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INDEPENDENT COMPONENT ANALYSIS  

ENHANCEMENTS FOR SOURCE SEPARATION  

IN IMMERSIVE AUDIO ENVIRONMENTS 

 

 

In immersive audio environments with distributed microphones, Independent Component 

Analysis (ICA) can be applied to uncover signals from a mixture of other signals and 

noise, such as in a cocktail party recording.  ICA algorithms have been developed for 

instantaneous source mixtures and convolutional source mixtures. While ICA for 

instantaneous mixtures works when no delays exist between the signals in each mixture, 

distributed microphone recordings typically result various delays of the signals over the 

recorded channels. The convolutive ICA algorithm should account for delays; however, it 

requires many parameters to be set and often has stability issues. This thesis introduces 

the Channel Aligned FastICA (CAICA), which requires knowledge of the source distance 

to each microphone, but does not require knowledge of noise sources. Furthermore, the 

CAICA is combined with Time Frequency Masking (TFM), yielding even better SOI 

extraction even in low SNR environments. Simulations were conducted for ranking 

experiments tested the performance of three algorithms: Weighted Beamforming (WB), 

CAICA, CAICA with TFM. The Closest Microphone (CM) recording is used as a 

reference for all three. Statistical analyses on the results demonstrated superior 

performance for the CAICA with TFM.  The algorithms were applied to experimental 

recordings to support the conclusions of the simulations. These techniques can be 

deployed in mobile platforms, used in surveillance for capturing human speech and 

potentially adapted to biomedical fields. 

 

Multimedia Elements Used: WAV (.wav) 
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Chapter 1 :  Introduction and Literature Review 

 

1.1 A Brief History for Blind Source Separation and Independent Component 

Analysis 

In digital signal processing, one goal is to recover the original signals from the signal 

mixtures, and this process is referred to as Source Separation (SS). A typical scenario for 

source separation is the cocktail party scenario where we have multiple speakers, 

background music and noise, and we only know the mixtures, but we try to estimate or 

even reconstruct the original source of interest (SOI) from the sound mixtures recorded 

by microphones [1]. 

Blind Source Separation (BSS), also referred to as Blind Signal Separation, is a type of 

Source Separation (SS) where we have little or no prior knowledge of the sources and the 

mixing system. Many methods are used for BSS. The basic methods are Principal 

Component Analysis, Singular Value Decomposition, Independent Component Analysis, 

Dependent Component Analysis, Non-negative Matrix Factorization, Low-complexity 

Coding and Decoding, Stationary Subspace Analysis, and Common Spatial Pattern. 

Depending on the kind of source separation problem and the kind of mixing system 

involved, we may combine a few of these algorithms for processing mixed data in order 

to get optimized separation results. BSS originated with audio processing due to audio 

signals’ spatial feature, but can also be applied to image processing, biomedical data, 

economic analysis, telecommunications, etc. In this thesis, the research is focused on BSS 

in audio environment signal processing [1, 2]. 

Independent Component Analysis (ICA) is a blind source separation and is one of the 

state-of-the-art topics in signal processing, biomedical fields, telecommunications, etc. 

Independent Component Analysis (ICA) is a special case of the Blind Source Separation 

and this algorithm’s premise is the independent feature of source signals.  ICA can 

analyze and uncover hidden factors from a set of signals. In the audio signal environment, 

the data signals are assumed to be linear or nonlinear mixtures of some unknown latent 

source signals, and the mixing system is assumed to be unknown. The latent signals are 
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assumed to be non-Gaussian and mutually independent, and these latent signals are 

referred to as the independent components of the observed signal data. Processing the 

observed data through BSS/ICA, we can get these independent components, referred to as 

sources [1].  

1.2 BSS/ ICA Research and Thesis Motivation 

Early acoustic source separation systems relied on fixed or adaptive beamforming, and 

these techniques are still in use today. Beamforming is a mature technique, and it has 

been deployed in commercial products such as cell phones and other electronics to 

separate the sources of interest [3].  These methods require prior knowledge such as the 

relative positions of the microphones and target source or time intervals during which the 

target source is inactive. In our lab, beamforming takes a very long processing time, 

requires the location coordinates of the sources to perform separation, and the 

beamforming algorithm requires a large number of microphones for good separation 

results. 

In reality, prior knowledge is rarely available, so we need to consider BSS. Blind Source 

Separation (BSS) requires little to no prior knowledge of the sources and/or the mixing 

process, does not need nearly as many microphones to perform separation, does not take 

nearly as long to perform separation, and theoretically does not need the locations of the 

microphones to perform separation, but the layout of the microphones affect the 

separation results with related toolbox. Due to the convenience and advantages of the 

ICA and BSS, this thesis aims at exploring the feasibility of the ICA and BSS algorithms 

in audio environments. Later on, this thesis also explores enhancements of the ICA for 

source separation in immersive audio environments.  

1.3 ICA in Audio Signal Processing 

Two techniques that use BSS for audio separations are convolutive independent 

component analysis (convolutive ICA) and sparse component analysis (SCA). These two 

techniques characterize real-world audio mixtures and summarize the performance of 

existing systems for such mixtures. But these two strategies face permutation alignment 

problems.  
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Strategies for permutation alignment [4] are as follows: we can make the separation 

matrices W smooth in frequency domain (Window the separation filter in Time Domain, 

average the separation matrices among adjacent frequencies); we can relate separation 

results to source location, such as direction of arrival (DOA) or time difference of arrival 

(TDOA), but these directivity patterns are practically possible only for a two-source case; 

we can evaluate the dependence of already separated bin-wise signals; finally, we can 

also incorporate the inter-frequency dependence evaluation into an ICA/BSS criterion 

and algorithm. The last two strategies are less affected by severe reverberation or closely 

located sources. We may combine a few of these strategies with BSS to get optimized 

source separation. We have to consider permutation alignment in ICA because we do not 

know the underlying source locations, while in beamforming we have knowledge of the 

source location. If we know the position, permutation of ICA will not matter. 

We need to process the recorded mixtures, so we need to consider microphone physical 

characteristics in the process. Common microphone arrangements may involve both near-

field and far-field microphones and the acoustic-electric conversion performed by the 

microphones. The direction of the cardioid microphones accounts for up to a 3 dB 

improvement in the SNR over that of the omnidirectional microphones [5].  

In the cocktail party scenario, noise may come from clinking glasses or footsteps. The 

level of the SOI is increased if within each estimated source signals, distortions remain 

low compared to original source signal SOI. Such distortions may include filtering of the 

source of interest, residual sounds from other sources of interest as interference, residual 

noise from undesired sources, and additional “gurgling” sounds known as artifacts.  

Audio sources exhibit significant dependencies on average over short durations, which 

decrease with increasing signal duration in most but not all situations. Speech and music 

sources are similar, so we consider fairly longer signal clips in our experiment for better 

performance (ICA book chapter 19) [6]. Speech signals are practically zero most of the 

time, and this characteristic is reflected in their strong gaussianity; we assume that only 

two signals are nonzero at the same time, and reconstruct these signals. 
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Speech signals consist of a sequence of phones; and it consist of a period, noisy or 

transient sounds. Audio sources are generally sparse in the time-frequency domain; in the 

time domain, speech sources are generally sparse, but only some music sources are sparse. 

Convolutive ICA separates the sources by convolving the mixture signals with 

multichannel FIR unmixing filters by maximizing some contrast function. Interference 

cancellation improves when the number of notches or their spatial width increases; this 

means increasing the number of microphones or the length of the unmixing filters. It will 

result in worse performance if sources are less stationary; this happens because 

interference must then be canceled over a range of positions even within a short duration. 

Also we can only employ the Convolutive ICA method for determined audio sources.   

SIRI decreases when the microphones have close locations. Room recordings and car 

recordings show that when microphone spacing is smaller, it has larger performance 

degradation. But when running experiments on the signals recorded when playing a 

speech source through the loudspeaker situated at the driver’s head position are added to 

real noise recordings made in a moving car with the same microphone arrays,  

performance is better when microphones are closer. The best SIRI obtained for these 

mixtures was about 2 dB, which is low communication quality [6].  

Separation performance over stereo mixtures dramatically decreases with 1) increasing 

reverberation time, 2) decreasing microphone distance, and 3) diffuse interfering sources. 

 

1.4 Current Research on BSS and their Literature Review 

Depending on whether the system is under-determined or over-determined, meaning or 

we have less microphones than speakers or we have more microphones than speakers, 

and also depending on the number of microphones and/ or speakers we have, we can 

deploy different BSS algorithms for good separation results.  

In the Generative Topographic Mapping (GTM) algorithm, we have mutually similar 

impulse (delta) functions that are equispaced on a rectangular grid that are used to model 

the discrete uniform density in the space of latent variables, or the joint density of the 

sources in our case. GTM is based on a generative approach that starts by assuming a 
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model for the latent variables, in our case [7]. Bayesian learning solves trade-off between 

under(under-) and over(-)fitting [8]. Ensemble learning/Variational learning is a method 

for parametric approximation of posterior pdfs where the search takes into account the 

probability mass of the models [9].  

There are also BSS methods using time structure. In many cases, the mix is time signals 

instead of random variables. If ICs are time signals, it may contain more structures than 

simple random variables, i.e. Autocovariances, which can help improve the estimation of 

the model. Autocovariances are an alternative to non-Gaussianity. This additional 

information can actually make the estimation of the model possible in cases where the 

basic ICA methods cannot estimate it, such as if the ICs are Gaussian but correlated over 

time. The AMUSE algorithm is used when we have one time lag in Autocovariances[10]. 

More literature reviews on state of art BSS algorithms are covered below. 

1.4.1 Using one microphone to separate singing voice 

Ozerov, Phoolippe, Gribonval, and Bimbot modified the general Gaussian Mixture 

Model (GMM) and came up with a probabilistic approach to study the separation of the 

singing voice using the short time spectra. Their goal is to use only one microphone to do 

the separation.  To achieve this goal, authors used adapted filters via Maximum 

Likelihood Linear Regression (MLLR) [11]. Traditional GMM-Based Source Separation 

model is shown in figure 1.1.  

 

Figure 1.1 GMM- Based Separation Scheme from Ozerov, A.; Philippe, P.; Gribonval, R.; 

Bimbot, F., "One microphone singing voice separation using source-adapted models," [11] 
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x is the incoming singing voice (music and voice direct addition). After we do short term 

frequency transform on mixture x, it became mixture X in frequency domain.  Then we 

tune the Adaptive Wiener filter with regard to Voice GMM and Music GMM to process 

the mixture. This Adaptive Weiner filter is actually a Minimum Mean Square Error 

(MMSE) estimator. Covariance matrix ∑v and ∑m are learned through the Expectation 

Maximization (EM) algorithm [12] by Vector Quantization (VQ) to optimize separation 

results. After we got the separated V (voice spectral) and M (music spectral) in frequency 

domain, we take the inverse short term frequency transform yielding the separated music 

and voice in time domain. 

 

Figure 1.2 Source-adapted separation scheme from Ozerov, A.; Philippe, P.; Gribonval, 

R.; Bimbot, F., "One microphone singing voice separation using source-adapted models," 

[11] 

To alleviate the work load of modeling large sound classes of music and voice, meaning 

to alleviate the large workload of learning process of the Covariance matrix ∑v and ∑m, 

authors proposed the adapted model described in Figure 1.2. The adaptive model is 

proposed based on the existence of vocal and non-vocal parts in a music clip and 

different influences of vocal and non-vocal parts in the separation process. The adaptive 

model is optimized in three aspects: music model learning on the non-vocal parts, filter-

adaptive learning of the general voice model, and filter adaptation of the voice model at 

the separation stage.  
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Advantages of this adapted model are that this model is beneficial to the cocktail party 

scenario where voices and music coexist. Also, this adaptive model has fairly good 

separation results.  Drawbacks of this adaptive model include that it is not blind source 

separation because it requires data training.  The model is also very simple and not very 

applicable in real-life situations due to the fact that their mixture is a direct addition of the 

music and voice, while in real life we need to process convolutive blind source separation 

instead of instantaneous two-source separation. Separation results from this approach are 

not as good as the results from using the FASS toolbox. We also cannot use this adaptive 

model to do two human voice separations due to the algorithm internal premiers. 

Unfortunately we cannot compare the performance of this adaptive model with the 

FastICA model because FastICA needs more or the same number of sensors than the 

speakers while here we have one sensor and two sources. 

 

1.4.2 Blind Separation of Convolutive Mixtures using Spatio-Temporal FastICA  

Algorithms 

FastICA algorithm that was developed by Hyvärinen and Oja is a famous and convenient 

method for Blind Source Separation, but its usage is limited to processing instantaneous 

mixtures of the sources. While in real life situations, such as in a room setting, room 

noise, reverberation, delays and so on coexist, these factors influence individual 

microphone recording, making microphone recordings complex, i.e. convolutive mixtures 

of sources. To process separations on convolutive microphone recordings, Douglas, 

Gupta, Sawada, and Makino came up with two spatio-temporal extensions of the 

traditional FastICA algorithm to extract individual sources from convolutive mixtures 

blindly [13].  

Blind Source Separation (BSS) consists of instantaneous BSS and convolutive BSS. The 

FastICA method is typically used for instantaneous BSS where mixtures are linear 

combinations of sources. Convolutive BSS is more suitable for our experiment; that is, 

the cocktail party scenario where we separate multi-talker speech from multi-microphone 

audio recordings. Researchers generally construct multichannel filters to recover latent 
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signals. One way to solve convolutive BSS is to do the separation process in frequency 

domain by taking the Fourier Transform of the mixtures and applying spatial-only 

complex-valued ICA and BSS on each frequency bin. But these methods have to consider 

making permutation, amplitude, and scaling consistent across different frequency bins to 

perform good separation. Another way to solve convolutive BSS is using a time-domain 

separation criterion. A typical example is the information-theoretic natural gradient 

convolutive BSS separation. But this method requires knowledge of an exact number of 

sources, source distributions, making it not BSSin a strict sense. This method also 

imposes a potential problem of appropriate step sizes selection for fast convergence. A 

new extension of the FastICA Time Domain fast fixed algorithms for convolutive ICA 

algorithm has constraints of the error accumulations of the deflation separation process 

[14].  

With all the limitations of the up-to-date convolutive BSS methods, authors proposed two 

new spatio-temporal extensions of the FastICA.  These new approaches imposed 

constraints on the multichannel separation filter by combining multichannel whitening 

through multi-stage least-squares linear prediction within iteration. These new 

approaches have the advantages of easily and individually reconstructing the sources, a 

technique called single-input multiple-output (SIMO) BSS separation.  

These approaches are based on the traditional FastICA. Systemic block diagram is shown 

in Figure 1.3. This new strategy has three stages: prewhitening, separation and 

reconstruction. The prewhitening stage decorrelates the original mixtures in both space 

and time. The separation stage separates prewhitened signal mixtures based on non-

Gaussianity. Two algorithm spatio-temporal FastICA 1(STFICA 1) and spatio-temporal 

FastICA 2(STFICA 2) are used. The reconstruction stage tries to reconstruct the 

individual sources as they appear in the original mixtures. The separation is achieved by 

passing each signal through the inverse of the prewhitening and separation systems.  
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Figure 1.3 Block Diagram of the Combined Separation and Signal Reconstruction System 

from from Douglas, S.C.; Gupta, M.; Sawada, H.; Makino, S., "Spatio–Temporal 

FastICA Algorithms for the Blind Separation of Convolutive Mixtures," [13] 

 

These proposed spatio-temporal approaches have advantages such as they do not require 

step size tuning, nor does it require prior knowledge of source distribution, and this 

approach has fast convergence especially for i.i.d sources. This adaptive approach 

extends the usage of FastICA to situations where reverberation exists.  This approach also 

performs fairly well when reverberation exists while traditional FastICA fails to do so. 

Limitations are that researchers only tested separation effects on Uniform Linear Array. 

Therefore performance on other microphone array layouts remains unknown. 

1.4.3 Adaptive time-domain blind separation of speech signals 

Many existing algorithms aim to solve convolutive BSS for static sources, while in the 

cocktail party scenario, sources may potentially move around, therefore sources became 

non-stationary. Also in time domain BSS, the demixing filter length is usually very long, 

which consumes long computation time. To solve both issues, Málek, Koldovský, and 

http://link.springer.com/chapter/10.1007/978-3-642-15995-4_2
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Tichavský proposed an adaptive algorithm with short demixing filter length (L=30) to 

conduct BSS in audio environments of moving sources. This algorithm is achieved via 

time-domain Independent Component Analysis (ICA) [15].  

Researchers aim to solve convolutive blind separation of d number of unknown audio 

sources (BASS) from m number of microphone recordings. Because sources are moving 

around, the unknown mixing process is convolutive and potentially dynamic. Researchers 

assumed that the systems change slowly and they considered each short time interval. In 

each short time interval, sources can be considered static, and the classic convolutive 

mixing problem holds. 

An on-line method processes its input block-by-block in a serial way. The separation of 

dynamic mixtures is done with block-by-block on-line application to stationary mixtures. 

Existing on-line method consists of on-line ICA in the frequency domain, on-line time-

domain based on second-order statistic cost function and sparseness based on-line 

algorithm working in frequency domain. Authors proposed and presented an on-line 

Blind Audio Source Separation (BASS) method from the time-domain blind audio source 

separation using advanced component clustering and reconstruction [16]. The original 

method separates independent components, groups independent components to clusters, 

and then reconstructs independent components in clusters.  The new method modified in 

a sense that ICA and clustering algorithms adapt their internal parameters by performing 

one iteration per block, which makes the new method an on-line method. 

The on-line procedure generates delayed copies of the microphone signals. It first 

conducts simplified BGSEP Algorithm [17] of Independent Component Analysis to get 

independent components. In order to cluster independent components to make sure that 

each cluster belongs to the same source, researchers computed their generalized cross-

correlation coefficients using GCC-PHAT. Researchers proposed Relational Fuzzy C-

Means algorithm (RFCM) to simplify the computations track the continual changes of the 

clusters for cluster groupings. For reconstruction, researchers used the windowing 

function (Hann Window) in demixing matrix to average the overlapping parts.  
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Researchers also ran experiments on fixed sources and moving sources to check the 

performance of the proposed on-line method. For fixed source experiments, on-line 

method is able to adapt the separating filters throughout the recordings for fixed-position 

sources but produces more artifacts than the off-line method. For moving sources, if 

microphones were 2 cm apart, the proposed separation algorithm performs slightly worse 

than the frequency domain algorithm with regards to SIR values, but performs better if 

the microphone distance is 6cm apart. Researchers concluded that the proposed on-line 

method outperforms the frequency-domain method when spatial aliasing occurs due to 

larger microphone inter-distance.  

The proposed time-domain method is comparable with frequency domain BSS algorithm. 

With short filter length, this algorithm has the advantage of less processing computation 

time. This algorithm can adapt to and perform separation on non-stationary speech. This 

new algorithm also offers a blind source separation solution for moving which is very 

beneficial for the cocktail party scenario. This proposed algorithm performs better when 

microphones are further apart which is useful for the thesis.  This algorithm has the 

drawback of potential long computation time.  

1.4.4 DOA Estimation for Multiple Sparse Sources with Arbitrarily Arranged Multiple 

Sensors 

When the number of sources is greater than the number of sensors, the system is called 

underdetermined system. To conduct underdetermined blind source separation smoothly 

for convolutive mixtures without restricting microphone array arrangements, Arak, 

Sawada, Mukai, and Makino proposed and explored a method to estimate the direction of 

arrival (DOA) for multiple sparse sources with arbitrary arranged sensors [18].  The 

sensors are arbitrarily assigned in a sense that these microphones can be set up in two or 

three dimensions.  

Commonly used DOA methods include the MUSIC (Multiple Signal Classification) 

algorithm, MUSIC algorithm variants and the DOA estimation method based on 

independent component analysis (ICA). But the MUSIC algorithm is only applicable 

when the number of sensors is greater than the number of sources. Independent 
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Component analysis DOA is applicable when the number of sources is greater or equal to 

the number of sensors. To find a solution for the underdetermined system, researchers 

proposed a DOA estimation that assumes source sparseness.  

To estimate the DOAs of the N sources from the M sensor observations, researchers 

proposed a new method shown in Figure 1.4. It includes two assumptions: sparseness and 

anechoic. Researchers show that temporal/frequency sparseness holds for speech. 

Researchers used a short-time Fourier transform (STFT) making the convolutive mixtures 

instantaneous.  

 

Figure 1.4 Structure of the proposed method from Araki, S., Sawada, H., Mukai, R., & 

Makino, S. (2011). DOA estimation for multiple sparse sources with arbitrarily arranged 

multiple sensors [18] 

 

After STFT to transfer sources from time domain to frequency domain, researchers 

normalized x (f, τ) observation vectors so that each observation vector depends only on 

the source geometry. Researchers then clustered normalized vectors    x (f, τ) to N clusters 

by minimizing the total sum of the squared distances between cluster members and their 

centroid. Each cluster corresponds to one source and centroid ck has the geometry 

information of the source sk; thst is, it has the information of DOAs.  

Researchers ran experiments on close microphones (4 cm apart) with reverberation time 

RT=120 ms. Estimation results are reasonable. Through experiments, researchers found 

that MUSIC and the proposed method both performed well when two sources are apart 

while the proposed method outperforms MUSIC when two sources are close to each 

other. Researchers found that when distances between sources and sensors are large and 

reverberation time is long, the source sparseness assumptions seem to be corrupted [18].  
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This paper is very informative. Researchers conducted multiple experiments in multiple 

settings which provided convincing results. The results of the new method are based on 

an assumption of source sparseness, but this assumption can be weakened when 

reverberation time is high and/or sensors and source distances are high. This paper also 

gave us insight of the performance with regard to microphone grouping distance. 

 

1.4.5 The Signal Separation Evaluation Campaign (2007–2010): Achievements and 

Remaining Challenges 

In this paper, Vincent, Araki, Theis, Nolte, Bofill, Sawada, ..., & Duong presented the 

outcomes of the Signal Separation Evaluation campaigns in audio and biomedical source 

separation[19]. Researchers presented key results in the campaign, discussed impact of 

these methods on evaluation methodology and proposed future research goals.   

Source separation characterizes the sources and estimates underlying source signals with 

given source mixtures. Source separation can be applied to chemistry, biology, audio, 

biomedical, telecommunication, etc.  Existing techniques such as beamforming and time-

frequency masking are based on spatial filtering and are now used to suppress 

environmental noise and/or enhance spatial rendering in mobile phones and consumer 

audio systems. Methodologies in this campaign are likely to be widely used in the future.  

Researchers describe the reference evaluation methodology to evaluate the performance 

of all the new and existing algorithms for source separation and presented the key results 

obtained over almost all datasets provided in this campaign. To evaluate a source 

separation system, we need a dataset, a task to be addressed, evaluation criteria, and 

performance bound(s) four factors. Datasets are categorized to application- and 

diagnosis-oriented. Application-oriented datasets are real world signals where each 

dataset faces all factors of source separation at once while diagnosis-oriented are 

synthesized to analyze a combination of a few challenges of all factors. To access the 

performance gap with industrial applications, we use application-oriented dataset to 

analyze. To improve separation robustness, we combine diagnosis-oriented datasets to 

find solutions to individual challenges.  
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For checking audio blind source separation performance, researchers summarized four 

main characteristics: mixture, source, environmental, and sensing. In mixture 

characteristics, we need to specify parameters. In source characteristics, we categorize 

source signals and identify scene geometry. In environmental characteristics, we 

categorize noise and reverberation. Sensing characteristics refer to sampling and sensor 

geometry. There are also six tasks: source counting, source spatial image estimation, 

source feature extraction, source localization, mixing systems estimation and source 

signal estimation.  

Researchers pointed out that regarding the evaluation of a mixing system, Amari 

Performance Index (PI) or Inter-Symbol Interference (ISI) is for over-determined mixing 

systems, i.e. biomedical data. Mixing Error Ratio (MER) criterion is applicable to all 

mixing systems. The amount of spatial distortion, interference and artifacts are then 

measured by source image to Spatial distortion Ratio(ISR), the Signal to Interference 

Ratio(SIR) and the Signal to Artifacts Ratio (SAR) while the total error is measured by 

Signal to Distortion Ratio(SDR) [19]. SDR is calculated in small bins shown 

below[Formula from 19]: 

                         (1.1) 

Regarding audio, performance is more accurately measured by Target-related Perceptual 

Score (TPS), Interference-related Perceptual Score (IPS), Aitifact-related Perceptual 

Score(APS) and overall Perceptual Score(OPS). The evaluation criteria related to source 

feature extraction are highly specific to the considered features.  

Then researchers tried to summarize the key results regarding source separation with the 

main focus on source signal estimation and source spatial image estimation tasks. With 

regard to Under-determined speech and music mixtures dataset, multichannel Nonnegtive 

Matrix Factorization (NMF) or flexible probabilistic modeling framework performs 

better than Spare Component Analysis (SCA) on instantaneous mixtures, but the new 

methods NMF and SCA remain inferior to SCA on live recordings. Researchers 
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concluded that a great deal of research could be done to simulate room effects to study 

about audio effects in rooms.  

Then researchers summarized performance on other audio datasets. Researchers pointed 

out that the best separation result is on noiseless over-determined mixtures via frequency-

domain ICA. 2-channel noise mixtures of 2 sources with mixtures either short or dynamic 

can be separated via frequency-domain ICA as well but with the presence of significant 

filtering distortion of the source signals. Performance becomes worse on 4-channel 

mixtures of 4 sources. The separation performance degrades when background noise 

presents.  Researchers pointed out that none of the above methods is truly blind as all 

assume prior knowledge of number of sources and how sources are mixed (instantaneous 

or convolutive). Apart from audio, blind source separation can also be performed on 

biomedical sources.  

Finally, researchers summarized the remaining challenges. These challenges involve 

evaluation methodology but we can create a dataset to evaluate audio source separation 

system. Future challenges involve developing a more close to real life mixing model that 

takes more factors into consideration, designing accurate source localization methods and 

developing a model selection method with truly blind separation and adapt to the 

appropriate source and mixture model at hand while finding the number of sources.  

Researchers summarized the whole campaign in different aspects in detail. This paper is a 

very good summarizing paper. It gave us broad perspective of the campaign and 

presented updated research on source separation with regard to performance and 

measurement criteria especially in audio. Researchers pointed out major future research 

directions in source separation, which is very valuable. I wish researchers would explain 

how some of the key algorithms function before doing the cross comparison.   

In this chapter, a broad range of techniques related to ICA are covered, with advantages 

and disadvantages stated. In chapter 2, we are going to emphasize on FastICA. 
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Chapter 2 : FastICA 

 

2.1 ICA Algorithm and its Literature Review 

The ICA model can be generalized into two basic parts: the mixing model part and the 

separation model aspect as shown in block diagram Figure 2.1. Generally speaking, the 

ICA model consists of instantaneous ICA and convolutional ICA two methods. 

 

 

Figure 2.1: ICA Procedures Block Diagram 

 

In Figure 2.0, we have mixtures X; after steps of preprocessing, we have whitened 

mixture X’. We use whitened mixture X’ to estimate Separating Matrix Estimation W, 

we multiply matrix W to mixture Matrix X yielding a Matrix Y with all underlying 

Independent Components (ICs). 

In the instantaneous blind signal separation approach including instantaneous ICA, we 

have the model  

 x=A*s                                                     (2.1) 

where x is the mixture matrix, A is the mixing matrix with each coefficients in matrix A a 

scalar and s is the sources/speakers matrix with each column/row an individual source. 

This model is referred to as the instantaneous blind source separation model due to the 

mixing matrix A being instantaneous in a sense that no delays are present (signals arrive 

at the sensors at the same time), no dispersive effects (reverberation, echoes) are taken 

into consideration, and no microphone sensor noise presents. 
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Independent Component Analysis was relatively thoroughly covered by Aapo Hybarinen, 

Juha Karhunen, Erkki Oja from Helsinki University of Technology [6]. Independent 

Component Analysis (ICA) is a method of Blind Source Separation. Blind refers to the 

fact that we have very little or no prior knowledge of the original sources and mixing 

process but only the mixtures and we try to recover the Independent Components (ICs) or 

underlying sources. Specifically in the ICA model, we have the observed multivariate 

data variables.  These variables are linear or nonlinear mixtures of some unknown latent 

variables with unknown mixing systems. We estimate the mixing matrix based on the 

statistical analysis of the mixtures and there are two common ways to recover the mixing 

matrix: minimize the mutual information and maximize the non-Gaussianity.  

 

In ICA, we assume components are statistically independent and carry out preprocessing 

procedures before the main ICA method. Generally, there are three preprocessing 

processes: centering the observed data (also called removing mean), dimension reduction 

by principal component analysis (PCA) and whitening the observed data. The 

preprocessing process is always carried out in the above order. First we need to center 

multivariate data variables by removing their mean values, while speech signals always 

have a mean value of zero, we always eliminate this step in audio signal processing.  

 

Principal Component Analysis (PCA) decorrelates a set of correlated variable mixtures 

into linearly uncorrelated variables referred to as principal components.  PCA does not 

perform as well as Independent Component Analysis (ICA) individually, but PCA is an 

effective way to do dimension reduction, which can be used in the preprocessing of data 

before passing them through the FastICA algorithm. Reducing dimension of data by PCA 

helps to reduce noise and prevents overlearning. PCA may solve the problem that we 

have less ICs than mixtures. 

2.1.1 ICA Basic Model 

We have Original Signal matrix S with each column an independent source s1,s2, s3,…sn. 

s1, s2, s3,…,sn are column vectors and S=( s1,s2, s3,…sn). The unknown mixing system, 

matrix A is a square matrix. The observed matrix X corresponds to microphone 
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recordings and each column x1, x2, …, xn is observed from each microphone where 

X=( x1, x2, …, xn). We have  

 X=A*S.                                                                                                  (2.2) 

In order to use the ICA algorithm to find the underlying independent sources, we also 

have to run preprocessing which will be covered in details later this thesis on microphone 

recordings meaning the preprocess matrix X for relatively good performance. 

Preprocesses include removing room noise/effects, removing mean from the mixtures, 

using principal component analysis (PCA) or Singular Value Decomposition (SVD) to 

find the eigenvalues and eigenvectors of the mixture for further use to recover the latent 

sources. We use a high pass filter to filter out room noise. 

Since audio signals always have a mean value of zero, the step of removing mean from 

the microphone recording mixtures can be neglected. In order to use PCA for eigenvalue 

decomposition, we need to find the covariance matrix Cx of the recorded mixture matrix 

X first, and it can be calculated using the equation below 

Cx=E{(X-mx)(X-mx)
T
}                                                                          (2.3) 

It can be calculated element-by-element using the following equation 

  Cij=E{(xi-mi)(xj-mj)}                                                                               (2.4) 

Cx is covariance of matrix X and mx is the mean of the matrix X.  

The independence of components is maximized through the ICA algorithm by 

minimization of mutual information or maximization of component non-Gaussianity.  

Minimization of mutual information consists of algorithms such as Kullback-Leibler 

Divergence and maximum entropy. Maximization of the non-Gaussianity algorithm 

considers kurtosis and negentropy and tries to reverse the central limit theorem. Some 

popular BSS methods are FastICA, Time Frequency Masking, Direction of Arrival, 

ConvolutiveBSS, optimized informax, and optimized kurtosis based methods [20].  After 

estimating the mixing matrix M, we can directly apply the mixing matrix to the original 
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data to get independent components, but for better source separation, we introduce 

preprocessing steps. 

2.2 Preprocessing steps for BSS/ICA 

When directly applying the ICA algorithm to real data, several problems will arise 

including overlearning and noise. So we introduce preprocessing steps such as centering, 

whitening, and dimension reduction to cope with the problems mentioned above as well 

as simplify the main iterative ICA algorithm. Centering is done by subtracting the mean 

of the signal from the original signal and can be neglected in audio signal processing due 

to the fact that audio signals always have a mean of zero. But when we consider image 

processing, centering is a must. Whitening is usually done with eigenvalue 

decomposition. This step tries to make the source signal as orthogonal to each other as 

possible. Dimension reduction aims at focusing on the signals/mixtures with most of the 

information and discards mixtures with the least information and mainly noise.  

2.2.1 Filtering 

We use a Butterworth high pass filter with a cutoff frequency of fc= 100 Hz to remove 

the low frequency room noise. Why do we need high pass filter? 

Room noise presents in a typical room environment. Even in a fairly quiet room, there 

exists power line carrier frequency disturbance, molecule movement, electronic devices 

disturbances, etc. Noise generated from a source in a room will undergo frequency 

dependent propagation, absorption and reflection, creating multi-path (which is an issue 

in telecommunication, cellular), reverberation and echoes [6]. In Telecommunication, the 

multipath phenomenon exists and channel models that have multipath propagation cause 

acoustic processing-reverberation. We try to take care of these issues in the FastICA 

algorithm. 

For better process results, we use a filter to preprocess the microphone recordings to 

remove as much room noise as possible. We also have to consider the effects that 

filtering can bring to the source separation process. Luckily, linear filtering of the signals 

will not change the ICA model itself but different kinds of filters such as low-pass filter 

and high-pass filter affect the ICA model differently. Low-pass filtering removes slowly 
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changing trends of the data to smooth the data and helps to reduce noise in the data. But 

low pass filter can also reduce information in the data causing the loss of fast-changing, 

high-frequency features of the data, which leads to reduction of independency. High-pass 

filtering or computing innovation processes are useful to increase the independent and 

non-Gaussianity of the components. It increases the independence of the components. 

That is to say, the high pass Butterworth filter we introduced can remove room noise as 

well as improve the separation results. 

2.2.2 Preprocessing via Dimension Reduction through Principal Component Analysis 

In Chapter 13 Practical Considerations of ICA of the book Independent Component 

Analysis by Aapo Hyvarienen, Juha Karhunen and Erkki Oja, it says that to prevent 

overlearning and reduction of noise of the data set, preprocessing techniques such as 

dimension reduction by Principal Component Analysis, and time filtering are useful. 

It states that dimension deduction helps prevent overlearning of the data, we should 

choose the minimum number of principal components that explain the data well enough 

such as containing 90% of the variance. But there are no theoretical guidelines so we 

need to choose the dimension for PCA by trial and error.  Since PCA always contains the 

risk of not including the ICAs in the reduced data so we also do not want to reduce the 

dimension of PCA too much hence there is no good guideline to choose how many ICs to 

be estimated. For my understanding, if we have 5 sources, about 40 microphone 

recordings, we may estimate three components that have good performance (i.e. easy to 

identify words that each source is speaking) using ICA, in this case 3 sources. There also 

exists trade-off between filtering the data to reduce noise and choosing the number of 

principal components to be retained to prevent overlearning.  

So we perform Principal Component Analysis (PCA) to reduce dimension of the data to 

the number of independent components we desire. While PCA dimension reduction helps 

prevent overlearning of the data, it has limitations such that PCA is sensitive to the noise 

and some weak ICs may be lost during the PCA process. So we have to choose the 

minimum number of principal components wisely such that it can explain the data well. 

In a statistical sense, we choose the number of independent components that contains 90% 
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of the variance. This can be achieved by choosing rational eigenvalue range or eigenvalue 

dimension after we conduct eigenvalue decomposition (EVD) of the covariance matrix of 

observed data variable x.  

 

2.2.3 ICA Preprocessing through Whitening 

After PCA, we whiten the data by the formula 

  = E D
-1/2

E
T
x                                                                                           (2.5) 

where D is the diagonal eigenvalue matrix of covariance matrix E{xx
T
}(E{} is the 

expectation function operation) and E is the orthogonal eigenvectors of the covariance 

matrix. Whitening helps solve half of the ICA problem because whitening reduces the 

number of parameters to be estimated, therefore reducing the complexity of the problem. 

This can be easily seen in the two-dimensional data example. After whitening the two-

dimensional data, we just need to find the rotation angle and use this angle to rotate back 

the distribution to get independent components. Whitening basically makes each 

underlying sources as orthogonal to each other as possible. 

 

2.3 ICA/FastICA Main Algorithm 

Now the non-Gaussianity concept is introduced and is crucial for the establishment of 

ICA method. According to the Central Limit Theorem, the distribution of sum of multiple 

random variables looks closer to Gaussian distribution than the distribution of each 

individual random variable. Now finding an estimator to give good approximation so as 

to find the underlying independent components means that we need to find an estimator 

to make each independent Component more non-Gaussian. The main algorithm of the 

FastICA helps estimate Separating Matrix W in Block Diagram Figure 2.1 so as to 

recover independent components. FastICA uses a set of fixed-point iterative procedures 

that extract independent components using a non-Gaussianity signal measure. 

 

There are two main quantitative measures of non-Gaussianity of a random variable 

kurtosis and negentropy. Kurtosis is a fourth-order cumulant and the kurtosis of random 

variable x is defined as  
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Kurt(x) = E{x
4
}-3(E{x

2
})

2   
                   (2.6) 

Typically, we use the absolute value of kurtosis to measure non-Gaussinity so as to 

identify the independent component. Kurtosis is simple to use both computationally and 

theoretically, but is not very robust due to its sensitivitiy to outliers. Negentropy J is 

defined as  

J(x)=H(xgauss)- H(x)                      (2.7) 

Where H(x) is the entropy of the random variable x, xgauss is a Gaussian random variable 

of the same covariance matrix as x. For continuous-valued random variables and vectors, 

differential entropy H(x) shows how unpredictable and unstructured the random variable 

x is and differential entropy H(x) with density f(x) is defined as  

H(x) = -ʃ f(x)log f(x)dx                                 (2.8) 

According to information theory, for differential entropy continuous distribution 

Gaussian variable has the largest entropy among all random variables with the same 

variance. So the higher the negentropy value, the more non-Gaussian the random variable 

x is so negentropy can be used to find the independent component. But it brings 

computational and estimation difficulties when using negentropy as an estimator of non-

Gaussianity. So we approximate negentropy using higher-order moments shown as  

J(x)≈
 

  
 E{x

3
}

2 
+
 

  
 kurt(x)

2 
                       (2.9) 

but this classical approximation is not robust due to the usage of kurtosis and the 

limitation of kurtosis mentioned above. Luckily Hyvarinen came up with a new 

approximation in 1998 based on maximum-entropy principle shown as 

J(x)≈∑   
   i[E{Gi(x)}-E{Gi(v)}]

2
        (2.10) 

where ki are some positive constant and we can just treat it as a plus sign. v is a zero-

mean unit variance Gaussian variable. x is zero mean unit variance variable. Gi are non-

quadratic nonlinearity general purpose functions that help robustly estimate the 

negentropy. Variable p is the total number of functions Gi that is used in the negentropy 

approximation.  In the estimation process, if we use the same G, the above approximation 

can be simplified as   

J(x)≈[E{G(x)}-E{G(v)}]
2
         (2.11) 

Depending on different distributions and by choosing function G wisely, we can get a 

very robust approximation of the negentropy which is very useful in the FastICA 
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algorithm. For each fixed non-quadratic function G, the E{G(v)}value is fixed, which is 

due to the definition of negentropy. 

 

2.3.1 FastICA for one computational unit 

 

FastICA learning rule finds a direction: a unit vector w that the projection w
T
x maximizes 

non-Gaussianity with non-Gaussianity measures by the negentropy J(w
T
x). After 

conducting the Gradient algorithm and the Newton Method, finding the optima of the 

Lagrangian by Newton’s method, simplification, and other mathematical manipulations, 

the basic iteration in FastICA is shown as 

                                           w <- E{xg(w
T
x)}-E{g

’
(w

T
x)}w           

g is the derivative of G in eq. 2.11. For example, we take g(u) = tanh(au) , 1≤a≤2, and 

often we take a =1. 

 

 After mathematical approximation and algorithm derivation, the steps mentioned above, 

the FastICA algorithm for single component (vector w) extraction has steps below 

1. Choose an initial random  unit norm vector w 

2. Let wnew=E{xg(w
T
x)}-E{g

’
(w

T
x)}w 

3. Norm w by letting w=wnew/||wnew|| 

4. If w not converged, go back to step 2 

g is the derivative of the non-quadratic general purpose function G in equation 2.10 and g’ 

is the derivative g. Convergence is calculated based on whether the norm distance 

between w  and w in the last iteration is less than the value of epsilon (ε), which is very 

small. Convergence also means that old and new values of w point in the same direction.  

 

2.3.2 FastICA for several computational units 

 

To extract several independent components using FastICA, we need to run one-unit 

FastICA using several units of weight vectors w1, .., wn. To prevent different vectors 

converging to the same maxima, orthogonalized vectors w1,w2,..., wn after each iteration 
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are a must. We can conduct deflationary or symmetric orthogonalization (decorrelation). 

Deflation decorrelation estimates ICs one by one, while Symmetric Decorrelation 

parallelly computes ICs [6].  

 

For the deflation algorithm, when we have estimated p independent components, or p 

vectors w1,…,wp, we run the one-unit fixed-point algorithm for wp+1, and after every 

iteration subtract from wp+1 the “projections” wp+1
T
wjwj, j=1,…,p of the previously 

estimated p vectors, and then renormalize wp+1, shown in steps as  

1. Let wp+1= wp+1 -  ∑           
    

2. Let wp+1= wp+1/√          

For Symmetric Decorrelation, no vectors are privileged over others. The steps are as 

follows:  

1. Let W = W/√        

2. Let W = 
 

 
 W -

 

 
 WW

T
W 

Where we have W, it is the matrix (w1, .., wn)
T 

, Repeat 2 until convergence; that is to say, 

WW
T
 is the identity matrix or close enough to it. Then we estimate underlying ICs by  

                Y=W*X.                                                                                                        (2.12) 

Researchers chose FastICA method over other methods because it is superior over the 

gradient-based algorithm. When the environment is not fast changing, fast adaption to 

environment is not needed; the fast fixed-point Algorithm(FastICA) is much better than 

the gradient-based algorithm in ways such as fast convergence and no need to consider 

learning rate or other adjustable parameters. FastICA can also directly find independent 

components, can be optimized by choosing a suitable function g, can estimate 

independent component one by one, and is computationally simple and requires little 

memory space [6].  
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2.4 Noisy ICA model 

In reality, there is always noise in the observations. Actual physical noise in the 

measuring devices or inaccuracies of the model causes noise. Estimating the mixing 

matrix seems to be quite difficult when noise is present.  

The noisy model is not invertible; therefore estimation of the noise-free components 

requires new methods. Noisy ICA model is described as  

X=AS+N                                                                                              (2.13) 

We assumed that the noise is independent from the independent components and that the 

noise is Gaussian. In reality, a better approach is to reduce noise in the data before 

performing ICA i.e. conduct filtering of time signals or dimension reduction. This noisy 

model helps us understand the mixing system better [6]. 

 

2.5 Limitation of ICA/FastICA 

ICA model also has drawbacks such that it will not be able to estimate the correct scaling 

of the sources, the order of the ICs. This is where we introduce permutation alignments. 

 

The basic ICA model is straightforward, but in reality, it is more sophisticated and 

complicated than the basic model especially in an audio environment. In an acoustic 

signal environment i.e. the typical cocktail party scenario, it is hard to use the existing 

ICA model to obtain the underlying sources; researchers then come up with a 

convolutional ICA method to help overcome problems brought on by the audio 

environment. Still we have to take some factors into consideration in the modeling 

process. First, we need to figure out a way to measure delays in the mixtures. Sound 

signals propagate at different rates; different frequency bands attenuated at different rates, 

thus the speech signals do not arrive at the microphone at the same time. Also 

microphones record echoes of the speakers’ voices due to reverberation from walls, 

ceilings and other objects in the room. All these factors have to be considered to get an 

accurate delay. Second, speakers easily become non-stationary. Even in our stationary 

cases, speakers are not strictly stationary because a speaker may slightly move their head 
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while talking. When this happens, we have to re-estimate the mixing matrix. If multiple 

speakers move their heads non-simultaneously, we have to constantly re-estimate the 

mixing matrix. Third, noise exists in the systems. There is actual physical noise in the 

devices and noise brought by the inaccuracies of the estimating model. Actual physical 

noise, such as sensor noise may not be Gaussian as previously assumed and this will 

interfere with the algorithm because high-order cumulates are used to estimate the mixing 

matrix which is insensitive to Gaussian noise.  

 

To get accurate independent components, we have to modify the existing ICA toolbox 

and optimize based on the issues listed above.  We may also consider using the 

convolutional ICA method on the frequency domain instead of the time domain. Also, we 

can introduce some pre- or post-processing techniques to help get better sound effects on 

underlying sources, such as introducing a high-pass filter on the mixtures to remove room 

noise, combining ICA method with masking method. In chapter 3, we introduce the 

Convolutive BSS algorithm hoping to solve these problems.  

 

2.6 FastICA Experiment Setup 

2.6.1 FastICA Parameter Configuration Procedures 

The properties of ICA method depend on both the objective function and the optimization 

algorithm. The objective function affects the statistical properties such as consistency, 

symptotic variance and robustness while the optimization algorithm affects the algorithm 

properties such as convergence speed, memory requirements, and numerical stability. 

Ideally, statistical and algorithm properties are independent. To choose the algorithm, if 

we estimate the independent components by parallel, we can select the symmetric method; 

otherwise we can use the deflation method to estimate a few of them. We can use the tanh 

function to resolve the nonlinearity in the algorithm. On-line stochastic gradient methods 

can be selected to cope with the changing mixing matrix or close to real-time tracking.  

Summaries about selecting the suitable function G: G(y) =logcosha1y(1 <a1<2) is a good 

general-purpose function. G(y) =-exp (-y
2
/2) works better when the Independent 
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Components (ICs) are highly super-Gaussian or when robustness is very important. 

Kurtosis as g function is very picky. It is well justified only if the ICs are sub-Gaussian 

and there are no outliers, we should be cautious when using kurtosis. More details are 

covered in the ICA book [6]. 

As far as different ICA algorithms, for statistical performance, the best results are 

obtained when using the tanh nonlinearity with any algorithm. For computation load, Fast 

ICA is much faster than gradient algorithms. 

Noise has a strong impact on the ICA algorithm. Estimation accuracy of ICA degrades 

fairly smoothly until the noise power increases up to -20dB of the signal power. If noise 

power increases more, ICA algorithms are not able to separate all the sources. In practice, 

if a lot of noise is present, it can smear the separated ICs or sources, meaning the 

separated results are useless. Once there is even a little noise present in the data, the error 

strongly depends on the condition number of the mixing matrix A [6]. 

Researchers in the ICA book stated for real world data, the true independent components 

are unknown. Assumptions made in the standard ICA model may not hold or hold 

approximately, hence we can only compare the performances of the ICA algorithms with 

each other. Researchers summarized that [6] 

1) ICA is a robust technique 

2) The FastICA algorithm and the natural gradient ML algorithm with adaptive 

nonlinearity yielded usually similar results with real-world data. 

3) In difficult real-world problems, it is useful to apply several different ICA 

algorithms, because they might reveal different ICs from the data. 

4) The theorem means that we can estimate the independent components from the 

noisy observations by maximizing a general contrast function of the form. 

5) High-order cumulates are unaffected by Gaussian noise, but high-order cumulates 

are sensitive to outliers which is not very useful in practice. But we do not need to 

know the noise covariance matrix. 
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6) To obtain estimates of the original independent components, we would like to 

obtain estimates of the original independent components and the results are 

somehow optimal using the MAP estimates. 

7) Noisy ICA estimation can also be used to denoise. Denoise procedure is called 

sparse code shrinkage. It is better to first attempt to denoise the data so that basic 

ICA methods can be used. 

2.6.2 Experiment Setup 

Instantaneous and convolutive mixtures are simulated to validate and check the 

performance of the source separation in immersive audio environments. Parameters are 

optimized for separation results through paper and book reviews and numerical 

experiments.  

Parameters are set up as below: 

Approach: Symmetric, 'symm' 

Nonlinearity function g: tanh ,'tanh' 

 

2.6.2.1 Instantaneous Mixtures Separation 

We randomly selected four wave files man1.wav, mam2.wav, woman1.wav and 

woman2.wav and treated them as four sources. After processing them, we used a 4x4 

randomly generated matrix A and treated it as a pseudo-attenuation scalar to multiply the 

source signals yielding a pseudo-four-channel microphone recording. We then used the 

FastICA toolbox to process the pseudo-mixture. Please observe the envelopes of the 

waveforms. Please observe waveforms changes amongst original speech, one microphone 

channel, and resulting underlying speech.   
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Figure 2.2: Channel 2 Mixture Channel 

Figures are shown with comparison to originals as below: 

 

Figure 2.3: Source Man1 
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Figure 2.4: Source Man2 

 

Figure 2.5: Source woman1 
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Figure 2.6: Source woman2 

Through these figures, by observing envelops of the independent components before and 

after processing, we can see that FastICA works very well with instantaneous mixtures. 

Though Figure 2.6 looks like the AfterICA signal, it is flipped through the x–axis, but 

this does not affect what we hear. 

 

After intensive experiments with the Convolutive BSS toolbox did not result in good 

separation audio qualities, this inspired us to come up with the FastICA enhancements for 

source separation in Convolutive Audio Mixtures. 

  

2.6.2.2 Convolutive Mixtures Separation 

  

We used the cocktail party simulator cocktail.m from the Array Toolbox to simulate the 

situation in the real world. But when we used the same parameter settings as stated in the 

FastICA toolbox, the signals after separation sounds were pretty much the same as the 

mixtures and we could not tell from which sound source the mixtures came.  Please refer 

to linked files as below. The first file is the microphone recordings, the rest of the four 
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are supposed separated underlying sources. We can hear the separated sources sound 

about the same as the microphone channel, that is to say, no performance improvements. 

 

 

2.6.3 Conclusions 

Through the experiments, we observed that the FastICA toolbox is very powerful in 

audio source separation with instantaneous mixtures, but failed to work with the real 

world recording. But the better real world source separation is what we desire. In the 

following chapter, we are going to look in the Convolutive BSS toolbox in source 

separation.  
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Chapter 3: Convolutive BSS 

 

3.1 Convolutive BSS Algorithm and its Literature Review 

For Convolutional ICA, Independent Component Analysis (ICA) is processed on 

convolutional mixtures. In acoustic signal processing, the mixing process is very complex, 

especially in cocktail party scenario. In this scenario we have simultaneous and 

independent speakers, an unknown mixing process, mixtures collected at microphones 

and we try to recover underlying independent sources. To accurately approximate the real 

life situation, we use the convolutional ICA model.  

In linear noise free systems, we choose suitable multi-dimensional filters based on 

reasonable assumptions trying to undo the mixing process and recover accurate 

underlying sources. Then we introduce sensor noise to the Convolutional ICA to best 

model the cocktail party scenario. 

The basic convolutional mixing model at discrete time index t is shown as  

 xm(t) = ∑   
   ∑     

   amnksn(t-k) + vm(t)                                                                (3.1) 

where we have N source signals s(t) = (s1(t), s2(t),…sN(t)) with each column  an 

independent source. N sources are received by M microphones with received signals 

represented as x (t) = (x1(t), x2(t),…xm(t)), mixing filter coefficient amnk represents the 

filter coefficient relates to source sn, sensor xm and propagation delay k.  vm(t) is the 

sensor noise corresponds to sensor m. 

We can rewrite (3.1) in matrix format 

 x(t)=∑     
   Ak s(t-k) + v(t)                                             (3.2) 

where Ak is k’th filter’s coefficients and is M *N matrix, v(t) is the sensor noise vector 

and is M*1. Take the z transform of (3.2), we get convolutional model in z domain 

 X(z) = A (z) S(z) +V(z)                                  (3.3) 
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Take the Fourier Transform of the (3.2), we get convolutional model in frequency 

domain 

 X(ω)=A(ω) S(ω) +V(ω)                                                                                      (3.4) 

where ω=2πf, A(ω) is a complex M*N mixing matrix. The dimension size of  X, S, V 

stays the same as time domain x, s, v. 

Instantaneous ICA approach is a special case of convolutional ICA approach. Other 

special cases for Convolutional ICA includes reverberation-free environment, noise free 

situation.  

The separation model aims at recovering original sources without interferences from 

other sources, that is to say finding an estimate y(t) corresponds to original source signals 

s(t) one by one.  

We often estimate the separation filters Wl that remove the cross-talk between signals 

caused by the mixing process rather than identify the mixing filters Ak specifically. Those 

separation filters can be modeled as feedback structure (infinite impulse response) or feed 

forward structure (Finite Impulse Response).  

The Feed-forward Separating system is  

 yn(t)=∑   
   ∑     

   wnmlxm(t-l)                                 (3.5) 

or in matrix form 

 y(t) = ∑     
   Wlx(t-l)                                              (3.6) 

and z-domain transform form 

  Y(z) = W(z)X(z)                                                                                                 (3.7) 

where n is the number of underlying sources, L is the filter length, m is the number of 

microphone recordings. 

Therefore, each model source signal is a filtered version of the original source signals, 

shown below in Z domain 
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 Y(z)=W(z)A(z)S(z)=G(z)S(z)                                 (3.8)       

We derive 

 G(z)=W(z)A(z)                                                         (3.9) 

In room situation, the recorded speech signals are most likely a filtered version of the 

signals at the speaker due to diffraction and reverberation [21].  

The difference between the linear convolutive mixing model and the linear instaneneous 

one is that delayed values of the source signals contribute to the output at a given time.  

The mixing matrix is now a multi-variant linear time-invariant(LTI) system with impulse 

response. 

First, the propagation channel often follows a specular model. The contribution of the 

first souce on the first sensor is merely a superimposition of delayed/scaled replica of s1(n) 

and the transfer function hence reads ∑   
   λl z

-tl
 where L is the number of paths, and  (λl,t) 

is the attenuation/ delay pair associated with the l-th path. This model is FIR and that 

causality then follows from the fact that the delay tl is positive. 

Convolutional ICA has the potential to solve non-stationary issues. In this chapter, we try 

to figure out the feasibility of the Covolutive BSS toolbox for BSS.   

 

3.2 Using Convolutive BSS to model the Cocktail Party Scenario 

In the classic cocktail-party problem, or separation of speech signals recorded by a set of 

microphones, the speech signals do not arrive at the microphone at the same time. This 

happens for two reasons. First, sound travels in the atmosphere with a very limited speed. 

Second, microphones usually record echoes of the speakers’ voice due to reverberation 

from walls, ceilings and other objects in the room. 

The cocktail party problem can be modeled as a convolutive BSS model. Then the 

mixing matrix can be modeled as a delayed filter instead of instantaneous scalar. The 

convolutive mixtures model is then constructed as  
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 xi(t)=∑ ∑   
 
    ijksj(t-k)                          for i=1,…,n                                      (3.10) 

which is a FIR filter model, with coefficients aijk represent each FIR filter. Here xi(t) is 

the mixture of the microphone recordings, where we have N source signals s(t) = (s1(t), 

s2(t),…sN(t)) with each column  an independent source. N sources are received by M 

microphones with received signals represented as x (t) = (x1(t), x2(t), …, xm(t)), mixing 

filter coefficient amnk represents the filter coefficient related to source sn, sensor xm and 

propagation delay k.  vm(t) is the sensor noise corresponds to sensor m. 

To get a set of  the estimates of the source signals s1(t), s2(t),…sn(t), we introduce a set of 

similar FIR filters with wijk as the coefficients of the filters and y1(t), y2(t),…,yn(t) the 

estimated output signals. 

 yi(t)= ∑ ∑   
 
   wijkxj(t-k)                    i=1,2,…,n                                            (3.11) 

To achieve inversion accuracy, the number of coefficients in each separating filter must 

be hundreds or even thousands in length/order. Depending on the situation of the model, 

we pick feedback IIR filters or feed forward FIR filters or a combination of both. 

Table 3.1: Comparison Amongst Standard Linear ICA, BSS, and Convolutive BSS 

 Standard 

Linear ICA 

BSS Convolutive 

BSS 

Fourier 

approach 

Indeterminacies Scaling, order 

of the ICs or 

sources 

Scaling, order 

of the ICs or 

sources 

More sever, 

order of 

estimated ICs 

unknown,  use 

filter to 

represent scaling 

Permutation 

and sign in 

each 

frequency 

band 

One way to solve blind separation of convolutive mixtures is to reformulate the problem 

using the standard linear ICA model. Longer speech segments may help improve the 

quality of the separated signals, which result in Higher decibels [6]. 

Take Frourier Transform of equation (3.10), the convolutive mixture model in time 

domain is transformed to an instantaneously linear ICA model in frequency domain. 
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xi( ) = ∑   
   Aij(ω)si(ω),   for i=1,…,n                                                           (3.12) 

This mixing matrix is a function of angular frequency w. If we take short-time Fourier 

Transform of the data then we can utilize standard ICA in practice in Fourier Domain. 

Data is usually windowed by a Gaussian envelope and then Fourier Transform is applied 

separately to each data window. We estimate the ICA component separately for each 

frequency bin.  

 

3.3 Comparison and contrast between the instantaneous and convolutional ICA 

approaches 

Independent Component Analysis (ICA) is a blind source separation and is one of the 

state-of-art topics in signal processing, biomedical fields, telecommunications, neural 

science, etc. ICA model has two basic parts: mixing model and separation model. There 

are different types of ICA, such as instantaneous ICA and convolutional ICA. 

 

 

 

 

                                      Figure 3.1: Overall ICA model 

 

The instantaneous ICA model is the same as the instantaneous Blind Source Separation 

(BSS) Model while ICA is a kind of BSS. The model is constructed as  

 X=A*S                                                                                 (3.13) 

where X is the mixture(sensor) matrix, A is the mixing matrix with each coefficient as an 

attenuation scalar and s is the source matrix with each column/row as an individual 

source. The model is instantaneous because the mixing matrix A is instantaneous. We 

assume that no delays are present (meaning signals arrive at the sensors at the same time), 

ICA Model 

Mixing Model Separation 
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no dispersive effects (reverberation, echoes) are taken into consideration, and no 

microphone sensor noise is present [22].  

But the real world situation is very complicated especially in acoustic signal processing. 

Therefore, researchers introduced the convolutional ICA model to factor in delays, 

dispersive effects, and noise and use this convolutional model to more accurately 

approximate real life situations. In audio signal processing, especially in a cocktail party 

scenario, we have simultaneous and independent speakers, unknown mixing process, and 

mixtures collected at microphones, and we try to recover underlying independent sources. 

For Convolutional ICA, Independent Component Analysis (ICA) is processed on 

convolutional mixtures which help with non-stationary issues in a cocktail party scenario.  

The basic convolutional mixing model at discrete time index t is  

 xm(t) = ∑   
   ∑     

   amnksn(t-k) + vm(t)                                                    (3.14) 

where we have N number of source signals s(t) = (s1(t), s2(t),…sN(t)) with each column as 

an independent source. N sources are received by M microphones with received signals 

represented as x(t) = (x1(t), x2(t),…xm(t)), mixing filter coefficient amnk represents the 

filter coefficient that relates to source sn, sensor xm and propagation delay k.  vm(t) is the 

sensor noise and corresponds to sensor m. 

Rewrite (2) in matrix format we get 

 x(t)=∑     
   Ak s(t-k) + v(t)                                           (3.15) 

where Ak is k’th filter’s coefficients and is a M *N matrix, v(t) is the sensor noise vector 

and is M*1 dimension. If we take the z transform of (3), we get convolutional model in z 

domain 

 X(z) = A (z) S(z) +V(z)                                                                      (3.16) 

which is more straight forward.  

We can also take the Fourier Transform of the (3) yielding the convolutional model in 

frequency domain  
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 X(ω)=A(ω) S(ω) +V(ω)                                (3.17) 

where ω =2πf, A(ω) is a complex M*N mixing matrix. The dimensions of X, S, V are the 

same as time domains x, s, v. 

The separation model shows us how to find the underlying independent components 

through mixtures in the mixing model. The goal of the separation model is to recover 

original independent sources, that is, to find an estimate y(t) that corresponds to original 

source signals s(t) one by one.  

To recover original source signals, we usually estimate the separation filter Wl that 

removes the cross-talk between signals caused by the mixing process rather than identify 

the mixing filter Ak specifically. Those separation filters can be modeled as a feedback 

structure (infinite impulse response) or a feedforward structure (Finite Impulse Response).  

Since in the room situations, delays are always positive, reverberation and diffraction 

exist. The recorded speech signals are most likely a filtered version of the signals. We use 

the casual feedforward structrure (Finite Impulse Response filter model) to solve the 

problem. In linear noise free systems, we choose suitable multi-dimensional filters based 

on reasonable assumptions trying to undo the mixing process and recover accurate 

underlying sources. Then we introduce sensor noise to the Convolutional ICA to best 

model the cocktail party scenario. 

The Feed-forward Separating system is defined as  

 yn(t)=∑   
   ∑     

   wnmlxm(t-l)                                          (3.18) 

We can rewrite it in matrix form as 

 y(t) = ∑     
   Wlx(t-l)                                            (3.19) 

and it can be modeled in z-domain form after taking z transformation shown as  

 Y(z) = W(z)X(z)                                 (3.20) 

where n is the number of underlying sources, L is the filter length, and m is the number of 

microphone recordings. 
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Therefore, each model source signal is a filtered version of the original source signals, 

shown below in Z domain 

 Y(z)=W(z)A(z)S(z)=G(z)S(z)                                          (3.21)       

Hence we derive the transfer function G(z) for the ICA process as 

 G(z)=W(z)A(z)                                                                  (3.22) 

The difference between the linear convolutive mixing model and the linear instantaneous 

one is that delayed values of the source signals contribute to the output at a given time.  

The mixing matrix is now a multi-variant linear time invariant (LTI) system with the 

impulse response. The instantaneous ICA approach is a special case of the convolutional 

ICA approach [20]. Other special cases for Convolutional ICA include a reverberation-

free environment and a noise free situation. Mutiple methods are developed upon 

Convolutional ICA such as the time domain approach, the frequency domain approach, 

iterative and deflation methods, etc [20]. 

 

3.4 Convolutive BSS Experiment Setup 

In this experiment, we have linear array microphones and linear array speakers; these two 

arrays are parallel with each other. In a room setting, we have four target speakers talking 

spontaneously while we have eight microphones synchronically recording the sound. We 

try to recover what each speaker is talking about with just microphone recordings at hand. 

The main algorithm we are using in this experiment is the Blind Source Separation 

method through the convolutive BSS toolbox (Toolbox_2.0.3). This experiment has two 

main goals. First, we test the separation and reconstruction sound quality/intelligibility of 

the four target speakers. Second, we try to explore the correlation between the quality of 

the reconstructed sources and the microphone/speaker spacing.  

To accurately approximate the real life situation, microphones and speakers are placed 

inside a 3.656m*3.656m*2.29m cage. All the microphones and speakers are placed at 

z=1.5m plane to best approximate the height of humans’ mouths. I used the 

cocktailsim.m file, which is edited from the runCocktailp.m file. This file was obtained 
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from the Audio Array Toolbox [23] on Professor Donohue’s website to simulate desired 

situations and get the desired speaker recordings for Blind Source Separation algorithm 

testing. We used four wave files--man1.wav, man2.wav, woman1.wav, woman2.wav 

(wave files can be downloaded from Professor Donohue’s website [23])--and placed 

them at designated speaker locations.  

Parameter configurations in the simulation experiment are shown in the table below.  

Table 3.2: Fixed parameters in the experiment 

Features Number/cases 

Microphones 8 

Speakers 4 

Reverberation  2 

Microphone spacing 4 

Speaker spacing 2 

 

Table 3.3: Parameters in the 16 simulations 

Microphone 

spacing 

 

0.25m 

 

1.5m 

 

2.5m 

 

3.5m 

Speaker 

spacing  

0.5m 3.5m 

Reverberations 

Coefficients in 

this order: four 

walls, ceiling, 

floor 

 

 

Low [0.5 0.5 0.5 0.5 0.5 0.5] 

 

 

High [0.92 0.92 0.92 0.92 0.5 

0.5] 

 

Two typical configurations are shown below: 
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Figure 3.2: Furthest microphone apart is 3.5m; furthest speaker apart is 3.5m 

 

Figure 3.3: Top view of figure 3.2 
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Table 3.4: Speaker locations  in meters for furthest speaker apart is 3.5m 

 Speaker 1 Speaker 2 Speaker 3 Speaker 4 

X direction  0.0780     1.2447     2.4113     3.5780 

Y direction 3.0000        3.0000 3.0000 3.0000     

Z  direction 1.5000     1.5000     1.5000 1.5000 

 

Table 3.5: Microphone locations in meters for furthest speaker apart is 3.5m 

 Mic 1 Mic 2 Mic 3 Mic 4 Mic 5 Mic 6 Mic 7 Mic 8 

X 

direction 

0.0780 0.5780 1.0780 1.5780 2.0780 2.5780 3.0780 3.578

0 

Y 

direction 

0 0 0 0 0 0 0 0 

Z  

direction 

1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.500

0 

 

Figure 3.4: Furthest microphone apart is 3.5 m, furthest speaker apart is 0.25 m 
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Figure 3.5: Top view of figure 3.4 

 

Table 3.6: Speaker locations in meters for furthest speaker apart is 0.25 m 

 Speaker 1 Speaker 2 Speaker 3 Speaker 4 

X direction  0.0780     1.2447     2.4113     3.5780 

Y direction 3.0000        3.0000 3.0000 3.0000     

Z  direction 1.5000     1.5000     1.5000 1.5000 

 

Table 3.7: Microphone locations in meters for furthest speaker apart is 0.25 m 

 Mic 1 Mic 2 Mic 3 Mic 4 Mic 5 Mic 6 Mic 7 Mic 8 

X direction 1.7030 1.7387 1.7744 1.8101 1.8459 1.8816 1.9173 1.9530 

Y direction 0 0 0 0 0 0 0 0 

Z  direction 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 
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After we simulated 16 different microphone recordings, we used the Conv BSS toolbox, 

short for convolutive blind source separation toolbox, to process simulated data in order 

to study the two goals mentioned in the beginning of this experiment setup. 

We passed the simulated microphone data one by one through the Butterworth High-pass 

filter with cutoff frequency 200 Hz. Then we pass the filtered wave channels through the 

ConvBSS toolbox developed by M. Castella, S. Rhioui, E. Moreau and J.-C. Pesquet[24] 

using the deflation method. Important parameters used in convolutive BSS processing are 

number of sources we want to extract, deflation stopping criterion, length(order+1) of the 

convolutive extracting filter including anti-causal and causal parts, extraction method, 

and parameters specific to the chosen extraction method, such as number of sources that 

effectively contribute to the mixture, length of the mixing filter, and number of fixed-

point-like iterations.  

The number of sources we want to extract are the estimated underlying sources that 

contain most of the information. Deflation stopping criterion is the ratio of the power left 

on the sensor divided by power on the sensors initially, after a deflation step. In 

Convolutive BSS, this and the estimated number of sources we would like to extract act 

like a double threshold to help us extract the optimized extraction results as we can. 

Extracting filters is vital in helping us reconstruct information of underlying sources. The 

causal filter is a real-time filter that only depends on present and past information; anti-

causal filter cannot be implemented in real-time because it depends on present and future 

information. Our application doesn’t need to be real-time, so we use a combination of 

causal and anti-causal filters hoping for good separation results. Regarding the extraction 

method, for now we use quadratic contrast, SVD-based optimization [24].  

Parameters associated with this extraction method are: number of main speakers, length 

of mixing filter, number of fixed-point like iteration, and gradient step method. We assign 

the same number to the length of the mixing filter and extracting filter. Parameter 

specifications used in the simulation tests are below: 
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Table 3.8: Values used in ConvBSS separation process 

Parameters Value 

Number of Sources 4 

Stop Threshold of a Deflation Step 1e-2 

Length of the Extracting Filter 100 

Length of Anti-causal Part of Extracting 

Filter 

50 

Length of Causal Part of Extracting Filter 50 

Source Extraction Method 'quadSVD' 

No of Sources Effectively Contribute to 

Mixtures 

4 

Gradient Step 'optim' 

 

After subjective comparison by direct listening to the separated underlying sources, we 

decided to focus on the two extreme cases mentioned above, out of the sixteen cases, due 

to these comparable better separation effects.  

The separated four sources in each case are in the corresponding .wav files. The separated 

sources are shown in the figures below. 
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Figure 3.6: 3.5mic_3.5speakers_lowrev random selected four out of eight microphone 

recordings before using ConvBSS method 

 

Figure 3.7: 3.5mic_3.5speakers_lowrev_highfc_0.5antin0.5causalfilt_convsepartion with 

every color represents one underlying source after separation using ConvBSS method 
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Figure 3.8: 0.25mic_3.5speakers_lowrev random selected four out of eight microphone 

recordings before using ConvBSS method 
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Figure 3.9: 0.25mic_3.5speakers_lowrev_highfc_0.5antin0.5causalfilt_convsepartion 

with every color represents one underlying source after separation using ConvBSS 

method. 

 

When comparing the separated underlying sources for these two cases, we found that 

when the microphone apertures are 3.5 meters apart and speaker apertures are 3.5 meters 

apart, the estimated underlying sources sound more intelligible.   

 

3.5 Problems Encountered When Using Convolutional BSS Toolbox 

When I tried to validate the performance of the Convolutional BSS Toolbox with regards 

to the method mentioned in the file Goals of Experiments and Conclusion Derivation 

Process_w remarks, I first created an excel file called data.xlsx. Into this excel file, I 

manually input all the parameter names and their desired testing values.  An example is 

shown below in Figure 3.8. 
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Table 3.9 Parameter values to validate the Convolutional BSS Performance 

Filename 

Nsour

ces 

SeuilSt

opAlgo 

Lfilt

er 

LSubtr

actFiltr

eAC 

LSubtrac

tFiltreC 

Metho

d 

Nsourc

esEffec

tiv 

Quadr

atic.L 

Quadrat

ic.Nifix 

Gradie

ntStep 

norspeakerpw4sec_3.5mic_3.5s

peakers_lowrev_sigout.wav 4 0.01 100 50 50 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_3.5mic_3.5s

peakers_lowrev_sigout.wav 4 0.01 100 0 100 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_3.5mic_3.5s

peakers_lowrev_sigout.wav 4 0.01 100 80 20 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_3.5mic_3.5s

peakers_lowrev_sigout.wav 4 0.01 30 15 15 

quadS

VD 4 30 10 optim 

norspeakerpw4sec_3.5mic_3.5s

peakers_lowrev_sigout.wav 4 0.01 160 80 80 

quadS

VD 4 160 10 optim 

norspeakerpw4sec_3.5mic_3.5s

peakers_highrev_sigout.wav 4 0.01 100 50 50 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_3.5mic_3.5s

peakers_highrev_sigout.wav 4 0.01 100 0 100 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_3.5mic_3.5s

peakers_highrev_sigout.wav 4 0.01 100 80 20 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_3.5mic_3.5s

peakers_highrev_sigout.wav 4 0.01 30 15 15 

quadS

VD 4 30 10 optim 

norspeakerpw4sec_3.5mic_3.5s

peakers_highrev_sigout.wav 4 0.01 160 80 80 

quadS

VD 4 160 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_lowrev_sigout.wav 4 0.01 100 50 50 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_lowrev_sigout.wav 4 0.01 100 0 100 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_lowrev_sigout.wav 4 0.01 100 80 20 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_lowrev_sigout.wav 4 0.01 30 15 15 

quadS

VD 4 30 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_lowrev_sigout.wav 4 0.01 160 80 80 

quadS

VD 4 160 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_highrev_sigout.wav 4 0.01 100 50 50 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_highrev_sigout.wav 4 0.01 100 0 100 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_highrev_sigout.wav 4 0.01 100 80 20 

quadS

VD 4 100 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_highrev_sigout.wav 4 0.01 30 15 15 

quadS

VD 4 30 10 optim 

norspeakerpw4sec_0.25mic_3.5

speakers_highrev_sigout.wav 4 0.01 160 80 80 

quadS

VD 4 160 10 optim 
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Then I wrote a software script in Matab that reads in all the data from the excel file.  This 

software script is also iterative. For every row of data, it calls the Convolutional BSS 

method and computes with the parameter values given using the specific method 

designated in the row. When finishing computing, the script will give four separated 

underlying sources in .wav format. 

Each set of data takes approximately twenty minutes to an hour to get four underlying 

sources. After inner and cross comparison of the different separating results by direct 

listening we found that some set of the data works better than others.   

We picked the four most distinct (in a sense that their timbre are quite unique and easy to 

distinguish from a group) sources man1, man2, woman2, and woman3. We selected four 

seconds based on the speech density of the wave files of these four wave files so as that 

we run ConvBSS algorithm testing, it does not use quite as much time, so we can get a 

quick idea of the performance, find the critical parameter, and validate it on the whole 

length speech.  We then normalized the four sources to the same power level to avoid the 

volume interferences of the Convolutional BSS algorithm.  

We also ran simulation tests on high reverberation cases. In summary, we ran simulations 

with regard to high/low reverberations, different numbers of microphones/speakers 

(meaning mixing systems are under/over determined), different microphone/speaker 

spacing, different parameter setup for the Convolutive Toolbox, and different filter 

length/types of filters (causal/anti-causual). Two typical cases are shown in Figures 3.2 

through 3.9. Some of the parameter variation is shown in Table 3.8.  Figure 3.2 is a 

layout of the best case we have through our experiments. Figure 3.3 is the top view of the 

layout. Even in the best case, we do not hear much performance improvement. As far as 

all the experiments we have tried, Convolutive BSS failed to show much improvement in 

source separation such as difference level of reverberation, different geometry 

microphone and speaker layout, different number of microphones, different filter 

length/types, etc. Later on, we found that Convolutive BSS has stability issues as well. 

The abnormal spikes in Figures 3.7 and 3.9 show stability issues. Later on, we conducted 

stability tests on different kinds of algorithms in the Convolutive Toolbox 
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(Toolbox_2.0.3); very rarely can one algorithm in Toolbox_2.0.3 make it. This test shows 

stability issues in Toolbox_2.0.3.  

From the convolutive algorithm interpretation, it seems that theoretically the Convolutive 

BSS should work well dealing with real world recordings and real world recording are 

most often convolutive.. However, the toolbox requires many parameters to be set and 

often has stability issues as well as minute performance improvement. 
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Chapter 4: Channel Aligned Fast ICA 

 

The FastICA toolbox works well in extracting each source when we have instantaneous 

mixture sources. But this toolbox failed to extract any source from mixtures when the 

mixture is convolutional. Then we looked into the Matlab toolbox for separation of 

convolutive mixtures [25], adjusted it to smoothly interact with audio signals. We also 

intensively ran experiments on this toolbox and tried all the separating methods in 

Convolutive toolbox. After many experiments as mentioned in the last chapter, we found 

that the toolbox is not stable when working with audio signals. As we were trying to fix 

this problem by researching this toolbox, we found that researchers just mentioned in 

their papers that this toolbox brings in low MSE when sample size was large. Researchers 

have not tried working with audio signals/ speech signals using this toolbox and this 

toolbox needs quite a bit of development work so as to be more efficient for audio signals. 

Other toolboxes that work well with audio signals are Flexible Audio Source Separation 

Toolbox (FASST) [26] and BSS Locate (A toolbox for source localization in stereo 

convolutive audio mixtures) [27]. FASST toolbox keen methodology is based on 

nonnegative matrix factorization (NMF) while BSS Locate toolbox leans more towards 

the estimation of Time Differences of Arrival (TDOAs) of sources. FASST does not have 

the smooth sound effects on Linear instantaneous mixture after separation while FastICA 

toolbox have smooth sound effects, it could not extract all the underlying sources in a 

underdetermined situation.  BSS Locate Matlab toolbox estimates the Time Differences 

of Arrival (TDOAs) of multiple sources in a stereo audio signal recorded by a pair of 

omnidirectional microphones. Two different categories of source localization methods 

are implemented: angular spectrum-based methods and clustering-based methods. It is 

more powerful when combined with other algorithms using TDOAs.  

For our cocktail party scenario, we took advantage of the FastICA algorithm (such as 

smooth separation effects, fast processing, etc.) and developed a new algorithm, Channel 

Aligned Fast ICA (CAICA). Since Convolutive BSS toolbox has many parameters 

needed to be setup, it takes time to explore suitable parameters for source separation so it 

is not very practical and is time cosuming to use Convoulitve BSS. While FastICA can 
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use just one set of parameters for source separation and it works very well with 

instantaneous mixtures but failed to separate Convolutive mixtures, it inspired us to align 

all microphone channels to make speaker sound “instantaneous” with respect to all 

microphone channels, and then apply FastICA to the aligned mixtures. Source separation 

results only have one channel with clear Source of Interest, other channels are all noise.  

We can then combine the results with Time Frequency Masking for effective source 

separation of from the mixtures. But CAICA brings up a tradeoff because Convolutive 

BSS does not need any prior knowledge such as the relative locations of the microphone 

and SOI but CAICA does require such information. With the limitation of the weighted 

Beamforming such that it could not generate up to the total number of microphones of 

meaningful channels. We also prolong the advantages of the algorithm and combine it 

with Time Frequency Masking for better sound extracting results (motivation of the new 

algorithm). 

4.1 CAICA Description 

A new algorithm referred to the Channel Aligned FastICA (CAICA) is introduced in the 

thesis. This ICA enhancement requires knowledge of the source distance to each 

microphone, but does not require knowledge of the noise sources. 

Procedures of CAICA are: 

1). Calculate delays from SOI to each microphone 

2). Apply delays to align SOI signals in each microphone 

3). Use Fast ICA for Source Separation of SOI 

 

After applying delays to each microphone channels, from each microphone’s perspective 

of view, SOI hits each microphone at approximately the same time. 

 

4.2  Closest Microphone(CM) recordings 

Just as its name suggests, Closest Microphone (CM) is the microphone that is closest to 

SOI; it performs best amongst microphone arrays. CM recording is used as a reference to 

compare with three other algorithms CAICA, WB, CAICA with TFM. Upon comparing, 

we can see other algorithms have performance improvements.  



 

55 

 

4.3 Weighted Beamforming (WB):  

Beamforming is a signal processing technique that uses spatial information to filter a 

target signal of undesired interference [Litva 1996]. Beamforming uses the measured 

positions of a target speaker and an array of microphones to calculate optimal methods of 

filtering and combining several audio tracks into one with an enhanced SNR.  

Weighted Beamforming(WB) weights different microphone channel with regard to its 

distance to SOI. A microphone channel that is closer to SOI will have higher weights; a 

channel that is farther away from SOI has lower weights. 

 

4.4 Time Frequency Masking (TFM)  

Fourier transforms the SOI after processing the Channel (with interferences) and 

interference channels in the frequency domain[28,29].  

For each time Frequency unit, compare SOI and interferences, if SOI is dominant, keep it; 

otherwise put value zero in this unit; that is, mask it out. Hence we have a binary time 

frequency mask[28, 29]. We then take the Inverse Fourier Transform to get the processed 

audio signals in the time domain. 

 

4.5 CAICA with TF Masking 

Furthermore, we combine CAICA with Time Frequency Masking (TFM) yielding even 

better SOI extraction even in a harsh environment such as a low SNR environment. 
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Chapter 5: Simulation Experiment 

 

To test the effects of the CAICA and CAICA with TFM, we ran simulations, asked 

candidates to evaluate the separation effects and ranked the performance based on direct 

listening, and did statistical analysis on the gathered data. 

5.1 Simulation Setup 

We have eight microphones and four speakers in this set of simulation experiments. 

 

Figure 5.1: Microphones and Speakers 3-D coordinates 
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Figure 5.2: Microphones and Speakers 3-D coordinates 

 Table 5.1: Speaker Locations in meters for this setup 

X direction 1.0780 1.5780 2.0780 2.5780 

Y direction 1.0000 1.0000 1.0000 1.0000 

Z direction 1.5000 1.5000 1.5000 1.5000 

 

Table 5.2: Microphone Locations in meters for this setup 

 Mic 1 Mic 2 Mic 3 Mic 4 Mic 5 Mic 6 Mic 7 Mic 8 

X direction 0.0780 0.5780 1.0780 1.5780 2.0780 2.5780 3.0780 3.5780 

Y direction 0 0 0 0 0 0 0 0 

Z  direction 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

 

From left to right in Figure 5.2, we have microphone 1 to microphone 8. 
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5.2 Simulation Procedures 

We randomly selected four out of the 12 wave clips, man1, man2, man3, man4, man5, 

man6, man7, man8, woman1, woman2, woman3, and woman4 without replication and 

put them in the selected order from left to right in four speaker spots.  We put 8 

microphones in the designated spots. We trimmed randomly selected speaker wave clips 

to the same length and passed them through a high pass filter to remove room noise. Then 

we normalized each speaker’s power.  We randomly selected a speaker location and 

treated it as the Speaker of Interest (SOI). We used cocktail function cocktailp(sigin, spos, 

mpos, recinfo) to simulate room effects yielding cocktail party data. Here we set 

recinfo=0 for no reverberation[23]. 

 

Based on room temperature, room humidity and room pressure, we calculated the speed 

of sound and we found the distances from SOI to each microphone in meters. We 

subtracted every distance from SOI to microphone from the maximum distance and then 

divided by speed of sound yielding time durations that each track needs to be delayed so 

that SOI hits each microphone at the same time.  Then we converted relative time delays 

to relative sample delays. We detected the closest microphone channel based on the 

minimal delays and labeled it. We padded the number of zeros that are equal to the 

relative delays samples in each track and stored data as the microphone aligned data.  

 

We added up all the signals across the 8 microphone channels yielding SOI beamforming 

data. Based on the distances from SOI to sensors (microphones); we computed weights 

for each sensor. We weighted each channel based on these calculated weights and 

summed them up across all eight channels yielding the weighted beam forming (WB) 

data. 

 

We processed microphone-aligned data through the FastICA toolbox with optimized 

parameters yielding the channel aligned FastICA data. We listened to each channel and 

handpicked the processed SOI channel and saved it as the CAICA SOI channel data. 

After identifying SOI and interference channels, we processed CAICA data through the 

Time Frequency Masking algorithm tfmask.m in the ASA_Toolbox. In the Time 
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Frequency Masking file, for each time window and frequency bin when the SOI value is 

larger than each interference, we kept the SOI value, otherwise we masked out (zeroed 

out) this frequency bin (zero out this time window) [28, 29]. Then we got the data for the 

CAICA with TFM. Figures associated with every algorithm and/or references are shown 

from Figure 5.3 through Figure 5.8. Related sound files please seen files linked next to 

figures. 

 

Figure 5.3: Normalized SOI (man3) 
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Figure 5.4: SOI(man3) closest microphone 3 

 

Figure 5.5: SOI(man3) weighted beamforming 
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Figure 5.6: SOI (man3) channel adjusted fastICA SOI channel 7 

 

Figure 5.7: SOI(man3)channel adjusted fastICA with time frequency masking 
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Figure 5.8: All wave forms for comparison 

 

5.3 Experiment Approaches and Descriptions  

We then ran the same experiment mentioned above but with lowered SOI volume: 50%, 

40%, 35%, 30%, and 25% of the normalized power to find the critical point. When SOI is 

100% of the normalized power, it roughly corresponds to -4.7712 dB SNR.  50%, 40%, 

35%, 30%, and 25% of the normalized power roughly corresponds to -7.7815dB, -

8.7506dB, -9.3305dB, -10dB, and -10.7918dB SNR.  When it comes down to SOI 30% 

of normalized power (-10dB SNR), systematic errors occurred such as we cannot identify 

the SOI channel in the CAICA data. 

 

100% and 35% of the normalized SOI power (-4.7712 dB and -9.3305dB SNR) were 

finalized to compare algorithm performance in the simulation experiments.  A total of 16 
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sets of experiments were conducted based on the procedures mentioned above and 8 sets 

were with 100% of the normalized SOI power and the other 8 sets were with 35% of the 

normalized SOI power. 

 

For each set of experiments, we put five sound tracks in audacity and saved the audacity 

file. In each audacity file, the first sound track is always the randomly selected SOI with 

the desired power. The rest of the four sound tracks are CM, WB, CAICA SOI channel, 

and CAICA with TFM, but not necessarily in the stated order.  In fact, the order is 

random in order to better judge each algorithm’s performance.  

Five laboratory members participated with the goal of nonbiased testing of algorithm 

performance. All candidates went over the message in italics first and needed to make 

sure they fully understood how the experiment works and the goals before they 

proceeded.  

Descriptions: 

In this experiment, we will listen to and rate 16 sets of files. In each set of files, we have 

five sound tracks. The first sound track (reference sound track) is always the Source Of 

Insterest (SOI), the rest of the sound tracks are associated with different algorithms not 

appearing in the same order in each file. 

Question: 

Please rank the sound tracks with respect to the degree that SOI speech is extracted from 

the other voices with 1 being best and 4 being worst. 

Remarks: 

Please go back and forth until you are fairly confident with your ranking. Please record 

the results in the provided spreadsheet. In the case, when you feel two are the same, give 

them an arbitrary ranking. 

Candidates will open the experiment file in the audacity with the interface as shown in 

Figure 5.9.  
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Figure 5.9: Audacity user interface for one experiment 
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As they went back and forth listening and comparing the quality of the algorithms, they 

also recorded the ranking of the sound files in an Excel file for each member. An 

example of a set of rankings for a single listener is shown in Table 5.3. 

Table 5.3: Test_Laboratory Member A Sound Track Ranking 

 Sound Track 2 Sound Track 3 Sound Track 4 Sound Track 5 

EXP 1 2 1 4 3 

EXP 2 2 3 4 1 

EXP 3 1 2 3 4 

EXP 4 3 4 2 1 

EXP 5 1 4 2 3 

EXP 6 3 1 2 4 

EXP 7 4 2 3 1 

EXP 8 2 3 4 1 

EXP 9 1 2 4 3 

EXP 10 4 1 3 2 

EXP 11 3 2 4 1 

EXP 12 2 4 3 1 

EXP 13 2 1 4 3 

EXP 14 2 4 3 1 

EXP 15 3 4 1 2 

EXP 16 3 1 4 2 

 

Based on the name of each sound track in each experiment in Figure 5.9, Table 5.3 was 

converted to Table 5.4, where different algorithm ranking scores are associated with 

specific algorithms. Then the score sum and average were calculated for three algorithms 

WB, CAICA, CAICA with TFM and one reference CM.  
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Table 5.4: Algorithm Ranking_ Laboratory Member A’s Score 

 Closest 

Microphone 

Weighted 

Beamforming 

Channel Aligned 

ICA 

Aligned ICA + TF 

Masking 

exp1 4 2 3 1 

exp2 4 2 3 1 

exp3 4 3 2 1 

exp4 4 3 2 1 

exp5 4 3 2 1 

exp6 4 3 2 1 

exp7 4 3 2 1 

exp8 4 3 2 1 

exp9 4 2 3 1 

exp10 3 4 2 1 

exp11 4 3 2 1 

exp12 4 2 3 1 

exp13 4 2 3 1 

exp14 4 2 3 1 

exp15 4 2 3 1 

exp16 4 3 2 1 

Sum 63 42 39 16 

Avg 3.9375 2.625 2.4375 1 

   

5.4 Statistical Analysis 

Means and standard deviations for each member and for all data sets were calculated and 

are shown in the tables below.  
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Table 5.5 Statistical Analysis 

Laboratory 

Member B 

Closest 

Microphone 

Weighted 

Beamforming 

Channel aligned 

ICA 

Aligned ICA + 

TFM 

Mean 3.9375 2.3125 2.625 1 

Standard 

Deviations 0.25 0.602079729 0.619139187 0 

Laboratory 

Member C 

Closest 

Microphone 

Weighted 

Beamforming 

Channel aligned 

ICA 

Aligned ICA + 

TFM 

Mean 4 2.6875 2.3125 1 

Standard 

Deviations 0 0.478713554 0.478713554 0 

Laboratory 

Member D 

Closest 

Microphone 

Weighted 

Beamforming 

Channel aligned 

ICA 

Aligned ICA + 

TFM 

Mean 4 2.5 2.5 1 

Standard 

Deviations 0 0.516397779 0.516397779 0 

Laboratory 

Member E 

Closest 

Microphone 

Weighted 

Beamforming 

Channel aligned 

ICA 

Aligned ICA + 

TFM 

Mean 4 2.4375 2.5625 1 

Standard 

Deviations 0 0.512347538 0.512347538 0 

 

 

 

 

Laboratory 

Member A 

Closest 

Microphone 

Weighted 

Beamforming 

Channel aligned 

ICA 

Aligned ICA + 

TFM 

Mean 3.9375 2.625 2.4375 1 

Standard 

Deviations 0.25 0.619139187 0.512347538 0 
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Table 5.5, continued Statistical Analysis 

Whole 80 sets 

of data 

Closest 

Microphone 

Weighted 

Beamforming 

Channel aligned 

ICA 

Aligned ICA + 

TFM 

Mean 3.975 2.5125 2.4875 1 

Standard 

Deviations 

0.15711 0.5510347 0.527563062 0 

 

5.5 Conclusions 

Summarizing all the experiments conducted by all candidates, as well as calculating the 

mean and standard deviations mean score for CAICA with TFM is 1; the mean score for 

CAICA is 2.4875; the mean score for WB is 2.5125; and the mean score for CM is 3.975. 

Standard deviations for each algorithm and reference are 0, 0.53, 0.55, and 0.16 

respectively.  The mean score for the whole set of experiments shows that CAICA with 

TFM performs best in the sense of the degree that SOI speech is extracted from other 

voices. CAICA and WB perform next and their performance is about the same, and CM 

worst.  

Due to the high standard deviations for WB and CAICA and minimum mean value 

difference between WB and CAICA, we cannot conclude which one, WB or CAICA, 

performs better and these two algorithms perform about the same in source separation. 

Since beamforming is a mature technique that has already been deployed to modern 

electronic devices, such as cell phones, tablets, etc., even if CAICA performs the same in 

source separation, it is already very impressive. The mean and standard deviation values  

also show that WB, CAICA, CAICA with TFM improves the performance of the SOI 

extraction for sure. Low or 0 standard deviations for all the experiments better support 

the conclusion drawn based on mean score. 
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Chapter 6: Algorithm Validation 

 

We have a reference Closest Microphone (CM) for subjective listening comparisons, and 

we introduced three algorithms, Weighted Beam forming (WBF), Channel Aligned 

FastICA(CAICA)  and Channel Aligned FastICA with Time Frequency 

Masking(CAICATFM) algorithms in the last chapter and showed their simulation results. 

We put emphasis on the performance of the new algorithm (CAICA) and how the new 

algorithm performs when combined with TF masking. In this chapter, we are going to 

show experimental recording results to validate algorithm performance. One experiment 

environment setting for experimental recordings is shown in Figures 6.1 through 6.3. 

Figures are from Dr. Donohue Website 

http://www.engr.uky.edu/~donohue/audio/Examples/Examples.html 

 

 

Figure 6.1: Cage side with Linear Microphone array, a couple of speakers, and absorptive 

acoustic treatment 
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Figure 6.2: Cage with Speakers side view 

 

Figure 6.3: Cage with Speakers back view 
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6.1 Experiments Setup 

 

We realized a cocktail party scenario in our Audio Systems Laboratory in University of 

Kentucky.  

We used the data from the Cocktail party recording with distributed microphones (one 

speaker of interest embedded in 6 simultaneous speakers). Data can be downloaded from 

the link http://www.engr.uky.edu/~donohue/audio/Data/audioexpdata.htm. Specifically, 

we used the Microphone Ceiling Regular Hexagonal Grid in this validation experiment.  

In this experiment, we have 16 microphones and 1 SOI. Hardware and software 

parameters are shown below in Table 6.1.  

 

Table 6.1 Experiment Settings 

RT60 Time 0.232 s 

Size of Space for 

speakers and 

microphones 

 

3.6x3.6x2.2 

Sampling 

Frequency 

22050 Hz 

Microphones 16 Behringer ECM8000 measurement microphones, 

condenser type, Omni direction, Frequency response, 

15Hz to 20KHz [30]. 

Amplifiers M-Audio AudioBuddy Dual Microphone Preamp with 

Phantom Power and Direct Box, frequency response: 

5Hz-50 KHz[31] 

Sound Card Two 8-Channel Delta 1010 by M-Audio 

Acoustic Foam 

Panels 

Auralex MAX-WALL, noise reduction coefficient 

1.05[32] 

A/D conveter M-Audio Delta 1010 Digital recording system, frequency 

response: 20Hz – 22KHz, 8X8 analog I/O[33] 

Software Jack audio connection kit 0.3.2, Ubuntu studio 8.04[34] 

 

http://www.engr.uky.edu/~donohue/audio/Data/audioexpdata.htm


 

72 

 

For these results presented here, we used SOI 5 and background cocktail party noise 3. 

The cocktail party noise is a 16 channel recording from 6 talking people. SOI is not 

presented in the party noise. 16 microphones are installed on the ceiling shown in blue 

circles with coordinates described in Table 6.3. Table 6.2 shows the mean speaker 

location. Speaker mean location is also marked as red cross in Figure 6.4. Figure 6.4 

shows microphone and mean speaker 3-D locations. Figure 6.5 is the top view of the 

microphone and mean speaker location. We can see that microphone locations are like 

the Ceiling Regular Hexagonal Grid. We superimposed SOI and party noise recordings 

with different SNR values and tested the four algorithms mentioned above. We tested on 

three scenarios: SNR=2 dB, SNR = 0 dB, SNR = -10 dB. The 6 interferences are not 

marked in the microphone and speaker layout since their locations do not matter to our 

program and they were used as noise.  

 

 

Figure 6.4: 3-D View of the microphone Locations and mean Speaker Location 
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Figure 6.5:  Labeled 16 Microphones and Speaker of Interest Mean Location Top view 

 

  Table 6.2: Speaker of Interest (SOI) Mean Coordinates in Meters 

 SOI 

X direction 1.741 

Y direction 0.2101 

Z  direction 1.602 

 

Table 6.3: Microphone Coordinates in meters 

 M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 

X direction 3 2 1 0 3.5 2.5 1.5 0.5 

Y direction 0 0 0 0 1 1 1 1 

Z  direction 2 2 2 2 2 2 2 2 

 M 9 M 10 M 11 M 12 M 13 M 14 M 15 M 16 

X direction 3 2 1 0 3.5 2.5 1.5 0.5 

Y direction 2 2 2 2 3 3 3 03 

Z  direction 2 2 2 2 2 2 2 2 
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6.2 Processing Procedures 

 

After we read in the 16 channel source data and 16 channel party noise data, we adjusted 

the source and party noise volume with the desired SNR value and added them together 

as the cocktail party scene. Now we have 16-channel microphone recordings. We applied 

a high pass filter to the microphone recordings to remove room noise.  We detected the 

closest microphone with respect to the speaker, in this case Microphone 2. We saved data 

from the closest microphone channel into a wave file. Hence we got data for the Closest 

Microphone (CM) algorithm. We beam-formed on the SOI and applied the adjusted 

coefficients to each channel yielding the data for the Weighted Beam Forming (WBF) 

algorithm. We then calculated distances from the speaker’s mean location to all 16 

microphones and converted these distances to samples and then aligned microphone 

recordings base on these samples. Now all microphone channels are aligned with respect 

to how quickly the SOI reaches each microphone at the same time instance. Then we 

applied FastICA with optimized parameters to the aligned microphone channels yielding 

the 16-channel data for the Channel Aligned FastICA algorithm (CAICA). Then we 

handpicked the channel with the clearest SOI from the 16-channel CAICA data, marked 

the channel number and saved it as SOI CAICA. We then input 16-channel CAICA to the 

Time-Frequency Masking. The marked channel is the SOI and other channels are 

interferences. Then we got the processed data and saved it as the data for the combined 

CAICATFM algorithm. 

 

We compared processed sound clips for four algorithms: CM, WBF, CAICA, and 

combined CAICATFM. We validated the algorithm performance by directly listening 

and by observing the envelopes of the SOI signals from different algorithms. The 

extracted SOI results are shown in Figures 6.6 through 6.34.  

 

Experiment 1: SNR =2 dB 
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Figure 6.6: SNR=2 dB, pure SOI at closest microphone waveform 

 

Figure 6.7: SNR=2 dB, pure SOI at closest microphone filtered waveform 
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Figure 6.8: SNR=2 dB, cocktail party at closest microphone waveform 

 

Figure 6.9: SNR=2 dB, cocktail party weighted beam forming waveform 
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Figure 6.10: SNR=2 dB, cocktail party channel adjusted fastICA SOI channel waveform 

 

Figure 6.11: SNR = 2 dB, cocktail party channel adjusted fastICA with 16 channel TFM 

waveform 
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Figure 6.12: SNR = 2 dB, cocktail party channel adjusted fastICA with 4 channel (with 

one SOI, 3 hand-picked interferences channels) TFM waveform 

 

Figure 6.13: SNR = 2 dB, waveform comparisons 
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Figure 6.14: SNR = 2 dB, filtered pure SOI, channel adjusted fastICA with16-channel 

time frequency masking, channel adjusted fastICA with4-channel time frequency 

masking waveform comparisons 
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Figure 6.15: SNR=0 dB, pure SOI at closest microphone waveform 

 

  

Figure 6.16: SNR=0 dB, pure SOI at closest microphone filtered waveform 
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Figure 6.17: SNR=0 dB, cocktail party at closest microphone waveform 

  

Figure 6.18: SNR=0 dB, cocktail party weighted beam forming waveform 
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Figure 6.19: SNR=0 dB, cocktail party channel adjusted fastICA SOI channel waveform 

  

Figure 6.20: SNR = 0 dB, cocktail party channel adjusted fastICA with 16 channel time 

frequency masking waveform 
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Figure 6.21: SNR = 0 dB, cocktail party channel adjusted fastICA with 4 channel (with 

one SOI, 3 hand-picked interferences channels) time frequency masking waveform 

   

Figure 6.22: SNR = 0 dB, waveform comparisons 
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Figure 6.23: SNR = 0 dB, filtered pure SOI, channel adjusted fastICA with16 channel 

time frequency masking, channel adjusted fastICA with16 channel time frequency 

masking waveform comparisons 
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Figure 6.24: SNR=-10 dB, pure SOI at closest microphone waveform 

  

Figure 6.25: SNR=-10 dB, pure SOI at closest microphone filtered waveform 
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Figure 6.26: SNR=-10 dB, cocktail party at closest microphone waveform 

 

Figure 6.27: SNR=-10 dB, cocktail party weighted beam forming waveform 

  

0 5 10 15 20 25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
SNR = -10dB, cocktail party at closest microphone

Time/s

S
ig

n
a
l

0 5 10 15 20 25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
SNR = -10dB, cocktail party weighted beam forming

Time/s

S
ig

n
a
l

 

 



 

87 

 

  

Figure 6.28: SNR=-10 dB, cocktail party channel adjusted fastICA SOI channel 

waveform 

  

Figure 6.29: SNR = -10 dB, cocktail party channel adjusted fastICA with 16 channel time 

frequency masking waveform 
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Figure 6.30: SNR = -10 dB, cocktail party channel adjusted fastICA with 4 channel (with 

one SOI, 3 hand-picked interferences channels) time frequency masking waveform 

  

Figure 6.31: SNR = -10 dB, cocktail party channel adjusted fastICA with 6 channel (with 

one SOI, 5 hand-picked interferences channels) time frequency masking waveform 
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Figure 6.32: SNR = -10 dB, cocktail party channel adjusted fastICA with 8 channel (with 

one SOI, 7 hand-picked interferences channels) time frequency masking waveform 

  

Figure 6.33: SNR = -10 dB, waveform comparisons 
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Figure 6.34: SNR = -10 dB, filtered pure SOI, channel adjusted fastICA with16-channel, 

4-channel, 6-channel, 8-channel time frequency masking waveform comparisons 
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intelligible in WB and CAICA, and not very intelligible in the cocktail party closest 

microphone channel. I heard no interference, just the SOI, in the resulting CAICATFM. 

When SNR values dropped, the SOI was buried in the party noise (6 other speakers’ 

speech) in CM, WB, CAICA and started to immerge in 16-channel CAICATFM. CM 

degraded most. WB and CAICA degraded about the same, 16-channel CAICATFM only 

degrades slightly. Speech intelligibility is the degree that the listener can correctly 

understand the speech [23].  

SOI was intelligible when SNR=2 dB in all cases, but CAICATFM was more intelligible 

than CAICA and WB and CM last. When SNR dropped, regarding the intelligibility, 

algorithms performed in the same order as mentioned above, but the CM became not very 

intelligible (a lot of noise in the sound clip and one could not tell what SOI is talking 

about very well), WB and  CAICA were still pretty intelligible (noise was more 

prominent, but one can still tell what SOI is talking about if one listens closely). In the 

meantime, CAICA was still intelligible with very little noise interference.  

For each SNR value, by observing the envelopes of the sound tracks and comparing them 

with the SOI in three different SNR experiments, as well as by directly listening, we find 

that CAICA and TFM combined algorithm performs the best, CAICA and WB perform 

about the same and perform second best, and closest microphone performs worst. 

Specifically, the CAICATFM combined algorithm performs better is in the sense of less 

interfering sound and prominent SOI content. This is consistent with the visual 

observations of the envelope of SOI of the algorithm in that it better follows the envelope 

of the filtered pure SOI.   

When the SNR value is high, i.e. SNR=2 dB, the closest microphone has a fairly high SII, 

meaning the SOI is quite clear. When SNR is low, i.e. SNR =-10dB, we cannot very 

easily tell the SOI from the closest microphone recording anymore and then the 

advantages of the CAICA and combined CAICATFM, WB algorithm become more 

prominent. 
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Due to the fact that TFM uses AND operations to create binary masks to mask out 

interferences. We do not necessarily need to pass all 16 channels of CAICA to the TFM 

algorithm. When interferences have higher comparable volume, meaning when SNR is 

low, pass more channels to TFM results in less interference, but the extracted SOI breaks 

more. So the tradeoff is more significant when SNR is low. Based on the situation and 

desired sound effect we can adjust the total number of SOI and interference channels.  

We also noticed clicking sounds  in the sound track after the 16-channel TFM, and the 

clicking sound became more prominent when SNR values dropped in the processed 16-

channel CAICA with TFM. This happens due to the AND operations in TFM process. 

When SNR is low, SOI is less dominant. In the time frequency domain, SOI is dominant 

in less time frequency units; that is to say, more time frequency units got masked out, 

creating the clicking sounds. For fixed low SNR values, after  we passed less processed 

CAICA channels(SOI with some interferences and handpicked interferences channels) to 

the TFM, we observe the envelopes of  estimated underlying sources in  Figures 6.26 

through 6.29. We saw that if less channels (i.e. 4,6,8 total channels, )are used, the 

resulting signal seems to contain more noise, that is, the shapes of signal envelopes 

differs from pure SOI more.  When SNR is low, such as SNR =-10 dB, by directly 

listening to [file name], we hear when more channels are passed through TFM, i.e. 16 

channels (1 SOI, 15 interferences). SOI stands out more and has less interferences, but 

the clicking sound effects are more severe. When less channels are passed through TFM, 

i.e. 4 channels (1 SOI, 3 handpicked interferences), the resulting signals have more 

interference, but the clicking sound effects are less severe. Hence there exists a trade-off 

between resulting sound qualities and SII for SOI.  The results of passing 6/8 channels to 

TFM also validated the stated trade off. Experimental Recording results are consistent 

with simulation results and statistical analysis.    
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Chapter 7: Final Conclusions and Future Work 

 

7.1 Conclusions 

 

The goal of this thesis was to explore the Blind Source Separation in Immersive Audio 

Environments and specifically Independent Component Analysis in Cocktail Party 

Scenario.  After researching and testing on feasibility of a variety of algorithms, FastICA 

toolbox stands out with regard to fast convergence, smooth separated audio sound tracks, 

does not need feature training and so on. It also works well in separating instantaneous 

mixtures, but it comes with limitations as do all algorithms. To estimate all the 

underlying sources, FastICA needs the system to be over-determined (mixture channels 

are greater and equal to source channels). The estimated underlying source channel is not 

fixed after each FastICA algorithm run.  To cope with it, we can use auto-correlation to 

find the matching pairs. 

 When we applied the cocktail party recordings, FastICA toolbox failed to recover 

sources.Cocktail party recordings are always convolutive and real world recordings are 

convolutive as well.The Convolutive BSS algorithm theoretically should be powerful in 

source separation for real world recording, but the associated Convolutive BSS toolbox 

requires setting up many parameters and often has stability issues. And this toolbox  

improves minute source intelligence after we applied the toolbox to the simulated 

microphone mixtures.   

Then we analyzed factors that make FastICA break in real world settings and after trial 

and error, we came up with the Channel Aligned FastICA (CAICA) that enhanced the 

FastICA source separation when mixtures are convolutive.  In addition, we combined 

CAICA with TFM for an even better source separation and recovered source 

interligibility. Simulation experimental recording validation are conducted to compare 

existing and mature audio source separation Weighted Beam-forming (WB),CAICA and 

CAICA with TFM.  These experiments as well as statistical analysis prove that CAICA 

with TFM works great in source separation as well as high intelligibility recovery and 
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this algorithm is very powerful. CAICA performs slightly better than WB, which is 

impressive. All three algorithms perform better than closest microphone (CM), meaning 

there are improvements in source separation. 

 

7.2 Future Work 

 

Potentially we can observe the silence period from each algorithm and compare the silent 

period with the source of interest to calculate the performance metric. We can also take 

down the masker scale level in the TFM so as to pass a few interference channels, but to 

achieve the desired TFM effects more interference channels are needed. 

Design a graphic user interface (GUI) so as users can play with all the source separation 

method mentioned. In that way, users can get more involved in the underlying source 

separation process. Furthermore, we can break the whole process into layers, cocktail 

party simulation layer, filtering processing layer, and source separation layers. In the 

source separation layer, users can choose WB, CAICA, and CAICA with TFM and listen 

to each separation effect. All these layers can be wrapped up in one panel. Users can 

select, mix or match these three main parts for the desired effects. For example, users can 

import their data and then process their data through the filtering processing layer and 

source separation layer to listen to different algorithms’ sound effects. Researchers can 

also use the layer they desire to conveniently test their algorithms.  

A median filter or adaptive filters can potentially be added to smooth out the time domain 

audio signals obtained after TFM so as to reduce the clicking sounds for smoother sound 

quality. We can potentially fix the ConvBSS toolbox so it works with Audio signals. 

Explore the other mentioned algorithms and see how well each algorithm performs 

regarding source separation. Researchers can also explore what the separation 

performance will be like when combining a few of these separation algorithms. We can 

also develop an automated selected tool to select a more proper algorithm for the specific 

scenarios. Scenarios can be categorized to number of microphones, number of speakers, 

systems is over-determined or underdetermined, number of sources we would like to 
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extract from the signal mixtures, relative locations of microphones and/ or speakers, and 

how microphone / speakers are grouped.  

Researchers can also explore how we can deploy these techniques modern electronic 

devices such as cellphones and tablets as well as explore how these techniques are 

applied to surveillance. Researchers can also see how we can download these algorithms 

to embedded systems such as Digital Signal Processors for commercial usages.    
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