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Abstract. In this study, we develop an inventory model for deteriorating
items with stock dependent demand rate. Shortages are allowed to this model

and when stock on hand is zero, then the retailer offers a price discount to
customers who are willing to back-order their demands. Here, the supplier as

well as the retailer adopt the trade credit policy for their customers in order

to promote the market competition. The retailer can earn revenue and inter-
est after the customer pays for the amount of purchasing cost to the retailer

until the end of the trade credit period offered by the supplier. Besides this,

we consider variable holding cost due to increase the stock of deteriorating
items. Thereafter, we present an easy analytical closed-form solution to find

the optimal order quantity so that the total cost per unit time is minimized.

The results are discussed with the help of numerical examples to validate the
proposed model. A sensitivity analysis of the optimal solutions for the param-

eters is also provided in order to stabilize our model. The paper ends with a

conclusion and an outlook to possible future studies.

1. Introduction. In the classical Economic Order Quantity (EOQ) model, it is
assumed that the retailer must pay for items upon receiving them. But in practice,
suppliers allow a certain fixed period to settle the account for stimulating retailer’s
demand. During this credit period, the retailer can start to accumulate revenues
on the sales and earn interest on that revenue through investing in share market or
banking business, but beyond this period the supplier charges a higher interest if
the payment is not settled at the end of the offered credit period. The same policy
is applicable for the retailer to the customer. This is termed as two echelon trade
credit financing. Hence, paying later indirectly reduces the cost of holding stock.
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On the other hand, trade credit is offered by the supplier which encourages the
retailer to buy more and it is also a powerful promotional tool that attracts new
customers, who consider it as an alternative incentive policy to quantity discounts.
Hence, the trade credit can play a major role in inventory control for both the
supplier as well as retailer.

In traditional inventory models, we assume that items preserve their physical
characteristics while they are stored in inventory. But deterioration has a crucial
impact in inventory control system. The term deterioration is defining a situation
in which all items in the inventory system become obsolete at the end or during the
prescribed planning horizon:

• Deterioration is defined as falling from a higher to a lower level in quality,
also simply implies as change, decay, obsolescence, collapse, pinch, spoilage,
vaporization, loss of utility or loss of marginal value of goods that results in
decreasing of the usefulness of the original item.

• The rate of deterioration is nearly negligible for items like hardware, glass-
ware, toys and steel; or, it is very much effective for products such as fruits,
vegetables, medicines, volatile liquids, blood banks, high-tech products, etc.

• The deteriorated items have many physical features that most of the physical
goods undergo through decay or deterioration over time, products such as
fruits, vegetables, food items, metal parts, etc.

• For highly deteriorated items like gasoline, alcohol, turpentine, etc., the rates
of consumption are very high and they deteriorate continuously through mor-
tification.

• The deteriorated items like radioactive substances, electronic goods, grain,
photographic film, etc., deplete through physical depletion over time through
the process of evaporation and also deteriorate through a gradual loss of po-
tential or utility with time to time.

Therefore, deterioration of items plays a vital role in the determination of an
inventory model and must be taken into consideration.
In classical inventory models, we assume that the demand rate of an item be either
time-dependent or constant. But in actual practice, it has been observed that the
demand rate is usually influenced by the stock level. As an example, a large stock
level in shelves can attract more customers with the idea of freshness, variety and
popularity and, conversely, a low stock level can arise a question of freshness. So,
a large pile of stocks displayed in a supermarket can pay more attention to the
customer to buy more.

In recent days, changeable holding cost is attracting many researchers because
maintaining inventory is very vital. In general, it is assumed that holding cost is
known and is considered as constant. But when inventory is stored for future usage,
then it is rather essential to maintain the physical status of the inventory at present
situation. So, to be up-to date with the present market situation, variable holding
cost is necessarily very important.

In recent years, many researchers have considered their observations and aware-
ness regarding price discount on backorders, because they thought that price dis-
count on backorders during a stock-out period makes customers more willing to
wait for their desired items. When shortage occurs, some customers may prefer to
accept backorders as, for example, for fashionable goods such as shoes, cosmetics
and clothes. Under these situations, customers may prefer their demand to be back
ordered. Generally, a supplier could offer a backorder price discount on the stockout
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item to secure more backorders. In other words, the bigger the price discount on
backorder is, the bigger the advantage to the customers.

The term shortage means a situation in which something needed which cannot be
carried in sufficient amounts. In real-life situations, happening of shortage in inven-
tory system is a vital situation. Shortages are of great importance for many models,
especially, for any model where delay in payment is considered and due shortages.
So, shortages can enjoy a profit obtained from delay in payment. Shortages of items
may occur due to the withdrawal of imperfect items from the stock. In inventory
models with shortages, the general condition is that the unfulfilled demand is either
completely lost or completely backlogged. However, there is a little chance that
while few customers leave, others are willing to wait until the fulfillment of their
demand. As an example, suppose that a customer prefers a particular company for
shopping and, in the mean time, the customer observes that there is a shortage for
a particular product. But the customer is not willing to buy from another company.
In this situation, the customer has to wait until the supply of the particular product
will be given.

So, each term described above plays an important role in the design of our paper;
the main motivations of our work are as follows:

• The selling items are perishable over time; such as gasoline, fruits, fresh fishes,
photographic films, vegetables, etc., and they follow a distribution that allows
an edge application scope.

• The parameters of holding cost are assumed as a linearly increasing function
of time, because with changes in time, value of money and holding cost cannot
remain constant.

• The rate of replenishment is finite.
• Stock-dependent demand approach is considered here, because a large number

of items in shelves attract more customers, and this interesting fact reflects
more real-life situations.

• Shortages are occurring in this paper to fit the model in more realistic senses.
• Price discount on backorders are offered because this is a new strategy to

attract more customers.
• Here, the supplier as well as the retailer would offer a fixed-credit period which

will encourage the supplier’s selling and the retailer can take an advantage to
reduce the cost and to increase the profit.

The residue is organized as follows: In Section 2, a motivation and a review on
the research subject are presented. Section 3 consists of two subsections:

(i) In Subsection 3.1, notations are presented.
(ii) In Subsection 3.2, the assumptions are given.

Section 4 discusses the mathematical model of the proposed inventory problem.
The solution procedure is derived in Section 5, which also includes two separate
subsections:

(i) Subsection 5.1 shows the optimal solution for different functions.
(ii) Subsection 5.2 demonstrates how to find a decision criterion for the optimal

replenishment cycle time.

Section 6 contains three numerical examples to illustrate the proposed problem
and our methodology. Section 7 presents a sensitivity analysis related with our
suggested approach. Section 8 presents concluding remarks related to our article
and it proposes new pathways of future investigation.
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2. Motivation and Review on Research. In practical situations, deterioration
of items is a common phenomenon. So, deteriorating inventory models are improved
constantly to obtain more real characteristics of an inventory system. During the re-
plenishment period, the inventory decreases continuously due to the combined effect
of demand and deterioration. Thus, while determining the EOQ model, loss may
occur because of the deterioration which cannot be ignored. Ghare and Schrader
[8] considered a no shortage inventory model with constant deterioration rate, while
Harris [14] was the first to develop an EOQ model which was generalized by Wilson
[34] and gave a formula to obtain an economic order quantity. Liao [17] developed
an inventory control model with instantaneous receipt and exponential deteriorat-
ing item under two levels of trade-credit policy. Covert and Philip [6] extended the
Levin model [15] and presented an EOQ model for variable deterioration rate by
considering a two-parametric Weibull distribution deterioration. Whitin [33] con-
sidered deterioration for fashion goods in his model, but only after the end of a
predetermined shortage period. Covert and Philip [6] extended Ghare-Schrader [8]
model by assuming a two-parametric Weibull distribution and obtained an EOQ
model for a variable rate of deterioration. Tripathy and Pandey [30] introduced
an inventory model for deteriorating items with Weibull distribution deterioration
and time-dependent demand under trade credit policy. Furthermore, Aggarwal and
Jaggi [1] presented an inventory model under the condition of a permissible delay
in payments, and the deterioration rate was constant. Liao et al. [16] proposed
a deteriorated inventory model with permissible delay in payments. Pervin et al.
[26] analyzed an inventory model with time-dependent demand and variable holding
cost including stochastic deterioration.

In a classical inventory model, we assume that the demand rate is either constant
or time-dependent. But in real-life situations, we see that the demand rate may
go up or down with respect to the stock level. Several researchers are engaged to
propose to the community works on stock-dependent demand rate. Levin et al. [15]
observed that “large piles of consumer goods displayed in a supermarket will lead the
customer to buy more”. Balkhi and Benkherouf [3] developed an inventory model
for deteriorating items with stock-dependent and time-varying demand rates over
a finite planning horizon. Datta and Paul [7] analyzed a multi-period EOQ model
with stock-dependent and price-sensitive demand rate. Min et al. [20] developed an
inventory model for deteriorating items under stock-dependent demand and two-
level trade credit policy. Pal and Chandra [23] derived an inventory model with
stock-dependent demand and permissible delay in payments.

In traditional inventory models, it is assumed that holding cost is pre-determined
and constant with time. But holding cost may not always be constant. Goh [12] first
considered a stock-dependent demand model with variable holding cost and assumed
the unit holding cost as a nonlinear continuous function of time. In few inventory
models like Giri et al. [11], Mishra et al. [21], the holding cost as well as the demand
function were considered as time-dependent. Roy [27] developed a deteriorating
inventory model where also the time-varying holding cost was introduced but the
demand was price dependent. Swami et al. [29] formulated an inventory model
with stock-dependent demand and variable holding cost.

In the real market, customer’s willingness is affected by many factors and this
situation leads them to wait for backorders during the stock-out period. It happens
severely for some fashionable goods such as branded bags, shoes, hi-fi equipment
and clothes or for some products from a well-named company, and the customers
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may prefer to wait for the next delivery. Besides, there is another cause to wait for
backorder which is a price discount from the retailer to the customers; many authors
like Pan and Hsiao [24], Chuang et al. [5], and Ouyang et al. [22] formulated their
models on the basis of this fact.

In practice, suppliers usually offer their retailers a delay period in payment.
During the period, there is no interest charged. Hence, retailers can earn the interest
from sales revenue, meanwhile suppliers lose the interest earned during the same
time. However, if the payment is not paid in full at the end of the permissible delay
period, then suppliers charge retailers an interest on the outstanding amount. The
permissible delay in payment produces two benefits to the supplier:

• It attracts new customers who consider it to be a type of price reduction.
• It may be applied as an alternative to price discount because it does not

provoke competitors to reduce their prices and, thus, introduce lasting price
reductions.

On the other hand, the policy of granting credit terms adds not only an additional
cost, but also an additional dimension of default risk to the supplier.

In this regard, a number of research papers appeared which dealt with the EOQ
problem under the condition of permissible delay in payments. Goyal [13] introduced
first the EOQ inventory model under the condition of trade credit. Chand and Ward
[4] extended Goyal’s [13] model under assumptions of the classical economic-order
quantity model, calculating different results. Shinn et al. [28] discussed Goyal’s [13]
model and considered quantity discount for freight cost. Liao et al. [17] analyzed an
EOQ model for stock-depend demand rate when a delay in payment is permissible.
Mahata [18] designed an EPQ model for deteriorating items under trade credit
policy. Pervin et al. [25] derived an inventory model for deteriorating items in
a demand-declining market under trade credit policy. Recently, Ghoreishi et al.
[9] considered an optimal pricing and ordering policy under inflation and customer
returns for non-instantaneous deteriorating items. Ghoreishi et al. [10] also derived
a work on delay in payments, inflation and selling price-dependent demand.

The occurrence of shortages in an inventory system is a natural phenomenon.
We can easily notice that many products of famous brands or fashionable goods
such as certain brand gum shoes, clothes, hi-fi equipment and jewelery may create
a certain situation in which customers think that it will be better to wait until the
receive of backorders at the time period when shortages occur. So, shortage cost
or lost-sale cost should not be prohibited to smooth the feasibility condition. If
holding cost for inventory is significantly higher than the shortage cost, then al-
lowing shortage will be an excellent idea for business practice to reduce the total
cost. To present the situation practically, Annadurai and Uthayakumar [2] consid-
ered a two-level trade credit policy in their decaying inventory model, where the
demand rate is stock-dependent and shortages are allowed. Manna and Chaudhuri
[19] developed an order-level inventory model with unit production cost, shortages
and time-dependent demand for deteriorating items. Tripathi [31] developed an
inventory model with stock-dependent demand and shortages under trade credit
policy.

The research works of various authors related to this area are shown in Table 1.
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Table 1: Research works of various authors related to this area.
Author(s) Shortages Trade Stock Price Deterio- Time

credit dependent discount rations varying
policy demand on backorders costs

Ghare and
√

Scharder (1963)
Giri et al. (1996)

√ √

Manna and
√ √ √

Chaudhuri (2001)
Roy (2008)

√ √

Min et al. (2010)
√ √

Mishra et al. (2013)
√ √

Tripathi and
√ √

Pandey (2013)
Tripathi (2015)

√ √

Annadurai and
√ √

Uthayakumar (2015)
Pervin et al. (2015)

√ √ √

Swami et al. (2015)
√ √ √

Our paper
√ √ √ √ √ √

3. Notations and Assumptions. Based on the following notations and assump-
tions, we design our model.

3.1. Notations.

T : length of cycle time;
c: unit purchasing cost per item;
A: ordering cost per order;
δ: the fraction of the demand during the stock-out period that will be back

ordered, where 0 ≤ δ ≤ 1;
s: lost sale cost per unit;

I(t): the inventory level at time t;
I0: the maximum inventory level during [0, T ];
I1(t): the inventory level that changes with time t during production period;
I2(t): the inventory level that changes with time t during non-production period;
I3(t): the inventory level that changes with time t during shortage period;
Ie: interest, which can be earned per unit of time (i.e., per $ per year) by the

retailer;
Ic: interest charges in stocks per unit of time (i.e., per $ in stocks per year) by

the supplier;
θ: constant deterioration rate, where 0 ≤ θ < 1;
M : credit period in years offered by the supplier;
N : trade credit period in years offered by the retailer;

Π(T ): total relevant cost function per unit of time;
D(t): the demand rate is defined as follows:

D(t) =

{
α+ βI(t), if I(t) > 0,
α, if I(t) ≤ 0,

where α and β are positive constants, α > β, 0 ≤ t ≤ T ;
c2: shortage cost per unit per unit time, i.e., shortages are allowed to occur;
h(t): the holding cost per item per time-unit is time dependent, and it is assumed

as h(t) = a+ bt, where a > 0, 0 < b < 1;
Π0: marginal profit per unit;
Π1: price discount on unit backordered offered;
b0: upper bound on backorder ratio, 0 ≤ b0 ≤ 1.
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3.2. Assumptions.

1. Annual demand, D(t), is stock dependent.
2. The rate of replenishment is finite with rate k.
3. Ic ≥ Ie.
4. The lead time is negligible.
5. Shortages are allowed and demand is partially backlogged during stock out

period.
6. If T ≥ M , then the retailer settles the account at time M and pays for

the interest charges on items in stock with rate Ic over the interval [M,T ].
If T < M , then the retailer settles the account at time M , and there is no
interest charge in stock during the whole cycle. On the other hand, if M > N ,
then the retailer can accumulate revenue and earn interest during the period
from N to M with rate Ie under the trade credit conditions.

7. There is no repair or replacement of deteriorated units during the planning
horizon. The item will be withdrawn from the stock immediately as soon as
it becomes deteriorated.

8. During the stock-out period, the fraction of the demand δ is directly propor-
tional to the price discount Π1 offered by the retailer. Thus, δ = b0

Π0
Π1, where

0 ≤ Π1 ≤ Π0.

4. Mathematical Formulation. Based on our prerequisite assumptions, the in-
ventory system may be considered as detailed below: Initially, (i.e., at time t = 0),
the cycle starts with a zero stock level at supply rate k. The replenishment or
supply continues up to time t1. During the time period [0, t1], inventory piles up
by adjusting the demand in the market. This accumulated inventory level at time
t1 gradually diminishes due to demand and deterioration during the period [t1, t2]
and ultimately falls to zero at time t = t2. During the period [t2, T ], shortages
occur because of those reasons of market demand of items and ultimately falls to its
lowest level at time t = T . After the scheduling period T , the cycle repeats itself.

Now, the differential equations involving the instantaneous state of the inventory
level in the interval [0, T ], together with their initial values, are given by

dI1(t)

dt
+ θ(t)I1(t) = k −D(t) = k − [α+ βI1(t)] (t ∈ [0, t1]). (1)

with I1(0) = 0.

dI2(t)

dt
+ θ(t)I2(t) = −D(t) = −[α+ βI2(t)] (t ∈ [t1, t2]). (2)

with I2(t2) = 0.

dI3(t)

dt
= −αδ (t ∈ [t2, T ]). (3)

with I3(t2) = 0.
Now the solution of equation 1 using the initial condition becomes

I1(t) =
k − α
β + θ

[
e(β+θ)(t1−t) − 1

]
(t ∈ [0, t1]).

Utilizing the new initial condition, the solution of equation 2 becomes

I2(t) =
α

β + θ

[
e(β+θ)(t2−t) − 1

]
(t ∈ [t1, t2]).
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Solving equation 3 with the help of its just obtained initial condition, we get

I3(t) = −αδ(T − t2) (t ∈ [t2, T ]).

So, the maximum inventory level is

I0 =
k − α
θ + β

[
e(β+θ)t1 − 1

]
. (4)

Here, Figure 1 represents the total inventory system of our proposed problem. The

Figure 1. Graphical representation of our proposed Inventory
control model

elements comprising the retailer’s profit function per cycle are listed below:

1. The annual ordering cost OC is = A;
2. The total holding cost, HC, is computed for time interval [0, t1] and [t1, t2],

because only during this time period inventory is available in the system. So,
the annual stock holding cost is represented as follows:

HC =

∫ t1

0

h(t)I1(t)dt+

∫ t2

t1

h(t)I2(t)dt

=

∫ t1

0

(a+ bt)

[
k − α
β + θ

{e(β+θ)(t1−t) − 1}
]
dt

+

∫ t2

t1

(a+ bt)

[
α

β + θ
{e(β+θ)(t2−t) − 1}

]
dt

=
a(k − α)

(β + θ)2

{
e(β+θ)t1 − (β + θ)t1 − 1

}
+
b(k − α)

(β + θ)3

{
e(β+θ)t1 − 1

}
− bαt1

(β + θ)2

+
aα

(β + θ)2

{
e(β+θ)(t2−t1) − (β + θ)(t2 − t1)− 1

}
+

bα

(β + θ)3

{
e(β+θ)(t2−t1) − 1

}
− bα(t2 − t1)

(β + θ)2
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=
a

(β + θ)2
[(k − α){e(β+θ)t1 − (β + θ)t1}+ α{e(β+θ)(t2−t1) − (β + θ)(t2 − t1)}

− k] +
b

(β + θ)3

[
(k − α)e(β+θ)t1 + αe(β+θ)(t2−t1) − k

]
− bαt2

(β + θ)2
. (5)

3. Shortage cost is accumulated during the time interval [t2, T ]; so, the shortage
cost, SC, is expressed as:

SC = c2

∫ T

t2

I3(t)dt

= c2

∫ T

t2

[−αδ(T − t2)] dt

=
c2αδ

2
(T − t2)2.

4. The deteriorating cost, DC, is represented by:

DC = cθ[

∫ t1

0

I1(t)dt+

∫ t2

t1

I2(t)dt

= cθ

[∫ t1

0

{k − α
β + θ

[e(β+θ)(t1−t) − 1]}dt+

∫ t2

t1

{ α

β + θ
[e(β+θ)(t2−t) − 1]}dt

]
=
c(k − α)θ

(θ + β)2

[
e(β+θ)t1 − (β + θ)t1 − 1

]
+

cαθ

(θ + β)2

[
e(β+θ)(t2−t1) − (β + θ)(t2 − t1)− 1

]
=

cθ

(θ + β)2
[(k − α)e(β+θ)t1 + αe(β+θ)(t2−t1)

− (k − α)(β + θ)t1 − α(β + θ)(t2 − t1)− k].

5. Due to shortage during time interval [t2, T ], all the customers are not inter-
ested to wait for the coming lot size to arrive, which may occur loss in profit.
Hence, the lost sale cost, LSC, is:

LSC = s

∫ T

t2

(1− δ)D(t)dt

= s

∫ T

t2

(1− δ)αdt

= sα(1− δ)(T − t2).

6. Purchase cost, PC, during interval [t2, T ] becomes:

PC = c

(
I0 +

∫ T

t2

δD(t)dt

)

= c

[
k − α
θ + β

{
e(β+θ)t1 − 1

}
+ αδ(T − t2)

]
.
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7. The Backorder cost, BC, is expressed as follows:

BC = δ

∫ T

t2

I3(t)dt

= δ

∫ T

t2

[−αδ(T − t2)] dt

=
αδ2

2
(T − t2)2.

8. The interest earned, IE : From our considered assumptions and based on the
values of N and M , there are three alternative cases arising in relation to
interest earned. They are as follows:

Case 8.a: T +N ≥M , Case 8.b: T +N < M and Case 8.c: N ≥M .

Case 8.a: T +N ≥M
In this case, the retailer accumulates a sales revenue on an account that

earns sIe units per year, starting from N through M . Hence, the interest
earned, IE, per cycle is stated as below:

IE = sIe

∫ M

N

D(t)(M − t)dt

= sIe

∫ M

N

{α+ βI1(t)}(M − t)dt

= sIe

[
α+

(k − α)θβt1
θ + β

+
(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)

]
(M −N)2.

Case 8.b: T +N < M
In this case, since the customer’s last payment time T +N is shorter than

the supplier credit period M , hence, the interest earned, IE, per cycle is
indicated as:

IE = sIe

[∫ T+N

N

{D(t)(T +N − t) +D(t)T{M − (T +N)}} dt

]

= sIe[

∫ T+N

N

{α+ βI1(t)}(T +N − t)dt

+

∫ T+N

N

{α+ βI1(t)}(M − T −N)dt]

= sIe

[
α+

θ(k − α)βt1
θ + β

+
(k − α)β2

(θ + β)2

(
e(θ+β)t1 − 1

)]
(M −N − T

2
).

Case 8.c: N ≥M
In this case, the retailer trade credit period N is equal to or larger than the
supplier credit period M . Consequently, there is no interest earned by the
retailer. Therefore, the annual interest earned from time N to time M per
cycle is equal to zero (= 0).

9. Interest Charged, IC : From our regarded assumptions and based on the values
of N and M , there are three alternative cases arising in relation to interest
charged. They are as follows:
Case 9.a: T +N ≥M , Case 9.b: T +N < M and Case 9.c: N ≥M .
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Case 9.a: T +N ≥M
In this case, the supplier’s credit period M is shorter than the customer

last payment time T + N . Hence, the retailer cannot pay off the purchase
amount at time M , and he must finance all items sold after time M − N at
an interest charged Ic per dollar per year. Therefore, the interest charged, IC
per cycle is stated as below:

IC = cIc

[∫ T+N

M

I1(t)dt

]

= cIc

∫ T+N

M

[
k − α
β + θ

{
e(β+θ)(t1−t) − 1

}]
= cIc

[
(k − α)θt1
θ + β

+
(k − α)β

(θ + β)2
(e(θ+β)t1 − 1)

]
(T +N −M).

Case 9.b: T +N < M
In this case, since the customer’s last payment time T +N is shorter than

the supplier credit period M , the retailer faces no interest charged. So, the
total interest accused for this case is equal to zero (= 0).
Case 9.c: N ≥M

In this case, the retailer’s trade credit period N is equal to or larger than
the supplier credit period M . Therefore, the annual interest charged from
time N to time M per cycle is stated as:

IC = cIc

[
(N −M)kt1 +

∫ T+N

N

I1(t)dt

]

= cIc

[
(N −M)kt1 +

∫ T+N

N

{
k − α
β + θ

{
e(β+θ)(t1−t) − 1

}}]

= cIc

[
(N −M)kt1 +

θ(k − α)Tt1
θ + β

+
(k − α)βT

(θ + β)2
(e(θ+β)t1 − 1)

]
.

From the above results, the annual total relevant cost per unit of time for the
retailer can be expressed as:

Π(T ) = [OC+HC+PC+DC+SC+BC+IC-IE-LSC]. (6)

Therefore, by inserting the values of the above parameters, the following case-
wise representations are achieved:

Π1(T ) =
A

T
(7)

+
1

T
[

a

(β + θ)2
[(k − α){e(β+θ)t1 − (β + θ)t1}+ α{e(β+θ)(t2−t1)

−(β + θ)(t2 − t1)} − k] +
b

(β + θ)3

[
(k − α)e(β+θ)t1 + αe(β+θ)(t2−t1) − k

]
− bαt2

(β + θ)2
] +

cθ

T (θ + β)2
[(k − α)e(β+θ)t1 + αe(β+θ)(t2−t1) − (k − α)(β + θ)t1

−α(β + θ)(t2 − t1)− k] +
αδ

2T
(T − t2)2(c2 + δ) +

c

T
[
k − α
θ + β

{
e(β+θ)t1 − 1

}
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+αδ(T − t2)] +
cIc
T

[
(k − α)θt1
θ + β

+
(k − α)β

(θ + β)2
(e(θ+β)t1 − 1)

]
(T +N −M)

−sIe
T

[
α+

θ(k − α)βt1
θ + β

+
(k − α)β2

(θ + β)2

(
e(θ+β)t1 − 1

)]
(M −N − T

2
)

−sα
T

(1− δ)(T − t2),

Π2(T )

=
A

T
+

1

T
[

a

(β + θ)2
[(k − α){e(β+θ)t1 − (β + θ)t1}+ α{e(β+θ)(t2−t1)

− (β + θ)(t2 − t1)} − k] +
b

(β + θ)3

[
(k − α)e(β+θ)t1 + αe(β+θ)(t2−t1) − k

]
− bαt2

(β + θ)2
] +

cθ

T (θ + β)2
[(k − α)e(β+θ)t1 + αe(β+θ)(t2−t1) − (k − α)(β + θ)t1

− α(β + θ)(t2 − t1)− k] +
αδ

2T
(T − t2)2(c2 + δ) +

c

T
[
k − α
θ + β

{
e(β+θ)t1 − 1

}
+ αδ(T − t2)]− sIe

T

[
α+

θ(k − α)βt1
θ + β

+
(k − α)β2

(θ + β)2

(
e(θ+β)t1 − 1

)]
(M −N − T

2
)− sα

T
(1− δ)(T − t2),

(8)

Π3(T )

=
A

T
+

1

T
[

a

(β + θ)2
[(k − α){e(β+θ)t1 − (β + θ)t1}+ α{e(β+θ)(t2−t1)

− (β + θ)(t2 − t1)} − k] +
b

(β + θ)3

[
(k − α)e(β+θ)t1 + αe(β+θ)(t2−t1) − k

]
− bαt2

(β + θ)2
] +

cθ

T (θ + β)2
[(k − α)e(β+θ)t1 + αe(β+θ)(t2−t1)

− (k − α)(β + θ)t1 − α(β + θ)(t2 − t1)− k] +
αδ

2T
(T − t2)2(c2 + δ)

+
c

T
[
k − α
θ + β

{
e(β+θ)t1 − 1

}
+ αδ(T − t2)] +

cIc
T

[(N −M)kt1 +
θ(k − α)Tt1

θ + β

+
(k − α)βT

(θ + β)2
(e(θ+β)t1 − 1)]− sα

T
(1− δ)(T − t2).

(9)

5. Solution Procedure. For calculating the optimal solution of the proposed
EOQ model, we consider the subsequent way.

Definition 5.1. A function h defined on an open interval (a, b) is said to be convex if
for x, y ∈ (a, b) and each λ, 0 ≤ λ ≤ 1, we have h[λx+(1−λ)y] ≤ λh(x)+(1−λ)h(y).

Theorem 5.2. Let l be a continuous function on the closed interval [a, b] and let
l(a)l(b) < 0. Then there exists a number c ∈ (a, b) such that l(c) = 0.

Lemma 5.3. If h(t) is a continuous function on (a, b) and if dh/dt is nondecreasing,
then h is convex.
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Proof. Given x, y with a < x < y < b, defining a function l on [0, 1] by l(t) =
th(y) + (1 − t)h(x) − h(ty + (1 − t)x). We want to show that l is nonnegative on
[0, 1]. Now, l is continuous and l(0) = l(1) = 0. Moreover,

dl(t)/dt = h(y)− h(x)− (y − x)dh/dt,

and dl(t+m)/dt− dl(t)/dt = −(y − x) [dh(t+m)/dt− dh(t)/dt] , for t+m > t.

Since dh(t)/dt is nondecreasing, dh(t+m)/dt−dh(t)/dt > 0. It implies that dl(t)/dt
is nondecreasing on [0, 1]. Let c be a point where l assumes its minimum on [0, 1].
If c = 1, then l(t) ≥ l(1) = 0 on [0, 1]. In this case l is nonnegative. Suppose
that c ∈ [0, 1]. Since l has a local minimum at c, we have dl(t)/dt ≥ 0 at t = c.
But dl(t)/dt was nondecreasing and so dl(t)/dt ≤ 0 on [0, c]. Consequently g is
nondecreasing on [0, c] and hence g(c) ≤ l(0) = 0 and, then, the minimum of l on
[0, 1] is nonnegative and so l ≥ 0 on [0, 1]

5.1. Optimal Solution for Different Functions. The first-order derivative of
Π1(T ) with respect to T is calculated as follows:

dΠ1(T )

dT
=
f1(T )

T 2
, (10)

where

f1(T ) := −A

−[
a

(β + θ)2
[(k − α){T (β + θ)

dt1
dT

(e(β+θ)t1 − 1)− (e(β+θ)t1 − (β + θ)t1)}

+α{T (β + θ)(
dt2
dT
− dt1
dT

)(e(β+θ)(t2−t1) − 1)− e(β+θ)(t2−t1) − (β + θ)(t2 − t1)}]

+
b

(β + θ)3
[(k − α)e(β+θ)t1(T (β + θ)

dt1
dT
− 1) + αe(β+θ)(t2−t1)(T (

dt2
dT
− dt1
dT

)

−1)]− bα

(β + θ)2
(T
dt2
dT
− t2)]− cθ

(θ + β)2
[(k − α)e(β+θ)t1{1− (β + θ)T

dt1
dT
}

+αe(β+θ)(t2−t1){1− (β + θ)T (
dt2
dT
− dt1
dT

)}+ (k − α)(β + θ)(T
dt1
dT
− t1)

+α(β + θ){T (
dt2
dT
− dt1
dT

)− (t2 − t1)}]− αδ

2
[(c2 + δ){(T − t2)2

−T (T − t2)(1− dt2
dT

)}]− c[k − α
θ + β

{e(β+θ)t1 − 1}+ αδ(T
dt2
dT
− t2)

−(k − α)e(β+θ)t1T
dt1
dT

]− cIc[{
(k − α)θ

θ + β
(t1 − T

dt1
dT

) +
(k − α)β

(θ + β)2
(e(θ+β)t1 − 1)

− (k − α)Tβ

(θ + β)
e(θ+β)t1

dt1
dT
}(T +N −M)− (k − α)θT t1

θ + β

− (k − α)β

(θ + β)2
(e(θ+β)t1 − 1)] + sIe[{α(1 +

T

2
) +

(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)

+
θ(k − α)

(θ + β)
(t1 − T

dt1
dT

+
Tt1
2

)− (k − α)Tβ2

(θ + β)
e(θ+β)t1

dt1
dT
}(M −N − T

2
)

+
(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)] + sα(1− δ)(T dt2

dT
− t2).
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Therefore, f1(T ) and Π1(T ) both have the same sign and domain. The optimal
values of T , say T ∗1 , can be obtained by solving the following equation:

f1(T ) = 0. (11)

We also have

df1(T )

dT
=

a

(β + θ)2
[(k − α){T (β + θ)

d2t1
dT 2

(1− e(θ+β)t1)− T (β + θ)2(
dt1
dT

)2e(θ+β)t1}

+ α{T (β + θ)2e(β+θ)(t2−t1)(
dt2
dT
− dt1
dT

)2 + T (β + θ)(
d2t2
dT 2

− d2t1
dT 2

)

(e(β+θ)(t2−t1) − 1)}] +
b

(β + θ)3
[(k − α)(β + θ)2e(θ+β)t1(

dt1
dT

)2

+ (k − α)T (β + θ)2e(θ+β)t1
d2t1
dT 2

+ α(β + θ)e(β+θ)(t2−t1)(
dt2
dT
− dt1
dT

)2

+ αTe(β+θ)(t2−t1)(
d2t2
dT 2

− d2t1
dT 2

)]

− bTα

(β + θ)2

d2t2
dT 2

− cθ

(β + θ)2
[(k − α)(β + θ)2

e(θ+β)t1T{(dt1
dT

)2 − d2t1
dT 2
}+ αT (β + θ)2e(β+θ)(t2−t1)(

dt2
dT
− dt1
dT

)2

− α(β + θ)Te(β+θ)(t2−t1)(
d2t2
dT 2

− d2t1
dT 2

) + (k − α)T (β + θ)
d2t1
dT 2

− α(β + θ)T (
d2t2
dT 2

− d2t1
dT 2

)] + αδ[(c2 + δ){T (1− dt2
dT

)2 − T (T − t2)
d2t2
dT 2
}]

+ c[(k − α){(β + θ)T (
dt1
dT

)2 +
d2t1
dT 2
} − αδ(1 +

d2t2
dT 2

)]

+ cIc[
θT (k − α)

(θ + β)

d2t1
dT 2

+
(k − α)βT

(θ + β)
e(β+θ)t1{(dt1

dT

2

) +
d2t1
dT 2
}

+
(k − α)β

(θ + β)2
e(β+θ)t1{(dt1

dT

2

) +
d2t1
dT 2
}] + sIe[

(k − α)β2

(θ + β)2
e(β+θ)t1

{(dt1
dT

2

) +
d2t1
dT 2
} − α

2
+
θ(k − α)T

(θ + β)
(
d2t1
dT 2

− 1

2

dt1
dT

)]

+ sα(1− δ){dt2
dT

+ T
d2t2
dT 2
} > 0, if T > 0.

Hence, f1(T ) is strictly monotonically increasing on (0,∞). From Lemma 5.3,
Π1(T ) is a convex function on (0,∞). Also we note

lim
T→∞

f1(T ) =∞, (12)

and

f1(0) = −
[
A− 2ka

(β + θ)2
− bk

(β + θ)3
− sIeα

]
. (13)

Hence, we see that

dΠ1(T )

dT
=

 < 0, if T ∈ (0, T ∗1 ),
= 0, if T = T ∗1 ,
> 0, if T ∈ (T ∗1 ,∞),
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provided that f1(0) < 0. Based upon the above arguments, theorem 5.2 yields that
the optimal solution, T ∗1 , not only exists but also it is unique. A similar procedure
described for Π1(T ) can be applied to the next function, too.
The first-order derivative of Π2(T ) with respect to T is defined as:

dΠ2(T )

dT
=
f2(T )

T 2
, (14)

where

f2(T ) := −A

− [
a

(β + θ)2
[(k − α){T (β + θ)

dt1
dT

(e(β+θ)t1 − 1)− (e(β+θ)t1 − (β + θ)t1)}

+ α{T (β + θ)(
dt2
dT
− dt1
dT

)(e(β+θ)(t2−t1) − 1)− e(β+θ)(t2−t1) − (β + θ)(t2 − t1)}]

+
b

(β + θ)3
[(k − α)e(β+θ)t1(T (β + θ)

dt1
dT
− 1) + αe(β+θ)(t2−t1)(T (

dt2
dT
− dt1
dT

)− 1)]

− bα

(β + θ)2
(T
dt2
dT
− t2)]− cθ

(θ + β)2
[(k − α)e(β+θ)t1{1− (β + θ)T

dt1
dT
}

+ αe(β+θ)(t2−t1){1− (β + θ)T (
dt2
dT
− dt1
dT

)}+ (k − α)(β + θ)(T
dt1
dT
− t1)

+ α(β + θ){T (
dt2
dT
− dt1
dT

)− (t2 − t1)}]− αδ

2
[(c2 + δ){(T − t2)2

− T (T − t2)(1− dt2
dT

)}]− c[k − α
θ + β

{e(β+θ)t1 − 1}+ αδ(T
dt2
dT
− t2)

− (k − α)e(β+θ)t1T
dt1
dT

] + sIe[{α(1 +
T

2
) +

(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)

+
θ(k − α)

(θ + β)
(t1 − T

dt1
dT

)− (k − α)β2T

(θ + β)
e(θ+β)t1

dt1
dT
}(M −N − T

2
)

+
(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)] + sα(1− δ)(T dt2

dT
− t2).

Therefore, f2(T ) and Π2(T ) both have the same sign and domain. The optimal
values of T , say T ∗2 , can be obtained by solving the equation

f2(T ) = 0. (15)

We also have

df2(T )

dT
=

a

(β + θ)2
[(k − α){T (β + θ)

d2t1
dT 2

(1− e(θ+β)t1)− T (β + θ)2(
dt1
dT

)2e(θ+β)t1}

+ α{T (β + θ)2e(β+θ)(t2−t1)(
dt2
dT
− dt1
dT

)2 + T (β + θ)(
d2t2
dT 2

− d2t1
dT 2

)

(e(β+θ)(t2−t1) − 1)}] +
b

(β + θ)3
[(k − α)(β + θ)2e(θ+β)t1(

dt1
dT

)2

+ (k − α)T (β + θ)2e(θ+β)t1
d2t1
dT 2

+ α(β + θ)e(β+θ)(t2−t1)(
dt2
dT
− dt1
dT

)2

+ αTe(β+θ)(t2−t1)(
d2t2
dT 2

− d2t1
dT 2

)]− bTα

(β + θ)2

d2t2
dT 2

− cθ

(β + θ)2
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[(k − α)(β + θ)2e(θ+β)t1T{(dt1
dT

)2 − d2t1
dT 2
}+ αT (β + θ)2e(β+θ)(t2−t1)(

dt2
dT
− dt1
dT

)2

− α(β + θ)Te(β+θ)(t2−t1)(
d2t2
dT 2

− d2t1
dT 2

) + (k − α)T (β + θ)
d2t1
dT 2

− α(β + θ)T (
d2t2
dT 2

− d2t1
dT 2

)] + αδ[(c2 + δ){T (1− dt2
dT

)2 − T (T − t2)
d2t2
dT 2
}]

+ c[(k − α){(β + θ)T (
dt1
dT

)2 +
d2t1
dT 2
} − αδ(1 +

d2t2
dT 2

)]

+ sIe[
α

2
− θ(k − α)βT

(θ + β)

d2t1
dT 2

− (k − α)β2Te(θ+β)t1{(dt1
dT

)2 +
d2t1
dT 2
}

+
(k − α)β2

(θ + β)
e(θ+β)t1

dt1
dT

] + sα(1− δ){dt2
dT

+ T
d2t2
dT 2
} > 0, if T > 0.

Here, we observe that f2(T ) is a increasing function on (0,∞). Hence, we can
conclude from Lemma 5.3 that, Π2(T ) is a convex function on (0,∞). Furthermore,
we see that

lim
T→∞

f2(T ) =∞, (16)

and

f2(0) = −
[
A− 2ka

(β + θ)2
− bk

(β + θ)3
− sIe

α

2

]
. (17)

Hence, we note that

dΠ2(T )

dT
=

 < 0, if T ∈ (0, T ∗2 ),
= 0, if T = T ∗2 ,
> 0, if T ∈ (T ∗2 ,∞),

provided that f2(0) < 0. Hence, with the help of theorem 5.2 and combining the
above arguments, we draw the conclusion that the optimal solution, T ∗2 , not only
exists that it is also unique. Similarly, the first-order derivative of Π3(T ) with
respect to T is obtained as stated below:

dΠ3(T )

dT
=
f3(T )

T 2
, (18)

where

f3(T ) := −A

−[
a

(β + θ)2
[(k − α){T (β + θ)

dt1
dT

(e(β+θ)t1 − 1)− (e(β+θ)t1 − (β + θ)t1)}

+α{T (β + θ)(
dt2
dT
− dt1
dT

)(e(β+θ)(t2−t1) − 1)− e(β+θ)(t2−t1) − (β + θ)(t2 − t1)}]

+
b

(β + θ)3
[(k − α)e(β+θ)t1(T (β + θ)

dt1
dT
− 1) + αe(β+θ)(t2−t1)(T (

dt2
dT
− dt1
dT

)

−1)]− bα

(β + θ)2
(T
dt2
dT
− t2)]− cθ

(θ + β)2
[(k − α)e(β+θ)t1{1− (β + θ)T

dt1
dT
}

+αe(β+θ)(t2−t1){1− (β + θ)T (
dt2
dT
− dt1
dT

)}+ (k − α)(β + θ)(T
dt1
dT
− t1)

+α(β + θ){T (
dt2
dT
− dt1
dT

)− (t2 − t1)}]− αδ

2
[(c2 + δ){(T − t2)2 − T (T − t2)

(1− dt2
dT

)}]− c[k − α
θ + β

{e(β+θ)t1 − 1}+ αδ(T
dt2
dT
− t2)− (k − α)e(β+θ)t1T

dt1
dT

]
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−cIc[(N −M)k(t1 − T
dt1
dT

)− θ(k − α)kT

θ + β

dt1
dT

− (k − α)T

θ + β
(θk + βe(β+θ)t1)

dt1
dT

] + sα(1− δ)(T dt2
dT
− t2).

Therefore, f3(T ) and Π3(T ) both have the same sign and domain. The optimal
values of T , say T ∗3 , can be evaluated from the equation

f3(T ) = 0. (19)

We also have

df3(T )

dT
=

a

(β + θ)2
[(k − α){T (β + θ)

d2t1
dT 2

(1− e(θ+β)t1)− T (β + θ)2(
dt1
dT

)2e(θ+β)t1}

+ α{T (β + θ)2e(β+θ)(t2−t1)(
dt2
dT
− dt1
dT

)2 + T (β + θ)(
d2t2
dT 2

− d2t1
dT 2

)

(e(β+θ)(t2−t1) − 1)}] +
b

(β + θ)3
[(k − α)(β + θ)2e(θ+β)t1(

dt1
dT

)2

+ (k − α)T (β + θ)2e(θ+β)t1
d2t1
dT 2

+ α(β + θ)e(β+θ)(t2−t1)(
dt2
dT
− dt1
dT

)2

+ αTe(β+θ)(t2−t1)(
d2t2
dT 2

− d2t1
dT 2

)]− bTα

(β + θ)2

d2t2
dT 2

− cθ

(β + θ)2
[(k − α)(β + θ)2e(θ+β)t1T{(dt1

dT
)2 − d2t1

dT 2
}

+ αT (β + θ)2e(β+θ)(t2−t1)(
dt2
dT
− dt1
dT

)2 − α(β + θ)Te(β+θ)(t2−t1)(
d2t2
dT 2

− d2t1
dT 2

)

+ (k − α)T (β + θ)
d2t1
dT 2

− α(β + θ)T (
d2t2
dT 2

− d2t1
dT 2

)]

+ αδ[(c2 + δ){T (1− dt2
dT

)2 − T (T − t2)
d2t2
dT 2
}]

+ c[(k − α){(β + θ)T (
dt1
dT

)2 +
d2t1
dT 2
} − αδ(1 +

d2t2
dT 2

)]

+ cIc[(N −M)kT
d2t1
dT 2

+
θ(k − α)

θ + β
kT

d2t1
dT 2

+ (k − α)Te(θ+β)t1(
dt1
dT

+
d2t1
dT 2

)]

+ sα(1− δ){dt2
dT

+ T
d2t2
dT 2
} > 0, if T > 0.

Hence, f3(T ) is increasing on (0,∞). With the help of Lemma 5.3, Π3(T ) is a
convex function on (0,∞). Also we conclude:

lim
T→∞

f3(T ) =∞, and f3(0) = −
[
A− 2ka

(β + θ)2
− bk

(β + θ)3

]
. (20)

Thus, we see that

dΠ3(T )

dT
=

 < 0, if T ∈ (0, T ∗3 ),
= 0, if T = T ∗3 ,
> 0, if T ∈ (T ∗3 ,∞),

provided that f3(0) < 0. So, via theorem 5.2 and adding the above arguments, we
reach on an agreement that the optimal solution, T ∗3 , also exists uniquely. Now, we
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let

φ := A− 2ka

(β + θ)2
− bk

(β + θ)3
− sIeα,

ψ := A− 2ka

(β + θ)2
− bk

(β + θ)3
− sIe

α

2
;

we can easily find that φ < ψ and, combining the above cases, the following
theorem is obtained.

Theorem 5.4. (a) If φ > 0, then T ∗1 is the unique optimal solution to the cost
function Π1(T ).
(b) If ψ > 0, then T ∗2 is the unique optimal solution to the cost function Π2(T ).
(c) Π3(T ) has the unique optimal solution T ∗3 on the non-negative interval (0,∞).

Proof. Proof of theorem 5.4 is obvious.

Here, the flowchart in figure 2 describes the solution procedure clearly.

5.2. Decision Criterion of the Optimal Replenishment Cycle Time T ∗. In
this subsection, decision criterion are developed to find the retailer’s optimal cycle
time. From the definition of Π(T ), we have:

Π(T ) =

 Π1(T ), if T ≥ TM ,
Π2(T ), if M ≤ T ≤ TM ,
Π3(T ), if N ≤ T ≤ TM ,

(21)

where

TM =
1

β + θ
ln[
β + θ

k − α

(
b(k − α)

β + θ
− cδT

β + θ
e(β+θ)T

)
−
(
a(k − α)

β + θ
+

bθδ

(β + θ)2

)
(1− e(β+θ)T )].

We find that, at T = TM , Π1(TM ) = Π2(TM ), and at T = M , Π2(M) = Π3(M);
then Π(T ) is a continuous function and it is well-defined on T > 0. Since Π(T )
is a continuously differentiable function of T with a derivative that changes sign
only once at T ∗i (i = 1, 2, 3) from negative to positive values, it follows that Π(T )
assumes its global minimum at the point T ∗. However, a closed-form solution is not
readily available from equation 21 and theorem 5.2. But, a fairly straightforward
procedure is established subsequently to determine the optimal replenishment time
to simplify the solution procedure. Let T = TM ; now it is obtained that

Π′1(TM ) =
1

T 2
M

[−A− [
a

(β + θ)2
[(k − α){T (β + θ)

dt1
dT

(e(β+θ)t1 − 1)

−(e(β+θ)t1 − (β + θ)t1)}+ α{T (β + θ)(
dt2
dT
− dt1
dT

)(e(β+θ)(t2−t1) − 1)

−e(β+θ)(t2−t1) − (β + θ)(t2 − t1)}]|T=TM
+

b

(β + θ)3
[(k − α)e(β+θ)t1

(T (β + θ)
dt1
dT
− 1) + αe(β+θ)(t2−t1)(T (

dt2
dT
− dt1
dT

)− 1)]|T=TM

− bα

(β + θ)2
(T
dt2
dT
− t2)]|T=TM

− cθ

(θ + β)2
[(k − α)e(β+θ)t1
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Figure 2. Flowchart of the solution procedure
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{1− (β + θ)T
dt1
dT
}+ αe(β+θ)(t2−t1){1− (β + θ)T (

dt2
dT
− dt1
dT

)}

+(k − α)(β + θ)(T
dt1
dT
− t1) + α(β + θ){T (

dt2
dT
− dt1
dT

)− (t2 − t1)}]|T=TM

−αδ
2

[(c2 + δ){(T − t2)2 − T (T − t2)(1− dt2
dT

)}]|T=TM
− c[k − α

θ + β
{e(β+θ)t1 − 1}

+αδ(T
dt2
dT
− t2)− (k − α)e(β+θ)t1T

dt1
dT

]|T=TM
− cIc[{

(k − α)θ

θ + β
(t1 − T

dt1
dT

)

+
(k − α)β

(θ + β)2
(e(θ+β)t1 − 1)− (k − α)Tβ

(θ + β)
e(θ+β)t1

dt1
dT
}(T +N −M)− (k − α)θT t1

θ + β

− (k − α)β

(θ + β)2
(e(θ+β)t1 − 1)]|T=TM

+ sIe[{α(1 +
T

2
) +

(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)

+
θ(k − α)

(θ + β)
(t1 − T

dt1
dT

+
Tt1
2

)− (k − α)Tβ2

(θ + β)
e(θ+β)t1

dt1
dT
}(M −N − T

2
)

+
(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)]|T=TM

+ sα(1− δ)(T dt2
dT
− t2)|T=TM

],

Π′2(TM )

=
1

T 2
M

[−A− [
a

(β + θ)2
[(k − α){T (β + θ)

dt1
dT

(e(β+θ)t1 − 1)− (e(β+θ)t1

−(β + θ)t1)}+ α{T (β + θ)(
dt2
dT
− dt1
dT

)(e(β+θ)(t2−t1) − 1)− e(β+θ)(t2−t1)

−(β + θ)(t2 − t1)}]|T=TM
+

b

(β + θ)3
[(k − α)e(β+θ)t1(T (β + θ)

dt1
dT
− 1)

+αe(β+θ)(t2−t1)(T (
dt2
dT
− dt1
dT

)− 1)]|T=TM
− bα

(β + θ)2
(T
dt2
dT
− t2)]|T=TM

− cθ

(θ + β)2
[(k − α)e(β+θ)t1{1− (β + θ)T

dt1
dT
}+ αe(β+θ)(t2−t1){1

−(β + θ)T (
dt2
dT
− dt1
dT

)}+ (k − α)(β + θ)(T
dt1
dT
− t1)

+α(β + θ){T (
dt2
dT
− dt1
dT

)− (t2 − t1)}]|T=TM

−αδ
2

[(c2 + δ){(T − t2)2 − T (T − t2)(1− dt2
dT

)}]|T=TM
]

−c[k − α
θ + β

{e(β+θ)t1 − 1}+ αδ(T
dt2
dT
− t2)− (k − α)e(β+θ)t1T

dt1
dT

]|T=TM

+sIe[{α(1 +
T

2
) +

(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1) +

θ(k − α)

(θ + β)
(t1 − T

dt1
dT

)

− (k − α)β2T

(θ + β)
e(θ+β)t1

dt1
dT
}(M −N − T

2
) +

(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)]|T=TM

+sα(1− δ)(T dt2
dT
− t2)|T=TM

].

For convenience, let

∆1 := −A− [
a

(β + θ)2
[(k − α){T (β + θ)

dt1
dT

(e(β+θ)t1 − 1)
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−(e(β+θ)t1 − (β + θ)t1)}+ α{T (β + θ)(
dt2
dT
− dt1
dT

)(e(β+θ)(t2−t1) − 1)

−e(β+θ)(t2−t1) − (β + θ)(t2 − t1)}]|T=TM

+
b

(β + θ)3
[(k − α)e(β+θ)t1(T (β + θ)

dt1
dT
− 1)

+αe(β+θ)(t2−t1)(T (
dt2
dT
− dt1
dT

)− 1)]|T=TM
− bα

(β + θ)2
(T
dt2
dT
− t2)]|T=TM

− cθ

(θ + β)2
[(k − α)e(β+θ)t1{1− (β + θ)T

dt1
dT
}

+αe(β+θ)(t2−t1){1− (β + θ)T (
dt2
dT
− dt1
dT

)}+ (k − α)(β + θ)(T
dt1
dT
− t1)

+α(β + θ){T (
dt2
dT
− dt1
dT

)− (t2 − t1)}]|T=TM

−αδ
2

[(c2 + δ){(T − t2)2 − T (T − t2)(1− dt2
dT

)}]|T=TM

−c[k − α
θ + β

{e(β+θ)t1 − 1}+ αδ(T
dt2
dT
− t2)− (k − α)e(β+θ)t1T

dt1
dT

]|T=TM

−cIc[{
(k − α)θ

θ + β
(t1 − T

dt1
dT

) +
(k − α)β

(θ + β)2
(e(θ+β)t1 − 1)

− (k − α)Tβ

(θ + β)
e(θ+β)t1

dt1
dT
}(T +N −M)− (k − α)θT t1

θ + β

− (k − α)β

(θ + β)2
(e(θ+β)t1 − 1)]|T=TM

+ sIe[{α(1 +
T

2
) +

(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)

+
θ(k − α)

(θ + β)
(t1 − T

dt1
dT

+
Tt1
2

)− (k − α)Tβ2

(θ + β)
e(θ+β)t1

dt1
dT
}(M −N − T

2
)

+
(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)]|T=TM

+ sα(1− δ)(T dt2
dT
− t2)|T=TM

,

∆2 := −A− [
a

(β + θ)2
[(k − α){T (β + θ)

dt1
dT

(e(β+θ)t1 − 1)− (e(β+θ)t1

−(β + θ)t1)}+ α{T (β + θ)(
dt2
dT
− dt1
dT

)(e(β+θ)(t2−t1) − 1)− e(β+θ)(t2−t1)

−(β + θ)(t2 − t1)}]|T=TM
+

b

(β + θ)3
[(k − α)e(β+θ)t1(T (β + θ)

dt1
dT
− 1)

+αe(β+θ)(t2−t1)(T (
dt2
dT
− dt1
dT

)− 1)]|T=TM
− bα

(β + θ)2
(T
dt2
dT
− t2)]|T=TM

− cθ

(θ + β)2
[(k − α)e(β+θ)t1{1− (β + θ)T

dt1
dT
}+ αe(β+θ)(t2−t1)

{1− (β + θ)T (
dt2
dT
− dt1
dT

)}+ (k − α)(β + θ)(T
dt1
dT
− t1)

+α(β + θ){T (
dt2
dT
− dt1
dT

)− (t2 − t1)}]|T=TM

−αδ
2

[(c2 + δ){(T − t2)2 − T (T − t2)(1− dt2
dT

)}]|T=TM
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−c[k − α
θ + β

{e(β+θ)t1 − 1}+ αδ(T
dt2
dT
− t2)− (k − α)e(β+θ)t1T

dt1
dT

]|T=TM

+sIe[{α(1 +
T

2
) +

(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1) +

θ(k − α)

(θ + β)
(t1 − T

dt1
dT

)

− (k − α)β2T

(θ + β)
e(θ+β)t1

dt1
dT
}(M −N − T

2
) +

(k − α)β2

(θ + β)2
(e(θ+β)t1 − 1)]|T=TM

+sα(1− δ)(T dt2
dT
− t2)|T=TM

.

Then, we receive the following result.

Theorem 5.5. (a) If ∆2 ≥ 0, then Π(T ∗) = Π(T ∗3 ) and T ∗ = T ∗3 .
(b) If ∆1 > 0 and ∆2 < 0, then Π(T ∗) = Π(T ∗2 ) and T ∗ = T ∗2 .
(c) If ∆1 ≤ 0, then Π(T ∗) = Π(T ∗1 ) and T ∗ = T ∗1 .

Proof. If ∆2 ≥ 0, then ∆1 > 0; therefore, Π′1(TM ) = Π′2(TM ) > 0 and Π′2(M) =
Π′3(M) ≥ 0. Now, we get that

• Π1(T ) is increasing on [TM ,∞).
• Π2(T ) is increasing on [M,TM ].
• Π3(T ) is decreasing on [N,T ∗3 ] and increasing on [T ∗3 ,M ].

Combining the above three criteria and equation 21, we understand that Π(T ) is
decreasing on (0, T ∗3 ] and increasing on [T ∗3 ,∞). Consequently, T ∗ = T ∗3 . This
proves the first part of the above theorem.
If ∆1 > 0 and ∆2 < 0, then ∆3 < 0, therefore, T ∗2 > M , T ∗1 < TM and T ∗2 < TM ,
we have Π′1(TM ) = Π′2(TM ) > 0 and Π′2(M) = Π′1(M) < 0. Then, from

dΠi(T )

dT
=

 < 0, if T ∈ (0, T ∗i ),
= 0, if T = T ∗i ,
> 0, if T ∈ (T ∗i ,∞),

we get that

• Π1(T ) is increasing on [TM ,∞),
• Π2(T ) is decreasing on [M,T ∗2 ] and increasing on [T ∗2 , TM ].

Relating the above two criteria and equation 21, we see that Π(T ) is decreasing on
(0, T ∗2 ] and increasing on [T ∗2 ,∞). Consequently, T ∗ = T ∗2 . This proves the second
part of the theorem. For the last part, if ∆ ≤ 0, then T ∗2 > M , T ∗1 ≥ TM and
T ∗2 ≥ TM . Now, we have Π′1(TM ) = Π′2(TM ) ≤ 0 and Π′2(M) = Π′1(M) < 0. So,
from the above conclusion this implies that

• Π1(T ) is decreasing on [TM , T
∗
1 ] and increasing on [T ∗1 ,∞).

• Π2(T ) is decreasing on [M,TM ] and increasing on [T ∗2 , TM ].

Combining the above two criteria and equation 21, we have that Π(T ) is decreasing
on (0, T ∗1 ] and increasing on [T ∗1 ,∞). Consequently, T ∗ = T ∗1 . This proves the third
part of the theorem and, hence, completes the proof.

Let us define ∆T as

∆T := A+
(a+ cθ)(k − α)

(β + θ)2

[
e(θ+β)t − (θ + β)t− 1

]
− bαt

(β + θ)2
+ αδ(c2 + δ)

− sIe
[
α+

(k − α)β2

(β + θ)2
(e(θ+β)t − 1)

]
.
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Now, we obtain the following theorem.

Theorem 5.6. (a) If ∆T ≥ 0, then the retailer’s optimal cycle time is T ∗2 .
(b) If ∆T = 0, then the retailer’s optimal cycle time is M −N .
(c) If ∆T ≤ 0, then the retailer’s optimal cycle time is T ∗1 .

Proof. The arguments imply that the theorem holds.

6. Numerical Example. The following numerical examples are provided to illus-
trate our proposed method.

Example 1 Let us assume A = $300/order, s = $20/unit, c = $60/unit, a =
$0.7/unit/year, b = $0.8/unit/year, M = 0.3 years, N = 0.5 years, Ic = $0.11/$
/year, Ie = $0.12/$/year, k = 1000/unit/year, c2 = $40/unit, α = 1.5, β = 0.8,
θ = 0.06, δ = 0.05. Then, ∆1 = −2.5123 < 0, ∆2 = −1.8514 < 0. Then, solving
equation f1(T ) = 0 by Newton-Raphson method, we derive the values of T , t1 and
t2 as T ∗ = T ∗1 = 3.1102, t1 = 0.1974, t2 = 0.1952, which will satisfy all the above
conditions and theorem 5.4. Now, utilizing the values of T , t1 and t2 in equation
7, we calculate the total cost of the inventory system with the help of Mathematica
as Π1(T ∗1 ) = 225.4167.

Example 2 Considering that, A = $250/order, s = $30/unit, c = $70/unit,
a = $0.8/unit/year, b = $0.9/unit/year, M = 0.5 years, N = 0.6 years, Ic =
$0.21/$/year, Ie = $0.24/$/year, k = 1200/unit/year, c2 = $50/unit, α = 2.0,
β = 1.5, θ = 0.08, δ = 0.06. Now, ∆1 = −2.2431 < 0, ∆2 = −2.0119 < 0. Hence,
solving equation f2(T ) = 0 by Newton-Raphson method, we obtain the values of T ,
t1 and t2 as T ∗ = T ∗2 = 3.2148, t1 = 0.1783, t2 = 0.1832, and these values satisfy all
the above conditions and theorem 5.4. Now, employing the values of T , t1 and t2 in
equation 8, we derive the total cost of the inventory system by using Mathematica
as Π2(T ∗2 ) = 230.1968.

Example 3 Assuming, A = $280/order, s = $40/unit, c = $80/unit, a = $1.1/unit
/year, b = $0.8/unit/year, M = 0.8 years, N = 0.9 years, Ic = $0.18/$/year,
Ie = $0.22/$/year, k = 1100/unit/year, c2 = $60/unit, α = 3.0, β = 2.0, θ = 0.09,
δ = 0.07. Then ∆1 = −2.4518 < 0, ∆2 = −2.7012 < 0. By solving equation
f3(T ) = 0 with the help of Newton-Raphson method, we get the values of T , t1
and t2 as T ∗ = T ∗3 = 3.2207, t1 = 0.2092, t2 = 0.1654, which will verify all the
conditions and theorem 5.4. Now, using the values of T , t1 and t2 in equation 9,
we obtain the total cost of the inventory system with the help of Mathematica as
Π3(T ∗3 ) = 231.0221.

7. Sensitivity Analysis. We now analyze the effects of changes in the system
parameters A, s, c, a, b, M , N , Ie, α, β, γ, δ, and c2 on the optimal values of T ,
t1, t2 and the optimal cost Π(T ). The sensitivity analysis is performed by changing
each of the parameters by +50%, +25%, +10%, -10%, -25% and -50%, taking one
parameter at a time and keeping the remaining parameters unchanged. The results
based on Example 1 are shown in Tables 2 and 3 and, on the basis of these results,
the observations are taken into account. If we consider Examples 2 and 3, then,
by applying the same procedure, we can likewise do a sensitivity analysis of the
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parameters and can represent them by tables; but for the length of the paper, we
only consider Example 1 here.

Table 2: Sensitivity Analysis for different Parameters involved in Example 1.

Parameter % change value T t1 t2 TC
+50 450 3.9859 0.1978 0.1865 225.4871
+25 375 3.9701 0.1975 0.1841 225.4991

A +10 330 3.9621 0.1968 0.1820 225.5123
-10 270 3.9528 0.1042 0.1792 225.5472
-25 225 3.9519 0.1040 0.1763 225.5612
-50 150 3.9482 0.1037 0.1730 225.5860
+50 30 3.9883 0.1054 0.1579 225.6102
+25 25 3.9865 0.1049 0.1556 225.6372

s +10 22 3.9851 0.1046 0.1534 225.6819
-10 18 3.9840 0.1042 0.1518 225.6960
-25 15 3.9832 0.1039 0.1475 225.7542
-50 10 3.9818 0.1034 0.1455 225.7620
+50 90 3.9864 0.1043 0.1618 226.0171
+25 75 3.9847 0.1039 0.1632 226.1261

c +10 66 3.9840 0.1044 0.1659 226.4189
-10 54 3.9834 0.1103 0.1671 226.4703
-25 45 3.9821 0.1111 0.1690 226.5100
-50 30 3.9811 0.1235 0.1724 226.5275
+50 1.05 4.0854 0.1352 0.1858 225.8906
+25 0.875 3.9981 0.1432 0.1822 225.8940

a +10 0.77 3.9702 0.1657 0.1805 225.8976
-10 0.63 3.9453 0.1723 0.1778 225.9121
-25 0.525 3.9321 0.1805 0.1751 225.9407
-50 0.35 3.9161 0.1823 0.1736 225.9522
+50 1.2 3.9093 0.1834 0.1780 228.3131
+25 1.0 3.924 0.1874 0.1799 228.4309

b +10 0.88 3.9398 0.1916 0.1827 228.4971
-10 0.72 3.983 0.1396 0.1848 228.5102
-25 0.60 4.0806 0.1668 0.1864 228.6524
-50 0.40 3.1503 0.1625 0.1882 228.7601

Table 3: Sensitivity Analysis for different Parameters which are involved in Example 1.

Parameter % change value T t1 t2 TC
+50 0.45 3.9361 0.1790 0.1570 227.1092
+25 0.375 3.9473 0.1796 0.1589 227.4121

M +10 0.33 3.9528 0.1853 0.1603 227.6708
-10 0.27 3.9599 0.1854 0.1639 227.8211
-25 0.225 3.9647 0.1861 0.1672 227.8355
-50 0.15 3.9720 0.1864 0.1700 227.8708
+50 0.75 3.9471 0.1597 0.1968 226.9858
+25 0.625 3.9510 0.1594 0.1940 226.9987

N +10 0.55 3.9540 0.1659 0.1903 227.6891
-10 0.45 3.9593 0.1668 0.1881 227.6988
-25 0.375 3.9549 0.1678 0.1854 227.7408
-50 0.25 3.9601 0.1682 0.1826 227.1923
+50 0.09 3.9840 0.1604 0.1725 227.83
+25 0.075 3.9844 0.1629 0.1756 227.71

θ +10 0.066 3.9847 0.1636 0.1791 227.16
-10 0.054 3.9830 0.1646 0.1824 226.88
-25 0.045 3.9871 0.1653 0.1847 226.41
-50 0.03 3.9889 0.1664 0.1879 226.30
+50 0.075 3.9840 0.1687 0.1763 225.74
+25 0.0625 3.9844 0.1695 0.1735 225.63

δ +10 0.055 3.9849 0.1736 0.1712 225.16
-10 0.045 3.9850 0.1741 0.1675 224.98
-25 0.0375 3.9867 0.1750 0.1633 224.47
-50 0.025 3.9893 0.1769 0.1600 224.39

The following observations are made on the basis of Tables 2 and 3.

(i) As ordering cost A, increases, the replenishment cycle time, T ∗, increases as well as
the total optimal cost, Π(T ∗), increases;

(ii) TC, T , t1 and t2 are more sensitive with regard to change of the values of α, β and
γ;
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(iii) The larger the values of the unit selling price, s, and of the unit cost price, c, the
smaller the values of the optimal cycle time, T ∗, and of the optimal annual total
cost, Π(T ∗);

(iv) We can also see that under a higher value of the rate of interest earned, Ie, the
annual total relevant cost, Π(T ∗), will be very much lower;

(v) As holding cost, h, increases, the cycle time, T ∗, decreases, whereas the optimal
annual total cost, Π(T ∗), increases.

(vi) The values of T , t1 and t2 increase with increasing the value of the backlogging rate,
δ, and the value of total cost, TC, decreases with increasing this value.

(vii) TC, T , t1 and t2 are less sensitive when changing the value of s.
(viii) TC, T , t1 and t2 are moderately sensitive with respect to changes of the values of c

and c2.

Here, Figure 3 and Figure 4 show the required inventory model based on our sensitivity
analysis. The functions displayed in Figure 3 and Figure 4 are strictly convex functions,
which is compatible with our assumptions. So, the figures indicate the existence of our
proposed model.

Figure 3. Graphical representation to show the convexity of total
cost. The figure represents T , t1 and the total cost Π(T ), along the
x -axis, the y-axis and the z -axis, respectively

Here, the changes of the total cost with respect to the corresponding parameters are
shown by the following figures (cf. Figures 5-8).

8. Concluding Remarks and Future Study. In this paper, we have formulated a
production inventory model for deteriorating items with stock-dependent demand under
two levels of trade credit policy. Shortages are allowed for this model and, during stock
out period, price discount on backorders are allowed for those customers who are willing
to wait until the fulfillment of their demand. Here, we have considered stock-dependent
demand, because a large pile of stocks in shelves attracts the customers to buy more. As an
example, there are many shopping malls (e.g., Big Bazar, City Life, City Mart, etc.), where
the customers get many items at a time and, so, to save time, they shop everything from
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Figure 4. Graphical representation to show the convexity of total
cost. The figure represents T , t1 and the total cost Π(T ), along the
x -axis, the y-axis and the z -axis, respectively

Figure 5. Change of total cost with respect to ordering cost, A,
of our proposed model
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Figure 6. Change of total cost with respect to parameter α of our
proposed model

Figure 7. Change of total cost with respect to holding cost, h, of
our proposed model
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Figure 8. Change of total cost with respect to deteriorating cost,
θ, of our proposed model

there, which increases the profit for the decision maker, which is the supplying company.
Here, we have considered time-dependent holding cost because, as time increases, the rate
of deterioration as well as the holding cost also increase.

From our sensitivity analysis, we can conclude that with the increase of purchasing cost,
holding cost and shortage cost, the total average cost of the system increases; so to avoid
increasing of total cost, we have to diminish the corresponding cost. When the ordering
cost is increasing, then to reduce the number of orders, the retailer has to order more if
the ordering cost has become high. Furthermore, we can conclude that for a higher rate
of selling price, if the retailer wants a benefit from trade-credit policy, he(or she) has to
order less. The retailer should get a higher benefit from any permissible delay if he(or
she) earned a large rate of interest from the trade-credit policy. We can see that when the
holding cost increases, the retailer shortens the cycle time and reduces the order quantity to
maintain the profit. It is also found that for low backorder cost, it will be beneficial to the
inventory manager to offer the customers a high discount on backorders. In our proposed
approach, we have explored the fact that there exists a unique optimal replenishment time
to minimize the total variable cost per unit time. We have also presented an optimal
solution procedure to find the optimal replenishment policy. The effects of the model
parameters on the optimal replenishment time and on the optimal total variable cost per
unit time are investigated through numerical examples followed by a sensitivity analysis.

Besides this, we can say that our system is more important for industry because it
provides a powerful tool for decision maker in planning and controlling the industry. This
will also explain a useful model for many organizations that use the decision rule to improve
their total operation costs. In this paper, the term deterioration is more emphasized and
it will attract industrialists to update themselves and earn more profits from the system.
The sensitivity analysis yields different conditions and solutions, which will provide an
alternative and allow for a broader application scope of our system. Since the system
is formulated from a retailer’s perspective and the retailer has to decide to alter the
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regular ordering pattern, it takes measure in preparation for the retailer to earn more
profit. Finally, this paper considers a trade-credit which is an important and major part
of inventory control and a powerful tool to improve sales and profit in an industry.
In a future study, the proposed model can be designed further in several ways. As an
illustration, one can generalize variable deterioration rate as a stochastic deterioration
rate. The demand function can be changed by a probabilistic demand function, time-
dependent demand function instead of constant demand function. For a more practical
situation, one can construct the model by introducing warehouses, quantity discounts,
stochastic inflation, deteriorating cost, time-dependent deterioration rate and permissible
delay in payments. In addition to the possible advances presented above, our model can
provide an interesting research area with an additional impact by selling defective items
at a lower price on demand.
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