125 research outputs found

    A Hierarchical Bayesian Model for the Unmixing Analysis of Compositional Data subject to Unit-sum Constraints

    Get PDF
    Modeling of compositional data is emerging as an active area in statistics. It is assumed that compositional data represent the convex linear mixing of definite numbers of independent sources usually referred to as end members. A generic problem in practice is to appropriately separate the end members and quantify their fractions from compositional data subject to nonnegative and unit-sum constraints. A number of methods essentially related to polytope expansion have been proposed. However, these deterministic methods have some potential problems. In this study, a hierarchical Bayesian model was formulated, and the algorithms were coded in MATLABÃ’. A test run using both a synthetic and real-word dataset yields scientifically sound and mathematically optimal outputs broadly consistent with other non-Bayesian methods. Also, the sensitivity of this model to the choice of different priors and structure of the covariance matrix of error were discussed

    Hyperspectral Image Unmixing Incorporating Adjacency Information

    Get PDF
    While the spectral information contained in hyperspectral images is rich, the spatial resolution of such images is in many cases very low. Many pixel spectra are mixtures of pure materials’ spectra and therefore need to be decomposed into their constituents. This work investigates new decomposition methods taking into account spectral, spatial and global 3D adjacency information. This allows for faster and more accurate decomposition results

    Independent Component Analysis Enhancements for Source Separation in Immersive Audio Environments

    Get PDF
    In immersive audio environments with distributed microphones, Independent Component Analysis (ICA) can be applied to uncover signals from a mixture of other signals and noise, such as in a cocktail party recording. ICA algorithms have been developed for instantaneous source mixtures and convolutional source mixtures. While ICA for instantaneous mixtures works when no delays exist between the signals in each mixture, distributed microphone recordings typically result various delays of the signals over the recorded channels. The convolutive ICA algorithm should account for delays; however, it requires many parameters to be set and often has stability issues. This thesis introduces the Channel Aligned FastICA (CAICA), which requires knowledge of the source distance to each microphone, but does not require knowledge of noise sources. Furthermore, the CAICA is combined with Time Frequency Masking (TFM), yielding even better SOI extraction even in low SNR environments. Simulations were conducted for ranking experiments tested the performance of three algorithms: Weighted Beamforming (WB), CAICA, CAICA with TFM. The Closest Microphone (CM) recording is used as a reference for all three. Statistical analyses on the results demonstrated superior performance for the CAICA with TFM. The algorithms were applied to experimental recordings to support the conclusions of the simulations. These techniques can be deployed in mobile platforms, used in surveillance for capturing human speech and potentially adapted to biomedical fields

    Hyperspectral Image Analysis of Food Quality

    Get PDF

    Perceptually motivated blind source separation of convolutive audio mixtures

    Get PDF

    Assessing The Biophysical Naturalness Of Grassland In Eastern North Dakota With Hyperspectral Imagery

    Get PDF
    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, Level of Dominance and Band variance , were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both Level of Dominance and Band variance indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower Level of Dominance and Band variance as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single species. The discrimination of native and introduced grassland was limited by the similarity of spectral signatures between forb-dominated native grasslands and brome-grass stands. However, saline native grasslands were distinguishable from brome grass

    Signal processing techniques for the enhancement of marine seismic data

    Get PDF
    This thesis presents several signal processing techniques applied to the enhancement of marine seismic data. Marine seismic exploration provides an image of the Earth's subsurface from reflected seismic waves. Because the recorded signals are contaminated by various sources of noise, minimizing their effects with new attenuation techniques is necessary. A statistical analysis of background noise is conducted using Thomson’s multitaper spectral estimator and Parzen's amplitude density estimator. The results provide a statistical characterization of the noise which we use for the derivation of signal enhancement algorithms. Firstly, we focus on single-azimuth stacking methodologies and propose novel stacking schemes using either enhanced weighted sums or a Kalman filter. It is demonstrated that the enhanced methods yield superior results by their ability to exhibit cleaner and better defined reflected events as well as a larger number of reflections in deep waters. A comparison of the proposed stacking methods with existing ones is also discussed. We then address the problem of random noise attenuation and present an innovative application of sparse code shrinkage and independent component analysis. Sparse code shrinkage is a valuable method when a noise-free realization of the data is generated to provide data-driven shrinkages. Several models of distribution are investigated, but the normal inverse Gaussian density yields the best results. Other acceptable choices of density are discussed as well. Finally, we consider the attenuation of flow-generated nonstationary coherent noise and seismic interference noise. We suggest a multiple-input adaptive noise canceller that utilizes a normalized least mean squares alg orithm with a variable normalized step size derived as a function of instantaneous frequency. This filter attenuates the coherent noise successfully when used either by itself or in combination with a time-frequency median filter, depending on the noise spectrum and repartition along the data. Its application to seismic interference attenuation is also discussed

    Kernel methods for measuring independence

    No full text
    We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals
    • …
    corecore