

who used a logit-based deterministic demand function. 
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All the above models assumed the demand function to be a deterministic one; however, a 

number of research studies extended the EOQ model further, beyond this assumption, to 

include demand functions that have random probability distribution functions (Huang, Leng 

and Parlar, 2013). Federgruen and Heching (1999) extended the model to include demand 

distribution that depends on the item’s price. The assumptions for this model included: the 

price is a function of the state of the system, a replacement order can be placed at the 

beginning of a period, and the inventory stock is fully backlogged. Furthermore, Petruzzi and 

Dada (1999) incorporated the relationship between demand and the selling price in an EOQ 

model for a newsvendor business with robust results. In this model, the researchers 

examined various forms of uncertainty, namely additive, multiplicative and hybrid. Through 

their case study, it was found that if the uncertainty is in an additive form, then the optimal 

price will not be higher than the one obtained from the deterministic model; nevertheless, if 

the uncertainty is in a multiplicative form, the optimal price will not be lower than the one 

obtained from the deterministic model. Moreover, the developed model showed that a 

single-period model can be perfectly applied to a multiple-period problem, which increases 

the usefulness and applicability of the developed model.  

Chen and Simchi-Levi’s (2004) model is another that treated the demand function as 

stochastic. In this study, demand is assumed to be a random variable, with distributions 

depending on the product’s selling price and, similar to previous studies, pricing and ordering 

decisions are taken at the beginning of the period, all shortages are backlogged, and the 

ordering cost encompasses both fixed and variable costs. Through the developed model, 

the researchers demonstrated that, when the demand model is additive, the optimal policy 

will be the one in which the inventory is managed based on the policy stating that an order 

is only placed for more inventory when the inventory level at the beginning of the period is 

below a specific reorder point. Moreover, the price in this case is best determined based on 

the inventory position at the beginning of the period. On the other hand, when the demand 

model is multiplicative plus additive, the optimal policy will be one in which the order level of 

the desired level of inventory minus the current level is made when the inventory level at the 

beginning of the period is less than a specific reorder level. Finally, other stochastic demand 

models present in the literature include those developed by Kocabıyıkoglu and Popescu 

(2011), Phillips (2005), and Agrawal and Ferguson (2007).    

Other demand models are named “willingness to pay demand function”; these models were 

based on the idea that consumers have a heterogeneous willingness to buy a product from 
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a firm at a specific selling price that is less than the maximum price they are willing to pay 

for that product (Huang et al., 2013). One of these models was developed by Kalish (1985). 

The developed model incorporated the uncertainty arising from feedback on experience of 

the product by reducing its value accordingly. 

Furthermore, there are Poisson flow models; these models incorporate customers’ buying 

process and any changes in their price preferences in terms of being willing to pay for the 

product. Zhao and Zheng (2000) developed a model based on the theory that customers 

with a changing reservation price distribution over time arrive according to a non-

homogeneous Poisson process, and that the probability function of this distribution changes 

over time. When applying this developed model on a numerical case study and comparing 

its performance against conventional models, a revenue improvement of 2.4–7.3% was 

achieved. The developed model, represented by the solid black curve, yields higher return 

percentage than the original models, for every respective number of items. Other studies 

that modelled the demand function as a Poisson flow function include Bitran and 

Mondschein (1997), and Xu and Hopp (2009).  

All the above models assumed that there is a single firm selling that given product, whereas 

in real life the presence of competitors selling similar products is the norm. Hence, several 

models were developed where demand is dependent on the selling price in a competitive 

multi-firm environment. Some of these models that account for competition are the ones 

developed by Anderson et al. (1992), Singh and Vives (1984), and Vives (1999), in which 

demand follows a linear function, and both the impact of the product’s price and the impact 

of the price of the competitors’ product are accounted for, although the magnitude of the 

former is higher. 

As seen from the above review of the various price-dependent models, the procedure and 

assumptions for the model development differ according to the nature of the demand 

function, as well as the competitive environment. In addition, from the wide array of demand 

functions used, several advantages and disadvantages of each model can be deduced, 

which help when selecting the appropriate function for the model to be developed in this 

research study.  

 Inventory Models with Changing Time-Dependent Demand Rate 

In addition to demand rates varying with the selling price of the product, rates varying with 

time have also been explored in previous literature, and extended models have been 
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developed accordingly. The main driver behind such models is the case of goods with finite 

shelf lives, resulting in the goods’ loss or deterioration, which is defined by Shah and Shukla 

(2009) as the decay, spoilage, or loss of utility of the product. Some examples of such 

products include fish, medicine, vegetables and airline tickets, whose lifespan starts to 

shorten as soon as they are produced. This large array of products with finite lifespan 

increased the importance of the effect of deterioration and perishability in many inventory 

systems; consequently, many research studies started extending the conventional EOQ 

model to include the impact of time on the demand for the product. The earliest models in 

this domain were developed by Resh, Friedman and Barbosa (1976) and Donaldson (1977), 

who considered an inventory model with linear demand over time. In the former study, the 

researchers extended the EOQ model to include deterministic demand that starts at the 

origin and linearly increases over time. Before formulating their model, the researchers 

made three assumptions on which the model was based. First, the inventory replacement 

orders are made promptly based on the number of inventory items required; second, the 

researchers used a determinate and well-defined planning horizon for the model; and third, 

replenishment, carrying and shortage costs are all included in the formulated model. Hence, 

a model is derived, which determines the optimal schedule of replacement inventory to 

minimise the costs when the inventory level becomes zero. Through the study, the 

researchers proved that for a given number of required replacements “m”, there is a unique 

vector of “m” time intervals that minimise the total cost. They then developed an algorithm 

that determines the unique optimal value of “m”, and the unique optimal scheduling of 

replacements for “m” using the derived mathematical formula. Moreover, the scope of the 

formulated model was further expanded by the researchers with the inclusion of a product 

that has an increasing rate of demand, while, simultaneously, its market is diminishing. 

Donaldson (1977) used the replacement cycle and the cycle time rather than the 

replacement quantity to derive the demand using dynamic programming methods. 

Another important study that considered a linear demand model varying with time is the 

study by Bose, Goswami and Chaudhuri (1995). However, unlike the previous models, this 

one allowed for shortages and backlogging, while also including the effects of inflation and 

time-value of money. The assumptions on which this model was based include: a constant 

deterioration rate over time, an infinite replenishment rate, and a finite time-horizon with a 

number of reorder points. In addition, this comprehensive model also considered three 

different types of costs, namely production cost, carrying cost and shortage cost. For the 
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production cost, it is assumed that the total cost increases as a result of the internal inflation 

rate, while the unit purchase price rises due to the external inflation rate. Furthermore, the 

carrying cost type consists of opportunity and out-of-pocket costs that are not related to the 

operations, such as insurance, taxes and storage. The model is then developed and can be 

solved by any iterative method. When applying the model to two numerical cases, a case 

that allowed shortages and one that did not, it was found that both the reorder number and 

the system cost increase significantly in the no-shortage case; however, the scheduling 

period is longer when shortage is allowed. Finally, the researchers conducted a sensitivity 

analysis regarding the degree by which the reorder number and the optimum cost are 

affected by several independent variables. This is shown in Table 2-1 below: 

Table 2-1. Sensitivity analysis for the reorder number and the optimum cost (Bose et al., 
1995). 

Model 

Outcome 

Highly Sensitive Moderately 

Sensitive 

Not Sensitive 

Reorder 

Number 

Finite Time Horizon Replacement 

Cost 

- Demand Rate 

- Purchase Cost 

- Fraction of inventory that 

deteriorates over time  

- External and Internal Holding Costs 

- External and Internal Shortage 

Costs 

- Internal and External Inflation 

Rates 

Optimum 

Cost 

- Purchase Cost 

- Finite Time 

Horizon 

- External Inflation 

Rate 

Demand 

Rate 

- Replacement Cost 

- Fraction of inventory that 

deteriorates over time 

- External and Internal Holding Costs 

- External and Internal Shortage 

Costs 

- Internal Inflation Rate 

  

Giri, Goswami and Chaudhuri (1996) developed another model, in which the demand rate, 

deterioration rate, holding and ordering costs are assumed to be continuous functions of 

time. The main assumptions behind this model are: the inventory system is for a single item; 

shortages are allowed and are completely backlogged; a finite planning horizon, no repair 

or maintenance of deteriorating items are allowed; the replenishment periods are constant; 

and the lead time is zero. The model is used to derive the replacement rule which minimises 
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the total costs. Similar to the previous study, it was found that the system cost and reorder 

number increase considerably in the no-shortage case. Finally, through a sensitivity 

analysis, it was shown that the developed model is highly sensitive to any modifications in 

the time-horizon, while any inaccuracies in the demand rate and shortage cost have only a 

slight impact on the model, and changes in the cost per unit and the fraction of inventory 

that deteriorates over time do not affect it at all. Dave and Patel (1981) developed another 

model that assumed that demand changes linearly with deteriorating time. In their model, 

the planning horizon is finite; the replenishment rate is infinite with no lead time; shortages 

are not allowed; the unit cost, holding cost and replacement cost are all constant; and a 

constant fraction of the inventory on hand deteriorates over time. Through a numerical 

example, the researchers demonstrated that this model leads to a reduction in the total 

annual cost and number of deteriorating units per year. Moreover, through the sensitivity 

analysis, several conclusions can be made. First, the optimal value of the number of 

replenishments increases with the increase in the time horizon and the fraction of the 

inventory that deteriorates over time. This number does not change in response to a change 

in any other parameter. Second, the optimal value of the scheduling period increases with 

a decrease in the fraction of the inventory that deteriorates over time. Third, the cost 

increases with a decrease in the time horizon and the fraction of the inventory that 

deteriorates over time. 

Another set of models aimed at extending the EOQ model when demand varies with the 

deteriorating time exponentially. One of these models is the Hariga and Benkherouf model 

(1994). The formulated model in this study was based on a number of assumptions: 

replacements take place instantly and at an infinite rate; the deterioration rate is constant; 

there is only one product’s item kept in stock over one year; no shortages in the number of 

items are permitted; and the costs include a constant ordering cost, and holding and 

deterioration costs per unit. Through this model, six heuristic procedures were developed 

and compared based on the percentage of cost deviation from optimality, measured as the 

percentage increase in the total cost above the optimal cost value, and the computational 

time needed. From this study, several conclusions were made, as follows: the average cost 

performance of equal replenishment cycle procedure is worsened as the time horizon 

increases, with no clear trend for the other heuristics; the extended Silver-Meal procedure 

performs poorly, in terms of cost, in declining markets; and the average percentage of cost 

deviation for the extended least-cost approach and the extended least-unit cost procedure 
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improves as the fraction of deteriorating goods increases. However, no clear impact of this 

parameter can be observed on the cost performance of the other heuristics, and for large 

ordering cost, the average cost performance worsens for the equal replenishment interval 

procedure and the extended Silver-Meal procedure, while the performance of the extended 

least-unit cost procedure is improved as the ordering cost increases. 

Based on the above, it can be concluded that according to the cost performance measure, 

the extended least-cost approach performed best, followed by the extended least-unit cost 

procedure. On the other hand, the worst performing heuristic is the constant demand 

approximation, followed by the equal replenishment interval procedure, then the extended 

Silver-Meal procedure and the constant demand approximation procedure. Finally, 

Mirzazadeh (2010) took this model extension a step further, and modelled the demand as a 

function of the items whose deterioration is based on different practical situations. In general, 

the model is developed based on stochastic internal and external inflation rates; however, 

in practice, these rates depend on a number of economic, political, social and cultural 

variables, such as labour cost, raw materials cost, exchange rates, taxes, liquidity and 

unemployment rates, among others. The derivation of the model is based on the 

assumptions that the internal and external inflation rates are random variables with well-

defined distributions, shortages are allowed and fully backlogged, the demand rate is known 

and constant, the replacement is instantaneous with no lead time, the time-horizon is a 

determinate one, and the fraction of the inventory on hand that perishes over time is 

constant. The solution of the model computes the number of needed replenishments and 

the percentage of time in which the inventory cycle can be filled from the existing inventory 

(k). Finally, the sensitivity analysis revealed the following observations: 

1- When the internal inflation rate increases, the number of replacements decreases 

and “k” increases. 

2- When the external inflation rate increases, the number of replenishments and “k” 

increase. 

3- When the mean values of the normal distribution function of the inflation rates 

increase, the optimal expected present value of the cost increases. 

4- The changes in the standard deviation of the inflation rates do not affect either the 

number of replenishments or “k”. 

5- The number of replenishments is highly sensitive to changes in the demand rate per 

unit time, the ordering cost, and the fixed time horizon. 
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6- The number of replenishments is slightly sensitive to the internal shortage cost, and 

insensitive to the internal and external holding costs and the external shortage cost. 

7- The optimal value of “k” is highly sensitive to changes in internal and external holding 

costs and the external shortage cost. 

8- The overall system cost is highly sensitive to changes in the demand rate per unit 

time, the purchase cost, and the fixed time horizon, while it is insensitive to the other 

parameters of the model. 

In conclusion, the extensions of the EOQ model based on time-dependent demand differed 

according to the nature of the demand function adopted by the different studies. However, 

all the above models were only concerned with the scenario in which competition is non-

existent, which reflects a limitation of such models. Nevertheless, several insights were 

gained on the influence of certain assumptions on the model formulation, which help in the 

process of developing the model, the subject of this research study. 

 Inventory Models with Various Lead-Time-Dependent Demand Rate 

Besides the change of demand with the deterioration time, another time parameter that 

impacts demand is the lead time, which is the time interval between the placement and the 

receipt of the order by the customer (Albana, Frein and Hammami 2017), because timely 

customer service is an important competitive advantage for firms. Hence, besides the selling 

price, firms should also be focusing on optimising its delivery time, because, on the one 

hand, customers consider this parameter when they make their purchasing decisions; and 

on the other hand, sometimes customers are willing to pay a premium for fast and reliable 

delivery. This emphasises the relationship between consumer demand and lead time, which 

highlights the importance of modelling this relationship.  

When extending the EOQ model to include the change in demand based on lead time, these 

developed models can be sorted into two main categories: single firm models and 

competition models (Huang et al., 2013). With regard to the former, different types of models 

were used, including linear, Cobb–Douglas, Multi-nominal Logit, and willingness to pay 

models (Huang et al., 2013). The pioneer study developed by Palaka, Erlebacher, and Kropp 

(1998) is an example of a linear model. In this model, the researchers modelled the firm’s 

operations as a simple M/M/1 queue, which follows Kendall’s notation of the arrival 

process/the service time distribution/the number of servers. Hence, in an M/M/1 queue, 

there is a single server, the arrival distribution of the customers follows Poisson distribution, 

and the distribution of the service time follows an exponential distribution, and maximises 
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the revenues minus the total variable production costs, holding cost and late penalty costs 

by utilising the quoted lead time, capacity utilisation and price. Through this model, it was 

shown that capacity utilisation should be lowered when customers are more sensitive to lead 

times; the firm incurs higher congestion-related costs, and the late penalty is higher. 

Moreover, through a conducted sensitivity analysis, the following conclusions were made:  

1- As lead-time sensitivity decreases, the price drop becomes higher. This can be 

explained by the fact that when the firm's service level exceeds the minimum 

requirement, it tends to reduce the quoted lead times instead of reducing prices. 

2- Any increase in the unit holding cost will lower both the optimal arrival rate and the 

optimal cited lead time. 

3- When the industry service level is small and non-binding, the increase in the industry 

service level has no impact on the optimal price. On the other hand, when the service 

level constraint becomes binding, the optimal price decreases at an increasing rate 

as the industry standard service level increases. 

4- Errors in parameter estimation that result in higher than optimal demand levels lead 

to an increase in costs and vice versa. At the same time, the effect on the firm’s 

revenues depends on the elasticity of both the price and the lead time. 

5- When the unit holding cost is underestimated there is a larger drop in optimal profit 

than when it is overestimated. 

6- When the service level constraint is non-binding, underestimating the penalty cost 

can cause profits to decrease at an increasing rate. 

7- Finally, the sensitivity to errors in estimating the industry standard service level is 

dependent on the service level constraint. 

Another extension of the model was conducted by Albana et al. (2017), who extended the 

model to include a client rejection policy when the number of customers (K) present in the 

system is sufficient. Hence, the researchers modelled the firm’s operation as an M/M/1/K 

queuing system, which is a finite queuing system where K is the number of customers that 

the system can accommodate; although, for simplicity, K was assumed to be equal to 1. 

Moreover, the assumptions behind this model included a constant capacity, the customers’ 

arrival process being a Poisson process with customers served on a first-come first-served 

basis, and the customers’ processing times being exponentially distributed.   

Furthermore, the objective of this model is to maximise the firm’s net revenues, which entails 

maximising its expected revenues while minimising its total congestion and lateness penalty 
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costs. In addition, in order to assess if such a queuing system is more profitable than the 

simple 𝑀/𝑀/1 system, a comparison was conducted between these two systems under two 

scenarios: an 𝑀/𝑀/1/1 without penalty and holding costs, and an 𝑀/𝑀/1/1 with penalty 

and holding costs. Through this comparison, the following observations were deduced 

(Albana et al., 2017): 

1- Having a rejection policy can be more profitable at low market potential and high 

lead-time sensitivity, even when there are no penalty and holding costs. 

2- When the penalty and holding costs are included, there are more cases in which a 

rejection policy becomes more profitable, because the lead time gets longer when 

we accept all clients, which results in high congestion costs. 

Another type of lead-time developed models uses a multi-nominal logit function to depict the 

relationship between this parameter and the demand rate. Ho and Zheng’s (2004) model is 

an example of such functions. In this model, the researchers assumed that the firm’s 

customers are sensitive to lead time; hence, the objective was to maximise the demand rate 

while fulfilling the customers’ lead-time expectations.   

Regarding the willingness to pay demand functions, Zhao, Stecke and Prasad (2012) 

extended the EOQ model to investigate the impact of variable lead time on the firms’ 

profitability. The researchers achieved this objective by comparing two different strategies 

that are commonly used by firms. These strategies are Uniform Quotation Mode (UQM), 

where only a single price with a corresponding lead time is offered to customers, and 

Differentiated Quotation Mode (DQM), where different combinations of prices and lead times 

are offered to customers. In this study, two models were developed for lead-time- and price-

sensitive customers. In these models, a Poisson process was used to model the customers’ 

arrival processes, while the production system was modelled as an M/M/1 queue system. 

Furthermore, with each model, three marketing scenarios were considered, namely lead-

time-sensitive focus, price-sensitive focus, and no focus; the model included both the 

production and capacity costs. 

In a competition setting, i.e. multi-firm models, Pekgun, Griffin and Keskinocak (2017) 

developed a model where two firms compete on both price and lead time, with the objective 

of examining the impact of decentralisation on the firms’ profitability. There were two 

categories of assumptions behind the developed model: first, the general model 

assumptions, including fixed capacity, M/M/1 queuing system, and linear demand function; 
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and second, multi-firm assumptions, including all parameters being known to both firms, a 

unit increase or decrease in a firm’s price or lead time having a stronger impact on its own 

demand than that of the competitor, and if one of the firms can increase its demand when it 

sells at cost with the shortest lead time, then the other firm can achieve similar results. Based 

on these assumptions, two models were developed, one for centralised decisions and one 

for decentralised decisions, and their generated profits were compared against each other. 

From this comparison, several observations were made. The first of these observations is 

that, for identical firms, if both firms follow a decentralised strategy, the lead time becomes 

longer, the price lower, and the demand higher than if both firms follow a centralised 

strategy. On the other hand, if one of the firms adopts a centralised strategy while the other 

adopts a decentralised one, then the centralised firm quotes higher prices and lower lead 

times, resulting in lower demand. Furthermore, the relationship between the intensity of 

competition in price and lead time plays an important role in selecting the strategy that 

generates more profit. 

Unlike the EOQ extensions that were based on time-dependent demand, some lead-time-

dependent models considered a multi-firm competitive environment. This provided insights 

into how the various models are developed and the assumptions behind them, which can 

be utilised when developing the subject model in this study. 

 Inventory Models for Limited Space Storage Area 

In addition to price- and time-dependent models, several extensions for the EOQ model 

were developed to account for the limited storage and/or display space for large-scale items, 

as this parameter might influence demand (Huang et al., 2013). Huang, Lai and Shyu (2007) 

incorporated both a limited storage scenario and partial permissible delay in payments, and 

extended the EOQ model to deduce the optimal retailer’s lot-sizing policy while minimising 

the cost. In their model, it is assumed that the retailer will rent a second warehouse when 

he runs out of storage space in order to store excess items. Further assumptions for the 

model include: constant demand, infinite time horizon, no shortages are allowed, and partial 

payment is made when the order is placed, then the remaining balance is paid at the end of 

the credit period. After developing the model and applying it to a numerical example, the 

following conclusions were made. First, for a fixed fraction of the delay payments permitted 

by the supplier per order (α) and a fixed unit stock holding cost of the rented warehouse per 

year (k), increasing the storage capacity (W) will result in a significant increase in the quantity 

ordered by the retailer. Second, a similar trend is observed when increasing the value of (α) 
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while keeping (k) and (W) fixed, while a reverse trend is observed when increasing the value 

of (k) while keeping (α) and (W) fixed. 

A similar model was developed by Yen, Chung and Chen (2012), in which two levels of trade 

credit were considered, along with own and rented warehouses scenarios, to find the optimal 

cycle time that minimises the firm’s cost. Two levels of trade credit were incorporated in this 

model: (1) the retailer settles the payments for all units sold and uses the profits for other 

purposes, and (2) the retailer pays the supplier the amount owed whenever he/she collects 

money from sales. Moreover, the results of the sensitivity analysis conducted on the 

developed model are shown in Table 2-2. 

Table 2-2. Sensitivity analysis for the developed model (Yen et al., 2012). 

Parameter Change  Impact on Order Quantity (T) and Total 

Annual Cost of the Retailer (TRC) 

Interest rate earned Increase Decrease 

Customer trade credit period Increase Increase 

Interest rate charged Increase or 

Decrease 

No Impact 

Purchasing cost Increase No Impact  

Holding cost of own or rented 

warehouse  

Increase Decrease (T); Increase (TRC) 

Storage capacity Increase Decrease (T); Increase (TRC) 

Demand rate Increase Decrease (T); Increase (TRC) 

Retailer’s trade credit period Increase No Impact 

Ordering cost Increase Increase 

Selling price Increase Decrease 

 

More recently, Sana (2015), considering the need to rent a warehouse when the quantity of 

items exceeds the retailer’s own warehouse storage, took the problem a step further and 

extended the EOQ model to one in which demand is a random variable. In this study, the 

average cost functions for three different scenarios order size exceeds the capacity of own 

warehouse, order size does not exceed the capacity of own warehouse, and absence of 

own warehouse are derived for both continuous and discrete demand functions. In order to 

derive these functions, the researcher assumed that replacement size is infinite when not 

considering the lead time, and shortages due to uncertain demand are permitted and, in that 

case, lost sales are considered. In this same line, Singha, Buddhakulsomsiri and 

Parthanadee (2017) attempted to identify the reorder point and the optimum order quantity 
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when there is a shortage in the storage capacity for a single-item inventory, while minimising 

the total inventory management cost, which consists of ordering, shortage, holding and 

storage costs. Under this scenario, the retailer must rent a new warehouse to store excess 

items and is charged on a per-unit basis that is higher than the in-house storage rate. In this 

model, both inventory policies of continuous and periodic reviews are considered, as well as 

two types of shortages: lost and backlogged. The developed model assumed stochastic 

demand and is solved through an iterative method, and optimal solutions are reached via 

exhaustive search. Finally, a comparison between the two inventory policies revealed that 

at optimal solutions, both policies replace the order quantities, the reorder point is higher for 

the periodic review policy, and the periodic review has higher total costs and longer cycle 

length, despite the fact that the continuous review policy exhibited higher holding and 

ordering costs. At the same time, a comparison between backlogged and lost shortages 

revealed that the former has higher replacement order quantities, while the latter has higher 

reorder point.     

Ghosh, Sarkar and Chaudhari (2015) extended the space-dependent EOQ model to include 

the case of multiple-item inventory. In this model, the researchers assumed that the demand 

rate is dependent on the item’s stock, no shortages are allowed, replacements are 

instantaneous with no lead time, and all of the holding costs, ordering costs and shortage 

costs remain constant over time. Through a sensitivity analysis for the developed model, it 

was found that: 

1- When demand increases, the order quantity and the cycle time increase; hence, the 

total cost increases. 

2- When the setup cost increases, the order quantity and the cycle time increase; 

hence, the total cost increases. 

3- When the holding cost increases, the order quantity and the cycle time decrease; 

however, the total variable cost increases. 

4- When the required storage quantity increases, both the order quantity and the cycle 

time decrease.  

Mondal, Garai and Roy (2018) extended the space-dependent demand models to include a 

space constraint in an intuitionistic fuzzy environment through the application of intuitionistic 

fuzzy programming. The objective of this single-item model is to minimise the firm’s Total 

Average Cost (TAC) while accounting for both the holding and production costs. Hence, the 

assumptions behind this model include constant demand rate, instant replacements at an 
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infinite rate, no lead time, and no shortages allowed. Based on these assumptions, an 

intuitionistic fuzzy model was developed and compared against fuzzy and crisp models. 

Through this comparison, it was observed that the intuitionistic fuzzy model leads to a lower 

TAC at higher levels of demand and production quantity. Next, a sensitivity analysis for the 

three models was conducted to examine the impact of the available storage space on the 

TAC computed from the three models. Based on this analysis, two observations were made. 

First, as storage space decreases, the TAC decreases in all three models; second, the 

optimal TAC is always the lowest in the intuitionistic fuzzy environment. 

Finally, some other studies also developed space-dependent models under various 

scenarios and conditions. For instance, Singh, Khurana and Tayal (2016) developed a 

model in which the demand is dependent on the shelf space of the item with allowable credit 

and partial backlogging. Giri and Bardhan (2015) developed a single-vendor single-buyer 

model for a single product when the demand is dependent on the limited display space 

available for the retailer. Dordevic et al. (2017) extended the space-constrained EOQ model 

further to include multiple products, using a meta-heuristic approach under a combinatorial 

optimisation problem. Farhangi and Mehdizadeh (2016) used a mixed integer and nonlinear 

programming to formulate a multiple products model. Moreover, Ouyang et al. (2005) 

incorporated a permissible delay payment period and unit production cost in the space-

dependent demand model, in which storage space is limited and the retailer must rent 

another warehouse. In addition, Mohanty, Kumar and Goswami (2016) extended the two-

warehouse scenario to include non-instantaneous deteriorating products in a stochastic 

framework; and Sekar, Uthayakunar and Mythuradevi (2017) and Tiwari et al. (2017) 

accounted for inflation when modelling a two-warehouse scenario. Finally, Tiwari et al. 

(2018) developed a space-dependent inventory model, but instead of renting another 

warehouse, the retailer stores the extra item in an unlimited capacity backroom.     

Here the various space-dependent models and how different scenarios can evolve as a 

result of limited storage or shelf capacity have been analysed. The objectives of this type of 

models are similar to the ones devised in this research study:  

• Storage space is limited 

• The item is perishable 

• The objective is to maximise profits.  
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Nonetheless, although cost minimisation and profit maximisation were targeted by these 

models, none included optimising the storage space, as they assumed the rental of a 

second warehouse in which the excess items will be stored.   

 Further Extensions of the EOQ Models based on the Demand-

Dependent Parameter  

In Sections 2.3.5.1, 2.3.5.2, 2.3.5.3 and 2.3.5.4, EOQ extensions based on the most-

examined parameters that impact the consumers’ demand have been discussed. However, 

there are more parameters, whose impact has been studied in literature, but to a lesser 

extent. The first of these parameters is the presence of a rebate or promotion. The presence 

of this parameter can direct demand towards a particular product, as consumers will be 

encouraged to buy this product to receive a reward (Huang et al., 2013). Hence, Pattnaik 

and Gahan (2018) extended the EOQ model to determine the optimal replacement 

quantities when promotional efforts are present and reflected in terms of increased demand 

and promotional cost. Gahan and Pattnaik (2017) developed a fuzzy EOQ model to 

determine the impact of a promotion policy on optimising the retailer’s profit. Furthermore, 

Pattnaik (2015) incorporated promotional efforts in the developed price-dependent model in 

which demand declines with price, thus concluding that the presence of a promotion can 

boost the retailer’s profit, especially for deteriorating items. In addition, Soni and Suthar 

(2018) extended the model with promotion-dependent demand by considering demand to 

be stochastic. Other stochastic demand models in which demand is dependent on 

promotional efforts include those developed by Maihami and Karimi (2014), and Roy, Sana 

and Chaudhuri (2015). Avinadav et al. (2017) divided the demand function into three 

independent multiplicative components of selling price, products’ age and promotion 

investment. Similarly, Rajan and Uthayakumar (2017) extended the EOQ model by 

assessing the impacts of the promotional efforts on demand to determine the optimal 

replacement schedule and order quantity to maximise profits. Finally, Hertini et al. (2018) 

used Potryagin’s Maximal Principle, which is an optimal control principle to find the optimum 

solutions when variables change over time, to extend the EOQ model to include salesman’s 

initiative, i.e. promotional efforts. De and Sana (2015) developed a promotion-dependent 

intuitionistic fuzzy EOQ model.    

Different types of promotions are also considered in some models. For instance, Yang, Liao 

and Shi (2015) optimised the order quantity for both a rebate programme and an EDLP, and 

found that the rebate programme is more effective in encouraging demand when consumers 
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are price-sensitive, while the EDLP is not necessarily better for low price-sensitive 

consumers. Tsao (2015) found that, to maximise profits, it is better for retailers to use a 

buyback policy, rather than off-invoice or scan-back policies. Similarly, Chen, Chen and 

Bidanda (2016) found that a buyback and minimum supply quantity contract yield more profit 

than an advance payment contract in a decentralised decision model.  

Another stream of model extensions related to promotion concerns those that consider a 

return policy. An example of such models is the one developed by Noori-daryan and 

Taleizadeh (2018). In their model, two scenarios in a supply chain, consisting of a supplier, 

manufacturer and wholesaler, are considered for a single item. In the first scenario, there 

are two return contracts between the outside supplier and the supplier, and the manufacturer 

and the wholesaler; in the second scenario, the first return contract is the only one 

applicable. The objective of this model is to maximise the profit for the entire supply chain 

by optimising the order quantity of the supplier and the selling prices of the manufacturer 

and wholesaler. Through these models, Noori-daryan and Taleizadeh found that the first 

scenario yields higher profit than the second one.      

In a related type of EOQ models, the promotion efforts specifically consist of advertising 

efforts, and demand is dependent on these efforts. Bhunia et al. (2015) developed a 

deterministic inventory model in which demand is dependent on the frequency of 

advertisements in both electronic and print media. In this model, they also assumed a single 

deteriorating item in a two-warehouse storage scenario, and the problem was modelled as 

a mixed integer nonlinear constrained optimisation problem. Moreover, Chanda and Kumar 

(2016) developed a fuzzy EOQ model for a company that sells technology products, in which 

demand depends on the advertising cost, and found that the optimal strategy is to hold 

inventory for a short period and at low cost when it is possible to invest in advertising. Manna, 

Dey and Mondal (2017) developed an EPQ model in which demand is dependent on 

advertisement, and increases with time but at a decreasing rate. The objective of this model 

is to maximise the total profits to deduce the optimal production rate. Furthermore, Hazari 

et al. (2015) modelled demand as an increasing function with the expansion of the 

advertisement policy. Based on the bi-fuzzy nature of the selling price, holding cost and 

advertisement cost, the authors used a bi-fuzzy technique to convert the problem into 

equivalent crisp problem. Finally, in order to solve the problem with constraints, they resort 

to the Generalised Reduced Gradient (GRG) method, which is a generalisation of 

the reduced gradient method allowing nonlinear constraints and arbitrary bounds on the 
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variables, and to the Pontryagin’s Maximum Principle (PMP) (Boltyanski et al., 1998), which 

allows finding the best possible control for taking a dynamical system from one state to 

another, especially in the presence of constraints for the state or input controls.  

Several other advertising-dependent models were developed while taking into consideration 

a different set of variables. For example, Kumar and Chanda (2017) modelled demand as a 

hazard rate function; Geetha and Udayakumar (2015) assumed partial backlogging based 

on the waiting time for the next replacement inventory; Shah and Vaghela (2017) included 

inflation in their model; Shah, Chaudhari and Jani (2018) assumed demand to be quadratic 

for non-instantaneous deteriorating items; Rathore (2019) included the process reliability 

factor; and Gupta, Biswas and Kumar (2018) included the market power structure and 

quality in their model. 

The final category of types of EOQ models to be explored in this review is EOQ models 

based on quality. There are two types of models that fall under this category, product quality 

and service quality demand-dependent EOQ models. With regard to the product quality 

model, the researchers included this parameter in their models due to the fact that improving 

quality requires R&D, which increases the cost; hence, a trade-off exists between benefit 

and cost when attempting to determine the optimal quality level which impacts consumers’ 

demand (Huang et al., 2013). An example of such models is the one developed by Maiti and 

Giri (2015). In their model, demand for the product is linearly dependent on its quality in a 

directly proportionate manner. In their study, the researchers assumed a closed-loop supply 

chain, in which a manufacturer sells a product to a retailer, and a third party collects these 

products from the consumers and sends them back to the manufacturer to recycle them. 

The model was applied to five different scenarios; it was found that a retailer-led 

decentralised strategy results in a win-win situation for all the supply chain players. Modak, 

Panda and Sana (2015) considered a one manufacturer, one supplier scenario, in which 

demand depends on the product’s quality, and tried to maximise the retailer’s profit for both 

the centralised and decentralised strategies. For a similar supply chain structure, 

Seifbarghy, Nouhi and Mahmoudi (2015) developed a model in which demand is linearly 

dependent on the quality of the final product to maximise the retailer’s profit. Through this 

model, they found that the entire supply chain’s profit is higher under the centralised 

strategy. Moreover, Liu, Ahang and Tang (2015) devised an inventory model for perishable 

goods in which the demand depends on the product’s quality, which deteriorates 

continuously. Feng (2019) developed another model for perishable goods. This model is 
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based on the scenario in which the quality and physical quantity of the product deteriorate 

at the same time, and the demand rate increases with the quality level. To maximise profit 

in this scenario, this research study utilised a dynamic optimisation model, and the problem 

was solved using Pontryagin’s maximum principle. Similarly, Rabbani, Zia and Rafiei (2016) 

considered the scenario of the quality and physical quantity of the product deteriorating at 

the same time, and developed a quality-dependent demand model to maximise the total 

profit of the system by calculating the optimal replacement cycle, discount rate and initial 

price. 

All the above models are applicable for the manufacturing companies; however, for service 

companies, a demand rate that depends on service quality in terms of speed and 

convenience must be modelled (Huang et al., 2013). Very few studies have developed these 

models, Hou, Koster and Yu’s (2018) model being one of the few examples. The researchers 

developed a model for an online retailer in which demand depends on delivery service 

quality. The aim of this model is to reach the optimum investment in service quality that 

optimises the retailer’s profit. Furthermore, Xia, Xiao and Zhang (2016) developed a model 

to study the impact of investment in in-store assistance on the retailer’s demand, while Xiao 

and Qi (2012) modelled service quality in terms of delivery time and reliability in satisfying 

the announced delivery time. In their model it was assumed that the customers arrive 

randomly, and that the time it takes the manufacturer to produce the product is random too.  

In conclusion, there are various types of demand-dependent EOQ models in which demand 

changes as a result of a change in one or more parameter. Each of these types of models 

has its own application in real-life scenarios as modern-day business continues to evolve. 

From all these types, several assumptions and/or conditions can be mapped in the subject 

case of this research study.  

As seen from the above discussion, several extensions of the EOQ model assumed 

stochastic demand, and proved that the EOQ model still holds under this assumption. 

Whether this demand is price-, time- or space-dependent, the EOQ model can be extended 

to accommodate such a demand type. This fact was highlighted by Maddah and Noueihed 

(2017), as they assumed that demand occurs at random under a renewal process that is 

independent and identically distributed with no lead time. In order to examine if the EOQ 

model holds under these conditions, the researchers followed all the EOQ model’s 

assumptions except for the demand one mentioned above. Consequently, through their 
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developed model, they found that the optimal order quantity that results in the minimum cost 

incurred can be calculated using an EOQ formula.  

 Systematic Literature Review about current trends in EOQ 

models for the steel manufacturing industry  
This section presents a SLR conducted to explore the different applications of the EOQ in 

the steel manufacturing industry. In the first place, the current trends in the literature of EOQ 

models are reviewed. Then, the focus is made on the particular subject topic of this research 

study, i.e., EOQ models applied within the context of the steel manufacturing industry and 

their capability of improving sustainable aspects of the company in terms of waste and 

environmental impact management. The SLR is performed following the methodology 

adopted by Shekarian et al. (2017): 

1- Relevant studies collection (Section 2.4.1) 

2- Descriptive analysis of the collected dataset (Section 2.4.2) 

3- Category selection (Section 2.4.3)  

4- Content analysis (Section 2.4.4)  

 

 Data Collection and Literature Search 

In this first step, the most relevant studies in the state-of-the-art are revisited and collected 

in order to be able to make the most appropriate contribution to the topic under study. In 

particular, for the preliminary stage, the approach presented in Huang et al. (2013), in which 

the various categories of the different types of EOQ models, based on the parameter on 

which the demand depends were defined, is used. For the subsequent stage, different fields, 

such as transportation, supply chain, manufacturing and sustainability within the steel 

manufacturing industry context are taken into account. Using these approaches as the 

foundation for the outline of this SLR, several new branches of research are added to align 

the SLR towards the purpose of this study. Consequently, five research questions are 

formulated for the preliminary and the specific stages as shown in Table 2-3. 

Table 2-3. Research questions. 

SLR: EOQ Models SLR: EOQ Applications 



 
 

68 
 

1- What types of EOQ models have 

been developed based on the 

demand-dependent parameter? 

2- Within these types, what are the 

demand functions adopted by 

different researchers? 

3- What are the different fields in which 

the EOQ model has been applied? 

4- Within the examined studies, what 

is the optimisation technique used 

by the researchers? 

5- What are the limitations of the 

current state of the art? 

1- What are the environmental impacts 

of ordering and holding inventory? 

2- What are the types of inventory 

management models used in the 

steel manufacturing industry? 

3- Within these applications, what are 

the demand functions adopted by 

different researchers? 

4- Within the examined studies, what 

is the optimisation technique used 

by the researchers? 

5- What are the limitations of the 

current state of the art? 

 

In order to answer these questions, a search process is designed which defines how the 

search is conducted, the inclusion/exclusion criteria, and data analysis procedures. The 

following electronic databases are used as the primary sources for examined literature:  

• Scopus 

• Taylor and Francis 

• Emerald 

• Elsevier 

• Wiley 

• Science Direct 

To locate the relevant studies, the search terms shown in Table 2-4 are utilised: 

Table 2-4. Research terms. 

EOQ Models EOQ Applications 

“EOQ Model”, “EOQ Model Extensions”, 

“Price dependent Demand Model”, “Time 

dependent Demand Model”, “Space 

dependent Demand Model”, “Promotion 

dependent Demand Model”, “Advertising 

“EOQ Model in sustainability”, “Inventory 

management in the steel industry”, 

“Environmental impacts of inventory”, 

“Waste reduction in inventory”, “waste 

management in inventory”, “EOQ Model 
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dependent Demand Model”, “Quality 

dependent Demand Model”, “Deterministic 

EOQ Model”, “Stochastic EOQ Model”, 

“EOQ Applications”, “Inventory Cost” and 

“Inventory Management Policy”.  

with emissions”, “EOQ Model with 

recycling”, and “EOQ Model with 

remanufacturing”.  

 

Table 2-5 shows the inclusion/exclusion criteria used in each case:  

Table 2-5: Inclusion/exclusión criteria. 

EOQ Models EOQ Applications 

1- The paper develops a new EOQ 

model  

2- The developed EOQ model is 

relevant to this study’s research 

questions 

3- The paper explains the model’s 

development thoroughly, lists all its 

assumptions, and highlights the 

differences from previous models 

4- The paper provides an application of 

the newly developed model 

 

1- The paper clearly applies the EOQ 

model to the steel manufacturing 

industry or analyse the sustainability 

aspects of applying the EOQ model.  

2- The paper demonstrates that the 

application of the model led to a 

breakthrough in that given field 

3- For waste reduction and 

management, the inclusion criteria 

included:  

• One of the developed model’s 

objectives is to manage or 

reduce inventory 

• The results of the developed 

model’s implementation led to 

waste reduction or better 

waste management. 

 

 Descriptive Analysis 

Only the studies that actually contributed to answer the research questions listed in Table 

2-3 are considered for the SLR. In order to identify such studies and ensure their quality, the 

abstracts of all the studies collected based on the process described above are examined 
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thoroughly. This step trimmed the number of studies to 88 and 61 for the EOQ models and 

their applications, respectively. 

 

 Category Selection 

In this step, the collected data is categorised in different classes. Table 2-6 shows the main 

defined classes for the studies collected for the preliminary and specific stages of the SLR.  

Table 2-6: Categories for the collected data. 

EOQ Models EOQ Applications 

1- Models with a price-dependent 

demand rate (P): Studies where an 

EOQ model is developed in which 

the demand rate depends on the 

item’s selling price. 

2- Models with a time-dependent 

demand rate (T): Studies that 

developed an EOQ model in which 

an item has a finite shelf life, i.e. it 

experiences deterioration over time, 

and the demand rate is thus 

affected as time passes and the 

product deteriorates. 

3- Models with a lead-time-dependent 

demand rate (LT): Studies that 

developed an EOQ model in which 

customers are sensitive to the 

waiting time; hence, the lead time of 

the item has a major impact on the 

demand rate for that item. 

4- Models with a space-dependent 

demand rate (S): Studies that 

developed an EOQ model in which 

1- EOQ applications in the steel 

manufacturing industry: Studies that 

applied the EOQ model in the steel 

manufacturing field. 

With regard to the EOQ applications in 

sustainability, the following three classes 

are used: 

2- EOQ application in sustainability: 

Studies that applied the EOQ model 

in a sustainable setting or under 

sustainability regulations. 

3- Environmental impacts of inventory: 

Studies that discussed, highlighted, 

or proved the different kinds and 

types of environmental impacts of 

ordering or holding inventory. 

4- Waste reduction and management 

from inventory: Studies that 

discussed and developed models 

that were aimed to reduce or 

manage waste through better 

inventory management. 
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the retailer has limited storage 

space, and the demand rate for the 

item depends on how large this 

space is. 

5- Models with a promotion-dependent 

demand rate (PR): Studies that 

developed an EOQ model in which 

the retailer uses particular 

promotional efforts to induce 

demand for a certain product.  

6- Models with an advertising-

dependent demand rate (A): 

Studies that developed an EOQ 

model in which the retailer 

specifically uses advertising efforts 

to induce demand for a certain 

product. 

7- Models with a product-quality-

dependent demand rate (PQ): 

Studies that developed an EOQ 

model in which consumer demand 

depends on the quality of the 

product.  

8- Models with a service-quality-

dependent demand rate (SQ): 

Studies that developed an EOQ 

model in which consumer demand 

depends on the quality of the 

service received. 

 

After the categorisation shown in Table 2-6, the studies are further evaluated towards finding 

common characteristics according to the nature of the demand function and the type of 

optimisation technique used. This process combines both deductive and inductive 
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approaches to reach the most comprehensive and accurate categorisation of the studies, 

so that a content analysis can be carried out. 

 

 Content Analysis 

In this section the collected studies addressing the current trends in EOQ models and their 

applications in the steel manufacturing industry are analysed.  

 

 EOQ models 

The EOQ model studies are classified into classes according to the parameter on which 

demand depends, as shown in Table 2-7. An extension of Table 2-7 can be found in Table 

A 1 (Appendix A), where all the references to the corresponding studies have been included. 

Table 2-7. EOQ model studies by parameter 

Type Number of 

Studies 

Price 25 

Time 9 

Lead Time 6 

Space 15 

Promotion 14 

Advertising 10 

Product Quality 6 

Service Quality 3 

 

As seen from Table 2-7, the price-dependent demand models form the lion’s share of studies 

that developed an extension for the EOQ model, with a total of 25 studies, equivalent to 28% 

of the total number of EOQ model studies. This class is followed by the space-dependent 

and promotion-dependent models, with 15 and 14 studies, respectively. On the other hand, 

the parameter that has received the least attention in the literature is service quality, with 

only three studies. This is somehow expected, as inventory models, in general, deal with 

products rather than services.  

According to the reviewed studies, the overwhelming majority of the EOQ models proposed 

in the literature assumed that the demand function is deterministic. In particular, 60 studies, 

which is equivalent to 68% of the total EOQ model studies assumed deterministic demand. 
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On the other hand, only 28 studies, which is equivalent to 31% of the total studies, consider 

stochastic demand. The references for each of these studies can be found in Table A 2 

(Appendix A). The allocation of these models among the eight identified classes of the EOQ 

model is shown in Figure 2-1. 

 
Figure 2-1. Number of demand function studies by parameter. 

As seen from the above figure, the lead-time- and advertising-dependent models have an 

equal number of deterministic and stochastic models, while the space-dependent models 

show the largest gap between the two types, with the deterministic models being dominant.  

Another important characteristic of the developed models examined in this literature review 

is the type of optimisation technique used. Solving complex inventory management models 

constitutes a separate (and often far more complex) task than developing the models 

themselves. In this context, the use of different optimisation techniques has become 

increasingly popular, since it allows addressing multiple concepts for multiple dimensions of 

decision making by producing objectively verifiable and quantifiable outputs (Stadtler and 

Kilger, 2002); it allows quantifying important aspects of the inventory process (Ivanov and 

Sokolov, 2005); it is low cost. Moreover, these techniques have demonstrated to be equally 

robust in capturing most of the major decision-making challenges faced at the managerial 

level, such as raw materials purchasing and storage, production planning, and other 

challenges in the inventory management processes (Shapiro, 2001).  

Traditionally, Mixed-Integer Linear Programming (MILP) methods have been used to solve 

EOQ models. Nevertheless, relaxing the traditional EOQ model assumptions has led to even 

more complex non-linear EOQ-related models, making the MILP method to be no longer 

suitable for solving them (Rabieh et al., 2016). In this new context, nonlinear programming, 
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multi-objective programming, fuzzy mathematical programming, stochastic programming, 

heuristics algorithms, metaheuristics models and hybrid models, have gained popularity. 

These approaches have been used at the strategic, tactical and operational levels of 

inventory management to improve the organisational, industrial and commercial 

sustainability of the process, and bridge the gap between theory and management in 

practice (Wang, 2010). For instance, Cohen and Lee (1989) used mixed integer non-linear 

programming technique to solve their extended EOQ model, while Paksoy et al. 

(2010) utilised a fuzzy nonlinear multi-objective mathematical model to solve a model for a 

supply chain network. Another example of a solving technique is the fuzzy inequalities linear 

membership function used by Hu and Fang (1999), and a new fuzzy linear programming-

based methodology was used by Vasant et al. (2005). In (Pasandideh et al., 2010) the EOQ 

problem is formulated as a Non-Linear Integer-Programming (NLIP) model and genetic 

algorithms are used to solve it. In (Zhao et al., 2006), the EOQ model is solved by using a 

new PSO algorithm that combines gradient acceleration and penalty functions. In (Nazari-

Heris et al., 2018), a number of heuristic derivative-free global optimisation methods has 

been listed as follows:  

1. Ant Colony Optimisation (Dorigo and Blum, 2005). 

2. Simulated annealing, which is a generic probabilistic meta-heuristic (Kirkpatrick et 

al., 1983). 

3. Taboo search, which is an extension of a local search that is capable of escaping 

from local minima (Glover, 1986). 

4. Evolutionary algorithms, for example, genetic algorithms and evolution strategies 

(Holland, 1992). 

5. Differential evolution, which is a method that optimises a problem by iteratively 

trying to improve a candidate solution with regard to a given measure of quality 

(Storn and Price, 1997). 

6. Swarm-based optimisation algorithms, for example, PSO, social cognitive 

optimisation, and multi-swarm optimisation (Kennedy and Eberhart, 1995). 

7. Memetic algorithms, which combine the global and local search strategies 

(Moscato, 1989). 

8. Reactive search optimisation, which integrates the sub-symbolic machine learning 

techniques into the search heuristics (Battiti and Brunato, 2010). 
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9. Graduated optimisation, which is a technique that attempts to solve a difficult 

optimisation problem by initially solving a greatly simplified one, and progressively 

transforming that problem, while optimising until it is equivalent to the difficult 

optimisation problem (Thacker and Cootes, 1996; Blake and Zisserman, 1987; 

Mobahi and Fisher, 2015). 

Figure 2-2 shows the number of studies for each specific optimisation technique adopted in 

the literature. As seen from Figure 2-2, a large variety of optimisation techniques are used 

in the literature, as each one is seen as the best fit for the developed model based on the 

model assumptions. Nevertheless, the mixed integer technique is the most widely used 

technique in the examined studies, with 14 studies opting for this technique. On the other 

hand, only the study by Tiwari et al. (2017) used the PSO technique to solve the developed 

model, while two studies used commercial software to solve their developed models.   

 
Figure 2-2. Optimisation techniques used in the examined studies. 

Finally, the analysis of the reviewed studies revealed an increasing trend in the field of 

inventory management towards using machine learning techniques to train EOQ models. In 

general, machine learning techniques allow using up-to-date data input to adjust calculations 

and predictions, in such a way that the model becomes better suited to the business the 

more it is used. In this way, machine learning allows optimising the performance of tracking 

technology in inventory management and offering more accurate data to assist in planning 

for the future. In particular, ANNs have become very popular for inventory management 

applications since they have a high learning and generalisation capability, they can handle 
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non-linear variables and missing data, and they can adapt to changing environments. In fact, 

different approaches based on ANN, addressing different aspects of inventory management, 

such as determining the optimal ordering and recovery policy (Koh et al., 2002), optimising 

replenishment policy (Wee and Chung, 2009) and determining the optimal lot size in 

inventory control (Chiu, 2003), can be found in the literature. 

In this research study, the proposed model extends the traditional EOQ model to account 

for the specific characteristics of the steel manufacturing industry based on a control system 

algorithm capable of providing timely recommendations for the storage quantities of both of 

products and raw material. This facilitates the decisions of the factory’s management 

regarding the level of investment, steel purchasing strategy, and setting of optimal 

production levels throughout the planning horizon. In particular, in this research study, two 

different control system approaches, namely, an open-loop and a closed-loop based on 

ANNs, are considered. In addition, the PSO technique is used to solve the developed model. 

To the best of the authors knowledge, although having demonstrated to be well suited to 

develop applications within a short period of time and to assist in gaining better results in a 

faster and cheaper way when compared with other methods, even involving fewer 

adjustments to the optimisation parameters (Yin, 2003; Onwubolu and Babu, 2013), PSO 

techniques have not been fully explored for solving EOQ models. In this research study, the 

PSO technique is chosen to solve the developed since 1) it is a relatively simple algorithm 

that is easy to implement on Matlab (Nasri et al., 2007), and 2) the obtained results 

demonstrate that this method converges to the sub-optimum, and that this sub-optimum 

does not change a lot after we add more particles into the model. In the following sections, 

the basic principles of the ANN and PSO methods are introduced, respectively. 

 

2.4.4.1.1 ANN  

Neural networks are a set of algorithms, modelled loosely after the human brain, that are 

designed to recognise patterns. They interpret sensory data through a kind of machine 

perception, labelling or clustering raw input. The patterns they recognise are numerical, 

contained in vectors, into which all real-world data, be it images, sound, text or time series, 

must be translated.  

An ANN is based on a collection of connected units or nodes called artificial neurons. Each 

connection, like the synapses in a biological brain, can transmit a signal to other neurons. 

An artificial neuron that receives a signal then processes it and can signal neurons 
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connected to it. The signal at a connection is a real number, and the output of each neuron 

is computed by some non-linear function of the sum of its inputs. The connections are 

called edges. Neurons and edges typically have a weight that adjusts as learning proceeds. 

In addition, neurons may have a threshold such that a signal is sent only if the aggregate 

signal crosses that threshold. Typically, neurons are aggregated into layers. Different layers 

may perform different transformations on their inputs. Signals travel from the first layer (the 

input layer), to the last layer (the output layer). 

A typical structure of an ANN with one hidden layer is shown in Figure 2-3. As seen from 

Figure 2-3, each circle represents an artificial neuron (depicted in Figure 2-4) that collects 

input signals and produces output signals which act as inputs for each neuron of the 

following layer. In general, the weights of the ANN are fine-tuned during a back-propagation 

algorithm; however, in the case of the model developed in this study, due to the lack of an 

“actual” parameter of business controls, the error cannot be estimated. As a result, the PSO 

is used.   

 
Figure 2-3. Scheme of an ANN with one hidden layer (Kriesel, 2007). 
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Figure 2-4. Scheme of an artificial neuron (Kriesel, 2007). 

As seen from Figure 2-4, the neuron collects the input signals X1, X2, X3…Xn and multiplies 

each signal with the corresponding weight 𝑊𝑖 (which are parameters of the neuron). The 

results of these multiplications are summed together to reach a weighted sum, which is 

transformed according to an activation function 𝑓(⋅) in order to add nonlinearity to the model 

and reduce the high-value outputs. Each layer hidden layer, as well as the output layer have 

a corresponding activation function. There exists several activation functions in the literature 

of ANNs. Selecting the best suited activation function for each layer is one of the most 

important tasks when designing an ANN.  

Suppose the activation function for the hidden and output layer are given by 𝑓ℎ𝑖𝑑𝑑𝑒𝑛(𝑥) and  

𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑥). The calculation of the controls for the generic ANN with one hidden layer is given 

by Equation 2-4: 

𝑈 = 𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑊2(𝑓ℎ𝑖𝑑𝑑𝑒𝑛(𝑊1. 𝐼 + 𝐵1)) + 𝐵2   2-4                                  

  

where 𝑊1 is the weights matrix from the input layer to the hidden layer, 𝐵1 is a bias vector 

for the hidden layer, 𝑊2 is the weights matrix from the hidden layer to the output layer, 𝐵2 is 

the bias vector for output layer, 𝐼 is the vector of inputs, and 𝑈 is the vector of controls.  
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2.4.4.1.2 PSO  

As discussed above, the use of the PSO techniques to solve the inventory management 

problems has become very popular in recent years. The main advantages of this technique 

are its ability to find the maximum profit function even if this function is non-differentiable by 

all the control parameters and/or discontinuous in fewer adjustments to the optimisation 

parameters (Yin, 2004). The basic form of the PSO algorithm works by having a population 

(called a swarm) of candidate solutions (called particles). The position of each particle is 

some solution of the problem. So, if, for example, we need to minimise a function of 5 

arguments, then particle space will be 5-dimensional. To seek the optimal solution, each 

particle moves in the direction of its previous best position (pbest) and the global best 

position (gbest) in the swarm, hence it can be expressed by the following equations (Liu, 

Abbas and Tan, 2019, p.15):  

𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑡) =  𝑎𝑟𝑔 min
 𝑘=1,…,𝑡

[𝑓 (𝑃𝑖  (𝑘))] , 𝑖 

∈  {1, 2, . . . , 𝑁𝑃}, 2-5 

 

 

 𝑔𝑏𝑒𝑠𝑡(𝑡) =  𝑎𝑟𝑔 min
 𝑖=1,...,𝑁𝑃

𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑡), 2-6 

                                                                      

                      

where 𝑖 denotes the particle index, 𝑁𝑃 the total number of particles, 𝑡 the current iteration 

number, 𝑓 the fitness function, and 𝑃 is the position of the particle in n-dimensional search 

space. 

Moreover, all the particles move around in the search space according to a few simple 

formulas, and the velocity 𝑉 and position 𝑃 of the particles at time t are updated by the 

following equations: 

𝑉𝑖 (𝑡 + 1) =  𝜔𝑉𝑖 (𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑡)  − 𝑃𝑖  (𝑡))  

+  𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑃𝑖 (𝑡)) 

2-7 

𝑃𝑖  (𝑡 + 1)  =  𝑃𝑖  (𝑡)  + 𝑉𝑖 (𝑡 + 1), 2-8 

 

where 𝜔 is the inertia weight used to balance the global exploration and local exploitation, 

𝑟1 and 𝑟2 are uniformly distributed random variables within the range of [0, 1], and 𝑐1 and 𝑐2 
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are positive constant parameters called “acceleration coefficients” (Liu, Abbas and Tan, 

2019, p.15).  

Therefore, the particles move according to their own best-known position in the search 

space and the entire swarm's best-known position. Thus, the movements of the swarm will 

be continuously guided when new improved positions are discovered, until a satisfactory 

solution will eventually be discovered, albeit this is not guaranteed. Figure 2-5 provides the 

detailed scheme of the PSO algorithm.   

As seen from Figure 2-5, at each iteration, a set of different vectors of weight are considered. 

Then, the best control system is selected for this set of vectors and, consequently, the 

vectors of weight of the other systems will be changed to converge with the best system 

selected. Hence, through this network, an output of the best control system over all sets of 

vectors is obtained. 

 

Figure 2-5 Detailed scheme of PSO algorithm. 

 EOQ Applications 

The total number of studies classified under this category is 54 studies. These studies are 

classified according to the field in which the models were applied, as shown in Table 2-8. 

An extension of Table 2-8, including the corresponding references can be found in Table A 

4 (Appendix A). 

 

 

No Yes 

Start 
Initialise particle coordinates 

randomly over the search space 

Set 𝑡 = 0 

Set up swarm size, iteration limit 𝑇𝑖𝑡 
and stall limit 𝑇𝑠 

Evaluate the objective function for 

each particle 

• Evaluate 𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑡) for each 

particle by Equation 2-5. 

• Evaluate 𝑔𝑏𝑒𝑠𝑡(𝑡) by Equation 2-6 

• Update velocity 𝑉𝑖(𝑡 + 1) for each 

particle by Equation 2-7  

• Update position 𝑃𝑖(𝑡 + 1) for each 

particle by Equation 2-8 

 

𝑡 = 𝑡 + 1 

𝑡 < 𝑇𝑖𝑡 , 

 𝑔𝑏𝑒𝑠𝑡(𝑡) < min
𝑡−𝑇𝑠≤𝑠<𝑡

𝑔𝑏𝑒𝑠𝑡(𝑠) 

Output 𝑔𝑏𝑒𝑠𝑡(𝑡) as 

optimal solution 

End 
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Table 2-8. EOQ application studies by field. 

Type Number of Studies 

Sustainability 45 

Steel 9 

 

As seen from Table 2-8, the application of the EOQ model is popular in the sustainability 

field, as the 45 studies demonstrate. On the other hand, only a limited number of EOQ 

applications in the steel industry has been found, which suggests that there is a lack of 

studies in this field, and that it requires further research. In order to better understand the 

different aspects associated with sustainability that the found studies address, they are 

further sub-classified. There are 45 studies under the sustainability field, in addition to seven 

studies that outlined the environmental impacts of ordering and holding inventory without 

actually developing new models. This brings the total to 52 studies, which are further 

classified under the sub-categories shown in Table 2-9. An extension of Table 2-9, including 

the corresponding references can be found in Table A 5 (Appendix A). 

Table 2-9. Sub-classification of sustainability studies. 

Type Number of 

Studies 

Emissions 14 

Remanufacturing / 

Recycling 

19 

Waste Reduction and 

Management 

12 

Environmental 

Impacts 

7 

 

As seen from the above table, remanufacturing and recycling form the majority of studies in 

the sustainability field with 19 studies, followed by the reduction of emissions. On the other 

hand, waste reduction and management have only 14 studies, accounting for 27% of the 

examined studies, which suggests that there is room for more research in this area to 

examine all the associated aspects of waste generation as a result of ordering and holding 

inventory, and how to minimise this waste generation. Finally, as in the case of the EOQ 

models in general, the majority of studies addressing EOQ applications in the steel 

manufacturing or analysing their sustainability implications assumed deterministic demand. 

In particular, 64% of them assume deterministic demand, whereas only the 36% consider 
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demand as stochastic. In addition, in the most popular optimisation technique used in these 

cases is also the mixed integer technique, whereas only two studies used fuzzy technique, 

and three used the PSO technique. 

In the following sections the studies found in the SLR addressing the relationship between 

the EOQ models and the sustainable performance of the companies as well as the 

application of the EOQ models to the steel manufacturing industry are discussed in detailed.   

 

2.4.4.2.1 Sustainable Inventory Management 

Over the past two decades were several efforts have been directed towards combating 

global warming and other environmental issues, the topic of sustainability and the impacts 

of firms’ operations on the environment gained much attention from researchers and 

scholars. Consequently, firms started to incorporate sustainability practices in their 

operations, which added new cost and benefit components that were not previously 

accounted for. Therefore, it became essential to extend the EOQ model to incorporate such 

new parameters, in order to be able to accurately model the firms’ operations and maximise 

their profits and/or reduce their costs. In order to have a better understanding of the need to 

extend the EOQ model to cover this area, the sustainability impacts of inventory 

management are discussed in this section.   

The supply chain stage has four main impacts on the environment, viz.,  the consumption of 

precious resources, the generation of waste, the consumption of energy needed to store 

and handle inventory, and the greenhouse gas emissions resulting from the consumption of 

resources and energy (Liao and Deng, 2018; Fichtinger et al., 2015; Hariga, As’ad and 

Shamayleh, 2017). Although the consumption of resources is necessary to acquire raw 

materials for manufacturing, by poorly managing inventory, firms sometimes order excess 

amounts of raw materials, which they never use, wasting precious resources and applying 

pressure to the environmental ecosystem (Liao and Deng, 2018). In addition, the excess 

usage of natural resources has other negative environmental impacts that are associated 

with the process of extracting these resources, such as air pollution, soil contamination, 

water pollution and greenhouse gas emissions (Blass, Chebach and Ashkenazy, 2017). 

Regarding waste generation, one of the main sources of industrial waste is the ordering of 

unnecessary quantities of inventory that are not used in production and have to be discarded 

(Fercoq, Lamouri and Carbone, 2016). For the third and fourth impacts, as the quantity of 
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inventory ordered and stored increases, more energy is needed in terms of electricity, 

heating, cooling, etc. in order to preserve it (Fichtinger et al., 2015; Uzturk and Büyüközkan, 

2016), and more greenhouse gases are emitted due to the need both to transport and 

preserve the inventory (Hariga et al., 2017). Moreover, a significant amount of CO2 

emissions from logistics activities, approximately 13% of the overall supply chain emissions, 

are caused by the storage and material handling processes in the warehouses (Ries, Grosse 

and Fichtinger, 2016). 

Incorporating sustainability measures in the inventory ordering problem started to gain 

popularity at the start of the millennium (Soleymanfar, Taleizadeh and Zia, 2015; Hariga et 

al., 2017). Since the proper management of inventory and raw materials can lead to lower 

consumption of resources and energy (Liao and Deng, 2018), and/or emissions reduction 

(Hovelaque and Bironneau, 2015), the inventory management policy of a company should 

be directly linked to its environmental performance (Konur, Campbell and Monfared, 2016). 

As a result, sustainable raw materials management and green inventory management have 

become necessities. According to Blass et al. (2017), sustainable raw materials 

management assists companies to manage their natural resources and use them in 

production from economic, social and environmental perspectives. Marklund and Berling 

(2017) defined green inventory management as finding ways to efficiently manage inventory 

in terms of costs and emissions. Therefore, the ordering of the optimal quantity of inventory 

that will be used in production will help to preserve natural resources and reduce emissions 

and waste, which are proportional to the number of items held in stock.   

As discussed above, waste generation is one of the major impacts of imperfectly managed 

inventory for manufacturing firms. Hence, a number of research studies attempted to 

develop models to assist companies in managing their inventory in a way to reduce the 

amount of waste generated from ordering and holding inventory (Malladi and Sowlati, 2018). 

In general, there are two types of inventory management models that incorporate waste in 

their objective function, namely, models aimed at managing waste and models aimed at 

reducing it (Malladi and Sowlati, 2018). Regarding waste-management models, Elbek and 

Wohlk (2016) developed a model for the collection of waste glass and paper at a number of 

collection points to schedule the emptying and transporting operations in such a way to 

minimise cost while preserving service quality and fulfilling capacity constraints. In their 

study, the researchers developed a heuristic solution method to solve this planning problem 

on a daily basis. Another waste management study was conducted by Habibi et al. (2017) 
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for a generic product. In their model, the researchers modelled the operations of the 

collection-disassembly problem of a remanufacturing company by optimising both the lot 

sizing and vehicle routing through a two-phase iterative heuristic. Furthermore, it is assumed 

that the structure of the product is known, the vehicle has a fixed capacity, and there is a 

penalty cost for any unmet demand. Following the successful results of this model, Habibi 

et al. (2018) applied this developed model to managing electrical and electronic equipment 

waste.  

Regarding the waste reduction models, most of these models address perishable goods, 

i.e. manage the quantity of perishable goods to prevent them from perishing and turning into 

waste (Malladi and Sowlati, 2018). Hiassat et al. (2017) developed a multi-objective model 

to determine the number and location of required warehouses, the inventory level at each 

retailer, and the routes travelled by the transportation vehicles in order to preserve the quality 

of the perishable products and reduce waste. Moreover, in this model, it is assumed that 

demand is deterministic, all vehicles have the same capacity, the manufacturer or the retailer 

never run out of stock, holding costs vary slightly across time, and quantities of inventory at 

the retailers are limited by the capacity at retailers’ warehouses/shops and the shelf-life of 

the products. A genetic algorithm was used to solve this problem, and through a numerical 

application, it was found that it provides promising solutions at medium and large instances. 

Another model aimed at reducing waste resulting from excess inventory of perishable 

products was developed by Soysal et al. (2015), who developed a model to reduce the waste 

generated by food products. Furthermore, Soysal et al. (2018) considered the wastage cost 

of perishable products when developing an inventory management model for food products. 

Similarly, Azadeh et al. (2017) developed an inventory model for a single perishable product 

that deteriorates at an exponential rate while being stored at a warehouse. The objective of 

their model is to identify the optimum inventory replenishment policy that would minimise 

waste resulting from spoilage in the warehouse. In addition, Janssen et al. (2018) developed 

a perishable goods micro-periodic inventory replenishment model with stochastic demand, 

deterministic lead time, mixed FIFO and LIFO issuing policies, and imperfect items. The 

results of implementing the model in the food industry showed a reduction in the waste 

generated by 66%, with a decrease in cost when compared to the traditional inventory policy. 

Another model that aimed to address the problem of packaging waste of products was 

developed by Iassinovskaia, Limbourg and Riane (2017). In their model, the use of 

Returnable Transport Items (RTIs) to reduce packaging waste is considered in a scenario 
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of one producer who distributes products to a number of customers in RTIs and collects the 

empty ones for reuse. The model was aimed at minimising the total cost while satisfying the 

inventory level constraints for each customer in each period under deterministic demand. 

The results of this research showed that using RTIs can result in minimising costs, and thus 

reducing the amount of waste generated. Moreover, Kazemi et al. (2017) used order-up-to-

level policy to develop an inventory management model to minimise blood waste under 

deterministic demand. Finally, Timajchi et al. (2018) developed  an inventory model for 

hazardous waste material, with the aim of reducing exposure to these materials through a 

reduction in accident incidents. This model is a bi-objective model, as it was also aimed at 

minimising the total cost of logistics, which includes ordering, transportation, delivery, 

pickup, shortage and inventory holding costs. 

Teunter (2001) developed one of the earliest extensions of the EOQ model to incorporate 

sustainability parameters. In this model, dumping costs, modelled through different holding 

cost rates for manufactured and recovered goods, were incorporated to determine optimal 

batch quantities for both types of goods. Moreover, Dobos and Richter (2000; 2003; 2004; 

2006) devoted their research efforts to applying EOQ to the manufacturing of recycled 

products. With the increase in the popularity of the application of EOQ in sustainability, 

several new research topics, related to sustainability, started to emerge. First, Teunter 

(2004) used the EOQ to determine the optimal lot size for the recovery of returned goods. 

Gou et al. (2008) extended the model further to discover the optimal delivery batch size in 

open-loop reverse supply chains that consist of one centralised returns centre and various 

collection points. Second, a wide array of models was developed to manage inventory for 

firms that manufacture recycled products. Alinovi et al. (2012), Zhang and Jonrinaldi (2017), 

Jain et al. (2018), Benkherouf, Skouri and Konstantaras (2016), Kozlovskaya, Pakhomova 

and Richter (2019), Mawandiya, Jha and Thakkar (2018), Singh, Sharma and Kumar (2016), 

and Turki et al. (2017) aimed at helping decision makers operating in the recycling industry 

by developing an EOQ model for a system that manufactures original and recycled goods. 

For instance, Benkherouf et al. (2016) extended the EOQ model to include remanufacturing 

and refurbishing activities for recycling firms. In this model, the researchers assumed a 

scenario in which used products are returned to the firm by customers, and are classified as 

either remanufacturable or refurbishable, and for each scenario, the total cost to the firm is 

minimised by determining the optimal inventory level of used items. Moreover, in this model, 

demand is assumed to be stochastic, the remanufacturing rate is known and constant, the 
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rate of returned items is proportional to demand, and no shortage is allowed. Third, the 

optimal level of inventory for remanufacturing firms is another area that gained considerable 

attention in recent research studies. Demirel, Demirel and Gokcen (2016) incorporated the 

regulations of recovery, dismantling and recycling of end-of-life vehicles imposed on the 

automotive industry to optimise the logistics of such companies. Kozlovskaya, Pakhomova 

and Richter (2015) incorporated the switching cost into their model, which is incurred when 

a firm switches from repair to manufacturing and vice-versa; and Shekarian et al. (2016) 

developed a reverse inventory model for a remanufacturing process. Furthermore, Liao and 

Deng (2018) developed an environmentally sustainable EOQ model for remanufacturing 

firms to determine the remanufacturing ratio that minimises the inventory cost, maximises 

the sustainability benefits of remanufacturing, and coordinates forward and reverse logistics. 

In this model, all the environmental parameters, costs as a result of holding and acquiring 

inventory, and profits resulting from remanufacturing are converted to the economic 

equivalent to provide easy comparison of the model’s results. Through numerical examples, 

the researchers proved that when the holding cost of the finished goods is low, the optimal 

inventory strategy is to remanufacture as much as possible, and vice versa.   

A fourth area of sustainability that started to attract attention with regard to inventory 

management models, as a result of the current global warming trend, is incorporating 

greenhouse gas emissions in the inventory optimisation problem. In general, according to 

Fichtinger et al. (2015), the research studies in this area can be divided into three streams 

in accordance with how emissions are integrated into the inventory models. These streams 

are:  

1- Emissions are converted into a monetary cost in the form of a carbon tax, carbon 

trading within a carbon cap-and-trade system, or internal (virtual) steering cost, 

which can be included in the objective function. 

2- Reducing emissions is considered as a second objective in a multi-criteria 

optimisation approach. 

3- Emissions are integrated as a constraint within the inventory optimisation model.  

Several approaches have been proposed in the literature addressing the carbon emission 

issue. Hovalaque and Bironneau (2015) developed a model that took into account carbon 

emissions associated with the firm’s operations. Their model was developed assuming a 

scenario where a single retailer buys a single product with deterministic demand and 

including both the holding and ordering costs of inventory. Their model’s aimed at 
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determining the optimal inventory quantities that maximise the firm’s profit and minimise its 

carbon emissions. Shu et al. (2017) extended the EOQ model to include carbon emissions 

resulting from manufacturing/remanufacturing activities and the transportation of products. 

In particular, they proposed to determine the manufacturing and remanufacturing quantities 

with and without carbon constraints, assuming the scenario depicted in Figure 2-6. 

According to this scenario, once the original product is manufactured, it is sold to customers. 

Customers use the product, and then they return it to the firm. The returned products are 

then inspected towards deciding whether they are suitable for remanufacturing or they 

should be sent to waste treatment. When comparing the ordering quantities of 

manufacturing and remanufacturing obtained when applying carbon constraints to the 

described scenario, it was found that they are the same. In addition, the presence of carbon 

constraints has also demonstrated to reduce the total manufacturing and remanufacturing 

costs as well as the carbon emissions.  

 

 
Figure 2-6. Manufacturing/remanufacturing scenario assumed in (Shu et al., 2017). 

 

More complex models which incorporated carbon emissions were developed as follows. 

Soleymanfar et al. (2015) considered emissions generated during the entire inventory 

management’s life cycle while allowing partial backordering. Hua et al. (2016) considered 

perishable goods with freshness-dependent demand. Bozorgi (2016) included a multi-

product inventory scenario in which each product requires specific storage conditions in their 

inventory model. Konur et al. (2016) considered a stochastic inventory model with multiple 
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suppliers. Cheng et al. (2017) developed a model to minimise inventory and routing costs 

while considering the environmental impacts of holding inventory. Lee, Yoo and Cheong 

(2017) took into account a stochastic lead time for the inventory and multiple transportation 

modes. Wangsa (2017) included emissions resulting from both industrial and transport 

activities. Alinaghian and Zamani (2019) developed a bi-objective model to reduce 

emissions while minimising the inventory costs. Tiwari, Daryanto and Wee (2018) 

considered deteriorating goods with imperfect quality. Finally, Bazan, Jaber and El Saadany 

(2015) extended the model further to include both the energy consumed and greenhouse 

gas emissions resulting from manufacturing and remanufacturing operations. The objective 

of their model is to determine the quantity of products to be manufactured per cycle, the 

number of manufacturing and remanufacturing batches per cycle, and how many times an 

item may be remanufactured, minimising total cost for the firm. The results of their model 

showed that to minimise the total financial and environmental costs, the firm needs to collect 

more used products to remanufacture, while reducing the number of times each product is 

remanufactured. 

The social aspect is another area of sustainability that was the focus of a number of research 

studies and extended models. For example, Nozick and Turnquist (2001) attempted to 

examine the optimal level of inventory based on an objective function that tries to maximise 

customer responsiveness while minimising costs. Moreover, Rahimi, Baboli and Rekik 

(2017) developed a multi-objective inventory model that aimed at maximising profit, while 

minimising greenhouse gas emissions, and minimising the service level measured through 

the rate of delays, the rate of backorder, and the rate of backorder frequency.   

 

2.4.4.2.2 Inventory Management in the Steel Manufacturing Industry 

A specific area of particular interest in this research study is the application of inventory 

management models in the steel manufacturing industry. As this industry is one of the most 

capital-intensive industries, inventory management has a significant impact on its financial 

performance (Shardeo, 2015). It is a challenging task for these companies to match the 

ordering quantities of raw materials with the stochastic nature of demand (Singh and 

Mondal, 2016). In this context, mathematical modelling becomes essential towards 

understanding the dynamics of the business environment of the steel manufacturing industry 

and predicting the future outcomes within the system. In fact, using mathematical modelling 

to address the problem of inventory management for a steel manufacturing companies can 
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help them to organise and optimise the flow of resources, including funds, information, 

materials and goods. Moreover, the use of mathematical modelling can also help the 

company in facing the complexities associated with managing and controlling the globalised 

supply chain of today’s manufacturing world, in terms of ordering, pricing and transporting 

the inventory.  

There is a number of inventory management models developed in the literature to assist 

steel manufacturing companies in their inventory ordering and holding policies. Xiong and 

Petri (2005) developed one of the earliest models for the inventory management of steel 

manufacturing companies. In their study, the researchers developed a fuzzy model based 

on fuzzy logic theory combined with the basic EOQ model, and demand was assumed to be 

stochastic over a 52-week planning horizon while incorporating lead time. Other inventory 

management models for steel manufacturing companies were developed by Liu, Tang and 

Song (2006), Tang, Liu and Liu (2008), and Zhang et al. (2011). More recently, Zhang et al. 

(2015) developed a model to optimise order planning and inventory matching for finished 

and unfinished products for a steel manufacturing company. In their model, multiple 

objectives were considered, which include minimising inventory matching costs, production 

capacity balance costs, delivery penalty costs and order cancellation costs. The researchers 

used three different algorithms to reach the optimal solution, namely PSO, local search, and 

improved PSO. Through the application of these algorithms, as seen in Figure 2-7, Zhang 

et al. found that the improved PSO is the best performer, as it converges with the optimal 

solution more effectively with the increase in the number of iterations. In this figure, it is clear 

that local search performs well in the first 1000 iterations, but the rate of improvement in the 

solutions slows down after 1000 iterations, and remains stagnant after 4000 iterations. 

Initially, the PSO improves the solutions very quickly, then the improvement slows down 

after 5000 iterations, unlike the improved PSO, which continues its improvement until the 

point of 12000 iterations. 
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Figure 2-7. Convergence curve for the three algorithms (Zhang et al., 2015). 

 

Rabieh et al. (2016) developed another recent model for managing inventory at a steel 

manufacturing company. The researchers developed two mixed-integer non-linear 

programming models to minimise the procurement costs of a steel manufacturing factory in 

Iran. Their model assumed the following: demand is deterministic over the entire planning 

horizon, storage space is infinite, purchasing cost is constant, and constant safety-stock 

level. Through comparing the model results with the company’s actual data, it was found 

that the developed models led to a reduction of 10.9% and 7.1% in the total procurement 

costs of the company over two consecutive years.  

Lately, Bula, Medina and Sierra (2018) designed an inventory management model to take 

into account the service level within the scrap casting process in steel manufacturing. 

Through implementing the model in a real-life case study, they found that the model 

maintained the level of service at the required 99%, while, at the same time, it decreased 

the costs associated with inventory management by 25.09%.  

As seen from the above review, despite the importance of inventory management for the 

steel manufacturing companies, a limited number of models have been developed to assist 

these companies in this process, as the majority of the models were more concerned with 

production planning. In addition, none of the above models considered the scenario of 

limited storage space for both raw materials and final products. Hence, our current study 

addresses this gap by developing a robust model that takes into consideration the unique 
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nature of the steel manufacturing industry and the large size of its inventory and final 

products. 

 

 Research Gaps 

From the literature review conducted here, it has been found that there are eight categories 

of extensions of the EOQ model, which are based on the parameter on which the demand 

rate depends. These categories are:  

• price-dependent 

• time-dependent 

• lead-time-dependent 

• space-dependent 

• promotion-dependent 

• advertising-dependent 

• product-quality-dependent 

• service-quality-dependent  

Within each of these categories, different models are developed taking into account two 

types of demand functions: 

• deterministic 

• stochastic 

Despite the important contribution of the models developed in the literature, several research 

gaps that need to be addressed through further research have been identified. The main 

identified research gaps are listed as follows:  

• The deterministic category of models is the one that received most attention (Fibich 

et al., 2003; Chou and Parlar, 2006; Jeuland and Shugan, 1988; Agrawal and 

Ferguson, 2007; Hanssens and Parsons, 1993; Song et al., 2008; Chen et al., 2006; 

Chen and Simchi-Levi, 2012), being a lack of stochastic models. 

• The majority of the proposed models in the literature are based on log-linear 

functions (Ray, Gerchak and Jewkes, 2005; Chen et al., 2006), which are not 

sufficiently flexible in terms of deriving clear results for the optimal solution.  

• There are several problems of shortage in storage space. In this regard, more 

accurate models can be developed by exploring this problem using space-dependent 
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demand models that are sensitive to both space and price, and have fewer 

underlying assumptions behind them (Đorđević, et al., 2017).  

• In general, the objective functions in the space-dependent models are based on 

minimising cost. However, in real-life situations, other objectives should be taken into 

consideration. For instance, more sustainable operations, and the trade-off between 

sustainability and cost should be also considered (Malladi and Sowlati, 2018).  

• There is a need for using better optimisation techniques when developing the 

models. In fact, only one study reported to use the particle swarm technique. Using 

this optimisation methods can help to obtain better results in a faster and cheaper 

way when compared with other methods. In addition, it also requires fewer 

adjustments to the optimisation parameters (Yin, 2003; Onwubolu and Babu, 2013).  

In addition, particular research gaps related to inventory management in the steel industry 

which has special characteristics in terms of the large volume of inventory and the special 

storage requirements to avoid its deterioration, have been identified. The main research 

gaps identified in this context are as follows: 

• Only a limited number of studies have developed inventory management models to 

account for the special characteristics of the steel manufacturing industry (Shardeo, 

2015; Singh and Mondal, 2016; Xiong and Petri, 2005; Liu, Tang and Song, 2006; 

Tang, Liu and Liu, 2008; Zhang et al., 2011; Zhang et al., 2015; Rabieh et al., 2016; 

Bula, Medina and Sierra, 2018), as most of the manufacturing models were 

developed for a general manufacturing scenario, and not for a specific industry.  

• There is an urgent need to develop sustainable inventory management models to be 

used within the steel industry, especially those in which demand is space-dependent 

to account for the large volume of steel Malladi and Sowlati (2018).  

• Almost all the reviewed models were specifically developed for a steel manufacturing 

company who assumed demand to be deterministic, which does not accurately 

capture the nature of demand in this industry or the variety of products present.  

• Only the model developed in Xiong et al. (2005) assume a non/deterministic 

demand. 

• No reviewed studies explored the quantity of and reasons behind waste generation 

in the inventory for the steel manufacturing industry. 

• None of the steel industry models accounted for any aspect of sustainability in their 

objective functions.  
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Based on the above research gaps, there is an urgent need to develop inventory models 

that can more accurately depict the real-life scenarios. This is particularly true for the steel 

manufacturing industry, which has special characteristics that should be taken into account, 

such as space-dependent demand and large volume of steel. In addition, the current focus 

on sustainable aspects, and the increasing regulations imposed on the companies to 

conduct their business in a sustainable manner, increase the need for an inventory 

management model for the steel industry that accounts for sustainability aspects, especially 

waste reduction and management. The study conducted in this thesis is significant in the 

field of inventory models developed for steel manufacturing applications, since it addresses 

the research gaps identified in the SLR conducted in this section by depicting the real-life 

scenario of such industry more accurately. In particular, the demand is treated as stochastic 

in order to develop an EOQ space-dependent demand model capable of optimising an 

objective function that is not just aimed at minimising costs, but it is rather aimed at 

maximising profit while minimising adverse environmental impacts. Finally, an ANN based 

closed loop control system provides the model the possibility of being periodically updated 

according to the current business scenario and the PSO technique allows to optimise the 

model’s variables.  

 Chapter Summary 
In this chapter, a comprehensive literature review about inventory management have been 

conducted. On one hand, the main concepts of inventory management and control, as well 

as the different approaches proposed in the literature have been discussed, making special 

emphasis in analysing the well-known EOQ model, its types, assumptions, extensions and 

limitations. In addition, the current trends in machine learning and optimisation algorithms 

applied to inventory models have also been discussed. On the other hand, special focus has 

been done on steel manufacturing applications, which is the subject topic of this research 

study. Finally, the importance of the concept of sustainability has been highlighted, studying 

the environmental impacts of ordering and holding inventory, which laid the foundation for 

the need for inventory management models that account for different aspects of 

sustainability. In particular, three different sustainability topics have been deeply explored, 

viz., emissions, remanufacturing and waste reduction.  

According to the SLR conducted in this chapter, there are several research gaps that need 

to be addressed through further research. Generally speaking, it has been found that many 

of the EOQ models proposed in the literature do not accurately depict the real-life scenarios 



 
 

94 
 

involved in the manufacturing industry. For instance, most of the available models assume 

deterministic demand, and their objective functions are only based on minimising cost. 

However, in real-life situations, the demand is stochastic, and other objectives, such as more 

sustainable operations, should be considered. In addition, in the specific case of the steel 

manufacturing industry, which is the topic of this research study, the special characteristics 

in terms of the large volume of inventory and the special storage requirements to avoid its 

deterioration, should also be taken into account. However, a limited number of studies have 

developed inventory management models accounting for such characteristics, as most of 

the manufacturing models were developed for a general manufacturing scenario, and not 

for a specific industry. In this context, there is an urgent need for developing specialised 

models targeted towards the operations of the steel manufacturing industry, especially those 

in which demand is space-dependent to account for the large volume of steel; as well as for 

taking into account sustainable aspects, such as the environmental impacts of ordering and 

holding inventory.  

The research study presented here is significant in the field of inventory management 

models for the steel manufacturing industry, as it will help to address the research gaps 

identified in the literature reviews conducted in this chapter. In particular, a model with 

stochastic demand and the aim of minimising storage cost and time using PSO, which, in 

turn, will assist in minimising the negative environmental impacts of ordering and holding 

inventory in the steel industry, is developed.  

 

 

  



 
 

95 
 

 Research Methodology 

 Introduction 
In the next chapters, different aspects and areas related to the developed model and the 

overall purpose of this research study is explored. Before explaining the model’s 

development, this chapter explains the detailed methodology adopted for this research 

study. As discussed in Chapter 1, the inventory management application is, by nature, a 

complex task. This is particularly true for the case of the steel manufacturing industry 

application addressed in this research study. In this context, it is necessary to carefully 

design the conducted research towards successfully answering the research questions 

formulated in Section 1.4, and successfully achieving the research objectives. The research 

design allows the researcher to rely on a well-defined plan for implementing the research 

strategy, in terms of research sites, and data collection procedures (MacMillan and 

Schumacher, 2001). Generally speaking, an experimental research approach using a 

descriptive method is adopted to conduct this research study through the development of a 

mathematical model, based on the well-known EOQ model, which is capable of capturing 

the entire business parameters of the research problem under study. Using the experimental 

approach allows the researcher manipulating one or more variables, while controlling and 

measuring any change in other variables. In particular, the experimental approach uses 

standardised procedures that ensure high internal validity when an experimental group is 

compared to the control group on the dependent or outcome variable (Ross and Morrison, 

2004). In this way, it ensures that the differences between groups are attributed to changes 

in the model’s environment rather than external factors. This is crucial for the research study 

conducted here since the problem of the inventory management in the steel manufacturing 

industry involves the storage of large-volume products and raw materials, attempting to 

minimise the high storage and handling the associated costs while maximising the profits 

and preventing the deterioration of the inventory which depends on different environmental 

factors.  

A systemic approach has been adopted for conducting the research in this thesis. Figure 

3-1 shows an outline of the research flow. In the first stage, the problem at stake is 

thoroughly defined. In this research study, the problem faced is the limited storage of large-

volume raw materials and final products that deteriorate over time as a result of 

environmental factors. Hence, an inventory management system is required which can 

minimise the storage, handle the costs of these materials and maximise profit for the 
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company. In order to fully understand the current needs of the steel manufacturing industry, 

a SLR is conducted towards exploring the current trends in the field. Based on the findings 

of the SLR, the identified research gaps and the specific characteristics of the research 

problem, the research design is established. The main aim of this study is to handle the 

storage problem arising from the high volume of raw materials and final products being 

purchased and produced in the special context of the steel manufacturing industry where 

limited storage space is available and inventory is subjected to deterioration. In order to 

address such a problem, a quantitative approach which is characterised by systematically 

studying a phenomenon, using highly structured data collection methods towards gathering 

quantifiable data (numbers) that can be analysed resorting to statistical techniques 

(Saunders et al., 2000). Using a quantitative-based research allows the researcher to obtain 

statistically significant and highly generalisable results, which are essential characteristics 

for developing a model as it is the case of the conducted research. In this line, on one hand, 

the necessary data to achieve the research objectives is collected. In this study, hypothetical 

data (Gasior and Recchia, 2019) is generated based on different average indicators of the 

steel industry available in the literature (Pardipto and Lussy, 2019; Tseng and Yu, 2019; 

Tavakoli and Taleizadeh, 2017; Rabieh et al, 2016) as well as on historical trends and 

publicly available business reports, such as the ones in (OECD, 2017; World Steel, 2018). 

On the other hand, a model-based quantitative research is conducted towards developing a 

mathematical model capable of optimising the purchasing and production activities of the 

company based on the available storage space. More specifically, the developed model 

should reduce the storage costs and minimise the waste associated with the manufacturing 

process resulting from the stochastic nature of customers’ demand. In this study, a model 

extending the EOQ concepts to take into account the specific steel manufacturing industry’s 

characteristics is developed based on a control system algorithm capable of providing timely 

recommendations for the storage quantities of both products and raw material. In this way, 

the decisions regarding the level of investment, steel purchasing strategy, and setting of 

optimal production levels throughout the planning horizon will be facilitated. In particular, two 

different control system approaches, one based on an open-loop and other one based on 

an ANN are used. The main reason for using two different control systems strategies lays in 

the possibility of determining the most robust one, and reach an acceptable trade-off 

between model’s accuracy and complexity. Finally, PSO techniques are used to optimise 

the model’s parameters.  
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Once the proposed model has already been developed, computer-based approaches 

capable of implementing it are designed. In this study, as mentioned in Chapter 1, the 

developed mathematical model is coded in Matlab. In particular, in order to implement it, the 

mathematical model is divided into 25 main different equations. In addition, a user interface 

is developed using the Graphic User Interface (GUI) tool of Matlab to provide managers a 

simple and useful tool to help them in their decision-making process. Finally, the developed 

model is validated. In order to do so, the performance obtained with each of the proposed 

control approaches, namely the open and closed-loop ones, are compared. In this way, the 

best suited one in terms of technical capabilities, such as robustness, accuracy and 

efficiency, is selected. Once the best approach has already been selected, a sensitivity 

analysis is performed. In particular, the developed model is applied to different scenarios 

characterised by the existence of extreme business or economic conditions, and its 

performance is evaluated. It is important to highlight that, at this stage, the model’s 

applicability and practicality could also be evaluated by the companies’ managers who will 

be using it in real-life scenarios. Finally, after validating the accuracy and practicality of the 

model, it could be fully implemented at a real-life steel manufacturing company. 

The following sections provides an insight into each of the different research phases 

depicted in Figure 3-1. In Section 3.2, the collection of the hypothetical data used to validate 

the developed model is introduced. In Section 3.3, the design of the proposed mathematical 

model is described in detailed. In Section 3.4, the validation of the developed model is 

introduced. Finally, the chapter summary is provided in Section 3.5.  
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Figure 3-1. Research outline. 
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 Data Creation and Simulation   
In this research study, data about the steel manufacturing industry is required in order to 

test the developed model after formulating it. One of the most challenging tasks in the steel 

manufacturing application addressed in this research study is to deal with the lack of 

available real-life business data. In order to bridge this gap,  hypothetical data (Gasior and 

Recchia, 2019) is generated based on different average indicators of the steel industry 

available in the literature (Pardipto and Lussy, 2019; Tseng and Yu, 2019; Tavakoli and 

Taleizadeh, 2017; Rabieh et al, 2016) as well as on historical trends and publicly available 

business reports, such as the ones in (OECD, 2017; World Steel, 2018). On one hand, 

publicly available trial data from open source data and previous literature concerning steel 

indicators like steel prices, steel product demand and storage expenses is used to simulate 

the needed data. This data can be interpreted as a fair representation of the average current 

trends of the steel manufacturing industry. In order to ensure the reliability of this data, a 

strict inclusion criterion for relevant sources and literature is put into place. Based on this 

criterion, only previous research studies that have been recently published (in the last 10 

years) are taken into account. In particular, these studies should have collected their data 

from primary sources, such as finance, procurement, field or store managers of a steel 

manufacturing company who have in-depth knowledge and control over the supply chain 

operations of such companies, are taken into account. In addition, in order to be included, 

this data is required to have been used in a corresponding research study providing reliable 

and accurate results. On the other hand, data based on historic records is also used to 

collect hypothetical data. This data source is quite effective in reducing the cost of the study, 

as it substitutes the need to collect data through field studies or personal interviews. Finally, 

it is important to highlight that using publicly available data to simulate and test the 

developed model is crucial not only in terms of reliability but also towards ensuring the 

replicability of the obtained test results. In addition, it also allows the obtained results to be 

comparable to other ones in the state-of-the-art obtained for the same test data, as well as 

to be potentially used as benchmark results. 

Figure 3-2 defines the different types of hypothetical data, as well as their interconnections, 

that are collected from the described sources. As seen from Figure 3-2, three types of data, 

viz., inventory, production and selling data are considered. Regarding inventory data, 

information about the quantity of raw materials ordered and stored is required to test the 

model’s effectiveness. Similarly, the quantity of final products produced and the physical 
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characteristics of these products are collected with a view to inputting requirements for the 

model, in order to optimise the company’s operations. In the case of the selling data, this 

information is used to determine how many units of the final products were sold, how long it 

took to sell them, the demand for the final products, and their selling prices and expenses. 

Finally, it is important to highlight that, although the validity of the hypothetical collected data 

can be inferred by the rigorous inclusion criterion described above, the quality of the 

collected data will be further validated through the accuracy of the obtained results. In 

particular, if the model implementation achieves reliable and logical outputs based on the 

collected data for production planning and inventory control parameters, it will further 

reinforce the validity of the collected hypothetical data.  

 

Figure 3-2. Interconnections between different aspects of business data. 

 

 Design of the Inventory Management Mathematical Model  
Mathematical models, are used to describe some real-world processes. However, the 

mathematical model describe “simplified” behaviour of the real process. For instance, when 
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the business scope of the steel-consuming factory is modelled, it would be necessary to 

take into account the weather forecast which affects storage costs in the sense that if it is 

hot outside, more air cooling will be needed. Nevertheless, predicting the weather forecast 

is extremely complex. In this context, storage costs can be modelled as stochastic taking 

into account different parameters based on historical values for the sake of finding “the 

golden mean” between the accuracy and the complexity of the model.  

In this research study, the inventory management for a steel manufacturing company is 

mathematically modelled extending the well-known EOQ model. As discussed in Section 

2.3, despite its usefulness, the EOQ model does not accurately depict the real-life 

complexities of today’s business environment. For instance, it assumes that raw material 

prices and storage costs are deterministic and do not change over time; and its optimisation 

goal is focus on minimising storage costs rather than on maximising profits. The developed 

model is then based on the EOQ concept, relaxing some of its assumptions, including the 

stochastic nature of demand, in order to be more applicable to the steel manufacturing 

industry. Several steps are involved in the design of the proposed model. In the first step, 

the key components of the steel manufacturing processes should be identified in order to 

define the best suited business and economics indicators to include in the model. The 

identified components will represent the different model parameters. Once these parameters 

have already been defined, the model structure is designed. The proposed model extends 

the EOQ concept by including different assumptions capable of capturing the steel 

manufacturing industry’s dynamics. In this stage, the set of equations modelling the research 

problem are defined. Once the mathematical model has already been developed, it is 

necessary to design a control strategy in order to provide the model with the necessary 

information regarding the business parameters. In particular, the control system should be 

able to provide measurements and estimations of storage quantities of both products and 

raw material from the steel manufacturing company. Having these inputs available helps the 

model to handle timely data about the most important parameters and process them 

accordingly towards making the best decisions regarding the level of investment, steel 

purchasing strategy, and setting of optimal production levels throughout the planning 

horizon. As introduced in Section 1.4, two different control approaches are used in this 

research study, namely the open-loop and the ANN based closed-loop ones. Through these 

control systems, the parameters of the model are adjusted so that the model can better 

reflect the real-life scenario. In the case of the open-loop system, the parameters are adjust 



 
 

102 
 

once, and the same parameters are used to the whole planning horizon independently the 

changes in the business environment. In the case of the ANN based closed-loop approach, 

feedback is introduced, allowing the model’s parameters to be periodically updated taking 

into account the current business scenario as well as any change that may occur. Figure 3-

3 shows a scheme of the closed-loop proposed inventory management model. In this case, 

whole model works as follows:  

• The mathematical model, uses the set of equations describing the steel 

manufacturing company’s dynamics to compute the current model’s parameters.  

• The current model’s parameters are introduced in the ANN. 

• The ANN compute the control variables (output of the ANN) by optimising the 

objective function (company’s profit) in terms of the received parameters’ values.  

• Based on the computed control variables, the PSO algorithm calculate a new set of 

weights for the ANN. 

• Using the new set of weights, the ANN updates the control variables’ values. 

• The new control variable values are sent to the model, so that it can be updated and 

the corresponding decisions can be made.    

      

 

Figure 3-3. Scheme of the proposed inventory management model. 

 

 Validation  
One technique to test and verify the solutions of the developed model is to compare the 

results with already published research results of similar models. Unfortunately, this 

technique could not be used in this research study due to the unique complexity of the 
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developed model. Instead, in order to validate the model, two different validation techniques 

are used. First, two solutions of the same model are compared against each other, in terms 

of optimality. One solution is derived through the use of an open-loop model, while the other 

is derived from the neural network closed-loop model. Furthermore, the model is verified by 

applying it to different cases with different sets of stochastic variables that cover the most 

frequent behaviour of raw materials and final product costs and demand. Some of these 

cases depict different scenarios of non-stationary stochastic demand, while other cases 

reflect the stress test scenario, with sudden termination of demand or supply. Such test 

cases are carried out for sensitivity analysis. Second, a neural network closed-loop control 

system is applied under several extreme scenarios, which depict extreme economic and 

business conditions, to track the neural behaviour of the model using different data schemes 

for the worst case scenarios. Through these two validation techniques, the effect of the 

production/inventory decisions on supply chain performances can be accurately depicted, 

and this validation showed that the operational adjustments improve the sustainability of the 

supply chain and inventory management in the proposed models. This is crucial for the 

developed models to be widely accepted by practitioners as well as researchers in the field 

since, as discussed in Section 2.4.4.2.1, taking care of sustainable aspects has become 

extremely important when performing inventory management. 

 

 Chapter Summary  
In this research study, an inventory management model based on the extension of the well-

known EOQ model is developed for a steel manufacturing factory. This inventory 

management model considers the stochastic nature of demand and storage costs, hence 

capturing the real-life conditions of the steel manufacturing company’s business 

environment. In this section, the research methodology followed to develop the proposed 

model has been introduced, describing each of the involved steps from the research problem 

definition to the implementation of the model developed to address it. In particular, the 

adopted approaches towards creating and simulating the required hypothetical data, the 

design of the proposed model and the validation protocol have been described in detail. 



 
 

104 
 

 Mathematical Modelling of Inventory Management for 

High-volume Material within a Limited Space  

 Introduction 
This chapter describes the development of the proposed mathematical model for the 

production and inventory planning of a steel manufacturing factory. This model covers all 

aspects of the steel production process, from the purchase of the necessary raw materials 

to the setting of the selling price of the final product. The model takes into account both the 

order and storage queues. The former is essential to determine the time needed to convert 

raw materials into final products, whereas the latter is essential to model the inventory 

movement inside the factory through the adoption of the FIFO inventory management 

system. In particular, the FIFO management system is applied to both raw materials and 

final products in the sense that the first raw materials received will be the first to enter into 

production, as well as the first item produced will be the first sold.  

The chapter is organised into five main sections. Each of them provides details about a 

particular aspect of the developed model. First, Section 4.2 provides, in detail, the economic 

and business nature of the studied system, which are crucial to understand the assumptions 

behind the developed model. This section starts by reviewing the business cycle of the steel 

manufacturing factory under study in order to identify the crucial business parameters 

required for the estimation of the business efficiency. Here, the relationship between the 

developed model and the EOQ model is highlighted. Section 4.3 describes the whole model 

development. In particular, Section 4.3.1 defines the model’s parameters based on the 

business analysis performed in Section 4.2. For any business model, there are two types of 

parameters, namely stochastic parameters that change throughout the planning horizon, 

and deterministic parameters that are fixed throughout the planning horizon. In this section, 

these parameters are defined, their importance is explained, and their application in the 

scope of the steel manufacturing factory is described. In addition, the different assumptions 

and constraints used and applied in developing the model are presented. These constraints 

are included in the software implementation of the model to make the results more plausible 

from an economic point of view. Section 4.3.2 describes the proposed strategies to control 

the mathematical model. The main goal of the control system is to provide timely 

recommendations for the storage quantities of both of products and raw material. This will 

also facilitate the decisions of the factory’s management regarding the level of investment, 

steel purchasing strategy, and setting of optimal production levels throughout the planning 
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horizon. As already introduced in the previous chapters, two different control systems are 

proposed in this research study. In this section, the difference between them, in terms of 

their working mechanisms, advantages and limitations, are analysed. Finally, the 

mathematical model is developed, in terms of defining the set of equations modelling the 

steel manufacturing factory’s dynamics in Section 4.3.3. In Section 4.3.4, the optimisation 

algorithm used to adjust the model’s parameters is presented. Finally, Section 4.4 

summarises the entire chapter. In particular, it analyses the business model, its strengths 

and possible weaknesses. In addition, it discusses about the proposed control systems, and 

provides recommendations based on the numerical experiments. 

 

 Business Logic Explanation 
The main problem in this research is the presence of large-volume products and raw 

materials which require a large storage area. In addition, when managing the inventory for 

a steel manufacturing factory, the problem becomes even more complicated, due to the high 

storage costs and the deterioration of the final product as a result of various environmental 

factors, such as humidity, prohibiting the long-term storage of such products. Hence, the 

problem of this research is based on both the product’s physical characteristics and its 

special requirements during the inventory holding period. In this context, there are three 

sides of the problem concerning the nature of the product, as introduced in Section 1.3: 

1. High-volume material that needs a large storage space. Therefore, optimisation 

management is required to optimise the inventory decisions of how and when to 

order the raw material from suppliers, based on the production process and the 

market conditions. The aim of this optimisation process is to reduce the time required 

to store raw materials and final products to the minimum possible time, in order to 

reduce any waste that results from long storage periods. 

2. The high level of energy required to avoid harmful environmental effects on the 

product’s physical characteristics. As discussed in Section 2.4.4.2.1, the high 

consumption of energy is one of the main environmental impacts of inventory 

management, being crucial to reduce it. In order to address this problem, first, the 

nature of the steel is studied in order to determine the amount of energy that is 

required to keep it safe from the effects of humidity and preserve its quality; then, by 
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optimising the storage time for raw materials and final products, the amount of energy 

required will be reduced, having positive environmental effects. 

3. Increasing the company’s profit, which can be achieved by reducing the storage 

costs and the amount of waste produced. In the case of the steel manufacturing 

factory, the storage costs are stochastic in nature, as several factors can change the 

necessary requirements to preserve raw materials and final products from 

deterioration. For example, in hotter weather, more air cooling will be necessary, 

which means more energy consumed and greater costs. 

Furthermore, the main problem facing the steel manufacturing factory under study can be 

broken down to the following points: 

1. The factory needs to use its limited storage area of inventory to meet the stochastic 

demand within determined supply. 

2. The factory needs to use its limited storage area of inventory to cope with frequent 

stochastic backorders. 

3. The factory needs to reduce the storage cost of the high-volume product which 

requires extra energy to face the environmental conditions. 

4. Raw materials and final products cannot be stored for more than one week due to 

the space limitations and the cost of the extra energy required. 

5. The factory needs accurate estimation of the expected demand, supply and 

backorders for a weekly resolution. 

6. The factory needs accurate estimation of stochastic demand to synchronise it with 

supply chain management in order to achieve a sustainable process between stochastic 

demand and stochastic supply. 

As a result, this research proposes the development of a model that optimises the space 

and material distribution in the inventory section within the time and area specification. In 

particular, the research is mainly focused on optimising the required quantity in a limited 

storage area to meet the required demand and backorders, based on the stochastic nature 

of the process, in order to give a timely approximation of the optimised quantity on a weekly 

basis. In order to help in this process, the value of the output variables of the model will be 

compared with the value of the input parameters of the model, allowing the model to be 

updated and corrected towards improving its outcomes. The choice of a weekly planning 

period is based on several business-specific conditions of the steel manufacturing industry. 

In particular, the following ones can be mentioned:  
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• The factory has limited storage space, which makes precise planning necessary to 

achieve a timely approximation; hence, a weekly basis is considered a suitable 

timeframe to balance supply and demand. 

• The operational and production plan for the factory under study is based on a weekly 

calendar. 

• The physical nature of steel and its energy requirements makes the application of 

timely solutions necessary in order to avoid any defects and deterioration in the 

products. 

• Determining the required optimal quantity of both raw materials and final products 

on a weekly basis will help in avoiding congestion in the storage area, and/or having 

empty storage spaces in the presence of high demand and backorders. 

Therefore, in this research, a model is developed to help a complex industrial steel 

manufacturing company to determine its optimal financial investment, steel purchasing 

strategy, and sales and pricing management for a one-year (52-week) period in order to 

increase its annual net profit. The one-year timeframe is assumed to be sufficient to observe 

the seasonal effects that result in price and demand fluctuations, while any larger planning 

horizon will reduce the accuracy of the future selling price and demand forecasts. 

The problem under study deals with three different cases in the inventory section: 

1. The stochastic nature of demand.  

2. The stochastic nature of supply.  

3. The stochastic nature of backorders. 

The first step in developing this model is to review the business cycle of the steel 

manufacturing factory in order to identify the crucial business parameters needed for the 

estimation of business efficiency. Figure 4-1 outlines the business cycle of the steel 

manufacturing factory. Basically, the business cycle consists in purchasing and storing raw 

material composed of steel and then performing value-adding activities to convert it to other 

steel products through manufacturing/fabrication processes. The facility is a steel structure 

facility, storing steel products (channels, beams, flat steel, etc.) and performing 

manufacturing/fabrication activities, such as welding, shearing, cutting, painting and 

finishing.  
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Figure 4-1 Diagram of the business scope of the steel factory. 

As seen from the above figure, all weekly business activities need to be grouped into logical 

components to facilitate the analysis process. Accordingly, the main business cycle of the 

steel manufacturing factory consists of the following four components: 

1. Cash-flow management block: This block consists of the activities performed when 

the business owner decides on how much profit to keep in the business and how 

much to distribute to the shareholders as dividends; it also involves any interest 

payments required. The input for this block includes the initial financial conditions of 

the system. 

2. Raw materials management block: This block consists of the activities performed 

when there is a need to decide on the amount of raw materials to be purchased. 

3. Production management block: This block consists of the activities performed during 

the estimation of the optimal production quantity. 

4. Selling management block: This block consists of the activities performed when the 

managers attempt to set the price for final products in order to maximise their profit 

while, at least, covering expenses. 

Based on the business cycle introduced above, the company’s management must decide 

on the level of investment, the quantity of raw materials to buy, the quantity of final products 

to be produced, and the selling price of final products, on a weekly basis.   
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In addition, the business environment of the steel manufacturing factory is characterised by 

a set of unique economic parameters and market indicators; these indicators can be divided 

into two major groups: 

1. Deterministic (fixed) indicators: These are the parameters/indicators whose values 

are fixed over the planning horizon and can be predicted with great precision. 

Examples of fixed economic parameters include: tax rate, demand elasticity and 

inflation rate, while examples of fixed market indicators include the deterioration 

rates of raw materials and final products, the probability of critical defects in the final 

products, the maximum storage capacity, and staff salaries. 

2. Stochastic indicators: These are the parameters/indicators whose future values 

cannot be predicted accurately due to the randomness of their occurrence. Hence, 

for these parameters, future trends and expected possible deviation from these 

trends can only be predicted through the use of historical data. Examples of the 

stochastic parameters include demand for the final products, the market prices of 

raw materials and final products, and storage costs. 

In general, most crucial business indicators are stochastic in nature, which makes the 

process of developing a strategy that maximises the company’s profit even more difficult. 

Hence, it is essential to extend the business scope segment of Figure 4-1 as shown in Table 

4-1 to investigate all the factors that affect the steel manufacturing business and analyse the 

company’s cash flows and drivers for realising profits or losses.   

Table 4-1. Business loop of a single working period (one-week) 

Business Loop 
Component 

Sub-steps 

Cash flow 
Management 

• Select the percentage of profits to be reinvested in the 
business and the percentage to be distributed to 
shareholders. 

• Adjust the value of the available funds according to the 
inflation rate. 

• Add accounts receivables (up credit) and deduct account 
payables (down credit). 

• Update the up credit and down credit with any payments 
made. 

Raw Materials 
Management 

• Decide on the quantity of raw materials to be ordered. 

• Add the value of the down credit needed to order raw 
materials. 

• Add the quantity of raw materials to be stored. 
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Production 
Management 

• Select the quantity of the final products to be delivered and 
the quantity available for sale after a specific number of 
periods. 

• Reduce the available funds by the quantity of products 
ordered while taking into account that any overtime 
production will cost more than regular production.  

Selling Management 
• Select the selling price of the final product. 

• Calculate the maximum quantity of goods that can be sold 
in a period. 

• Adjust for up credit. 

• Reduce the available funds with the money needed to 
repair or reproduce the defective products. 

Final Steps 
• Reduce the available funds by the storage costs of raw 

materials and final products. 

• Reduce the actual quantities of raw materials and final 
products according to their respective deterioration rates 
over time. 

Backorder Adjustment 
• Calculate the profits lost due to late deliveries or additional 

orders of raw material.  

 

Table 4-1 reveals the relationships between the available funds, raw materials and final 

products in the steel manufacturing industry, as well as other existing relationships in this 

business; some of these relationships are: 

1. Factors: purchasing raw materials, reduction due to inflation and taxes, production 

costs and storage costs, affecting the level of available funds. 

2. The quantity of raw materials increases after purchasing and deteriorates over time 

as they move to production, and costs extra in the case of backorders. 

3. Final products are produced from production lines and wait in storage until they are 

sold. These products are the only source of profits for the company. 

These relationships are used to construct the mathematical model in the next sections and 

further test it, in the next chapter, on a hypothetical case. Hence, to maximise the company’s 

net profit at the end of the year, the different transactions that contribute to realising profits 

or incurring losses have to be identified. The net profit for the company includes: 

1. Invested money: These are funds invested into securities and not used in the 

business operations. The goal of this investment is to protect the value of the funds 

available to the company from the effects of inflation. 



 
 

111 
 

2. Cash money: This is the balance of funds available for buying raw materials and/or 

making production orders. 

3. Up credit: This is money owed by customers to the company for the products 

purchased. 

On the other hand, the company can incur losses due to a number of factors: 

1. Cash debt: When the company’s cash flow is negative, the company starts incurring 

interest on any outstanding loan balances. 

2. Down credit: The money that the company owes to suppliers of raw materials. 

3. Backorder extra loss: The money that the company loses because of delayed and/or 

failed supplies. 

4. Cost of remaining raw materials: This is price of raw materials remaining in storage 

at the end of the planning period. 

5. Cost of goods in storage: This is the storage cost of the final products that are not 

sold at the end of the planning period. 

6. Cost of raw materials that are still in the production lines at the end of the planning 

period. 

Finally, in order to accurately model the business cycle of the steel manufacturing factory, 

the business limitations, as a result of the economic conditions, must be taken into account. 

These limitations are: 

1. The company can make investments, purchase raw materials and produce final 

products only if it has positive cash-flow. Hence, the maximum quantity of raw 

materials that can be ordered is calculated, so that after these activities, the 

company will still have a positive balance of free cash. 

2. The company cannot sell the final product at a price that is higher than the maximum 

allowable price set by governments and/or anti-monopoly regulators. 

3. The company is not allowed to directly borrow money from a bank to purchase raw 

materials. 

4. The company uses limit storage space and one market price policy, so the FIFO 

principle is applied to both raw materials and final products. 

It is important to take into account, that inventory optimisation is a supply-chain management 

method used to avoid having excess levels of inventory, while maintaining the appropriate 

amount of inventory, where needed, to meet consumers’ demand and revenue goals (Iyer, 
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2012). Traditionally, companies used to manage inventory using the “binge-and-purge” 

inventory cycles, which involved over-purchasing of inventory to accommodate potentially 

large demand spikes. This management method produced a lot of waste, as extra items 

were thrown away or sold at a huge discount (Jackson et al., 2018). On the contrary, 

inventory optimisation methods attempt to minimise the level of inventory needed, which 

extends vertically along the supply chain (Iyer, 2012). Hence, in today’s business 

environment, inventory optimisation is considered a core competence for mid-sized and 

large corporations, as it provides the potential to save millions of dollars in working capital 

by reducing the quantity of stored inventory without jeopardising operational efficiency and 

sales (Willems, 2014). Although there are many optimisation models that aimed at 

calculating the optimal quantity of stored inventory, such as EOQ and EPQ models, the 

dynamic lot size model, and the newsvendor model, all of these models have their 

limitations, complicating their usage in real life. For example, production rarely has fixed and 

well-defined demand over the planning horizon; hence, in real life, these variables are 

considered to be stochastic in nature, which would suggest that the traditionally used models 

are inapplicable, as they all assume that the demand rate is known. To overcome these 

limitations, the developed model is a joint pricing and inventory management model for high-

volume products and raw materials with stock-dependent demand under the conditions of 

stochastic quantity deterioration of the current inventory, product degradation over time, and 

the possibility of a positive end-of-cycle inventory level. Moreover, the model incorporates 

economic assumptions that are as close to real life as possible to reach the optimal solution. 

In this line, unlike the previously developed stock-dependent models of Dordevic et al. 

(2017) and Tiwari et al. (2018), which aimed at minimising the storage cost only to maximise 

the profit, the developed model’s objective function is more complex, as it simultaneously 

maximises profit from the sold goods and minimises storage, interest and backorder costs. 

In particular, the objective function of the developed model is to increase the company’s total 

net worth, which is affected by:  

1) The amount of free and invested funds at the beginning of the planning horizon. 

2) The amount of up credit and down credit at the beginning of the planning horizon. 

3) The quantity of raw materials in storage at the beginning of the planning horizon 

4) The quantity of final products in storage that have been ordered and not yet 

delivered.  
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Nevertheless, the most important components of the company’s total net worth are those 

related to money, i.e. free and invested funds, up credit and down credit, while, on the other 

hand, the quantities of raw materials and final products at the end of planning horizon are 

not the crucial factors in the objective function. In this context, the objective function of the 

developed model is only indirectly related to optimal storage cost, using a solution from a 

Pareto optimal set (Brownstein, 1980), which allows maximising income while keeping 

storage expenses low. Finally, the developed model has the advantage when compared to 

previous stock-dependent models in the state-or-the-art, such as the ones in Singha et al. 

(2017) and Farhangi and Mehdizadeh (2016), that it is aimed at finding the optimal order 

quantity not only of raw materials but also of finished products. Figure 4-2 shows the 

relationships between storage space, the stochastic variables and the decision variables 

(controls) included in the proposed model.  
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Figure 4-2. Inventory influence diagram. 
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As seen from the above figure, the level of stored raw materials and the purchase cost of 

these raw materials, which is stochastic in nature, are the main factors that influence the 

raw material order policy. At the same time, the quantity of the final assembled products and 

their unit costs and demand, which are again stochastic in nature, are the main factors that 

influence the selection of the final product order policy. Finally, regarding the price setting of 

the final products, the main factor influencing this decision variable is the quantity of final 

products held in storage, i.e. if the factory has a large quantity of final products in stock, then 

it will have to reduce its selling price to be able to sell them in time and reduce the 

corresponding storage costs. 

Figure 4-3 shows the production assembly and the storage system when applying the 

relationships in Figure 4-2 in a steel manufacturing factory. As demonstrated in Figure 4-3, 

most of the steel manufacturing factories need to continuously adjust their production orders 

(represented by the dotted arrows) according to the level of the final products in storage. 

Therefore, when the quantity of final products in storage is high, the general managers of 

the steel manufacturing factories must either instruct the production manager to reduce the 

level of production, i.e. produce less products, or instruct the sales manager to increase 

efforts to sell the final products, or sell them at a discount. Nonetheless, in most cases, and 

in the absence of an optimisation management process, the general managers of the steel 

manufacturing factories must adjust their production levels manually, based on their 

previous experiences, without the help of accurate control systems that take into account 

the market and economic conditions, which can ultimately hurt the company’s profits. 

 
Figure 4-3. Production assembly and storage system. 
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As a result, to create a control system that operates and provides managerial advice, an 

efficient analysis of storage efficiency must be conducted by utilising knowledge of the 

following parameters: 

1. The inventory turnover: The period of time between the purchase of one item 

of raw material and the use of that item in production.  

2. Final product turnover: The period of time between producing a unit and 

selling it. 

To answer these questions, the model assumes a storage queue of First-In-Fist-Out (FIFO) 

principle, in which the first raw material purchased is the first one to be used in production, 

and the first final product produced is the first one to be sold. This FIFO principle is used by 

the selling companies as they want to sell or use the oldest product in order to prevent it 

from deteriorating and causing losses (Khan et al., 2018). Therefore, the storage of raw 

materials and final products in the developed model also follows the FIFO principle. Thus, 

the maturity of each item of raw material is tracked and further analysed in the order to test 

the model and the control system.  

Figure 4-4 shows the flow of funds within the steel manufacturing factory’s business cycle. 

As explained earlier, the only source of income for the factory is the profit earned from selling 

the final products (up credit), which is reduced by the applicable tax rate. On the other hand, 

there are several sources of expenses for the factory, which include down credit (money for 

purchased raw materials), storage fixed and unit costs, production costs, and backorder 

losses. Finally, other economic parameters, such as inflation and interest rates, can also 

contribute to additional expenses for the factory. These type of factors were rarely 

considered in past EOQ or EPQ models since they complicate the model’s computations 

significantly. In this research study, the use of ANNs to build the closed-loop control 

approach allows including more variables to the model without further complicating its 

calculations. In particular, when using ANNs adding extra parameters to the model will not 

alter the numbers of the inputs and outputs of the model, remaining the ANN architecture 

the same. In this way, when using the ANN based control approach, the resulting model will 

be suitable to model more complex real-life scenarios.  
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Figure 4-4. Scheme of money flows in a steel-consuming factory. 

 

Finally, Figure 4-5 displays the flow of raw materials from the time they are purchased to the 

point at which they enter into production. During this lifecycle, raw materials and final 

products might need to be stored in the warehouse, thus the company will incur the following 

expenses: 

1. Fixed storage costs, such as electricity and air conditioning. 

2. Unit storage costs, such as rent for extra square meters of storage, and 

salaries for warehousing workers. 

3. Deterioration costs: when items are not sold, and kept in storage for a long 

time, they deteriorate, hence the factory incurs costs for items that are not 

used. 
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Figure 4-5. Scheme of steel flows in a steel manufacturing factory. 

 

Here, the logical strategy would be to move all the available inventory to the production lines; 

this would lead to extra quantities of the final product that cannot be sold instantly. This 

shows that there are no “simple” strategies that lead to high income and low storage costs 

simultaneously. 

 

 Development of the Steel Manufacturing Inventory Model 
In this section, the development of the inventory model for the steel manufacturing industry 

proposed in this research study is described. Section 4.3.1 provides the mathematical 

definition of the model’s assumptions and constraints. In Section 4.3.2, the control system 

approaches used to implement the model are described. In Section 4.3.3, the economic 

model is actually converted into a set of equations modelling the steel manufacturing 

dynamics. In Section 4.3.4, the optimisation algorithm used to adjust the model’s parameters 

and solve the equations introduced in Section 4.3.3 is developed.  

 

 Stochastic and Fixed Variables / Parameters Used in the Model 

In this section, the types of variables, the used assumptions and the model’s constraints are 

outlined. Concerning the types of variables, since the model of a steel manufacturing factory 

described in Section 4.2 covers all the aspects of this business, many parameters related to 

raw material purchase, investment, production ordering, marketing and storage should be 

Production

T T-1 T-2 1

Steel

Send to production lines

Receive from production lines

Readiness time

Sell

Deterioration
Deterioration

Buy

Defect production



 
  

119 
 

taken into account. Some of these parameters, such as production time, are unique for each 

type of steel manufacturing business, and can vary from several weeks to several months, 

while others are related to the economy in general, such as tax rate and inflation rate. Hence, 

all variables used in the developed model can be categorised under four groups as follows: 

1. Fixed variables: Input variables that define the economic and business parameters that 

do not change over time. 

2. Stochastic variables: Input variables that define the business indicators that change over 

time. 

3. State of business: Variables for the following business week which are calculated based 

on the fixed variables, current value of stochastic variables, and current controls. 

4. Controls: Decision variables which are calculated based on the current value of the 

stochastic variables and current state of business. 

 

  Assumptions 

Figure 4-6 shows the interactions between three critical aspects for the steel manufacturing 

inventory management, viz., the supply, the demand and the backorders of the steel 

production process.  
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Figure 4-6. Interactions between supply, demand and backorders. 

  

In order to succeed in fulfilling the specific inventory requirements of the steel manufacturing, 

the variables shown in Figure 4-6 as well as their interactions should be properly handled. 

In this line, different assumptions, which affect each other and interact with other sub-

assumptions, govern the steel manufacturing process modelling. These assumptions are 

summarised in Table 4-2, illustrated in Figure 4-7, and described in detailed as follows:  

• Assumption 1: According to Figure 4-6, first assumption considers a fixed supply 

determined hypothetically. On the other hand, the demand and backorders for the 

final products are assumed to be stochastic in order to reflect the case of a 

commercial environment for the known and continuous supply of material, as well as 

to show the effect of the stochastic nature on its continuity. In addition, most of the 

orders in a given period of time will be fulfilled. This approach gives managers more 

flexibility to place orders based on the demand level.   

• Assumption 2: Within the context of the second assumption, demand is categorised 

as deterministic, while there is no continuity or assurance regarding the supply chain. 

This implies that there is a stochastic limit to the quantity of raw materials that the 

factory can order in a period. This case reflects the lack of material in the production 

Product A Product B Product C Product D

0% 
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to be ordered 

as a demand 
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to be ordered 
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section when there is stable demand. In this context, managers will be able to make 

decisions regarding the source of supply and its varieties. 

• Assumption 3: This assumption considers both demand and supply to be stochastic, 

and both impact the levels of demand and supply. This approach provides accurate 

estimation of the required material to be stored in order to meet the sudden 

backorders of specific products, enabling managers to take action by storing greater 

quantities to meet the predicted demand for specific items. Hence, this assumption 

treats every parameter in the problem as a stochastic parameter, reflecting the 

unstable and non-continuous behaviour of the production section regarding the 

demand, supply and backorders. This assumption enables managers to be always 

ready for any backorders based on tight estimation; therefore, there will always be a 

quantity of raw materials ready for production based on the type of order and 

products, as depicted in Figure 4-7. Furthermore, managers will be more accurate 

regarding the decisions that are taken in the steel manufacturing factory. 

Table 4-2. Summary of the Different Model Assumptions 

 Demand Supply Backorder 

Assumption # 1 Deterministic    

Stochastic    

Assumption # 2 Deterministic    

Stochastic    

Assumption # 3 Deterministic    

Stochastic    

 

In addition, in order to succeed in the complex task of maximising net profit for the steel 

manufacturing company over the entire 52-week period, several sub-assumptions are made 

for the developed mode to simplify it. These further assumptions are: 

1. The model is based on one market price policy scenario, which means that the 

fluctuating in the prices of raw materials has almost similar behaviour for all the 

suppliers. 

2. The model is based on the assumption that weekly storage costs are similar. 



 
  

122 
 

3. The cost of additional storage is higher than the cost of storage at the company’s 

warehouse. 

4. One unit of raw materials is used to produce every unit of production. 

5. Fixed parameters for the raw materials include long-term contracts which are unlikely 

to change. 

6. Deterioration rates are dependent on the physical characteristics of the item, can be 

calculated precisely, and are fixed as long as the storage conditions remain the 

same.  

7. The maximum production capacity is fixed. 

8. The raw material fixed costs include transportation costs. 

9. The percentage of moderate and major defects is constant throughout the planning 

horizon, as long as the production lines are not upgraded. 

10. The amounts of up credit and down credit to pay weekly are fixed and defined by 

contracts with banks. 

11. The inflation rate is fixed throughout the planning horizon. 

12. The cost to produce a single unit is fixed as long as salaries and other production 

costs do not change. 

13. Demand elasticity is fixed because it depends on the product that is produced. 

14. Lead time is assumed to be fixed. 

15. The initial cost of raw materials includes the sum of the initial expenditures, such as 

transportation, installation, preparation for service, and other related costs (Parker, 

2003). Hence, it is assumed that the initial cost of raw materials in storage is higher 

than the raw materials purchase price, while the initial cost of production in storage 

is lower than its selling price. 

16. Demand is stochastic and stock-dependent.  
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Figure 4-7. Schematic representation of the different model assumptions described in Table 4-2. 

 

The last assumption in the above list establishes that, in the developed model, the demand 

is considered stochastic and stock-dependent. This assumption deserves a detailed 

explanation. As discussed in Section 2.3, one of the main assumptions of the classical EOQ 

model refers to the deterministic and stationary nature of the demand (Kumar, 2016), being 

usually recommended for environments with steady and predictable demand. Within the 

context of stochastic demand environments, as is the case  of the steel manufacturing 

industry, the EOQ model is sometimes used to approximate the order quantity in the 

continuous review inventory system. In this research study, real demand is estimated by 
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linking base demand and market price via an elasticity linker function. Elasticity is generally 

used to evaluate to what extent individuals change their demand or supply as a result of 

price or income changes (Hursh, 1984). In particular, elasticity is widely used in the literature 

to assess the change in consumer demand as a function of a change in a good or service's 

price. Figure 4-8 shows the demand vs. price curve obtained based on the hypothetical data 

(generated as described in Section 3.2) for different elasticity values. In this research study, 

the actual demand has been calculated using the current selling price of the products set by 

the company 𝑝𝑟𝑖𝑐𝑒(𝑡), the market price 𝐶𝑝𝑟𝑜𝑑(𝑡) and the demand for this price 𝐷𝑝𝑟𝑜𝑑(𝑡). 

From Figure 4-8, it can be inferred that high elasticity parameters are associated with goods 

that customers can easily refuse, whereas low or zero elasticity is characteristic for goods 

that the consumer must buy regardless of the cost, existing no substitutes for these goods. 

Note the reader that, in Figure 4-8, all the elasticity curves intersect at the point of market 

price and the corresponding basic demand, £30 and 70 units, respectively. Based on the 

demand behaviour depicted in Figure 4-8 and the specific characteristics of the steel 

manufacturing industry business described in Section 4.2, the elasticity is assumed to be 

constant and equal to five for the developed model in this paper. This selection means that 

any decrease in price will lead to a significant increase in demand. This is indeed the real 

scenario for the steel manufacturing industry since, due to its high competitive nature, any 

slight decrease in the company’s selling price can attract more customers. In addition, as 

suggested above, high elasticity is often characteristic of unified and standardised products 

that can be easily replaced by analogue of concurrent companies, as is the case of steel 

products. In fact, this has particularly been confirmed for such products by a previous 

investigation of steel production elasticity where it has been found that, for different kinds of 

steel production factories, the elasticity value ranges between four and six.   
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Figure 4-8. Demand plots for different parameters of elasticity (calculated for basic price of 

£30 per unit and basic demand of 70 units of production per week). 

 

  Constraints 

This section introduces the constraints that are used in the mathematical model to impose 

limitations on the business actions that can be taken by the factory’s management. These 

constraints can be classified as business controls constraints and raw materials constraints. 

A. Business controls constraints 

First, all of the four controls have relative representation rather than absolute, and their 

values range from zero to one. Next, the following four constraints correspond to each of the 

business controls.  

0 ≤ 𝑢𝑖𝑛𝑣(𝑡) ≤ 1, 𝑡 ∈ {1,2,… , 𝑇} 4-1 

0 ≤ 𝑢𝑏𝑢𝑦(𝑡) ≤ 1, 𝑡 ∈ {1,2,… , 𝑇} 4-2 

0 ≤ 𝑢𝑜𝑟𝑑𝑒𝑟(𝑡) ≤ 1, 𝑡 ∈ {1,2,… , 𝑇} 4-3 
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0 ≤ 𝑢𝑝𝑟𝑖𝑐𝑒(𝑡) ≤ 1, 𝑡 ∈ {1,2,… , 𝑇} 4-4 

The first constraint sets the condition that the company cannot invest more money than it 

possesses. The second constraint restricts the buying of additional raw materials if the 

company cannot afford it. Regarding the third constraint, this constraint sets the maximum 

quantity of final products to be produced to the level of inventory in storage. Finally, the last 

constraint restricts to set price larger than max price. This constraint is dictated by economic 

theory about price setting: if price is too high then all customers will switch their choice to 

competitor factories. We can set max price as maximal observed market price in steel 

market throughout historical time interval.   

B. Raw materials constraints 

The following constraints are used to impose restrictions on the amount of raw materials to 

be used in producing the final products, and the quantity of the final products to be sold. 

These constraints basically restrict the quantity of raw materials to be sent to production to 

the quantity ordered, and the quantity of the final products sold to the quantity produced. 

𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑) ≤ 𝑟𝑎𝑤(𝑡), 𝑡 ∈ {1,2, … , 𝑇} 4-5 

𝑠𝑒𝑙𝑙(𝑡) ≤ 𝑝𝑟𝑜𝑑(𝑡), 𝑡 ∈ {1,2,… , 𝑇} 4-6 

 

 Control Systems for Optimal Business and Storage Strategy 

Derivation 

In this research study, the proposed EOQ model is extended by using a control system 

which provides measurements and estimations of storage quantities of both products and 

raw material from the steel manufacturing company. Having these inputs available will help 

the whole model to handle timely data about the most important parameters and process 

them accordingly towards making the best decisions regarding the level of investment, steel 

purchasing strategy, and setting of optimal production levels throughout the planning 

horizon. As introduced in Section 1.4, two different control approaches are proposed in this 

study, namely the open-loop and the ANN based closed-loop ones. Finally, a PSO technique 

is employed to solve the developed model.  

A control system is an algorithm that generates the optimal decision variables for an entity 

throughout the planning horizon (Stefano, 1976). There are different types of control 

systems; however, the decision to use a particular type in the developed model depends on 
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the results obtained from that system in terms of the optimisation objectives. Due to the 

complex nature of the developed model, the model requires training, which is the process 

of changing the control system parameters iteratively in order to increase the profit. This 

process is conducted by feeding a set of predefined scenarios over and over into the control 

system until an average satisfactory profit for these scenarios is achieved. In order to 

achieve the research objectives, the proposed control systems are updated on the basis of 

their respective output parameters regarding: 

1. Maximising the factory’s profit. 

2. Providing sufficient stability, i.e. effective business management under all economic 

conditions. This condition is especially important because a control system needs to 

perform well not only on the samples from the training set, but also on any valid testing 

set of stochastic economic parameters.   

During the training process, multiple evaluations of the objective function with different 

decision variables are performed for the sake of adjusting them so that the objective function 

is maximised. This objective function in itself can be deterministic, having the same results 

if the exact same controls are used to derive it; or stochastic, with different results, following 

a certain probability distribution, even when using the exact same controls. In the case of 

the steel manufacturing industry addressed in this study, the control parameters, for each 

week over the entire planning horizon, are: 

a. Investment 

b. Raw materials purchasing 

c. Production ordering 

d. Price setting  

These parameters are adjust using an external algorithm, the optimiser, which in the case 

of the developed model is the PSO algorithm, as already discussed in the previous sections 

(Kirkpatrick et al., 1983; Nazari-Heris et al., 2018). 

In this research study, two types of control systems are considered:  

1) Open-loop control system. 

2) Closed-loop control system. 

A schematic diagram for each one of them is shown in Figure 4-9. Figure 4-9(a) shows the 

scheme behind the open-loop system. As shown from this figure, the control system 

depends only on the current time, and the entire logic of the control system is hardcoded 
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inside the control block. On the other hand, Figure 4-9(b) shows the scheme behind the 

closed-loop system, which uses the feedback from the current state of the model and the 

current external parameters to develop the logic of the system (Berger et al., 2018). 

 
Figure 4-9. Scheme of the open loop and close loop control systems for models that are 

dealing with optimal inventory problems. 

 

In order to select the most applicable control system for the steel manufacturing factory, 

three different systems are considered and compared, two of them are based on the open-

loop approach, whereas a third one is a closed-loop system based on ANNs. 

 

 Open-loop Control System 

 

4.3.2.1.1 Direct control optimisation for fixed set of Monte Carlo runs 

In this system, five instances of external stochastic factors are generated using the Monte 

Carlo method (Kroese et al., 2011; 2014). Since the business model of the steel 
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manufacturing factory described in Section 4.2 is dependent on time, the Monte Carlo 

method is a suitable option to generate the variables. Moreover, this method is chosen over 

some other methods, such as stochastic approximation (Robbins and Monro, 1951), 

stochastic gradient descent (Hinton, 2016), finite-difference (Kiefer and Wolfowitz, 1952), 

simultaneous perturbation stochastic approximation (Spall, 1992), and scenario optimisation 

(Calafiore and Campi, 2006), which are mainly used to solve algebraic equations with 

stochastic right-hand side functions. After generating the stochastic variables, the control for 

the entire planning horizon of 52 weeks that maximises the average profit for all instances 

is assumed. In other words, five different time series for each stochastic variable are 

generated, then an attempt to optimise the average profit is conducted by using the following 

four decision variables for each week: 

a. Investment ratio 

b. Ratio of funds to spend on purchasing raw materials 

c. Ratio of raw materials to send to the production lines 

d. Current selling price as a percentage of maximum allowed selling price. 

This approach tries to find the one strategy that is not dependent on the actual values of the 

stochastic variables and, at the same time, provide the maximum possible profit. Therefore, 

since, in the case of the developed model, there are 52 weeks in the planning horizon, the 

model returns four fixed numbers each week, i.e. a total of 208 parameters to be adjusted, 

viz., investment ratio, ratio of funds to spend on purchasing raw materials, ratio of raw 

materials to send to the production lines, and the current selling price as a percentage of 

maximum allowed selling price. The main advantage of this control approach is its simplicity. 

On the other hand, its major drawback is that it does not incorporate feedback about the 

actual state of the business or the stochastic parameters. That is to say, neither measured 

or predicted current values of the different model’s variables nor measured or predicted 

values of the current external parameters can be evaluated and used by the model to update 

its internal logic (Berger et al., 2018). In this scenario, the model cannot adjust its internal 

parameters to reflect any change in the economic or business environment over the planning 

horizon. Finally, another disadvantage of this approach is the limited amount of training data 

available to train it.  

 

4.3.2.1.2 Direct control optimisation for dynamically generated scenarios  
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This system is very similar to the previous system, except for the fact that stochastic 

parameters and indicators are regenerated with each training iteration. Therefore, the 

objective of this system is to find the set of controls that maximises the mathematical 

expectation of the objective function value for all possible variations of the external 

stochastic indicators during the planning horizon.  

The previously mentioned two open-loop control systems provide one set of controls 

regardless of the actual economic parameters. For example, even if economic conditions 

indicate that it is better to decrease the selling price because of low demand, such a control 

system will blindly follow the final control numbers for all 52 weeks. To overcome such 

limitations, a novel model is developed in this study, which uses ANNs that dynamically 

predicts optimal controls. 

 

  ANN control optimisation with feedback 

In Figure 3-3, a scheme of the proposed closed-loop approach where the interaction among 

the mathematical model based on the EOQ concepts, the system proposed to control the 

model and the PSO algorithm can be seen in detailed, has been introduced. According to 

this scheme, in the first place, the inventory management behaviour of the steel 

manufacturing industry is modelled by a set of equations that extend the EOQ concept by 

including different parameters to the model that can catch the specific dynamics of the steel 

manufacturing industry. These parameters are used as inputs of the ANN. Then, the ANN 

processes these parameters according to the ANN fundaments described in Section 

2.4.4.1.1 and provides the set of outputs that maximises the objective function (profit 

function). This set of outputs, which are used as control variables, is input to the PSO 

algorithm in order to adjust them. Based on the actual values of the control variables, the 

PSO calculates an updated set of weights for the ANN. In the literature, 99% of ANNs are 

optimized using feedforward procedure. However, in the case addressed in this paper there 

is an objective function at the end of year, rather than a “target” value of controls that is 

wanted to achieve during each week. Therefore, PSO is the only choice to fit the ANN 

weights. The training process is then as follows:  

1) All weights of ANN are concatenated into one single vector 

2) This vector is passed into PSO algorithm 
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3) After simulation yearly Total Net profit is evaluated, which serves as an objective 

function for PSO algorithm 

4) Weights of ANN are modified according to PSO algorithm 

5) Resulting vector is decomposed into layer and bias weights (inverse operation to the 

step 1) 

Finally, the updated weights are used by the ANN to compute the control variables and 

provide the updated values to the mathematical model so that the corresponding decisions 

can be made. 

As seen from Figure 3-3, the proposed closed-loop model uses an ANN to generate the 

optimal control parameters (Sanchez-Sanchez & Izzo , 2018) which in the case of a steel 

manufacturing factory are investment, raw materials purchasing, production ordering and 

price setting for each week over the entire planning horizon. That is to say, the ANN is fed 

by stochastic parameters and business state parameters on a weekly basis, and provides 

an output of four optimal control variables that are used as input for the following week. In 

particular, the following business parameters and stochastic variables are used as inputs to 

the neural network: 

a. Available funds 

b. Down credit amount 

c. Up credit amount 

d. Quantity of raw materials in storage 

e. Level of the final products in storage 

f. Final products to be produced during the current and following weeks 

g. Cost of one unit of raw materials 

h. Fixed ordering cost 

i. Market price for the final product 

j. Demand for the final product 

k. Storage cost for raw materials 

l. Storage cost for the final products 

In Section 2.4.4.1.1, the basic fundaments of ANN are introduced. In order to use ANN in 

the developed model, the basic scheme shown in Figure 2-3 is extended to the ANN 

architecture shown in Figure 4-10. The architecture in Figure 4-10 is defined by a trial and 

error methodology. Here, the only constraint imposed is the number of weights of the ANN 



 
  

132 
 

which should be kept as small as possible in order to have acceptable results. As it can be 

seen from Figure 4-10, a feed-forward topology is selected. This type of ANN are widely 

used in cases where the target classes are hard to classify. In particular, simple feed-forward 

neural networks are capable of dealing with noisy data and are also relatively simple to 

maintain. In order to build the ANN, different parameters should be defined. In the first place, 

the activation function for the hidden and output layers should be defined. In this research 

study, the activation function for the hidden layers is a Rectified Linear Unit (ReLU) (Kriesel, 

2007) given by Equation 4-7: 

𝑟𝑒𝑙𝑢(𝑥) = max (𝑥, 0), 4-7 

 

whereas the activation function of the output layer is a sigmoid function (Kriesel, 2007) 

(Equation 4-8) which allows output control to assume the values from zero to one: 

𝑆(𝑥) =
1

𝑒−𝑥+1
. 4-8 

Activation functions are crucial for ANN, as they add nonlinearity to the modelled process. 

Without activation functions ANN would be able to model only linear functions. In this 

reserch, the ReLU activation is chosen for the hidden layers since it is widely used in ANN 

and outperforms classical activation functions (Nwankpa, 2018). According to the model 

definition, all four controls should be in the range from 0 to 1. Therefore, activation function 

of the output layer (sigmoid), it is needed to map output to the [0,1] interval.  

Once the activation functions have already been defined, the number of hidden layers and 

the number of neurons in each layer (input, hidden and output) should be established. The 

proposed ANN based model assumes the economic indicators and business parameters 

listed above as inputs. In this way, the input layer consists in 13 neurons, each of them 

representing one of these parameters. The following step is to decide the number of hidden 

layers, as well as how many neurons each of them should contain. Here, if few hidden layers 

are used, high training and generalisation errors may occur due to under fitting. On the other 

hand, if too many hidden layers are used, the training errors will be low, but the training 

process will be unnecessarily slow, resulting in poor generalisation because of overfitting. 

There exists then a trade-off between number of hidden layers and training and 

generalisation errors. In order to find the optimal number of hidden layers as well as of 

neurons in each one of them, different tests are performed using different values of such 

parameters on a separate dataset. In this way, the number of hidden layers and neurons 
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that obtained the best results, in terms of maximising the objective function, on this separate 

data set are selected to build the ANN for the developed model. In particular, the best results 

are obtained with one hidden layer containing 10 neurons. The output of the ANN model 

should provide the control variables that will be used by the model to adjust itself to the 

current business environment. As discussed in Section 4.2, the control variables are the 

investment, raw purchase, goods order and price rates, making a total of 4 neurons in the 

output layer.  

Another important ANN parameter that needs tuning are weights. This is done in the same 

way explained for the number of hidden layers and neurons. The model is evaluated on a 

separate dataset using different set of parameters and the set that maximises the objective 

function on this dataset is chosen. Finally, as it can be seen from Figure 4-10, bias is 

introduced as an additional parameter in the proposed ANN architecture, to adjust the output 

along with the weighted sum of the inputs. The value of this bias is constant, which helps 

the model in finding the best fit for the given data. Furthermore, a bias value allows the 

shifting of the activation function either to the left or right, which is important for the success 

of the learning process of the system. 
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Figure 4-10. Scheme of the proposed closed-loop ANN control system. 
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The final equation for the calculation of the controls according to the closed-loop ANN model 

depicted in Figure 4-10 can be derived by combining Equations 4-7 and 4-8 into Equation 

2-4 introduced in Section 2.4.4.1.1. In this case, for Equation 2-4, 𝐼 (vector of inputs) consists 

of 13 numbers, 𝑓ℎ𝑖𝑑𝑑𝑒𝑛(𝑥) = 𝑟𝑒𝑙𝑢(𝑥), 𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) = 𝑆(𝑥), and the vector of controls 𝑈 is given 

by 𝑈 = (𝑢𝑖𝑛𝑣(𝑡), 𝑢𝑟𝑎𝑤(𝑡), 𝑢𝑜𝑟𝑑𝑒𝑟(𝑡), 𝑢𝑏𝑢𝑦(𝑡))
𝑇
. In particular, 𝑈 will be converted to an actual 

amount of money for investment, raw materials purchase, raw materials to be sent to the 

production lines, and the price of the final products. For example, if the output u inv(t) = 0.2 

and uraw(t) = 0.9 for time t, then the actual amount of money to invest will be the amount of 

money available multiplied by 0.2. Moreover, the amount of money to spend on raw 

materials will be the remaining amount after investment multiplied by 0.9. 

As seen from the above structure and mathematical model, the ANN control optimisation 

with feedback is a suitable model to be used in the case of a steel manufacturing factory 

due to the following reasons: 

1. The number of neural network weights does not increase with the increase in the 

planning horizon. Therefore, we already need to select more parameters for an 

open loop algorithm than for a closed loop one for a 52-weeks planning horizon. 

Increasing this horizon will increase the number of parameters of the open loop 

algorithms linearly while the number of parameters for the closed-loop system 

will remain fixed. 

2. A closed-loop system can produce controls starting from any week, unlike the 

open-loop system. 

3. The closed-loop system is valid even if we change the amount of initial funds and 

the production parameters; on the other hand, the open-loop model is likely to 

produce a much worse result. 

Finally, the open-loop static control systems described in Section 4.3.2.1 do not account for 

the economic conditions nor the business state. Thus, the recommendations derived from 

these systems do not change as a result of any change in the model’s parameters. For 

instance, in the case of a 52-week planning horizon, the recommendations are adjusted 

during the training process of the system and saved as 208 numbers, which reflect the 

presence of four recommendations for each week. In other words, the open-loop static 

control system is merely 208 numbers that are saved into the model after the training 

process, and do not change again throughout the entire planning horizon. These systems 
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are simple to implement, as they only need the defined number of weeks as an input, but 

they do not adjust their recommendations in the case of an irregular business situation or 

economic event having taken place in previous weeks. On the other hand, the closed-loop 

ANN based control system uses artificial intelligence to produce recommendations based 

on the current economic conditions or business situations, being able to react according to 

any change in these environments. This system is more complex to implement, since it 

require to train the ANN with a set of input parameters, such as available cash, the quantity 

of raw materials and/or final products in storage, current market prices, and the demand for 

the final product, in order to provide a set of accurate recommendations. In particular, the 

most challenging aspect of this system is to develop algorithms that are capable of producing 

continuous controls over the planning horizon (Gu et al., 2016).  

 

  Mathematical Model for the Steel Manufacturing Inventory 

Management 

In this section, the mathematical model that depicts the business cycle described in Section 

4.2 is developed. Therefore, the main goal of this section is to convert the economic model 

of the steel manufacturing factory into a system of different recurrent equations that describe 

the dynamics of the business indicators and parameters of the business state. Moreover, 

such a system must be evaluated automatically in the loop from the first to the 52nd week 

to get the final profit of the factory. The scheme of the mathematical model is displayed in 

Figure 4-11. 

-

 
Figure 4-11. Simplified flowchart of the mathematical model of the steel-consuming factory. 
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The more variables included in the developed model, the more accurate the model will be, 

better reflecting the real-life process. For instance, similar to Hajiaghaei-Keshteli and Fard’s 

(2018) model, several suppliers could be included, each with different raw material quality, 

or a logistic subroutine that will influence the delivery cost. Nevertheless, increasing the 

complexity of the model would lead to tremendous problems in terms of its solvability. Thus, 

a trade-off exists between the complexity and solvability of the equations. In general, the 

used equations can be categorised into four groups as follows:  

1. Money management group 

2. Raw material purchasing group 

3. Production ordering and manufacturing group 

4. Selling group 

Since, during each week, there are four controls from which to choose in order to maximise 

the company’s profit, then let 𝑢𝑖𝑛𝑣(𝑡) be the percentage of money to invest, 𝑢𝑏𝑢𝑦(𝑡) the 

percentage of raw materials to buy, 𝑢𝑜𝑟𝑑𝑒𝑟(𝑡) the percentage of raw material to send to 

production, 𝜋 the inflation rate per period and 𝑢𝑝𝑟𝑖𝑐𝑒(𝑡)  the price for the final product at time 

𝑡. Consequently, to calculate the annual profit for the company, the equations of the four 

blocks should be calculated iteratively from the first week to the last. For the first and 

simplest block, the money management block, Equations 4-9 and 4-10 are used to 

recalculate the available funds for the following period and adjust the amount of money that 

was invested, respectively:  

𝑚(𝑡 + 1) = 𝑚(𝑡) ⋅ (1 − 𝑢𝑖𝑛𝑣(𝑡 + 1))

⋅ (1 − 𝜋) + 𝑢𝑝(𝑡) ⋅ 𝑖𝑢𝑝

− 𝑑𝑜𝑤𝑛(𝑡) ⋅ 𝑖𝑑𝑜𝑤𝑛  

4-9 

𝑖𝑛𝑣(𝑡 + 1) = 𝑖𝑛𝑣(𝑡) +𝑚(𝑡) ⋅ 𝑢𝑖𝑛𝑣(𝑡) 4-10 

 

For the second block, raw materials purchasing and ordering, Equation 4-11 is used to 

calculate the maximum amount of raw materials that the company can afford to buy. 

𝑏𝑢𝑦(𝑡 + 1) =
𝑚(𝑡 + 1) − 𝐶𝑟𝑎𝑤̅̅ ̅̅ ̅̅ (𝑡)

𝐶𝑟𝑎�̃�(𝑡)
⋅ 𝑢𝑏𝑢𝑦(𝑡

+ 1) 

4-11 
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If this maximum amount is less than the minimum order, then the company will cancel 

the entire order for the current week (Equation 4-12): 

𝑏𝑢𝑦(𝑡 + 1) = 𝑏𝑢𝑦(𝑡 + 1)

⋅ 𝐻(𝑏𝑢𝑦(𝑡 + 1) −𝑚𝑖𝑛𝑜𝑟𝑑
𝑟𝑎𝑤) 

4-12 

 

 

 

Accordingly, to calculate the amount of down credit at the next period, and following the 

method used by Dordevic et al. (2017), the cost of one unit of raw material is added to 

the fixed cost of purchasing. However, similar to Farhangi and Mehdizadeh (2016), if the 

order is more than the discount amount, then the price for the entire order will be 

decreased by 𝑑𝑣𝑎𝑙
𝑟𝑎𝑤 ; likewise, if the ordered amount of raw materials is less than 𝑑𝑓𝑖𝑥

𝑟𝑎𝑤, 

then the fixed cost is reduced, as seen in Equation 4-13: 

𝑑𝑜𝑤𝑛(𝑡 + 1) = 𝑑𝑜𝑤𝑛(𝑡) ⋅ (1 − 𝑖𝑑𝑜𝑤𝑛) + 𝑏𝑢𝑦(𝑡 + 1)

⋅ (𝐶𝑟𝑎�̃�(𝑡)(1 − 𝐻(𝑏𝑢𝑦(𝑡 + 1) − 𝑑𝑎𝑚
𝑟𝑎𝑤) ⋅ 𝑑𝑣𝑎𝑙

𝑟𝑎𝑤))

+ min(1, (
𝑏𝑢𝑦(𝑡 + 1)

𝑑𝑓𝑖𝑥
𝑟𝑎𝑤 )

2

) ⋅ 𝐶𝑟𝑎𝑤̅̅ ̅̅ ̅̅ (𝑡) 

4-13 

 

 

 

 

 

 

 

Finally, Equation 4-14 updates the amount of raw materials in storage according to the 

amount that has been bought. 

𝑟𝑎𝑤(𝑡 + 1) = 𝑟𝑎𝑤(𝑡) + 𝑏𝑢𝑦(𝑡 + 1) 4-14 

The third block concerns the goods ordering process, and the following equations are 

derived: 
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𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑 + 1)

= min (𝑟𝑎𝑤(𝑡

+ 1),
max(𝑚(𝑡 + 1), 0)

𝑐𝑝𝑟𝑜𝑑
, 𝑚𝑎𝑥𝑝𝑟𝑜𝑑 +𝑚𝑎𝑥𝑜𝑣𝑒𝑟

𝑝𝑟𝑜𝑑)

⋅ 𝑢𝑜𝑟𝑑𝑒𝑟(𝑡 + 1) 

4-15 

𝑟𝑎𝑤(𝑡 + 1) = 𝑟𝑎𝑤(𝑡 + 1) − 𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑 + 1) 4-16 

𝑚(𝑡 + 1) = 𝑚(𝑡 + 1) − 𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑 + 1) ⋅ 𝑐
𝑝𝑟𝑜𝑑

−𝑚𝑎𝑥(𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑 + 1) − 𝑚𝑎𝑥
𝑝𝑟𝑜𝑑 , 0)

⋅ 𝑐𝑜𝑣𝑒𝑟
𝑝𝑟𝑜𝑑  

4-17 

𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑 + 1) = 𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑 + 1) ⋅ (1 − 𝑝𝑐𝑑𝑒𝑓
𝑝𝑟𝑜𝑑) 4-18 

𝑝𝑟𝑜𝑑(𝑡 + 1) = 𝑝𝑟𝑜𝑑(𝑡) + 𝑜𝑟𝑑(𝑡 + 1) 4-19 

 

Equation 4-15 makes sure that all the constraints of the business case are met by ensuring 

that the quantity ordered does not exceed the original and extra production capacities of the 

factory; if there are no funds available, we cannot order the production of any products, and 

if there are raw materials in storage, no more items can be ordered. At the same time, 

Equation 4-16 balances the raw materials in storage according to ordered goods, while 

Equation 4-17 decreases the available funds as a result of the ordered goods; in the case 

of the order being larger than the factory’s production capacity, an extra cost is added for 

the overtime use. Equation 4-18 takes into account the probability of a critical defect in 

production which reduces the quantity of goods delivered, albeit they have already been 

paid for. Finally, Equation 4-19 adds the amount of ordered goods to the available quantity 

of final products that is ready to be used at the current time. 

The final block concerns the sale of the produced goods: 

𝑝𝑟𝑖𝑐𝑒(𝑡 + 1) = 𝑐𝑚𝑎𝑥
𝑝𝑟𝑜𝑑 ⋅ 𝑢𝑝𝑟𝑖𝑐𝑒(𝑡 + 1) 4-20 
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𝑑𝑒𝑚𝑎𝑛𝑑(𝑡 + 1)

= 𝐷𝑝𝑟𝑜𝑑(𝑡 + 1)

⋅ (
𝐶𝑝𝑟𝑜𝑑(𝑡 + 1)

𝑝𝑟𝑖𝑐𝑒(𝑡 + 1)
)

𝑒𝑙𝑐
𝑝𝑟𝑜𝑑

 

4-21 

𝑠𝑒𝑙𝑙(𝑡 + 1) = 𝑚𝑖𝑛(𝑝𝑟𝑜𝑑(𝑡 + 1), 𝑑𝑒𝑚𝑎𝑛𝑑(𝑡

+ 1)) 

4-22 

𝑢𝑝(𝑡 + 1) = 𝑢𝑝(𝑡) ⋅ (1 − 𝑖𝑢𝑝) + 𝑠𝑒𝑙𝑙(𝑡 + 1)

⋅ 𝑝𝑟𝑖𝑐𝑒(𝑡 + 1) ⋅ (1 − 𝑖𝑡𝑎𝑥) 

4-23 

𝑝𝑟𝑜𝑑(𝑡 + 1) = 𝑝𝑟𝑜𝑑(𝑡 + 1) − 𝑠𝑒𝑙𝑙(𝑡 + 1) 4-24 

𝑚(𝑡 + 1) = 𝑚(𝑡 + 1)

−
𝑠𝑒𝑙𝑙(𝑡 + 1) ⋅ 𝑝𝑑𝑒𝑓

𝑝𝑟𝑜𝑑 ⋅ 𝑐𝑑𝑒𝑓
𝑝𝑟𝑜𝑑

1 − 𝑝𝑐𝑑𝑒𝑓
𝑝𝑟𝑜𝑑

 
4-25 

 

Equation 4-20 simply sets the price for the final products using the control fraction 𝑢𝑝𝑟𝑖𝑐𝑒(𝑡 +

1). In Equation 4-21, the current demand for production is calculated, while Equation 4-22 

is used to calculate the demand for the final products as a function of price. Equation 4-23  

adjusts the up credit amount by the amount paid by clients each week, and increases with 

the purchase of more final products, in credit, by the consumers. Equation 4-24 decreases 

the amount of final products in storage according to the quantity sold. Equation 4-25 takes 

into account the moderate and major defects in production; for moderate defects, a repair is 

needed, while for major defects, a replacement for the product is needed and delivered to 

the customer for free. 

To account for the storage costs and the deterioration of final products over the planning 

horizon, Equation 4-26 takes into account the storage costs for both raw materials and final 

products, as well as the fixed costs per period. Equation 4-27 follows the method developed 

by Sekar et al. (2017), used to adjust the raw material storage costs in case external storage 

is needed. Finally, Equations 4-28 and 4-29 are required to model the deterioration of 

products and raw materials over time. This is based on the known air conditioning 

characteristics which govern the percentage of steel that will deteriorate every week. 
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𝑚(𝑡 + 1) = 𝑚(𝑡 + 1) − 𝑟𝑎𝑤(𝑡 + 1) ⋅ 𝑆𝑟𝑎𝑤(𝑡)

− 𝑝𝑟𝑜𝑑(𝑡 + 1) ⋅ 𝑆𝑝𝑟𝑜𝑑(𝑡)

− 𝑐𝑓𝑖𝑥  

4-26 

𝑚(𝑡 + 1) = 𝑚(𝑡 + 1)

− max(𝑟𝑎𝑤(𝑡 + 1)

− 𝑚𝑎𝑥𝑠𝑡𝑜𝑟
𝑟𝑎𝑤 , 0) ⋅ 𝑐𝑠𝑡𝑜𝑟

𝑟𝑎𝑤 

 

4-27 

𝑟𝑎𝑤(𝑡 + 1) = 𝑟𝑎𝑤(𝑡 + 1) ⋅ (1 − 𝑓𝑟𝑎𝑐𝑑𝑒𝑡
𝑟𝑎𝑤) 4-28 

𝑝𝑟𝑜𝑑(𝑡 + 1) = 𝑝𝑟𝑜𝑑(𝑡 + 1) ⋅ (1 − 𝑓𝑟𝑎𝑐𝑑𝑒𝑡
𝑝𝑟𝑜𝑑) 4-29 

 

Furthermore, as demonstrated in Table 4-1, the profit function includes a backorder block 

which is calculated at the end of the last modelled week. In this block, an iteration for all 

weeks is performed and checks whether the reserves for each week are sufficient to cover 

the orders for a number of future weeks, defined by the Supply Fail Duration parameter. 

Thus, if there are any orders that are not covered by the reserves, a backorder cost is 

calculated for the extra quantity needed, which is defined by the parameter “Supply Fail 

Probability” and backorder extra cost for one item. For instance, if we have 100 items that 

are not covered by reserves and the risk of backorder is 5% with an additional cost of £10K, 

then, on average, we expect to have 100*0.05*£10 000=£50K additional losses because of 

backorders; these calculations are performed using Equations 4-30 and 4-31.  

 

𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) = 𝑚𝑎𝑥( ∑ 𝑠𝑒𝑛𝑡(𝑖)

𝑡+𝑡𝑑𝑓
𝑟𝑎𝑤

𝑖=𝑡

− 𝑟𝑎𝑤(𝑡), 0) 4-30 

𝐵𝑂𝑙𝑜𝑠𝑠 = ∑ 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) ⋅ 𝑃𝑑𝑓(𝑡) ⋅ 𝐶𝑑𝑓(𝑡)

𝑇−𝑡𝑑𝑓
𝑟𝑎𝑤

𝑡=1

 

4-31 

 

As seen from the above equations, Equation 4-31 is used to calculate the possible raw 

material shortage for week 𝑡 by calculating the difference between the present and future 

amounts of raw materials sent to production lines until week 𝑡 + 𝑡𝑑𝑓
𝑟𝑎𝑤  , and the amount of 

raw materials at week 𝑡 , which results in the maximum amount of shortage in case all raw 
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materials deliveries during the next 𝑡𝑑𝑓
𝑟𝑎𝑤  weeks fail. Moreover, Equation 4-32  estimates the 

annual backorder loss based on the supply delay frequency and the extra losses per delayed 

item of raw materials. Consequently, all the assets of the factory at time 𝑡 can be calculated 

as: 

𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑡ℎ(𝑡) = 𝑖𝑛𝑣(𝑇) + 𝑚(𝑇) − 𝑑𝑜𝑤𝑛(𝑇) + 𝑢𝑝(𝑇) + 𝑟𝑎𝑤(𝑇) ⋅ 𝑐𝑖𝑛𝑣
𝑟𝑎𝑤 

+(𝑝𝑟𝑜𝑑(𝑇) + ∑ 𝑜𝑟𝑑(𝑡)

𝑇+𝑡𝑙𝑒𝑎𝑑−1

𝑡=𝑇+1

) ⋅ 𝑐𝑖𝑛𝑣
𝑝𝑟𝑜𝑑

 

4-32 

 

According to Equation  4-32, the total worth of the company includes free and invested funds, 

the initial cost of raw materials, and the final products in storage, as well as the initial cost 

of all future paid final product orders, which are defined by the fixed variables 𝑐𝑖𝑛𝑣
𝑟𝑎𝑤  and 

 𝑐𝑖𝑛𝑣
𝑝𝑟𝑜𝑑

. Finally, the net profit is given by Equation 4-33: 

𝑁𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑡ℎ(𝑇) − 𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑡ℎ(0) − 𝐵𝑂𝑙𝑜𝑠𝑠 4-33 

Equation 4-33 represents the objective function which should be maximised by the proposed 

model, as follows:  

max 𝑁𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 4-34 

From Equations 4-32 and 4-33, it can be seen that the objective function is the sum of 

investments, current cash and up credit, minus the down credit and backorder loss at the 

end of the year. This clearly shows that the objective function in the developed model is not 

a classical objective function optimising just one parameter. On the contrary, by linking 

different important parameters on the net profit final calculation shown in Equation 4-33, the 

optimisation of the objective function allows simultaneously optimising all of these 

parameters. This demonstrates the multi-dimensional nature of the objective function used 

in the developed model. This is in fact one of the most important contributions of this 

research study, since allows the model to depict the real-life scenario of the manufacturing 

industry, and the steel one in particular, more accurately. This is achieved by not only 

focusing in minimising costs, as the majority of the models available in the literature does, 

but also considering the influence of other crucial parameters, such as investments, current 

cash, up credit, down credit and backorder loss in the objective function to be optimised.  
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 Model Optimisation Algorithm 

The specific parameters described in Section 4.3.1 included in the developed model, make 

it not possible to find an analytical optimal strategy that leads to maximum profit through the 

use of linear equations. Consequently, the developed model becomes a nonlinear model, 

as demonstrated from the mathematical framework presented in Section 4.3.3 deriving the 

model consisting in 25 discrete recurrent equations. Note the reader that the developed 

model results even more complex than the well-known dynamic lot-size model, which 

although assuming stochastic demand, it does only assume one stochastic parameter, 

disregarding producing, selling or investment policies (Wagner and Whitin, 1958). Figure 

4-12 presents the developed model in detail which aims at maximising the objective function 

represented by the net profit in Equation 4-33.  
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Figure 4-12. Detailed flowchart of the developed model of the steel-consuming factory.

Start Generate random stochastic 

variables for all weeks 

ahead 

Initialize variables 𝑡 = 0, 
𝑚(0), 𝑟𝑎𝑤(0), 𝑝𝑟𝑜𝑑(0), 
𝑜𝑟𝑑(𝑡), 𝑡 ∈ {1,2,… 𝑡𝑙𝑒𝑎𝑑 − 1} 

• Evaluate 𝑏𝑢𝑦(𝑡 + 1) by Equations 4-11 

and 4-12 

• Evaluate 𝑑𝑜𝑤𝑛(𝑡 + 1) by Equation 4-13 

• Increase  𝑟𝑎𝑤(𝑡 + 1) by Equation 4-14 

• Evaluate 𝑚(𝑡 + 1) by Equation 4-9 

• Evaluate 𝑖𝑛𝑣(𝑡 + 1) by equation 4-10 

• Make order 𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑) by Equation 4-15 

• Decrease 𝑟𝑎𝑤(𝑡 + 1) by Equation 4-16 

   and 𝑚(𝑡 + 1) by Equation 4-17 

• Take into account possibility of critical defect, so decrease 

𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑) by Equation 4-18 

• Increase production 𝑝𝑟𝑜𝑑(𝑡 + 1) by Equation 4-19 

• Evaluate 𝑝𝑟𝑖𝑐𝑒(𝑡 + 1) by Equation 4-20 

• Evaluate 𝑑𝑒𝑚𝑎𝑛𝑑(𝑡 + 1) by Equation 4-21 

• Evaluate 𝑠𝑒𝑙𝑙(𝑡 + 1) by Equation 4-22 

• Adjust upcredit 𝑢𝑝(𝑡 + 1) by Equation 4-23 

• Decrease 𝑝𝑟𝑜𝑑(𝑡 + 1) by Equation 4-24 

• Consider extra losses due to production defects by 

Equation 4-25 

• Decrease money 𝑚(𝑡 + 1) by storage expenses 

using Equations 4-26 and 4-27 

• Decrease 𝑟𝑎𝑤(𝑡 + 1) and 𝑝𝑟𝑜𝑑(𝑡 +
1)  according to deterioration rate by Equations 4-

28 and 4-29 

Yes 

No 

For all 𝑠 ∈ 1…𝑇 − 𝑡𝑑𝑓
𝑟𝑎𝑤  

calculate:  

• 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑠) by 

Equation 4-30 

• backorder loss by 

Equation 4-31 

𝑡 = 𝑡 + 1 

𝑡 ≤ 𝑇? 

• Calculate annual net 

profit by Equation 4-33 

• Send output profit value 
to the  PSO algorithm 

End 

Obtain control system parameters 

from PSO algorithm:  

𝑢𝑖𝑛𝑣(𝑡) , 𝑢𝑏𝑢𝑦(𝑡), 

𝑢𝑜𝑟𝑑𝑒𝑟(𝑡), 𝑢𝑝𝑟𝑖𝑐𝑒(𝑡) 
 

Calculate controls: 
𝑢𝑖𝑛𝑣(𝑡 + 1) , 𝑢𝑏𝑢𝑦(𝑡 + 1), 

𝑢𝑜𝑟𝑑𝑒𝑟(𝑡 + 1), 𝑢𝑝𝑟𝑖𝑐𝑒(𝑡 + 1) 
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As seen from the flowchart of Figure 4-12, the developed model consists of six main blocks. 

Five of them are presented via the equations developed in Section 4.3.3, whereas the sixth 

corresponds to the control system described in detail in Section 4.3.2. According to the 

flowchart of Figure 4-12, the first step in the model is to compute the optimal values for the 

set of variables included in the control system. Here it is important to highlight that, in the 

case of using the control system based on the open loop approach, the control variables will 

be computed without taking into account the current state of the business, whereas in the 

case of using the ANN closed-loop approach, the current state of the business can be taken 

into account to calculate the control variables by taking advantage of the provided feedback. 

Due to the complexity of the developed model, linear programming algorithms cannot be 

used to calculate the control variables. In this context, as discussed in the previous chapters, 

these variables are adjusted using the PSO algorithm which fundaments have been 

introduced in Section 2.4.4.1.2. In particular, PSO algorithms allow models to find the 

maximum of the objective function even if it is non-differentiable by all the control 

parameters, or is a discontinuous function (Yin, 2004), as in the case analysed in this 

research study. For each of the control system approaches proposed in Section 4.3.2, 

namely the open and closed-loop ones, experiments running the model repeatedly on the 

hypothetical data generated as described in Section 3.2 with the same fixed PSO 

parameters have been performed to optimise the model’s variables in terms of the objective 

function (the net profit function in Equation 4-33). The number of model launches is equal to 

the product of the swarm size, the maximum number of iterations, and the number of Monte 

Carlo runs, with randomly generated instances of stochastic parameters for all planning 

horizons. For this research study, the swarm size is set to 1000, the maximum number of 

iterations is set to its default value of 1000, and the number of Monte Carlo runs is set to 5, 

which is a commonly used number of runs when performing Monte Carlo based 

experiments.  

Figure 4-13 shows the optimisation algorithm for the case of the ANN closed loop control 

approach. As seen from Figure 4-13, each PSO particle is represented by a neural network. 

For each neural network, the corresponding weights define the control decisions 

represented by the following four variables:  

• Percentage of money to invest 

• Percentage of money to spend on raw materials 

• Percentage of raw materials to send to production lines 
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• Price 

In this context, each particle can be seen as a vector containing all the neural network 

weights, i.e. a vector in a multidimensional space. Then, the optimisation process is 

conducted as follows. The first step consists in generating as much neural networks as 

particles are considered in the PSO algorithm. As mentioned above, the number of particles 

is set to 1000, so 1000 neural networks are generated with random weights. Then, the 

objective function of the developed model (net profit function in Equation 4-33), is evaluated 

using each of the 1000 neural networks generated in the first step. The next step consists 

in changing the weights of each neural network towards making them closer to the best fitted 

neural network in terms of the objective function. This is done by adjusting the neural 

network weights according to Equations 2-7 and 2-8. This process is repeated 1000 times 

according to the selected number of iterations for the PSO algorithm. In the final step in 

Figure 4-13, the best suited neural network, which is the one that achieves the largest value 

for the objective function (net profit), is selected. Finally, the selected best suited neural 

network computes the control variables (neural network outputs) in terms of the current 

business parameters (neural network inputs). These optimised control variables will then be 

the inputs for the mathematical model as depicted in Figure 4-12.  

 

Figure 4-13. Optimisation algorithm for the ANN closed-loop control approach. 

When implementing the model following the flowchart depicted in Figure 4-12, the 

experimental results have demonstrated that the proposed PSO algorithm converge to sub-

optimum and does not change significantly when adding more particles into the PSO model. 

In this line, the proposed PSO approach gives a nearly optimal strategy for the addressed 

application, demonstrating that the chosen internal parameters of the PSO algorithm, 
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namely the swarm size and the maximum number of iterations are well suited for solving the 

developed model. 

Finally, analysing inventory usage and economic order quantity is the crucial part of the 

developed model. With the exception of analysis of the quantity of raw material in storage, 

a more complex analysis is required to answer the question of how long each raw material 

batch waits in storage until being consumed and moved to the production lines. Therefore, 

given 𝑏𝑢𝑦(𝑡) is the quantity of inventory bought by the company and 𝑜𝑢𝑡(𝑡) = 𝑜𝑟𝑑(𝑡 + 𝑡𝑙𝑒𝑎𝑑) 

is the quantity of inventory moved to the production lines at time t, the following auxiliary 

algorithm for raw materials maturity analysis in storage is proposed: 

Program starts 

Input variables: vector[T] buy, vector[T] out 

Start loop variable 𝑖 from 1 to T 

Assign 𝐼𝑛𝑝𝑢𝑡(𝑖) = 𝑏𝑢𝑦(𝑖) 

Assign 𝑂𝑈𝑇 = 𝑜𝑢𝑡(i) 

Start loop variable s from 1 to 𝑖 

Assign 𝐶𝑜𝑛𝑠𝑢𝑚𝑒 = max (min(𝑂𝑈𝑇, 𝐼𝑛𝑝𝑢𝑡(𝑠)) , 0) 

Assign 𝐼𝑛𝑝𝑢𝑡(𝑠) = (𝐼𝑛𝑝𝑢𝑡(𝑠) − 𝐶𝑜𝑛𝑠𝑢𝑚𝑒) ⋅ (1 − 𝑓𝑟𝑎𝑐𝑑𝑒𝑡
𝑟𝑎𝑤)   

Assign 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦(𝑖 − 𝑠 + 1) = 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦(𝑖 − 𝑠 + 1) + 𝐶𝑜𝑛𝑠𝑢𝑚𝑒Assign 

Assign 𝑂𝑈𝑇 = 𝑂𝑈𝑇 − 𝐶𝑜𝑛𝑠𝑢𝑚𝑒 

End loop for variable s  

End loop for variable  𝑖 

Output: Maturity vector 

Program ends 

The proposed pseudo-code gives the maturity vector of consumed steel. Here, it is important 

to highlight that this algorithm is not related to the PSO optimization algorithm, being an 

auxiliary algorithm used to evaluate maturity of raw materials and production. In particular, 

this algorithm is only used during the analysis of performance of main closed loop control 

system. This means of analysis is a powerful tool for comparing business storage and 

ordering policy, which is independent of business scale. The idea of this pseudo-code is that 

during the outer loop an iteration is done over week number and raw materials are input to 
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the cell which corresponds to the week of raw materials arrival. The goal of inner loop is to 

move materials from these cells into production lines according to out vector 

 

 Chapter Summary 
In this chapter, the development of the inventory management model proposed in this 

research study has been presented. In order to do so, first the model was described from 

the economic and business cycle points of view. Through this step, the relevant economic 

variables were defined, assuming as stochastic the most critical ones the probability of 

delivery failure, the extra charge per unit of raw material in case of delivery failure, the 

ordering cost of raw materials, the basic cost of one unit of material, the raw material storage 

costs per period, the final product storage costs per period, the selling price, and the 

production demand. After this step, the model was converted into a system of 25 different 

recurrent equations in order to implement the model in Matlab. 

In addition, since one of the main challenges of implementing the extended EOQ model is 

not only modelling the business cycle, but also finding the optimal strategies of the business 

cycle that maximise profit while minimising storage costs, two control systems were 

developed and described in Section 4.3.2: 

1. A simple control system that adjusts its control parameters during the training phase 

regardless of the current state of business and external market parameters. 

2. A neural network system that uses the most important business measures and economic 

parameters as inputs to provide output in terms of the recommended controls for each week 

in the planning horizon. 

Finally, the PSO algorithm implemented to adjust the control system’s parameters has also 

been introduced in this chapter. Here, it is important to highlight that, although many heuristic 

algorithms can be applied to solve the model, PSO was chosen since it has the ability to 

simultaneously find the minimum of the objective function in many points of the search 

space.  

In conclusion, in this chapter the developed model has been fully explained and its unique 

complexity has been discussed. In fact, to the best of the author’s knowledge, the developed 

model in this research study is one of the most complete models regarding the problems of 

optimal storage. In this line, it has been shown that, with such a complex model that deals 
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with a three-fold problem of storing high-volume materials in a limited storage space, 

reducing the energy required to preserve the product from deterioration, and maximising the 

company’s profit, it is not possible to use classical algorithms for EOQ, EPQ and dynamic 

lot size model problems. In this context, the developed model extends the EOQ classical 

equations to accommodate the stochastic nature of the input parameters through three main 

assumptions, as well as a set of sub-assumptions, in order to decrease storage period of 

raw materials in inventory and, at the same time, retain the company’s turnover and net 

annual profit at the highest possible level. In addition, due to the difficulty in estimating errors 

as a result of the lack of actual controls, the PSO optimisation technique was used in the 

developed model, since it is capable of finding the set of neural network weights that provide 

the factory with maximum profit while minimising storage costs.  

Finally, the developed model is robust in the sense of having the ability of performing precise 

long-term business simulation and optimisation. As discussed in the SLR conducted in 

Chapter 2, most of the previously developed models in the literature proposed solutions on 

a monthly basis. The developed model provides a superior solution being capable of 

providing weekly results in a 52-week planning horizon. This is due to the fact that the ANN 

closed-loop approach can provide feedback in terms of optimal control variables computed 

based on current parameters of the business environment, such as market price of raw 

production and steel price. Moreover, the developed model is capable of capturing both the 

supply and production activities of the steel manufacturing industry, as well as its consumer 

demand and price sensitivity.  
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 Model Validation and Results 

 Introduction 
In this chapter, the developed model is implemented and applied numerically for the case of 

the steel manufacturing factory under study. This type of factory produces steel structures 

according to different designs through a well-defined production process, from various raw 

materials. In addition, to manufacture a final product that fits customers’ needs, several 

cutting and fitting activities take place within the factory. Finally, the steel manufacturing 

factory must have a warehouse to store both raw materials and final products. The 

developed model contemplates three different business scenarios under which a steel 

manufacturing factory might operate: 

• fixed demand 

• fixed supply 

• fully stochastic scenario (stochastic demand and supply) 

The model results are analysed, and proof of the robustness of the model is provided 

through the validation of the model’s steps and results.  

The chapter is organised into six main sections. Section 5.2 outlines the steps of 

implementing the developed model within the Matlab software context, as well as of 

validating it. Section 5.3 describes the conducted experiments. In particular, Section 5.3.1 

details the comparison between the different control systems proposed in this research 

study. In this section, different aspects of these models’ results are compared in order to 

determine the best suited model for the steel manufacturing factory. Then, in Section 5.3.2 

the most robust model is applied to a scenario in which demand is assumed to be fixed, and 

the performance results are discussed. Similarly, in Section 5.3.3, the same model is applied 

to a scenario in which supply is assumed to be fixed, and the performance of the model 

under such a condition is analysed, whereas in Section 5.3.4, a fully stochastic scenario is 

assumed and the results of the model’s application are presented. After applying the model 

under these three scenarios, the model’s performance in each one of them is compared in 

Section 5.3.5. Finally, Section 5.4 summarises the findings from the most robust model’s 

implementation and provides conclusions and recommendations.  
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 Model Implementation 
After developing the model in Chapter 4, the application of the model and control systems 

on the steel manufacturing factory case is performed in this chapter. As discussed in 

previous chapters, one of the most challenging issues of inventory management in steel 

manufacturing applications is to account for the whole production process. In order to fill this 

research gap, the inventory management process developed in this research study is a two-

fold process. On one hand, the inventory management is focused on dealing with the 

required storage of raw materials towards producing the final products/structures. This 

management should be performed before the raw materials are actually used in the 

production process. On the other hand, the inventory management is focused on handling 

the storage of the final products/structures manufactured. This management should take 

place before the produced goods are actually sold. Practically, the described inventory 

management process is conducted based on the widely used Matlab software, taking into 

account three main steps represented by three modules, viz., the data processing, the 

training and the analysis module, as shown in Figure 5-1. Further details of each one of the 

modules can be seen in Figure 5-2. From the flowchart depicted in Figure 5-2, it can be seen 

that the developed inventory management process which objective function is focused on 

managing both raw materials and final product storage volumes and time, includes a crucial 

decision-making regarding whether the result of the process is acceptable or not. This 

decision can be subjected to different factors depending of the particular company ’s 

management policies. As such, it is the company’s management the one responsible to 

answer such question by assessing the actual and current business objectives, such as 

increase profits, reduce bankruptcy risk, increase market share, etc.  
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Figure 5-1. Scheme of model implementation in Matlab. 

 

 

 
Figure 5-2. Detailed flowchart of the scheme of model implementation in Matlab. 

 

In Appendix C, the main Matlab codes used to implement the developed model are provided. 

In addition, Appendix D describes the user interface developed in the GUI of for the 

proposed model implementation.  
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 Data Processing Module  

In this module, the data from the Excel file is fed into the software, through which all the 

stochastic variables are identified, as well as their mean values and standard deviations are 

set (see Appendix C). Since all the stochastic variables in the Excel data file are named in 

the form of X_VarName, where X is the first letter of distribution type and VarName is the 

name of a stochastic variable, Matlab identifies these variables along with their respective 

mean values 𝜇(𝑡) and standard deviations 𝜎(𝑡) for each week t. Furthermore, the Matlab 

model supports three types of the stochastic variable distribution functions, which are: 

1. Normal distribution: The normal distribution is saved in Matlab by defining the 

mean values and standard deviations. In the case under study, the economic 

variables usually have normal distributions, thus this distribution is used for all 

the stochastic variables.  

2. Uniform distribution: This is a distribution that has a constant probability and is 

defined by the lower bound 𝑙𝑏(𝑡) and upper bound 𝑢𝑏(𝑡), which are calculated 

using Equation 5-1: 

𝑙𝑏(𝑡) = 𝜇(𝑡) −
𝜎(𝑡)

√3
;  𝑢𝑏(𝑡) = 𝜇(𝑡) +

𝜎(𝑡)

√3
;  

5-1 

3. Beta distribution: In order to use this type of distribution in Matlab, the parameters 

𝛼(𝑡)𝑎𝑛𝑑 𝛽(𝑡) must first be calculated using Equations 5-2 and 5-3 below: 

𝛼(𝑡) =
𝜇(𝑡) ⋅ (𝜎2(𝑡) + 𝜇2(𝑡) − 𝜇(𝑡))

𝜎2(𝑡)
 

5-2 

𝛽(𝑡) =
(1 − 𝜇(𝑡)) ⋅ (𝜎2(𝑡) + 𝜇2(𝑡) − 𝜇(𝑡))

𝜎2(𝑡)
 

5-3 

This type of distribution is often used to describe the variables that fall within the 

range of zero to one, such as the probability of delivery failure and the deterioration 

rate. This latter variable is defined as the percentage of raw materials or final 

products whose physical properties deteriorate during their storage in the 

warehouses, and which become obsolete and unsuitable for either manufacturing or 

selling, respectively, during a one-week period. For example, if the deterioration rate 

is 1% and we have 100 tons of raw materials at week 1, then the usable quantity of 

raw materials will only be 99 tons at week 2.  
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Within the context of the steel manufacturing application addressed research, most of the 

economic variables behave according to the normal distribution. In this line, this distribution 

is the one selected to model all the considered stochastic variables.  

 Training Module 

This module performs the training process for both the open-loop static control system and 

closed-loop neural network control system. Both control systems are trained with the same 

set of PSO parameters, which are: 

1. Maximum number of iterations equal to 1000: This is the default value and it is 

usually the best option. 

2. Swarm size is equal to 1000. 

3. Matrix calculations is set to be true: This means that all swarm is calculated once 

in a time inside one objective function which saves a lot of computational time. 

4. Maximum number of stall iterations is equal to 100: This means that the algorithm 

will stop if the results from 100 consecutive iterations are not changing. 

In the particular case of the ANN based closed-loop system, the training process depends 

on the objective function itself and on the neural network processing module. In addition, in 

this case the processing module should convert the vector of optimised control variables by 

the PSO algorithm into ANN weights so that the business and economic parameters can be 

input into the ANN towards obtaining the current controls. As introduced in Section 4.3.2.2, 

the ANN architecture used in the developed model (shown in Figure 4-10) consists in an 

input layer of 13 neurons, a hidden layer of 10 neurons and an output layer of 4 neurons. In 

order to apply the generic Equation 2-4 to the used ANN architecture and convert the vector 

of control variables into neural network weights to launch the neural network, the following 

steps are followed:  

1. Given that the input layer is 13 neurons and the hidden layer is 10 neurons, 

hence, we need 13*10=130 weights. Thus, the first 130 parameters of a vector 

of control variables are reshaped into a matrix with dimensions of 13 × 10. 

2. The matrix is multiplied by the vector of scaled economic variables and business 

parameters listed in Section 4.3.2.2. 

3. Since the hidden layer has 10 neurons and each layer has a bias weight, 10 

numbers are extracted from the vector of control variables and added to the 

hidden layer’s output result. 
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4. The hidden layer’s output is then transformed using the transfer function 

presented by Equation 4-7. 

5. Consequently, the output layer has four neurons; hence, the weight matrix for 

converting the hidden layer to the output layer has 10*4 = 40 weights. Therefore, 

the next 40 parameters of a vector of control variables are reshaped into a matrix 

with dimensions of 10 × 4. 

6. Next, the above matrix is multiplied by the vector obtained in step 4. 

7. Finally, the results are transformed using the transfer function represented by 

Equation 4-8, and the output is saved as the business controls of the current 

week. 

As seen from the above procedure, in total, there are 13 neurons in the input layer, 10 in the 

hidden layer and four in the output layer; therefore, the number of weights to optimise 

is (13 ∗ 10) + (10 ∗ 4) + 10 + 4 = 184, which is less than the number found in the open loop 

model, thus the optimisation process will converge faster. 

 Analysis Module 

This module plots both the business parameters and the output results, as well as 

performing a comparison of the different control systems under various scenarios. Moreover, 

this module performs a profit analysis to realise the most efficient control system. In general, 

the output of the model consists of the following: 

1. Saved values of the control system’s variables in the form of raw vector of control 

system parameters. In the case of an open loop control system, the vector has a 

length of 208 numbers, while in the case of the closed-loop control system it has 

a length of 184 numbers; and the results are saved in a *.mat file. 

2. Results of the model testing on the five Monte Carlo runs with different scenarios 

of stochastic random variables.  

3. Analysis of the storage efficiency (maturity analysis). This analysis involves the 

evaluation of the maturity distribution for both raw materials and final products, 

as well as determining the percentages of raw materials and final products that 

are lost due to deterioration.  

4. Diagrams and plots that display the performance of the factory, averaged over 

five Monte Carlo runs. This includes plots related to money management, storage 
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efficiency, raw materials management, final product management and price 

setting policy. 

 Model Validation  
The main aim of the validation process conducted in this research study is to prove the 

economic and technical feasibility of the developed model for inventory management within 

the context of the steel manufacturing industry. As introduced in Section 3.4, the unique and 

complex assumptions made when developing the proposed model makes this validation 

process to be not straightforward. This is mainly due to two reasons. On one hand, the 

parameters that maximise the profits of a particular steel manufacturing factory are highly 

dependent of each factory’s business and operating conditions. In this context, there are no 

benchmark results available in the literature to compare the obtained results with the 

developed model. On the other hand, the unique, complex and model-oriented assumptions 

made when developing the proposed model makes it difficult to compare the obtained 

results with the ones obtained with similar models published in the literature. Then, in this 

research study, the two different control approaches proposed to solve the developed model 

are compared against each other for the sake of model validation. In addition, this 

comparison will allow to determine which control system is better suited for the application 

under study in terms of robustness and accuracy.  

In this research study, the comparison is conducted within the context of different real-life 

scenarios, involving different sets of variables covering the most frequent behaviours of raw 

materials and final product costs and demand. In particular, the different economic scenarios 

with different assumptions regarding the stochastic variables, are considered:  

1. All stochastic variables remain stochastic. 

2. All variables that are related to demand are fixed. 

3. All variables that are related to supply are fixed. 

In all the above three scenarios, the backorder variables remain stochastic; hence, the aim 

of the validation process is to:   

1. Prove the economic feasibility of the mathematical model of the steel 

manufacturing factory. 

2. Outline the strengths of the closed-loop neural network control system over the 

classical open loop one. 

3. Analyse the obtained results and deduce the relevant conclusions. 
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These aims are achieved through a numerical experiment used to calculate the following 

parameters: 

1. Amount of funds. 

2. Amount of invested funds. 

3. The quantity of raw materials in store. 

4. The quantity of final products in store. 

5. The level of ordered final products. 

6. The final product’s selling price and demand’s stochastic variables. 

Moreover, the superiority of the neural network control system is proven through the storage 

business parameters, which are the average storage time, the distribution of storage time, 

and the area of storage used. Furthermore, another measure that proved the model’s 

robustness is the company’s annual profit. 

 Control System Comparisons 

As detailed in Chapter 4, the first proposed control system for the developed model is direct 

control optimisation for a fixed set of Monte Carlo runs. Unfortunately, the experimental 

results obtained for this control approach show a poor performance. This underperformance 

is mainly due to the fact that the training process has been performed on a limited number 

of Monte Carlo runs, being the control system highly susceptible to overfitting. In particular, 

the algorithm demonstrated to be not capable of adjusting itself to changing business 

variables, in the sense that if a testing variable value deviates from their average training 

value, the algorithm fails in fitting it. A possible solution for the overfitting issue could be 

increasing the number of Monte Carlo runs when training the model. In this line, further 

experimental tests have been performed increasing the number of Monte Carlo runs during 

the training phase. Nevertheless, increasing the number of Monte Carlo runs has only led 

to a significant increase in the training time, rather than to an improvement in the testing 

results. Then, this control approach will not be considered for the final implementation of the 

developed model.  

The validation of the developed model will then be conducted based on the comparison of 

the performances of the direct open-loop control optimisation for dynamically generated 

scenarios and the ANN control optimisation with feedback. In order to make such 

comparison, the values for the fixed variables as well as the distribution parameters for the 

stochastic variables listed in Section 4.3.1 should be defined. As discussed in Section 3.2, 
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one of the most challenging tasks in the steel manufacturing application addressed here is 

to deal with the lack of available real-life business data. In this line, hypothetical data (Gasior 

and Recchia, 2019) is generated based on different average indicators of the steel industry 

available in the literature (Pardipto and Lussy, 2019; Tseng and Yu, 2019; Tavakoli and 

Taleizadeh, 2017; Rabieh et al, 2016) as well as on historical trends and publicly available 

business reports, such as the ones in (OECD, 2017; World Steel, 2018). The generated 

hypothetical data and its set values to test and compare the performance of both control 

systems, are shown in Table 5-1 and Table 5-2, for the fixed variables and the distribution 

parameters, in terms of mean values and standard deviation, for the stochastic variables, 

respectively.  

Table 5-1. Values of important fixed variables that are listed in the input data file of the fully 

stochastic scenario 

Variable name Value 

Number of samples in Monte Carlo method 5 

Planning horizon 52 weeks 

Leading time 5 weeks 

Production orders before leading time 100 for each 

week 

Initial level of final products in inventory 100 units 

Initial funds available £5M  

Initial quantity of raw materials 100 units 

Minimum order of raw materials 30 units 

Discounted order of raw materials 100 units 

Discount percentage 5% 

Deterioration rate of raw materials and final products 5% per week 

Basic production capacity 100 units per 

week. 

Overtime production capacity 50 units per 

week. 

Overtime extra cost per unit £2500  

Up credit and down credit interest rates 20% per week 

Inflation rate 0.8% per week 

Tax rate 5% 

Demand elasticity 5 
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Table 5-2. Parameters of stochastic variables that are listed in the input data file of the fully 
stochastic scenario 

Variable name Distribution 

type 

Mean Standard 

deviation 

Probability of delivery failure Normal 0.1 0.05 

Average extra charge per unit of raw material 

whose delivery failed 

Normal 5 0.5 

Ordering cost of raw materials Normal 575 75 

Purchase cost of one unit of raw materials Normal 4 0.05 

Storage costs of raw materials  Normal 0.5 0.05 

Storage costs of final products Normal 0.5 0.05 

Market price of final products Normal 30 5 

Basic demand for final products Normal 70 2.5 

 

As seen from Table 5-1, the most important fixed variables for the steel manufacturing 

factory are defined. Some of these variables describe general economic conditions, such as 

inflation and tax rates. In research, a weekly inflation of 0.8% and an annual inflation of 34% 

is assumed. Some other variables represent more specific production aspects, such as 

leading time. In this research, the leading time is set at 5 weeks, since it usually takes 5 

weeks to produce final products from the raw materials. In this case, whenever there is a 

production queue, the quantities for weeks 0–4 need to be defined. In addition, 

methodological variables, such as the number of testing Monte Carlo runs, are also defined 

in Table 5-1. In this research study, the number of testing Monte Carlo runs is set to 5, since 

5 runs are usually considered to be a good trade-off between the obtained accuracy and the 

time consumption, in the sense of being enough to estimate the average profit and other 

business indicators with acceptable precision, while being not so time-consuming. The 

experimental results have indeed confirmed that 5 testing Monte Carlo runs are enough to 

obtain accurate results since the coefficient of variance of the company’s profit estimated 

for the different testing runs has resulted to be 3.8% and 4.4% for the closed and open loop 

systems, respectively, which are below the generally accepted value of 5%.  

Furthermore, to analyse how the presence of uncertainty affects the performance of the two 

systems, two additional scenarios were created:   

1. Deterministic demand: This means that demand for final production is constant over 

time. In this scenario, all the parameters are assumed to be the same as those of 

the fully stochastic scenario, except for the demand stochastic variables. Hence, the 
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standard deviation of the final products’ market price and the basic demand for final 

products are set to zero, which makes them fixed. 

2. Deterministic supply: This means that supply for raw materials is constant over time. 

In this scenario, all the parameters are assumed to be the same as those of the fully 

stochastic scenario, except for the supply stochastic variables. Thus, the standard 

deviation of the ordering costs of raw materials and the purchase cost of one unit of 

raw material are set to zero, which makes them fixed. 

Nevertheless, for all three scenarios, the storage costs for both raw materials and final 

products, as well as the backorder-related variables, remain stochastic. As the main 

objective of the research study is the storage of raw materials and final products, setting the 

storage costs to be constant do not depict the real-life scenarios of the steel manufacturing 

industry, and will lead to inaccurate results. At the same time, the main reasons behind 

keeping the backorder-related variables stochastic concern backordering, by nature, being 

a stochastic process, and the additional cost that the factory incurs for shortages depending 

on the final products’ market price.  

After setting the values of all the variables, the first step in validating the two systems is to 

examine how each system optimises the storage of raw materials and final products. 

Consequently, if a certain volume of raw materials 𝑉𝑟𝑎𝑤(𝑚) is stored for 𝑚 weeks, then after 

this period the losses are calculated as follows:  

𝐿𝑜𝑠𝑠(𝑉𝑟𝑎𝑤(𝑚)) = 𝑉𝑟𝑎𝑤(𝑚) ⋅ (1 − (1 − 𝑓𝑟𝑎𝑐𝑑𝑒𝑡
𝑟𝑎𝑤)𝑚) 5-4 

For the final product losses, a similar equation holds: 

𝐿𝑜𝑠𝑠(𝑉𝑝𝑟𝑜𝑑(𝑚)) = 𝑉𝑝𝑟𝑜𝑑(𝑚) ⋅ (1 − (1 − 𝑓𝑟𝑎𝑐𝑑𝑒𝑡
𝑝𝑟𝑜𝑑

)
𝑚
) 5-5 

Hence, the total deterioration rates of all raw materials and final products are computed 

using Equations 5-6 and 5-7, respectively. 

𝐷𝑟𝑎𝑤 = ∑ 𝐿𝑜𝑠𝑠(𝑉𝑟𝑎𝑤(𝑚))

𝑀𝑟𝑎𝑤

𝑚=0

 

  5-6 

𝐷𝑝𝑟𝑜𝑑 = ∑ 𝐿𝑜𝑠𝑠(𝑉𝑝𝑟𝑜𝑑(𝑚))

𝑀𝑝𝑟𝑜𝑑

𝑚=0

 

5-7 

where 𝑀𝑟𝑎𝑤  and 𝑀𝑝𝑟𝑜𝑑 are the maximun observed maturity for raw materials and final 

products, respectively.  
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Next, to make the losses for the two control systems comparable, the impacts of the total 

volumes of raw materials and final products need to be neutralised; hence, the equations 

can be modified in order to calculate the deterioration losses as percentages of the volumes. 

Therefore, first, let  𝑃𝑟𝑎𝑤(𝑚)  and 𝑃𝑝𝑟𝑜𝑑(𝑚)  be the proportions of raw materials and final 

products that were stored during 𝑚 weeks; then: 

∑ 𝑃𝑟𝑎𝑤(𝑚)

𝑀𝑟𝑎𝑤

𝑚=0

= ∑ 𝑃𝑝𝑟𝑜𝑑(𝑚)

𝑀𝑝𝑟𝑜𝑑

𝑚=0

= 1 

5-8 

This implies that we can split all the raw materials and final products into batches, with 

𝑃𝑟𝑎𝑤(𝑚)  and 𝑃𝑝𝑟𝑜𝑑(𝑚) being the probabilities of a unit being in an m-th batch. Then, the 

probabilities that a raw material unit or a final product unit is in this batch and deteriorated 

are given by Equations 5-9 and 5-10, respectively: 

𝑃𝑙𝑜𝑠𝑠(𝑃𝑟𝑎𝑤(𝑚)) = 𝑃𝑟𝑎𝑤(𝑚) ⋅ (1 − (1 − 𝑓𝑟𝑎𝑐𝑑𝑒𝑡
𝑟𝑎𝑤)𝑚) 5-9 

𝑃𝑙𝑜𝑠𝑠 (𝑃𝑝𝑟𝑜𝑑(𝑚)) = 𝑃𝑝𝑟𝑜𝑑(𝑚) ⋅ (1 − (1 − 𝑓𝑟𝑎𝑐𝑑𝑒𝑡
𝑝𝑟𝑜𝑑)

𝑚
) 5-10 

Consequently, the total probabilities of deterioration for both raw materials and final products 

are calculated using Equations 5-11 and 5-12, respectively:  

𝑃𝐷𝑟𝑎𝑤 = ∑ 𝑃𝑙𝑜𝑠𝑠(𝑃𝑟𝑎𝑤(𝑚))

𝑀𝑟𝑎𝑤

𝑚=0

 5-11 

𝑃𝐷𝑝𝑟𝑜𝑑 = ∑ 𝑃𝑙𝑜𝑠𝑠 (𝑃𝑝𝑟𝑜𝑑(𝑚))

𝑀𝑝𝑟𝑜𝑑

𝑚=0

 5-12 

Moreover, Equations 5-11 and 5-12 can also be used to determine the percentages of raw 

materials and final products that will deteriorate over the entire planning horizon, 

respectively. 

After laying out the mathematical foundation for the comparison between the closed-loop 

and open loop systems, six different parameters are used to compare the performance of 

these two systems, as detailed in the following sections. These parameters are: maturity 

and distribution rates, generated profits per storage unit used, profit generated by each 

Monte Carlo run, investment strategy, money management, and learning progress.   
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 Maturity and Deterioration Rates 

As described in Chapter 1, in order to compare the two systems in real-life settings, the two 

most common real-life scenarios of dealing with manufactured goods are considered, and 

the results of each system, in each scenario, are compared. These two scenarios are: 

1. Make to order: where products are manufactured based on the orders received; 

hence, they are shipped directly to customers without being stored. 

2. Make to stock: where products are manufactured in excess of the orders received 

to cover any emergency orders; hence, these products will be kept in storage until 

they are sold. 

Moreover, since managing the storage of these high-volume materials is one of the main 

objectives of the developed model, measuring the duration for which raw materials are 

waiting in the store before being sent to the production lines, and the duration for which final 

products are kept in the store before being sold, will determine the degree of effectiveness 

of the developed model. Hence, the results of implementing the two control systems under 

each of the above scenarios, for both raw materials and final products, are depicted in Figure 

5-3(a) and (b), respectively. These figures depict the percentages of raw materials and final 

products that were stored during each week of the planning horizon until used. In addition, 

through these plots, the maturity distributions for each system is analysed using the average 

maturity values and deterioration rates. 
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As seen from the above figure, the neural network closed-loop control system has lower 

mean maturity, which is the number of weeks that raw materials or final products are stored 

without going to the production lines or being sold, and deterioration rate values for both raw 

materials and final products. This means that the neural network model optimises the 

inventory ordering process and the production process better, as it utilises almost all the 

available inventory, which reduces the associated storage costs. Regarding the former, the 

better performance of the neural network closed-loop system is reflected by lower mean 

maturity and deterioration rate than their respective values for the open loop system, by 

approximately 13% and 0.8%, respectively. This difference becomes even larger in the case 

of final products, as the differences between the two systems regarding the mean maturity 

and deterioration rate are approximately 84% and 10%, respectively. In other words, the 

neural network system generated a business strategy that enabled the factory to store most 

of the raw materials for two weeks or less, and sell the majority of final products instantly, 

Figure 5-1: Maturity distribution comparison of closed-loop control system and open-loop control 
system: (a) raw materials maturity, and (b) production maturity. 



 
  

164 
 

i.e. make to order policy. On the other hand, according to the open-loop control system, 

some of the raw materials and final products are stored for seven and nine weeks, 

respectively, i.e. make to stock policy. This latest observation is especially important in the 

case under study; the maturity factor is important for the quality of steel, as the longer the 

steel is stored, the more likely it is to corrode; thus, clients strongly prefer to buy final 

products that have been stored for no longer than a few weeks. Therefore, the entire quantity 

of final products with maturity of more than 𝑀 weeks (with large corrosion) will be very 

difficult to sell. Nonetheless, this scenario is not reflected in the business model, as the entire 

quantity of final products have equal chances to be sold. 

 

 Generated Profits per Storage Unit Used 

Another parameter used to compare the performances of the two systems is the storage 

volume utilised. This parameter is calculated for each system over the entire planning 

horizon, and their performances are compared as shown in Figure 5-4. 

 
Figure 5-4. Comparison of the used storage volume for the two control systems. 
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From Figure 5-4, it can be seen that the volume of storage utilised is highly fluctuating over 

the entire planning zone, for the two tested control approaches. Although the dynamic is 

similar for both systems, there are some periods, especially the first weeks of the cycle, 

where the open-loop uses more storage units, whereas from the rest of the weeks the 

closed-loop approach requires more storage space. As already discussed throughout the 

whole thesis, the objective function of the developed model is profit maximisation. In this 

context, no conclusions regarding which system is better can be reached based only on the 

comparison of the used storage volume. Then, in order to be able to compare both 

approaches more efficiently, the information plotted in Figure 5-4 regarding the storage 

volume utilised is normalised based on the generated profits. In this way, both approaches 

can be more efficiently compared in terms of how much profit (in pounds) is realised from 

using one unit of storage. The results of such normalisation are shown in Table 5-3. 

Table 5-3. Profit generated per unit of storage volume 

# Indicator Storage Costs Increase in Storage Cost 

Scenario 

Direct 

control 

system 

Neural 

network 

control 

system 

Direct 

control 

system 

Neural 

network 

control 

system 

A1 Total storage 

volume units used 

(sum for all weeks) 

(units) 

6,196 10,811 2,837 3,462 

A2 Annual profit (£)  47,387,000 79,473,000 38,001,000 55,797,000 

A3 All purchased raw 

materials (number) 

4,752 8,136 3,479 6,360 

A4 Profit per storage 

volume unit 

(A2/A1) (£/unit) 

7,648 7,351.12 13,394.78 16,116.98 

A5 Storage volume 

usage of one raw 

material unit 

(A1/A3)  

1.3 1.33 0.82 0.54 

 

From Table 5-3, it can be seen that one unit of storage volume for the ANN closed-loop 

system generates £7,351 of profit, whereas the direct control open-loop system generates 

£7,648. This can be attributed to the fact that the closed-loop approach allows the factory to 
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produce and sell many more products, assuming limited storage availability. In this way, the 

more items that are stored the greater the storage costs, and thus, the less the profits. In 

addition, for both systems, the volume used by one unit of purchased raw material is about 

1.3 volume units of storage. These results suggest that the normalised storage 

characteristics are very similar for both control systems. Nevertheless, the difference 

between the two systems becomes clearer when the storage costs increase, as in the case 

of the ANN closed-loop approach. In fact, from Table 5-3 it can be also seen that the profit 

generated by one storage volume unit through the ANN closed-loop system is significantly 

higher than the profit generated by the direct control open-loop system when the storage 

costs increase (£16,116.98 vs. £13,394.78). Moreover, this profit improvement is achieved 

with less storage volume utilised. Finally, the results shown in Table 5-3, provides useful 

tools that can be used in the practice towards helping the steel manufacturing management 

to estimate the extra profit it will be possible to achieve if they buy extra storage with some 

capacity.  

 

 Profit Generated by each Monte Carlo Run 

Another comparison conducted between the two systems concerned the total profit 

generated by each system during each Monte Carlo run, which is depicted in Figure 5-5. 

 

 
Figure 5-5. Profit comparison of the neural network control system and the direct control 

system. 
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As seen from the above chart, on average, the neural network closed-loop system results in 

43% higher profit than the direct control system. The main reason for such a difference in 

performance is the fact that the neural network system uses the actual observations of 

business parameters at each run as inputs, from which it produces the weekly business 

decisions; on the contrary, the direct control model uses one strategy from the first week 

that cannot be changed in response to any external changes in the business environment. 

 

 Investment Strategy 

Another important parameter used to compare the two systems is the way by which each 

system managed the investment of funds into the business. Figure 5-6 shows the dynamics 

of the investments made for both systems over the entire planning horizon. 

 
Figure 5-6. Investment comparison of the neural network control system and the direct 

control system. 

 

As indicated by the above figure, the direct control open loop system tends to invest more 

money at the beginning of the planning horizon; however, as we move further in the planning 

horizon, the company will run out of money, forcing it to scale down its production activity 
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and investment rate, which is evident by the lower levels of investments made at the end of 

the planning horizon. On the contrary, the neural network closed-loop system results in a 

more balanced strategy, in which a small investment is made at the beginning of the planning 

horizon, then the amount of this investment increases as we move forward in the planning 

horizon. This strategy is more beneficial for the steel manufacturing factory, as it ensures 

that there will be sufficient funds available throughout the planning horizon to cover any 

additional demand. 

 

 Money Management 

The decision of whether to invest the money in the business or hold it in stock is an 

important decision that must be made by the management of the steel manufacturing 

factory. From Figure 5-7, it is clear that the neural network system tends to have more 

funds in stock rather than moving it to investment, as the y-axis represents the funds 

available for the factory. On the other hand, the direct control system has much less 

money over the entire planning horizon. This latter strategy decreases the ability of the 

company to increase the quantity of raw materials purchased as a reaction to any 

increased demand, which might hinder the company’s operations and prevent it from 

maximising its profits. 
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Figure 5-7. Money management comparison of the neural network control system and the 

direct control system 

 

 Learning Progress 

Finally, during the optimisation process, different scenarios are assumed in order to 

determine which system, under which scenario, leads to profit maximisation for the 

company. Six different scenarios are used, three for each system, and the amount of profit 

generated through each scenario is depicted in Figure 5-8. 
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Figure 5-8. Learning progress for all models (shows the best achieved profit for each model).  

 

As seen from the above figure, the highest profit realised resulted from the fixed demand 

scenario model based on neural network closed-loop optimal control generation. In fact, the 

three scenarios that used the closed-loop system generated the three highest profits, and, 

for most cases, the learning process lasted fewer than 300 iterations before converging. On 

the other hand, the only open loop control system that came close to the neural network 

close loop system is the fixed demand one, while the other two scenarios showed much 

worse performance. Finally, the shapes of the learning plots depicted above are typical of 

global optimisation techniques, as they first exhibit a sharp increase in the target function, 

and then this increase slows down. Hence, from the above figure, it is evident that 500 

iterations are sufficient to find the solution for the model, which is close to optimal. 

In conclusion, as evidenced by all six comparable parameters, the performance of the neural 

network system is much better for all parameters than the performance of the direct system. 

In particular, the conducted experiments and the results analysed above have shown that 

the ANN closed-loop model:  
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1. Has shorter maturity rates for both raw materials and final products 

2. Generates more profit per unit of storage when the storage costs are high 

3. Generates more profit per Monte Carlo run 

4. Provides a more sound investment strategy 

5. Manages the available funds more efficiently 

6. Has a better learning progress.  

Hence, this control system is chosen for the developed model, and will be applied for the 

three basic scenarios described earlier. The results of each scenario are discussed in detail 

in the following sections. 

 

 Fixed Demand Scenario 

In this scenario, all variables related to demand for the final product are set to be fixed, while 

the storage and supply variables remain stochastic. After adjusting the variables as detailed, 

the neural network closed-loop system is implemented, and the performance of this system 

is analysed in terms of: 

• Maturity and deterioration rate 

• Money management 

• Final product management 

• Raw materials management 

 

 Maturity and Deterioration Rates 

Two of the most important outputs of the implemented model are the maturity and 

deterioration rates of both raw materials and final products. Therefore, when applying the 

neural network closed-loop model under the fixed demand scenario, the following results, in 

terms of maturity and deterioration rates, are obtained, as presented in Figure 5-9(a) and 

(b) for raw materials and final products, respectively.   
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Figure 5-9. Maturity plots for the fixed demand scenario: (a) raw materials maturity, and (b) 

production maturity. 

In the above figure, subplot (Figure 5-9(a)) shows how long the raw materials have to wait 

in the store before being sent to the production lines, while subplot (Figure 5-9(b)) shows 

how long the final products are kept in storage before being sold or sent to the buyer, and 

the dashed blue lines with asterisks at the top of each plot show the mean of the maturity 

distribution. From these plots, the average maturity for the raw materials is one week, which 

means that the majority of the raw materials was consumed in a one-week interval. 

Moreover, the average maturity of the final products is approximately 0.23 weeks, which is 

drastically lower than the corresponding value for raw materials. This can be explained by 

the fact that the factory needs to keep extra raw materials in the store for the case of an 

increase in demand. In addition, more than 35% of all purchased raw materials and 78% of 

final products are made to order.  
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 Money Management 

Under this parameter, four different indicators are used to assess the performance of the 

developed model under the fixed demand scenario. These indicators are the dynamics of 

available funds (Figure 5-10(a)), the dynamics of the amount of money invested in the 

business (Figure 5-10(b)), the change in the selling price over the planning horizon (Figure 

5-10(c)), and the amounts of up credit and down credit (Figure 5-10(d)).  
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Figure 5-10. Money management for the fixed demand scenario: (a) money dynamics, (b) investment dynamics), (c) price dynamics, (d) up 

credit and down credit dynamics.
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As seen from Figure 5-10(a), the plot starts with the amount of initial funds available before 

the start of the planning horizon, then it decreases dramatically to almost zero by the third 

week. This initial decrease is normal, as there is a need during that period to purchase more 

raw materials and increase their level in the store in order to produce more goods. 

Furthermore, at the beginning of the planning horizon, the initial quantity of final products 

produced is only 100 units, as per the model assumptions, which do not generate much 

income to offset the initial costs of the raw materials. However, as we move forward in the 

planning horizon and the production quantity is increased, the amount of available funds 

starts to increase, gradually, until it reaches almost £1.5M in the 52nd week. Unlike the 

above trend, the amount of investment follows a continuously increasing pattern over the 

planning horizon, as seen in Figure 5-10(b), until it reaches more than £60M, which shows 

that the model ensures the continuous running of the factory’s operations. Moreover, Figure 

5-10(c) shows the dynamics of the final product selling price over the entire planning horizon. 

As seen from that figure, the selling price tends to decrease over time due to the increase 

in the quantity of final products in stock, from an initial peak of £26.1K to as low as £25.7K. 

However, this decrease is not continuous over the entire planning horizon, as there are 

periods of fluctuation between an increase and decrease in the selling price based on the 

quantity of final products in the store, i.e. as the quantity of final products in the store 

increases, there is a need to sell the products as fast as possible, thus price reduction 

becomes necessary. Finally, in Figure 5-10(d), both the up credit and down credit dynamics 

are shown. As demonstrated for both indicators, the amounts start to increase at the 

beginning of the planning horizon, and then stabilise and remain at approximately the same 

level until the end of the planning period. Another observation from this figure is that the 

down credit amount is always much lower than the up credit amount, because the purchase 

price of raw materials is lower than the selling price of final products. 

From the four plots analysed here, it is evident that the factory increases the amount of 

available funds at the end of the period. In particular, investments have shown to increased 

continuously, showing a higher increasing rate towards the end of the period to mitigate the 

impact of inflation. In addition, the amount of up credit grows until week 20 and remains 

constant then. This is due to the fact that the factory cannot sell more than what it produces, 

which has a maximum of 150 units. 
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 Final Products Management 

To assess the performance of the developed model under this parameter, four different 

indicators are used. These indicators are the quantity of final products in storage (Figure 

5-11(a)), the quantity of final products produced (Figure 5-11(b)), the quantity of final 

products sold (Figure 5-11(c)), and the percentage of produced goods sold (Figure 5-11(d)). 



 
  

177 
 

 
Figure 5-11. Production management for the fixed demand scenario: (a) storage space usage, (b) quantity of final products produced, (c) 

quantity of final products sold, (d) percentage of final products produced that were sold. 
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From Figure 5-11(a), the quantity of final products in the store starts with the initial quantity 

held before the start of the planning period, then falls dramatically until it reaches zero after 

four weeks. Then, throughout the rest of the planning horizon, the quantity of final products 

in the store did not exceed 10 units, as most of the final products that were produced are 

sold, which demonstrates the effectiveness of the developed model in minimising the store 

of the final products. However, it is worth noting that in this scenario, demand is static, and 

future production can be easily forecasted with great precision. Figure 5-11(b) depicts the 

trend of the quantity of final products produced over the planning horizon. As seen from this 

plot, the production level starts at zero, and then the factory almost reaches its maximum 

capacity (150 units) within five weeks. After this point, the factory continues to utilise its 

maximum capacity over most of the planning horizon. Similarly, Figure 5-11(c) shows the 

quantity of final products that were sold. As can be seen from this figure, the quantity of sold 

products is almost identical to the quantity of produced products over the entire planning 

horizon, as it can also be inferred from Figure 5-11(a), where the quantity of products in 

storage has shown to be low. Finally, Figure 5-11(d) further confirms the previous conclusion 

from   Figure 5-11(a) and (c), showing that the percentage of sold products relative to 

produced products is almost 100% over the entire planning horizon.  

 

 Raw Materials Management 

As with final products management, to assess the performance of the developed model 

under this parameter, four different indicators are used. These indicators are the quantity of 

raw materials in storage (Figure 5-12(a)), the quantity of raw materials purchased (Figure 

5-12(b)), the amount of money spent on purchasing raw materials as a percentage of 

available funds (Figure 5-12(c)), and the percentage of raw materials that went into 

production (Figure 5-12(d)).  
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Figure 5-12. Raw materials management for the fixed demand scenario: (a) raw materials storage usage, (b) quantity of raw materials 

purchased, (c) percentage of money spent on purchasing raw materials, (d) the percentage of raw materials sent to the production lines. 



 
  

180 
 

From Figure 5-12(a), after the initial accumulation of raw materials, their level in storage 

oscillates around 250 items to ensure that there are sufficient raw materials to cover any 

increase in demand. Moreover, Figure 5-12(b) shows the quantity of raw materials 

purchased over the planning horizon, which highly oscillates around 150 items per week. In 

some weeks, the factory does not even buy any raw materials due to the high quantity 

present in the store. The main reason behind such oscillation is that it is more profitable for 

the company to buy bulk amounts of raw materials, in a given week, to benefit from 

discounts, and then not buy at all in the next week. On average, the factory buys the same 

level of raw materials required to produce and sell goods, which is no more than 150 items 

of final products per week. Similarly, Figure 5-12(c) shows the percentage of money that 

was spent on purchasing raw materials, which logically follows the same trend of the quantity 

of raw materials purchased. Finally, Figure 5-12(d) shows the percentage of raw materials 

that moves from the store to the production lines. As seen from these two figures, the optimal 

strategy for the company is to accumulate funds over two to three weeks, and then make a 

bulk order of raw materials that covers multiple weeks. After making this order, the company 

immediately sends these raw materials to production. In conclusion, the raw materials 

dynamic analysed in Figure 5-12, shows that, although during some periods there is a large 

quantity of raw materials in the store, this quantity is likely to be consumed in the next one 

or two weeks.  

 

 Fixed Supply Scenario 

In this scenario, all variables related to the supply of raw materials (probability of delivery 

failure, average extra cost per unit of failed raw material, ordering cost, and unit cost of raw 

materials) are set to be fixed, while the storage and demand variables remain stochastic. 

After adjusting the variables as detailed, the neural network closed-loop system is applied, 

and the performance of this system is analysed in terms of:  

• Maturity and deterioration rate 

• Money management 

• Final product management 

• Raw materials management, is analysed 
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 Maturity and Deterioration Rates 

When applying the neural network closed-loop system under the fixed supply scenario, the 

following results, in terms of maturity and deterioration rates, are obtained, as presented in 

Figure 5-13(a) and (b) for raw materials and final products, respectively. 

 

 
Figure 5-13. Maturity management for the fixed supply scenario: (a) raw materials maturity, 

and (b) production maturity. 

 

From the above plots, the average maturity for raw materials is one and half weeks, which 

means that the majority of raw materials are consumed in that time interval. Moreover, the 

average maturity of final products is approximately four days, which is drastically lower than 

the corresponding value for raw materials. This can be explained by the fact that the factory 

needs to keep extra raw materials in storage, in case of an increase in demand.  

 

 Money Management 

Under this parameter, four different indicators are used to assess the performance of the 

developed model under the fixed demand scenario. These indicators are the dynamics of 

available funds (Figure 5-14(a)), the dynamics of the amount of money invested in the 
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business (Figure 5-14(b)), the change in the selling price over the planning horizon (Figure 

5-14(c)), and the amounts of up credit and down credit (Figure 5-14(d)).  
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Figure 5-2. Money management for the fixed supply scenario: (a) money dynamics, (b) investment dynamics), (c) price 
dynamics, (d) up credit and down credit dynamics. 
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As seen from Figure 5-14(a), the plot starts with the amount of initial funds available before 

the start of the planning horizon, then it decreases to zero by the second week. However, 

as we move forward in the planning horizon, the level of available funds starts to grow over 

time until the 25th week, then it starts to oscillate around the £1.5M. This oscillation is not 

observed in the fixed demand scenario, as in that scenario the demand is fixed, so there is 

no potential for an increase in demand. However, in the fixed supply scenario, demand is 

stochastic; hence, the probability of an increase in demand becomes higher, and the 

company will need to keep extra funds to cover any potential increase in demand. Unlike 

the trend in Figure 5-14(a), the amount of investment follows a continuously increasing 

pattern over the planning horizon, as seen in Figure 5-14(b), until it reaches almost £45M. 

Figure 5-14(c) shows the dynamics of the final product selling price over the entire planning 

horizon. From this figure, during the first weeks of the planning horizon, there is a lot of 

change in the selling price before it reaches equilibrium at around the £27K mark. After this 

point in the planning horizon, the price management becomes similar to the fixed demand 

scenario, except that the average price is a bit higher. Finally, in Figure 5-14(d), both the up 

credit and down credit dynamics are observed. As demonstrated for both indicators, the 

amounts start to increase at the beginning of the planning horizon, as the factory starts 

buying more raw materials, hence the down credit increases. On the other hand, the up 

credit amount increases as the factory starts to sell more final products, hence, the down 

credit increases, and then these amounts stabilise and remain at approximately the same 

level until the end of the planning period. Moreover, another observation from this figure is 

that the down credit amount is always much lower than the up credit amount, because the 

purchase price of raw materials is lower than the selling price of final products, which is 

similar to the trends observed in the fixed demand scenario. In addition, from this figure, the 

amount of cash available for the factory can be computed as the difference between the up 

credit and down credit in any given week.  

 

 Final Products Management 

To assess the performance of the developed model under this parameter in the fixed supply 

scenario, four different indicators are used. These indicators are the quantity of final 

products in the store (Figure 5-15(a)), the quantity of final products produced (Figure 

5-15(b)), the quantity of final products sold (Figure 5-15(c)), and the percentage of produced 

goods sold (Figure 5-15(d)).  
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Figure 5-15. Production management for the fixed demand scenario: (a) the storage space usage, (b) quantity of final products produced, (c) 

quantity of final products sold, (d) percentage of final products produced sold.
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In Figure 5-15(a), the quantity of final products in the store varies drastically over the entire 

planning horizon, going as low as 20 units in the 18th week, and as high as 230 units in the 

44th week. This high fluctuation, especially when compared to the fixed demand scenario, 

is due the fact that demand is stochastic and the accuracy of its forecast is not as high as in 

the fixed demand scenario; hence, the factory needs to store extra products in order to be 

able to satisfy any increase in demand due to its stochastic nature. Furthermore, Figure 

5-15(b) depicts the trend of the quantity of final products produced over the planning horizon. 

As seen from this plot, the production level starts at 100 units and then it fluctuates drastically 

between 55 and 140 units, until the factory almost reaches its maximum capacity (150 units) 

within 21 weeks. After this point, the factory operates at maximum capacity over most of the 

remaining planning horizon. Similarly, Figure 5-15(c) shows the quantity of final products 

sold. As initially explained, there is a need to produce additional goods to cover any increase 

in demand; thus, in some weeks the factory had excess quantity of final products that were 

not sold. Finally, this above conclusion is depicted more clearly in Figure 5-15(d), as the 

percentage of sold products to produced products ranged between 40% and 80% over the 

entire planning horizon.  

 

 Raw Materials Management 

As with final product management, to assess the performance of the developed model under 

this parameter in the fixed supply scenario, four different indicators are used. These 

indicators are the quantity of raw materials in the store (Figure 5-16(a)), the quantity of raw 

materials purchased (Figure 5-16(b)), the amount of money spent on purchasing raw 

materials as a percentage of available funds (Figure 5-16(c)), and the percentage of raw 

materials that went into production (Figure 5-16(d)).  
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Figure 5-16. Raw materials management for the fixed supply scenario: (a) raw materials storage usage, (b) quantity of raw materials 
purchased, (c) percentage of money spent on purchasing raw materials, (d) the percentage of raw materials sent to the production lines. 
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From Figure 5-16(a), after the initial drop in the quantity of raw materials, their level in the 

store starts to increase gradually over the entire planning horizon to cover any additional 

production needed. This indicates that the factory buys more raw materials as the production 

rate increases, to cover the demand. Moreover, Figure 5-16(b) shows the quantity of raw 

materials purchased over the planning horizon, which highly oscillates around 150 items per 

week due to the same reasons as those explained in the fixed demand scenario. Similarly, 

Figure 5-16(c) shows the percentage of funds spent on purchasing raw materials, which 

logically follows the same trend of the quantity of raw materials purchased, i.e. the factory 

spends money to cover the purchase of raw materials. Finally, Figure 5-16(d) shows the 

percentage of raw materials that moves from the store to the production lines, which reached 

100% in the first few weeks, then started to decrease gradually to as low as 30%. This 

indicates that, at the beginning of the planning horizon, the model is more effective in 

managing raw materials, as almost all of them were used in production, whereas towards 

the end of the planning horizon there were extra raw materials in store that were not used 

in production.  

In conclusion, compared to the previous scenario where fixed demand has been considered, 

the factory uses more space to store the final products since in the scenario analysed in this 

section the demand is stochastic needing the factory to keep more raw materials in storage 

in case of shortage in production which is caused by sudden increase in demand. However, 

since, for the closed-loop control system, increasing the company’s profit is a higher priority 

than minimising the level of raw materials in storage, allowing slightly more raw materials in 

the store to achieve much more profit is an acceptable outcome.  

 

 Fully Stochastic Scenario 

The last scenario in which the developed model is implemented is the fully stochastic 

scenario. In this scenario, the stochastic and fixed business parameters listed in Table 5-1 

and Table 5-2 are used to reflect all the complexity of the business scope. To model this 

scenario, the demand is assumed to occur at random, i.e. the demand changes at each 

week, and is characterised by having independent and identically distributed times during 

each week. In addition, the supply is also considered to be stochastic and normally 

distributed with known distribution parameters. After adjusting the variables as detailed, the 

neural network closed-loop system is applied under this scenario, and the performance of 
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this system is analysed, in terms of maturity and deterioration rate, money management, 

final product management, and raw materials management. 

 

 Maturity and Deterioration Rates 

When applying the neural network closed-loop model under the fully stochastic scenario, 

the following results, in terms of maturity and deterioration rates, are obtained, as presented 

in Figure 5-17(a) and (b) for raw materials and final products, respectively. 

 

Figure 5-17. Maturity management for the fully stochastic scenario: (a) raw materials 
maturity, and (b) production maturity 

 

From the above plots, the average maturity for raw materials is nine days, which means that 

the majority of raw materials is consumed in that time interval. Moreover, the average 

maturity of final products is approximately 0.57 weeks, which means that the control system 

sets an optimal selling price so almost all goods in the store are sold immediately. 

Furthermore, it can be seen that the storage of final products is more optimal than that of 

raw materials, as it is much easier to dispose of any excess quantity of final products, by 

assigning a lower price, than to reduce the quantity of raw materials. 
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 Money Management 

As with the previous scenarios, four different indicators are used to assess the performance 

of the developed model, in terms of money management, under the fully stochastic scenario. 

These indicators are the dynamics of available funds (Figure 5-18 (a)), the dynamics of the 

amount of money invested in the business (Figure 5-18(b)), the change in the selling price 

over the planning horizon (Figure 5-18(c)), and the amounts of up credit and down credit 

(Figure 5-18(d)).  
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Figure 5-3: Money management for the fully stochastic scenario: (a) money dynamics, (b) investment dynamics), (c) 
price dynamics, (d) up credit and down credit dynamics. 
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As seen from Figure 5-18(a), and similar to the previous scenarios, the plot starts with the 

amount of initial funds available before the start of the planning horizon, then it decreases 

dramatically until it becomes negative by the second week, meaning that the factory ran 

short of money. However, as we move forward in the planning horizon, the level of available 

funds starts to grow over time, reaching £2.5M. This means that, compared to the previous 

two scenarios, the amount of funds kept in the business is higher. Unlike the trend observed 

in Figure 5-18(a), the amount of investment follows a continuously increasing pattern over 

the planning horizon, as seen in Figure 5-18(b), until it reaches almost £50M. This means 

that the final level of investments is lower than that of the fixed demand scenario and higher 

than that of the fixed supply scenario, as the full stochastic scenario has an overall higher 

profit than the fixed supply scenario, but lower profit than the fixed demand scenario. Figure 

5-18(c) shows the dynamics of the final product selling price over the entire planning horizon. 

From this figure, during the first weeks of the planning horizon, there is a lot of change in the 

selling price before it reaches £28K in week 10. After this point in the planning horizon, the 

price tends to decrease over time as the production volumes increase. Therefore, selling at 

a discount becomes more profitable for the company than having the final products stuck in 

the store. Finally, in Figure 5-18(d), both the up credit and down credit dynamics are 

observed. As demonstrated for both indicators, the amounts start to increase at the 

beginning of the planning horizon, and then stabilise and remain at approximately the same 

level until the end of the planning period. Moreover, the up credit curve has more frequent 

and larger oscillations than the previous two scenarios, which are caused by the 

stochastically changing demand and price. 

 

 Final Product Management 

As explained in the previous two scenarios, to assess the performance of the developed 

model under this parameter in the fully stochastic scenario, four different indicators are used. 

These indicators are the quantity of final products in the store (Figure 5-19(a)), the quantity 

of final products produced (Figure 5-19(b)), the quantity of final products sold (Figure 

5-19(c)), and the percentage of produced goods sold (Figure 5-19(d)). 
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Figure 5-4: Production management for the fully stochastic scenario: (a) storage space usage, (b) quantity of final 
products produced, (c) quantity of final products sold, (d) percentage of final products produced that were sold. 
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In Figure 5-19(a), the quantity of final products in the store varies drastically over the entire 

planning horizon, going as low as 25 units in the 2nd week and as high as 275 units in the 

34th week. This high fluctuation, especially when compared to the fixed demand scenario, 

is due to the fact that demand is stochastic, and the accuracy of its forecast is not high, 

hence the need to store extra products in case of demand increase. Figure 5-19(b) depicts 

the trend of the quantity of final products produced over the planning horizon. As seen from 

this plot, the production level starts at 100 units, then increases sharply to 145 units, and 

then starts to fluctuate drastically between 120 and 140 units until the factory almost reaches 

its maximum capacity (150 units) within 20 weeks. After this point, the factory continues to 

operate at its maximum capacity over most of the remaining planning horizon. Similarly, 

Figure 5-19(c) shows the quantity of final products that were sold. As initially explained, 

there is a need to produce additional goods to cover any increase in demand, as demand is 

stochastic; thus, in some weeks the factory had excess quantity of final products that were 

not sold. Finally, this above conclusion is depicted more clearly in Figure 5-19(d), as the 

percentage of sold products to produced products ranged between 40% and 80% over the 

entire planning horizon.  

 

 Raw Materials Management 

As with final product management, to assess the performance of the developed model under 

this parameter in the fully stochastic scenario, four different indicators are used. These 

indicators are the quantity of raw materials in the store (Figure 5-20(a)), the quantity of raw 

materials purchased (Figure 5-20(b)), the amount of money spent on purchasing raw 

materials as a percentage of available funds (Figure 5-20(c)), and the percentage of raw 

materials that went into production (Figure 5-20(d)).  
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Figure 5-20: Raw materials management for the fully stochastic scenario: (a) raw materials storage usage, (b) quantity of raw materials 

purchased, (c) percentage of money spent on purchasing raw materials, (d) the percentage of raw materials sent to the production lines.
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From Figure 5-20(a), after the initial drop in the quantity of raw materials, their level in the 

store starts to increase gradually over the entire planning horizon to cover any additional 

production required, reaching as high as 350 units after 25 weeks. Moreover, Figure 5-20(b) 

shows the quantity of raw materials purchased over the entire planning horizon, which highly 

oscillates around 150 items per week, due to the same reasons as those explained in the 

fixed demand scenario. Similarly, Figure 5-20(c) shows the percentage of money spent on 

purchasing raw materials, which logically follows the same trend of the quantity of raw 

materials purchased. Finally, Figure 5-20(d) shows the percentage of raw materials moved 

from the store to the production lines, which started at only 20% and reached 90% in the 

fourth week, before stabilising around the 50% mark over the rest of the planning horizon. 

 

 Scenarios Comparison 

After applying the neural network closed-loop model in the three scenarios explained in the 

previous sections, the performances of this model under these three scenarios are 

compared against each other. The first observation from the analysis of the three 

performances is that they all showed similar trends regarding the following measures: 

1. The selling price tends to decrease over time as the quantity of the final products 

which are in store increased. 

2. The quantity of final products that the company produces increases over time. 

3. The trends of purchasing raw material and producing final products follow a spike-

shaped curve. This is normal for the business, as there is a collection period for 

money earned from sold products before being able to order a bulk amount of raw 

materials and immediately send them to the production lines. 

4. Raw materials spend more time in storage than final products, as it is more efficient 

for the company to store extra raw materials and have the opportunity to produce 

extra quantities of final products.  

Despite having a similar behaviour for some measures, there are several differences 

between the performances of the model under the three scenarios. One of these differences 

is the maturity of raw materials and final products. In Figure 5-21 the maturity of raw 

materials for all scenarios under the closed-loop neural network model is observed. As it 

can be observed, the optimal storage process for raw materials corresponds to the fully 
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stochastic scenario, while the worst case is the fixed supply scenario, as it resulted in the 

highest maturity rates. This is also true in the case of the maturity of final products.  

 

 
Figure 5-21. Raw materials deterioration rate comparison for all three scenarios (closed-loop 

neural network control system): (a) raw materials maturity, and (b) production maturity. 

 

Next, a comparison between the performance of the neural network system and the open 

loop system, in terms of deterioration rate, is performed. As seen from Figure 5-22, under 

all three scenarios there are quantities of raw materials and final products consumed in as 

much as five or more weeks under the open loop system, which is an inefficient way to 

manage this type of inventory due to its deteriorating nature. Furthermore, it is evident that 

the deterioration results differ a lot between the different scenarios. Therefore, it can be 

concluded that the open loop system is not sufficiently robust, and that the neural network 

control system showed better performance than the open-loop system. This is highlighted 

by the fact that the best storage indicators for the open loop control system are reached in 

the fixed demand scenario, which is the simplest of the three scenarios. 
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Figure 5-22. Raw materials maturity comparison for all three scenarios (open loop static 

control system): (a) raw materials maturity, and (b) production maturity. 

 

To further reinforce the above conclusion, Table 5-4 shows a comparison between the final 

maturity performance for all three scenarios, and their improvement over the entire planning 

horizon, which is calculated using Equation 5-13: 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

=
𝑂𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 − 𝐶𝑙𝑜𝑠𝑒 𝑙𝑜𝑜𝑝 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟

𝑂𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟
 

5-13 
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Table 5-4. Average maturity comprehensive table. 
 

Fixed demand 

scenario 

Fixed supply 

scenario 

Fully stochastic 

scenario 

Raw materials (open loop) 0.94 1.58 1.48 

Raw materials (neural network) 1.04 1.54 1.27 

Improvement (%) -10.93% 2.75% 14.05% 

Production (open loop) 1.56 2.47 2.58 

Production (neural network) 0.23 0.53 0.41 

Improvement (%) 85.39% 78.32% 84.02% 

 

From the above table, it is evident that the closed-loop system’s performance is better in all 

scenarios, with only one exception, where the closed-loop system showed slightly worse 

results than the open loop system. This exception concerns raw material storage under the 

fixed demand scenario. However, as this is the simplest scenario, in which the factory needs 

to order each week almost the same amounts of final products, and since the open loop 

control system’s strategy is skewed towards production over ordering, it leads to good 

results for raw material storage, but much worse results for final product storage. Therefore, 

this one parameter will not optimise storage for the factory, which includes the storage of 

both raw materials and final products. On the other hand, regarding the final product’s 

storage policy, the closed-loop system fully dominates the open loop system, with 

approximately 80% average improvement. 

Finally, when comparing the performance of the two systems in terms of the deterioration 

rates, Table 5-5 shows that the improvement trends for the two systems are similar to the 

maturity trends. As seen from the table, the open loop system allows up to 12% of the final 

products to be lost to deterioration, which is completely inefficient for the business. On the 

other hand, under the neural network control system, only 2% of the final products were lost 

to deterioration, which is a sizable 10% improvement over the open-loop system. 
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Table 5-5. Deterioration rate comprehensive table. 
 

Fixed demand 

scenario 

Fixed supply 

scenario 

Fully 

stochastic 

scenario 

Raw materials (open loop) 4.55 7.57 7.03 

Raw materials (neural network) 5.07 7.41 6.19 

Improvement (%) -11.44% 2.14% 11.96% 

Final products (open loop) 7.28 11.55 12.03 

Final products (neural network) 1.13 2.59 2.04 

Improvement (%) 84.44% 77.56% 83.04% 

 

As demonstrated by the two tables above, the neural network control system yielded better 

results for both the maturity and deterioration rates of the raw materials and inventory. 

Hence, the use of this system will help the factory’s managers to better manage their 

operations, allow them to better utilise their resources, reduce the storage and deterioration 

costs of the inventory, increase the factory’s profit by reducing these costs, and improve the 

sustainability of the factory. Furthermore, the application of the neural network system will 

allow managers to sell their products at a more competitive price (as their costs are reduced) 

to overcome competition and gain more market share. Finally, the scheduling of production 

is another informed decision that the factory’s managers will be able to make when they 

apply the neural network model. Through knowing the average maturity and deterioration 

rates of the raw materials, these managers can schedule production in a way to utilise the 

oldest items first, and prevent the total loss of these items.    

 

 Chapter Summary 
In this chapter, the model implementation has been described. In particular, the 

performances of the open and closed-loop control systems have been compared in order to 

select the best suited approach, in terms of robustness and accuracy. To achieve this goal, 

the performance of each model, under six main parameters, viz., maturity and distribution 

rates, generated profits per storage unit used, profit generated by each Monte Carlo run, 

investment strategy, money management, and learning progress, were analysed. From the 

performed comparisons, it was shown that the neural network closed-loop control system 
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slightly outperforms the open loop control system in raw materials storage management, 

and drastically outperforms the open loop system in final product storage management. 

Moreover, a similar trend was deduced for the deterioration rates of raw materials and final 

products. Hence, through this comparison, it was concluded that the neural network closed-

loop control system is the most beneficial system to maximise profits in the case of a steel 

manufacturing factory. 

Consequently, to fully examine the performance of the neural network closed-loop system, 

this system was implemented under all three different business scenarios, viz., the fixed 

demand scenario, the fixed supply scenario, and, the most complex, the fully stochastic 

scenario. The corresponding performances were compared, using the maturity and 

deterioration rates, money management, final product management, and raw materials 

management, to deduce the business patterns associated with each scenario. From this 

comparison, it was observed that the highest profit was achieved in the fixed demand 

scenario. This was an expected result since the fixed demand scenario is the simplest one. 

Nevertheless, promising results have also been obtained for the fully stochastic scenario. In 

this line, the developed model has shown to be a useful tool for factory’s managers allowing 

them to better manage their operations and better utilising their resources by reducing the 

storage and deterioration costs of the inventory, increasing the factory’s profit, and improving 

the sustainability of the factory. Furthermore, using the ANN based model will allow 

managers to sell their products at a more competitive price (as their costs are reduced) to 

overcome competition and gain more market share. Finally, knowing the average maturity 

and deterioration rates of the raw materials, managers will be able to schedule production 

in a more efficient way, utilising the oldest items first, and preventing the total loss of these 

items.    

To further illustrate the robustness of the neural network closed-loop control system, in the 

following chapter, various macroeconomic conditions, under which the steel manufacturing 

factory might operate, are assumed, and the model is implemented under each one of them. 

In particular, the model’s performance is analysed under five different conditions in order to 

assess its flexibility and adaptability. 
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 Cases for Various Macroeconomic Situations 

 Introduction 
After validating the developed model, a sensitivity analysis is conducted in this chapter 

applying the developed model to different real-life scenarios to which the steel-

manufacturing industry might be subjected. In this way, the robustness of the model and its 

ability to handle these extreme scenarios is explored. In this type of analysis, several 

controlling parameters in the model’s environment are changed in order to examine their 

impact on the model’s performance; this assists in analysing how sensitive the developed 

model is to the changes in these parameters. Each of these scenarios reflects either irregular 

economic patterns or worst-case scenarios, caused by financial crises, political instability, 

or trade wars, which can take place either on the macro or micro levels. 

Any developed model should have the ability to adjust to the described kind of scenarios 

and provide outcomes that enable the company to adapt to the new business situations and 

avoid bankruptcy. Therefore, the goal of this chapter is to assess how the closed-loop neural 

network control system adjusts to the different economic scenarios, and compare the profit 

generated in those situations with the one obtained for the fully stochastic scenario 

discussed in Section 5.3.4. In order to achieve this goal, the assumptions of the fully 

stochastic scenario outlined in Chapter 5 are used, and five cases reflecting the above 

mentioned scenarios are considered. The performance of the closed-loop neural network 

model, in all these cases, is assessed in terms of maturity and deterioration rates, money 

management, final product management, and raw materials management. The considered 

cases in this analysis are: 

1) Increase in storage costs as a result of higher electricity and rent expenses.  

2) Seasonal change in the purchasing price of raw materials. Although such a situation 

is characteristic of mainly fruit and vegetable-dependent industries, in steel 

manufacturing, the prices of raw materials can also change according to the season, 

as a result of several factors, such as demand and availability.   

3) Seasonal change in demand due to economic cyclicality. 

4) Sudden and complete loss of demand, which instantly falls to zero as a result of a 

severe financial crisis or trade wars. 

5) Sudden interruption to the supply channels, as a result of supplier bankruptcy or 

trade embargos, which leads to cutting off supply or raw materials completely. 
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This chapter is organised into five main sections. The first ones, from Section 6.2 to Section 

6.6, assess the model’s performance under each of the above described five scenarios. 

Finally, Section 6.7 summarises the conclusions drawn from the obtained results, and 

provide future recommendations in order to further enhance the model’s performance with 

respect to the steel manufacturing industry. 

 

 Increase in Storage Costs 
In this case, the storage costs of raw materials and final products increase by four times, 

from £500 to £2000 per week, on average. In addition, since increasing the absolute values 

of the stochastic variables also leads to an increase in their respective variances, the 

standard deviations of the storage costs will also increase four-fold, from 0.05 to 0.2. In the 

context of the steel manufacturing factory, this case takes place when there is high humidity 

in the storage area, presenting the requirement of more energy to maintain suitable storage 

conditions for storing steel. 

The effect of the increase in storage costs on the maturity and deterioration rates, money 

management, final product management, and raw materials management are illustrated in 

Sections 6.2.1-6.2.4.  

 

  Maturity and Deterioration Rates 

When applying the neural network closed-loop system after increasing storage costs, the 

following results, in terms of maturity and deterioration rates, are obtained, as presented in 

Figure 6-1(a) and (b) for raw materials and final products, respectively. 
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Figure 6-1. Maturity management for the increased storage cost case (fully stochastic 
scenario): (a) raw materials maturity, and (b) production maturity. 

 

From the above figure, it can be observed that the maturity distributions for raw materials 

and final products are much better for the closed-loop control system, as they are both stored 

for fewer weeks before being used in production or sold, at an average of 0.84 weeks. 

Moreover, the maximum storage time is reduced from seven to three weeks in the case of 

raw materials, and from fourteen to five weeks in the case of final products. Furthermore, 

the factory’s losses due to deterioration decreased from 10.5% to 4.2%, and from 18.5% to 

4.1% for raw materials and final product storage, respectively.  

In addition, when comparing the above performance with the fully stochastic scenario (see 

Figure 5-17), the maturity distribution for raw materials becomes much better, as, starting 

from week 2, the percentage of raw materials in storage is reduced significantly, and the 

maximum storage time decreases from four to three weeks. On the other hand, the fully 
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stochastic scenario has a better performance in terms of the final product storage time, as 

this was only 0.41 weeks versus the 0.84 weeks achieved when the storage costs increased.  

 

 Money Management 

Under this parameter, four indicators are used to assess the performance of the developed 

model in the case of increased storage costs. These indicators are the dynamics of available 

funds (Figure 6-2 (a)), the dynamics of the amount of money invested in the business (Figure 

6-2(b)), the change in the selling price over the planning horizon (Figure 6-2(c)), and the 

amounts of up credit and down credit (Figure 6-2(d)). 
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Figure 6-2. Money management for the increased storage cost case (fully stochastic scenario): (a) money dynamics, (b) investment dynamics), 

(c) price dynamics, (d) up credit and down credit dynamics. 
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As seen from Figure 6-2(a), the plot starts with the amount of initial funds available before 

the start of the planning horizon, then it decreases dramatically to almost zero, before it 

begins to increase towards reaching the level of £3M. This dynamic is similar to the one 

corresponding to the fully stochastic scenario with ordinary storage analysed in Section 

5.3.4, where the amount of funds reach the level of £1.5M instead of £3M. This indicates 

that when storage costs increase, the implementation of the model resulted in increasing 

the amount of funds available at the end of the planning period. On the contrary, the amount 

of funds invested (Figure 6-2(b)) decreases, when compared to the fully stochastic scenario, 

to reach only £32M at the end of the planning horizon versus £50M. Figure 6-2(c) shows the 

dynamics of the final product selling price over the entire planning horizon. As seen from 

that figure, the selling price tends to decrease over time, albeit marginally, from an initial 

peak at the first week of £26.9K to £26.8K at week 52. This means that the selling price of 

the final product initially increased, as there were small quantities of final products available, 

yet with the increase in this quantity over time, the price started to decrease. However, this 

decrease is not continuous over the entire planning horizon, as there are periods of 

fluctuation in the selling price based on the quantity of final products available in storage. 

Finally, in Figure 6-2(d), both the up credit and down credit dynamics are observed. 

Regarding up credit, the amount increases sharply during the first five weeks, as the 

company starts selling its final products, then the increase slows down until week 30, as the 

quantity of final products sold does not increase significantly from one week to another, 

when it stabilises around the value of £14M. As for down credit, its curve depicts the shape 

of the raw materials price, since it reflects the money owed by the company to the suppliers, 

as it first increases and then stabilises at the level of £4M. Again, the observed trends in 

Figure 6-2(d) are similar to those observed in the fully stochastic scenario.  

 

 Final Product Management 

To assess the performance of the developed model under this parameter, four different 

indicators are used. These indicators are the quantity of final products in storage (Figure 6-3 

(a)), the quantity of final products produced (Figure 6-3(b)), the quantity of final products 

sold (Figure 6-3(c)), and the percentage of produced goods that were sold (Figure 6-3(d)). 
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Figure 6-3: Production management for the increased storage cost case (fully stochastic scenario): (a) storage space 
usage, (b) quantity of final products produced, (c) quantity of final products sold, (d) percentage of final products 

produced that were sold. 
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From Figure 6-3(a), the quantity of final products in storage varies drastically over the entire 

planning horizon, going as low as zero units in the 5th week and as high as 200 units in the 

40th week. This high fluctuation is due to the fact that demand is stochastic, and the 

accuracy of its forecast is not high, generating the need to store extra products in case of 

demand increase. This trend is almost the same as the one observed under the fully 

stochastic scenario in Figure 5-19(a). Moreover, Figure 6-3(b) depicts the trend of the 

quantity of final products produced over the planning horizon. As seen from this plot, 

compared to the fully stochastic scenario, Figure 5-19(b), the production quantity is lower 

and never goes higher than the maximum production power of 150 units per week. This is 

due to the fact that, being stochastic, the demand never reaches the maximum, being no 

need to produce more products. This is confirmed by Figure 6-3(c), where it can be seen 

that the quantity of final products that are sold oscillates around 120 units per week, being 

not necessary to produce more than this quantity. Finally, from Figure 6-3(d), it can be seen 

that in most weeks along the planning horizon, the factory sold more than 40% of the final 

products in storage. Even more, it reached a 100% in two different weeks. This means that 

it was able to sell most of its final products, i.e. it had high production efficiency. Furthermore, 

when compared to the fully stochastic scenario, the overall trend is similar, albeit in this case 

the percentage of final products sold has a more uniform distribution along the planning 

horizon, showing a higher production efficiency. 

 

 Raw Materials Management 

As with final product management, to assess the performance of the developed model 

under this parameter in the case of an increase in storage costs, four different indicators 

are used. These indicators are the quantity of raw materials in storage (Figure 6-4 (a)), 

the quantity of raw materials purchased (Figure 6-4(b)), the amount of money spent on 

purchasing raw materials as a percentage of available funds (Figure 6-4(c)), and the 

percentage of raw materials that went into production (Figure 6-4(d)).
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Figure 6-4: Raw materials management for the increased storage cost case (fully stochastic scenario): (a) raw 
materials storage usage, (b) quantity of raw materials purchased, (c) percentage of money spent on 

purchasing raw materials, (d) percentage of raw materials sent to the production lines. 
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From Figure 6-4(a), after the initial accumulation of raw materials, their level continue to 

oscillate around the 80-item level (mean value of the space usage), which is much lower 

than the observed level in the fully stochastic scenario. This shows that the increase in 

storage cost impacts the quantity of raw materials purchased, as with greater quantities, the 

cost becomes much higher. This, in turn, is reflected in the quantity of final products 

produced and sold. Moreover, Figure 6-4(b) shows the quantity of raw materials purchased 

over the entire planning horizon, which highly oscillates around 100 items per week, and, in 

some weeks, the factory even buys very small amounts of raw materials because of the high 

volume in storage, unlike the fully stochastic scenario with ordinary where, at some points, 

the factory did not buy any raw materials at all. Figure 6-4(c) shows the percentage of money 

that was spent on purchasing raw materials, which logically follows the same trend of the 

quantity of raw materials purchased, and is less than the amount spent under the fully 

stochastic scenario, as more funds are allocated to investment and production. Finally, 

Figure 6-4(d) shows the percentage of raw materials that moves from storage to the 

production lines, which, unlike final products sold, never goes below 50%, which is much 

more efficient than the case of the fully stochastic scenario, as when the storage costs 

increased, the model had to be more efficient in terms of purchasing and storing raw 

materials in order to reduce the storage cost and maximise profits. 

 

 Seasonal Change in the Purchasing Price of Raw Materials 
In this case, the purchasing price of raw materials is assumed to change weekly, as demand 

increases during certain periods of the year, which is reflected in the price of these raw 

materials. Hence, the simplest periodical function is used to model this change, with the 

standard deviation of the purchasing price changing with the changes in the purchasing 

price. Therefore, the price mean value is derived from the following equation: 

{
 
 

 
 𝐶𝑟𝑎�̃�(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 4 + 3 ⋅ sin (

(𝑡 − 1) ⋅ 𝜋

26
)

𝜎(𝐶𝑟𝑎�̃�(𝑡)) =
𝐶𝑟𝑎�̃�(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅
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This system of equations is artificially generated to model the simplest seasonal change in 

the raw materials price, which is a sin wave; the second equation makes the standard 

deviation of raw materials proportional to its mean value. From these equations, as a result 
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of the seasonality effect, it is seen that the raw materials price can go as low as £1000 per 

unit and as high as £7000 per unit, in one year, as shown in Figure 6-5. 

 

 

 

 

 

 

 

 

 

 

Figure 6-5. Raw materials price means and standard deviation value yearly change pattern. 

 

Again, the effect of introducing seasonality change for the purchasing price of raw materials 

on the same four parameters the maturity and deterioration rates, money management, final 

product management, and raw materials management is illustrated in Sections 6.3.1-6.3.4.  

 

 Maturity and Deterioration Rates 

When applying the neural network closed-loop system after accounting for the seasonality 

effect on the raw material purchasing price, the following results, in terms of maturity and 

deterioration rates, are obtained, as presented in Figure 6-6 (a) and (b) for raw materials 

and final products, respectively. 
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Figure 6-6. Maturity management for the seasonal raw materials price case (fully stochastic 
scenario): (a) raw materials maturity, and (b) production maturity. 

 

According to Figure 6-6, in the current case, the maturity analysis shows the superiority of 

the closed-loop control system over the open loop system, as both raw materials and final 

products are stored for fewer weeks before being used in production or sold. The average 

maturity for raw materials under the closed-loop system is 1.7 times lower, while it is twice 

as low for final products. The reason behind this difference is that it is difficult to develop a 

successful business strategy, regardless of the actual parameters of the stochastic 

variables, while this parameter can vary greatly. Moreover, each change in the stochastic 

variable at the beginning of the planning period affects the future levels of raw materials and 

final products in storage; therefore, it is crucial not to only take into account the average 

values of the stochastic variables, but also their actual values.  

 

 Money Management 

Under this parameter, four indicators are used to assess the performance of the developed 

model in the case of seasonal raw material purchasing price. These indicators are the 

dynamics of available funds (Figure 6-7 (a)), the dynamics of the amount of money invested 
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in the business (Figure 6-7(b)), the change in the selling price over the planning horizon 

(Figure 6-7(c)), and the amounts of up credit and down credit (Figure 6-7(d)).  
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Figure 6-7. Money management for the seasonal raw materials price case (fully stochastic scenario): (a) money dynamics, (b) investment 

dynamics), (c) price dynamics, (d) up credit and down credit dynamics. 
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As seen from Figure 6-7(a), the plot starts with the amount of initial funds available before 

the start of the planning horizon, then it decreases dramatically to almost zero until the 40th 

week. In the last weeks it experiments a peak, reaching £3M (similar to what it has been 

shown for the case of increase in storage costs analysed in Section 6.2), to then finalise 

near £1.5M (similar to the case of the fully stochastic scenario). This indicates that when the 

purchasing price of the raw materials changes, the model increases the amount of funds 

available at the end of the planning period to cover any increase in price. On the other hand, 

although the amount of funds invested (Figure 6-7(b)) steadily increases over the planning 

horizon, it is still lower than the corresponding investment to the fully stochastic scenario. 

Figure 6-7(c) shows the dynamics of the final product selling price over the entire planning 

horizon. As seen from that figure, over most of the planning horizon, the selling price tends 

to remain relatively constant around the £29K, then it reaches a sudden peak of £36K at 

week 33, as the price of raw materials reaches its lowest point; consequently, the quantity 

of final products increases, after which it starts to oscillate. Finally, in Figure 6-7(d), both the 

up credit and down credit dynamics are observed. Regarding up credit, its amount increased 

sharply for the first eight weeks to reach £9M as the company starts selling its final products, 

then it stabilises around the value of £14M, as the quantity of final products that is sold does 

not increase significantly from one week to another. As for down credit, its curve depicts the 

shape of the raw materials price, since it reflects the money owed by the company to the 

suppliers, as it first increases and then starts to decrease in the middle of the planning 

horizon. 

 

 Final Product Management 

To assess the performance of the developed model under this parameter, four different 

indicators are used. These indicators are the quantity of final products in storage (Figure 6-8 

(a)), the quantity of final products produced (Figure 6-8(b)), the quantity of final products 

sold (Figure 6-8(c)), and the percentage of produced goods that were sold (Figure 6-8(d)). 
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Figure 6-8: Production management for seasonal raw materials price case (fully stochastic scenario): (a) storage 
space usage, (b) quantity of final products produced, (c) quantity of final products sold, (d) percentage of final 

products produced that were sold 
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From Figure 6-8(a), it can be observed that the quantity of final products in storage is majorly 

boosted in week 39, when the purchasing price of raw materials is at its lowest level. This 

means that the factory takes advantage of the low price for raw materials and purchases 

greater quantities; hence, it needs to move the raw materials quickly from storage to free 

space. Moreover, Figure 6-8(b) depicts the trend of the quantity of final products produced 

over the planning horizon. As seen from this plot, compared to the fully stochastic scenario, 

Figure 5-19(b), the production quantity is lower and it only reaches the maximum production 

power, 150 units per week, at the end of the planning horizon, as the demand never reaches 

this point, hence there is no need to produce more products. Figure 6-8(c) shows the 

quantity of final products that were sold. The plot is oscillating around 80 units per week, in 

spite of the fact that the production reaches 100 units around week 32, and slightly rises 

over time until the end of the year. This means that the factory was not able to sell all of its 

produced products in a one-week span. This conclusion is more evident in Figure 6-8(d), as 

the quantity of final products in storage that were sold is much lower than in the fully 

stochastic scenario in some weeks it was as low as 20% and never exceeded 80%. 

 

 Raw Materials Management 

As with final product management, to assess the performance of the developed model under 

this parameter, in the case of seasonality in the purchasing price of raw materials, four 

different indicators are used. These indicators are the quantity of raw materials in storage 

(Figure 6-9(a)), the quantity of raw materials purchased (Figure 6-9(b)), the amount of 

money spent on purchasing raw materials as a percentage of available funds (Figure 6-9(c)), 

and the percentage of raw materials that went into production (Figure 6-9(d)). 
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Figure 6-9. Raw materials management for the seasonal raw materials price case: (a) raw materials storage usage, (b) quantity of raw 

materials purchased, (c) percentage of money spent on purchasing raw materials, (d) the percentage of raw materials sent to the production 
lines. 
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From Figure 6-9(a), as the purchasing price of raw materials becomes lower, the factory 

purchases a greater quantity, and after accumulating a large quantity of raw materials, it 

sends a greater quantity to production. Moreover, Figure 6-9(b) shows the quantity of raw 

materials purchased over the entire planning horizon, which has several peaks during the 

weeks with the lowest raw material prices. Similarly, Figure 6-9(c) shows the percentage of 

money that was spent on purchasing raw materials, which logically follows the same trend 

of the quantity of raw materials purchased, as with a reduction in the raw materials’ prices, 

greater quantities are purchased and more money spent. Finally, Figure 6-9(d) shows the 

percentage of raw materials that moves from storage to the production lines, which is mostly 

above 60%, reflecting the high efficiency of the model. 

 

 Seasonal Change in Demand 
In this case, the demand for final products is assumed to change weekly. Hence, as with the 

previous case, the simplest periodical function is used to model this seasonal change in 

demand and its standard deviation according to the following equations: 

{
 
 

 
 𝐷𝑝𝑟𝑜𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 70 + 40 ⋅ sin (

(𝑡 − 1) ⋅ 𝜋

26
)

𝜎(𝐷𝑝𝑟𝑜𝑑(𝑡)) =
𝐷𝑝𝑟𝑜𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

7

 6-2 

 

This system of equations is artificially generated to model the simplest seasonal change in 

demand, which is a sin wave. The second equation makes standard deviation proportional 

to the mean value, as shown in Figure 6-10. 
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Figure 6-10. Demand mean value and standard deviations yearly change patterns. 

 

 Maturity and Deterioration Rates 

When applying the neural network closed-loop system after taking into account the 

seasonality effect of the demand, the following results, in terms of maturity and deterioration 

rates, are obtained, as presented in Figure 6-11(a) and Figure 6-11 (b) for raw materials and 

final products, respectively. 
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As seen from Figure 6-11, the storage of raw materials and final products is much more 

efficient under the neural network closed-loop control system, as the average storage time 

is almost twice as low as that of the open loop system for both raw materials and final 

products. Moreover, when compared to the fully stochastic scenario, the performance is 

much better in the case of raw materials, and slightly worse in the case of final products. 

 

 Money Management 

Under this parameter, four indicators are used to assess the performance of the developed 

model in the case of seasonal demand. These indicators are the dynamics of available funds 

(Figure 6-12 (a)), the dynamics of the amount of money invested in the business (Figure 

 Figure 6-11. Maturity analysis for the seasonal demand case (fully stochastic scenario): (a) raw materials 
maturity, and (b) production maturity. 



 
  

223 
 

6-12(b)), the change in the selling price over the planning horizon (Figure 6-12(c)), and the 

amounts of up credit and down credit (Figure 6-12(d)).
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Figure 6-12. Money management for the seasonal raw materials price case (fully stochastic scenario): (a) money 
dynamics, (b) investment dynamics), (c) price dynamics, (d) upcredit and downcredit dynamics.  
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As seen from Figure 6-12(a), the plot starts with the amount of initial funds available before 

the start of the planning horizon, then decreases dramatically to almost zero, similar to the 

fully stochastic scenario, and begins to increase to reach the level of £2M in week 35, before 

it goes down again to £1M at the end of the planning horizon. This shape of the available 

funds plot follows the shape of demand, since the factory needs more cash when there is 

more demand. At the same time, the plot for the amount of funds invested (Figure 6-12(b)) 

shows almost the same trend as the fully stochastic scenario, as it steadily increases along 

the planning horizon until it reaches £50M at the end. Figure 6-12(c) shows the dynamics of 

the final products’ selling price over the entire planning horizon. This plot also follows the 

same trend as the demand plot, since with higher demand, the company can afford to 

increase the selling price. Finally, in Figure 6-12(d), both the up credit and down credit 

dynamics are observed. Regarding up credit, its amount first increases as the quantity of 

final products sold increases, then it suffers from a similar seasonality pattern to that of 

demand, as the higher the sales, the greater the cash inflow.  

 

 Final Product Management 

To assess the performance of the developed model under this parameter, four different 

indicators are used. These indicators are the quantity of final products in storage (Figure 

6-13 (a)), the quantity of final products produced (Figure 6-13(b)), the quantity of final 

products sold (Figure 6-13(c)), and the percentage of produced goods that were sold (Figure 

6-13(d)). 
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Figure 6-13. Production management for the increased storage cost case (fully stochastic scenario): (a) storage 
space usage, (b) quantity of final products produced, (c) quantity of final products sold, (d) percentage of final 

products produced that were sold. 
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From Figure 6-13(a), it can be observed that the quantity of final products in storage is 

majorly boosted in week 39 when the demand for final products is at its lowest level. At this 

point, the low demand led to difficulties in selling the final products produced, thus they are 

kept in storage. Figure 6-13(b) depicts the trend of the quantity of final products produced 

over the planning horizon. As seen from this plot, the production quantity reaches its 

maximum limit several times along the planning horizon, which coincides with periods of 

high demand, as the factory needs to fulfil this demand by producing more products. Figure 

6-13(c) shows the quantity of final products that are sold. The plot is oscillating around 120 

units per week with a maximum of 240 units per week. Finally, from Figure 6-13(d), in any 

given week in the planning horizon, the factory sold more than 30% of the final products in 

storage, but mostly less than 60%, as the prediction of demand becomes tougher and 

tougher, so the factory produces more final products than it can sell in a number of weeks 

over the planning horizon. In this scenario, the model could not manage the production 

efficiently due to the low accuracy in the demand prediction.  

 

 Raw Materials Management 

Similar to final product management, to assess the performance of the developed model 

under this parameter in the case of seasonality in demand, four different indicators are used. 

These indicators are the quantity of raw materials in storage (Figure 6-14(a)), the quantity 

of raw materials purchased (Figure 6-14 (b)), the amount of money spent on purchasing the 

raw materials as a percentage of available funds (Figure 6-14(c)), and the percentage of 

raw materials that went into production (Figure 6-14(d)). 



 
  

228 
 

 

 

Figure 6-14. Raw materials management for the seasonal demand case: (a) raw materials storage usage, (b) quantity of raw materials 
purchased, (c) percentage of money spent on purchasing raw materials, (d) the percentage of raw materials sent to the production lines. 
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From Figure 6-14(a), after the initial drop in the quantity of raw materials, their level in 

storage starts to increase gradually over the entire planning horizon to cover any increase 

in demand, reaching as high as 400 units after 30 weeks. Figure 6-14(b) shows the quantity 

of raw materials purchased over the entire planning horizon, which has several peaks during 

the weeks with the lowest raw materials price; on the other hand, at other times, the factory 

buys almost no raw materials, as there is an excess in storage. Similarly, Figure 6-14(c) 

shows the percentage of money that was spent on purchasing raw materials, which logically 

follows the same trend of the quantity of raw materials purchased. Finally, Figure 6-14(d) 

shows the percentage of raw materials that move from storage to the production lines, which, 

most of the time, oscillates around 40%, which is a low percentage due to the difficulty in 

predicting demand. In general, all the above sub-plots follow very similar trends to the 

corresponding sub-plots of the fully stochastic scenario, as all parameters related to the raw 

materials supply remain the same.  

 Sudden and Complete Loss of Demand  
In this scenario, for the last 16 weeks, i.e. from week 37 to week 52, demand is set to zero 

as a result of a severe financial crisis or trade wars; hence, the company will not be able to 

sell any final products, and the closed-loop neural network model’s performance is assessed 

with respect to the maturity and deterioration rates, money management, final product 

management, and raw materials management, as illustrated in Sections 6.5.1-6.5.4.  

 Maturity and Deterioration Rates 

When applying the neural network closed-loop system after assuming demand to be zero 

from week 37 to week 52, the following results, in terms of maturity and deterioration rates, 

are obtained, as presented in Figure 6-15 (a) and (b) for raw materials and final products, 

respectively. 
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As can be seen from Figure 6-15, the closed-loop neural network system has a much better 

performance with regard to the storage of raw materials, as the maximum number of weeks 

in which the raw materials are in storage is lower; however, with regard to final products 

storage, the performance of both systems is almost the same. Moreover, the open loop 

control system has a higher maximum maturity but lower median value at week 2. 

Nevertheless, when compared to the fully stochastic scenario, the performance is almost 

the same with regard to raw materials, and worse with regard to final products. 

 

 Money Management 

Under this parameter, four indicators are used to assess the performance of the developed 

model in the case of sudden and complete loss of demand. These indicators are the 

Figure 6-15: Maturity analysis for the demand termination case (fully stochastic scenario): (a) raw 
materials maturity, and (b) production maturity. 
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dynamics of available funds (Figure 6-16 (a)), the dynamics of the amount of money invested 

in the business (Figure 6-16 (b)), the change in the selling price over the planning horizon 

(Figure 6-16 (c)), and the amounts of up credit and down credit (Figure 6-16 (d)).
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Figure 6-16. Money management for the demand termination case (fully stochastic scenario): (a) money dynamics, (b) investment dynamics),  
(c) price dynamics, (d) up credit and down credit dynamics. 
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As seen from Figure 6-16(a), the plot starts with the amount of initial funds available before 

the start of the planning horizon. As can be observed, the best strategy to adopt in the case 

of a sudden loss of demand is investing all available funds just before the demand is lost, to 

protect them against inflation. Similarly, the plot for the amount of funds invested (Figure 

6-16(b)) shows that, at the end of the planning horizon, the majority of funds are directed 

towards investment, and it stabilises after the demand stops; however, the amount of money 

moved to investments is less than in the fully stochastic scenario. Figure 6-16(c) shows the 

dynamics of the final products’ selling price over the entire planning horizon. From this figure, 

it can be observed that the selling price of final products falls in the range of £30K until the 

termination of demand, while after the termination, it becomes useless to measure this 

parameter, so the algorithm makes it random. Finally, in Figure 6-16(d), both the up credit 

and down credit dynamics are observed, with both paid back over the time horizon until the 

end of the 52nd week. Regarding up credit, its amount increases at the start of the planning 

horizon as the quantity of final products sold increases; however, after week 37, when 

demand stops and the company no longer sells products, it collects all the up credit owed 

by customers at the end of the planning horizon. Similarly, all the down credit was paid by 

the end of the planning horizon, as the company does not purchase any more raw materials. 

 

 Final Product Management 

To assess the performance of the developed model under this parameter, four different 

indicators are used. These indicators are the quantity of final products in storage (Figure 

6-17 (a)), the quantity of final products produced (Figure 6-17(b)), the quantity of final 

products sold (Figure 6-17(c)), and the percentage of produced goods that were sold (Figure 

6-17(d)).
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Figure 6-17. Production management for the increased storage cost case (fully stochastic scenario): (a) storage space 
usage, (b) quantity of final products produced, (c) quantity of final products sold, (d) percentage of final products 

produced that were sold. 
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From Figure 6-17(a), it can be observed that the quantity of final products in storage 

accumulates heavily in week 36, when the demand for final products vanishes. Moreover, 

Figure 6-17(b) supports the fact that final products are still produced for five weeks after 

demand stops, since the production time is five weeks and the company cannot cancel the 

operation once the raw materials enter the production lines. Figure 6-17(c) shows the 

quantity of final products that were sold. The plot is oscillating around 60 units per week until 

week 37, after which the company cannot sell any more products because there is no 

demand. Finally, from Figure 6-17(d), at any given week in the planning horizon, the quantity 

of final products sold is more than 40% of final products in storage, reaching as high as 90% 

in some weeks. 

 

 Raw Materials Management 

As with final product management, to assess the performance of the developed model under 

this parameter in the case of a sudden and complete loss of demand, four different indicators 

are used. These indicators are the quantity of raw materials in storage (Figure 6-18(a)), the 

quantity of raw materials purchased (Figure 6-18 (b)), the amount of money spent on 

purchasing raw materials as a percentage of available funds (Figure 6-18(c)), and the 

percentage of raw materials that went into production (Figure 6-18(d)).
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Figure 6-18. Raw materials management for the fixed demand termination case (fully stochastic scenario): (a) raw materials storage usage, (b) 
quantity of raw materials purchased, (c) percentage of money spent on purchasing raw materials, (d) the percentage of raw materials sent to 

the production lines. 
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Figure 6-18 (a) shows that the quantity of raw materials follows a zigzag pattern, with each 

peak lower than its predecessor, as demand fluctuates and diminishes, before stopping 

completely. Moreover, after week 37, the factory stops purchasing new raw materials as 

demand stops; by week 41, there are almost no raw materials in storage. Figure 6-18(b) 

shows that the quantity of raw materials purchased over the entire planning horizon never 

exceeded 90 units and no raw materials were purchased from the time the demand stopped. 

Furthermore, Figure 6-18(c) shows the percentage of money that was spent on purchasing 

raw materials, which logically follows the same trend of the quantity of raw materials 

purchased, hence no money is spent after week 37. Finally, Figure 6-18(d) shows the 

percentage of raw materials that moves from storage to the production lines, which shows 

only one peak after the 37th week. The reason behind this one-time peak is that the internal 

price of production is higher than the price of raw materials; therefore, if the demand returns 

to its usual level, the company will have a lot of final products to sell.  

 

 Sudden Supply Termination 
In this scenario, it is assumed that the raw materials supply stops after week 37, as a result 

of supplier bankruptcy or trade embargos and for the last 16 weeks, hence it is set to zero. 

The effect of sudden supply termination on the maturity and deterioration rates, money 

management, final product management, and raw materials management is illustrated in 

Sections 6.6.1-6.6.4.  

 

 Maturity and Deterioration Rates 

When applying the neural network closed-loop system after assuming that supply is stopped 

and set to zero from week 37 to week 52, the following results, in terms of maturity and 

deterioration rates, are obtained, as presented in Figure 6-19 (a) and (b) for raw materials 

and final products, respectively. 
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As can be seen from Figure 6-19 (a) and (b), the closed-loop neural network system has 

much better performance in terms of both raw materials and final product storage, 

respectively, as the time raw materials and final products spend in storage before being 

used or sold is much shorter than in the open-loop system. Furthermore, more than 50% of 

final products are made to order, versus only 18% for the open loop system. The 

deterioration rate for the closed-loop system is twice as lower as the rate for the open loop 

system with regard to raw materials storage, and almost three times lower regarding the 

final product storage. Again, when compared with the fully stochastic scenario, the 

performance is better in terms of raw materials and almost the same in terms of final 

products. 

Figure 6-19. Maturity analysis for the supply termination case (fully stochastic scenario): (a) raw 
materials maturity, and (b) production maturity. 
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 Money Management 

Under this parameter, four indicators are used to assess the performance of the developed 

model in the case of sudden supply termination. These indicators are the dynamics of 

available funds (Figure 6-20 (a)), the dynamics of the amount of money invested in the 

business (Figure 6-20(b)), the change in the selling price over the planning horizon (Figure 

6-20(c)), and the amounts of up credit and down credit (Figure 6-20 (d)).
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Figure 6-20. Money management for the supply termination case (fully stochastic scenario): (a) money dynamics, (b) investment dynamics),  
(c) price dynamics, (d) up credit and down credit dynamics. 
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As seen from Figure 6-20(a), the plot starts with the amount of initial funds available before 

the start of the planning horizon. As can be observed from this plot, after week 37, the 

company stops purchasing any new raw materials, which leads to a final increase in the 

available funds to the up credit interest. However, after week 43, the company moves the 

available funds to investment in order to protect them against inflation. Similarly, the plot for 

the amount of funds invested (Figure 6-20(b)) shows that the money directed towards 

investment is increasing steadily, and at the end of the planning horizon, the majority of 

funds are directed towards investment, even at a higher amount than in the fully stochastic 

scenario, as there will be no more production or income from selling final products when the 

supply stops, thus it is more profitable to invest the money. 

Figure 6-20(c) shows the dynamics of the final product selling price over the entire planning 

horizon. From this figure, it can be observed that the selling price of final products oscillates 

around the £27K until the termination of supply. After the termination, the company sells the 

final products at a constant price, as there is no supply and it wants to sell all the final 

products remaining. Finally, in Figure 6-20(d), both the up credit and down credit dynamics 

can be observed, where up credit starts to decrease after week 43 when the remaining 

quantity of final products is sold, as it represents the amount of money owed by customers 

for products, and down credit starts to decrease from week 37 when the supply stops, as it 

represents the amount of money owed to suppliers as a result of purchasing raw materials. 

 

 Final Products Management 

To assess the performance of the developed model under this parameter, four different 

indicators are used. These indicators are the quantity of final products in storage (Figure 

6-21 (a)), the quantity of final products produced (Figure 6-21(b)), the quantity of final 

products sold (Figure 6-21(c)), and the percentage of produced goods that were sold (Figure 

6-21(d))  

.
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Figure 6-21. Production management for the supply termination case (fully stochastic scenario): (a) storage space 
usage, (b) quantity of final products produced, (c) quantity of final products sold, (d) percentage of final products 

produced that were sold. 
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From Figure 6-21(a), it can be observed that the quantity of final products in storage starts 

to decrease after week 41, until it reaches zero in week 50. This delay between the 

termination of both the supply and final products in storage is a result of the production lines’ 

delay, which is five weeks according to the steel factories’ common designs, hence at least 

five weeks are required to sell all the final products. Moreover, Figure 6-21(b) supports the 

fact that final products are still produced for five weeks after the supply stops, since the 

production time is five weeks. Similarly, Figure 6-21(c) shows the quantity of final products 

that were sold, which fluctuates around 130 items and then goes down to zero when there 

are no more final products to sell. Finally, from Figure 6-21(d), the percentage of final 

products sold oscillates around 50% along the planning horizon, which suggests that this 

irregular scenario impacted the robustness of the model; however, it still provides acceptable 

results. 

 

 Raw Materials Management 

Similar to final product management, to assess the performance of the developed model 

under this parameter in the case of a sudden and complete loss of supply, four different 

indicators are used. These indicators are the quantity of raw materials in storage (Figure 

6-22(a)), the quantity of raw materials purchased (Figure 6-22 (b)), the amount of money 

spent on purchasing raw materials as a percentage of available funds (Figure 6-22(c)), and 

the percentage of raw materials that went into production (Figure 6-22(d)).
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Figure 6-22. Raw materials management for the supply termination case (fully stochastic scenario): (a) raw materials storage usage, (b) 

quantity of raw materials purchased, (c) percentage of money spent on purchasing raw materials; (d) the percentage of raw materials sent to 
the production line.
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Figure 6-22(a) shows that the quantity of raw materials follows a zigzag pattern, with each 

peak lower than its predecessor. Moreover, after week 37, the factory cannot purchase any 

new raw materials as the supply has stopped; thus, after week 41, the quantity of raw 

materials in storage is almost zero. Figure 6-22(b) shows the quantity of raw materials 

purchased over the entire planning horizon, which oscillates around 150 units and reaches 

zero when the supply is interrupted in week 37. Furthermore, Figure 6-22(c) shows the 

percentage of money that was spent on purchasing raw materials, which logically follows 

the same trend as the quantity of raw materials purchased, hence no money is spent after 

week 37. Finally, Figure 6-22(d) shows that the percentage of raw materials that moves 

from storage to the production lines goes as low as 30% in some weeks. This low 

percentage might be justified by the fact that, in some instances, it is more effective to 

temporarily lower production and hold raw materials in storage, in the hope that the 

production cost declines or the selling price increases. 

 Chapter Summary 
In the current chapter, a sensitivity analysis has been performed to examine the robustness 

of the developed model and its ability to handle real-life scenarios that can occur in the 

steel manufacturing industry. In total, five cases based on the fully stochastic scenario and 

reflecting either irregular economic patterns or worst-case scenarios were considered and 

analysed, as follows:  

1) An increase in storage costs.  

2) Seasonal change in the purchasing price of raw materials.  

3) Seasonal change in demand. 

4) Sudden and complete loss of demand. 

5) Sudden and complete termination to the supply channels. 

To assess the closed loop neural network model’s performance in each of these cases, the 

analysis was performed using the same parameters presented in Sections 5.3.2, 5.3.3 and 

5.3.4 of the previous chapter, which are: 

1) Storage analysis, which includes maturity distribution, average maturity value 

and deterioration rate 

2) Cash flow analysis 

3) Raw materials analysis 

4) Production analysis. 

From the conducted analysis, the following conclusions can be drawn. In terms of maturity, 

either for raw materials or final products, the performance was mostly similar in the above 

five cases to the fully stochastic scenario analysed in Chapter 5. In the case of an increase 
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in the storage cost, the closed loop neural network system was able to adjust its investment 

level to increase the amount of funds available at the end of the planning horizon, while 

reducing the amounts invested in order to be able to cover an increase in costs. In addition, 

in terms of the quantity of final products in storage, the model’s performance was similar to 

the fully stochastic scenario of Chapter 5. On the other hand, it produced lower quantities 

of produced and sold final products when compared to the fully stochastic scenario. In 

terms of the raw materials performance indicators, following the impact of an increase in 

the storage cost, the model produced less accumulation of raw materials compared to the 

fully stochastic scenario, in order to minimise these costs, which reflects its robustness. 

When analysing the case of a seasonal change in the price of raw materials, the results of 

the closed-loop neural network model show major boosts in the quantities of raw materials 

purchased and final products produced when the purchasing price of the former is at its 

lowest level, which proves how effective the model is in adapting to such an irregular event. 

However, similar to the previous scenario, the quantities of the final product that were 

produced and sold are still lower than those of the fully stochastic scenario. On the other 

hand, when the seasonal change occurs in the demand, the model showed high robustness 

and effectiveness in dealing with this irregular scenario. The model freed funds, making 

them available to the company to purchase raw materials when demand is high, and, 

similarly, increased the selling price of final products during periods of high demand. In 

addition, there was a major boost in the quantities of final products produced and raw 

materials purchased when demand was high, and the factory reached its maximum 

production capacity during these periods. 

In cases where demand or supply are suddenly lost, the model advises the company to 

direct most of its funds to investment to protect it from inflation until the normal conditions 

return, which will protect the company from bankruptcy. In terms of final products and raw 

materials management, the model was able to adjust to these scenarios and showed trends 

that depicted the actual real-life scenarios, such as accumulation of final products in 

storage when demand is lost. 

In conclusion, in the sensitivity analysis conducted in this chapter, it was proven that the 

model has a robust performance, as it was able to both adjust its parameters to different 

irregular scenarios, and alter inventory and money management strategies in ways that 

can maximise profit for the company, and protect it from bankruptcy until normal economic 

and business conditions are resumed. 
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 Conclusions and Future Work 

 Introduction 
In an attempt to help companies with large-volume inventory to effectively manage their 

inventory and final product storage in a limited space, this research study explored the 

various aspects of such companies by taking the steel industry as an example. In particular, 

an important consideration regarding the steel industry is the deterioration of raw materials 

and final products as a result of environmental factors. In this context, the main questions 

companies in the steel industry face concern how many raw materials they should purchase 

as well as how many final products they should produce (and when) in order to optimise 

their operations in such a way that the cost can be minimised and the profit maximised. 

This optimisation will also help in improving the sustainability of the steel industry by 

optimising the use of resources, minimising the energy required to preserve these materials 

from deterioration, and reducing waste generated by excess ordering of raw materials or 

production of final products. 

As discussed in Section 2.4.4.2.1, in the current business scenario it is evident that the 

success of companies is not only measured in terms of financial soundness, but also in 

terms of their environmental friendliness through adopting sustainable practices into their 

efficiency-based operations. In this context, it becomes crucial to consider not only financial 

but also sustainable performance measurements when managing the inventory. 

Nevertheless, according to the analysed studies in the conducted literature review, no tool 

or model developed by previous research optimised the inventory management of large-

volume perishable material while taking into account the sustainability impacts of inventory 

planning activities. In order to fill this research gap, the overall aim of this research study 

was to establish a sustainable inventory management model incorporating the different 

sustainability measures that are applicable to the steel manufacturing industry, such as 

energy consumption and resource consumption, to manage the environmental impacts of 

this activity while optimising its economic performance. The developed model was based 

on the well-known EOQ concept to study and optimise the inventory and order placement 

decisions over 52-week time horizon periods for high-volume material with limited storage 

space, such as steel, under stochastic demand, supply and backorders. The proposed 

model is expected to minimise the high storage and handling costs associated with raw 

materials and final products of a steel manufacturing company, and to prevent the 

deterioration of this inventory as a result of different environmental factors, thus maximising 

the company’s profits. In order to do so, the proposed model was developed based on a 

control system algorithm capable of providing timely recommendations for the storage 

quantities of both products and raw material. In this way, the decisions regarding the level 



 
  

248  

of investment, steel purchasing strategy, and setting of optimal production levels 

throughout the planning horizon are facilitated. Two different control system approaches, 

namely, an open-loop and a closed-loop based on ANNs, were considered. The latter, 

introduces feedback, allowing the mathematical model to be periodically updated based on 

the current values of the business parameters. Finally, due to the complexity of the 

addressed problem and its specific characteristics, a PSO technique was used to solve the 

developed model.  

The objective of this research study was to contribute to the continuing evolution of 

inventory management models by developing a novel model capable of: 

1. Modelling the stochastic nature of the different inventory parameters, such as demand, 

supply and backorder, for high-volume products with limited storage space when taking the 

sustainability approach into consideration. 

2. Modelling the manner and nature of the deterioration of raw materials and final products 

of the steel manufacturing factory, and optimising the storage time of the inventory in order 

to reduce energy costs and, in turn, storage costs.  

3. Analysing the cash flow cycle of the steel manufacturing company and incorporating its 

different parameters and determinants into the inventory management model, in order to 

ensure the efficiency of the production process and maximise the company’s profit. 

In this way, this model was intended to assist the managers of steel manufacturing 

companies in deciding whether and how they can reschedule production and inventory 

plans to improve the efficiency of their operations and reduce their sustainability impacts, 

while maximising the company’s profits. In this final chapter, the main findings of this 

research study are summarised. In particular, in Section 7.2 the main conclusions are 

discussed. In Section 7.3, the main contributions to the state-of-the-art are presented. In 

Section 7.4 some recommendations are provided and the significance of the research is 

stated. Finally, in Section 7.5 the limitations of the research study are discussed and future 

research directions are suggested.  

 

 Main Conclusions 
In this research study, an inventory management model was developed to optimise the 

ordering and storage of large-volume inventory and final products based on developed 

EOQ concept to incorporate the stochastic nature of demand, supply and backordering, 

while taking into consideration the deterioration of these items as a result of different 

environmental factors. In particular, the proposed model was based on extending the well-
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known EOQ concept to account for steel manufacturing characteristics solved through an 

ANN based closed-loop which is optimised by a PSO algorithm. The closed-loop 

architecture introduces feedback, allowing the mathematical model to be periodically 

updated based on the current values of the business parameters.  

In order to develop the mathematical model extending the EOQ model, the business cycle 

of the steel manufacturing factory was analysed. In this way, the crucial and unique 

business parameters required for the estimation of the business efficiency of a steel 

manufacturing factory were determined. According to this analysis, the main components 

of the steel manufacturing factory’s business cycle were defined and classified into 

stochastic or deterministic, as well as the relationship between them, which act as drivers 

for generating either profits or losses, and the different transactions that contribute to 

realising profits or incurring losses were derived and investigated, towards developing the 

model.  

In order to control this mathematical model, an open and closed-loop approaches were 

introduced. In the case of the open-loop control system, five instances of external 

stochastic factors were generated using the Monte Carlo method, and then the control for 

the entire planning horizon of 52 weeks, which would maximise the average profit for all 

instances, was deduced. In the case of the closed-loop system, a neural network to 

generate the optimal control parameters is used. The used ANN consists in one hidden 

layer using as inputs the business parameters from the mathematical model and providing 

as outputs the control variables that optimise the profit function (objective function). The 

weights of the ANN are adjusted based on the current business measurements, in order to 

keep the model updated and provide managers useful information towards helping them in 

their decision-making process. Finally, a PSO algorithm has been adopted to train both the 

open and closed-loop systems.  

Due to the lack of available benchmark results in the literature as well as the uniqueness 

of the model developed in this research study, it is not possible to compare the obtained 

results of the developed model with results already available in the sate-of-the-art. In this 

context, the developed model was validated by comparing the performances of the open 

and closed-loop versions against each other. Here it is important to highlight that, in order 

to make this comparison fair, the same PSO internal parameters were used to train the 

open and closed-loop models. In particular, experiments applying the developed model 

within different steel manufacturing scenarios were conducted, comparing both systems in 

terms of maturity and deterioration rates, money management, final product management, 

and raw materials management. Experimental results allowed to do the following 

observations:  
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1. The closed-loop control system has lower mean maturity and deterioration rate 

values for both raw materials and final products. 

2. The profits generated through the use of one unit of storage are very similar for 

both control systems. 

3. The neural network closed-loop control system results in higher profit than the 

direct open-loop control system for each Monte Carlo run. 

4. The neural network closed-loop control system leads to a more balanced 

investment strategy, in which a small investment is made at the beginning of the 

planning horizon, then the amount of this investment increases as we move 

forward in the planning horizon. 

5. The direct open-loop control system has much less money over the entire 

planning horizon, which hinders the ability of the company to increase the 

quantity of raw materials purchased as a reaction to any increased demand, 

which might jeopardise the company’s operations and prevent it from 

maximising its profits. 

6. The learning progress of the closed-loop control system was much more 

efficient than the progress of the open-loop control system.  

Based on the above discussion, it can be seen that the ANN closed-loop based model 

resulted to be the best suited for the inventory management in the steel manufacturing 

industry, being robust, accurate and efficient. Once the most suitable model was already 

determined, this model was tested within the complex context of the stochastic demand, 

supply and backorder. In this line, experiments were conducted under the fully stochastic 

scenario. In addition, the robustness of the developed model was further tested by a 

sensitivity analysis where the model was implemented under different irregular economic 

patterns or worst-case scenarios. In particular, an increase in storage costs, a seasonal 

change in the purchasing price of raw materials, a seasonal change in demand, a sudden 

and complete loss of demand, and a sudden and complete termination to the supply 

channels, were considered. Based on the obtained experimental results the following 

observations can be done: 

1. For some of the tested parameters, the obtained results do not vary significantly 

through the different extreme business scenarios tested here. Moreover, in 

these cases, the obtained results are similar to the ones obtained in the fully 

stochastic scenario. In particular, this has been observed for the maturity, either 

for raw materials or final products, and the quantity of final products in storage. 

These results show that the developed model can adapt to these different 

scenarios in a similar way in terms of the mentioned parameters. Moreover, it 
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could be said that the model can interpret these scenarios as fully stochastic 

scenarios and apply the same optimisation strategy towards adjusting to them.  

2. When comparing the quantities of produced and sold final products, the 

produced quantity is lower in these scenarios than in the fully stochastic one. 

This shows that the extreme scenarios’ conditions have a greater (negative) 

impact on these quantities than the fully stochastic scenario. In this sense, the 

developed model performs better when optimising these quantities in the fully 

stochastic scenario, allowing the company to sell more final products.  

3. In the case of an increase in the storage cost, the closed loop neural network 

system was able to adjust its investment level to increase the amount of funds 

available at the end of the planning horizon, while reducing the amounts 

invested in order to be able to cover an increase in costs. This shows the 

robustness of the developed model with respect to changes in the storage costs.  

4. In terms of the raw materials performance indicators, following the impact of an 

increase in the storage cost, the model produced less accumulation of raw 

materials compared to the fully stochastic scenario, in order to minimise these 

costs. This result is promising since it shows that the developed model is 

capable of adapting to an increase in the storage cost, producing less 

accumulation which means, on one hand using less space, and on the other, 

reducing the storage cost.  

5. In the case of a seasonal change in the price of raw materials, the results 

showed major boosts in the quantities of raw materials purchased and final 

products produced when the purchasing price of the former is at its lowest level. 

This proves the effectiveness of the proposed model in adapting to such an 

irregular event.  

6. The results obtained for the case of a seasonal change in the demand show 

that the model has a high robustness and effectiveness when dealing with this 

irregular scenario. The model freed funds, making them available to the 

company to purchase raw materials when demand is high and, similarly, 

increased the selling price of final products during periods of high demand. In 

addition, there was a major boost in the quantities of final products produced 

and raw materials purchased when demand was high, and the factory reached 

its maximum production capacity during these periods. 

7. In cases where demand or supply are suddenly lost, the model advises the 

company to direct most of its funds to investment to protect it from inflation until 

the normal conditions return, which will protect the company from bankruptcy. 

In terms of final products and raw materials management, the model was able 
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to adjust to these scenarios and showed trends that depicted the actual real-life 

scenarios, such as accumulation of final products in storage when demand is 

lost. 

8. When there is a sudden decrease or interruption in the supply of raw materials, 

the curve of down credit depicts the shape of the raw materials price, since it 

reflects the money owed by the company to suppliers. 

Based on the observations done as results of the sensitivity analysis, it can be concluded 

that the developed model based on the ANN closed-loop is robust against different extreme 

business scenarios. In particular, it has shown to be able to adjust its parameters to the 

different irregular scenarios, and alter inventory and money management strategies 

towards maximising the company’s profit even in such complex environment. In this way, 

the developed model can prevent the company from losing money or even from bankruptcy, 

until normal economic and business conditions are resumed. Here, it is important to 

highlight that the robustness of the developed model and its capability of adapting to such 

extreme scenarios relies on 1) the extension of the EOQ model by identifying, modelling 

and including the main steel business parameters; 2) the feedback provided by the closed-

loop control system; 3) the high learning capability and of the ANNs; and 4) the accurate 

and fast parameter optimisation strategy based on the PSO technique.   

Based on the above discussion, it can be concluded that the presented research study is 

significant in the field of inventory models developed for steel manufacturing applications 

by developing a sustainable space-dependant model which not only accounts for the most 

concerning characteristics in this industry, such as the limited storage space or the 

stochastic demand, but it also accounts for sustainability measures, such as energy 

consumption and resource consumption, to manage the environmental impacts of this 

activity while optimising its economic performance. This has been shown in the conducted 

experiments, where the model has proven to be capable of maximising profit while 

minimising adverse environmental impacts, even for extreme business scenarios.  

 

 Contribution to the Body of Knowledge  
The developed model and the conducted research study make significant contributions to 

the body of knowledge in the inventory management field. These contributions include: 

1. Developing an inventory management model that accounts for the specific 

characteristics of the steel manufacturing industry, such as stochastic demand and 

space limitations. In this way, the developed space-dependent model fills the gap 
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regarding modelling the inventory management of the steel manufacturing company 

taking into account the stochastic nature of demand, supply and backordering. 

2. Developing an inventory management model that accounts for sustainable aspects 

of the business. In particular, since the developed model is focused on minimising 

storage cost and time, this, in turn, will assist in minimising the negative 

environmental impacts of ordering and holding inventory. In this way, the model 

makes a significant contribution towards the scarce literature regarding the 

sustainability aspects of the inventory management in the steel manufacturing 

industry. 

3. Developing an inventory management model that optimises a multidimensional 

objective function. On the contrary of the majority of the previously available models 

in the literature which minimises costs, the developed model maximises a net profit 

function that includes different parameters, such as investments, current cash, up 

credit, down credit and backorder loss. In this way, the optimisation of the proposed 

objective function allows maximising the profit while minimising the storage costs.  

4. Developing an accurate and robust inventory management model for large-volume 

materials solved using the PSO technique. As discussed throughout this research 

study, the inclusion of several parameters accounting for steel manufacturing 

characteristics in the mathematical model extending the EOQ model, makes it not 

possible to use the traditionally used techniques to solve the model. Moreover, 

some previous works in the literature had to limit the model’s complexity in order to 

be able to solve it, being not able to fully reflect the real-life characteristics. In this 

line, there has always been a trade-off between the model’s complexity and its 

solvability. In this research study, this limitation is overcome by using a PSO 

algorithm to solve the model, constituting one of the most important contributions to 

the field in the sense of proving the suitability of such technique to the addressed 

application, even in extreme conditions as the ones of the conducted experiments.  

5. Developing an accurate and robust inventory management model for large-volume 

materials based on ANNs. The developed model takes advantages of the ANNs 

high learning capability to ensure the parameters of the model can be updated on 

a weekly basis based on the current values of the business indicators. In this way, 

the mathematical model can be adjusted towards adapting to the economic and 

business environment giving managers useful and updated information that can 

help them in their decision-making process.    
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 Recommendations and Significance  
This research study is aimed at supporting the steel manufacturing companies in their 

inventory management decisions, specifically speaking, when they have limited storage 

space. The recommended adoption of this model by the steel manufacturing companies 

will help in:  

1. Reducing the costs of holding and ordering inventory for the steel manufacturing 

companies. 

2. Reducing the probability of deterioration of the raw materials and final products 

of a steel manufacturing company as a result of environmental factors. 

3. Maximising the profits of such companies. 

4. Improving the sustainability of the steel manufacturing industry as a whole, and 

the supply chain of this industry, in particular.  

Consequently, the above impacts are expected to provide major benefits to the 

environment, the steel manufacturing companies, and the overall economy. The 

significance of this model in protecting the environment is three-fold. First, by optimising 

the storage duration of raw materials and final products, the energy required to preserve 

these materials, in terms of lighting and cooling, will be reduced, which will lower the energy 

consumption of the steel manufacturing industry. This, in turn, will help to reduce pollution 

resulting from the consumption of high quantities of energy. Second, optimising the 

duration of the storage of these materials while considering their deterioration will ensure 

that these materials are not ruined, thus optimising the use of natural resources and 

preventing their depletion. Third, when materials deteriorate, companies tend to dispose of 

them as waste, which pollutes soil and water resources. Therefore, preventing this 

deterioration will reduce the amount of waste and mitigate the need to dispose of it, hence 

preventing the contamination of soil and water resources. 

With regard to steel manufacturing companies, the positive impacts of implementing the 

developed model have been heavily emphasised in different parts of this research study. 

Regarding the significance of this model to the overall economy, the steel manufacturing 

industry is a critical industry for the health of any economy. Therefore, if companies of the 

industry are able to manage their inventory and resources, this will help to avoid any 

unnecessary increase in the price of this critical commodity, which in turn will benefit other 

sectors of the economy, such as the construction industry, which is a major driver for a 

booming economy. Moreover, there will be additional freed-up cash in the economy by both 

the manufacturers and consumers, which will boost investments in other sectors of the 

economy. Finally, preventing any unnecessary increase in the price of steel will benefit the 
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entire society, as housing will become more affordable, and building new infrastructure 

projects will become more feasible.      

 

 Limitations and Suggestions for Future Research 
This research study introduced a new inventory management model for large-volume 

materials that deteriorate over time, while taking into consideration the sustainability 

impacts of managing such inventory. Despite the proven accuracy and reliability of the 

model’s results, future research can be beneficial in investigating new solution methods to 

obtain new optimal solutions for the multi-objective problem and improve the effectiveness 

of the solution methodology. Additionally, new models that consider the uncertainty of costs 

and demands can be developed through fuzzy models. 

Although this model presents a breakthrough in inventory management research, and is 

an effective tool in enhancing the inventory management decision-making process for 

companies that deal with such types of inventory, a number of future research opportunities 

are available to further enhance and improve this process. These opportunities include, but 

are not limited to:  

1) Extending the model to include more than one market policy for providing raw 

material to depict the competition present. 

2) Accounting for the variable nature of the transportation cost of raw materials 

and final products. 

3) Accounting for the variable nature of the inflation rate, which impacts the costs 

of raw materials and the selling prices of final products. 

4) Using actual steel manufacturing data to improve the accuracy of the developed 

models. 

 

 Extending the Model to Include More than One Market Policy for 

providing the raw material  

The developed model assumed a scenario in which the market is based on one market 

policy for providing the necessary raw materials. However, more scenarios will lead to more 

accurate results, and especially in strategic industries such as the steel industry, whereby 

more than one market policy could push the manufacturers to use more than one supplier 

price policy to avoid any disruption in operations. This scenario will create competition 

among the suppliers and manufacturers, which will impact both the costs of purchasing raw 

materials and the prices of selling final products. Hence, a model that depicts this scenario 
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will help in reflecting the business case of the steel manufacturing industry in a more 

accurate way. 

 

 Accounting for the Variable Nature of the Transportation Cost   

Transportation cost is one of the major cost components of purchasing raw materials or 

selling final products. These costs can vary according to the relative locations of the 

supplier and the manufacturer, the mode of transportation, the change of fuel costs, and 

the quantity of purchased raw materials or sold products. However, in developing the model 

in this research study, this cost was assumed to be fixed over the entire planning horizon, 

which is rarely the case in real life. Therefore, a model that depicts the change in the 

transportation cost of raw materials and final products, due to one or more of the above 

reasons, will help to improve the accuracy of the inventory management of the steel 

manufacturing companies. 

 

 Accounting for the Variable Nature of the Inflation Rate  

Similar to transportation cost, the inflation rate is rarely constant over the planning horizon, 

as it normally changes on a monthly basis. These rates impact the cost of purchasing raw 

materials or selling final products, as suppliers/manufacturers increase their profit margins 

to account for an increase in the inflation rate. Nonetheless, to reduce the complexity of the 

developed model, this rate was assumed constant over the entire planning horizon. A 

model that depicts the change in the inflation rate, and its impact on the purchasing cost of 

raw materials and the selling price of final products, would accurately depict the real-life 

business logic of the steel manufacturing industry.  
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Cheong (2017); Alinaghian and Zamani (2019); Tiwari, 
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(2008); Zhang et al. (2011); Zhang et al. (2015); Rabieh 
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Stochastic 15 Jain et al. (2018); Benkherouf, Skouri and Konstantaras 

(2016); Mawandiya, Jha and Thakkar (2018); Shekarian 

et al. (2016); Habibi et al. (2017); Hiassat et al. (2017); 

Soysal et al. (2018); Azadeh et al. (2017); Janssen et al. 

(2018); Liao and Deng (2018); Hua et al. (2016); Konur 
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Appendix B: Example of input data for programming implementation of the model 

Name Description 
     

MC_samples Number of samples in Monte Carlo 

method. This variable should exist, be 

positive and integer. No stochastic 

variables should appear before it 

5 
    

Horizon How many periods ahead we do plan 52 
    

Leadtime Lead time 5 
    

leadprod Production during Lead_Time periods 

before start 

100 100 100 100 100 

 
Initial data 

     

prodinit Initial production in inventory 100 
    

moneyinit Initial money 5000 
    

rawinit Initial raw materials 100 
    

 
ORDERING RAW MATERIALS 

     

raw_value Value of raw materials in inventory by 

end of time horizon 

5 
    

prod_value Value of production in inventory by 

end of time horizon 

10 
    

discount_val Value of discount that will be added if 

order quantity exceed discount_size 

with such number 

0.05 
    

discount_size Size of raw materials order that have 

to be placed to add discount 

100 
    

min_order Minimum order 30 
    

fixcost_smooth Artifitial parameter. If company buy 

less than this value, fixed cost 

reduces by quadratic dependence 

50 
    

N_SupplyFailProb Probability of delivery fail average 0.1 0.1 0.1 0.1 0.1 
 

Standard deviation 0 0 0 0 0 

SupplyFail_Duration Number of planning periods when 

company would have to pay more for 

raw materials in case of delivery fail (It 

should be integer, otherwise one have 

adjust 'RiskDeliveryFail' parameter) 

2 
    

N_BackorderCost extra charge per unit of raw material 

of delivery fail average 

5 5 5 5 5 

 
Standard deviation 0 0 0 0 0 

N_fixedcost Cost of raw materials order (cost of 

order not related to ordered quantity) 

average 

575 575 575 575 575 

 
Standard deviation 0 0 0 0 0 

N_cost basic cost of one unit of materials 

average 

4 4 4 4 4 

 
Standard deviation 0 0 0 0 0 
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Name Description 
     

 STORAGE      

storageAboveThres
hold 

Additional price for storage 
above threshold 

0.5 
    

storageThreshold 
 

200 
    

N_RawStorage Storage expences per period 
average 

0.5 0.5 0.5 0.5 0.5 

 
Standard deviation 0.05 0.05 0.05 0.05 0.05 

N_ProductStorage Storage expences per period 
average 

0.5 0.5 0.5 0.5 0.5 

 
Standard deviation 0.05 0.05 0.05 0.05 0.05 

RawDeterioration Fraction of raw materials that will 
be deteriorated during time period 

0.05 
    

ProduceDeterioratio
n 

Fraction of products --- 0.05 
    

 
PRODUCTION 

     

Basic_power how many units can be produced 
daily (1unit of raw materials used 
to produce every unit of 
production) 

100 
    

Production_cost cost of unit production 5 
    

Overtime_power how many units can be produced 
during overtime  

50 
    

Overtime_extra overtime extra cost price per unit 2.5 
    

DefectCost How much cost to fix moderate 
defect 

5 
    

Defectprob Probability of moderate defect 0.02 
    

HighDefectProb Probability of critical defect 
(production go to waste) 

0.005 
    

 
SELLING 

     

N_Price0 Average 30 30 30 30 30 
 

Standard deviation 5 5 5 5 5 

N_Demand0 Average 70 70 70 70 70 
 

Standard deviation 2.5 2.5 2.5 2.5 2.5 
 

MONEY 
     

Fixedcosts Fixed costs per period 
(unconditional) 

300 
    

Inflation inflation per period forecast (can 
include lose from not investing 
those money) 

0.002 
    

OverdraftRate Rate of overdraft per period 0.008 
    

TaxRate Base of tax is revenue of all goods 0.05 
    

UPcreditPay fraction of upcredit to repay per 
period 

0.2 
    

DOWNcreditPay fraction of downcredit to repay per 
period 

0.2 
    

Fail_penalty Additional penalty for negative 
outcome (If company end period in 
loss in some cases, then 
additional penalty adds 
Loss*Fail_Penalty. It shows how 
many dollars of average profit we 

1 
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can sacrifice to reduce expectation 
of losses by 1 dollars 

 
EMPIRICAL PARAMETERS 

     

Pmax Maximum price for good 50 
    

el Demand elasticity by price 5 
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Appendix C: Significant parts of the MATLAB code 

%Entry point, lauch of swarm optimization  

filename='seasonal supply price'; 

m=EOQ_inventory(filename); 

%% 

hlc=10; 

control_length=13*hlc+hlc*4+hlc+4; 

options = optimoptions('particleswarm', 'Display', 'iter', 

'MaxIterations',1000,'SwarmSize',1000,... 

'UseVectorized', true,'MaxStallIterations',100); 

[x,~,exitflag,output] = 

particleswarm_mine(@(x)profit_NN(x,m,@make_NN_control),control_length,-

ones(1,control_length),ones(1,control_length),options); 

[fval,bparam]=profit_NN(x,m,@make_NN_control); 

save(strcat('results\',filename),'m','x','bparam','output','options') 

%% 

control_length=52*4; 

options = optimoptions('particleswarm', 'Display', 'iter', 

'MaxIterations',2000,'SwarmSize',1000,... 

'UseVectorized', true,'MaxStallIterations',100); 

[x,~,exitflag,output] = 

particleswarm_mine(@(x)profit_NN(x,m,@make_identity_control),control_length,zeros(1,

control_length),ones(1,control_length),options); 

 

[fval,bparam]=profit_NN(x,m,@make_identity_control); 

save(strcat('results\',filename,' (static)'),'m','x','bparam','output','options') 

 

%%%% 

 

%Economic model-Profit 
function [pr0,res] = profit_NN(X,m,fun) 
s1=size(X,1); 
if (s1==1) 
    res=struct; 
    res.raw=zeros(m.MC_samples,m.horizon); 
    res.raw_buy=zeros(m.MC_samples,m.horizon); 
    res.prod=zeros(m.MC_samples,m.horizon); 
    res.prod_order=zeros(m.MC_samples,m.horizon); 
    res.money=zeros(m.MC_samples,m.horizon); 
    res.invested=zeros(m.MC_samples,m.horizon); 
    res.downcredit=zeros(m.MC_samples,m.horizon); 
    res.upcredit=zeros(m.MC_samples,m.horizon); 
    res.price=zeros(m.MC_samples,m.horizon); 
    res.prod_income=zeros(m.MC_samples,m.horizon); 
    res.prod_sell=zeros(m.MC_samples,m.horizon); 
    res.profit=zeros(m.MC_samples,1); 
    res.control=zeros(m.MC_samples,m.horizon,4); 
end 
pr0=0; 
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for it=1:m.MC_samples 
    m=generate_rand_instance(m,s1); 
    order=zeros(s1,m.horizon,'gpuArray'); 
    raw=ones(s1,1,'gpuArray')*m.rawinit; 
    prod_available=ones(s1,1,'gpuArray')*m.prodinit; 
    money=ones(s1,1,'gpuArray')*m.moneyinit; 
    invested=zeros(s1,1,'gpuArray'); 
    downcredit=zeros(s1,1,'gpuArray'); 
    upcredit=zeros(s1,1,'gpuArray'); 
    pr_init=max(-1e+9,-(invested+money-
downcredit+upcredit+m.raw_value*raw+m.prod_value*prod_available)); 
    leadprod=gpuArray(repmat(m.leadprod,s1,1));     
    for i=1:m.horizon 
             
data=[money*0.001,downcredit*0.001,upcredit*0.001,raw*0.1,prod_available*0.1,leadpro
d(:,1:2)*0.1,... 
            m.cost(:,i),... 
            (m.fixedcost(:,i)-m.fixedcost_av(1))/m.fixedcost_av(2),... 
            (m.Price0(:,i)-m.Price0_av(1))/m.Price0_av(2),... 
            (m.Demand0(:,i)-m.Demand0_av(1))/m.Demand0_av(2),... 
            (m.RawStorage(:,i)-m.RawStorage_av(1))/m.RawStorage_av(2),... 
            (m.ProductStorage(:,i)-m.ProductStorage_av(1))/m.ProductStorage_av(2)]'; 
        control=fun(X,data,i); 
        % MONEY MANAGEMENT  
        inv=money.*control(:,1); % invest planned %% of all free money 
        inv(inv<0)=0; 
        money=money-inv; 
        invested=invested+inv; 
         
        money=money.*(1-m.Inflation); % money losing due to inflation (negative sum would 
depreciate too,  
        % but overdraft rate usually more ) 
         
        money=money+upcredit*m.UPcreditPay-downcredit*m.DOWNcreditPay; 
        % upcredit and downcredit duration is at least one period,  
        % then given percent of credits have to be repayed 
        upcredit=upcredit*(1-m.UPcreditPay); 
        downcredit=downcredit*(1-m.DOWNcreditPay); 
        money(money<0)=money(money<0).*m.OverdraftRate; 
         
        % BUY RAW MATERIALS 
        max_buy=(money-m.fixedcost(:,i))./m.cost(:,i); 
        raw_buy=max_buy.*control(:,2); 
        raw_buy(raw_buy<m.min_order)=0; 
        downcredit=downcredit+raw_buy.*m.cost(:,i).*(raw_buy>=m.min_order).*... 
        (1-sum((raw_buy>=m.discount_size).*m.discount_val,2))... 
        +m.fixedcost(:,i).*(raw_buy>=m.min_order).*min((raw_buy./m.fixcost_smooth-
1).^2,1); 
 
        raw=raw+raw_buy;  
        % PRODUCE GOODS 
        max_produce=min(raw,money/m.Production_cost); 
        max_produce(max_produce<0)=0; 
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max_produce(max_produce>m.Basic_power+m.Overtime_power)=m.Basic_power+m.Ov
ertime_power; 
        order(:,i)=max_produce.*control(:,3); 
        raw=raw-order(:,i); % we can't spend raw more then we have  
        money=money-order(:,i)*m.Production_cost; % but we spend money for whole plan  
        prod_available=prod_available+leadprod(:,1); 
        leadprod(:,1:m.leadtime-1)=leadprod(:,2:m.leadtime); 
        leadprod(:,m.leadtime)=order(:,i)*(1-m.HighDefectProb); 
        money=money-(order(:,i)>m.Basic_power).*(order(:,i)-
m.Basic_power)*m.Overtime_extra; 
        %SELL PRODUCTION  
        price=m.Pmax*control(:,4); 
        max_qty=m.Demand0(:,i).*(m.Price0(:,i)./(price+1e-8)).^m.el; 
        sell=min(max_qty,prod_available); 
        % trying to sell more then we have should be interpreted  
        % as selling all we have, however in order to prevent solution to 
        % increase selling amount when it is not feasible, we assume that  
        % price is decreasing  
        % It will work correct only if demand is decreasing function of 
        % price.  
 
        upcredit=upcredit+(1-m.TaxRate)*sell.*price; 
        prod_available=prod_available-sell; 
        money=money-sell*m.Defectprob*m.DefectCost/(1-m.HighDefectProb); 
 
                 
        %fixed cost, storage and deterioration 
        money=money-raw.*m.RawStorage(:,i)-prod_available.*m.ProductStorage(:,i)-
m.Fixedcosts; 
        money=money-max((raw-m.storageThreshold),0).*m.storageAboveThreshold; 
        raw=raw*(1-m.RawDeterioration); 
        prod_available=prod_available*(1-m.ProduceDeterioration); 
        reserve(:,i)=raw; % reserve of materials 
     
    if (s1==1) 
    res.raw(it,i)=gather(raw); 
    res.raw_buy(it,i)=gather(raw_buy); 
    res.prod(it,i)=gather(prod_available); 
    res.prod_order(it,i)=gather(order(:,i)); 
    res.money(it,i)=gather(money); 
    res.invested(it,i)=gather(inv); 
    res.downcredit(it,i)=gather(downcredit); 
    res.upcredit(it,i)=gather(upcredit); 
    res.price(it,i)=gather(price); 
    res.prod_income(it,i)=gather(leadprod(:,1)); 
    res.prod_sell(it,i)=gather(sell); 
    res.control(it,i,:)=gather(control); 
    end      
    end 
    %BACKORDER analysis 
    Backorderrisk=zeros(s1,1); 
    for i=1:m.horizon-m.SupplyFail_Duration+1 
        % shortage is how much would raw material would we short 
        shortage=-reserve(:,i)+sum(order(:,i:i-1+m.SupplyFail_Duration),2); 
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        shortage=shortage.*(shortage>0);       
Backorderrisk=Backorderrisk+shortage.*m.BackorderCost(:,i).*m.SupplyFailProb(:,i);       
    end 
    pr=-(invested+money-
downcredit+upcredit+m.raw_value*raw+m.prod_value*(prod_available+sum(leadprod,2))-
pr_init-Backorderrisk); 
    pr=pr.*(1+(pr>0)*m.Fail_penalty); 
    if (exist('res','var')) 
        res.profit(it)=gather(pr); 
    end     
    pr0=pr0+gather(pr)/m.MC_samples; 
end     
end 
  

 

%%Economic model 

function Out = make_NN_control(X,data,i) 

data(isnan(data))=0; 

hldim=round((size(X,2)-4)/18); 

outlim=4; 

%%transfer input to hidden 

W1=X(:,1:size(data,1)*hldim); 

X=X(:,size(data,1)*hldim+1:end); 

W1=reshape(W1,[],size(data,1),hldim); 

W1 = permute(W1,[3 2 1]); 

data=gpuArray(reshape(data,[size(data,1),1,size(data,2)])); 

H1 = pagefun(@mtimes,W1,data); 

%add bias 

B1=X(:,1:hldim)'; 

X=X(:,hldim+1:end); 

B1=reshape(B1,size(B1,1),1,size(B1,2)); 

H1=H1+B1; 

H1=max(H1,0); 

%transfer hidden to output 

W2=X(:,1:hldim*outlim); 

X=X(:,hldim*outlim+1:end); 

W2=reshape(W2,[],hldim,outlim); 

W2 = permute(W2,[3 2 1]); 

Out=pagefun(@mtimes,W2,H1); 

%add second bias 

B2=X'; 

B2=reshape(B2,size(B2,1),1,size(B2,2)); 

Out=Out+B2; 

Out=sigmf(Out,[1,0]); 

Out=squeeze(Out)'; 

end 
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Appendix D: Matlab User Interface 

D.1 User Interface 

The Matlab software, specifically, the Matlab Graphics User Interface (GUI) application, 

provides different functional characteristics and simplifies the process of using the 

algorithm. This application allows end users to load data into the application, edit this data, 

train the closed-loop control system, view and save the results, and analyse the model’s 

performance. Figure D 1 shows the main window of the interface, which includes the 

following buttons: 

1) “Load data”, which allows the user to load input data from an Excel file. 

2) “Fixed parameters”, which allows the user to make final adjustments to the fixed 

parameters before the start of the training process. 

3) “Stochastic parameters”, which allows the user to make final adjustments to the 

stochastic parameters before the start of the training process. 

4) “Train the model”, which launches the PSO algorithm in order to train the neural 

network closed-loop control system. 

5) “Save results”, which saves the parameters of the trained control system and 

the expected business indicators to a *.mat file. 

 
Figure D 1. Program GUI. 
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In addition, as seen from the above figure, the software application provides the user with 

the option to display any of the following performance indicators, which are saved from the 

five Monte Carlo runs: 

1) Level of money 

2) Level of investments 

3) Amount of purchased raw materials 

4) Amount of raw materials in storage 

5) Quantity of ordered final products 

6) Quantity of final products in storage 

7) Amount of up credit 

8) Amount of down credit 

9) Current selling price 

10)  Quantity of final products that were sold. 

There is also a block of radio buttons at the bottom-left corner of the main window of the 

application, which are used to select which category of business indicators and parameters 

to display. This block consists of the following buttons: 

1) Money: which displays the level of funds, level of investment, current price, and 

up credit and down credit amounts. 

2) Production: which displays the quantity of final products produced, the quantity 

of final products in storage, the quantity of final products sold, and the 

percentage of final products stored and then sold. 

3) Raw materials: which displays the quantity of raw material that was purchased, 

the quantity of raw materials used in production, and the percentage of raw 

materials that entered production after being stored. 

4) Maturity: which shows the distribution of raw materials and final product 

maturity. 

5) Profit: which shows the annual net profit for each Monte Carlo run, displayed in 

the form of a bar chart. 

Finally, at the top of the window shown in Figure D 1, there are three edit fields that allow 

the user to edit the PSO algorithm options, as follows: 

1) Maximum number of training iterations 

2) Swarm size 

3) Maximum number of stall iterations (without enhancing the objective function) 

Figure D 2 shows the window that appears after pressing the “Fixed parameters” button in 

the main window. This window allows the end user to fine tune the static parameters related 
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to production, defect and deterioration, and global economic parameters. The full list of the 

editable parameters corresponds to the list described in Section 4.3.  

 
Figure D 2. Program GUI (fixed variables window). 
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Figure D 3 shows the window that appears after pressing the “Stochastic parameters” 

button in the main window. This window allows the user to edit the stochastic variables of 

the model, and select the variable name and type of variable distribution from the following 

three distributions:  

1) Normal distribution 

2) Uniform distribution 

3) Beta distribution 

The outputs of the last two distributions lie between zero and one; hence, they are 

especially convenient to be used to model the stochastic variables that are represented 

through probabilities, such as backorder risk. The third tab allows the user to select whether 

to edit the mean value or standard deviation of the variable. Furthermore, the application 

allows the user to drag points in the plot and save the edited variable to an Excel file, and, 

at the end, save all the stochastic variables to a *.mat file. 

The final application window is designed to set up the architecture of the closed-loop neural 

network control system (Figure D 4). At the top of the window, two edit fields allow the end 

Figure D 3. Program GUI (stochastic variables window). 
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user to set up the number of neurons in the input and hidden layers, while the number of 

neurons in the output layer is fixed and equal to the number of controls. Furthermore, the 

two drop-boxes above the charts are needed to select the activation function of the hidden 

and output layers, respectively. For each layer, the user can choose one activation function 

from the following functions: 

1) Binary step function 

2) Sigmoid function 

3) Logistic function 

4) Hyperbolic tangent 

5) Rectifier linear unit 

For the output layer, it is advisable to select one of the functions that takes values from 

zero to one, as all controls take values in this interval. 

The developed interface can be easily used by the management of the steel manufacturing 

factory in order to obtain the optimal controls that maximise profit. As discussed above, the 

interface allows the user to edit both stochastic and fixed input data, perform the training 

process of the closed-loop neural network system, and analyse the state of business over 

the planning horizon. In addition, as the application interface is created with Matlab, it 

allows the management to automate their business decisions based on the input data, and 

assists owners and shareholders to analyse the performance of the company before 

making any investment decisions. 
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Figure D 4. Program GUI (controls system options window). 

 

Finally, Figure D 5 displays the manager’s decision tool. In this tool, the manager inputs 

the current actual values of all stochastic parameters on a weekly basis. After inputting all 

the values, the “Generate decisions” button is used to display the current values for 

investment, raw materials purchase, production rate and current price in the blue window 

at the bottom-right corner. Furthermore, the manager can adjust decisions generated by 

the control system and apply them to the business of his factory. 
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Figure D 5. Manager’s decision tool. 


	ABSTRACT
	ACKNOWLEDGEMENTS
	NOTATION
	LIST OF ACRONYMS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 Introduction
	1.1 Research Background
	1.2 Statement of the Problem
	1.3 Research Aims, Objectives and Questions
	1.4 Proposed Approach
	1.5 Contribution to Knowledge
	1.6 Thesis Organisation
	1.7  Chapter Summary

	2 A Systematic Literature Review about Inventory Management in the Steel Manufacturing Industry
	2.1 Introduction
	2.2 Basics of Inventory
	2.2.1 Inventory Management
	2.2.1.1 Types of Inventory
	2.2.1.2 Types of Inventory Costs

	2.2.2 Inventory Control
	2.2.2.1 Challenges of Inventory Control


	2.3 EOQ Model
	2.3.1 Initial Development of the EOQ Model
	2.3.2 History and Evolution of the EOQ Model
	2.3.3 Assumptions of EOQ Models
	2.3.4 EOQ Model Implementation
	2.3.5 Types of Inventory Models
	2.3.5.1 Inventory Models with Various Price-Dependent Demand Rate
	2.3.5.2 Inventory Models with Changing Time-Dependent Demand Rate
	2.3.5.3 Inventory Models with Various Lead-Time-Dependent Demand Rate
	2.3.5.4 Inventory Models for Limited Space Storage Area
	2.3.5.5 Further Extensions of the EOQ Models based on the Demand-Dependent Parameter


	2.4 Systematic Literature Review about current trends in EOQ models for the steel manufacturing industry
	2.4.1 Data Collection and Literature Search
	2.4.2 Descriptive Analysis
	2.4.3 Category Selection
	2.4.4 Content Analysis
	2.4.4.1 EOQ models
	2.4.4.1.1 ANN
	2.4.4.1.2 PSO

	2.4.4.2 EOQ Applications
	2.4.4.2.1 Sustainable Inventory Management
	2.4.4.2.2 Inventory Management in the Steel Manufacturing Industry


	2.4.5 Research Gaps

	2.5 Chapter Summary

	3 Research Methodology
	3.1 Introduction
	3.2 Data Creation and Simulation
	3.3 Design of the Inventory Management Mathematical Model
	3.4 Validation
	3.5 Chapter Summary

	4 Mathematical Modelling of Inventory Management for High-volume Material within a Limited Space
	4.1 Introduction
	4.2 Business Logic Explanation
	4.3 Development of the Steel Manufacturing Inventory Model
	4.3.1 Stochastic and Fixed Variables / Parameters Used in the Model
	4.3.1.1  Assumptions
	4.3.1.2  Constraints

	4.3.2 Control Systems for Optimal Business and Storage Strategy Derivation
	4.3.2.1 Open-loop Control System
	4.3.2.1.1 Direct control optimisation for fixed set of Monte Carlo runs
	4.3.2.1.2 Direct control optimisation for dynamically generated scenarios

	4.3.2.2  ANN control optimisation with feedback

	4.3.3  Mathematical Model for the Steel Manufacturing Inventory Management
	4.3.4 Model Optimisation Algorithm

	4.4 Chapter Summary

	5 Model Validation and Results
	5.1 Introduction
	5.2 Model Implementation
	5.2.1 Data Processing Module
	5.2.2 Training Module
	5.2.3 Analysis Module

	5.3 Model Validation
	5.3.1 Control System Comparisons
	5.3.1.1 Maturity and Deterioration Rates
	5.3.1.2 Generated Profits per Storage Unit Used
	5.3.1.3 Profit Generated by each Monte Carlo Run
	5.3.1.4 Investment Strategy
	5.3.1.5 Money Management
	5.3.1.6 Learning Progress

	5.3.2 Fixed Demand Scenario
	5.3.2.1 Maturity and Deterioration Rates
	5.3.2.2 Money Management
	5.3.2.3 Final Products Management
	5.3.2.4 Raw Materials Management

	5.3.3 Fixed Supply Scenario
	5.3.3.1 Maturity and Deterioration Rates
	5.3.3.2 Money Management
	5.3.3.3 Final Products Management
	5.3.3.4 Raw Materials Management

	5.3.4 Fully Stochastic Scenario
	5.3.4.1 Maturity and Deterioration Rates
	5.3.4.2 Money Management
	5.3.4.3 Final Product Management
	5.3.4.4 Raw Materials Management

	5.3.5 Scenarios Comparison

	5.4 Chapter Summary

	6 Cases for Various Macroeconomic Situations
	6.1 Introduction
	6.2 Increase in Storage Costs
	6.2.1  Maturity and Deterioration Rates
	6.2.2 Money Management
	6.2.3 Final Product Management
	6.2.4 Raw Materials Management

	6.3 Seasonal Change in the Purchasing Price of Raw Materials
	6.3.1 Maturity and Deterioration Rates
	6.3.2 Money Management
	6.3.3 Final Product Management
	6.3.4 Raw Materials Management

	6.4 Seasonal Change in Demand
	6.4.1 Maturity and Deterioration Rates
	6.4.2 Money Management
	6.4.3 Final Product Management
	6.4.4 Raw Materials Management

	6.5 Sudden and Complete Loss of Demand
	6.5.1 Maturity and Deterioration Rates
	6.5.2 Money Management
	6.5.3 Final Product Management
	6.5.4 Raw Materials Management

	6.6 Sudden Supply Termination
	6.6.1 Maturity and Deterioration Rates
	6.6.2 Money Management
	6.6.3 Final Products Management
	6.6.4 Raw Materials Management

	6.7 Chapter Summary

	7 Conclusions and Future Work
	7.1 Introduction
	7.2 Main Conclusions
	7.3 Contribution to the Body of Knowledge
	7.4 Recommendations and Significance
	7.5 Limitations and Suggestions for Future Research
	7.5.1 Extending the Model to Include More than One Market Policy for providing the raw material
	7.5.2 Accounting for the Variable Nature of the Transportation Cost
	7.5.3 Accounting for the Variable Nature of the Inflation Rate


	REFERENCES
	Appendix A: List of papers in the literature reviews
	Appendix B: Example of input data for programming implementation of the model
	Appendix C: Significant parts of the MATLAB code
	Appendix D: Matlab User Interface

