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Abstract 

Blind source separation aims to recover independent sources from their multiple observed mix-

tures using independent component analysis (ICA). However, when applying this technique to 

audio mixture problem such as a number of people talking in a room, the performance of the 

system is greatly reduced by the effect of room reflections and ambient noise. 

In contrast, two human microphones (the ears) perform well in such a real cock-tail party 

environment. Over the last few years the application of psycho-acoustic principles (the human 

auditory perception) has led to the successful development of MPEG audio coding standard 

which is the basic technique behind MP3 players and music availability on the internet. 

The first objective of this thesis is to apply psycho-acoustic principles to the spatial process-

ing of speech signals in noisy and reverberant environment. The key assumption that will be 

adopted is that modern signal processing has failed to mimic the cock-tail party effect because 

there has been no attempt to adequately incorporate the psycho acoustical phenomenon of au-

dio masking to aid source separation. A quasi linear mechanism for mimicking simultaneous 

frequency masking and temporal masking (post masking) techniques is developed. This frame-

work is used to construct blind source separation algorithms that exploit audio masking prior 

to source separation (preprocessor) and after source separation (postprocessor). 

The final objective of this thesis is to exploit the perceptual irrelevancy of some of the input 

speech spectrum using the perceptual masking techniques before utilising the subspace method 

as a preprocessor of the frequency-domain ICA (FDICA) which reduces the effect of room 

reflections in advance and the remaining direct sounds then being separated by ICA. 

Incorporating the perceptual masking techniques prior to the application of MICA with the 

subspace method as preprocessor not only reduces the computational complexity of similar-

ity measure for solving the permutations but also avoids the so-called permutation problem 

by targeting a specific speech signal more intelligible than the available microphone signals. 

Experiments carried out in both synthetic and real room scenarios and the results shown good 

objective performance in terms of signal-to-interference ratio (SW) and enhanced modified 

Bark spectral distortion (EMBSD) confirm the validity of the proposed solutions. 
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Chapter 1 
Introduction 

This chapter gives a general introduction to the work presented in this thesis, providing a brief 

overview of the research field, indicating current areas of interest and identifying the focus 

of the investigation. The aims of this work are then addressed, followed by an outline of the 

content of other chapters presented in the thesis. 

1.1 Audio Source Separation 

Humans exhibit a remarkable ability to extract a sound source of interest from an auditory 

scene captured by the brain. The human brain can perform this everyday task in real time using 

only the information acquired from a pair of microphones (sensors), i.e. two ears. Imagine the 

situation of attending a cocktail party function busy with a lot of activities. Our ears capture a 

huge variety of sound sources: music, other people speaking, mobile phones ringing, glasses 

tinkling etc. However, we can concentrate on a specific source that is of more interest at that 

point of time. For example, we may listen to what our friend is saying. Getting bored, we can 

overhear somebody else's conversation, pay attention to an annoying mobile ringtone or even 

listen to the music played by the sound system, only to understand it is a popular song. 

Thus, the human brain can automatically focus on and separate a specific sound source of our 

interest. In general, source separation is the process aiming to separate a finite number of 

source signals from a finite set of recorded (observation) signals. Audio source separation can 

be defined as the problem of decomposing a real world sound mixture (auditory scene) into 

independent audio objects. A perceptually motivated analysis using a computer (machine) that 

exploits the irrelevancy of captured auditory scene through a number of sensors in a noisy and 

reverberant environment is the main objective of this thesis. Although this is a relatively simple 

task for the human auditory system, a perceptually motivated audio source separation can be 

considered one of the most challenging topics in the current research. 

Different approaches were proposed to solve this audio source separation problem (cocktail 

party effect) are reviewed in the following subsections. 



Introduction 

1.1.1 Computational Auditory Scene Analysis 

A possible approach to address the problem will be to analyse and finally emulate the way 

humans perform audio source separation using a computer. Psychoacoustics is a special area 

of research studying how people perceive, process and deduce information from sounds. Such 

studies construct experimental stimuli consisting of a few simple sounds such as sine tones or 

noise bursts, and then record human subjects perception of these test sounds [3]. Audio source 

separation may be regarded as one aspect of a more general process of auditory organization 

of these simple structures, which is able to untangle an acoustic mixture in order to retrieve a 

perceptual description of each constituent sound source [4]. 

Computational Auditory Scene Analysis (CASA) was one of the first methods that tried to 

decrypt the human auditory system in order to perform an automatic audio source separation 

system [4.-6]. Conceptually, CASA may be divided into two stages. In the first stage, the acous-

tic mixture is decomposed into sensory elements (segments). CASA employs either complete 

ear models (outer and middle ear, cochlear filtering etc) or computer vision techniques in order 

to segment the auditory scene into several audio elements. The second stage (grouping) then 

combines segments that are likely to have originated from the same sound source [4]. Psycho-

logical and psychoacoustic research of this kind has uncovered a number of cues or grouping 

rules which may describe how to group different parts of an audio signal into a single source, 

such as i) common spatial origin, ii) common onset characteristics, i.e., energy appearing at 

different frequencies at the same time, iii) amplitude or frequency modulations in the harmon-

ics of a musical tone, iv) harmonicity or periodicity, v) proximity in time and frequency, vi) 

continuity (i.e. temporal coherence). Usually, CASA employs one or two sensor signals, as the 

main goal is to emulate humans way of performing auditory scene analysis [6]. 

1.1.2 Beamforming 

Array signal processing is a research topic that developed during the late 1970s and 1980s 

mainly for telecommunications, radar, sonar and seismic applications. The basic array process-

ing problem consists of obtaining and processing the information about a signal environment 

from the waveforms received at the sensor array (a known constellation of microphones). Gen-

erally, the signal environment consists of a number of emitting sources plus noise. Exploiting 

time difference information from the observed signals, one can estimate the number of sources 

present in the environment using direction of arrival (DOA) towards the array sensor [7]. 
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The use of an array allows for a directional beam pattern. The beam pattern can be adapted to 

null out signals arriving from directions other than the specified look direction. This technique 

is known as spatial filtering or adaptive beamforming [8].  The reception of sound in large 

rooms, such as conference rooms and auditoria, is typically contaminated by interfering noise 

sources and reverberation. One can set up an array of microphones and apply the techniques of 

adaptive beamforming in the multiuser communication environment to perform several audio 

processing tasks. We can enhance the received amplitude of a desired sound source, while 

reducing the effects of the interfering signals and reverberation. 

Moreover, we can estimate the direction or even the position of the sound sources in the near 

field present in the room (source localisation). Most importantly, if the auditory scene contains 

more than one source, we can isolate one source of interest, whilst suppressing the others, i.e. 

perform source separation. Beamforming assumes some prior knowledge on the geometry of 

the array, i.e. the distance between the sensors and the way they are distributed in the auditory 

scene. Generally, linear arrays are used to reduce the computational complexity of the source 

separation system. In addition, optimally the array should contain more sensors than the sources 

in the auditory scene. Exploiting the information of the extra sensors using subspace methods, 

we can localise and separate the audio sources [9, 10]. 

1.1.3 Blind Source Separation 

In contrast to CASA and beamforming, blind source separation (BSS) is a statistical technique 

that draws inspiration neither from the mechanisms of auditory function nor from the geometry 

of the auditory scene. BSS systems can identify sound objects from the observed mixtures of 

original sources. Blind means that we hardly know anything about the original sources. By 

definition, in blind separation there is no available a priori knowledge concerning the exact 

statistical distributions of the source signals; no available information about the nature of the 

process by which the source signals were combined (mixing process) [11-1 3]. 

In reality, some assumptions must be made regarding the source signal distributions and a model 

of the mixing process must be adopted. However, these assumptions remain fairly general 

without undermining the strength of the method. BSS aims to separate the source signals 

from their multiple observed mixtures using Independent Component Analysis (ICA), a blind 

estimation framework that assumes that the sources are statistically independent [14-16]. This 

assumption together with a source prior can perform audio source separation task [17-19]. 
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To model the mixing procedure, usually finite impulse response (FIR) filters are employed to 

describe the room's transfer function between the sources and the sensors 1191.  In the thesis, we 

are mainly going to focus on this analysis method and more specifically on frequency-domain 

ICA (FDICA). However, as all the aforementioned approaches try to solve essentially the same 

problem, it might be beneficial to find some links between these methods in order to produce 

a more complete audio source separation system. In the thesis, we also explore whether blind 

source separation can incorporate some important features from beamforming (using subspace 

method) and the human auditory system (using psychoacoustic models). 

1.1.4 Applications of Audio Source Separation 

There are many applications where an audio source separation system can be useful: 

Noise Suppression for mobile phones/hearing aids. Having unmixed the sources that 

exist in an auditory scene, one can remove the unwanted noise sources in a multiple 

source environment. This process can serve as a denoising utility for mobile phones, 

hearing aids or any other recording facility. 

Music transcription. Unmixing a recording to the actual instruments that are playing 

in the recording is an extremely useful tool for all music transcribers. Listening to an 

instrument playing solo rather the actual recording facilitates the transcription process. 

This applies to all automated polyphonic transcription algorithms that have appeared in 

research. Combining an audio source separation algorithm with a polyphonic transcriber 

will lead to a very powerful musical analysis tool. 

Efficient coding of music. Each instrument has different pitch, attack, timbre characteris-

tics, requiring different bandwidth for transmission. Decomposing a musical signal into 

sound objects (instruments) will enable different encoding and compression levels for 

each instrument resulting in a more efficient, high quality audio codec. This will be more 

in line with the general framework of MPEG-4 for video and audio. 

Medical applications. Audio source separation algorithm might be useful in applications 

such as the separation of foetus's heartbeat from the mother's in the womb. 

Surveillance applications. The ability of discriminating between the audio objects of an 

auditory scene will enhance the performance of surveillance applications. 

4 



Introduction 

Remixing of studio recordings. In future audio applications, with all the powerful tools 

that can search for songs similar to the ones we like or that sound like the artist we want, 

a personal remixing of a studio recording will be possible with audio source separation. 

Post-processing offlim recordings. Source separation tools will be very useful for editing 

and special effects in the film industry. An audio source separation algorithm will help 

post-adjust actors' voice levels in a film take. Dubbing in different languages and any 

kind of post-processing will also be facilitated. 

1.2 	Aims of This Work 

The research in this thesis focuses on the linear convolutive mixing of speech signals in a 

noisy and highly reverberant environment. The real cocktail party problem cannot be directly 

solved by general ICA framework because of two reasons: first, there is a reverberation effect 

due to actual observation of sound sources in a room that is no longer modeled by a linear 

instantaneous mixing process, but this can be modeled by a convolutive mixing process; second, 

in practice there are fewer microphones (sensors) than unknown sound sources. However, 

humans deal with this problem very effectively and easily by using 2 dynamic sensors (ears). 

Perceptual audio coders use human hearing models to determine perceptual relevance and then 

eliminate redundancy with the minimal degradation of relevant information. When the sources 

are stationary, perceptual audio coders are frame or packet based because masking thresholds 

are computed for finite input blocks (1024 or 512 samples). This framework is known as block 

based perceptual masking approach. Similarly, when the sound sources are dynamic then we 

need to consider the sequential or adaptive perceptual masking approach. 

The primary objective of this thesis is to reduce the computational complexity of solving the 

permutation problem of FDICA using both perceptual masking approaches. In the block based 

approach, simultaneous masking is applied between adjacent frequencies of the input speech 

block at the same time, to remove the irrelevant frequency components. 

On the other hand, sequential based perceptual approach deals with non-simultaneous masking 

(also known as temporal masking). This framework will be used to construct BSS algorithms 

that exploit audio masking prior to the source separation (preprocessor) and after the source 

separation (postprocessor) in the frequency-domain. 
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The final objective of this thesis will be to develop an intelligent FDICA system that extracts a 

single source of interest from the mixtures. This can be achieved by exploiting the irrelevancy 

of some of the input speech spectrum using perceptual masking techniques before utilizing 

the subspace filtering method as a preprocessor of FDICA which reduces the effect of room 

reflections in advance and the remaining direct sounds then being separated by ICA. 

1.3 Assumptions 

In order to obtain a simplified understanding of the source separation problem, as well as to 

develop and test the proposed perceptually motivated method, the speech signal and masking 

models are simplified as much as possible. The following assumptions are made: 

Speech signals have a temporal structure that it is stationary for a period shorter than 

5060 ins but non-stationary if it is longer than 5060 ms [20]. We used this time 

structure to construct BSS algorithms. The definition of stationarity adopted in this thesis 

is that described by Papoulis [21] for wide-sense stationarity: a signal whose mean and 

variance are constant. The description non-stationary may therefore be applied to signals 

that do not exhibit these properties. 

As backward masking tends to last only for a very short duration of 5 ms, we did not 

consider this category of temporal masking while estimating the masking threshold using 

ISO/MPEG-i psychoacoustic model 2. Furthermore, we have considered the values of 

Calculation Partition Table and Absolute Threshold Table at 32 kHz sampling rate due to 

the constraints of the proposed perceptual FDICA algorithm. 

1.4 Thesis Overview 

This thesis is focused on the audio source separation problem in a noisy and highly reverberant 

room mixing environment. In this investigation, we address a couple of specific open problems 

in the field, as it is explained further on. Our solutions are based on the combined approach of 

psychoacoustic filtering (perceptual masking), subspace filtering method (beamforming) and 

blind source separation (using ICA) method aiming to decompose linear convolutive audio 

mixtures of statistical independent speech signals while reducing the computational complexity 

of solving the permutation ambiguity problem of FDICA. 
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Chapter 2 introduces the key aspects of relevant background material, covering the basic 

ideas of blind source separation (linear instantaneous and convolutive mixtures) and some 

basic principles of the human auditory system (perceptual masking). It also discusses the 

suitability of using psychoacoustic models to implement perceptually motivated solutions 

for reducing the computational complexity of solving the permutation problem. 

Chapter 3 describes the experimentation undertaken on convolutive mixtures of speech 

signals. It investigates the exploitation of the perceptual irrelevancy of some of the 

observed input speech signal spectrum before applying the complex FDICA algorithm 

(multiple time-delayed decorrelation and Infomax) and the effect that this perceptual 

masking has on the separation performance of BSS system. This approach will then be 

compared with BSS system which do not take perceptual masking into account. 

Chapter 4 examines whether perceptual masking criteria, which takes into account the 

process whereby one auditory stimulus prohibits the detection of another speech signal, 

can enhance the separation performance of existing BSS system. The perceptual solution 

proposed in this Chapter, is a variation of that described in Chapter 3; the alternation 

is that perceptual masking is applied to the separated signals (obtained by the complex 

Infomax algorithm) before solving the permutation ambiguity problem. 

Chapter 5 extends the work described in Chapter 3 by developing a combined approach 

of the perceptual masking and the subspace filtering method to enhance the performance 

of blind separation of speech signals in a noisy and highly reverberant environment. In 

this approach, two important signal processing techniques namely audio masking and 

the subspace method are utilised respectively for suppressing the perceptually irrelevant 

components of some of the input speech signal spectrum and to reduce the effect of room 

reflections prior to the application of the complex Infomax algorithm. 

Chapter 6 presents a summary of the research undertaken, and the conclusions that can 

be drawn from each of the previous chapters. It also identifies future directions of work 

that could be developed from the research presented in this thesis. 

Tables of psychoacoustic model 2 and critical band analysis are given in Appendix A and copies 

of papers published from work undertaken in the thesis are reproduced in Appendix B. 
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Chapter 2 
Background 

This chapter provides a general background for the research that has been carried out in this 

thesis by presenting a complete literature review of the underlying principles upon which the 

research is built. An introduction to blind source separation (BSS) of instantaneous mixtures 

is provided, followed by a complete description of time-domain and the frequency-domain ap-

proaches for BSS of convolutive mixtures. Finally, some basic principles of the human auditory 

system are presented, covering both psychoacoustic models that have been considered for re-

ducing the computational complexity of solving the blind signal processing problems in general 

and the permutation ambiguity problem in particular, and the aims of the thesis are restated on 

the basis of this background information. 

2.1 	BSS of Instantaneous Mixtures 

Blind source separation is the process wherein source signals are separated from a finite set 

of observed or sensor signals without prior knowledge of the source signals and the type of 

mixing environment. Although this lack of prior knowledge may be considered as a drawback, 

it is the actual strength of BSS methods, making them a versatile tool for exploiting the spatial 

diversity provided by an array of microphones (sensors)[ 14-16]. BSS has various levels of 

difficulty, mainly according to three features. The first feature is the type of mixing. The 

easiest case to deal with is time-invariant linear instantaneous mixtures, when the observations 

at time t are only a linear combination of the sources at the same time t. 

However, in practice, the observed mixtures are usually convolutive, possibly time-variant, and 

sometimes non-linear. The real cocktail party problem [22],  for example, consists of separating 

speech emitted by people speaking simultaneously from the signals recorded by a few sensors 

located in the room. The room reflection/reverberation creates convolutive mixtures and the 

movement of the speakers creates time-varying mixtures (because room transfer functions are 

space dependent). Non-linearity can be caused by possible saturation at the microphones. 
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Another important feature of BSS problems is the number of sources D with respect to the 

number of microphones M. In the overdetermined case (M > D) it is usually sufficient 

to estimate the mixing system and apply its pseudoinverse to the observations to recover the 

sources. In the opposite case, the underdetermined case (M < D) is an ill-posed problem 

because the mixing system can no longer be inverted and prior information about the sources is 

required to allow for their reconstruction. The third feature is the nature of the source signals 

(stationary or non-stationary) that usually determines the type of method to be employed. 

s2(t) 	 SD(t) 

0 	
Sources____ 	

0 

	

7 	----- KC~6is --- 7 

	

x2(t) 	 X M(t) 

Figure 2.1: The Basic Blind Source Separation Model 

The basic source separation model shown in Fig. 2.1 deals with recovery of original sources 

from a finite set of linear time-invariant instantaneous mixtures. Assume there are D sources 

transmitting the signals in the vector form, s(t) = [si(t), 82(t), 	, so(t)] ' through the 

medium (air, cable, network, etc), where 	denotes the transpose. At different locations 

of this medium, there are M sensors that capture these observed signals in the vector form, 

x(t) = [x1(t),x2(t),... ,X M (t)]T. Let us model this simple and easiest case of linear time-

invariant instantaneous mixing procedure with a matrix operator A. 

Then, the observed signals x(t) in the presence of additive noise n(l) can be expressed in the 

matrix-vector representation as: 

= As (t) + n(t) 
	

(2.1) 
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The main aim of BSS system is to reverse this mixing process, given only the set of observed 

mixtures x(t), and determine an unmixing (separating) matrix B such that: 

y(t) = Bx(t) 
	

(2.2) 

where y (i) = [yi (t), Y2 ....... , YD]" is the separated output signal vector which is an estimate 

of the original source signal vector s(t) in the absence of additive noise n(). It implies that for 

source separation, the matrix A must be invertible. Further, the number of sources must be less 

than or equal to the number of sensors (D < M) so that the system is not underdetermined. 

This is the standard ICA framework used in basic blind source separation problem [14-16]. 

However, there are two major ambiguities inherent in blind source separation. These are that 

the order of the estimated sources is indeterminate, and the separated sources are scaled by a 

nonzero constant as shown in Fig. 2.2. 

S(t) 

 'L ilil 

y(t)  

C=BA 

Figure 2.2: The Principle of Global Separation System (Mixing and Uninixing) 

Thus the product of the unmixing matrix B and the mixing matrix A can be referred to as 

global separation system that will take the following form: 

C=BA=DP 	 (2.3) 

where C is the matrix that characterizes the global separation system (mixing and unmixing) 

that eliminates the emphasis of particular values of the mixing matrix and the scaling factors 

(without scaling and permutation, C would converge to the identity matrix I), D is a non-

singular diagonal matrix that accounts for the scaling of each of the separated outputs, and P is 

a permutation matrix consists of only one non-zero element per each row and column. 
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We will now discuss the essentials of two techniques used to perform source separation of 

instantaneous mixtures: Principal Component Analysis (PCA) and Independent Component 

Analysis (ICA). PCA is essentially aprewhitening ordecorrelation tool, however, not sufficient 

to perform source separation. On the other hand, ICA can perform source separation assuming 

much stronger criterion of statistical independence of the source signals. 

2.1.1 Principal Component Analysis 

Principal Components Analysis (PCA) is a statistical tool used in many applications, such as 

statistical data analysis, feature extraction and data compression. It is also proposed as a pre-

processing tool to enhance the performance of Gaussian Mixture Models (0MM) [23]. Its 

objective is to find a smaller set of variables with less redundancy that would represent the 

original source signal as accurately as possible [11, 121.  In PCA, the redundancy is measured 

in terms of correlation between the observed signals. For the rest of the thesis, the first analysis 

step in PCA will be to remove possible bias (DC offset from microphones in the case of audio 

signals) from the observed data. This procedure can be referred to as centering. 

The second analysis step in PCA will be to find the eigenvalues and eigenvectors of the co-

variance matrix of the centered observations using the Singular Value Decomposition (SVD) 

method [12]. The third analysis step in PCA will be to transform the centered observations into 

a set of orthogonal (decorrelated) signals. This can be achieved by multiplying the centered 

observations with a matrix containing the eigenvectors. 

The final analysis step in PCA will be to transform orthogonal signals into orthonormal signals 

(unit variance). This can be done by multiplying the orthogonal signals with a diagonal matrix 

containing the inverse square root of the corresponding eigenvalues. Thus the components 

obtained by this PCA method are uncorrelated. Further, it is well known that lack of correlation 

is not a sufficient criterion for performing blind source separation. 

Thus the entire PCA procedure can be summarised, as follows: 

Find the eigenvalues Al,  A2, 	, AD and the eigenvectors e1, e2,••• , eD of the covari 

ance matrix of the centered observations. Ensure that A 1, A2,•.. ,AD > 0- 

Form the matrices 	= [ei, e2,... ,eD]T  and A =diag[A1,A2,... ,AD]. 

Apply PCA by ypCA(t) = A 1/2Ex(t). 
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2.1.2 Independent Component Analysis 

Independent Component Analysis (ICA) was firstly introduced as a concept in the early 1980s 

by J. Herault and C. Jutten under a different name [24].  Since then many researchers worked 

on BSS and contributed to this field. However, it was not until P. Comon published a paper 

describing the essentials of this technique and gave it its final name [14]. ICA has been applied 

in many diverse fields, as a tool that can separate linearly mixed independent components. The 

general ICA framework assumes linear instantaneous mixtures model, as described in (2.1) and 

makes the following assumptions: 

The original source signals s(t) are assumed to be statistically independent. It implies 

that: p(s(t)) = p(si(t), 82(t), 	, sjj(t)) = p(81(t))p(82 (t)), 	,p(SD(t)). 

At most one of the independent components can have Gaussian statistics. Since the 

mixing matrix A is not identifiable for more than one Gaussian independent components. 

In addition, there are certain ambiguities that characterise all ICA methods: 

ICA cannot determine the exact order of the independent components. This is also known 

as the permutation ambiguity. In the instantaneous mixtures case, this is not a great 

problem, it becomes rather serious in other cases. 

ICA cannot determine the actual energies (variance) of the independent components. 

This is also known as the scale ambiguity. As both A and s(t) are unknown, any scalar 

multiplication on s(t) will be lost in the mixing. 

In instantaneous ICA, these ambiguities are not so important, however, we will see that there 

are some applications, where these ambiguities need to be addressed. As explained earlier, 

prewhitening by PCA is considered to be the first stage in ICA. Prewhitening orthogonalises 

the sources present in the mixtures, using the second-order statistics (SOS). However, PCA 

cannnot separate the sources, as non Gaussian signals are not identifiable using SOS only. The 

unitary rotation transform needed to separate the decorrelated mixtures is achieved by ICA. 

There are many approaches to solve the source separation problem using the general framework 

of ICA [1 1].  Some approaches perform separation using Maximum Likelihood (ML) estimation 

to separate the sources, imposing probabilistic priors on the sources [25, 26]. Other approaches 
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try to separate the source signals by entropy maximisation that minimises the mutual informa-

tion conveyed by the separated sources [27]. Some other approaches perform separation by 

estimating the directions of most non Gaussian components (maximisation of non Gaussianity) 

using non Gaussianity measures such as kurtosis or negentropy [28, 29].  Another approach for 

separating the sources is by performing nonlinear decorrelation of the observed mixtures [30]. 

Finally, another approach for source separation is by tensorial methods for performing the joint 

approximate diagonalization of a cumulant tensor of the observed mixtures [31, 32]. 

A lot of literature has been directed towards the simple case of instantaneous mixing; i.e., when 

the observed signals are a linear combination of the sources and no time delays are involved 

in the mixing model [14,27, 33].  The current literature on BSS can be divided into the higher 

order statistics (HOS) [33-35] and second order statistics (SOS) methods [36-38]. The criterion 

used most often in the SOS category is minimising the correlation function of the observed 

signals subject to a constraint on the separating network or the power of the output signals. The 

main motivation behind the use of SOS methods is that estimating the correlation functions is 

easier and more robust compared to estimating higher order cumulants, required in most HOS 

methods. Further, the SOS methods have a simple implementation, require fewer data samples, 

and unlike HOS methods, they can handle Gaussian distributed inputs. 

In recent years a few blind source separation methods have been proposed for instantaneous 

and convolutive mixing cases by exploiting the nonstationarity of the source signals [39-42]. 

A nonstationarity assumption can be justified by realizing that most real world signals are in-

herently nonstationary (e.g., speech or biological signals) [43].  A few blind source separation 

algorithms have been proposed for the instantaneous mixing case based on reducing the degree 

of nonstationarity by silence removal techniques that offer notable improvement over the stan-

dard separation algorithms [44-46]. A more challenging case is the convolutive mixing; i.e., 

when the sources are mixed through a linear filtering operation and the observed signals are 

linear combinations of the sources and their corresponding delayed versions [47-50]. 

A more difficult practical example of a convolutive BSS problem is separation of audio signals 

mixed or recorded in a real room with noisy and highly reverberant environment [17, 22,51,52]. 

Unfortunately, the linear instantaneous mixture model is rather incomplete in the case of sound 

sources recorded in a real room environment with bad acoustics. Previous research showed that 

the signal captured by the microphones can be well represented by convolution of the sources 

with FIR filters, modelling the room acoustics between the sources and sensors [53-55]. 
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2.2 	BSS of Convolutive Mixtures 

As explained in the previous section, different approaches based on the general ICA frame-

work can perform high-quality source separation of linear instantaneous mixtures. However, if 

we try to apply these techniques on observation signals acquired from microphones in a real 

room environment with bad acoustics, we will see that all actually fail to separate the audio 

sources. The main reason is that the instantaneous mixtures model does not hold in the real 

room recording scenario with highly reverberant environment as shown Fig. 2.3. 

Walls Sound 
and other . 	Source 
obstacles 

r 

Observer  

Direct 
paths Indirect 

paths 

Sound Sound 
Source 2 Source 1 

Figure 2.3: The Real Room Recording Scenario (after 11]) 

From Fig. 2.3, it can be clearly seen that in a real recording environment, microphones (sensors) 

record delayed and attenuated versions of the source signals, apart from direct path signals. This 

is mainly due to reflections/reverberations on the surfaces inside the room (multipath signals). 

Therefore, the observation mixtures x(t) in this real room recording scenario can be more 

accurately modelled by a nonlinear combination of the signals captured by each microphone so 
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that we have a Volterra time series as follows: 

X (t) = f_:Ai(Ti)s(t+Ti)dri +f
CC 
 A2(7-1, 7-2)s(t +ri)s(t+r2)dridr2 +••• (2.4) 

where Ai  is a nonlinear filter operator, which models the reverberation and mixing. In most of 

the models considered for describing the cocktail party problem, it is generally assumed that 

the propagation of sound is linear. At normal sound pressure level (SPL) the linear FIR is a 

good approximation to actual room acoustics. 

Thus the above Volterra series can be modified to suit the requirements of linear convolutive 

mixing case modelled by 

x() 
=00 

A(r)s(t + T)dT 	 (2.5) 

where A is a linear time-domain filter operator. Since the BSS algorithms (time and frequency 

domain) implement FIR filters which are always stable, these FIR filters must be considered 

for modeling the linear convolutive mixtures. Based on the ICA operating domain, convolutive 

BSS methods can be generally classified into the time-domain ICA (TDICA) method and the 

frequency-domain ICA (FDICA) method. 

2.2.1 Time-Domain ICA 

The linear convolutive mixing described by (2.5) is written in filter matrix and vector form as 

x(t) = A * s(t) 	 (2.6) 

where * denotes the convolution operator. Similarly, the separated output is represented by 

y()=B*x() 	 (2.7) 

where B is the demixing filter matrix. 

The scaling and permutation ambiguities still exist due to lack of information about the ampli-

tude and the order of the sources that satisfies 

C=B*A=PD 	 (2.8) 

where C, P and D are global separation, permutation and diagonal filter matrices respectively. 
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Several researchers have proposed methods for solving TDICA. Torkkola proposed a feedback 

architecture to solve the delay compensation problem of TDICA [49]. He also generalised the 

feedback architecture to remove temporal dependencies. In a similar sense to Bell -Sej nowski's 

Infomax principle [27],  taking into account Amari's natural gradient approach [25,56-58], 

Lee [50] proposed an infinite impulse response (1W) separation structure, assuming that this 

structure can only invert minimum phase acoustic room environments (all zeros of the mixing 

filter system and consequently all poles of the unmixing filter system are inside the unit circle). 

There are certain drawbacks in using TDICA methods for the source separation problem. From 

filter theory, we know that time domain algorithms are very efficient for small mixing filters 

(communication channels etc), however they can be rather computationally expensive for long 

room filter transfer functions [59].  The solution of using smaller 1W filters, instead of long FIR 

filters, may be numerically unstable and the inability to invert nonminimum phase filters [60]. 

In addition, the problem of spectral whitening introduced by a feedforward architecture, was 

observed and solved by Torkkola [49] using a feedback architecture, however, it showed there 

are interdeterminacies in the time-domain ICA methods. All these led researchers to search for 

a new domain to work on the convolutive mixtures problem. 

2.2.2 Frequency-Domain ICA 

Several researchers proposed different methods for solving the convolutive mixtures in the 

frequency-domain. Smaragdis [61],  Lee et al [50],  Parra and Spence [42] proposed moving 

to the frequency domain, in order to reduce the computational complexity of the convolution 

problem. Looking at the FIR feedforward convolutive mixing model, one can use the model 

based on FIR matrix algebra [53].  From filter theory, it is known that such problems can be ad-

dressed with a general multichannel, subband filterbank. However, there are certain motivations 

(benefits) by choosing a Fourier basis filter bank, i.e. the Fourier transform. 

The first motivation is that the source signals become more super Gaussian [18] in the fre-

quency domain, which will be more beneficial for any ICA learning algorithm. The second 

motivation is that by applying the fast Fourier transform (FFT), we can approximate the time-

domain convolutive mixing problem into multiple, complex instantaneous mixing problems in 

the frequency-domain. As a result, the time domain convolutive mixing problem with a large 

number of estimated parameters is decomposed into multiple but complex instantaneous mixing 

problems, each with a small number of parameters to be estimated. 
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The short time fast Fourier Transform (STFFT) is used instead of the FFF, in order to divide the 

signal into shorter overlapping frames and preserve the signal's stationarity [60,61]. Using the 

STFFT and assuming statistical independence between frequency bins, we have transformed a 

convolutional problem into several instantaneous mixtures problems, i.e. an instantaneous mix-

tures problem for each frequency bin. In order to transform the convolution into multiplication, 

one has to use windows larger than the maximum length of the transfer functions. Hence, we 

can use the very well established theory of instantaneous mixtures to solve this problem. How-

ever, this case is not as simple as the general ICA framework used for the source separation of 

linear instantaneous mixtures due to the following reasons: 

As the dataset in this case are instantaneous mixtures of complex numbers, we have to 

ensure the stability and convergence of the original algorithms with complex data. 

The scale and permutation ambiguity, which had negligible effect in the linear instanta-

neous mixtures case, now plays a very important role in this FDICA approach. 

2.2.2.1 Signal Model 

Let us consider the convolutive mixing case when there are D sound sources in the environment. 

By observing this sound field with M microphones and taking the STFFT of the microphone in-

puts, the convolutive mixing problem is reduced to complex but multiple instantaneous mixing 

problems. Therefore, the observed input signal vector in the frequency-domain x(w, t) is 

x(w,t) = [Xl(w,t),...,XM(w,t)]T . 	 (2.9) 

Where X,,, (w, t) is the STFFT of the input signal x(t) in the tth time frame at the mth micro-

phone. The symbol J denotes the transpose. Further, x(w, 1) is modeled as [62] 

Direct Early—Reflection Reverb. - 	- 
x(w,t) =A(w)s(w,1)+ Aer (w)s(w,t) +n(w,t). 	 (2.10) 

The first term in (2.10), A(w)s(w, -I), express the directional components. The second term, 

Aer(w)s(w, t), denotes the early reflection, which is defined as a portion of the reflections 

whose delay relative to the direct sound is within the window length of the STFFT. Finally, the 

third term, n(w, t), will be considered as the reverberation which is a mixture of less directional 

components, that includes the room reflections and ambient noise. 
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Matrix A(w) is termed the mixing matrix, its (m,n) element, Amn(w), being the transfer 

function of the direct path from the nth source to the inth microphone as 

Am,n(w) = Hm,n (w)e )rm fln . 	 (2.11) 

Where Hm,n (w) is the magnitude of the transfer function and Tm,n is the propagation time from 

the nth source to the inth microphone. Vector s(w, 1) consists of the source spectra as 

s(w,t) = [Sl(w,t),...,SD(w,)]T 	 (2.12) 

where 	t) denotes the spectrum of the source. Thus, A(w)s(w, t), has only the directional 

components. On the other hand, Aer (w)s(w, t) has less directional components due to multiple 

reflection paths. Therefore, the element of Aer (w) will take the following form 

A , (w) = 	H7,, (w)e rmThi 	 (2.13) 

where the subscript i denotes the path number. Since Aer (w)s(w,) is a filtered replica of 

s(w, t), it is highly correlated with the direct sound A(w)s(w, t). 

We are treating the rest of the reflections with a delay greater than the window length of the 

STFFT as reverberation. Based on this definition, the reverberation term, n(w, t), can be ex-

pressed as 

n(w,t) = 	Ar (,d)S(w,d) 	 (2.14) 

where d is the delay associated with the mixing matrix for the reverberation term A, (w, d). 

Hence, n(w, t) consists of the filtered replica of the signal in the previous frames and, thus, 

has small or zero coherence with the direct sound and the early reflection. A typical example 

of a situation with small coherence is a consonant frame overlapped by the reflection of a 

previous vowel. Therefore, n(w, t) functions rather as random additive noise. Also, since 

n(w, t) includes a large number of reflections, its directivity and, hence, the coherency between 

the microphones is assumed to be low. Further, early reflections can be classified into weak 

early reflections and the strong early reflections depend upon the strength of the reflections that 

are coming from the walls and other obstacles of the acoustic room. Generally, weak early 

reflections are due to the soft nature of the walls and other obstacles. On the other hand, strong 

early reflections are generated by the hard walls, tables etc., of the room. 
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In most of the practical applications, weak early reflections are considered as an integral part 

of the reverberation term n(w, t). This implies that the impact of weak early reflections on the 

observed input signal spectrum is very small. So, x(w, t) can be written as 

Direct 	Reverb. - 
x(w,t) 	A(w)s(w,t) +n(w,t). 	 (2.15) 

On the other hand, the presence of strong early reflections will definitely affect the overall 

mixing system A'(w) described by the following model 

x(w,t) = A'(w)s(w,t) +n(w,t). 	 (2.16) 

Where A'(w) = A(w) + Aer (w). In other words, the unmixing system B(w), obtained by 

FDICA learning algorithm, has not only the direct sound but also the early reflection. 

2.2.2.2 Lee et al's Approach of FDICA 

Sensor 1 	 Output _1_( 

Time 
STFFT 	Complex 	ISTFFT 	 Domain 

Filterbank 	FDICA 	Filterbank 	 Source 
Model 

Sensor 2 
	

Output 2 

STFFT 

Figure 2.4: FDICA Method Proposed by Lee et al, Unmixing in the frequency-domain 

Based on the time-domain ICA approach, Lee at al [50] argued that a FIR unmixing structure 

would be more beneficial in the audio source separation case, mainly because real room acous-

tics usually involve non-minimum phase mixing (zeros outside the unit circle). In addition, 

they proposed a FDICA method shown in Fig. 2.4 for unmixing the sources in the frequency-

domain, in order to avoid the convolution in the time-domain. 
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In their approach, the source signals are modelled by the sigmoid tanh nonlinearity function 

in the time-domain. There is a benefit from imposing time-domain source models: the permu-

tation problem does not seem to exist. When we apply the source model in the time-domain, 

we do not assume that the signals are statistically independent along each frequency bin. As a 

result, the permutations are coupled due to the source model applied to the whole signal and not 

to its independent decompositions. However, there is evidence reported that problems similar 

to the permutation problem do exist [63]. This method is computationally expensive, due to the 

mapping back and forth between the frequency and time domains and do not take advantage of 

the strong non Gaussianity in the frequency domain. 

2.2.2.3 Smaragdis's Approach of FDICA 

Sensor 1 ( 	( 	( 	'\Output 1 

STFFT 	Complex 	ISTFFT 

Filterbank 	FDICA 	Filterbank 

Sensor 2 I 	I I 	I I 	I Output 2 

Figure 2.5: Smaragdis 's FDICA: Unmixing and Source Modeling in the frequency-domain 

As shown in Fig. 2.5, Smaragdis [61] worked solely in the frequency domain for the convolutive 

mixing problem, i.e. he performs both the unmixing and the source modelling in the frequency 

domain, in order to avoid the extra complexity of moving from the frequency to the time domain 

and vice versa. Therefore, the system is adapting solely in the frequency domain, independently 

for each frequency bin. Further, it is well known that the statistical properties of an audio (e.g. 

speech) signal over short quasistationary periods in the time-domain (frames of the STFFT) are 

not always well modelled as super Gaussian. On the other hand, the statistical properties of 

these speech segments in the frequency domain can be better modelled as super Gaussian as 

these sections have very heavy tailed distributions. This implies that the frequency domain is a 

better candidate for source modelling. 
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This will provide a better achievable performance, since as noted by various researchers, the 

Cramer-Rao bound (the performance bound for an estimator) for the estimation of the unmixing 

matrix in FDICA algorithms is related to how close the source distributions are to Gaussian. 

That is that the more non Gaussian the distributions are, the better the achievable performance of 

the FDICA algorithm. Further, Smaragdis observed that the sigmoid tan/i nonlinearity function 

cannot be applied for complex data under any circumstances, as it has singularities for certain 

values of the separated signal given by 

y(w,t) = jr (k + 1/2), for k =0,1,2,... . 	 (2.17) 

These singularities can cause instability to the natural gradient rule. As a result, Smaragdis 

proposed the following split-complex sigmoid tan/i nonlinearity function which is smooth, 

bounded and differentiable in the complex domain. 

ço(y(w, t)) = tanh((y(w, fl)) + j tanh((y(w, t))). 	 (2.18) 

Where (y (w, t)) is the nonlinear score function or activation function for the complex data. 

The two typical FDICA approaches, proposed by Lee et al [50] and Smaragdis [61], have con-

sidered Bell-Sejnowski's Infomax principle [27] for solving the convolutive mixing problem 

by taking Amari's natural gradient learning [25] into account. In general, the FDICA methods 

based on the natural gradient algorithm have a simpler implementation and better convergence 

properties with respect to their time domain counterparts when the mixing is reverberant [64]. 

On the whole, the FDICA framework proposed by Smaragdis using the natural gradient algo-

rithm seems to be a robust, general solution for the convolutive mixtures problem. Therefore, 

several researchers considered this framework using the natural gradient algorithm (based on 

the complex Infomax principle) for solving the cocktail party problem. 

Several algorithms have been developed for FDICA using HOS. Some have used the nat-

ural gradient algorithm and others have used the fixed point solutions for FDICA [65-67]. 

Nishikawa et al [68-7 11 proposed a multi-stage ICA (MSICA) algorithm in which FDICA and 

TDICA methods are combined to achieve a superior performance of BSS under reverberant 

conditions. Further, they developed a new algorithm for overdetermined BSS of linear convo-

lutive mixtures based on MSICA [72]. Recently Mitianoudis and Davies proposed a complex 

fixed point (Fast FDICA) algorithm for the separation of audio sources [65, 66,73]. 
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A few BSS methods based on SOS were proposed that exploit the nonwhiteness property by 

simultaneous diagonalization of output correlation matrices over multiple time-lags [74,75]. 

Other SOS methods were proposed that exploit the nonstationarity property of the sources by 

simultaneous diagonalization of short-time output correlation matrices at different time inter-

vals [20,76-79]. Parra and Spence [42] considered coloured nonstationary signals. Rahbar 

and Reilly [80, 81] proposed a new algorithm based on the joint diagonalization using alternat-

ing least squares (ALS) optimization methods. Recently, Ikram and Morgan [82] proposed a 

multistage frequency-domain (MSFD) algorithm based on SOS for blind separation of speech 

signals in a reverberant environment. Very recently Wang et a! [83, 841 proposed a robust and 

faster converging FDICA algorithm using a penalty function-based joint diagonalization ap-

proach by explicitly exploiting the second-order nonstationarity of the sources and obtained a 

better performance in terms of shape preservation and amplitude ambiguity reduction. 

Based on the above discussion, we have considered two different FDICA approaches based 

on SOS and HOS respectively for solving the cocktail party problem in this thesis. The first 

FDICA approach is based on the multiple time-delayed (lagged) decorrelation algorithm that 

exploits the second order statistics of the source signals [75].  The second FDICA approach is 

based on the complex Infomax algorithm (taking Amari's natural gradient learning rule into 

account) that exploits the higher order statistics of the sources [27, 64, 85].  As we are solving 

the BSS problem for multiple, complex linear instantaneous mixtures based on the general ICA 

framework, we cannot avoid the inherent arbitrary scaling and the permutation ambiguities of 

the estimated frequency response of the unmixing system at each frequency bin. 

The scaling ambiguity means that the scaling for each frequency bin can be different and this 

leads to a spectral deformations of the separated signals. In addition, it is not guaranteed that 

the scaling will be uniformly distorted with frequency, changing the signal envelope after sep-

aration. On the other hand, the permutation ambiguity in the frequency-domain ICA is much 

more difficult and complicated problem than the permutation (ordering) ambiguity in the gen-

eral ICA, since the ordering of the sources should remain the same along the frequency axis. 

As a result, the FDICA algorithm produces different permutations of separated sources along 

the frequency axis, and therefore the separated output signals remains mixed. Hence, it is es-

sential to keep the same permutation to avoid the mixed frequency content for each frequency 

bin of the separated signals. Many solutions have been proposed for solving the scaling and 

permutation problem and these will be discussed in the next subsection. 
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2.2.3 Solutions for Scaling and Permutation Ambiguity 

2.2.3.1 Solutions for Scaling Problem 

Several methods have been proposed for solving the scaling ambiguity problem of FDICA. 

Smaragdis [61] solved the scaling ambiguity problem by the normalization of the unmixing 

matrices i.e. applying a constraint on the uninixing matrix. This normalization procedure 

helps the convergence of the algorithm by preventing overshooting. Parra and Spence [42] 

constrained the diagonal elements of the unmixing matrix to unity and thereby constrained 

the scaling of the unmixing matrix in similar manner to the method proposed by Smaragdis. 

Another approach would be to constrain the variance of the signal. In the frequency domain 

framework, the signal will have different signal levels at each frequency bin. The unmixing 

matrix updates are calculated for each signal frame at each frequency bin. Thus, different 

energy levels may lead the unmixing matrix to different scaling. Normalising the signal to unit 

variance can enforce uniform scaling of the unmixing matrix along frequency axis. 

Cardoso [8611  proposed a valid approach to solve the scaling ambiguity by mapping the sepa-

rated sources back to the observation space, i.e. the sensor space. In this method, Cardoso 

explained that instead of focusing on the columns of the mixing matrix, we can focus on the 

observation spaces containing each component and then we can get the same separation re-

sult, without the ambiguity of scale (sign and magnitude). In other words, by mapping the 

separated sources back to the observation space of the microphones, we can undo an arbitrary 

scaling deformation, performed by the unmixing matrix. Recently Murata et al [87] proposed 

a method similar to that of Cardoso for correcting the scaling ambiguity problem, in which the 

separated output is filtered by the inverse of the unmixing (separation) filter and showed good 

performance of blind separation of acoustic signals in a reflective/reverberant environment. 

Based on the above discussion, we have considered a method proposed by Murata et al [87] for 

solving the scaling ambiguity problem of FDICA when the mixing is highly reverberant. The 

argument proposed by Murata et al [87] can be well supported mathematically with the follow-

ing simple analysis. At first, let us assume that the permutation ambiguity problem is sorted 

completely. The 2 x 2 case will be used for simplicity, but it is straightforward to generalise the 

analysis to the D x D case (where D is the number of sources). By using the unmixing matrix 

B (w) and its inverse matrix B 1  (w), the observed signals in the frequency-domain x(w, t) are 

decomposed such that the decomposed components are mutually independent. 
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The physical meaning of each component is a signal vector generated by one independent 

component which is observed on sensors. 

x(w,t) = B'(w)B(w)x(w,t) 
	

(2.19) 

= B'(w)IB(w)x(w,t) 	 (2.20) 

= B 1()(El  + 	+E)B(w)x(w,t) 	 (2.21) 

= B'(w)E1B(w)x(w,t) + 	+B 1(w)EB(w)x(w,t) 	(2.22) 

= 	B 1(w)EB(w)x(w,0 	 (2.23) 

where I is the identity matrix, Ei is a matrix with 1 for the i th diagonal element and 0 for the 

other elements and satisfy E1  +••• + En  = I. 

Therefore, the problem of amplitude ambiguity can be solved by putting back the separated 

independent components to the sensor input with the inverse of the demixing matrix B(w). 

The nth component of y(w,t),y(w,t) is filtered by B-1  (w) separately as 

(w,t) =B1(w)[0,... 	 ,çj]T 	 (2.24) 

where Y,, (w, t) = [51,(w,1),. ,yM,(w,t)JT  and 	corresponds to the recovered 

signal of the nth source observed at the inth arbitrary microphone. 

Eq. (2.24) can be written in the matrix-vector notation as 

P, t) = B 1(w)y(w,t) 	 (2.25) 

where Y (w, t) = 	,yjj]T and the arbitrary scaling matrix j3.1  (w) is defined as 

B'(w) =diag[B'1,... ,B1fn,DI. 	 (2.26) 
ffi 	 Fn, 

Based on the above analysis, we can easily remove the arbitrary scaling ambiguity by projecting 

the signals back to the microphone's space and still have the unmixed signal characteristics. 

Similarly, we can prove that this scheme can also remove the arbitrary scaling ambiguity, even 

when the permutation ambiguity problem is not sorted. 

Thus, moving (mapping) the separated signals back to the microphones' (observation) space, 

we can undo or avoid the so-called scaling ambiguity problem of FDICA. 
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2.2.3.2 Solutions for Permutation Problem 

Solving the convolutive mixtures in the frequency domain, independently for each frequency 

bin generates the permutation ambiguity problem and thus the separated signals remain mixed. 

In order to solve this permutation problem, we need to impose some sort of coupling between 

the independent unmixing algorithms, so that they converge to the same order of sources. Based 

on different approaches, many soultions have been proposed to solve the permutation ambiguity 

problem. Some methods based on integration of computational auditory scene analysis (CASA) 

and BSS techniques have been proposed to solve the permutation problem. In general, these 

frequency-domain permutation solving strategies can be classified into: the source modelling, 

the channel modelling and the hybrid modelling solutions. 

(i) Source Modelling Solutions 

In source modelling solutions, the main aim is to exploit the coherence (continuity) and the 

information between frequency bands, in order to identify the correct alignment between the 

subbands. In fact, audio signals can rarely be considered independent between frequency bands 

due to the audio structure (harmonics and temporal) in both music and speech. As a result, any 

clustering rule that can group similar objects will align the permutations. Murata et al [87] have 

exploited the nonstationarity of source signals using SOS in order for solving the permutation 

problem. They have developed a method using the correlation between the spectral envelopes 

at different frequencies (denoted as inter frequency spectral envelope correlation (IFSEC)), but 

has been reported to sometimes fail when the input signals have similar envelopes [88]. 

Recently Mitianoudis and Davies [73, 89] solved the permutation problem using the likelihood 

ratio jump (probabilistically justified) with two fixed point fast FDICA methods while exploit-

ing the time-frequency spectral envelope, but works only in batch mode and becomes more 

complicated for more than two sources. In a similar effort, Rahbar and Reilly [80,81] devel-

oped an efficient diadic algorithm to resolve the frequency dependent permutation ambiguities 

to an arbitrary number of sources while exploiting the inherent nonstationarity of the sources. 

Very recently Hu et al [90,91] proposed a new method which is similar but different from 

that of Murata et al [87].  They assumed that there exists the continuity in power between the 

waveforms of adjacent frequency components of same source. Further, they used the distance 

between the signals at adjacent frequencies to align the separated signals while implicitly uti-

lizing the information of inter frequency correlation for a better performance. 
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(ii) Channel Modelling Solutions 

In channel modelling solutions, the main objective is to exploit additional information about 

the room transfer functions, in order to select the correct permutations. These room transfer 

functions have certain properties. In source separation, we usually employ long FIR filters to 

estimate the room transfer functions, as their stability is guaranteed. In addition, most room 

transfer functions have a dominant first delay (direct path) term that can be used to identify the 

angular position of each source signal to the sensor array. 

Smaragdis [61] proposed a method in which some heuristic coupling is applied between adja-

cent frequency bins in order to solve the permutation problem. This method forces the sepa-

ration matrices at each frequency bin to have a similar permutation using an influence factor. 

However, it had limited effect, as it has been reported to fail in several cases [18]. Recently 

Asano et al [9, 10] proposed a combined approach of array processing (using the subspace 

method) and ICA for solving the permutation problem by utilizing the coherency of the mixing 

matrices in several adjacent frequencies (denoted as inter frequency coherency (IFC)). Further, 

they reported a low permutation error rate in the frequency range over 1 kHz and very high 

permutation error rate below 1 kHz when the mixing is highly reverberant. 

In recent years a few BSS methods based on SOS have been proposed for solving the permu-

tation ambiguity problem while exploiting the nonstationarity of the source signals. Parra and 

Spence [42] have also exploited nonstationarity of the signals to perform source separation in 

the frequency-domain. Their solution to the problem was to impose a constraint on the un-

mixing filter length. In other words, it imposes a smooth constraint on the unmixing filters, as 

they are modelled as FIR filters. Again mixed success has been reported for this method, as it 

became trapped in local minima [92].  Very recently Serviere and Pham [93] proposed a novel 

technique to solve the permutation problem of FDICA. They exploited the nonstationarity and 

the presence of pauses in the speech signals and thereby separating the convolutive mixtures 

with fairly long impulse responses containing strong echoes. 

Recently, the relationship between convolutive BSS and beamforming has been highlighted. 

In the context of FDICA, at a given frequency bin, the unmixing matrix can be interpreted as 

a nullsteering beamformer that uses a blind algorithm (ICA) to place nulls on the interfering 

sources. Based on this beamforming, channel modelling solutions have been proposed to align 

the permutations along the frequency axis. All BSS methods make no assumptions about the 
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position of the sound sources in the 3D space. However, beamforming estimates the directions 

of signal's arrival (DOA) in order to steer the beam of an array of sensors to target a specific 

source. An additional geometrical information employed by the beamforming technique is the 

sensors' configuration, which is assumed to be fixed for a particular experiment. 

Saruwatari et al [94-97] estimated the DOA by taking the statistics with respect to the direction 

of the nulls in all frequency bins and then tried to align the permutations by grouping the 

nulls that exist in the same DOA neighbourhood. On the other hand, Ikram and Morgan [98] 

proposed to estimate the sources DOA in the lower frequencies, as they don't contain multiple 

nulls. Parra and Alvino [63] used more sensors than sources along with known source locations 

and added this information as a geometric constraint to their unmixing algorithm. 

Very recently Ikram and Morgan [99] proposed a permutation alignment scheme based on mi-

crophone array directivity patterns. After properly aligning the permutations, they showed that 

the blind speech separation method outperforms the nonblind beamformer in a highly reverber-

ant environment. Furthermore, by exploring the tradeoff between the permutation alignment 

and the spectral resolution of the unmixing filters, they proposed a multistage frequency-domain 

(MSFD) algorithm [821 for aligning the permutations of the unmixing filters without sacrificing 

the spectral resolution and obtained a better performance than the single-stage system. 

(iii) Hybrid Modelling Solutions 

Each of the above source and the channel modelling solutions has different characteristics, and 

may perform well under certain specific conditions but not under all conditions. Researchers 

around the world have considered hybrid modelling approaches by integrating some of the 

source and the channel modelling solutions in order to improve the separation performance of 

FDICA system. Ciaramella et al [100] proposed a method based on combined approaches of 

cross correlation of the separated signals and the frequency coupling of unmixing matrices at 

each frequency bin to have a similar permutation. 

Recently Sawada et al [101, 102] proposed a robust and precise method based on the combined 

approach of direction of arrival (DOA) estimation using bearnforming and inter frequency cor-

relation of output spectral envelopes (IFSEC) for solving the permutation ambiguity problem. 

Furthermore, by utilizing the harmonic structure of signals, they proposed a more robust and 

precise method even for low frequencies where DOA estimation is inaccurate and thereby solv-

ing the permutation ambiguity problem almost perfectly [103]. 
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Based on this robust and precise idea, Wang et al [104] proposed a novel hybrid method based 

on the combined approaches of exploiting spectral continuity (performing filter constraint), 

exploiting the time envelope structure and beamforming alignment for solving the permutation 

ambiguity problem. Their method is based on a robust and faster converging FDICA algorithm 

using a penalty function-based joint diagonalization approach by exploiting the second-order 

nonstationarity of the signals [83].  However, they have used the subspace method instead 

of conventional beamforming technique for the accurate estimation of DOAs of the source 

components and the frequency dependent distance for the correlation of time envelopes. 

Furthermore, they have used the psychoacoustic model as a postprocessing filter for the mis-

aligned permutations unable to be sorted out by the aforementioned combined approaches. 

This psychoacoustic model exploits the two properties of the human auditory system: absolute 

threshold of hearing (ATH) (also known as threshold in quiet) and auditory masking (AM). The 

human auditory system and the relevant psychoacoustic models used for exploting the percep-

tual irrelevancy of the separated signals will be discussed in the following section. 

In the recent years some researchers have started working on methods in which two powerful 

techniques namely computational auditory scene analysis (CASA) and blind source separation 

(BSS) were integrated and thereby solving the convolutive mixtures problem in a noisy and 

highly reverberant environment. Rutkowski et al [105, 106] proposed a novel biologically plau-

sible model for segregation of one dominant speaker from the other concurrent speakers and 

environmental noise in real cocktail party scenario. However, they have used the gammatone 

filterbank for bandpass preprocessing. Further, they reported that computer simulation results 

showed good performance under noisy and highly reverberant environment. 

Recently Barros et al [107-110] proposed more biologically plausible algorithm for extracting 

one speaker signal out of a mixture of reverberated sounds by mimicking some properties of the 

human auditory system: 1) mimicking the inner ear through the use of a bank of self-adaptive 

band-pass wavelet filters; 2) tracking of speech fundamental frequency fo;  3) separating the 

mixed signals in each subband through an FDIC'A algorithm based on SOS which tracks the 

signals related to the voice pitch (fo and its harmonics) during learning; and 4) mimicking the 

temporal masking characteristic of the auditory system by a switch which is one for the voiced 

part and zero for the silent (unvoiced) part of the speech. However, they have avoided the 

permutation problem by focusing the attention on only one speaker signal. 
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2.3 Human Auditory System 

In the pursuit of the best possible performance for a convolutive BSS system, it should be 

noted that the separated speech is judged by the human ear according to the perception of the 

sound. Consequently, it is very advantageous to develop perceptually motivated BSS system 

that exploits the irrelevancy associated with the observed speech in advance before separating 

the signals by ICA. This creates the need for the modelling of the human auditory system. The 

human auditory system consists of the ear, auditory nerve fibres, and a section of the brain. 

The ear is the outer peripheral system, which converts sound waves into electrical impulses that 

are picked up by the auditory nerve. Even a sound wave that has a magnitude of only a ten 

millionth part of the atmospheric pressure is sufficient to be perceived by the human ear. 

The energy of the sound waves captured by the ear cavity travels to the inner ear and goes 

through frequency analysis which is generally assumed to be affected by very sophisticated 

active and nonlinear processes. In the final conception of the sound, cognitive effects also 

play a role. During the last three decades, remarkable progress has been made within the 

research of the human hearing but many details especially the higher order brain functions in 

connection with information processing still need to be explained. The field of psychoacoustics 

has an interesting standpoint in the research since it examines directly the relationships -between 

acoustic stimuli and the associated sensations. The results of the psychoacoustic research form 

the basis of the work presented in this thesis. 

In the study of the human auditory system, it is a normal practice to make a distinction between 

the peripheral part, and the part that contains the nervous system and leads to the final auditory 

sensation. The peripheral part of the human auditory system refers to the elements in which the 

oscillations due to a sound stimulus retain their original character. Zwicker [111] designates the 

function of the peripheral system as preprocessing of sound. In contrast, the neural processing 

takes place in the second region of the hearing system that consists of the auditory sensation 

area of the brain together with the nerve fibres. However, the nervous system and its functions 

are beyond the scope of this thesis and they are not discussed here. Rather, emphasis is placed 

on the structure and operation of the peripheral part, as the aim is to introduce the properties 

influencing the perception of sounds. This will serve as a basis for the psychoacoustic models, 

some of which will be presented with the theory by giving detailed descriptions of the two most 

essential psychoacoustic models considered in this research work and by also providing a view 

on some other existing models in the following section. 
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The frequency analysis performed by the ear has a certain finite resolution, leading to the basic 

concept of masking. It is a phenomenon in which one sound can drown out another sound either 

partially or totally. The relative levels and frequencies of these sounds determine for the most 

part the degree of masking, but temporal factors also have some influence. The quantitative 

effect of masking can be depicted by means of a masking threshold. It shows the sound pressure 

level that a test tone must have in order to be just audible in the presence of a masker. The 

masking threshold is one of the main concepts in this thesis and it is viewed more precisely and 

analytically in the next section. 

2.3.1 Structure of Human Ear 

The purpose of the human ear is to capture sound waves and to convert the acoustic energy 

of these small pressure fluctuations into electrical nerve impulses. The nerve fibres convey 

the information to the brain in which it is perceived as sounds. Reciprocally, the brain sends 

information to the ear, thus actively controlling some of the functions of the so-called sound 

preprocessing [2, 112].  The ear also contains the vestibular organ that contributes to balancing 

the body, but it has no effect in the perception of sounds. A simplified structure of the human 

ear can be described by three parts: the outer, middle and inner ear. 

2.3.1.1 Outer Ear 

The outer ear is composed of the pinna (the visible part, ear cavity), the meatus (auditory canal) 

and the tympanic membrane (eardrum). The pinna collects the sound energy which then travels 

down the meatus and makes the eardrum vibrate. The eardrum is a hermetic membrane whose 

function is to convey the acoustical energy to the middle ear. The pinna and the outer ear canal 

have a strong influence on the incoming sound. The pinna filters the sound in a way that depends 

on its inlet angle, thus providing cues to the localisation of sound [113]. This works especially 

at high frequencies where the shadowing effect of the pinna attenuates the sounds that come 

from behind the listener. At low frequencies, this does not take effect because the wavelengths 

are too large compared to the dimensions of the pinna. The meatus, acting like an open pipe 

with a length of approximately 2 cm, has a resonant frequency at about 4 kHz. Consequently, 

the meatus is responsible for the high sensitivity of hearing around this frequency. In addition 

to the sound wave modifications performed by the pinna and the meatus, the head and shoulders 

of the subject have the effect of shadowing and reflection. 
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2.3.1.2 Middle Ear 

The middle ear is a chamber that contains the auditory ossicles: malleus (hammer), incus (anvil) 

and stapes (stirrup), the smallest bones in the human body. The middle ear provides the two 

important functions of impedance transformation and amplitude limiting to ensure the efficient 

transfer of the acoustical energy, avoiding large reflections. The impedance transformation is 

based on both the lever system constructed from the ossicles and the ratio of the area of the 

eardrum to that of the small oval window. The amplitude limiting is made possible by the tiny 

inner ear muscles that are attached to the auditory ossicles. When the subject is exposed to 

very intense sound pressure level (SPL) above 85-90 dB, these muscles contract and thereby 

limit the transmission of sound through the ossicles (the ossicles act as a low pass filter with 

a cutoff frequency of around 1 kHz). This operation, called the middle ear reflex, may help 

to protect the vulnerable structure of the inner ear. The reflex also decreases the audibility of 

self-generated sounds by getting activated at the starting time of vocalisation [2, 111, 114]. 

2.3.1.3 Inner Ear 

The inner ear, comprising the cochlea and the semi-circular canals of the vestibular organ, is the 

most complicated part of the ear. The vestibula is the organ that helps balance the body with no 

apparent role in the hearing process. The cochlea is the most dominant organ in the physiology 

of the mammalian ear. The shape of the cochlea resembles a snail and it is filled with nearly 

incompressible fluids and surrounded by very hard bone. Uncoiled it measures about 32 mm 

in length. It is mechanically connected to vibrating parts of the ear and it is responsible for 

the transduction of physical energy to electrical impulses to be detected by the auditory nerve. 

Inside it lies the basilar membrane floating in the cochlear fluids. 

The basilar membrane extends throughout the length of the cochlea, starting out as being nar-

row at the beginning and gradually becoming three to four times wider at the other end. As 

vibrations caused by incoming sounds excite the basilar membrane, it tends to resonate with 

the higher frequencies near its base at the beginning of the cochlea, while progressively lower 

frequencies create displacements towards its apex. The cochlea thus performs the very im-

portant function of analysing the frequency content of the incoming sound. The frequency of 

the stimulus that causes maximum response at a given point on basilar membrane is called the 

characteristic frequency for that point. However, the situation gets somewhat complicated with 

other than pure sinusoidal signals. 
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If two frequency components of the stimulus are sufficiently close to each other, basilar mem-

brane fails in the exact frequency-to-place conversion and only a single, broader maximum can 

be observed in its response. These vibrations of the basilar membrane are detected by a series 

of hair cells inside the cochlea, that upon stimulation release chemical transmitters through a 

connection with the nervous system and cause neural pulses in proportion to the detected ac-

tivity. There are two different kinds of hair cells, the inner hair cells (IHC) and outer hair cells 

(OHC), both having their own special functions. It seems that IHC convey most, or even all, in-

formation about the sounds to the brain. OHC receive messages from the brain through several 

descending nerve fibres. These messages are most likely used for active processes affecting the 

high sensitivity and sharp tuning of basilar membrane. 

Computational Modelling of Cochlea 

As the cochlear function suggests, it performs a decomposition very similar to a harmonic 

analysis (time-frequency analysis). This observation was noted by many researchers who have 

worked on computational audition models and spawned an entire culture of research dealing 

with front end design for audition. The visual appeal of harmonic analyses and the further 

justification that our hearing system includes one, have been catalysts for their adoption in 

audio analysis systems. The short time fast Fourier transform (STFFT) has been, and still is, 

a dominant model for the front end. It is easy to manipulate, efficient and well understood. 

A later model, closer to the cochlear function, as well as a better estimator of time-frequency 

analysis, are constant-Q transforms (harmonic transforms in which the frequency spread versus 

the time spread are constant throughout the bases). They were used as front ends for audio 

analysis systems, reporting a better analysis performance as compared to STFFT [6, 115]. 

Other models made use of the sinusoidal analysis technique in conjunction with a constant-

Q transform to mimic the behavior of the human auditory system and provide a perceptual 

representation. Due to its unique multiresolution properties wavelet transforms are preferred 

to STFFT for very accurate analyses with superior results [116]. Additional transform meth-

ods such as the cepstrum and linear predictive coding (LPC) have been employed [117], their 

uses however are specifically application based. Although the aforementioned decompositions 

are inspired by the function of the cochlea, they were by no means meant to be biologically 

plausible (accurate) models. The accurate reconstruction of the cochlear function has been 

extensively studied and has become a field of study on its own. Today, the dominant model 

employs a gamrnatone filterbank to approximate the function of the cochlea [118]. 
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A gammatone filterbank is composed of basis functions which are sinusoidal tones modulated 

by gamma distributions. Further, researchers have employed even more complex front ends, 

more notably the correlogram and its derivatives [1191. The use of correlogram generally con-

sists of a cochlear like filterbank extended by an additional dimension, which represents the 

lag time of autocorrelations applied on the energies of every frequency channel. Building on 

that model, the weft was introduced as an element for decompositions of primarily harmonic 

sounds. The weft is defined by its periodic track (time varying excitation period) and smooth 

spectrum (energy in each frequency channel for each time frame). The weft is extracted from 

the correlogram data and is inherently connected to the common modulation characteristics 

between frequency bands. Wefts form a compact and biologically plausible representation of 

periodic sounds as part of the vocabulary of CASA system [120-124]. 

2.3.2 Properties of Human Hearing 

The concept of hearing area refers to the ranges of frequency and sound pressure values within 

which the human ear generally perceives sound. Reviewing the limits of the hearing area is the 

first step in studying the properties of the human hearing. Another very commonly discussed 

property of the auditory system is the masking phenomenon. Masking is a process in which 

the threshold of audibility of a sound is raised due to the presence of another sound. These two 

sounds are referred to as the maskee and the masker, the latter representing the one that causes 

the shift in the threshold. Masking as a whole is a very complicated phenomenon, containing 

some details that are still not completely understood. 

However, masking effects can be experienced in everyday life. For example, it is more difficult 

to hear what the person in the next room is saying when the television or music system is blaring 

out, compared to the situation in which the interfering sounds from the television or music 

system are muted. The reason for not hearing what the person tries to tell is most often based 

on the inevitable masking property of the hearing system and not the lack of interest. In other 

words, one cannot hear the talking even by trying harder unless the television or music system is 

turned down. In order to be able to evaluate which parts of the incoming sound are masked, the 

main psychoacoustic properties of the human hearing system are to be clearly understood and 

for this we need an appropriate mathematical model. The field of psychoacoustics has made 

significant progress toward characterizing the human auditory perception and particularly the 

time-frequency analysis capabilities of the inner ear. 
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Although applying perceptual rules to signal coding is not a new idea, most current audio coders 

(MPEG) achieve compression by exploiting the fact that irrelevant signal information is not 

detectable by even a well trained or sensitive listener. Irrelevant information is identified during 

signal analysis by incorporating into the coder several psychoacoustic principles, including 

the absolute threshold of hearing, critical band frequency analysis, simultaneous frequency 

masking, the spread of masking along the basilar membrane, and the temporal masking. 

2.3.2.1 Absolute Threshold of Hearing 

The absolute threshold of hearing (ATH), also known as the threshold in quiet, characterizes the 

amount of energy needed in a pure tone such that it can be detected by a listener in a noiseless 

environment. The frequency dependence of ATH shown in Fig. 2.6 is typically expressed in 

terms of sound pressure level (dB SPL). The audible frequency range is from about 20 Hz to 

16 kHz but the frequency limits can be even 16 Hz and 20 kHz for healthy children. In case of 

elderly people, the upper frequency limit can be dropped to as low as 10 kHz. 
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Figure 2.6: Absolute Threshold of Hearing (ATH) as a Function of Frequency (after [2]) 
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A widely known approximation for the absolute threshold of hearing or threshold in quiet (Tq) 

as a function of frequency is modelled as 

T(f) = 3.64(f)_o 8  - 6.5e0  6(f_33)2 + 10 — (f) 	(dB SPL) 	(2.27) 

where the frequency, f, is expressed in kHz. The dip in the absolute threshold curve in the 

neighbourhood of 4kHz indicates the high sensitivity of hearing (about -5 dB SPL) and also the 

high susceptibility to hearing impairment in this region. Sound pressure levels just detectable 

at 4 kHz are not detectable at other frequencies. In general, two frequency tones of equal power 

but different frequencies will not sound equally loud. The perceived loudness of a sound can 

be expressed in sones, where 1 sone is defined as the loudness of a 40 dB tone at 1 kHz. 

2.3.2.2 Critical Bands of Hearing 

Fletcher introduced the concept of critical bandwidth (CB), denoting the noise bandwidth limit 

at which the detection threshold of the signal (tone) ceased to increase. For simplicity, he 

thought that the auditory filter could be approximated as having a rectangular shape and a 

passband width equal to CB. The shape of the auditory filter is not really rectangular, as Fletcher 

also knew, but this kind of a model can be useful in evaluating the masking effects in many 

applications such as those presented in this thesis. Fletcher suggested that, with this rectangular 

model, CB could be evaluated by measuring the threshold of a sinusoidal signal in broadband 

white noise. In this method, the power of the tone and the power spectral density of the noise 

masker are first measured. The noise power within the same critical band with the signal is then 

equal to the product of the measured power spectral density and the CB in question [2]. 

Fletcher also suggested that the ratio of the signal power to the noise power inside the critical 

band is equal to unity. In the described conditions, the tone would be just masked by the noise. 

Zwicker and Fastl [111] have later presented several methods for finding the values of CB and 

concluded that the threshold is reached when the ratio of the signal power to the power of the 

noise lies between 0.25 and 0.5. The critical bandwidth can also be explained based on the 

physical structure of the inner ear. Each point on the basilar membrane (BM) responds only to 

a certain range of frequencies, which leads to the idea that these different points correspond to 

auditory filters with different centre frequencies. When the bandwidth of the auditory filter is 

expressed by the equivalent rectangular bandwidth (ERB), the relation to BM is very simple: 

each ERB corresponds to a distance of about 0.89 mm on the basilar membrane. 
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ERB is defined so that the power of a signal inside the rectangular band equals the power of 

the same signal in the passband of the auditory filter. The ERB value increases with increasing 

centre frequency. A commonly used scale for signifying the critical bands is the Bark scale that 

divides the audible frequency range of 16 kHz into 24 critical bands. A distance of one critical 

band is commonly referred to as one Bark and it can be interpreted as the bandwidth at which 

subjective responses of human ear change abruptly. This critical band analysis conveniently 

simplifies the calculation of the spread of masking, i.e., the effect of adjacent critical bands on 

the amount of masking in a particular band. A complete list of the discrete set of critical bands 

is shown in "Critcal Bands Table" given in Appendix A [1111. 

From this Table, it is evident that the critical bands have constant width of 100 Hz for center fre-

quencies up to 500 Hz, and the width of critical bands increase as the center frequency increases 

further. Since location on the basilar membrane has an approximately linear relationship to the 

frequency scale for low frequencies but a logarithmic relationship at higher frequencies, the 

linear frequency scale is inadequate for representing the auditory system. The relationship be-

tween the frequency in Hz and the critical band rate in Bark, both in proportion to the length of 

the unwound cochlea is illustrated in Fig. 2.7 [111]. 
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Figure 2.7: Relation of Frequency, Critical Band Rate and Length of Unwound Cochlea 

An approximate analytical expression to describe the conversion from linear frequency f in Hz 

into the critical band number Z in Barks is given by [111] 

Z(f) = 13arctan(.00076f) + 3.5arctan 
[()2] 

 (Bark) 	(2.28) 
7500 

and the critical bandwidth, BW for a given frequency f in Hz, can be expressed as [111] 

BW(f) = 25 + 75 [1 + 1.4(f/1000)2]069 (Hz) 	 (2.29) 
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2.3.2.3 Perceptual Masking Techniques 

The human auditory system has some interesting properties, which are exploited in perceptual 

audio coding. We have a dynamic frequency range from about 20 to 20000 Hz, and we hear 

sounds with intensity varying over many magnitudes. The hearing system may thus seem to be 

a very wide range instrument, which is not altogether true. To obtain those characteristics , the 

hearing is very adaptive; what we hear depends on what kind of audio environment we are in. 

In the presence of a strong white noise, for example, many weaker sounds get masked and thus 

we cannot hear them at all. Some of these masking characteristics are due to the physical ear, 

and some are due to the processing in the brain. Masking effects occur in the frequency domain 

as well as in the time domain. There are two types of masking effects: simultaneous masking, 

and nonsimultaneous masking (also known as temporal masking). 

Simultaneous Masking 

Simultaneous masking refers to a frequency domain phenomenon that can be observed when-

ever two or more stimuli are simultaneously presented to the auditory system. Depending on 

the shape of the magnitude spectrum, the presence of certain spectral energy will mask the 

presence of other spectral energy. Although arbitrary audio spectra may contain complex si-

multaneous masking scenarios, for the purposes of shaping coding distortions it is convenient 

to distinguish between only two types of simultaneous masking, namely tone-masking-noise, 

and noise-masking-tone. In the first case, a tone occurring at the center of a critical band masks 

noise of any sub critical bandwidth or shape, provided the noise spectrum is below a predictable 

threshold directly related to the strength of the masking tone. 

The second type of masking follows the same pattern with the roles of masker and maskee 

reversed. The masking effect of a tone (or noise) is not confined to within the critical bands. 

The presence of a strong noise or tone masker creates an excitation of sufficient strength on the 

basilar membrane at the critical band location to block effectively detection of a weaker signal. 

Inter-band masking has also been observed, i.e., a masker centered within one critical band has 

some predictable effect on detection thresholds in other critical bands. This is also known as 

the spread of masking and often modeled by an approximately triangular spreading function 

that has slopes of +25 dB and -10 dB per Bark. After tone (or noise) like masker types have 

been identified, their individual masking thresholds are combined to form a global masking 

threshold that estimates the level at which quantization noise becomes just noticeable. 
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Consequently, the global masking threshold is sometimes referred to as the level of just no-

ticeable distortion (JND). The standard practice in perceptual coding involves first classifying 

masking signals as either noise or tone, next computing appropriate thresholds, then using this 

information to shape the noise spectrum beneath JND. Note that the absolute threshold of hear-

ing (Tq) is also considered when shaping the noise spectra, and that MAX(JND,Tq) is most 

often used as the permissible distortion threshold. 

Masking Threshold 
Due to the Tone 

Minimum Masking Threshold 

Critical Band 	Next Critical Band 	
Frequency 

Figure 2.8: Illustration of Simultaneous Masking Effects of a Tone 

Notions of critical bandwidth and simultaneous masking in the audio coding context give rise to 

some convenient terminology such as signal-to-mask ratio (SMR), noise-to-mask ratio (NMR) 

and signal-to-noise ratio (SNR) illustrated in Fig. 2.8, where the case of a single masking tone 

occurring at the center of a critical band has been considered. A hypothetical masking tone 

occurs at some masking level. This generates an excitation pattern along the basilar membrane 

that is modeled by a spreading function and a corresponding masking threshold [125-127]. 

The excitation pattern can be interpreted as an internal representation of the spectrum of the 

sound, i.e., a representation of the amount of activity evoked by a sound as a function of the 

characteristic frequency of the excited neuron. Since the upper slope of the excitation pattern, 

and hence also that of the masking pattern, is determined by the lower part of the auditory 

filter and vice versa, the spread of masking towards upper frequencies occurs. For the critical 

band under consideration, the minimum masking threshold can be referred to as the spreading 

function in-band minimum. Methods for calculating the spread of masking in the Bark domain 

for a particular psychoacoustic model will be presented in the following section. 
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Temporal Masking 

Masking can also occur when the masker and the maskee are presented consecutively in time, 

without any overlapping time section. This phenomenon, called non-simultaneous masking, 

also known as temporal masking, is even more poorly understood than simultaneous masking 

and it is often considered to be of less importance when the masking effects are estimated 

on a coarse level. Temporal masking is typically divided into two different cases: backward 

and forward masking. In the former, the maskee appears before the masker and in the latter, 

the temporal positions are reversed. The backward and forward masking are also known as 

prestimulatory masking and poststimulatory masking respectively. 
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Figure 2.9: Illustration of Temporal Masking Effects 

Fig. 2.9 shows the relevant time scale for masking effects with a rather long masker duration 

of 250 ms. The amount of forward masking depends strongly on the duration of the masker, 

a shorter duration causes the masking threshold to drop faster. Generally, forward masking 

will extend anywhere from 50 to 300 ms, whereas backward masking tends to last only about 

5 ms, depending upon the strength and duration of the masker. Temporal masking has been 

used in several audio coding algorithms. Backward masking in particular has been exploited in 

conjunction with adaptive block size transform coding to compensate for pre-echo distortions. 

In psychoacoustics, forward masking has long been regarded as an indication of the decay of 

the hearing system's internal loudness. So, it is often modeled using psychoacoustic specific 

loudness versus critical band rate and time [2, 111]. 

Backward Masking 	Simultaneous Masking 	Forward Masking 
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Trained listeners often show considerably less backward masking than those who have got little 

or no practice [2]. In any event, the effect of backward masking is minor and henceforth, it 

will not be discussed further. A typical example of forward masking in speech is the situation 

in which a plosive follows a loud vowel and gets masked. This is a very customary situation 

to which the human communication has been adapted, and therefore, it does not usually hinder 

intelligibility of the information. However, this kind of a forward masking phenomenon may 

be advantageous from the viewpoint of speech preprocessing. 

2.4 Psychoacoustic Masking Models 

The need for psychoacoustic masking models arises from the objective of developing audio 

codecs that preserve a good perceptual quality of the output signal despite significant reduction 

of bit rate. Masking models are utilised, for example, for shaping the noise introduced in the 

coding process such that it is masked as effectively as possible by the signal of interest, e.g. 

speech while preserving a good perceptual quality. Utilising the human auditory properties and 

the derived masking models is not a new idea. Schroeder et al [128] have developed a method of 

exploiting the auditory masking effects in speech coders. Their approach contained an auditory 

model that was used to evaluate the loudness of the quantisation noise and that of the signal, 

providing an objective measure of speech signal degradation caused by the coder. Based on 

their method, various psychoacoustic masking models have been proposed with different levels 

of accuracy and computational complexity. 

Two well known psychoacoustic models published by the moving picture expert group (MPEG) 

to estimate the masking threshold are only considered in this thesis. These are ISO/MPEG-i 

psychoacoustic model 1 and the ISO/MPEG-i psychoacoustic model 2. Many other models 

have also been published, for example, the advanced audio coding (AAC) standard in MPEG-2 

uses an auditory model derived from the MPEG-i model 2, Johnston's [1291 masking model, 

the perceptual evaluation of audio quality (PEAQ) [130, 131] masking model etc. Rather, the 

emphasis is on the two masking models that have been considered for preprocessing of speech 

signals. However, some properties are very different from one model to another. MPEG-i 

psychoacoustic model 1 is simple and it estimates the masking threshold rather coarsely, while 

MPEG-i psychoacoustic model 2 has somewhat higher computational complexity and better 

frequency resolution. Furthermore, the consideration of temporal masking makes model 2 more 

sophisticated than model 1 since in the latter, this part is omitted [126, 127, 132, 133]. 
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2.4.1 ISO/MPEG-i Psychoacoustic Model 1 

The ISO/MPEG-i psychoacoustic model 1 [126, 127] uses a 512 point FF1' for high resolution 

spectral analysis, then estimates for each input frame individual simultaneous frequency mask-

ing thresholds due to the presence of tone-like and noise-like maskers in the input signal spec-

trum. A global masking threshold is then estimated for a subset of the original 256 frequency 

bins by (power) additive combination of the tonal and non-tonal individual masking thresholds. 

This thresholding is designed to select the perceptually relevant spectral components in each 

frame of the input speech. This model assumes masking effects are additive. 

The five steps leading to computation of global masking threshold are as follows: 

Step 1: Spectral Analysis and SPL Normalization 

First, incoming digital audio samples, (n), are normalized according to the FF1 length, N, 

and the number of bits per sample, nb, using the relation 

- 	(n) 
x(n) 

- N(2nb1) 
(2.30) 

The normalized input, x(n), is then segmented into frames of size of 512 samples using an 

appropriate time shift and window function. A power spectral density (PSD) estimate, P(k), is 

then obtained using a 512-point FF1' as 

IN—i 
2kn,r 

I2 
N) 

P(k) = PN + 10 log10 	w(n)x(n)e 3  7 	when (o k 	 (2.31) 
n=0 

where the power normalization term, PN, is fixed at 96 dB and the Hamming window, w(n), is 

defined as 
/2nir'\ 1 

w(n) = [o.54_ 0.46 
cos  (---)] 

Because playback levels are unknown during psychoacoustic signal analysis, the normalization 

procedure and the parameter PN are used to estimate SPL conservatively from the input signal. 

Step 2: Identification of Tonal and Noise Maskers 

After PSD estimation and SPL normalization, tonal and non-tonal masking components are 

identified. Local maxima in the sample PSD which exceed neighbouring components within a 

certain Bark distance by at least 7 dB are classified as tonal components. The tonal set, ST,  is 

(2.32) 
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defined as 

P(k) > P(k ± 1), 
ST = P(k) 

	

	 (2.33) 
P(k) > P(k + k) + 7dB 

where 

2 	(2 < k < 63) 	(0.17 - 5.5 kHz) 

k E 	[2,3] (63 < k < 127) 	(5.5— 11 kHz) 	 (2.34) 

[2,6] (127 < k < 256) (11 - 20 kHz) 

Tonal maskers, PTM(k), are computed from the spectral peaks listed in ST  as follows 

1 

PTM(k) = 101og10 E 100.1P(k+j) (dB) 	 (2.35) 
j=-1 

a single noise masker for each critical band, PNM(k), is then computed from the remaining 

spectral lines not within the ±k neighborhood of a tonal masker using the sum 

PNM(k) = 10 log10  Ej 100.1P(j)  (dB), 

(2.36) 

VP(j) {PrM(k,k±1,k±k)} 

where k is defined to be the geometric mean spectral line of the critical band, i.e., 

= (Hi ) 
Ti  

(2.37) 

and I and u are the lower and upper spectral line boundaries of the critical band, respectively. 

Step 3: Decimation and Reorganization of Maskers 

In this step, the number of maskers is reduced using two criteria. First, any tonal or noise 

maskers below the absolute threshold of hearing, Tq, are discarded, i.e., only maskers which 

satisfy 

PTM,NM(k) > Tq (k) 	 (2.38) 

are retained, where Tq  (k) is the SPL of the threshold in quiet at spectral line k. Next, a sliding 

0.5 Bark-wide window is used to replace any pair of maskers occuring within 0.5 Bark distance 

by the stronger of the two. After the sliding window procedure, masker frequency bins are 
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reorganized according to the subsampling scheme 

PTM,NM(i) = PTM,NM(k) 	 (2.39) 

PTM,NM(k) = 0 	 (2,40) 

where 

k 	 1<k<48 

i = 	k + (k.mod2) 	 49 < k < 96 	 (2.41) 

k + 3 — ((k — 1) mod4) 97<k<232 

The net effect of (2.41) is 2:1 decimation of masker bins in critical bands 18-21 and 4:1 deci-

mation of masker bins in critical bands 22-24, with no loss of masking components. 

Step 4: Calculation of Individual Masking Thresholds 

Having obtained a decimated set of tonal and noise maskers, individual tone and noise masking 

thresholds are computed next. Each individual threshold represents a masking contribution at 

frequency bin I due to the tone or noise masker located at bin j (reorganized during step 3). 

Tonal masker thresholds, TTM (i,j) are given by 

TTM(i,j) = PTM(j) - 0.275Z(j) + SF(i,j) - 6.025 (dB SPL) 	(2.42) 

where PTM (j) denotes the SPL of the tonal masker in frequency bin j, Z(j) denotes the Bark 

frequency of bin j, and the spread of masking from masker bin jto maskee bin I, SE(i, j), is 

modeled by the expression in (dB SPL) 

l7Lz - 0.4PTM(j) + 11, 	 —3 ; LZ < —1 

(0.4PTM(j) + 6) 	 —1 ~ 	<0 
SF(i,j) 

= { 	

(2.43) 
—17zz, 	 O<Lz<l 

(0.15PTM (j) - 17) L - 0.15PTM (j), 1 'z < 8 

Individual noise masker thresholds, TNM (i,j), are given by 

TNM(i,j) = PNM(j) - 0.175Z(j) + SF(i,j) - 2.025 (dB SPL) 	(2.44) 

where PNM(j) denotes the SPL of the noise masker infrequency bin  and SF(i, j) is obtained 

by replacing PTM(j) with PNM(j) everywhere in (2.43). 
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Step 5: Calculation of Global Masking Threshold 

In this step, individual masking thresholds are combined to estimate a global masking threshold 

for each frequency bin in the subset given by (2.41). The model assumes that masking effects 

are additive. The global masking threshold, T9(i), is therefore obtained by computing the sum 

LT 	 MN 

T(i) = 10 log10 (lO01T + 	l0O TM(i,1) + 	lO01ThMm)) (dB SPL) (2.45) 

1=1 	 m=1 

where Tq (i) is the absolute hearing threshold for frequency bin i, TTM(i,l) and TNM(j, m) are 

the individual masking thresholds from step 4, and LT and MN are the number of tonal and 

noise maskers , respectively, identified during step 3. 

2.4.2 ISO/MPEG-i Psychoacoustic Model 2 

The ISO MPEG-i psychoacoustic model 2 evaluates the maximum inaudible distortion energy 

for the coding of a frame of audio using a 1024 point FFT for high resolution spectral analysis. 

Psychoacoustic model 2 never actually separates tonal and non-tonal components. Instead, 

it computes a tonality index as a function of frequency that gives a measure of whether the 

component is more tone-like or noise-like. Model 2 uses this tonality index which is based on a 

measure of predictability to interpolate between pure tone-masking-noise and noise-masking-

tone values. Furthermore, model 2 uses data from the previous two analysis windows to predict, 

via linear extrapolation, the component values for the current window. Tonal components are 

more predictable and thus will have higher tonality indices. Because this process relies on more 

data, it is more likely to better discriminate between tonal and non-tonal components than the 

ISO/MPEG-i psychoacoustic model 1 method [132, 133]. 

Then, the model 2 determines the noise masking thresholds by first applying an empirically 

determined spreading function to the signal components. Further, it includes an empirically de-

termined absolute masking threshold, the threshold in quiet. This threshold is the lower bound 

on the audibility of sound signal. Next, model 2 selects the minimum of the masking thresh-

olds covered by the subband only where the band is wide relative to the critical band in that 

frequency region. It uses the average of the masking thresholds covered by the subband where 

the band is narrow relative to the critical band. Finally, the masking threshold is computed for 

each subband in the uniform frequency domain [133]. 
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The following are the necessary steps for computing the masking threshold [133]: 

Reconstruct 1024 samples of the input signal 

The FFT shift, iblen, must remain constant over any particular application of the threshold cal-

culation process. The newest iblen samples of the signal are made available at every call to the 

threshold generator. The threshold generator must store 1024 - iblen samples, and concatenate 

those samples to accurately reconstruct 1024 consecutive samples of the input signal, x 2 (n), 

where i represents the index, 1 < i < 1024 of the current input stream. Then, apply an appro-

priate windowing function (Hamming) to the reconstructed 1024 samples of the input signal 

given by 

	

Xi(n) [0.54_ 0.46 cos  (i)] . 	 (2.46) 

Calculate the complex spectrum of the input signal 

First, apply FFT to the windowed input signal. Then, express the complex spectrum of the input 

signal in the polar representation in terms of the magnitude (r) and the phase (fm). Here, w 

indicates that the calculation is indexed by frequency in the FFT spectral line domain. An 

index of 1 corresponds to the DC term and an index of 513 corresponds to the spectral line at 

the Nyquist frequency. 

Calculate a predicted magnitude and phase 

A predicted magnitude, i, and phase, f are calculated from the preceding two threshold 

calculation blocks' rw  and f: 

= 2.0r(i - 1) - 	- 2) 	 (2.47) 

	

jw  = 2.0f,(t - 1) - f(t - 2) 	 (2.48) 

where t represents the current block number, -1 - 1 indexes the previous block's data, and t - 2 

indexes the data from the threshold calculation block before that. 

Calculate the unpredictability measure 

The unpredictability measure, cw  is defined as: 

CW = (((rw cos (f) - 	COS 
(f))2  + (rW sin(f) - 	sin (J))2)°5)/(r  +abs()) (2.49) 
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By sacrificing performance, this unpredictability measure can be calculated on only a lower 

portion of the frequency lines. Calculations should be done from DC to at least 3 kHz and 

preferably to 7 kHz. An upper limit of less than 5.5 kHz may considerably reduce performance 

from that obtained during the subjective testing of the audio algorithm. The c values above 

this limit should be set to 0.3. Best results will be obtained by calculating c up to 20 kHz. 

Calculate the energy and unpredictability in the threshold calculation partitions 

The energy in each partition, eb,  can be expressed as: 

w=whb 

Cb =r 	 (2.50) 
w=wlb 

where b denotes the index of the calculation partition, wib is the lowest frequency line in the 

partition and whb represents the highest frequency line in the partition. 

Further, the weighted unpredictability, eb,  is defined as: 

w=whb 

Cb = 	rc 	 (2.51) 
w=wlb 

The threshold calculation partitions provide a resolution of approximately either one FFT line 

or 1/3 critical band, whichever is wider. At low frequencies, a single line of the FFT will 

constitute a calculation partition. At high frequencies, many lines will be combined into one 

calculation partition. A set of partition values is provided for the sampling rate (32 kHz has 

been considered for the work presented in the thesis) in "Calculation Partition Table" given in 

Appendix A. There are several table elements will be used in the threshold calculation process 

and these are: the index of the calculation partition, b, the lowest frequency line in the partition, 

wib, the highest frequency line in the partition, whb, the median bark value of the partition, 

bvb, a lower limit for the SNR in the partition that controls stereo unmasking effects, mvb and 

the value for tone masking noise (in dB) for the partition, TMNb. 

Convolve the partitioned energy and unpredictability with the spreading function 

The spreading function, SF(i, j), is calculated by the following method: 

( lo(x+y)/lO if y > —100 
SF(i,j) = 	 (2.52) 

0 	if Y < —100  
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where x = 8min[(1.05(j - i) - 0.5)2 -2(1.05(j —i) -0.5),0],  i is the Bark value of the signal 

being spread, j is the Bark value of the band being spread into and the value of y is given by: 

y = 15.811389 + 7.5(1.05(j - i) + 0.474) - 17.5(1.0 + (1.05(j - i) + 0.474)2)05. 

Then, the convolved partitioned energy and the weighted unpredictability are given by 

bmax 

	

ecbb = E ebb * SF(bvbb, bvb) 	 (2.53) 
bb=1 
bmax 

Clb 	= E Cbb * SF(bvbb, bvb) 	 (2.54) 
bb=1 

In the case where the calculation includes a convolution or sum in the threshold calculation 

partition domain, bb will be used as the summation variable. Partition numbering starts at 1 and 

the largest value of 5, bmax, equal to the largest index, exists for each sampling rate. 

Because Ctb is weighted by the signal energy, it must be renormalized to Cbb, i.e. Cbb = ctb/ecbb. 

At the same time, due to the non-normalized nature of the spreading function, ecbb should be 

renormalized and the calculated normalized energy enb, is enj, = ecbb * mb. Where rnb is the 

normalization coefficient given by: mb = 1/( -ax Eb 	SF(bvbb, bvb)). 

Convert Cbb  to tbb, the Tonality Index 

bb = — 0.299 - 0.43 loge  (Cbb) 	 (2.55) 

Each tbb is limited to the range of 0 < tbb < 1- 

Calculate the required signal to noise ratio in each partition 

The required signal to noise ratio, SNRb, is: 

SNRb = max(mvb, tbb * TMNS + (1 - bb)NMTb) 	 (2.56) 

where NMTS is the value for noise-masking-tone (5.5 dB) for each of the partition index 5. 

Calculate the power ratio 

The power ratio, bCb, is calculated as: 

bcb = 10—SNRb/10 	 (2.57) 
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Calculation of actual energy threshold 

The actual energy threshold, nbb, is calculated as: 

nbb = embbcb 	 (2.58) 

Spread the threshold energy over FFT spectral lines 

The threshold energy that is spread over FFT spectral line, nb, is expressed as: 

nb 	nbb/(whb - wib + 1) 	 (2.59) 

Include absolute thresholds, yielding the final energy threshold of audibility 

The final energy threhold of audibility, Th, is calculated after including the absolute threshold 

of hearing (threshold in quiet, ATHW ,) and is given by 

Thw  = max(nb, ATHW ) 	 (2.60) 

The dB values of ATHW  shown in "Absolute Threshold Table" of Appendix A. These values 

must be converted into the energy domain after taking the FF1' normalization into account. 

2.5 Aims 

The research in this thesis focuses on the linear convolutive mixing of speech signals in a noisy 

and highly reverberant environment. The real cocktail party problem cannot be directly solved 

by general framework of ICA because of two important reasons: first, there is a reverberation 

effect due to actual observation of sound sources in a room that is no longer modeled by a 

linear instantaneous mixing process, but this can be modeled by a linear convolutive mixing 

process; second, in practice there are fewer microphones or sensors than unknown acoustic 

source signals. However, humans deal with this cocktail party effect very effectively and easily 

by using 2 dynamic sensors (ears), because the sounds are filtered by thousands of band pass 

filters in the cochlea of auditory system based on critical band analysis. Moreover, the higher 

brain functions at the auditory cortex take care of tracking the signal related to the voice pitch 

and thereby segregating the sound source which is of our interest. 
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Perceptual audio coders use human hearing models to determine perceptual relevance and then 

eliminate redundancy with the minimal degradation of relevant information. When the sources 

are stationary, perceptual audio coders are frame or packet based because masking thresholds 

are computed for finite input blocks (1024 or 512 samples). This framework is known as block 

based perceptual masking approach. Similarly, when the sound sources are dynamic then we 

need to consider the sequential or adaptive perceptual masking approach. 

The primary objective of this thesis is to reduce the computational complexity of solving the 

permutation ambiguity problem of FDICA using block based and sequential based perceptual 

masking approaches. In the block based approach, simultaneous frequency masking is applied 

between adjacent frequency components of the input speech block at the same time to remove 

the frequency components that are perceptually irrelevant. On the other hand, a sequential based 

perceptual approach deals with temporal masking. This framework will be used to construct 

blind source separation algorithms that exploit audio masking prior to the source separation 

(preprocessor) and after the source separation (postprocessor) in the frequency-domain. 

The final objective of this thesis will be to develop an intelligent FDICA system that extracts a 

single source of interest from the mixtures. This can be achieved by exploiting the irrelevancy 

of some of the input speech spectrum using perceptual masking techniques before utilizing 

the subspace filtering method as a preprocessor of FDICA which reduces the effect of room 

reflections in advance and the remaining direct sounds then being separated by ICA. 

2.6 Summary 

In this chapter, we have analysed some of the techniques that have been developed to solve 

the instantaneous and convolutive mixtures. The frequency-domain approach for BSS of con-

volutive mixtures is the emphasis of this thesis. Some basic principles of the human auditory 

system, covering both psychoacoustic models that were considered for reducing the compu-

tational complexity of solving the permutation ambiguity problem of FDICA, have also been 

presented in this chapter. Finally, the aims of the thesis were accordingly restated on the basis 

of this background information. Thus, the objective of this chapter was not to perform a thor-

ough review of the methods developed on the subject but on the other hand, give a complete 

overview of the area, emphasizing the different approaches that influenced our research work. 
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Chapter 3 
BSS of Convolutive Audio Mixtures 

with Perceptual Preprocessing Filter 

Preprocessing of speech signals typically aims at facilitating the ICA process before initiating 

the actual source separation. This objective is pursued in this work by taking advantage of the 

properties of the human auditory system. The idea is to make the speech signal applicable for 

more efficient FDICA by removing the perceptually irrelevant components of the signal. 

The main objective of this Chapter is to investigate whether perceptual criteria, which takes into 

account the process whereby one auditory stimulus prohibits the detection of another signal 

(perceptual masking), can enhance the separation performance of existing BSS system when 

the mixing is noisy and highly reverberant. In this Chapter, a perceptually motivated FDICA 

system with preprocessor is proposed for solving the permutation ambiguity problem when the 

mixing is noisy and highly reverberant. 

This preprocessing filter will be utilized to reduce the overall computational complexity of BSS 

system by exploiting the perceptual irrelevancy of the input speech spectrum using block based 

perceptual masking (simultaneous frequency masking) and the sequential perceptual masking 

(temporal masking) approaches before separating the signals by ICA. 

The motivation for attempting the approach of psychoacoustic model based preprocessor is 

that different solutions proposed by several researchers as discussed in Chapter 2 (background) 

failed to solve the permutation ambiguity problem of FDICA completely. Most existing BSS 

techniques, however, apply an independence criterion to the speech signals directly and do not 

take the human auditory system into account. 

Henceforth, we are proposing an optimal blind speech separation system with a perceptually 

motivated preprocessor in this Chapter for improving the overall performance of FDICA system 

while exploiting the perceptual irrelevancy of some of the observed speech signal spectrum 

before applying the complex FDICA algorithm. This approach will then be compared with 

existing BSS techniques which do not take perceptual masking into account. 
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3.1 Entire System 

The FDICA system with perceptually motivated preprocessor is explained in the form of a 

block diagram as shown in Fig. 3.1. 

Sen sor L_J Removal of 
J 	Masked Fre
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[1 	Model 

	

rFFr Based 	Removal of 
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Filterbank J Separated 2 

Figure 3.1: Block Diagram of FDICA System with Perceptually Motivated Preprocessor 

First, the STFVF of the multichannel input signal, x(w, t), is obtained with an appropriate 

time shift and window function. Once the STFFT is obtained, the Fourier coefficients at each 

frequency are treated as complex time series. By doing this, the convolutive mixture problem 

is reduced to complex but several instantaneous mixture problems. 

Next, the psychoacoustic model is used as a preprocessor in order to determine the perceptual 

masking threshold for each segment of speech and thereby exploiting the perceptual irrelevancy 

of some of the input speech spectrum. 

The PCA filtering method is then applied to the perceptually observed input speech vector 

x1 (w, t) to orthogonalize its output, y(w, t) and thereby finding PCA filter matrix W(w). 

Then, the complex FDICA is applied to the PCA filter output to obtain the ICA filter matrix 

U(w) while making the separated output as independent as possible. The product of U(w) and 

W(w) can be referred to as the separation filter matrix B(w). 

After obtaining the separation filter, the permutation and the scaling ambiguity problem is 

solved by processing the output of the separation filter with the permutation matrix P(w) and 

the scaling matrix B(w). 

Finally, the filter matrices are transformed into the time domain, and the input speech signal is 

processed with the reconstructed time-domain filters. 
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3.2 	Implementation of Preprocessor 

The main objective of this section is to introduce an implementation of perceptually motivated 

preprocessing filter that performs the perceptual irrelevancy removal. The procedure starts 

with the selection of the masking model which is considered in the next subsection. Using 

the resulting model, the masking threshold is calculated in order to determine the perceptually 

relevant components of the input speech spectrum. 

3.2.1 Choosing of Masking Models 

The speech preprocessing block implemented in this work was designed around the human au-

ditory model. From different masking models presented in detail in Chapter 2, two independent 

models were chosen for the implementation of the speech preprocessor. Being such an essential 

part of the preprocessor, the selection of the model inevitably affects many of the properties of 

the final implementation. 

Naturally, the overall modelling of the human auditory system is done with variable accuracy; 

for example, the temporal masking is totally omitted in psychoacoustic model 1 of MPEG-1. 

Thus, the auditory models can be considered from several different operating environments 

and the choice is finally made according to the particular situation, often ending up in a com-

promise. In this work, the auditory models under consideration were basically ISO/MPEG-i 

psychoacoustic model 1 and model 2 [126, 127, 132, 133]. 

3.2.2 Removal of Masked Components 

Masked components are referred to as irrelevant spectral components. If these irrelevant spec-

tral components can be identified when the speech is recorded (observed), they can be thrown 

away and do not need to be considered for further signal processing. This process of dumping 

(throwing) the perceptually irrelevant frequency components of the input speech signal spec-

trum is referred to as the spectral modification. 

The modification of the speech signal spectrum can be simply performed by multiplying, or 

masking, the spectral values of the components to selectively eliminate, reduce, or enhance 

them. For example, if we wanted to eliminate one spectral component, we would simply mul-

tiply it by zero and mask it out. 
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In general, the spectral masking or filter spectrum is a fixed pattern of masking values deter-

mined by an algorithm, where a set of harmonics in the frequency-domain speech spectrum is 

kept or masked out, based on the consideration of adjacent (neighbouring) frequencies in the 

input speech spectrum. This spectral masking is dependent on the masking threshold that has 

been calculated for the input speech frame which is compared with the input power spectrum 

in the corresponding frame to produce a perceptual binary mask [134, 1351. 

The mask is set to a value of zero at those frequency bins where the power spectrum is below 

the masking threshold and a value of one is used elsewhere as shown in Fig. 3.2. A straightfor-

ward means to remove the masked frequency bins would be the multiplication of the complex 

spectrum of the input speech frame by the binary mask at each frequency bin. This corresponds 

to an adaptive filtering of the input speech since the mask changes from frame to frame. 
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Figure 3.2: An Example of Perceptual Binary Mask 

Therefore, this spectral masking or filter spectrum is multiplied against the input speech spec-

trum on an individual element by element basis, which is described by a simple multiplication 

operation. Hence, multiplying the complex spectrum of the input speech frame by the percep-

tual binary mask at each frequency bin would remove the masked frequency bins [134, 135]. 
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This procedure of removing masked frequency bins by multiplication operation can also be 

extended to the stereo environment where we have more than one microphone. Hence, the 

thresholding in the stereo environment is described by logical AND operation. 

In perceptual audio coding, thresholding sets the quanization level, here we set a threshold for 

further processing of the frequencies by ICA according to their psychoacoustic relevance and 

thereby reducing the computational complexity of similarity measure among spectral envelopes 

of the separated output signals at several adjacent frequencies for solving the permutation ambi-

guity problem of the FDICA system. While this perceptual thresholding is a nonlinear activity 

which might at first sight appear to destroy the linear convolutive properties of the BSS system, 

it can also be viewed as an irregular sampling rate strategy which is linear. 

For almost all audio signals many spectral components are below the the masking threshold 

and can be discarded. From our analysis, on average for voiced speech signals, more than 

50% of spectral components are masked out. Therefore, the number of spectral components 

available at the output of perceptually motivated preprocessing filter are also changed. Thus, 

this thresholding will alter the probability density function (pdf) of the perceptually masked 

input speech signals presented to the complex FDICA. 

3.3 	Perceptually Motivated Time-Delayed Decorrelation Algorithm 

After suppressing the irrelevant frequency components from the observed input speech spec-

trum by a perceptually motivated preprocessor, we applied the multiple time-delayed decorre-

lation algorithm [75].  This algorithm is considered because of the following two advantages: 

It uses only the second order statistics, hence the estimation is generally robust, and 

this procedure does not include iterative operations. 

The principle of multiple time-delayed decorrelation algorithm that consists of two stages, 

sphering and rotation, is explained in the form of a block diagram as shown in Fig. 3.3. Spher-

ing is a procedure to obtain whitening matrix, WT(w),  whereas rotation is a procedure to remove 

off digonal elements of correlation matrices with an orthogonal transformation. This concept is 

simplified as the simultaneous diagonalization of the correlation matrix of perceptually masked 

observations at several time-lags. 
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Perceptually 	Sphering 	Whitened 	Rotation 	
Separated 

Observed 	 Observed  
Signal 	L_J Signal ignal  

Spectrum 	 Spectrum 

T1 	 Ti  
'to 	 'to 	 'to  

Figure 3.3: Principle of Perceptually Motivated Time-Delayed Decorrelation Algorithm 

To solve this simultaneous diagonalization problem, we use a Jacobi like algorithm proposed 

by Cardoso and Souloumiac [136]. It is an extension of Givens unitary rotation transform and 

the problem is reduced to combination of subproblems of the 2 x 2 case that can be solved 

analytically and thereby separating the signal for each frequency bin independently. 

In the first instance, we cannot directly compute the decorrelation matrices (rotational matri-

ces) at multiple time-lags. The reason is very simple. Whenever the perceptually masked input 

speech x1 (w, i) in one of the channels contains no values, the rotational matrix U(w) is sin-

gular, resulting in rank deficiency problem. This is mainly due to very low eigenvalues of 

decorrelation matrix of perceptually masked input speech spectrum. 

Without loss of generality, we assumed identity matrix of order M as the rank of rotational 

matrix U(w) to avoid this rank deficiency problem while retaining the whitening properties of 

perceptually masked input speech signal even after rotational procedure. 

Thus, we are considering only the perceptually relevant frequency components of the observed 

input speech signal spectrum for computing the multiple time-lagged decorrelation matrices 

and thereby reducing the computational complexity of decorrelation algorithm. 

Let us assume that source signals are weakly stationary and perceptually masked observed 

signals are a non-convolutive or instantaneous mixture of complex-valued time series s(w, t). 

For a fixed frequency w, the relationship between sources and perceptually masked observations 

are written in the matrix-vector notation as 

x1(w,t) = A(w)s(w,1)4th 	 (3.1) 
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where A(w) is the Fourier transform of room filter matrix A(t), s(w, t) is the windowed Fourier 

transform of sources s() and 'th  is the perceptual masking threshold matrix. 

The correlation matrix of perceptually masked observations at several time-lags is 

= E[xf (w,t)xf (w,1+T )H] 	 (3.2) 

= 	A(w)E[s(w, )s(w, t + T)HJA(w )H4 	 (3.3) 

R31 (,r) ... 	0 

= A(w) 	 .•. 	 A(w)" 	(34) 

0 	... R8 (w,r) 

where •H  denotes the Hermitian transpose, E[.] denotes taking the average, R51  (w, r) is the 

auto-correlation function of s(w, ) and 4 is the perceptual gain given by th4' . 

With a desired separation filter matrix B(w), the reconstructed signals are represented by 

	

y(w,1) = B(w)x1(w,t) 	 (3.5) 

= B(w)A(w)S(W,t)jh 	 (3.6) 

= P(w)D(w)s(w,t)th 	 (3.7) 

The correlation matrix of the reconstructed signal becomes 

= E[(PDs(w,))(PDs(w,t +r))"] 	 (3.8) 

	

A' 1 2R31, (w, T) . . . 	0 

= 	 .. 	 (3.9) 

0 

where 1, 2',... , n' denotes a permutation of the indices 1, 2,... , n determined by matrix 

P(w) and Ai is the ith diagonal element of matrix D(w). 

Hence, except for the ambiguity of permutation P(w) and scaling D(w), an optimal B(w) can 

be characterized as a matrix that diagonalizes the correlation matrices at any time lag r. With 

these two operations, i.e. sphering (pre-whitening) and rotation, one can find B(w) in a certain 

class of matrices, which satisfies 

B(w)MB(w)H=A(w), i=1, ,r 	 (3.10) 
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where A(w)'s are diagonal matrices, r is the number of matrices to be simultaneously diago-

nalized and Mi's are time-delayed correlation matrices given by E[xf(w,t)Xf(w,t + rj)H], 

Finally, the separation filter matrix B(w) is determined by 

	

B(w) = U(w)W(w) = U(w) \/V'(w) 	= U(w)V 1/2 (w) 	(3.11) 

where s/v—' (w) is the inverse square root of the matrix V(w) given by 

	

V(w) = R(w,r)o 	 (3.12) 

Generally, the square root of V(w) is referred to as the Cholesky decomposition and sometimes 

it is also known as the Cholesky square root matrix [137, 1381. 

Further, the inverse square root matrix V 1/2 (w) can be expressed as [11] 

V 112(w) = EA 112E" 	 (3.13) 

where matrices, E = [el , ... , e] and A = diag(A,,.. , .A), are corresponding to the 

eigenvector em  and the eigenvalue Am, respectively. The symbol •F  denotes the Hermitian 

transpose. 

U(w) is the unitary matrix obtained by minimizing 

r 

	

UMU H 
 )jkl2 	 (3.14) 

i=1 jk 

where (UMU")k denotes the jk-element of matrix UMUH 

3.3.1 Method of Solving the Permutation and Scaling 

3.3.1.1 Scaling Problem 

As explained in Chapter 2 (see 2.2.3.1 for details), the scaling problem can be solved by filtering 

individual outputs of the separation filter by B—' (w) separately [87]. This procedure will lead 

towards finding the scaling matrix B'(w). 
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After solving the scaling ambiguity problem, the separated output can be written in the matrix- 

vector notation as 

= 	 (3.15) 

where ffi denotes an arbitrary microphone number. 

3.3.1.2 Permutation Problem 

Based on the nonstationarity of the speech signals, we have assumed that components at differ-

ent frequencies from the same source signals are under the influence of a similar modulation in 

amplitude. Let us define (w, ) in terms of magnitude and phase as 

(w, t) 	 (joi 	 (3.16) 

Because of nonstationarity, the magnitude a(w, t) changes in time, and it corresponds to the en-

velope of s(w, f). As s(w, t) and s(w, t) are independent, the correlation between envelopes 

aj(w,t) and a(w,t) vanishes. 

	

Corr (a(w,t),a(w,t)) = 0, 	i ~4 j 	 (3.17) 

Similarly, correlation between different frequency components, w and w', from different source 

signals also vanishes. 

Corr (a(w,t),a(w',t)) = 0, i 	j, W 	 (3.18) 

However, for different frequency components from the same source signal, we can assume that 

Corr (a(W,t),a(W',f)) 	0, i = j, W 	W1 	 (3.19) 

When adjacent frequency components from the same source signal are zero, it is assumed that 

Corr (a(W,t),a(W',t)) = 0, i = j, W $ W1 	 (3.20) 

It implies that frequency components of speech signals will not change the super Gaussian 

distributions drastically in time, but they are similarly affected by the amplitude modulation of 
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the vocal chords. Therefore, the correlation coefficient p of their envelopes 

	

Corr (a(w, t), a(w', t)) 	
(3.21) p(Corr(a(w, t), aj (w', 	

= 	Corr(a(w, t), a  (w', t)) Corr (a (w, t), a (w', t)) 

would be a natural measure for estimating appropriate combination of frequency components. 

With the help of moving average operator e, we can estimate the envelope of time series as 

1 	
t+L 

ey(w,t;i) => 	
w,t,;i)') 	

(3.22) 
2L + 1 

t'=t—L j=1 

Where L is a positive constant that gives an idea about the size of the problem (L = 1000 for 

the spectrogram of 2 sec with the STFFT shift of 16 samples at 16 kHz) and 	t; i) is the 

jth component of(w,l;i). 

The permutation is then solved by sorting based on the inter frequency spectral envelope corre-

lations (IFSEC) of separated signals (Fig. 3.4) as per the following procedure [87]: 

Spectrogram of 	 Spectral Solving the Permutation 

Separated Output 	T:' Envelope 	
' Based on the Correlation 

of the Spectral Envelopes 

Figure 3.4: Principle of Solving the Permutation Problem by IFSEC Method 

Sort w in order of low correlation between independent components in each frequency 

bin. This is done by sorting in increasing order of similarity defined by 

sim(w) = E p(ey(w, t; i), 	; j)), 	 (3.23) 

i0j 
sim(wi) < Sim(w2) < 	< sim(o.). 	 (3.24) 

For a.'1, assign (w1, t; i) to y(wi, t; i) as it satisfies 

y(w1,t; i) = Y (wi,t; i), 	j = 1,••• , ii. 	 (3.25) 

For Wr, find a permutation P(i) which maximizes the correlation between the envelope 

of w, and the aggregated envelope from w1  to Wr_1.  This can be achieved by maximizing 
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sum of correlation coefficients 

P (EY (W" t; P (i)), E Ey (Wj '  t; 0 	 (3.26) 

within all the possible permutations of i = 1,.. , n. 

Assign the appropriate permutation to y(Wr , t; i) as it is 

	

y(wr,t;i) = y(wr,t;P(i)), 	i = 1,•. ,n. 	 (3.27) 

Go to step no. 3 until number of simultaneous matrices to be diagonalized, r = 40. 

3.3.2 Reconstructed Signals 

After solving the scaling and the permutation ambiguities problem, the separated spectrograms 

are obtained as 

y(w,t; i), 	i = 1, 	n. 	 (3.28) 

Applying the inverse Fourier transform to separated spectrograms y(w, t; i), we obtain a set of 

time-domain reconstructed signals, y(t; i). 

Further, each component of the reconstructed signal, ym (t; i) represents a separated indepen-

dent component i on sensor m and Ej  y(i; i) = x1  (t) holds. 

We 
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3.3.3 Experimental Results 

3.3.3.1 Synthetic Room Mixing Scenario 

In this experiment, we created a synthetic room mixing of two speech sources (4 s at 16 kHz) 

using Asano's [139] conference room (5.9 mx8.7 mx4.1 m) with a reverberation time of 0.5 

sec for both the weak and strong early reflection cases of mixing environment. The correspond-

ing room filters and their magnitude frequency responses are shown in Fig. 3.5. 

CS...... CS...!.. .S 41.... fl......... rl4 	100'. 

0.5 
a) 

E 

—0.5 

	

-1r 	 1 
0 	0.125 	0.25 	0.375 	0.5 

	
0 	0.125 	0.25 	0.375 	0.5 

Time (sec) 
	

Time (sec) 

(a) Weak Early Retbction 
	

(b) Strong Early Ref'ection 

01 	
Magnitude Response (IA1  1 (f)I: WA) 	
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2 	4 	6 	8 	0 	 4 	b 
Frequency (kHz) 	 Frequency (kHz) 

(c) Weak Early Reflction 	 (d) Strong Early Rethction 

Figure 3.5: One Only of the Room Filters Used and Their Magnitude Frequency Responses 
(Synthetic Room Mixing Scenario) 

The system configuration and the experimental setup of the sound sources (loudspeakers) and 

the microphones are shown in Fig. 3.6. The impulse responses from the sound sources to 

the microphones were used to convolve with the source signal to generate the observed input 

speech signal. We applied the time-delayed decorrelation algorithm for both early reflection 

cases, using the parameters of the proposed BSS system that are summarized in Table 3.1. 
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Sampling Frequency 16 kHz 
STFFT Frame Length 512 
Shift of STFFT 20 
Window Function Hamming 
Normalized Sound Pressure Level, SPL 96 dB 
Number of Microphones, M 2 
Number of Sources, D 2 
Number of Matrices for Diagonalization, ' 40 

Table 3.1: Proposed BSS System-] Parameters (TDDA: Perceptual Preprocessing) 

5,9m 
1 

(a) BSS System 	 (b) Experimental Setup 

Figure 3.6: System Configuration and the Experimental Setup (Synthetic Room Mixing) 
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Figure 3.7: Speech Sources, Observed Signals and the Corresponding Spectrograms (Synthetic 
Room Mixing Scenario) 
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Since the Hamming window is the most often used windowing technique for power spectrum 

estimation based speech enhancement applications, we also considered the Hamming window 

for all the experimental work reported in this thesis. Further, it can be used to control the 

spectral leakage and also to minimise its effect on reducing the dynamic range capability of the 

transform output and thereby reconstructing the speech signal in the time domain. 

Further, the practical outcome of compact disc (CD) audio is the ability to represent from 20 

to 20000 Hz, with a maximum theoretical dynamic range of 96.33 dB due to 16 bit resolu-

tion. Henceforth, a normalised sound pressure level (SPL) of 96 dB is considered for all the 

experimental work reported in this thesis. 

Sound sources, observed signals and the corresponding spectrograms are shown in Fig. 3.7. 

The separated (reconstructed) signals obtained for both unmasked and masked FDICA systems 

(using perceptually motivated preprocessor) are shown in Fig. 3.8 

From Fig. 3.8, it is evident that the separated signals for both unmasked and masked systems 

(both models) are entirely different from original sources when the weak reflection case is con-

sidered. Further, the separated signals for both unmasked and masked systems (both models) 

are similar to observed input speech when the strong reflection case is considered. 

The permutation error is defined as the case when the result of inter frequency spectral enve-

lope correlation (IFSEC) differs from that of source output crosscorrelation (SOC) (assumed as 

correct permutation). It is clearly evident from Fig. 3.9 that the measured permutation error is 

large for most of the frequencies when both unmasked and masked FDICA systems (using psy-

choacoustic model 1) are considered for both early reflection cases. On the other hand, masked 

FDICA system using model 2 reduces the measured permutation error for most of the frequen-

cies except in the range 3-5 kHz when the weak early reflection case is considered. Whereas, 

the measured permutation error is small for the frequencies over 5 kHz when the strong early 

reflection case is considered. 

Further, it is well known that the decorrelation algorithm fails when the speech sources have 

identical spectral envelopes [88] and even if one spectral component does not have any power 

for both unmasked and masked cases. Based on the above discussion and experimental re-

sults (synthetic room mixing environment), we conclude that the perceptually motivated time-

delayed decorrelation algorithm cannot solve the permutation ambiguity problem of FDICA. 

Therefore, we did not consider the real room recording scenario for further experimentation. 
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Figure 3.8: Separated Signals for Unmasked and Masked FDICA Systems (TDDA: Perceptual 
Preprocessing: Synthetic Room Mixing Scenario) 
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Figure 3.9: Measured Permutation Error for Unmasked and Masked FDICA Systems (TDDA: 
Perceptual Preprocessing: Synthetic Room Mixing Scenario) 
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Finally, this is our first attempt of studying the impact of perceptual masking techniques on 

the speech source separation in the frequency domain while solving the permutation ambiguity 

problem of the FDICA system. From this study, we observed that there is a positive impact of 

temporal masking which is used in model 2 on reducing the permutation to some extent. On 

the other hand, simultaneous frequency masking has total failure to aid the source separation 

using time-lagged decorrelation matrices. 

However, it will be helpful to utilize the continuity properties for demixing filter matrices of 

adjacent frequency channels in addition to the spectral envelope correlation properties of the 

separated signals to master the full range of realistic application scenarios. Thus, we need 

an iterative algorithm based on higher order statistics for solving the permutation ambiguity 

problem. We will apply these techniques in the next section. 

3.4 Perceptually Motivated Complex Infomax Algorithm 

In this section, the Infomax algorithm with a feed-forward architecture extended to complex 

data [27,64, 85] to suit the requirements of perceptual auditory masking is briefly described. 

In the first instance, we cannot directly apply PCA to the perceptually masked input speech. The 

reason is very simple. Whenever the speech vector at the output of the perceptual preprocessor 

(psychoacoustic model), xj(w, t), in one of the channels contains no values, the PCA filter 

matrix W(w) is singular, resulting in a rank deficiency problem. 

This rank deficiency problem is mainly due to very low eigenvalues of the spatial correla-

tion matrix of the perceptually masked input speech spectrum. Without loss of generality, we 

assumed an identity matrix of order M as its rank to avoid this problem while retaining the 

whitening properties of the perceptually masked input speech. 

Then, the complex Infomax algorithm is applied to the perceptually relevant output of the PCA 

filter, y(w, t) to obtain the ICA filter U(w). For the sake of convenience, the product of W(w) 

and U(w) is termed the separation filter, hereafter. 

B(w) = U(w)W(w) 	 (3.29) 

In the ICA stage, the input signal (the output of the PCA filter) y(w, t) is processed with the 
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filter matrix U(w) as 

z(w,t) = U(w)y(w,t) 	 (3.30) 

The ICA learning rule is given by 

U(w,t + 1) = U(w,) + i[I - (z(w, t))zH(w, t)JU(w, t) 	(3.31) 

where the score function for the complex data (z) is defined as 

(z) = [ço(zi),... ,co(zd), 	,co(zD)j 	 (3.32) 

co(zd) = 2 tanh(GIR(zd)) + 2j tanh(G(zd)). 	 (3.33) 

Where Zd is the dth element of the vector z(w, t), I is an identity matrix, 	denotes the Her- 

mitian transpose, i is the learning rate parameter and G is the gain constant for the nonlinear 

score function, assuming that the magnitude of y(, ) is normalized. 

3.4.1 Method of Solving Scaling and Permutation 

3.4.1.1 Scaling Problem 

As explained in Chapter 2 (see 2.2.3.1 for details), the scaling problem can be solved by filtering 

individual outputs of the separation filter by B 1  (w) separately [87]. This procedure will lead 

towards finding the scaling matrix B' (,)• 

After solving the scaling ambiguity problem, the separated output can be written in the matrix-

vector notation as 

(w, t) = B 1 (w)z(w,t) 	 (3.34) 

where ffi denotes an arbitrary microphone number. 

3.4.1.2 Permutation Problem 

Here, we propose a perceptually relevant method for solving the permutation problem robustly 

and precisely by integrating two of the approaches based on the coherency (continuity) proper-

ties of both the mixing matrix and the separated signals and hereafter denoted as the combined 

inter frequency correlation (CIFC) method. The first approach is the inter frequency coherency 
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of the mixing matrix at several adjacent frequencies (IFC), which is discussed below, as this will 

provide the proposed method with robustness. The IFC method is robust since its performance 

is not only independent of the source spectra but also associated with fixing the permutations 

at some frequencies where the confidence measure is sufficiently high [9, 10]. 

The second approach is based on the inter frequency correlations of separated output signal 

envelopes (IFSEC) [87],  which is discussed earlier (see 3.3.1.2 for details), and will make 

the proposed method precise and perceptually relevant. The IFSEC method is precise and 

perceptually relevant as long as the masked input speech signals are well separated by ICA since 

the measurement is based on separated output signals. Thus, the IFSEC method is associated 

with deciding the permutations for the remaining frequencies based on neighboring correlations 

without changing the permutations fixed by the IFC method. 

Hence, the proposed CIFC method has benefited from both advantages of IFC and IFSEC 

approaches for solving the permutation ambiguity problem of FDICA and thereby obtaining 

better performance of BSS system when the mixing is noisy and highly reverberant. 

(i) Permutation by IFC Method 

Let us consider the structure of the mixing matrix A(w) modeled as [9, 101 

Am,n(w) = Hm,n(w)e_3wTm 	 (3.35) 

where Am,n(w) is the transfer function from the nth source to the inth microphone, Hm,n(W) 

is the magnitude of the transfer function and Tm,n  denotes the propagation time from the nth 

source to the mth microphone. 

From (3.35), the nth column vector (location vector of the nth source) in A(w) at the frequency 

w and that at the adjacent frequency wo = w - L.w are 

e_i" 	 j(wAw)Tim 

a(w) = 	 , a, (WO) = 	 . 	(3.36) 

e3wTM 

Here, Hmn(w) = 1 in (3.35) is assumed for the sake of simplicity. From (3.36), the location 

vector an  (w) at w0  is a(wo) which is rotated by the angle O. 
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Based on this coherency (relation) of the location vectors at the adjacent frequencies, the mixing 

matrix can be expressed as 

	

A(w) = T(w, wo) A(wo) 
	

(3.37) 

where the matrix T(w, wo) is the complex rotation matrix. 

When the difference in frequency Aw (frequency resolution of STFFT) is sufficiently small, 

A(w) A(wo), T(w,wo) I 
	

(3.38) 

the angle between the location vectors at w and wo,  8, is expected to be the smallest for the 

correct permutation as shown in Fig. 3.10. Based on the coherency of A(i), the permutation 

problem can be solved so that the sum of the angles {O,..• , 0j } between the location vectors 

in the adjacent frequencies is minimized. 

An estimate of the mixing matrix A(w) can be obtained from B 1  (w) as 

A(w) = B(w). 	 (3.39) 

Let us denote the mixing matrix multiplied by the arbitrary permutation matrix P as 

AT (W) = PAT(w). 	 (3.40) 

The permutation PAT (w) exchanges the row vectors of AT()  (the column vectors of 

	

The column vectors of A() are denoted as A(w) = [ã1(w), 	,aD(w)]. 

0 1 

02 

(a) Correct Permutation 
	

(b) Incorrect Permutation 

Figure 3.10: Rotation of the Location Vectors for Correct and Incorrect Permutations 
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The cosine of the angle O between the two vectors, ã(w) and a(w0), is defined as 

	

COS On 
- 	ã'(w)ã(wo) 

(3.41) 

	

- 	n(w)I.Hã(wo)II 

By doing this, the permutation matrix is determined as 

P = argrnax[F(P)] 	 (3.42) 

where the cost function F(P) is defined as 

F(P) = 	COS On. 	 (3.43) 

The above method assumes that the estimate of the mixing matrix A(w) is a good approxima-

tion of the true mixing matrix A(w). However, at some frequencies, this assumption may not 

hold due to the failure of ICA. Since the permutation at frequency w is determined based on 

only the information of the two adjacent frequencies, w and w, and the permutation is solved 

iteratively with increasing frequency, once the permutation at the certain frequency fails, the 

permutation in the succeeding frequencies may also fail. 

To prevent this, the reference frequency wo is extended to the following frequency range: 

w0 =w—k.i, 	for k=1,••• K. 	 (3.44) 

The cost function F(P) is calculated at all K frequencies in this range. Let us denote the value 

of the cost function at w0  = w - k.Lw as F(P, k). Next, a confidence measure for F(P, k) is 

considered. When the largest value of the cost function maxF(P, k) is close to F(P, k) with 

other permutations, it may be difficult to determine which permutation is correct, and the value 

of F(P, k) is not reliable. Based on this, the following confidence measure is defined as: 

C(k) = max[F(P, k)] - max[F(P, k)] 	 (3.45) 
Pen 	 PEO' 

Here, Q denotes the set of all possible P while Il' denotes 11 without P = arg maxpo[F(P, k)J. 

The appropriate reference frequency w0  is determined as w0  = w k.Lw with 

= max[C(k)]. 	 (3.46) 
P 
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The permutation is then solved using the information at this reference frequency as 

P = arg max [F(P,k)] 	 (3.47) 

(ii) Permutation by IFSEC Method 

As explained earlier, the IFSEC method [87] decides the permutations for the remaining fre-

quencies where the permutation is not fixed by the IFC method. This IFSEC method does not 

cause a large misalignment as long as the permutations fixed by the IFC method are correct. 

As indicated in (3.41) and (3.43), the cost function of the IFC method is given by 

D 	
a(w)a(wo) 	

(3.48) FJFC(P) = 
n=1 0041-1141-I(WO)IF0041-1141-I(WO)IF  

On the other hand, the cost function of the IFSEC method can be expressed as 

D ______________ 

FIFSEC(P) = 	
In(w)I.II(wo)H 	

(3.49) 
 n=1 

In the IFSEC method also, the cost function is maximized in the same manner as that of the IFC 

method for solving the permutation. The vector 2n  is the nth column vector of the following 

matrix similar to that of (3.40) 

= PZT (w). 	 (3.50) 

The matrix ZT(w)  has the estimated spectral envelope of the separated output (smoothed by 

the moving-average) obtained by ICA and expressed as a column vector as 

(w) = [ 1(w), 	,D(w)] 
	

(3.51) 

where 	(w) = 	(w, t1),... , (w, t2)], .I (w, t) is the estimated spectral envelope at the nth 

channel, frequency wand tth time frame and [t1,t2] describe the period of the spectrogram. 

Thus by considering the merits of both the inter-frequency coherency (IFC) and the inter-

frequency spectral envelope correlation (IFSEC) methods, we realize a new and the percep-

tually relevant method denoted as combined inter-frequency correlation (CIFC) for solving the 

permutation ambiguity problem of the proposed FDICA system. 
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3.4.2 Overall Filtering System 

After solving the permutation and scaling ambiguities, the overall (final) reconstructed filtering 

matrix in the frequency domain can be written as 

F(w) = P(w)B'(w)B(w). 	 (3.52) 

Thus, the reconstructed time domain filters are obtained as the inverse Fourier transform of 

F(w) as 

fn,m(i) = IFFT[Fn,m (w)]w(i) 	 (3.53) 

where IFFT[,] operator denotes the inverse FFT. The symbols Fn,m(i) and fn,m(i) denote 

the (n,rn)th element of the frequency domain filter F(w) and its time domain correspondence, 

respectively. The symbol w(i) denotes the windowing function. 

The multiplication by w(i) is necessary to control the spectral leakage and also to minimise 

its effect on reducing the dynamic range capability of the transform output and thereby recon-

structing the speech signal in the time domain. 
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3.4.3 Experimental Results 

3.4.3.1 Synthetic Room Mixing Scenario 

As explained earlier (see 3.3.3.1 for details), we created a synthetic room mixing of two speech 

sources (4 s at 16 kHz) using Asano's [139] conference room (5.9 mx 8.7 mx4.1 m) with a 

reverberation time of 0.5 sec for both weak and strong reflections of room filters (Fig. 3.5). 

We applied the complex Infomax algorithm for both reflection cases, using the parameters of 

the proposed BSS system that are summarized in Table 3.2. For achieving statistical reliability 

with a better convergence, the experiment is repeated over 100 times of the data. 

Sampling Frequency 16 kHz 
STFFT Frame Length 512 
Shift of STFFT 16 
Window Function Hamming 
Learning Rate, i 0.0001 
Gain for Score Function, C 100 
Normalized Sound Pressure Level, SPL 96 dB 
Number of Microphones, M 2 
Number of Sources, D 2 
Reference Range in Permutation, K 5 

Table 3.2: Proposed BSS System-2 Parameters (Infomax: Perceptual Preprocessing) 

Original speech sources, observed signals and the separated signals are shown in Fig. 3.11. 

Further, each of the original source is divided into eight segments (Al, Bl,.. ,Hl in the case 

of the first source and A2, B2,... , H2 in the case of the second source) for simplifying the 

comparitive analysis of each category of the above mentioned speech signals. These signal 

segments will help us to compare each of the separated (reconstructed) speech signals as to 

whether they resemble the shape of the original speech sources or the observed signals. 

From Fig. 3.11(c), it is evident that the segments i.e., Al, Cl, Dl, Fl, GI and Hi; A2, B2, 

C2, D2, E2 and H2 of the first and the second separated speech signals obtained by unmasked 

FDICA system respectively are similar to the original sources when the weak early reflection 

case is considered. The remaining segments i.e., Bl, El, F2 and G2 are remain mixed. How-

ever, these separated signals have some crosstalk whenever the original speech sources have 

zero or minmium signal strength (see Fig. 3.11(a)). On the other hand, the separated sig-

nals obtained by unmasked FDICA system (shown in Fig. 3.11(d)) are similar to the observed 

signals (shown in Fig. 3.11(b)) when the strong reflection case is considered. 
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From Fig. 3.11(e), it is also evident that the separated speech signals in one of the channels 

(second output signal) obtained by masked FDICA system (using psychoacoustic model 1) is 

different from the original source when weak early reflection case is considered. However, the 

segments A2, C2, D2, E2 and H2 of the separated speech signal are slightly different from those 

of the original speech signal. The remaining segments i.e., B2, F2 and G2 still appear as a mixed 

signal. From Fig. 3.11(f), it can be seen that the second separated speech signal obtained by 

masked FDICA system (using psychoacoustic model 1) is slightly different from the observed 

speech signal when strong early reflection case is considered. However, the segments A2, D2, 

F2 and G2 of the separated speech signal are slightly different from those of the original speech 

signal. The remaining segments i.e., B2, C2, E2 and H2 still appear as a mixed signal due to 

the presence of strong reflections in the separated output. 

From Figs. 3.11(g) and 3.11(h), it is also evident that the separated speech signals in one of the 

channels (second output in this case) obtained by masked FDICA system (using psychoacoustic 

model 2)is slightly different from the original speech source (with reference to most of the 

signal segments i.e., A2, B2,... , H2) when both weak and strong early reflection cases are 

considered. Though, these segments A2, B2,.. , H2 of the separated speech signal are better 

than those obtained by the psychoacoustic model 1 under similar experimental conditions, still 

there is some crosstalk due to reflective environment. However, the separated signal in the first 

channel is similar to the observed signal when both reflection cases of unmasked and masked 

systems (using either model) are taken into account. 

The spectrograms of original speech sources, observed speech signals and the separated speech 

signals are shown in Fig. 3.12. Further, the speech signal frequency range (with a bandwidth 

of 5 kHz) is divided into two frequency bands namely F1  (0-3 kHz) and F2 (3-5 kHz) to sim-

plify the comparative analysis of the above mentioned spectrograms. From Figs. 3.12(e) and 

3.12(f), it is clearly observed that most of the higher frequency components (> 3 kHz) of the 

second separated speech signal spectrum are masked when the perceptual preprocessor (using 

the psychoacoustic model 1) is used for both early reflections of the FDICA system. 

However, the psychoacoustic model 2 based preprocessing filter not only masks the higher 

frequencies (> 3 kHz) but also masks some frequencies in the range of 1-3 kHz when both 

weak and strong reflection cases of the masked FDICA system are taken into account (shown 

in Figs. 3.12(g) and 3.12(h)). Results are highlighted in Figs. 3.13, 3.14, 3.15 and 3.16 for the 

worst case scenario of highly reverberant environemnt. 
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From Fig. 3.17, it can be seen that the measured value of the cost function F(P, k) shows a 

smaller value at all frequencies except in the very few frequencies when the unmasked system is 

considered for both weak and strong reflection cases. These smaller values of the cost function 

are represented by vertical lines. These vertical lines show that it is necessary to exchange the 

output at those frequencies where the permutation problem still exists. 

On the other hand, the cost function is close to unity for all the frequencies except the very low 

frequencies when the masked system using psychoacoustic model 1 is considered for both early 

reflection cases. Further, there is an improvement in the measured value of the cost function at 

these low frequencies also when the masked FDICA system (using the model 2) is considered 

for both early reflection cases. Thus, the permutation ambiguity problem encountered in an un-

masked FDICA system at most of the frequencies is mitigated by the proposed FDICA system 

that employs both perceptual masking techniques. 

The confidence measure C(k) depicted in Fig. 3.18 has a smaller value for most of the frequen-

cies when the unmasked system is used for both cases of reflection. Further, the measured value 

of confidence measure has high values at all frequencies except the low frequencies when the 

perceptually motivated FDICA system (using psychoacoustic model 1) is employed for both 

early reflection cases. However, there is an improvement in the value of the confidence mea-

sure at most of the low frequencies when the masked FDICA system (using the model 2) is 

considered for both reflection cases. Thus, the perceptually motivated FDICA system helps in 

increasing the confidence at those frequencies where the permutation actually occured. 

Permutation error is defined as the case when the result of CIFC differs from that of source 

output crosscorrelation (SOC) (assumed as correct permutation). The measured permutation 

error (Fig. 3.19) is 7.4% and 46.7% for both weak and strong reflection cases of unmasked 

system respectively. On the other hand, the permutation error is zero for all the frequencies 

when a masked system (using either model) is used for both reflection cases. 

3.4.3.2 Real Room Mixing Scenario 

This experiment was chosen to test the algorithm's ability in a real room recording environment 

using recorded speech signals (6 s at 16 kHz). Real room mixing results for both unmasked and 

masked systems shown in Figs. 3.20 and 3.21 are similar to that of the synthetic mixing case. 

The permutation error cannot be computed in this case as original sources are unknown. 
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3.5 Performance Evaluation 

The performance evaluation of a BSS system can be achieved by subjective and objective qual-

ity measures [140-147]. Subjective speech quality is performed by human listeners. Such 

listening tests are expensive, time-consuming and difficult to administer. Further, such tests 

seldom provide much insights into the factors which may lead to improvement in the evalua-

tion. The Mean Opinion Score (MOS) has been the usual subjective speech quality test used to 

evaluate objective quality measures. In a MOS test, listeners are not provided with an original 

sample and rate the overall speech quality of the separated sample [145, 147]. 

However, objective speech quality measures estimate subjective scores by comparing the sep-

arated speech to the original speech, which has more in common with a Degradation Mean 

Opinion Score (DMOS) test in which listeners listen to an original speech sample prior to each 

separated speech sample [145, 147].  Although objective speech quality measures are not ex-

pected to completely replace subjective speech quality measures, a good objective measure 

would be a valuable assessment tool for BSS system. 

Objective quality measures can be classified according to the domain in which they estimate the 

distortion: time domain, spectral domain and perceptual domain. Time domain measures are 

usually applicable to BSS systems in which the goal is to reproduce the signal waveform. Spec-

tral domain measures are mainly based on speech production models and their performance is 

limited by the failure of speech production models to adequately describe the listener's audi-

tory response. Perceptual domain measures transform the speech signal into a perceptually 

relevant domain incorporating human auditory models. Hence, perceptual domain measures 

would appear to have the best chance of predicting subjective quality of speech. 

Here, we are mainly focusing on two important objective speech quality measures namely time-

domain and perceptual domain measures and their metrics are signal-to-interference ratio (SIR) 

and Enhanced Modified Bark Spectral Distortion (EMBSD) respectively [42, 144]. 

Since the time-delayed decorrelation algorithm failed to solve the permuatation problem, we 

did not consider it for performance evaluation of both unmasked and masked FDICA systems. 

Henceforth, the complex Infomax algorithm with two permutation solving strategies namely: 

the source-output cross-correlation (SOC) method and a combined approach of inter frequency 

coherency of separated filter and output spectral envelope (CIFC) method are considered for 

evaluating the performance of both unmasked and masked FDICA systems. 
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3.5.1 Time-Domain Objective Quality Measure 

When the original speech signals are s (t) (i = 1, ..., D), the signals observed by sensor j are 

x(t)(j = 1,..., M) and the separated signals are yk(t)(k = 1,..., D), the convolutive BSS 

	

model can be: x3  (t) = ED 1 (a * s) (t), yk(t) =EM  (fi * x) (t), where 	is the impulse 

response from source ito sensor j,f kj  are the separating filters and * is the convolution operator. 

The portion of yk(t)  that comes from s(t) is calculated by yk(t) = * a ji * s) (t). 

After solving the permutation and scaling ambiguity we measure the SIR for yk(t)  so that s(t) 

is output to y()  The SIR is defined as [42, 104]: 

(iOk 	

\2 

SIRk = 101og 	Ykk(fl/ 	Yk(t)) (dB). 	 (3.54) 
t 	t / 

The results of performance evaluation based on this time-domain metric (SIR) are summarized 

in Tables 3.3 and 3.4. 

Unmasked FDICA 1_Masked FDICA (Modell) J Masked FDICA (Model 2) 
Method SIR1 	SIR2 	] SIR1 	SIR2 	JJ SIR1 	SIR2  

SOC 10.30 10.54 -1.48 12.69 -1.30 14.67 
[CIFC 10.10 10.52 	jJ -1.48 12.69 -1.30 14.67 

Table 3.3: SIR (dB)for Unmasked and Masked FDICA Systems (Preprocessing: WR) 

11 Unmasked FDICA 1 Masked FDICA (Model 1) J Masked FDICA (Model 2) 
Method SIR, 	SIR2 	fl SIR, 	SIR2 II 	SIR, 	SIR2  

soc 9.91 6.10 -1.64 10.93 -1.44 15.11 
CIFC 1.88 1.57 -1.64 10.93 -1.44 15.11 

Table 3.4: SIR (dB)for Unmasked and Masked FDICA Systems (Preprocessing: SR) 

From Table 3.3, it is clearly evident that SIR, is degraded by the masked FDICA system (using 

both psychoacoustic models) when the weak reflection case is considered. On the other hand, 

SIR2 enhanced by 2.2 dB and 4.1 dB using models 1 and 2 respectively. 

From Table 3.4, it is also evident that SIR, is degraded by the masked FDICA system (using 

both psychoacoustic models) when strong early reflections are considered. However, SIR2 im-

proved by 4.8 dB and 9.4 dB using SOC and CIFC methods respectively when psychoacoustic 

model 1 is employed. On the other hand, model 2 improves the SIR2 by 9 dB and 13.5 dB 

using SOC and CIFC methods respectively. 
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3.5.2 Perceptual Domain Objective Quality Measure 

The EMBSD is an enhancement of the Modified Bark Spectral Distortion Measure (MBSD) 

in which some procedures have been modified. The MBSD uses a simple cognition model 

to calculate the distortion for the entire separated speech by averaging over all non-silence 

frames identified from access to the source data. This model is based on two assumptions: (1) 

non-silence segments represent speech quality of the separated speech, and (2) the variance 

of distortion in the separated speech is small enough to be well represented by its mean. On 

the other hand, the EMBSD uses better cognition model based on two psychoacoustic results 

[Zwicker]: (1) the hearing system integrates the sound intensity over a period of 200 ms, and 

(2) premasking is very short, while postmasking can last longer than premasking [111]. 

Several terms were defined in the cognition model used by EMBSD. A cognizable segment is 

defined as set of consecutive frames correspnding to 200 ms. A cognizable unit is defined as 

the number of frames in a cognizable segment. Perceptual distortion is defined as a maximum 

distortion over a cognizable segment. Postmasking distortion is defined as the amount of the 

previous cognizable distortion masking the current perceptual distortion. Cognizable distortion 

is defined as the largest value between the current perceptual distortion and the postmasking 

distortion. Then, the final distortion of the separated speech is the average over the cognizable 

distortions. The cognizable distortion is assumed to contribute to listeners' response on speech 

quality even when there is no distortion at the culTent perceptual distortion. 

The EMBSD computes the distortion frame by frame, with the frame length of 320 samples 

using 50% overlap. Each frame is weighted by a Hanning window, and x(n) and y(n) denote 

the nth frame of the original and separated speech, respectively. L(n) and L(n) are the 

normalized loudness vectors of the nth frame of the original and separated speech, respectively. 

D(n) is the loudness difference between Lx  (n) and L(n) and NMTh(n) is the noise masking 

threshold calculated from the original speech without the spreading function. The new cognitive 

model uses the perceptual distortion of the nth frame, MBSD(n) to calculate the EMBSD value. 

In order to compute MBSD(n), an indicator of perceptible distortion of the nth frame (Md  (n, i)) 

is used in the ith critical band. Md(fl, i) is obtained by comparing the ith loudness difference of 

the nth frame (D (n, i)) to the noise masking threshold (NMTh(n,i)) as follows 

Md(n,i) = 0, 	if D(n,i) < NMTh(n,i) 	 (3.55) 

Md(n,i) = 1, 	if D(n,i) > NMTh(n,i) 	 (3.56) 
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MBSD(n) is defined as the sum of the loudness difference which is greater than the noise 

masking threshold and its value can be expressed as [144] 

N 

MBSD(n) = 
	

(Md(n,i)Dxv(n,i))m 	 (3.57) 

where N denotes the number of critical bands and in is the order of proper metric used for 

computing the MBSD(n) using the first 15 loudness components (critical bands) only. 

The final EMBSD value can be expressed as [144] 

Nf 

EMBSD = Nf E Cd(j) 	 (3.58) 

where Nf is the total number of cognizable segments and Cd(j) is the cognizable distortion of 

jth cognizable segment given by 

Cd(j) = max (Pd (j),Qd(j)) 	 (3.59) 

where Pd  (j) is the perceptual distortion of the jth cognizable segment given by 

Pd(j) = max [MBSD(v(j - 1) + 1),... , MBSD(v(j - 1) + v)] 	(3.60) 

where v is the cognizable unit and MBSD(i) is same as defined in (3.57). 

The postmasking distortion (Qd(j))  of thejth cognizable segment is defined as 

Qd(i) = 
ly  

1 
Cd(i - 1) 	 (3.61) 

00 

where 'y is the post masking factor equal to 80. 

The results of performance evaluation based on perceptual domain metric (EMBSD) are sum-

marized in Tables 3.5 and 3.6. From these Tables, it is clearly evident that EMBSD2 re-

duced by 3 dB and 3.5 dB for weak and strong reflection conditions respectively when masked 

FDICA system (using both psychoacoustic models) is considered. Further, it can be seen that 

EMBSD, increased by 3.3 dB and 2.4 dB for weak and strong reflection cases of masked 

FDICA system (using both models) respectively. Thus, the EMBSD obtained by percptually 

motivated preprocessor is more effective in one of the separated signals. 
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Unmasked FDICA 	1 Masked FDICA (Model 1) f Masked FDICA (Model 2) 
Method EMBSD I  IEMBSD2  jJ EMBSD L  EMBSD2 ft EMBSD I  EMBSD2  
SOC 	4.0 	6.9 	7.2 	4.0 	 7.5 	4.1 
CIFC 	4.1 	7.0 	7.2 	4.0 	7.5 	4.1 

Table 3.5: EMBSD (dB)for Unmasked and Masked FDICA Systems (Preprocessing: WR) 

Unmasked FDICA Masked FDICA (Model 1) [Masked FDICA (Model 2) 1 
Method EMBSD I 	EMBSD2 II EMBSD I 	EMBSD2 ft EMBSD I 	EMBSD 
SOC 
CIFC 

5.1 
5.2 

TO 
7.1 

7.1 
7.1 

3.7 
3.7 

ft 	7.9 

ft 	7.9 
3.5 
3.5 

Table 3.6: EMBSD (dB)for Unmasked and Masked FDICA Systems (Preprocessing: SR) 

3.6 Summary 

In this study, we explored the Blind Source Separation problem of convolved speech mixtures 

(when the mixing environment is highly reverberant), in the case of an equal number of sources 

and sensors, proposing a perceptual solution. The key points are: 

A perceptually motivated FDICA system using the complex Infomax algorithm, proposed in 

this chapter, reduces the frequency components that are perceptually irrelevant by exploiting the 

masking properties of the input speech. This system also reduces the computation complexity of 

a similarity measure among spectral envelopes of separated signals for solving the permutation. 

The measured permutation error is 7.40% and 46.70% for the unmasked FDICA system under 

both weak and strong reflection conditions respectively. On the other hand, the permutation 

error is zero for both reflection cases of the masked system (using either model). 

Furthermore, SIR2  improved by 4.8 dB and 9.4 dB using SOC and CIFC methods respectively 

when psychoacoustic model 1 is employed. On the other hand, model 2 improves the SIR2 by 

9 dB and 13.5 dB using SOC and CIFC methods respectively. It can be seen that EMBSD2  

reduced by 3 dB and 3.5 dB for weak and strong reflections respectively when the masked 

FDICA system (using both psychoacoustic models) is considered. Though, the SIR2 and 

the EMBSD2  obtained by the masked FDICA system are better than those of the unmasked 

system, but the informal listening test confirms the poor performance of the FDICA system. 
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Chapter 4 
BSS of Convolutive Audio Mixtures 

with Perceptual Postprocessing Filter 

Postprocessing of separated signals typically aims at reducing the computational complexity of 

the similarity measure for solving the permutation problem of FDICA. The idea of perceptual 

postprocessing is to make the separated signal applicable for more efficient permutation solving 

strategy by removing the irrelevant components from the separated signal spectrum by taking 

advantage of the perceptual masking properties of the human auditory system. 

The main objective of this Chapter is to investigate whether perceptual criteria, which take into 

account the process whereby one auditory stimulus prohibits the detection of another speech 

signal (perceptual masking), can enhance the separation performance of existing BSS system 

when the mixing is noisy and highly reverberant. 

The perceptual FDICA system proposed in this Chapter, is a variation of that already described 

in Chapter 3; the alteration is that the perceptual masking is applied to the separated speech 

signals before computing the similarity measure for solving the permutation problem. Then, 

the coherency property of both the mixing matrix and the spectral envelope correlations corre-

sponding to the perceptually relevant output in several adjacent frequencies is utilized to solve 

the permutation ambiguity problem of the FDICA system. 

The motivation for attempting the approach of a psychoacoustic model based postprocessor is 

that perceptual solution proposed in Chapter 3 (perceptually motivated preprocessor) failed to 

reduce the effect of the room reflections/reverberations. The presence of room reverberations 

force the separated signals to be seen as sensor/observed speech signals and thereby degrading 

the overall separation performance of FDICA system. 

Therefore, we are proposing a perceptually optimal blind speech separation system in this 

Chapter for improving the overall performance of the BSS system while exploiting the per-

ceptual irrelevancy of some of the separated output speech signal spectrum before solving the 

scaling and permutation ambiguity problems of the FDICA system. 
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BSS of Convolutive Audio Mixtures with Perceptual Postprocessing Filter 

4.1 Entire System 

The FDICA system with perceptually motivated postprocessor is explained in the form of a 

block diagram as shown in Fig. 4.1. 

Sensor I 
	

Output I 

Figure 4.1: Block Diagram of FDIcA System with Perceptually Motivated Postprocessor 

First, the STFFT of the multichannel input signal, x(w, t), is obtained with an appropriate 

time shift and window function. Once the STFFT is obtained, the Fourier coefficients at each 

frequency are treated as a complex time series. By doing this, the convolutive mixture problem 

is reduced to complex but several linear instantaneous mixture problems. 

Next, the PCA filtering method is applied to the input speech vector x(w,t) to orthogonalize 

its output y(w,t) and thereby obtaining the PCA filter matrix W(w). 

Then, the complex Infomax algorithm with a feed-forward architecture is applied to the output 

of the PCA filter stage, y(w, t) to obtain the ICA filter matrix U(w). The product of U(w) and 

W(w) can be referred to as the separation filter matrix B(w). 

After source separation by ICA, a perceptually motivated postprocessor is used in order to 

determine the masking threshold for each segment of the separated speech spectrum and thereby 

removing the perceptually irrelevant frequency components from the separated spectrum. 

After obtaining B(w), the permutation and scaling problems are solved by processing only the 

perceptually relevant frequency components of the separation filter output z f (w, t) with the 

permutation matrix P(w) and the scaling matrix j—Bffi  

Finally, the filter matrices are transformed into the time domain, and the input speech signal is 

processed with the reconstructed time-domain filters. 
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4.2 Complex Infomax Algorithm 

As described in Chapter 3, the complex Infomax algorithm with a feed-forward architecture is 

applied to the output of the PCA filter to obtain the ICA filter matrix U(w) [27, 64, 85]. 

In the ICA stage, the input signal (the output of PCA filter) y(w, t) is processed with the ICA 

filter matrix U(w) as 

z(w,t) =U(w)y(w,t) 	 (4.1) 

	

4.3 	Implementation of Postprocessor 

As explained in Chapter 3, the perceptual postprocessing filter implemented in this work was 

designed around the human auditory system. Here also, two independent masking models 

were chosen for implementing the postprocessor, namely MPEG-i psychoacoustic model 1 and 

MPEG-i psychoacoustic model 2 [126, 127, 132, 133].  After computing the masking threshold 

for each separated speech signal frame, it is compared with the power spectrum in the corre-

sponding frame to produce a perceptual binary mask [134, 135]. 

In perceptual audio coding, thresholding sets the quanization level, here we set a threshold 

for computing the similarity measure according to their psychoacoustic relevance and thereby 

reducing the computational complexity of solving the permutation problem. 

	

4.4 	Method of Solving Scaling and Permutation 

4.4.1 Scaling Problem 

As explained earlier, the scaling problem can be solved by filtering the perceptually relevant 

output of the separation filter z1 (w, t) by the inverse of B(w) separately [87]. 

The nth component of zf(w,t),zf(w,t) is filtered by B 1(w) separately as 

Zf(W,t) = B 1(w)[0,•• ,O,zf(w,t),O,... AT 	 (4.2) 

Eq. (4.2) is equivalent to 

— B' (w)z1(w,t) 	 (4.3) - 
ffi,n 
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where B'(w) denotes the (fii., n)th element of B — ' (w). The symbol ñi denotes an arbitrary 

microphone number. Eq. (4.3) can be written in the matrix-vector notation as 

	

= B 1(w)z(wt) 	 (4.4) 

4.4.2 Permutation Problem 

As described in Chapter 3, the permutation problem can be solved by minimizing the sum of 

the angles between the location vectors in the adjacent frequencies and thereby computing the 

permutation matrix P(w). For solving the permutation problem, a method utlizing both the co-

herency of mixing matrices [9, 10] and the spectral envelope correlations 87J corresponding to 

perceptually relevant output at several adjacent frequencies has been considered. This method 

is denoted as the combined inter frequency correlation (CIFC). 

The cross correlation between output spectral envelopes at adjacent frequencies is assumed to 

be equal to zero when any one of the separated output signals under the influence of perceptual 

masking is zero. This is essential to avoid the rank deficiency of the permutation matrix. 

4.5 	Final Filtering 

After solving the permutation and scaling ambiguities, the final reconstructed filtering matrix 

in the frequency domain can be obtained as 

	

F(w) = P(w)fl 1(w)B(w). 	 (4.5) 

Thus, the reconstructed time domain filters are obtained as the inverse Fourier transform of 

F(w) as 

fm,m(i) = IFFT[Fn,m (w)}w(i) 	 (4.6) 

where IFFT[.] operator denotes the inverse FFT. The symbols Fn,m (w) and fn,m(i) denote 

the (n,rn)th element of the frequency domain filter F(w) and its time domain correspondence, 

respectively. The symbol w(i) denotes the windowing function. 
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4.6 Experimental Results 

4.6.1 Synthetic Room Mixing Scenario 

In this experiment, we created a synthetic room mixing of two speech sources (4 s at 16 kHz) 

and we used Asano's [1391 conference room (5.9 mx 8.7 mx4.1 m) with a reverberation time of 

0.5 sec to simulate highly reverberant room conditions for both weak and strong reflection cases 

of room filters as shown in Fig. 3.4 of Chapter 3. We applied the complex Infomax algorithm 

for both reflection cases of mixing environment, using the parameters of the proposed BSS 

system that are summarized in Table 4.1. 

Sampling Frequency 16 kHz 
STFFT Frame Length 512 
Shift of STFFT 16 
Window Function Hamming 
Learning Rate, i, 0.0001 
Gain for Score Function, G 100 
Normalized Sound Pressure Level, SPL 96 dB 
Number of Microphones, M 2 
Number of Sources, D 2 
Reference Range in Permutation, K 5 

Table 4.1: Parameters of the Proposed BSS System (Perceptual Postprocessing) 

Original speech sources, observed signals and the separated signals are shown in Fig. 4.2. Fur- 

ther, each of the original source is divided into eight segments (Al, Bi, 	,Hl in the case 

of the first source and A2, B2, 	, H2 in the case of the second source) for simplifying the 

comparitive analysis of each category of the above mentioned speech signals. These signal seg-

ments will help us to compare each of the separated speech signals as to whether they resemble 

the shape of the original speech sources or the observed signals. 

From Fig. 4.2(c), it is evident that the segments i.e., Al, Cl, Dl, Fl, Gi and Hi; A2, B2, C2, 

D2, E2 and H2 of the first and the second separated signals obtained by the unmasked FDICA 

system, respectively are similar to the original sources when the weak early reflection case is 

considered. The remaining segments i.e., Bi, El, F2 and G2 are remain mixed. However, these 

separated signals have some crosstalk whenever the original sources have zero or minmium 

signal strength (see Fig. 4.2(a)). On the other hand, the separated signals obtained by the 

unmasked system (shown in Fig. 4.2(d)) are similar to the observed signals (shown in Fig. 

4.2(b)) when the strong reflection case is considered. 
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From Figs. 4.2(e) and 4.2(g), it is also evident that the separated speech signals in one of the 

channels (second output signal) obtained by the masked FDICA system (using either model) is 

slightly different from the original source (with reference to most of the segments namely A2, 

B2, C2, D2, F2 and H2) when the weak reflection case is considered. However, the separated 

speech signal is a permuted (positions are changed due to the inherent permutation ambiguity 

problem of FDICA) version of the original speech source. 

From Fig. 4.2(f), it can be seen that the second separated signal obtained by the masked FDICA 

system (using psychoacoustic model 1) is entirely different from the original source when the 

strong reflection case is considered. However, there is no change in the position of the separated 

signal (not permuted) and further, the segments A2, G2 and H2 of the separated signal are 

slightly different from those of the original signal. The remaining segments i.e., B2, C2, D2, 

E2 and F2 are still appeared as a mixed signal due to the presence of strong early reflections in 

the separated output. On the other hand, the first separated output signal is almost identical to 

the observed speech signal for both early reflection cases. 

From Fig. 4.2(h), it is observed that the second separated signal obtained by the masked FDICA 

system (using psychoacoustic model 2) is entirely different from the original source (with ref-

erence to most of the segments i.e., A2, B2,... , H2) when the strong reflection case is consid-

ered. Though these segments A2, B2,.. , H2 of the separated signal are slightly better than 

those obtained by the psychoacoustic model 1 under similar experimental conditions, still there 

is heavy crosstalk due to the strong reflective environment. However, the separated signal in 

the first channel is similar to the observed signal. 

The spectrograms of original speech sources, observed speech signals and the separated speech 

signals are shown in Fig. 4.3. Further, the speech signal frequency range (with a bandwidth of 5 

kHz) is divided into two frequency bands namely F1  (0-3 kHz) and F2 (3-5 kHz) to simplify the 

comparative analysis of the above mentioned spectrograms. From Figs. 4.3(e), 4.3(f), 4.3(g) 

and 4.3(h), it is clearly observed that some of the higher frequency components (> 3 kHz) of 

the second separated signal spectrum are masked when the perceptual postprocessor (using both 

psychoacoustic models) is used for both weak and strong early reflections of FDICA system. 

On the other hand, the first separated speech signal spectrum is not masked by the perceptual 

postprocessing filter. Based on the above discussion, we conclude that a perceptually motivated 

postprocessor has a very little influence on the overall performance of FDICA system. 
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Source 1 

0 	1.2 	2.4 3.6 
Source 2 : 
Time (sec) 

(a) Original Speech Signals 
Sep.l (Unmasked: CIFC: WA) 

Al B 	Ci 	Di El 	Fl 	Gi Hi 

$- T'- 

Sep.2 (Unmasked: CIFC: WA) 
H2 A• B2C 	D2 E2 F2 	G2 

'" " 	IAL 

' : 
Time (sec) 

(c) Unmasked (Weak Reflction) 
Sep.i (Model 1: CIFC: WR) 

B C202E2 F2 G2 H2 , 
Sep.2 (Model 1: CIFC: WR) 

Al 	Bi' Ci Di El' Fl 	Hi 

Time (sec) 

(e) Masked (Model I :Weak Reflection) 
Sep.l (Model 2: CIFC: WA) 

1 	B2 C2 D2  E2 F2 G2 	'H2 

'' 
Sep.2 (Model 2:CIFC: WA) 

1 Al 	Bi Cl 1 El Fl 	1 Hi 
IL 

TT 

Time (sec) 

(g) Masked (Model 2: Weak Refection)  

Observed 1 (SA) 

1 12 24 	36 
Observed 2 (SA) 

r, WIWI  1 
	P2 

1.2 2.4 36 
Time (sec) 

(b) Observed Speech Signals 
Sep.i (Unmasked: CIFC: SA) 

A 01  1Dli fl fl 

0-4  r- 	 -W 

0 	1.2 	2.4 	3.6 
Sep.2,  (Unmasked: CIFC: SR) 

1 A2B 2D2 2F2 	2 H2 

Time (sec) 
3.6 

(d) Unmasked (Strong Refection) 
Sep.i (Model 1: CIFC: SA) 

1 Al Bi ci Dl El Fl Gl Hl 

Trr r øS 
Se2 (Model i:CIFC: SR) 

0.5 A2 
B2 

3.6 
Time (sec) 

(f) Masked (Model l:Strong Refection) 
Sep.i (Model 2: CIFC: SA) 

Al 81 Ci Di El Fl Gi Hi 

I ' 
Sep.2 (Model 2: CIFC: SA) 

A2, B2 C2 D2 E2 ' F2 G2 'H2 

0 

0 	1.2 2.4 	3.6 Time(sec) 

(h) Masked (Model 2:Strong Refection) 

Figure 4.2: Original Sources, Observed Signals and Separated Signals for Unmasked and 
Masked Systems (Synthetic Room Mixing Scenario: Perceptual Postprocessing) 
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Figure 4.3: Specgrams of Sources, Sensors and Separated Signals for Unmasked and Masked 
FDICA Systems (Synthetic Room Mixing Scenario: Perceptual Postprocessing) 
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From Fig. 4.4, it can be seen that the measured cost function F(P, k) with k = 5 shows 

a smaller value at all frequencies except in the very few frequencies for both unmasked and 

masked system (with psychoacoustic model 1) under both weak and strong reflection cases. 

However, there is a slight improvement in the measured value of the cost function for most of 

the frequencies in the range over 2 kHz when psychoacoustic model 2 is used. 

The confidence measure C(k) depicted in Fig. 4.5 has a smaller value for most of the frequen-

cies when both the unmasked and the masked FDICA systems (using both perceptual models) 

are considered for both cases of early reflections. 

Fig. 4.6 shows the permutation error for K = 5. It is observed that the permutation error is 

zero for all frequencies except for a very few frequencies for the weak reflection case of the 

unmasked FDICA system. The average permutation error is found to be 7%. 

On the other hand, the permutation error is unity for the frequency range of 1 to 4 kHz and 

zero in the range of 4 to 7.5 kHz for the strong reflection case of the unmasked FDICA system. 

Therefore, the average permutation error is measured at 47%. 

It is clearly evident that the permutation error is unity for most of the frequencies in the range 

of 4 to 6 kHz and zero for most of the frequencies in the range of 1 to 3 kHz when the FDICA 

system with the psychoacoustic model 1 based postprocessor is used for the weak reflection 

case. The average permutation error is found to be 42%. 

Further, the permutation error is zero for most of the frequencies in the range of 1 to 4 kHz 

and unity for the frequency range of 5 to 6 kHz when the masked FDICA system with the 

psychoacoustic model 1 based postprocessor is used for the strong reflection case. Therefore, 

the average value of the permutation error is measured at 49%. 

It is clearly observed that the permutation error is unity for very few frequencies in the range of 1 

to 4 kHz and zero in the range of 4 to 7.5 kHz when the FDICA system with the psychoacoustic 

model 2 based postprocessor is considered for both early reflection cases. The measured aver-

age permutation error is 37% and 29% for weak and strong reflection cases respectively when 

the FDICA system with the model 2 based postprocessor is used. 

Based on the results of synthetic room mixing, we conclude that the perceptual postprocessing 

filter using both psychoacoustic models can neither improve the separation performance nor 

solve the permutation problem. Hence, we did not consider the real room mixing scenario. 
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t-requency 1KHZ] 

(f) Masked (Model 2: Strong Retèction) 

Figure 4.4: Measured Cost Function for Unmasked and Masked FDJCA Systems (Synthetic 
Room Mixing Scenario: Perceptual Postprocessing) 
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Figure 4.5: Confidence Measure for Unmasked and Masked FD!CA Systems (Synthetic Room 
Mixing Scenario: Perceptual Postprocessing) 
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Figure 4.6: Measured Value of Permutation Error for Unmasked and Masked FDJCA Systems 
(Synthetic Room Mixing Scenario: Perceptual Postpmcessing) 
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4.7 Performance Evaluation 

As explained in Chapter 3, two important objective speech quality measures, namely time-

domain and perceptual domain measures, were considered for evaluating the performance of 

the proposed perceptually motivated FDICA system. Time-domain performance is evaluated 

by signal-to-interference ratio (SIR) [42] and the perceptual domain performance is evaluated 

by Enhanced Modified Bark Spectral Distortion (EMBSD) measures [144]. 

4.7.1 Time-Domain Objective Quality Measure 

The results of performance evaluation based on the time-domain metric (SIR) are summarized 

in Tables 4.2 and 4.3. 

Unmasked FDICA Masked FDICA (Modell) Masked FDICA (Model 2) 
Method I SIR, 	SIR2  SIR, j 	SIR2  SIR1 	SIR2  

SOC 
CIFC 

10.30 
10.10 

10.54 
10.52 

-1.83 
-1.87 

-3.46 
-2.69 

-1.17 
-1.31 

-3.69 
-2.87 

Table 4.2: SIR (dB)for Unmasked and Masked FDICA Systems (Postprocessing: WR) 

Unmasked FDICA Masked FDICA (Model 1) Masked FDICA (Model 2) 
Method SIR1 	SIR2  SIR1 	SIR2 	I SIR] 	SIR2  

SOC 
CIFC 

9.91 
1.88 

6.10 
1.57 

-7.15 
-7.37 

-8.68 
-8.96 

[ 	-8.16 
-7.81 

-9.46 
-9.80 

Table 4.3: SIR (dB)for Unmasked and Masked FDICA Systems (Postprocessing: SR) 

From Tables 4.2 and 4.3, it is clearly evident that the measured values of SIR for the masked 

FDICA system (using both psychoacoustic models) are very poor when compared to that of the 

unmasked FDICA system for both early reflection cases of the mixing environment. 

Based on the results of the time-domain performance, we conclude that neither psychoacoustic 

model can improve the values of SIR, and SIR2 for either reflection case of the masked 

FDICA system due to the presence of reverberations in the separated signals. 

Thus, the proposed FDICA system with a perceptually motivated postprocessing filter is highly 

ineffective in enhancing the performance of separated output signals that are perceptible to the 

human listener when the mixing is noisy and highly reverberant. 
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4.7.2 	Perceptual Domain Objective Quality Measure 

Performance evaluation results based on the perceptual domain metric (EMBSD) are summa-

rized in Tables 4.4 and 4.5. 

Unmasked FDICA Masked FDICA (Model 1) Masked FDICA (Model 2) 
Method EMBSDI I EMBSD2  EMBSD1 	EMBSD2  EMBSDL  EMBSD2  

Soc 
CIFC 

4.0 
4.1 

6.9 
7.0 

8.3 
8.5 

8.2 
8.1 

7.3 
7.4 

7.1 
7.2 

Table 4.4: EMBSD (dB)for Unmasked and Masked Systems (Postprocessing: WR) 

Unmasked FDICA Masked FDICA (Model 1) Masked FDICA (Model 2) 
Method EMBSD1 I  EMBSD2  IIEMBSD, I EMBSD2 	11 EMBSD, EMBSD2  

SOC 	J 
CIFC 	jj 

5.1 
5.2 

7.0 
7.1 

8.4 
8.6 

8.8 
8.7 

7.6 
7.5 

7.8 
7.9 

Table 4.5: EMBSD (dB) for Unmasked and Masked Systems (Postprocessing: SR) 

From Table 4.4, it is clearly evident that EMBSD1  and EMBSD2  increased by 4.4 dB and 

1.2 dB respectively when the masked FDICA system (using psychoacoustic model 1) is con-

sidered for the weak reflection case. On the other hand, the psychoacoustic model 2 increases 

EMBSD, and EMBSD2 by 3.3 dB and 0.2 dB respectively. 

From Table 4.5, it can be seen that EMBSD, and EMBSD2 increased by 3.4 dB and 1.7 dB 

respectively when the masked FDICA system (using psychoacoustic model 1) is considered for 

the strong reflection case. On the other hand, the psychoacoustic model 2 increases EMBSD1  

and EMBSD2 by 2.4 dB and 0.8 dB respectively. 

Thus, the EMBSD obtained by the proposed FDICA system (with a perceptual postproces-

sor using both models) are poor when compared to that of the unmasked FDICA system for 

both reflection cases. Based on these results of the perceptual-domain performance evalua-

tion, we conclude that neither psychoacoustic model can improve the values of EMBSD, and 

EMBSD2 for both reflection cases of the masked FDICA system. This is due to the presence 

of room reverberations in the separated output signals obtained by ICA. 

Hence, the proposed FDICA system with a perceptually motivated postprocessing filter is 

highly ineffective in enhancing the performance of separated output signals that are percep-

tible to the human listener when the mixing is noisy and highly reverberant. 
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4.8 Summary 

In this study, we explored the Blind Source Separation problem of convolved speech mixtures 

(when the mixing environment is noisy and highly reverberant), in the case of an equal number 

of sources and sensors, proposing a perceptual solution. The key points are: 

The FDICA system with a perceptually motivated postprocessor, proposed in this chapter, re-

duces the frequency components that are perceptually irrelevant by exploiting the masking 

properties of separated speech signals and thereby reducing the computation complexity of 

a similarity measure among spectral envelopes of separated speech signals for solving the per-

mutation ambiguity problem. 

Further, the measured permutation error is 7% and 47% for the unmasked FDICA system under 

both weak and strong reflection conditions respectively. On the other hand, the permutation 

error is 42% and 49% for the FDICA system with the psychoacoustic model 1 under both weak 

and strong early reflection cases respectively. 

The FDICA system with the psychoacoustic model 2 gives the permutation error of 37% and 

29% for both weak and strong reflections respectively. Though, there is a net reduction of 

18% in the measured average permutation error for the strong reflection case, but the informal 

listening test confirms the poor performance of the proposed perceptual solution for solving the 

permutation ambiguity problem of FDICA. 

Thus, the measured values of the permutation error, SIR and EMBSD obtained by proposed 

FDICA system (with perceptual postprocessor using both psychoacoustic models) are inferior 

when compared to that of unmasked FDICA system for both reflection cases. 

Hence, we conclude that the proposed FDICA scheme with a perceptually motivated postpro-

cessing filter can neither solve the permutation problem nor enhance the performance of a BSS 

system due to the presence of room reflections. Therefore, it is strongly felt that the removal 

of room reflections prior to the application of the ICA algorithm might help the overall perfor-

mance of a BSS system while solving the permutation ambiguity problem. 
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Chapter 5 
A Combined Approach of Perceptual 

Preprocessing and Subspace Filtering 
for Blind Separation of Audio Signals 

In this Chapter, a combined approach of perceptual preprocessing and subspace filtering is pro-

posed to enhance the performance of blind separation of speech signals in a noisy and highly re-

verberant environment. In this combined approach, two important signal processing techniques, 

namely perceptual auditory masking and subspace filtering, are utilised as preprocessors of the 

complex FDICA system. 

The main objective of this Chapter is to exploit the perceptual irrelevancy of some of the input 

speech spectrum using the perceptual masking techniques before utilising the subspace method 

as a preprocessor of FDICA which reduces the effect of room reflections in advance and the 

remaining direct sounds then being separated by FDICA. This objective can be achieved by 

taking both the advantages of the properties of the human auditory system and the subspace 

method for realizing the more efficient FDICA system. 

The motivation for attempting the combined approach of a psychoacoustic model based pre-

processor and the subspace method is that the perceptual solutions proposed in Chapter 3 (per-

ceptually motivated preprocessor) and Chapter 4 (perceptually motivated postprocessor) failed 

to reduce the effect of room reflections/reverberations. The presence of room reflections force 

the separated signals to be seen as sensor/observed speech signals and thereby degrading the 

separation performance of FDICA system. 

Therefore, we are proposing a perceptually motivated subspace filtering method in this Chapter 

for improving the separation performance of FDICA system while exploiting both perceptual 

irrelevancy of some of the observed input speech signal spectrum and the properties of the 

subspace filtering method for suppressing the perceptually relevant room reflections in advance 

before applying the complex Infomax algorithm. 
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5.1 Entire System 

The entire system is described with the help of a block diagram as shown in Fig. 5.1. 

Sensor I [FFTBased 	1Removal of I 	 .f1FFT Based l Separated I 

	

Filterbank J1Masked Frer1 	 Filterbank I 

Psychoacoustic1J 
PEGj Model(M FDICA 

I Complex 

with 

I I Solving for 

Permutation 

and 
Subspace 

Filtering 
Scaling 

Ambiguities Psychoacoustic 
Model (MPEG) Method I 

I 	1 FFT Based 	Removal of 	 IFFT Basedi 

	

Sensor 8 Filterbank 	Masked Fre  	Filterbank J Separated 

Figure 5.1: Perceptually Motivated FD!A System with the Subspace Filtering Method 

First, the STFFT of the multichannel input speech signal, x(w, t), is obtained with an appropri-

ate time shift and window function. Once STFFT is obtained, the Fourier coefficients at each 

frequency are treated as a complex time series. By doing this, the convolutive mixture problem 

is reduced to complex but several linear instantaneous mixture problems. 

Next, the ISO/MPEG-i psychoacoustic model is used as a preprocessor in order to estimate the 

auditory masking threshold for each segment of speech and thereby suppressing the perceptu-

ally irrelevant frequencies of the input speech signal. 

The subspace method is then applied to the perceptually relevant spectral components of the 

input speech signal. In this stage, perceptually relevant room reflections and ambient noise are 

further reduced in advance of the application of ICA. By reducing the perceptually relevant 

room reflections, the output node of the subspace filter network is reduced from M to D. Thus, 

the subspace filtering method has the effect of both orthogonalizing the output and reducing the 

room reflections that are perceptually relevant. 

Then, the complex Infomax algorithm with feed-forward architecture is applied to the output of 

the subspace filter stage to obtain the separation filter. After obtaining the separation filter, the 

permutation and scaling ambiguity problem is solved by processing the output of the separation 

filter with the permutation and the scaling matrices. 

Finally, the filter matrices obtained in the above stages are transformed into the time domain 

and the input speech signal is processed with the time-domain filter network. 
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5.2 Perceptual Preprocessor 

Here also, two independent masking models namely ISO/MPEG-i psychoacoustic model 1 and 

psychoacoustic model 2 [126, 127, 132, 133] have been considered for computing the masking 

threshold for each frame of the input speech signal. After computing the masking threshold for 

each input speech signal frame, it is compared with the power spectrum in the corresponding 

frame to produce a perceptual binary mask [134, 135]. In perceptual audio coding, thresholding 

sets the quanization level, here we set a threshold for further processing by subspace method 

and FDICA according to the psychoacoustic relevance and thereby reducing the computational 

complexity of solving the permutation ambiguity problem. 

5.3 Perceptually Motivated Subspace Method 

The subspace filtering method (works as a self-organizing beamformer focusing on the target 

sources and does not require any previous knowledge of the sensor array or sound field) can be 

utilized as a preprocessor of FDICA which reduces the effect of room reflections in advance, the 

remaining direct sounds then being separated by FDICA. In the subspace method, perceptually 

relevant components of room reflections are separated from direct components in the eigenvalue 

domain of the spatial correlation matrix based on the spatial extent of the speech signals. 

Then, the eigenvectors corresponding to the eigenvalues of the direct components are used as a 

filter which selects the subspace in which the direct components lie and discards the subspace 

filled with the energy of reflections. Further, it is well known that the subspace method is 

a special case of principal component analysis (PCA) with M >> D, where M and D are the 

number of nodes (channels) of the input and the output of PCA, respectively [148, 149]. 

In the first instance, we cannot directly apply the subspace method to the perceptually processed 

input speech. The reason is very simple. Whenever the perceptually masked input speech 

x1 (w, 1) in one of the channels contains no values, the subspace filter matrix W(w) is singular, 

resulting in a rank deficiency problem. This is mainly due to very low eigenvalues of spatial 

correlation matrix of perceptually masked input speech spectrum. Without loss of generality, 

we have assumed an identity matrix of order D for each pair of the input nodes as the rank 

of the subspace filter matrix W(w) to avoid this rank deficiency problem while retaining the 

whitening properties of the speech signal at the output of the subspace filter. 
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5.3.1 Spatial Correlation Matrix 

The spatial correlation matrix is defined as 

R(w) = E[x1(w,t)x7(w,t)]. 	 (5.1) 

Where xf(w,t) = A(w)s(w,t) th + n(w,t)th. The first term, A(w)s(w,) th, expresses 

the directional components of xj(w,t). On the other hand, the second term, n(w,t)4th, is a 

mixture of less-directional components of x1 (w, i), which includes the room reflections and an 

ambient noise. The symbol 4'th  denotes the perceptual masking threshold matrix. 

Since the subspace method is performed for each frequency bin independently, the frequency 

index w is omitted here for the sake of simplicity in notation. Assuming that sources s(t) and 

noise n(t) are uncorrelated, R can be expressed as 

R = (AQAH + K). 	 (5.2) 

Where Q = E[(t)SI(t)] and K = E{n(t)n'(t)} are cross-spectrum matrix of s(t) and the 

correlation matrix of n(i) respectively and <D is the perceptual gain given by 

When n(l) includes the room reflections of s(t), s(t) and n(t) are highly correlated and the 

above assumption does not hold. However, when the time interval between the direct sound 

and the reflection exceeds the short window length of STFFT, this assumption holds. 

5.3.2 Properties of the Perceptually Motivated Subspace Method 

By taking the generalized eigenvalue decomposition of R as 

R = KEAE 	 (5.3) 

we obtain the matrices E = [ei,.•. , e] and A = diag(A1,... AM),  where em  and  Am  are 

the eigenvector and the eigenvalue, respectively. Since K cannot be observed separately, we 

assumed K = I to employ the standard eigenvalue decomposition, R = EAE 1 '. 

The generalized eigenvalue decomposition whitens the non-directional components of x1 (fl 
Even when K is unknown, if the correlation is small, as in the case of room reverberation, the 

standard eigenvalue decomposition works considerably well in many cases. 
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Therefore, based on the well defined structure of R and the assumptions described previously, 

the eigenvalues and eigenvectors of R have the following properties: 

The energy of D directional signals s(t) is concentrated on D dominant eigenvalues. 

The energy of n(t) is equally spread over all eigenvalues. 

span (A) = span (E,), where E3  = [el, 	, CD] denotes the eigenvectors corresponding 

to the D dominant eigenvalues. 

span (A) = span(E)J-, where E = [eD+1, 	,eM] denotes the eigenvectors corre- 

sponding to the other M - D eigenvalues. 

Where span(A) denotes the space spanned by the column vectors of A = [ai,... , ajj], 

i.e., span (A) = span (ai ,... ,aD ) and span(E) - denotes the orthogonal complement of 

span (E,) and the subspaces namely span (E,) and span (E,,) are referred to as the signal sub-

space and the noise subspace, respectively. 

The relation of eigenvectors that reflects properties 3 and 4 is depicted in Fig. 5.2 (M = 3 and 

D = 2 is assumed). 

Figure 5.2: The Relation of Eigenvectors of a Perceptually Motivated Subspace Method 
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5.3.3 Perceptually Motivated Subspace Filter 

In the subspace method, the input signal x1 (t) is processed as 

y(t) = Wxf(t) = W[Asf(t) + n1 (t)] = 'W[ASf(t) + n, (t) + n,, (t)] 	(5.4) 

where the subspace filter is defined as 

	

W = A— 1/2 	 (5.5) 

-1/2 
i where A3  = diag(A1,•.. ,AD). The term A3 	s a normalization factor, the same as that used 

in PCA. The term E' plays an important role in the perceptually motivated subspace filter that 

reduces the energy of nf(t) in the noise subspace as per the following analysis. 

According to properties 1, 2 and 3, we have the following expressions: 

Asf(t) 	 (5,6) 

nj(t) = 	1 fij( ei th 	 (5.7) 

where aj(t) is the projection coefficient of Asj(t) onto the basis vector (eigenvector) ei and 

i3(t) is a projection coefficient of n1 (t) onto the basis vector e. Equations (5.6) and (5.7) can 

be written in a matrix vector notation as 

	

ASf(t) = E8a(t)th 	 (5.8) 

n1(i) = E3/33(0 	+ Efl/3(t)th 	 (5.9) 

where projection coefficient vectors of As1(t), n, (t) and n,, (t) are a(t) = [ai(t),.. , 

/33(t) = [01 (t),... , /3 (t)]T and /3 (t) = [ D+1 (t), 	13M (t)]T, respectively. From (5.9), 

it is observed that n, (t) e span (E,) and n,,, (t) E span (E,,). 

Using the properties of the eigenvectors, EVES  = I and E'E = 0, the subspace filter output 

has two components only, i.e., 'WAs1(t) = A'/2a(t)jh and Wn3 (t) = A2/33(t)h. 

Thus, by applying the subspace filter, the components in the subspaces As1(t) and n5 (t) are 

preserved while the components in the subspace n (t) are suppressed. When M >> D, it is 

expected that a large portion of n(t) can be cancelled by this subspace filter. 
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5.4 Complex Infomax Algorithm 

After suppressing the perceptually relevant room reflections by means of the subspace filter, 

the complex Infomax algorithm is then applied to the remaining directional components of the 

subspace filter output to obtain the ICA filter matrix U(w) [27, 64, 85]. 

For the sake of convenience, the product of W(w) and U(w) is defined as the separation filter 

matrix B(w) given by 

	

B(w) = U(w)W(w) 	 (5.10) 

In the ICA stage, the input signal (the output of the subspace filter) y(w, 1) is processed with 

the filter matrix U(w) as 

	

z(w,t) = U(w)y(w,i) 	 (5.11) 

5.5 	Method of Solving Scaling and Permutation 

The main objective of this section is to reduce the computational complexity of a similarity 

measure for solving the permutation problem of FDICA. The procedure starts with the solution 

for the scaling problem which is considered in the following subsection. 

For solving the permutation ambiguity problem, a method utlizing both the coherency of the 

mixing matrices and the correlation between spectral envelopes of the separated speech signals 

at several adjacent frequencies has been considered [10, 87]. 

5.5.1 Scaling Problem 

As explained earlier, the scaling problem can be solved by filtering individual outputs of the 

separation filter by the inverse of B(w) separately. In this analysis, the pseudoinverse of B(w), 

denoted as B+(w),  is used instead of the inverse of B(w) since B(w) is not square matrix due 

to the employment of the subspace method. 

The pseudoinverse provides the least squares solution to a system of linear equations which 

are of overdetermined type [137,138]. Furthermore, the pseudoinverse matrix B+(w)  can be 

expressed as 

B(w) = (nH(w)B(w)lBH(w) 	 (5.12) 
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The nth component of z(w, t), Z'  (w, t) is filtered by B+ (w) separately as [87] 

(w, t) =B(w)[0,... ,0,z(w,fl,0,... ,0]T 	 (5.13) 

Eq. (5.13) is equivalent to 	= Bz(w,t). Where 	denotes the (,n)th 

element of B+().  The symbol ffi denotes an arbitrary microphone number. Further, this can 

be written in the matrix-vector notation as 

(w,t) =Bz(w,t) 	 (5.14) 

where (w,t) = [i,... iffi,D 	is 	x Ddiagonal matrix given by 

= diag[B1,... , 	 (5.15) 

5.5.2 Permutation Problem 

As explained in Chapter 3, the permutation problem can be solved by minimizing the sum 

of the angles between the location vectors in the adjacent frequencies using the combined inter 

frequency correlation (CIFC) method. In this analysis also, B+ (w) is used instead of the inverse 

of B(w). Accordingly, an estimate of the mixing matrix A(w) can be obtained from B+(w)  to 

compute the permutation matrix P(w) [10, 87]. 

5.6 	Final Filtering 

After solving the permutation and scaling ambiguities, the final reconstructed filtering matrix 

in the frequency domain can be obtained as 

F(w) = P(w)B(w)B(w). 	 (5.16) 

Thus, the reconstructed time domain filters are obtained as the inverse Fourier transform of 

F(w) as 

fm,m(i) = IFFT[Fn,m(w)]w(i). 	 (5.17) 
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5.7 Experimental Results 

5.7.1 Synthetic Room Mixing Scenario 

In this experiment, we created a synthetic room mixing environment with a reverberation time 

of 0.5 sec for both weak and strong reflection cases. The configuration of the sound sources 

(loudspeakers) and the microphones is shown in Fig. 5.3. A microphone array with M = 8, was 

used [139]. The microphone array was circular in shape with a diameter of 0.5 m. The impulse 

responses from the sound sources to the microphones were used to convolve with the source 

signal to generate the observed input speech signal. We applied the complex Infomax algorithm 

for both early reflection cases, using the experimental parameters of the proposed BSS system 

that are summarized in Table 5.1. 

Sampling Frequency 16 kHz 
STFFT Frame Length 512 
Shift of STFFT 16 
Window Function Hamming 
Learning Rate, r, 0.0001 
Gain for Score Function, C 100 
Normalized Sound Pressure Level, SPL 96 dB 
Number of Microphones, M 8 
Number of Sources, D 2 
Reference Range in Permutation, K 5 

Table 5.1: Proposed BSS System Parameters (Perceptually Motivated Subspace Method) 

The typical room filters used in this experiment for both weak and strong early reflection cases 

are shown in Fig. 5.4(a) and Fig. 5.4(b) respectively. Using these room filters, we have obtained 

the observed speech signals (using microphone array) as shown in Fig. 5.5. 

Original speech sources, a pair of sensor signals and the separated speech signals are shown in 

Fig. 5.6. Further, each of the original source is divided into eight segments (Al, Bi,... ,Hl in 

the case of the first source and A2, B2,... , H2 in the case of the second source) for simplifying 

the comparitive analysis of each category of the above mentioned speech signals. These signal 

segments will help us to compare each of the separated (reconstructed) signals as to whether 

they resemble the shape of the original sources or the observed signals. 

From Figs. 5.6(c) and 5.6(d), it is observed that the separated speech signals (with reference 

to the segments namely A1,C1, Dl, Fl, Gi and Hi; A2, C2, E2, G2 and 1-12) obtained by 
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5.9m 

Figure 5.3: Configuration of Microphone Array and Sound Sources (Subspace Method 
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Figure 5.4: Room Filters for Weak and Strong Reflection Cases (Synthetic Room) 
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Figure 5.5: Observed Signals Using Circular Microphone Array (Synthetic Room) 

118 



A Combined Approach of Perceptual Preprocessing and Subspace Filtering for Blind 

Separation of Audio Signals 

the unmasked FDICA system are slightly different from the original speech sources when both 

weak and strong early reflection cases are considered. However, these separated speech signals 

have some crosstalk whenever the original speech sources have zero or minmium signal strength 

(see Fig. 5.6(a)) and also have some overlapping segments i.e., B2, C2, E2 and F2. 

From Fig. 5.6(e), it is also evident that the separated speech signals in one of the channels 

(second output signal) obtained by the masked FDICA system (using the psychoacoustic model 

1) is entirely different from the observed speech signal when the weak early reflection case is 

considered. However, the segments B2, D2, G2 and H2 of the separated speech signal are 

slightly different from those of the original speech signal. The remaining segments i.e., A2, 

C2, E2 and F2 still appear as a mixed signal. 

From Fig. 5.6(f), it can be seen that the second separated signal obtained by the masked FDICA 

system (using model 1) is slightly different from the original speech signal when the strong 

reflection case is considered. However, the segments A2, B2, D2, E2 and F2 of the separated 

speech signal are similar to those of the original signal. The remaining segments i.e., C2, G2 

and H2 still appear as a mixed signal. However, the first separated speech signal is similar to 

the observed speech signal (Fig. 5.6(b)) for both reflection cases. 

From Figs. 5.6(g) and 5.6(h), it is also evident that the separated signals in one of the channels 

(second output in this case) obtained by the masked FDICA system (using psychoacoustic 

model 2) is similar to the original speech source (with reference to most of the signal segments 

i.e., A2, B2,... , H2) when the strong reflection case is considered. On the other hand, the 

separated signal obtained by the weak reflection case still appears as the observed speech signal. 

However, the separated speech signal in the first channel is similar to the observed signal as 

shown in Fig. 5.6(b) for both reflection cases. 

The spectrograms of original speech sources, observed speech signals and the separated speech 

signals are shown in Fig. 5.7. Further, the speech signal frequency range (with a bandwidth of 

5 kHz) is divided into two frequency bands namely F1  (0-3 kHz) and F2  (3-5 kHz) to simplify 

the comparative analysis of the above mentioned spectrograms. From Figs. 5.7(e) and 5.7(f), 

it is clearly observed that most of the higher frequencies (> 3 kHz) of the second separated 

output spectrum are masked when the psychoacoustic model 1 based preprocessor is used for 

both early reflection cases of the FDICA system. However, the psychoacoustic model 2 based 

preprocessing filter not only masks the most of the higher frequencies (> 3 kHz) of the second 
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separated signal spectrum (shown in Figs. 5.7(g) and 5.7(h)) but also masks some frequencies 

in the range of 1-3 kHz when both reflection cases of the masked FDICA system are taken into 

account. Results are highlighted in Figs. 5.8, 5.9, 5.10 and 5.11 for the worst case scenario of 

highly reverberant environemnt 

From Fig. 5.12, it can be seen that the measured value of the cost function F(P, k) with k = 5 

has a smaller value at all frequencies except in the very few frequencies when the unmasked 

system is considered for both weak and strong reflection cases. On the other hand, the cost 

function is close to unity for all the frequencies except the very low frequencies when the 

masked FDICA system (using either model) is considered for both cases of early reflections. 

Further, the psychoacoustic model 2 drives the measured value of the cost function close to 

unity even at these very low frequencies also. 

The confidence measure C(k) depicted in Fig. 5.13 has a smaller value for most of the fre-

quencies when the unmasked system is used for both cases of reflections. Further, the mea-

sured confidence measure has high values at all frequencies except at low frequencies when the 

perceptually motivated FDICA system (using models 1 and 2) is employed for both reflection 

cases. However, model 2 enhances its value for most of the low frequencies also. 

Fig. 5.14 shows the measured value of the permutation error for K = 5. The permutation in this 

experiment is solved by using the crosscorrelation between the separated output spectrogram 

and the spectrogram of original speech source (unknown in a real room recording situation) as 

correct permutation for evaluating only the effect of the subspace filtering method. This method 

is referred to as source-output crosscorrelation (SOC). 

Therefore, the permutation error is defined as the case when the result of the combined inter 

frequency correlation (CIFC) differs from that of SOC (assumed as correct permutation). The 

measured permutation error is 7.8% and 6.6% for both weak and strong reflection cases of the 

unmasked FDICA system respectively. On the other hand, the permutation error is zero for all 

frequencies when the masked system (using either model) is used for both reflections. 

Based on the above discussion, we conclude that strong early reflections are aiding the source 

separation by the masked FDICA system (using both perceptual models) in general and the 

second separated output signal in particular. Hence, it appears that a perceptually motivated 

subspace approach targets a specific source out of mixture of reverberated sounds. 
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Unmasked and Masked FDICA Systems (Perceptual Preprocessing: Subspace 
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Figure 5.7: Spectrograms of Original Speech Sources, a Pair of Observed and Separated 
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5.7.2 Real Room Mixing Scenario 

This experiment was chosen to test the algorithm's ability in the real room recording situation. 

To do this, we used real room recorded speech signals (6 sat 16 kHz) as shown in Fig. 5.15. 
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Figure 5.15: Observed Signals Using Circular Microphone Array (Real Room Recording) 

Real room mixing results of separated signals and the corresponding spectrograms for both 

unmasked and masked systems (perceptual models I and 2) are shown in Fig. 5.16. 

From Fig. 5.16, it is clearly evident that psychoacoustic model 2 helps to enhance the separation 

of targeted output signal (second output) when compared to that of psychoacoustic model 1. 

This is clearly observed in the corresponding spectrogram of the second separated output signal. 

Here, most of the higher frequencies (> 3 kHz) are completely suppressed by both simultaneous 

frequency masking and temporal masking techniques. 

Further, other real room recording results are similar to that of previous experiment from the 

measured values of cost function and confidence measure point of view (Fig. 5.17). 

The permutation error cannot be computed in this real room recording case as the original 

speech sources are unknown. 
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Figure 5.16: Separated Signals and Spectrograms for Unmasked and Masked FDICA Systems 
(Perceptual Preprocessing: Subspace Method: Real Room Recording Scenario) 
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5.8 Performance Evaluation 

5.8.1 Time-Domain Objective Quality Measure 

The results of objective performance evaluation based on the time-domain metric (SIR) [42] 

are summarized in Tables 5.2 and 5.3. 

Unmasked FDICA I Masked FDICA (Model 1) 1 Masked FDICA (Model 2) 
Method I 	SIR1  I  SIR2 	hSIR1  I 	SIR2 	11 SIR1  I 	SIR2  

Soc 10.54 13.68 -1.0714.18 -1.39 18.66 
CIFC 10.00 14.19 -1.07 14.18 -1.39 18.66 

Table 5.2: SIR (dB) for Unmasked and Masked FDICA Systems (Subspace Method: WR) 

Unmasked FDICA Masked FDICA (Model 1) Masked FDICA (Model 2) 
Method SIR, 	SIR2  SIR, 	SIR2  SIR 	SIR2  

soc 
cic 

12.23 
11.68 

10.03 
10.22 

-1.75 
-1.75 

14.96 
14.96 

-1.37 
-1.37 

18.95 
18.95 

Table 5.3: SIR (dB)for Unmasked and Masked FDICA Systems (Subspace Method: SR) 

From these Tables, it is clearly evident that SIR, obtained by the masked FDICA system (using 

both psychoacoustic models) is severely affected by room reverberations resulting in very poor 

performance when compared to that of the unmasked FDICA system under both weak and 

strong early reflection cases of the mixing environment. 

Further, it is also evident from Table 5.2 that there is no significant improvement in SIR2 when 

the masked FDICA system (using psychoacoustic model 1) is considered for the weak early 

reflection case. On the other hand, SIR2 improved by 5 dB when the psychoacoustic model 2 

is used for the same weak reflection case of the masked system. 

From Table 5.3, it can be seen that SIR2 improved by 5 dB when the masked FDICA sys-

tem (using psychoacoustic model 1) is considered for the strong early reflection case. On the 

other hand, the psychoacoustic model 2 improves the SIR2 by 9 dB for the same strong early 

reflection case of the masked FDICA system. 

Thus, the value of SIR2 obtained by the perceptually motivated FDICA system using the sub-

space method substantiates in improving the separation performance of a BSS system that tar-

gets the second output when the mixing is noisy and highly reverberant. 
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5.8.2 Perceptual Domain Objective Quality Measure 

The objective performance evaluation based on the perceptual domain metric (EMBSD) [144] 

are summarized in Tables 5.4 and 5.5. 

	

Unmasked FDICA 	Masked FDICA (Model 1) Masked FDICA (Model 2) 
Method EMBSD I  EMBSD2  EMBSDI I EMBSD2  I EMBSD L  EMBSD2  

Soc 	3.9 	7.3 	8.3 	3.9 	6.9 	3.6 
CIFC 	3.8 	6.9 	8.3 	3.9 	6.9 	3.6 

Table 5.4: EMBSD (dB) for Unmasked and Masked Systems (Subspace Method: WR) 

Table 5.5: EMBSD (dB)for Unmasked and Masked Systems (Subspace Method: SR) 

From Table 5.4, it is clearly evident that EMBSD2  reduced by 3.4 dB and 3 dB using Soc 
and CIFC methods respectively when the masked FDICA system (using model 1) is considered 

for the weak reflection case of the mixing environment. 

On the other hand, the psychoacoustic model 2 reduces the EMBSD2  by 3.7 dB and 3.3 dB 

using soc and CIFC permutation methods respectively when the masked FDICA system is 

considered for the same weak reflection case of the mixing environment. 

From Table 5.5, it can be seen that the measured EMBSD2 reduced by 4.1 dB and 3.2 dB using 

soc and cic methods respectively when the masked FDICA system (using psychoacoustic 

model 1) is considered for the strong early reflection case. 

However, the psychoacoustic model 2 reduces the value of EMBSD2  by 4.4 dB and 3.4 dB 

using soc and CIFC methods respectively when the masked FDICA system is considered for 

the same strong reflection case of the mixing environment. 

Thus, the value of EMBSD2  obtained by the perceptually motivated FDICA system using the 

subspace method substantiates in improving the separation performance of a BSS system that 

targets the second output when the mixing is noisy and highly reverberant. 

134 



A Combined Approach of Perceptual Preprocessing and Subspace Filtering for Blind 
Separation of Audio Signals 

5.9 Summary 

In this study, we explored the Blind Source Separation problem of convolved speech mixtures 

(when the mixing environment is noisy and highly reverberant), in the case of more sensors 

than sources, proposing a perceptual solution. The key points are: 

A perceptually motivated FDICA scheme with subsapce method, proposed in this chapter, not 

only reduces the perceptually irrelevant frequencies by exploiting the masking properties of 

the input speech spectrum but also reduces the perceptually relevant room reflections by util-

ising the properties of the subspace filtering. Further, this proposed system also reduces the 

computation complexity of a similarity measure among spectral envelopes of the separated out-

put signals for solving the permutation. Finally, the proposed system completely avoids the 

permutation problem of FDICA while targetting the specific sound source. 

The measured permutation error is 7.80% and 6.60% for the unmasked FDICA system under 

both weak and strong reflection conditions respectively. On the other hand, the permutation 

error is zero for the masked FDICA system under both reflection cases respectively. 

Further, it is clearly observed that SIR2 is enhanced by 5 dB and 9 dB using psychoacoustic 

models 1 and 2 respectively when the strong reflection case of the masked FDICA system is 

taken into account. On the other hand, it can be seen that SIR2 is improved by 5 dB using 

model 2 when the mixing is noisy and lowly reverberant (weak reflection case). 

On the other hand, the measured EMB SD2  for the masked FDICA system (using either 

model) is more effective when compared to that of the unmasked system in improving the 

performance of a BSS system under both reflection conditions. 

Thus, incorporating the proposed perceptual solution for the permutation problem of FDICA 

system produced good separation results in terms of the measured permutation error, SIR and 

EMBSD by exploiting both perceptual irrelevancy and statistical redundancy. 
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Chapter 6 
Conclusions and Future Work 

Each chapter in this thesis is largely self contained, providing a more detailed discussion of the 

topics and experimental results contained in that chapter. The following presents a summary 

of the work that has been conducted, highlighting the contributions to knowledge made during 

the study, drawing conclusions from the research and identifying some suggestions for future 

directions of research work. 

6.1 Conclusions 

In this thesis, we have explored many aspects in the field of Perceptually Motivated Blind 

Source Separation of Convolutive Audio Mixtures. The work was largely based around the nat-

ural gradient version of the complex Infomax algorithm for our investigation of a BSS system 

in the frequency-domain. Other BSS systems considered were a simple, non-iterative multi-

ple time-delayed decorrelation algorithm, based on second order statistics. This section will 

conclude the main issues of the problem, giving specific emphasis on the observations and 

improvements introduced in this thesis. 

We investigated the effect of perceptual irrelevancy removal techniques on the performance of 

blind source separation systems when the mixing is noisy and higly reverberant. We decom-

posed the source separation problem into two subproblems. Firstly, the subproblem of source 

separation of real world recordings is investigated in the case of an equal number of sources 

and sensors. Finally, the subproblem of more sensors than sources using a microphone array is 

then examined for real world audio recordings. 

The FDICA framework has inherent scaling and the permutation ambiguity problems. For the 

scaling ambiguity problem, we considered the method proposed by Murata et al. On the other 

hand, for the permutation ambiguity problem, we proposed a perceptually relevant method 

denoted by CIFC based on the combined approaches of the inter-frequency coherency (JFC) 

of the mixing matrices and the inter-frequency spectral envelope correlation (IFSEC) of the 

separated speech signal at several adjacent frequencies. 
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6.1.1 Perceptual Preprocessing: Multiple TDD Algorithm 

In the first instance, we have considered non-iterative multiple time-delayed decorrelation al-

gorithm for our initial experimentation in a synthetic room mixing scenario in the case of an 

equal number of sources and sensors. Based on the experimental results, it is clearly observed 

that the measured permutation error is slightly reduced by the forward temporal masking which 

is used in model 2. However, this algorithm fails when the speech sources have an identical 

spectral envelopes and even if one spectral component of the input speech signal does not have 

any power for both unmasked and masked FDICA systems. 

6.1.2 Perceptual Preprocessing: Complex Infomax Algorithm 

Therefore, we considered an iterative procedure based on the complex Infomax algorithm with 

feed-forward architecture for our further investigation in the case of an equal number of sources 

and sensors. Based on the experimental results in a synthetic room mixing scenario, we ob-

served that the measured permutation error is zero for both early reflection cases of the masked 

FDICA system (using either psychoacoustic model). Results from early studies by Guddeti and 

Mulgrew [1501 suggested that by reducing perceptually irrelevant frequency components might 

enhance the separation performance. 

However, the objective performance in one of the channels as evaluated by the time-domain 

metric (signal-to-interference ratio (SIR)) and the perceptual-domain metric (enhanced modi-

fied Bark spectral distortion (EMBSD)) are improved when either psychoacoustic model is em-

ployed for both early reflection cases. Though, SIR and EMBSD are better than those obtained 

by the unmasked FDICA system, but the informal listening test confirms the presence of the 

perceptually relevant room reflections in the separated speech signal obtained by ICA resulting 

in poor performance. Hence, we conclude that the proposed FDICA system with a perceptually 

motivated preprocessing filter reduced the computational complexity of a similarity measure by 

more than 50% while avoiding the permutation ambiguity problem. 

6.1.3 Perceptual Postprocessing: Complex Infomax Algorithm 

The perceptual irrelevancy reduction techniques were subsequently introduced after the source 

separation of the speech signals obtained from the complex Infomax algorithm in the case of an 

equal number of sources and sensors. Results from early experimentation in a synthetic room 
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mixing scenario suggested that by reducing the perceptually irrelevant frequency components 

using the perceptually motivated postprocessing filter using the psychoacoustic model 2 often 

appeared to reduce the permutation ambiguity problem partially. The more detailed analyses 

developed in this thesis have shown that the performance of the masked FDICA system (using 

either model) in both the channels as evaluated by SIR and EMBSD is poor when compared to 

that of the unmasked FDICA system for both reflection cases. 

6.1.4 Perceptually Motivated Subspace Method: Complex Infomax Algorithm 

Finally, we explored the idea of perceptually more efficient FDICA system in the case of more 

sensors than sources. By exploiting the perceptual irrelevancy of some of the input speech 

signal spectrum using perceptual masking techniques before utilizing the subspace method that 

reduces the effect of room reflections prior to ICA, we realize a perceptually more efficient 

FDICA system that targets a specific sound source (second source in our case). 

Results from early studies by Guddeti and Mulgrew [151] suggested that by reducing both per-

ceptually irrelevant frequency components and the effect of room reflections might help to en-

hance the separation performance by completely avoiding the permutation ambiguity problem 

of the FDICA system. However, the objective performance in one of the channels as evaluated 

by SIR and EMBSD are further improved when both psychoacoustic models are employed for 

both early reflection cases. Though, the values are better than those obtained by the unmasked 

FDICA system, but the informal listening test confirms the presence of the non-harmonic dis-

tortion in the separated speech signal resulting in poor audio quality. 

6.1.5 Possible Reasons for Poor Audio Quality 

Due to the variation of the perceptual binary mask from frame to frame, the direct use of 

the mask would result in an output speech containing non-harmonic distortion caused by 

temporal aliasing and therby degrading separated speech quality [134, 135]. 

For minimising this temporal aliasing, the perceptual binary mask should be smoothed 

by convolving it with an optimal digital prolate spheroidal window in the frequency-

domain [152, 153].  The digital prolate spheroidal window is optimal in the sense that it 

concentrates most of its energy in the mainlobe and attenuates the aliasing components 

at its sidelobes, leading to a maximised signal to distortion power ratio. 
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Further, by listening to the original speech source, we strongly felt that the original signal 

itself has abasing due to non-harmonic components. 

Since EMBSD measure does not consider the relative significance of the loudness dif-

ference for spectral peaks and valleys above the noise masking threshold, the EMBSD 

measure is not the best objective speech quality measure [144]. 

6.2 Suggestions for Future Work 

In addition to the work presented above, this study has identified other ideas of research which 

could not be addressed due to time constraints. Suggestions of areas worthy of further study to 

extend this interesting field of research are listed below. Some areas are of particular relevance 

to lines of research undertaken in this study, while others are more general in nature and may 

be of interest to the wider BSS / ICA research community. 

For minimising the temporal aliasing, the perceptual binary mask should be smoothed by 

convolving it with an optimal digital prolate spheroidal window in the frequency-domain 

and thereby improving separated speech signal quality while reducing the non-harmonic 

speech components from the separated signal. 

To confirm the promising SIR and EMBSD values, intensive subjective listening tests 

such as comparision category rating (CCR) procedure and absolute category rating (ACR) 

procedure to be performed. In the CCR test, listeners are presented with pairs of speech 

samples (sentences) and for each pair, they are asked to grade the quality of the latter 

sample with respect to the former. Each pair contains a processed sample and a quality 

reference that are presented in random order. 

In the ACR test, the listeners use a five-point scale to grade the quality of the samples that 

have been made processed with the different test conditions. The average of all scores 

given to a particular condition yields the corresponding mean opinion score (MOS). 

By integrating backward temporal masking technique with simultaneous frequency mask-

ing and forward temporal masking, a new perceptually motivated and more biologically 

plausible MICA algorithm that tracks the speech signal related to the voice pitch (fo  and 

its harmonics) during the learning might help the performance of the BSS system. 
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In real cocktail party environment there are less number of microphones (sensors) than 

unknown sound sources resulting in the overcomplete (underdetermined) convolutive 

mixing problem. However, humans deal with this real cocktail part)' problem very easily 

and effectively by using only 2 dynamic sensors (ears). Hence, a possible extension of 

the proposed framework in this thesis is to adapt strategies for the case of more sources 

than sensors in the convolutive mixing case of audio source separation problem. 

Although the STFFT based signal decompositions are used in this thesis, they were by no 

means biologically accurate models for cochlear function. The accurate reconstruction 

of the cochlear function has been extensively modelled by the gammatonefilterbank. A 

gannnatone filterbank is composed of basis functions which are sinusoidal tones mod-

ulated by gamma distributions, might help to realize a more biologically plausible and 

intelligent BSS system that tracks the speech signal related to the voice pitch. 
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Appendix A 
Tables of Human Auditory System 

A.1 Critical Bands 

Critical band numbers and the corresponding frequency limits in Hertz, are presented in the 

following Table as per the data published in [111]. 

Subband 
Number 

Lower Edge 
[Hz] 

Center 
[Hz] 

Upper Edge 
[Hz] 

0 0 50 100 
1 100 150 200 
2 200 250 300 
3 300 350 400 
4 400 450 510 
5 510 570 630 
6 630 700 770 
7 770 840 920 
8 920 1000 1080 
9 1080 1170 1270 

10 1270 1370 1480 
11 1480 1600 1720 
12 1720 1850 2000 
13 2000 2150 2320 
14 2320 2500 2700 
15 2700 2900 3150 
16 3150 3400 3700 
17 3700 4000 4400 
18 4400 4800 5300 
19 5300 5800 6400 
20 6400 7000 7700 
21 7700 8500 9500 
22 9500 10500 12000 
23 12000 13500 15500 
24 15500  

Table A.!: Critical Bands and Their Frequency Range 
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A.2 Calculation Partition Table (Psychoacoustic Model 2) 

Table A.2: Calculation Partition at 32 kHz Sampling Rate 

Index wib whb bvb mvb TMNb 

1 1 1 0.00 0.0 24.5 

2 2 4 0.63 0.0 24.5 

3 5 7 1.56 20.0 24.5 

4 8 10 2,50 20.0 24.5 

5 11 13 3.44 20.0 24.5 

6 14 16 4.34 20.0 24.5 

7 17 19 5.17 20.0 24.5 

8 20 22 5.94 20.0 24.5 

9 23 25 6.63 17.0 24.5 

10 26 28 7.28 15.0 24.5 

11 29 31 7.90 15.0 24.5 

12 32 34 8.50 10.0 24.5 

13 35 37 9.06 7.0 24.5 

14 38 41 9.65 7.0 24.5 

15 42 45 10.28 4.4 24.8 

16 46 49 10.87 4.4 25.4 

17 50 53 11.41 4.5 25.9 

18 54 57 11.92 4.5 26.4 

19 58 61 12.39 4.5 26.9 

20 62 65 12.83 4.5 27.3 

21 66 70 13.29 4.5 27.8 

22 71 75 13.78 4.5 28.3 

23 76 81 14.27 4.5 28.8 

24 82 87 14.76 4.5 29.3 

25 88 93 15.22 4.5 29.7 

26 94 99 15.63 4.5 30.1 

27 100 106 16.06 4.5 30.6 

28 107 113 16.47 4.5 31.0 

Continued on Next Page... 
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Table A.2 - Continued 

Index wib whb bvb mvb TMNb 

29 114 120 16.86 4.5 31.4 

30 121 129 17.25 4.5 31.8 

31 130 138 17.65 4.5 32.2 

32 139 148 18.05 4.5 32.5 

33 149 159 18.42 4.5 32.9 

34 160 170 18.81 4.5 33.3 

35 171 183 19.18 4.5 33.7 

36 184 196 19.55 4.5 34.1 

37 197 210 19.93 4.5 34.4 

38 211 225 20.29 4.5 34.8 

39 226 240 20.65 4.5 35.2 

40 241 258 21.02 4.5 35.5 

41 259 279 21.38 4.5 35.9 

42 280 300 21.74 4.5 36.2 

43 301 326 22.10 4.5 36.6 

44 327 354 22.44 4.5 36.9 

45 355 382 22.79 4.5 37.3 

46 383 420 23.14 4.5 37.6 

47 421 458 23.49 4.5 38,0 

48 459 496 23.83 4.5 38.3 

49 497 513 24.07 4.5 38.6 
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A.3 Absolute Threshold Table (Psychoacoustic Model 2) 

A value of 0 dB represents a level in the absolute threshold calculation of 96 dB below the 

energy of a sine wave of amplitude ±32760. 

Table A.3: Absolute Threshold at 32 kHz Sampling Rate 

Lower Index Higher Index Absthrs (dB) 

1 58.23 

2 2 33.44 

3 3 24.17 

4 4 19.20 

5 5 16.05 

6 6 13.87 

7 7 12.26 

8 8 11.01 

9 9 10.01 

10 10 9.20 

11 11 8.52 

12 12 7.94 

13 13 7.44 

14 14 7.00 

15 15 6.62 

16 16 6.28 

17 17 5.97 

18 18 5,70 

19 19 5.44 

20 20 5.21 

21 21 5.00 

22 22 4.80 

23 23 4.62 

24 24 4.45 

25 25 4.29 

26 26 4.14 

Continued on Next Page... 
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Table A.3 - Continued 

Lower Index Higher Index Absthrs (dB) 

27 27 4.00 

28 28 3.86 

29 29 3.73 

30 30 3.61 

31 31 3.49 

32 32 3.37 

33 33 3.26 

34 34 3.15 

35 35 3.04 

36 36 2.93 

37 37 2.83 

38 38 2.73 

39 39 2.63 

40 40 2.53 

41 41 2.42 

42 42 2.32 

43 43 2.22 

44 44 2.12 

45 45 2.02 

46 46 1.92 

47 47 1.81 

48 48 1.71 

49 50 1.49 

51 52 1.27 

53 54 1.04 

55 56 0.80 

57 57 0.55 

59 60 0.29 

61 62 0.02 

63 64 -0.25 

Continued on Next Page... 
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Table A.3 - Continued 

Lower Index Higher Index Absthrs (dB) 

65 66 -0.54 

67 68 -0.83 

69 70 -1.12 

71 72 -1.43 

73 74 -1.73 

75 76 -2.04 

77 78 -2.34 

79 80 -2.64 

81 82 -2.93 

83 84 -3.22 

85 86 -3.49 

87 88 -3.74 

89 90 -3.98 

91 92 -4.20 

93 94 -4.40 

95 96 -4.57 

97 100 -4.82 

101 104 -4.96 

105 108 -4.97 

109 112 -4.86 

113 116 -4.63 

117 120 -4.29 

121 124 -3.87 

125 128 -3.39 

129 132 -2.86 

133 136 -2.31 

137 140 -1.77 

141 144 -1.24 

145 148 -0.74 

149 152 -0.29 

Continued on Next Page... 
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Table A.3 - Continued 

Lower Index Higher Index Absthrs (dB) 

153 156 0.12 

157 160 0.48 

161 164 0.79 

165 168 1.06 

169 172 1.29 

173 176 1.49 

177 180 1.66 

181 184 1.81 

185 188 1.95 

189 192 2.08 

193 200 2.33 

201 208 2.59 

209 216 2.86 

217 224 3.17 

225 232 3.51 

233 240 3.89 

241 248 4.31 

249 256 4.79 

257 264 5.31 

265 272 5.88 

273 280 6.50 

281 288 7.19 

289 296 7.93 

297 304 8.75 

305 312 9.63 

313 320 10.58 

321 328 11.60 

329 336 12.71 

337 344 13.90 

345 352 15.18 

Continued on Next Page... 
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Table A.3 - Continued 

Lower Index Higher Index Absthrs (dB) 

353 360 16.54 

361 368 18.01 

369 376 19.57 

377 384 21.23 

385 392 23.01 

393 400 24.90 

401 408 26.90 

409 416 29.03 

417 424 31.28 

425 432 33.67 

433 440 36.19 

441 448 38.86 

449 456 41.67 

457 464 44.63 

465 472 47.76 

473 480 51.03 

481 488 51.03 

489 496 51.03 

497 504 51.03 

505 513 51.03 
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Publications 

This appendix contains re-prints of the papers [150, 151] published externally during the course 

of this research and these are as follows: 

[1501 R. R. Guddeti and B. Mulgrew, Perceptually motivated blind source separation of convo-

lutive mixtures, in Proceedings of IEEE International Conference on Acoustics, Speech 

and Signal Processing (ICASSP2005), vol. 5, (Philadelphia, PA, USA), pp.  273-276, 

18-23 March, 2005, 

[151] R. R. Guddeti and B. Mulgrew, Perceptually motivated blind source separation of con-

volutive audio mixtures with subspace filtering method, in Proceedings of International 

Workshop on Acoustic Echo and Noise Control (IWAENC2005), (High Tech Campus, 

Eindhoven, The Netherlands), 12-15 September, 2005. 

The results published in the papers are from individual experiments performed in the early 

stages of the study. The corresponding results presented in the thesis, in Chapters 3 and 5, are 

from more extensive studies based on the earlier work and also using the results based on the 

objective performance evaluation of perceptually motivated BSS system of convolutive audio 

mixtures in terms of signal-to-interference ratio (SIR) (the time-domain metric) and enhanced 

modified Bark spectral distortion (EMBSD) (the perceptual-domain metric). 

Furthermore, to accommodate these published papers in this thesis, their pages have been 

rescaled to reduce them slightly in size. 
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PERCEPTUALLY MOTIVATED BLIND SOURCE SEPARATION OF CONVOLUTIVE 
MIXTURES 

Ra.nsnoltana Reddy Gudderi and Bernard Muigrew 

Institute for Digital Communications 
School of Engineering & Electronics 

The University of Edinburgh 
Edinburgh EH9 3JL U.K 

ABSTRACT 

A perceptually motivated method is proposed for solv-

ing the permutation ambiguity of frequency-domain inde-

pendent component analysis when the mixing environment 

is noisy and reverberant, tn this method, perceptually irrel-

evant frequencies are removed from the speech spectrum 

using block based perceptual masking (simultaneous fre-

quency osasking) and then independent component analysis 

is applied. After source separation in frequency domain, a 
physical property of the shying matrix, i.e., the coherency 

in adjacent frequencies, is utilized to solve tlse permutation 

ambiguity. From the simulation results it appears that the 
perceptual masking avoids the permutation problem. 

1. INTRODUCTION 

The framework of blind source separation (BSS) based on 

independent component analysis (ICA) can be used to sepa-

rate multiple signals without any previous knowledge of the 

sound sources and the mixing emsvirotttttettt [I]. However, 

wlsett applying to tIme cocktail party effect Site performance 

of the BSS system is greatly reduced by Use effect of the 

room relbclionn and ambient noise. Humans deal with this 

cocktail party effect very effectively by using only two earn 
(sensors). These perceptual masking techniques have been 

already exploited in svtccessful development of MPEG au-

dio coding standard which is the backbone of MP3 players. 

Its general, cottvolutive BSS methods can be classified 

into time domain ICA (TDICA) and frequency domain ICA 

(FDICA). TDICA has the disadvantage of being rather com-

putational expensive due to computing toasty convolutions. 
The biggest obstacle in the FDICA is the permutation and 

scaling problem. For the scaling problem, the method pro-

posed by Murata et al [2,3], in which the separated output 

is It Itered by the inverse of Use separation litter. 

For Use permutation problem, Asano et at 14] have pro-

posed a tsseUsod tlsut utilizes both Use coherency of the snux-

issg matrices and the correlation between spectral envelopes  

at several adjacent frequencies (denoted as inter frequency 

coherency (IFC)). Its this paper, a perceptually motivated 

FDICA approach for solving the permutation problem is 

proposed. This method utilizes the block based perceptual 

ranking for the complete omission of a signal at the given 

frequency that is perceptually irrelevant. 

This paper is organized as follows: In Section 2, sn out-

lute of the proposed perceptually motivated FDICA system 

is presented fit order to solve the permutation problem. In 

Section 3, simulation results of experiments using both sytt-
Elsetic and real data to evaluate the proposed perceptually 

sstolivutcd FDICA nyxtetts are reported. 

2. PERCEPTUAL FDICA SYSTEM 

The Ibm of the proposed perceptual FDICA system is sum-

sssarized its the fonts of block diagram as shown in Fig. 1. 

tvC 

Fig. 1. Proposed Perceptually Motivated FDICA System 

First, the short time Fourier transform (STFr) of the 
muttielsuisuel input signal, x(w, I), is obtained with an ap-
propriate time shift and window function. Next, psyclsou. 

coustic model I (MPEG 1, layer 1) 151 is used to deter-

mine the perceptual masking llsrenttold for each segment 

of speeds and thereby producing a binary mask for each 

frequency. A straightforward means to remove the masked 

frequency bins would be the multiplication of the complex 

spectrum of the input speeds frame by Use binary mask at 

each frequency bin. Thus, Use Usresholding in a stereo envi-

ronment is described by logical AND operation. 
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Then, the FDICA algoritltttt (complex Infomax with feed-

forward architecture 2891) is applied to the spectral com-

ponents that are perceptually relevant for obtaining the sepa-

ration 6 her. Next, the permutation and the scaling problem 

is solved by processing the output of the separation tiller 

with the permutation and the scaling matrices. Finally, the 

If tIer matrices are transformed into the time domain and the 

input speech signal is processed with these titters, 

2.1. Model of Signal 

Let us consider the case wltett there are D sound sources in 
the mixing environment with M sensors. By taking STFT 
of the sensor inputs, we obtain the input vector 

x(ti, t) = [X1  (ti, t),..., XM(W, 1)]T 	(j) 

Here, X. (us, I) is SIFT of the input signal in the iLls time 
frattte at the ottlt sensor. Fnrther, the input signal is assumed 
to be modeled as 

c(w,l) = A(w)s(w,t) + n(w,t) 	(2) 

A(w) is the mixing matrix and its (an, n) element, 
being the transfer function from the nth source to Ilte ,nth 
settsor as A,_(w) = H(uJ)a'""'" s(as, t) consists 
of site source spectra ass = [S i  (so, I).....So(w, )]T 

2.2. Psychoacoustic Model 1 

The ISO MPEG-I [SI  psychoacoustic model I uses a 512 

point FF1' for lsigts resolution spectral analysis, tlteti selects 

the perceptually relevant spectral components in each frame 

of the input speech by means of lhresholdistg. This model 

assumes masking effects are additive. In perceptual audio 

coding, thresltolding sets the qnanization level, here we set 

a threshold for further processing of the frequencies by ICA 

according to their psycisoacoastic relevance and thereby re-

ducing Ilte computational complexity of solving the permu-

tation problem. While this thresttolding is a nonlinear activ-

ity which nigith at it rst sight appeared to destroy Ilte linear 
convolntive properties of Ilte BSS, but it cats also be viewed 

as all irregular sampling rate strategy which is linear. It will 

however alter tlte pdf of the signals presented to ICA. 

2.2.1. Power Spec: ruin 

First, the sensor input, x(ss), is segmented into frames of 

size of 512 samples using an appropriate time shift and Hann 

window function, A power spectral density (PSD), P(k), 
for (0 < k < 	is then obtained using a 512-point FF1' as 

i_t 	 2 

P(k) PN + 10 Iog 	w(n)z(n)e 	, (3) 
n=O 	 I  

The power normalization term PN, it xed at 96 dB, is used to 
estimate Ilte sound pressure level (SPL) conservatively from 
the input signal and w(n) is Hann window function. 

2.2.2. Global Ma.ski,tg Tltre,shold 

The absolute threshold of hearing is characterised by the 

atnoattt of energy seeded its a pure tone such that it can be 

detected by a listener in a noiseless environment. The quiet 

threshold is well approximated by 

	

3.64 	-o 

	

T1(f) = _6.5co 0(Tntun 3) (dB SPL) 	(4) 

+10-s  (1i.)4  
000 

Simultaneous masking refers to a frequency domain pIle-

stomenott which has been observed within critical bands. 

Masking also occurs in the little domain. Sharp signal tran-

sients create pro- and post- masking regions in time during 

wlticlt a listeiter will not perceive signals beneath the ele-

vated audibility thresholds produced by a masker. We didn't 

take into account temporal masking. This is due to the fact 

lisai our model is principally oriented to the speech signal 

that is stationary for a period shorter than 50 in sec. 

Since masking refers to a psychoacoustic phenomenon, 

the masking threshold will be calculated in Barks. The Bark 

scale, in fad, refers to the critical bands of hearing. The 

conversion from frequency to Bark is given by 

13 arctast(.00076f) 
Bark(f) 

= +3.5urctam {(yjg6)a] 

From tlte PSD of equation 3 we detect all the local mttax-

(ma, then we replace any two maxima in a 0.5 Bark sliding 

window by ilte stronger of the two. Once site tone and noise 

maskers are calcsttated, a decimation process takes place be-

fore calculating the global masking threshold according to 

tlte following scheme: 

(k 	 1<k<48 

= 	k + (k.rnod2) 	 49<k <96 	(6) 
[, k+3-((k-t)tnod4) 97<k<232 

where k is tlte FF1' index and i the decimation index. This 

process reduces the number of bins for the calculation of tlte 

global masking threshold, without loss of maskers. Having 

obtained a decimated set of tonal and noise mashers, in-

dividual tone and noise masking thresholds are computed 

next. Each individual threshold represents a masking con-

tribution at frequency bin i due to the tone or noise masker 
located at bin]. Tonal masker thresholds, TTM(, j) are ex-
pressed in (dB SPL) as 

TTM(i, j) = P't-i(j) - 0.275z(j) + SF(i, j) - 6.025 (7) 
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where PTM(j) denotes the SPL of the tonal masker in fre-

quency binj, z(j) denotes the Bark frequency of binj, and 
the spread of masking from masker bin jto niaskee bin 

SF(i, j), is modeled by the expression in (dB SPL) 

SF(i,j) = 	 (8) 

17z5 —O.4PTM(j) + 11, 	 —3 < 	<-1 
(0.4P(j) + 6)&, 	 —1 < & <0 

(0.15PTxS(j) - 17) 	- 0.15P(j), I < & <8 

Individual noise masker thresholds (dB SPL) are given by 

TNM(i,j) = Ptr50(j)-0.175z(j)+SF(i,j)-2.025 (9) 

where PNM(j)  deuotes the SPL of the noise masker its fre-
quency bin j. z(j) denotes the Bark frequency of bin j,  and 
SF(i,j) is obtaisted by replacing Pr(j)  with PNM(j) ev-
erywltere in equation 8. 

The global masking threshold, T9 (i), is therefore ob-
tained in dB by computing the sam 

— 	( 	
0O.lT,b) + EL 100.ITvs,b,Ll 

T 	101og - 	+ EM 10O.tTvn(i,) 

 
where 2'5 (i) is the absolute tearing threshold for frequency 
bin i, TTM(i, I) and TNM(i, m) are the individual masking 
thresholds and L and M are the number of tonal and noise 
maskers respectively. 

2.3. FDICA Algorithm 

Whenever the perceptually masked input speech x(a, 1) in 

one of the channels contains no values, the PCA hi Iter matrix 
W(w) is singular, resulting in rank deli ciency. Without loss 
of generality we have assumed identity matrix of order  as 
the rank of W(w) to avoid this problem. Then, the tnfomax 
algorithm is applied to the output of the PCA filter, y(w, I) 

to obtain the ICA filter U(w). The separation hi Iter B(w) is 
expressed as the product of W(w) and U(w). In the ICA 

stage, the input signal y(w, 1) is processed with the B Iter 
matrix U(w) as z(w, t) = U(w, h)y(w, t). 
The ICA learning rule is given by 

U(w, I + 1) = U(w, I) + t[I - x(z(sti, t))z"(w, I)]U(us, I) 
 

where Use score function for W(z) is deli tied as 

= [tr(zs),• 	s(z,), 	, la(zD )]T 	(12) 

= 2 tuash(83(za)) + 2j tunth(fh(za)) 	(13) 

The symbol za is Use dth element of the vector z(w, I). The 
matrix I is an identity matrix. The symbol 	denotes the  

Hermitian transpose. The constant t (.0001) is leritsed the 
learning rate. Here also we have avoided ICA filtering when 

Use input of ICA filter in one of masked channels is zero in 
order to overcome the rank deli ciency of ICA filter matrix. 

The scaling problem can be solved by filleting individ-
ual output of the separation filter B(w) by its inverse 131. 
The permutation problem can be solved by sssitsisniziug the 

suns of die angles (lii,••• , OD  between the location vec-

tors in Use adjacent frequencies. The cosine of the angle O, 
between the two vectors, Au (as) and hiu(wo), of estimated 
mixing matrix is deli tied as 14] 

Cos 0,, = 	 (14)
11a.) 

The cost function F(P) is deli tied as 

F(P)=-- 	Cos 85 	 (15) 

In order to get reliable value of the cost function F(P, k) at 
sun = w - kAtz, fork = I, .. , K, the conli deitce measure 
deli ned as [4] 

C(k) = max[F(P,k)] - max[F(P,k)] 	(16) 
Pert 	 Pod 

Here, 13 denotes the set of all possible P while If' denotes 

$7 without P = urgmaxpers[F(P, k)]. The penttatation is 

then solved at to = w - i.Aw () = muamp[C(k)]) as [4] 

P=uxgmax[F(P,k)] 	 (17) 

The main contribution of this perceptual filtering is not 
only the redaction of frequencies Utah are processed by ICA, 

but also the redaction of frequencies where the similarity 
has to be checked for solving the permutation problem. 

3. SIMULATION RESULTS 

3.1. Experiment I 

In Use hi rst experiment, we created a synthetic convolutive 
mixture of two speech sources (7s at 16 kHz) and we used 
Westiser's [6] room acoustic data with reverberation time of 

0.5 sec to simulate reverberant condition. From the Fig.2(a), 
it can be seen that there are many vertical lines in the mea-

sured value of Use cost function when unmasked FDICA is 
considered. These vertical hisses show that it is necessary to 
exchange time output at those frequencies where the permu-

tation problem exists. From Ute Fig.2(b), it is clearly evident 

that thte measured value of the cost function is almost unity 
for all the frequencies except for very low frequencies when 

the speech is perceptually masked. Permutation error is de-
6 tied as the case when the result of IFC differs from that of 
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(a) Unmasked 	 (h) Masked 

Fig. 2. Measured Value of cost Function fork = 5 

LULLJ 
(a) ltnnssskut 	 (I,) Masked 

Fig. 3. Measured Value of Permutation Error fork = 5 

source output crosscorrelation (SOC) 141. It is evident from 
this Fig.3(a) that there are many verticle lines in the mea-
sured permutation error when the speech is unmasked. It is 
clearly evident from the l'ig.3(h) that the permutation error 
is zero for all the frequencies when the speech is masked. 

3.2. Experiment 2 

The second experiment was chosen to test the algorithm's 
ability in real room recording condition. To do this, we used 
real room recorded speech signals (6 s at 16 kHz). The per-
mutation error cannot he computed in this real room record-
ing case as the original sources are unknown. Real room 
recording results shown in Fig.4 are similar to that of previ-
ous experiment from the cost function point of view. 

4. CONCLUSIONS 

Incorporating the proposed perceptual solution for the per-
muation problem in the FDICA system produced good sep-
aration results in terms of the measured values of the cost 
function and the permutation error. 

(a) Unmasked 	 (5) Masked 

Fig. 4. Measured Value of Cost Function fork = S 
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ABSTRACT 

In this paper, a perceptually motivated subspace Ii Itering method 

is proposed for solving the permutation ambiguity of frequency-

domain independent component analysis when the mixing cxvi-

mnnrrnt is noisy and highly reverberant. in this method, percep-

tually irrelevant frequencies are ft mt removed from the speech 

spectrum using block based perceptual masking (simultaneous 

frequency masking) before applying the subspace method fol-

lowed by frequency-domain independent ronlporrrrrt analysis. 

After source separation in frequency domain, a physical prop-

erty of the mixing matrix, i.e., the coherency in adjacent fre-

quencies while checking the similarity mcsure among spectral 

envelopes of the separated output for reduced frrqorscirs, is uti-

lized as a post processing tool for solving the permutation ambi-

guity. From the simulation results it appears that the perceptual 

masking avoids the permutation problem. 

1. INTRODUCTION 

Blind source separation (BSS) aims to recover indepen-

dent sources from their multiple observed mixtures using 

independent component analysis (ICA). However, when 

applying BSS In audio mixture problem such as a number 

of people talking in a room, the performance of lIre system 

is greatly reduced by the effect of tire mont rel'ectinns and 

antbienl rtnise. Humans deal with this real cocktail party 

effect very efficiently by using only two ears (sensors). 

These perceptual masking techniques have been already 

exploited in successful development of MPEG audio cod-

ing standard (MP3 players). 

Asano et at Ii] have proposed the subspace method for 

reducing lire effect of room refections and ambient noise. 

Since the subspace method works in tire frequetmcy.dntnaiu, 

we crust employ frequency-domain ICA (FDICA). The 

drawback of FDICA is pertnuialion and scaling problem. 

For the scaling problem, lire method proposed by Murata 

et at [21, in which the separated output is filtered by the 

inverse of the separation Ii 11cr, shows good performance. 

For tire pet-tnutaiiorr problem, Asano et at 131 proposed 

a rnetlrod that utilizes bolts tire coherency of the mixing 

matrices and the correlation between spectral envelopes at 

several adjacent frequencies (denoted as (liter frequency 

coherency (IFC)). 

The authors 141 previously proposed a perceptually mo-

tivated FDICA method for solving tire perrrrulaliorr prob-

ierrr. This method uses the simultaneous frequency cask-

(rig (MPEG psycircacoustic model 115]) for lIre complete 

omission of a signal ccrrrporret at the given frequency. 

In this paper, a perceptually motivated FDICA system with 

subspace approach for solving tire permutation problem 

is proposed. This riretinod utilizes both the sirrrulatneous 

frequency masking for tire complete omission of a sig-

nal at tire given frequency and thereby using the subspace 

method for further redaction of room refections. 

This paper is organized as follows. In Section 2, an Out-

line of the proposed perceptually motivated FDICA sys-

tem with subspace method is presented for solving lire 

permutation ambiguity. In Section 3, simulation results of 

experiments using both synthetic and real room recording 

speech data 10 evaluate the proposed perceptually nroli-

vated FDICA system are reported. 

2. PERCEPTUAL FDICA SYSTEM 

The ibw of tite proposed perceptual FDICA system is 

summarized in Fig. 1. 

Figure 1: Perceptually Motivated FDICA System 
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First, the short time Fourier transform (STFT) of Site mul-
tichannel input signal, x(w, 1), is obtained with an appro-

priate time shift and Hann window function. 

Next, psycltoacoustic model I 151 is used to determine the 

masking threshold for each segment of speech and thereby 

obtaining a binary mask for each frequency. 

A straightforward means to remove the masked frequency 

bins would be the multiplication of the complex spectrum 

of tire input speech frame by the binary mask at each fre-

quency bin. Thus, tite thresholding in a stereo environ-

ment is described by logical AND operation. 

The subspace method is tImex applied to the perceptually 

relevant spectral components of time input signal. In this 

stage, room refbctiotts and ambient noise are reduced in 

advance of the application of FDICA. Nest, use FDICA 

algorithm (complex lrtfomax [6-91) is applied to Site out-

put of the subspace stage to obtain the separation Ii Iter. 

After obtaining this filter, permutation and scaling prob-

lem is solved by processing the output of separation tiller 

with the permutation and scaling matrices. 

Finally, tlte filter matrices obtained in the above stages are 

transformed into the time domain and the input speech sig-

nal is processed with this timne-domairt filter network. 

2,1. Model of Signal 

Let us consider the case when there are N sound sources in 
the mixing environment with M sensors. By taking STF'I' 
of the sensor iupats, we obtain the input vector 

x(w,t) = [Xi  (w,t),..., Xsf(w,t)]T 	(I) 

Here, Xm  (a, fi) is STFI' of the input signal in the (sIt dine 

frame at tite ,ntb sensor. Further, the input signal is as-

sutned to be modeled as 

x(w,t) = A(u)s(w, I) + n(w, i) 	(2) 

A(w) is the mixing matrix and its (rn, vi) element, Am ,x (w), 
being tlte transfer function from the stilt source to tlte nrtir 
sensor as Am ,x (w) = H,n,n(w)e'"". s(ca, I) consists 
of tite source spectra as o = [St (si, f),.., Sai(w, t)]T. 

2.2. Psyclsoacoustic Model 1 

The ISO tvlPEG-i [5) psychoacoustic model I uses a 512 

point FFT for high resolution spectral analysis, then se-

lects the perceptually relevant spectral components in each 

frame of tIre input speech by means of thresholding. This 

model assumes that tIme masking effects are additive. 

In perceptual audio coding, thresholding sets the quaniza-

don level, here we set a threshold for further processing of 

tlte frequencies by ICA according to their psycltoacoustic 

relevance and thereby reducing the computational com-

plexity of solving the permutation problem. 

While this thresholding is a nonlinear activity which might 

at first sight appeared to destroy the linear convolutive 

properties of the BSS, but it can also he viewed as all irreg-

ular sampling rate strategy which is linear. It will however 

alter tite pdf of the signals presented to ICA. 

Simultaneous masking refers to a frequency domain phe-

nomenon which has been observed within critical bands. 

Sharp signal transients create prenmasking (backward tettr-

poral masking) and posimasking (forward temporal mask-

ing) in time during which a listener will not perceive sig-

nals beneath the elevated audible masking thresholds. 

We didn't consider (corporal masking based on the fact 

that our model is principally oriented to tlte speech signal 

that is stationary for a period shorter tltass 50 in sec. 

2.3. Modified FDICA Algorithm 

Whenever fire perceptually masked input speeds x(sa, I) 

in one of tIre channels contains no values, hlte subspace 

filter matrix (special case of principal component analysis 

(PCA) with M > N, where M and N denote the number of 

trades (channels) of fire input and site output of PCA, re-

spectively) W(w) is singular, resulting in rank deli ciency. 

Without loss of generality we have assumed identity ma-

trix of order N for each pair of input nodes as tite rank of 

subspace 11her matrix W(w) to avoid this problem while 

retaining sIte whitening property of subspace I'm 11cr. 

Then, apply tire complex lnfosnax algorithm for those fre-
quency components of masked input speech, y(w, I), tlmat 

contains nonzero values in boils the channels in order to 

overcome die rank deli ciency of ICA filter, U(w). 

Thus the processing of ICA cats be avoided whenever the 

masked input speech in one of fire channels is zero. 

In the ICA stage, fire input signal y(w, I) is processed wittt 

the filter matrix U(w) as z(s.s, I) = U(w, f)y(sa, I). 
The ICA learning rule is given by 

U(w, 1+1) = U(ta, 1) +si[I —ço(z(w, l))z'T (w, f)[U(w, t) 

(3) 

Then, solve tlte scaling problem of FDICA by filtering in-

dividual output of the separation filter, B(w), (product of 

W(w) and U(w)), by its pseudo inverse due to employ-

ment of the subspace method [3). 

Finally, solve the permutation problem by utilizing both 

similarity measure among spectral envelopes of the sepa-

rated output for frequencies that are perceptually relevant 

and the coherency of perceptually masked mixing matri-

ces in several adjacent frequencies. 

Without loss of generality assume zero cross correlation 

between spectral envelopes of fire separated output when 

one of the channels does not contain any values and thereby 

avoiding rank dell ciency of permutation matrix. 
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The cost function F(P) is deft ned as 

F(P) 	Cos 9, 	 (4) 

Where, the cosine of the angle O, between the two loca-
tion vectors in the adjacent frequencies, a,, (w) and 
of estimated mixing matrix is dcli ned as 

a[(w)an(xio) 
COS O,, = (5) 

116,, (w)  II- IIft'(ten II 

In order to get reliable value of the cosL function F(P, k) 
at wo = w - k.w, fork = 1,- 	K, the conlidcncc 
measure deft ned as 

C(k) = znax[F(P, k)] - max[F(P, k)1 	(6) 
PEtS 	 PEO 

Here. fl denotes the set of all possible P while ft denotes 
Ii without P = argmaxpvrt[F(P,k)]. The permutation 
is then solved at s, = w - k.w (k = inaxp[C(k)]) as 

P=aigmax[F(P,k)] 	 (7) 

The main contribution of this perceptual auditory mask-
ing and subspace method based preprocessor is not only 
the reduction of frequencies that are processed by ICA al-
gorithm, but also the reduction of frequencies where the 
similarity to be checked for solving the permutation. 

3. SIMULATION RESULTS 

3.1. Experiment I 

This experiment was conducted with two speech sources 
(4s at 16 kHz) and a circular microphone array (M = It and 
dia = 0.5 m) for simulating the room acoustic environment 
with reverberation time of 0.4 sec for both the weak and 
strong early retbction cases 131. 

3.1.1. Weak Early ReJkc:ion Case 

From the Fig.2(a), it can he seen that there are many ver-
tical lines in the measured value of the cost function when 
unmasked EDICA is considered. These vertical tines show 
that it is necessary to exchange the output at those fre-
quencies where the permutation problem exists. 
From the Fig.2(h), it is clearly evident that the measured 
value of the cost function is almost unity for all the fre-
quencies except for very low frequencies when the speech 
is perceptually masked. 
Permutation error is deft ned as the case when the result 
of inter frequency coherency (IFC) differs from that of 
source output crosscorrelation (SOC) [3). It is evident 

!!Tt [iII 
(a) Jnnusk.nt 	 (h( MskesJ 

Figure 2: Measured Value of Cost Function fork = 5 

(a) tlnmustont 	 (5) Mastont 

Figure 3: Measured Value of Permutation Error fork = 5 

from the Fig.3(a) that there are many vertical lines for fre-
quencies below 2 kHz and a very few vertical lines for 
frequencies above 6 kHz in the measured permutation er-
ror when the perceptual masking is not considered. 
It is clearly evident from the Fig.3(h) that the measured 
value of the permutation error is zero for all the frequen-
cies when the speech is perceptually masked. 

3.1.2. Strong Early Refrction Case 

From the Fig.4(a), it can he seen that there are many ver-
tical lines in the measured value of the cost function when 
unmasked FDICA is considered. These vertical lines show 
that it is necessary to exchange the output at those fre-
quencies where the permutation problem exists. 
From the Fig.4(b), it is clearly evident that the measured 
value of the cost function is almost unity for all the fre-
quencies except for very low frequencies when the speech 
is perceptually masked. 
It is evident from this Fig.5(a) that there are a very few 
vertical lines for frequencies below I kIte and a few ver-
tical lines for frequencies above 6 kHz in the measured 
value of the permutation error when the perceptual audi-
tory masking is not at all taken into account. 
It is clearly evident from the Fig.5(h) that the measured 
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tat Unmasked 	 (b) Masked 

Figure 4: Measured Value of Cost Function fork = 5 
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FDQI 

(a) t(nnusked 	 (h) Masked 

Figure 5: Measured Value of Permutation Error fork = 5 

value of the permutation error is zero for all the frequen-
cies when the speech is perceptually masked. 

3.2. Experiment 2 

The second experiment was chosen to test the algorithm's 
ability in real room recording condition. To do this, we 
used real room recorded speech signals (6 sat 16 kHz). 
The permutation error cannot he computed in this real 
room recording case as the original sources are unknown. 
Cost function shown in Fig.6 is similar to that of previous 
experiment for both unmasked and masked systems. 

4. CONCLUSIONS 

A perceptually motivated t-DICA scheme with subspace 
method, proposed in the paper, reduces the frequency com-
ponents that are perceptually irrelevant by exploiting the 
masking properties of speech. 
This system also reduces the computation complexity of 
similarity measure among spectral envelopes of separated 
signals for solving the permutation ambiguity. 
Further, the crosstalk suppression ratio has been improved 
by 5 dB when perceptual masking is taken into account. 

(a) ltnmaskad 	 (t') Masked 

Figure 6: Measured Value of Cost Function fork = 5 

The measured permutation error is 7.8% and 6.6% for un-
masked FI)ICA system under both weak and strong early 
retbction conditions respectively. 
On the other hand, the permutation error is zero for per-
ceptually masked IDICA system for both the cases of 
weak and strong and retkction conditions. 
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