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1 Introduction

1.1. A general overview

In most areas of applied research and in industry, scientists and engineers are

—from time to time— confronted with mixtures. As a result, mixtures appear in

numerous (research) questions or engineering problems. As a starting point, we

give a typical example of such a problem. This example will reappear several times

throughout this introductory chapter.

Consider the characterization of a soil sample by means of the fractions of each

soil separate (sand, silt and clay) present in that sample. Using this simple

characterization, a soil sample can be represented as a mixture of sand, silt and

clay. A soil scientist might be interested in the following question: What is the

relationship between the depth at which a sample is taken and the fractions of sand,

silt and clay in the sample?

To answer the question that is raised in the example given above, a traditional

scientific methodology requires that: firstly, the loosely formulated objective is

translated into a formal objective (in the example this could for instance be a

formal hypothesis); secondly, data is collected that can be used to assist in reaching

the objective; thirdly, some conclusions are drawn based on a (statistical) analysis

of the data; and fourthly, based on the conclusions, some actions are taken.

In this dissertation, we will mainly be focusing on the third step of this process. To

perform an analysis of the data, a data-analyst typically has a variety of traditional

statistical tools at his disposal. Interestingly, there are several reasons (we elaborate

on this later) why most common statistical procedures cannot be used to analyze

data that is obtained from the analysis of mixtures. Instead, a data-analyst might

resort to the field of compositional data analysis, which is a subfield of statistics

that is devoted to the analysis of compositional data1. However, even though the

inadequacy of traditional statistics for the analysis of compositional data has been

known for more than a century, most work within the field of compositional data

analysis has mainly focused on the generalization of traditional statistical techniques

to compositional data. On the other hand, several problems that naturally arise

when analyzing data of mixtures, such as data selection, uncertainty propagation

and predictive modeling, have not been dealt with extensively. In this dissertation,

1 When we refer to an object as being a mixture, we typically express our interest in its composition.
More precisely, the composition of such an object is generally described by an (exhaustive)
enumeration of its components and a vector of values that represent the relative contribution
of each of these components to the mixture. Such a vector is called a compositional vector or
shortly, a composition. Compositional data is data that consists of compositional vectors.
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we will develop data-analysis techniques that can be used to provide an answer to

these problems.

The success of numerous modern data-analysis techniques relies upon the fruitful

combination of numerical optimization, problem knowledge and some basic insights

in data analysis. As an overall approach in this dissertation, we will translate several

questions that can arise when data of mixtures are analyzed into mathematical

optimization problems. The use of domain knowledge (including the fact that

we are working with mixtures) and several well-known insights in data analysis,

mainly from the field of machine learning, will allow us to define optimization

problems that effectively capture the essence of the problems that we wish to

solve. Moreover, it will turn out that most of the optimization problems that are

obtained are special cases of more general, well-known optimization problems. The

advantage of this is twofold: firstly, it allows us to use the extensive literature

on numerical optimization as well as some powerful numerical solvers to solve

the resulting optimization problems; and, secondly, the modifications of existing

numerical recipes that we propose can be useful in the more general settings as

well.

1.2. A road-map to this dissertation

This dissertation consists of one introductory part (Part I), three main parts

(Parts II–IV) and one concluding part (Part V). This structure is visualized in

Figure 1.1. This dissertation can be positioned at the crossroads of the fields

of compositional data analysis and mathematical optimization. To assist the

reader, Part I contains two chapters that introduce these fields, and present several

definitions and well-known results. The reader is strongly encouraged to read the

introductory chapter on compositional data analysis. The reader who is less familiar

with mathematical optimization (for example: KKT conditions, conic programming

or branch-and-bound algorithms) is encouraged to read the introductory chapter

on mathematical optimization.

Parts II–IV contain the main contributions of this dissertation. Each of these

parts focuses on a limited number of research objectives at the crossroads of

compositional data analysis and mathematical optimization. Therefore, these parts

build upon the introductory material that is presented in Chapters 2 & 3. However,

Parts II–IV can be read independently. The first chapter of each of these parts is

(to some extent) meant to introduce and motivate the following chapters. Even

though these ‘introductory’ chapters contain mostly novel material, the technical

details are kept to a minimum.

Part V summarizes the most important results in this dissertation, and provides

suggestions for further research. It should be noted, however, that most of the

2
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Figure 1.1: A road-map to this dissertation.

discussions in this dissertation are interwoven into the main content (mostly due

to their technical nature).

Throughout this dissertation, we will adhere to a set of notational conventions.

These conventions are summarized in Appendix 1.A at the end of this chapter. In

the remainder of this chapter, the three main parts are briefly introduced. Moreover,

for each of the main parts, the key research objectives are formulated.

1.3. The selection of an optimal subset of mixtures

(Part II)

1.3.1. Problem setting

Modern high-throughput measuring equipment allows researchers to analyze large

numbers of samples in a limited amount of time. The use of this equipment for the

analysis of the (chemical) composition of mixtures often results in large databases

that contain compositional data. Even though the acquisition of these databases

is generally interesting, it is often only a single step of an entire research project.

3
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In some cases, the post-processing of these samples (or the data obtained from

them) is more expensive. For instance, a further analysis might call for a complex,

time-consuming laboratory analysis, or the analysis of the resulting dataset needs

to be performed by a numerical procedure that scales badly with the size of the

dataset. Here, due to budgetary or time constraints, a researcher is sometimes

forced to select a subset from the original set of mixtures. This problem setting

naturally raises the question of how to select such a subset.

Part II of this dissertation focuses on the selection of an optimal subset of mixtures.

The goal of the second part of this dissertation is threefold.

Objective II.1: The translation of the mixture subset selection problem into a

number of formal mathematical optimization problems.

Objective II.2: The development of an Ant Colony algorithm that is capable of

solving these optimization problems, as well as a theoretical analysis and general-

ization of the proposed procedure.

Objective II.3: The illustration of the proposed methodology by means of a case

study.

The three objectives above constitute the main topics of Chapters 4, 5 and 6 of the

second part of this dissertation. In the following section, the objectives of these

chapters are described in detail.

1.3.2. A brief overview of Part II

Scoring the subsets of a compositional dataset (Chapter 4)

Inevitably, the reduction of a dataset to a subset will imply a loss of information.

However, we can attempt to select a subset that minimizes the loss of information

that is relevant w.r.t. a specific research goal. More precisely, a score function can

be designed that scores each subset in terms of the amount of relevant information

that it contains. Subsequently, the subset that maximizes this function can be

identified by solving an optimization problem. Even though this approach is fairly

straightforward, its successful application requires two key ingredients: (1) a good

score function (which is the main topic of Chapter 4), and (2) a procedure that

is able to select the subset that maximizes this score function (which is the main

topic of Chapter 5).

In general, a good score function should reflect the amount of relevant information

contained in a subset of a given dataset. Several classes of score functions can be

constructed that only rely on the distances between the elements of the dataset.

Within these classes of score functions, the selection of a good score function boils

4
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down to the selection of a good distance measure. However, due to some of the

characteristics of compositional data, most of the well-known distance measures

(such as for instance Euclidean distance) are not very meaningful. Instead we

resort to more specialized distance measures from the field of compositional data

analysis.

In Chapter 4, the approach that is briefly described above will be used to translate

the mixture subset selection problem into a formal mathematical optimization

problem. As stated earlier, the selection of a score function is essential to ob-

tain informative subsets. Several classes of score functions are introduced and

studied.

An Ant Colony Optimization Algorithm for subset selection (Chap-

ter 5)

Interestingly, the problem that is addressed in the first part of this dissertation

belongs to the class of subset selection problems (that includes well-known problems

such as the knapsack problem). Unfortunately, a lot of well-known subset selection

problems are extremely hard to solve within a reasonable amount of time. Instead,

one often needs to resort to heuristics to find a potentially suboptimal solution. In

Chapter 5, an Ant Colony Optimization procedure (which is a meta-heuristic) is

developed, which can be used to optimize the score functions that were proposed in

Chapter 4. Even though the proposed procedure is a heuristic, several interesting

(theoretical) properties regarding its functioning can be shown. Moreover, these

results show that the basic philosophy of the proposed procedure can be employed

to address a more general class of optimization problems.

Selecting an optimal subset of mixtures: numerical experiments (Chap-

ter 6)

In Chapter 6, a real-life problem setting in agriculture is considered that requires

the selection of a subset of a set of mixtures. The Ant Colony Optimization

procedure that is developed in Chapter 5 is used to find a subset that optimizes one

of the score functions that are described in Chapter 4. This real-life problem setting

serves as a test-case for our Ant Colony Optimization procedure. We compare our

novel procedure with several competitors.

Moreover, we study the difference between the classes of score functions that were

introduced in Chapter 4 in a practical setting. As argued in Chapter 4, score

functions can either focus on subsets that are representative for the data (a first

class) or subsets that exert maximal variability (a second class). Consequently, it

can be argued that these classes of score functions will focus on different kinds

of subsets. In Chapter 6, the influence of this phenomenon on the subset that is

selected is studied by means of a practical case study.

From the introductory chapter on compositional data analysis, we know that the

compositional nature of the data requires specific distance measures to be used.
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In this chapter, it is illustrated that ignoring the compositional nature of the

data (by using for instance the Euclidean distance) has a strong influence on the

characteristics of the subsets that are selected.

1.4. A set estimator for the unmixing of mixtures

(Part III)

1.4.1. Problem setting

When we refer to an object as being a mixture, we typically express our interest

in its composition. More precisely, the composition of such an object is generally

described by an (exhaustive) enumeration of its components and a vector of values

that describes the relative contribution of each of these components to the mixture.

In Part III of this dissertation, we will be focusing on the problem of predicting

the relative contribution of one of these components to that mixture.

As a starting point, consider the following example. “Assume you have been given

a cup of water with a salinity of y = 21 ppt (parts per thousand). Moreover, it

is told that the water in this cup is a blend of fresh water (salinity (c1) of 2 ppt)

and sea water (salinity c2 of 40 ppt). Subsequently, you are asked to estimate

the proportional amount x1 of fresh water (ppt) in the cup.” Accepting some

very natural rules regarding the way mixtures are formed (we elaborate on this

in Part III), it is trivial to see2 that a relative amount of x1 = 50% is the only

answer that respects the data in this problem. The problem that is described here

is sometimes referred to as the unmixing of a mixture.

In this example, the components (fresh and sea water) were described in a precise

manner by means of their salinity (2 ppt and 40 ppt). Often, such a precise

description is not available. For example, on earth, the salinity of fresh water

ranges between 1 and 3 and the salinity of sea water ranges between 30 and 45.

This means that, using only salinity, the ‘source’ sea water does not allow a precise

representation (i.e. by means of a single value). Instead, the source sea water is

represented by an interval on the salinity scale. We can interpret this interval in a

possibilistic sense, i.e. “for every scalar within this interval there exists at least

one sea or ocean that has a salinity level that is equal to that scalar”. We say

that the salinity can only provide an imprecise description of sea water and fresh

water. This imprecision has an implication on our initial question (the relative

amount of fresh water in the cup). Indeed, using only the imprecise information

on the salinities, there are multiple answers that respect the problem data. For

example, choosing c1 = 2, c2 = 40 (both values are possible according to the given

intervals) we have that x1 = 0.5. Alternatively, choosing c1 = 1.5 and c2 = 42,

2 For x1 = 0.5, we have that 0.5 c1 + (1− 0.5) c2 = y.
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we obtain x1 ≈ 0.52. As both results respect the problem data, we say that they

are both possible. We conclude that there exists a set of values that are possible

candidates for x1. This contrasts the precise setting in which there is only one

candidate.

In the toy example presented here, the computation of the set of possible candidates

for x1 is trivial. However, when the sources are represented by means of subsets of

Rn (instead of R in the toy example) the computation of this set becomes more

complicated. In Part III of this dissertation, we present a methodology that can be

used to compute these candidate sets efficiently in a very general setting. Moreover,

we will see that these so-called set estimators can be of interest to researchers in

several domains within the life sciences.

Part III of this dissertation focuses on the unmixing of a mixture when its sources

are described in an imprecise manner. The main objectives of the third part of

this dissertation are enlisted hereafter.

Objective III.1: The mathematical translation of the unmixing problem for impre-

cisely described sources to obtain a set estimator for the proportional contribution

of a source to a mixture.

Objective III.2: The definition of a mathematical optimization problem that can

be used to compute this set estimator in practice.

Objective III.3: The development of a procedure that can be used to solve the

resulting optimization problem efficiently.

Objective III.4: The generalization of the set estimator to high-dimensional

settings and settings in which sparsity is required.

Objective III.5: The illustration of the proposed methodology by means of a case

study.

Objectives III.1 and III.2 are the main topics of Chapter 7. Objectives III.2 and

III.3 are the main topics of Chapter 8. In Chapter 9, the fifth objective is considered.

In the following section, these chapters are described in detail.

1.4.2. A brief overview of Part III

Unmixing of a mixture with a set-based representation of the sources

(Chapter 7)

The unmixing of mixtures, i.e. the computation of the proportional contribution

of a set of sources to a mixture, is of interest to a multitude of applied research

disciplines. As a result, there exists an extensive literature (mainly in applied
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research areas) on the unmixing of mixtures. Traditional approaches require

that the sources and the mixture are represented as points in a (potentially high-

dimensional) space. Often, such a representation is either unavailable or overly

simplifying. In those cases, we argue that the sources can sometimes be represented

by means of subsets of the space considered. Those subsets should be interpreted

in a possibilistic manner. A set represents a collection of possible representations

of a source. In these circumstances, traditional unmixing procedures cannot be

applied to obtain an estimate of the proportional contributions of the sources to

the mixture.

In Chapter 7, we introduce a set estimator that can deal with the imprecise

description of the sources. Moreover, we show that in practice, the set estimate of

the proportional contribution of one of the sources to the mixture can be obtained

by solving an optimization problem. Moreover, by means of a literature study, we

illustrate the wide applicability of our set estimator.

Optimization procedures for set-based unmixing (Chapter 8)

To be able to apply the set estimator that is introduced in Chapter 7 in practice,

we need to solve the optimization problem that was introduced in Chapter 7 in

an efficient manner. Unfortunately, as this optimization problem is not convex,

directly solving it can be hard. In Chapter 8, we propose an equivalent quasi-convex

optimization problem that can be solved efficiently.

Often, the data (or information) that is used to describe the sources or the mixture

is noisy. The noise that is present in the data influences the set estimate that

is obtained. In Chapter 8, we study how noise influences the estimates that are

obtained by our set estimator. Interestingly, the additional uncertainty that is

introduced by the noise in the data that is used, can be incorporated into our set

estimator in an intuitive manner. Moreover, these modifications still allow a set

estimate to be computed efficiently.

Set-based unmixing of mixtures in practice (Chapter 9)

In Chapters 7 and 8, multiple set estimators have been proposed. In Chapter 9,

the differences between these set estimators are studied by means of a series of

experiments on artificially generated data. Moreover, by means of a real-life case

study, it is illustrated that the estimators that were proposed can be useful in

practice.
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1.5. Learning to predict compositions (Part IV)

1.5.1. Problem setting

Often, mixtures can be represented in multiple manners. For example, the intro-

ductory problem hints at the characterization of a soil sample by means of (1)

the fractions of the soil separates the sample contains or (2) the depth at which

the sample was taken. We say that a mixture can be represented in two different

representation spaces. In the fourth part of this dissertation, several methodologies

are developed that can be used to learn a link between both representations. We

approach this learning problem as an inductive inference process. More precisely,

we develop several methodologies that use a dataset (containing observations of

two characterizations of a set of mixtures) to learn a mapping from a first rep-

resentation space (the input space) to a second representation space (the output

space). We focus on settings where the output space is a space of compositions

(i.e. a q-dimensional simplex). Subsequently, given the representation of a new

mixture in the input space, the mapping that is learned will be used to predict the

representation of that mixture in the output space. For example, given the depth

at which a soil sample is taken, this mapping will be used to predict the fractions of

the soil separates that this sample contains. Consequently, the problem of learning

such a mapping from data is called a predictive modeling problem. Within the

field of machine learning or statistics, the problem that was described above can

be seen as a special case of the multivariate regression problem.

In the fourth part in this dissertation, we will focus on learning predictive models

for compositional outputs. Therefore, this part fits within the field of machine

learning. As argued before, the problem of learning a predictive model that can be

used to predict the composition of a mixture can be seen as a regression problem.

However, due to some specific characteristics of compositional data, traditional

multivariate regression procedures cannot be applied directly. For example, the

outputs represent proportional amounts, which means that they are non-negative

and can be assumed to add up to one. Even though these properties are natural

when studying compositional data, traditional multivariate regression methods do

not take these properties into account.

Part IV of this dissertation focuses on the development and application of pro-

cedures that can be used to learn predictive models for compositional outputs

from data. The main objectives of the fourth part of this dissertation are enlisted

hereafter.

Objective IV.1: The study of several loss functions that can be used when learning

to predict compositions.

9
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Objective IV.2: The incorporation of prior knowledge in multivariate regression

problems.

Objective IV.3: The development of procedures for learning predictive models for

compositional outputs with ordered components.

Objectives IV.1–IV.3 constitute the main topics of Chapters 10–12. In the following

section, the objectives of these chapters are described in detail.

1.5.2. A brief overview of Part IV

Learning to predict compositions: a machine learning problem (Chap-

ter 10)

The development and application of predictive modeling methods is one of the main

themes in the field of machine learning. In this first chapter, the problem of learning

predictive models with compositional outputs is formalized as a machine learning

problem. An essential step in this process is the choice of a specific loss function. In

principle, a loss function is a function that is used to penalize prediction errors. For

example, let y be the observed fractions of the soils separates in a soil sample and

let ŷ be the predicted fractions for that sample. Mostly, we will have that ŷ 6= y.

The loss function can be interpreted as a function that measures the dissimilarity

between y and ŷ. Naturally, for a good predictive model, this dissimilarity will

be small. Therefore, we can state that learning a predictive model from a given

dataset amounts to the selection of the function (from a set of candidate functions)

that minimizes the dissimilarity between the predicted values and the observed

values for that dataset3. It is not hard to see that the loss function that is chosen

will strongly influence this selection. In this chapter, we will define and study

different loss functions that can be used when learning predictive models with

compositional outputs.

Finally, for the inexperienced reader, this chapter introduces several key con-

cepts of machine learning that will be used throughout the fourth part of this

dissertation.

Incorporating prior knowledge in multiple-output regression with kernel-

based vector functions (Chapter 11)

The isometric log-ratio transform allows to transform the problem of learning a

function with compositional outputs into an equivalent multiple-output regression

problem (where the output space is a Euclidean space). This equivalence allows

traditional multiple-output regression procedures to be used for learning predictive

3 In that sense, the problem of learning a predictive model ultimately leads to an optimization
problem.
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models with compositional outputs. In Chapter 11, this path will be followed

to solve learning problems with compositional outputs. It is well known that

the incorporation of domain knowledge into a learning procedure can lead to an

improved predictive performance. In this chapter several types of prior knowledge

that can occur in a multiple-output regression setting are identified. Moreover, the

development of a new matrix-valued kernel allows these types of prior knowledge

to be included simultaneously into the learning problem. Theoretical results and

empirical results illustrate that the resulting models have an improved predictive

performance. Lastly, it is illustrated that the types of prior knowledge that were

identified naturally occur in a variety of learning problems with compositional

outputs.

Predictive modeling for compositional outputs with ordered compo-

nents (Chapter 12)

As mentioned earlier, a composition is a vector that represents the relative con-

tribution of a set of components to a mixture. In this chapter, we consider the

special case where the components have a (natural) linear ordering. More precisely,

this ordering can be seen as a type of domain knowledge that can be exploited

when learning a predictive model. A general framework is presented that can

be used to learn a predictive model with compositional outputs with ordered

components. Moreover, the proposed methodology is validated by means of an

extensive experimental section.

By relying on several assumptions, models that are specifically designed to predict

ordered responses can result in an improved predictive performance. However, when

these assumptions are not fulfilled, the predictive performance will deteriorate. In

the second part of Chapter 12, a relaxation of the original framework is proposed.

The relaxed framework can be seen as an intermediate form between the setting

with linearly ordered components and the setting where the components are

unordered. Alternatively, it can be seen as a methodology that is designed to predict

compositions with ordered components, but makes less assumptions. Interestingly,

this relaxed form gives rise to a conic optimization problem that can be solved

efficiently with (specialized) existing numerical solvers.

11
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1.A. Notational conventions

The use of mathematics to formalize and solve problems is a recurrent theme

throughout this dissertation. Therefore, we will be needing a rather extensive math-

ematical notation. Even though several notational aspects are application specific,

we will respect several conventions that are common in modern literature.

• Sets

Sets are denoted as capitalized characters. For example, X will be used

to denote a generic set. However, mostly, we will be using notations like

X ⊂ Rn to denote that X is a proper subset of an n-dimensional real vector

space. Sets can be indexed. For example, X1 ⊆ Rn and X2 ⊆ Rn denote two

subsets of Rn.

• Vectors

Throughout this dissertation, we will often be using a vector notation. Vectors

are denoted as boldface characters and are assumed to be column vectors.

For example, x ∈ Rn represents an n×1 column vector. Occasionally, we will

write that x is an n-vector. The transpose of the vector x is denoted x> and

the ith element is denoted xi. This means we can write x = (x1, . . . , xn)>.

Moreover, ‖x‖2 =
√

x>x is the L2-norm of x, and ‖x‖1 =
∑n
i=1 |xi| is the

L1-norm of x.

Vectors can be indexed. For example, x1 ∈ Rn and x2 ∈ Rn indicates that

both x1 and x2 are n × 1 vectors. Moreover, the jth element of a vector

xi ∈ Rn is denoted xi,j . On some occasions, we will use 〈x1,x2〉 = x>1 x2

(often to stress the geometrical interpretation of the (inner) product).

Throughout this dissertation, several “special” vectors are used: 0n denotes

a n× 1 vector of zeros; 1n denotes a n× 1 vector of ones.

• Inner products and norms

When a and b are elements of a vector space or a Hilbert space H, we will

use 〈a,b〉H to refer to the inner product of a and b. Moreover, we denote

‖a‖H =
√
〈a,a〉H . In the special case that H is the p-dimensional Euclidean

vector space, we write 〈a,b〉 = a>b.

• Matrices

Matrices are denoted as boldface capitalized characters. For example, A ∈
Rm×n denotes an m× n matrix of real numbers. The ith row of a matrix A

is denoted Ai,.. The jth column of A is denoted A.,j . Moreover, the element

in the ith row of the jth column is denoted Ai,j . Matrices can be indexed.

For example, A1 ∈ Rm×n and A2 ∈ Rm×n are two m× n matrices.

12
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A> denotes the matrix transpose of A. For a square n× n matrix A, A−1

denotes the inverse of A (assuming that its inverse exists).

The n× n identity matrix is denoted In.

• Functions

A generic function f with domain X and co-domain R is denoted f : X →
R. Vector functions will be denoted as boldface characters. For example

f : X → Rm represents a generic vector of m functions. Moreover, we write

f(x) = (f1(x), . . . , fm(x))> .

The partial derivative of a function f : X → R with respect to the variable

xi is denoted ∂f
∂xi

. Moreover, the gradient vector of f is denoted ∇xf and

the Hessian matrix is denoted ∇xxf .

• Vector (in)equalities

Given two vectors a,b ∈ Rn, we write a = b if ai = bi for i = 1, . . . , n.

Moreover, we write a ≤ b if ai ≤ bi for i = 1, . . . , n. Finally, if a ≤ b and

there is at least one index i for which ai 6= bi, we write a < b.

• Random vectors

Real-valued random variables are denoted as calligraphic characters. For

example, X is a real-valued random variable. The probability that the random

variable X takes a value that is smaller than or equal to x ∈ R is denoted

Pr(X ≤ x). The probability density function of X is denoted ρX .

Random variables can be indexed. For example X1 and X2 denote two

random variables. Moreover, (X1, . . . ,Xn) is an n-dimensional random vector.

When stated explicitly in the text, we can use the short-hand notation

X = (X1, . . . ,Xn)>. The joint probability density function of the random

vector (X1, . . . ,Xn) is denoted ρX1,...,Xn . The conditional probability density

function of X1 given X2 is written ρX1|X2
. The expected value of a random

variable Xi is denoted E[Xi]. Moreover, the covariance matrix of the random

vector X = (X1, . . . ,Xn)> is denoted as cov(X ), and the variance of Xi is

denoted as var(Xi).

Superscripts can be used to denote distinct random variables (or random

vectors) for example, X 1 and X 2 are two random vectors.
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2 The (statistical) analysis of mixtures

and compositional data analysis

2.1. Introduction

When we refer to an object as being a mixture, we typically express our interest

in its chemical or physical composition. More precisely, the composition of such

an object is generally described by an (exhaustive) enumeration of its components

and a vector of values that describes the relative contribution of each of these

components to the mixture. For example, the raw analysis of three soil samples

may lead to the following representation (Table 2.1):

Table 2.1: Raw analysis results of three soil samples.

sand (g) silt (g) clay (g)

Sample 1 21 68 5

Sample 2 15 50 3

Sample 3 30 50 3

Here, the quantities of sand, silt and clay in the sample are represented by their

respective weights. Even though these weights represent absolute quantities, they

carry mainly relative information. Indeed, if the amount of soil that was analyzed

would have been doubled, these quantities would have been doubled as well. This

means that, unless that we are in the unlikely situation where the total amount

of soil that was analyzed is important, only the relative information is relevant.

Consequently, the first soil sample can equivalently be represented by the vector

(21/94, 68/94, 5/94), for which it holds that 21/94 + 68/94 + 5/94 = 1, such that

these numbers can be called fractions. Moreover, we call this vector a composition.

For the second soil sample, we have the composition (15/68, 50/68, 3/68). To stress

the importance of such a characterization, assume that we want to compare these

soil samples. Naturally, such a comparison can only be useful when it is based on

the relative quantities.

The example above illustrates that, when we study mixtures, we are likely interested

in studying vectors of fractions. We could for example be interested in the (statis-

tical) relationship between the components in mixtures, or we could be interested

in the influence of some external variable on this vector of fractions.

As a sub-field of statistics, the field of compositional data analysis [1] is devoted

to the study of the aforementioned compositions. In this dissertation, we will be

developing several tools that can be used to analyze data obtained from mixtures.
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Chapter 2. The analysis of mixtures and compositional data analysis

We will often be using both the dominant philosophy, as well as several (theoretical)

developments from the field of compositional data analysis. Therefore, this chapter

briefly introduces the field of compositional data analysis. However, it should be

noted that even though the main philosophy described in this chapter will be used

frequently within this dissertation, several problems that we encounter throughout

this dissertation go beyond the field of traditional compositional data analysis. In

Section 2.6, we elaborate on that.

The purpose of this chapter

Compositional data and its analysis will appear frequently throughout this disser-

tation. As we will see in this chapter, compositional data have several uncommon

properties that hamper its analysis. It is often stated that compositional data

carry only relative information and that any analysis procedure should respect this

relative nature. This statement has far-stretching implications. Moreover, the way

this statement is interpreted (or simply ignored) has a strong impact on the way

that compositional data are analyzed. Mainly for the reader who is unfamiliar with

the analysis of compositional data (as this field is rather small, we have generally

assumed that most of the readers are not familiar with this field), this chapter

introduces and illustrates several concepts that are important when analyzing such

data. Therefore, this chapter can also be seen as a motivation for several design

choices that are made later in this dissertation. It should be noted, however, that

within this dissertation, it is not our aim to contribute to the fundamentals of

compositional data analysis.

This chapter is organized as follows:

• In Sections 2.2 and 2.3, we present several examples of compositional data

and introduce the most important definitions and conventions.

• In Section 2.4, we briefly review the Aitchison geometry on the simplex.

• In Section 2.5, the Dirichlet distribution is briefly described (this distribution

will be used on multiple occasions).

• In Section 2.6, the importance of compositional data analysis within this

dissertation is highlighted.

2.2. The essence of compositional data analysis

2.2.1. Examples of compositional data

To illustrate the broadness of the field of compositional data analysis, we start

this section by giving two practical examples of settings in which compositional

data analysis may be interesting. The first example, based on a publicly available
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§2.2. The essence of compositional data analysis

Table 2.2: Analysis results of five minced meat samples. The first column reports
the sample number (conform the original dataset). The second (resp. third and fourth)
column shows the relative amount (mass percentages) of water (resp. fat and protein)
in the sample. The masses are expressed relative to the total amount of water, fat and
protein in the sample. The fifth column shows a graphical display of the NIR-spectra of
these samples (wavelength (nm) versus log(1/R)). This dataset is a subset of a publicly
available dataset known as the tecator dataset [2].
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dataset [2], is illustrative for several applications in the applied bio-sciences and has

(as far as we know) not been used in the literature on compositional data analysis.

The second example is a more traditional example and is adapted from [1].

Table 2.2 reports the water, protein and fat percentages of 5 minced meat samples

as well as a graphical display of their near infra-red (NIR) spectra1. It is clear

that the objects that are studied here (the samples) fit within the description

of mixtures given before. From a first inspection, it can be seen that the water,

protein and fat percentages are positive and they add up to one, which reflects

their proportional nature.

Compositional data analysis is not limited to the analysis of traditional mixtures.

As an example, consider Table 2.3. This table reports the relative household

expenditures (organized in four commodity groups) of 5 single men and 5 single

women as well as the total amount spent on household expenditures. Clearly, these

data are compositional. However, they can hardly be described as observations of

traditional mixtures.

2.2.2. Shortcomings of traditional statistics

The main reason for the existence of the field of compositional data analysis stems

from the inapplicability of traditional statistical procedures to analyze compositional

data. The awareness of problems related to the analysis of data that involves

1 This dataset is a subset of a larger (publicly available) dataset [2]. We will be using this dataset
later in this dissertation
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Chapter 2. The analysis of mixtures and compositional data analysis

Table 2.3: Household expenditures of five single men and five single women. The first
column reports the sample number (conform the original dataset). The second till the
fifth column report the fraction of the total household expenditures spent on housing,
food, services and other commodities. The sixth column reports the total amount that
was spent (during one month, expressed in Hong Kong dollar). The last column reports
the sex (M: male, F: female) of the interviewee. This table represents a subset of a dataset
used in [1].

Nr Housing Food Services Other Total (HKD) Sex

1 0.324 0.386 0.190 0.100 1532 M

2 0.343 0.385 0.149 0.123 2448 M

3 0.238 0.390 0.174 0.199 3358 M

4 0.369 0.349 0.163 0.119 2416 M

5 0.241 0.119 0.264 0.376 6582 M

21 0.645 0.090 0.121 0.144 1271 F

22 0.648 0.261 0.070 0.021 284 F

23 0.294 0.021 0.145 0.539 3128 F

24 0.621 0.102 0.146 0.131 786 F

25 0.665 0.077 0.096 0.162 1084 F

mixtures is not new. Indeed, it is often stated that this awareness dates back to

a paper by Karl Pearson (1897) [3]. Below, we illustrate several issues that arise

when a traditional way of reasoning is applied to the analysis of compositional

data.

Datasets such as the ones referred to above can be used to study several properties

of compositions. Let us, for now, focus on the household expenditures example. We

can assume that the first four columns in this dataset are i.i.d. observations of the

random vector (X1,X2,X3,X4) that represents relative household expenditures of

the population of single men. This dataset can be used to study the dependencies

between the components of this random vector. A traditional statistical approach

would suggest (at least as a first attempt) to use the covariance matrix as a measure

of this dependency. For the dataset presented in Table 2.3 (the complete dataset

was used, not merely the subset reported here), we obtain the following covariance

matrix 
0.0273 −0.0088 −0.0141 −0.0043

−0.0088 0.0312 −0.0206 −0.0017

−0.0141 −0.0206 0.0309 0.0037

−0.0043 −0.0017 0.0037 0.0023


In this matrix, it can be seen that the majority of the sample covariances is

negative. Indeed, due to the sum-to-one constraint, an increase of one component

will inevitably lead to a decrease of one or more of the other components. This

results in a covariance matrix that is biased. More importantly, it complicates the

interpretation of such covariance structure. As the computation of covariances
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§2.2. The essence of compositional data analysis

as well as their interpretation is key to the vast majority of standard statistical

techniques, this observation will hamper the application of these techniques.

As a second example, assume that we are interested in constructing a predictive

model capable of predicting the fractions of water, protein and fat in a meat sample

based on its near infra-red spectrum (this will be the topic of Part IV of this

dissertation). We might be tempted to fit three separate linear regression models to

the data (for instance using penalized least squares) and use these models to predict

the fractions of water, protein and fat. Unfortunately, standard linear regression

analysis does not guarantee that the positivity assumption of the predicted fractions

will hold. Moreover, it is highly unlikely that the predicted values for the three soil

separates will add up to one. As these findings are in conflict with our (natural)

assumptions, we can strongly doubt whether these models are appropriate. At

least, we should be cautious when drawing conclusions based on results obtained

from these models.

2.2.3. Principles of compositional data analysis

According to the dominant philosophy within the field of compositional data

analysis, the apparent difficulties arising when compositional data are analyzed,

result from a failure to recognize the relative (or proportional) nature of these data.

The main reason for this being the fact that traditional statistical procedures have

been designed to operate on absolute instead of relative quantities. Because of that,

most data analysis procedures process and manipulate data using the standard

operations of the Euclidean vector space. Unfortunately, the relative nature of the

data prevents this familiar Euclidean structure from being used. Within the field

of compositional data analysis, techniques are developed that inherently use the

relative nature of compositional data. More precisely, the natural characteristics of

compositional data are translated in a set of principles that should be fulfilled by

any procedure that is applied to compositions. As insight within these principles is

essential to appreciate the philosophy of compositional data analysis (which will

be used on several occasions in this dissertation), we elaborate on these principles

in Section 2.4.1.

The modern manner of looking at compositional data finds its roots in the 1980s.

The first landmark publication regarding this topic is probably “The Statistical

Analysis of Compositional Data”, published in the Journal of the Royal Statistical

Society, by John Aitchison [4]. Moreover, the monologue “The statistical analysis

of compositional data” [1] by the same author has become thé reference on the

analysis of compositional data. Most of the ideas that are used nowadays are

inspired on this work.

21



Chapter 2. The analysis of mixtures and compositional data analysis

2.3. Compositional data analysis: definitions and

conventions

From the examples given before, it can be deduced that a composition is a (column)

vector of positive real numbers that carry only relative information regarding the

contribution of a set of components (generally referred to as parts) to a mixture.

Semantically, the ith element of this vector represents the proportional contribution

of the ith part to the mixture. Without loss of generality, we can require that the

elements of this vector add up to one. Note that, as this choice is rather arbitrary,

we could as well have chosen to let the components add up to another constant.

Interestingly, one of the main principles when dealing with compositional data is

that the choice of this constant should not influence the results of the analysis.

The following definitions closely follow the ones presented in [1].

Definition 2.1 (d-part composition). Let d ∈ N, such that d > 1. A d-part

composition is a vector x ∈ Rd, such that xi ≥ 0 for each i = 1, . . . , d and∑d
i=1 xi = 1.

Semantically, xi represents the proportional contribution of the ith part to the

mixture.

The set of all possible d-part compositions (also called the compositional sample

space) is called the d-dimensional simplex, and is formally defined hereafter.

Definition 2.2 (Simplex). The d-dimensional simplex Sd is the following set:

Sd =

{
x ∈ Rd | xi ≥ 0 , i = 1, . . . , d and

d∑
i=1

xi = 1

}
.

However, we will often limit the elements of compositional vectors to be strictly

positive such that the sample space is the reduced simplex.

Definition 2.3 (Reduced simplex). The d-dimensional reduced simplex Sd0 is the

following set:

Sd0 =

{
x ∈ Rd | xi > 0 , i = 1, . . . , d and

d∑
i=1

xi = 1

}
.

Definition 2.4 (Random compositional vector). A random vector X whose sample

space is Sd0 is called a d-part random compositional vector.

Any vector w ∈ Rd+ can be mapped into the reduced simplex by the following

operator.
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§2.4. The Aitchison geometry

Definition 2.5 (The closure operator). The closure operator c is the function

c : Rd+ → Sd

w 7→ w/
∑d
i=1 wi .

In the introductory example, this is exactly the operation that was applied to the

data in Table 2.1.

For a given vector w ∈ Rd+ let c(w) = x. Notably, for any scalar t > 0, we have

that c(w) = c(tw) = x. Several issues arise when traditional statistical procedures

(that do not take this aspect into account) are applied to compositional data.

Lastly, we define a subcomposition as the result of applying the closure operator

to a subset of the parts of a composition.

Definition 2.6 (Subcomposition). Consider a composition x ∈ Sd, and let I be a

non-empty subset of {1, . . . , d}, we call the vector c ((xi)i∈I) an I-subcomposition

of x.

To illustrate that a subcomposition is a very natural object, consider (once more)

the data in Table 2.1. For simplicity we refer to the parts sand, silt and clay

respectively using the numbers 1, 2 and 3. In this example we could have decided

not to measure the quantity of clay (the third column would not have been there).

In this case, a soil sample is only characterized by the quantities of sand and silt.

As these quantities carry only relative information, the closure operator can be

used without loss of information to obtain a 2-part composition. The composition

that is obtained is identical to the {1, 2}-subcomposition of the original 3-part

composition.

2.4. The Aitchison geometry

2.4.1. The principles of compositional data analysis

In the literature on compositional data analysis, it is often stated that any procedure

that is used to analyze compositional data should inherently respect the relative

nature of the data. To formalize this (somewhat loosely formulated) requirement,

three main principles have been postulated. As a general strategy, it is often

recommended that procedures that are used to analyze compositional data should

be validated with respect to these principles. In this section, we briefly present these

three main principles of compositional data analysis. These principles were originally

derived from the monograph by Aitchison [1]. However, this presentation is mainly

based on a concise overview by Pawlowsky-Glahn et al. [5] and Aitchison [6].
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Chapter 2. The analysis of mixtures and compositional data analysis

Scale invariance

As a first principle, it is stated that any analysis procedure should be scale

invariant. Therefore it should only use scale invariant functions. Here, a scale

invariant function is a function f : Rd+ → R such that for all x ∈ Rd+ and λ > 0 we

have that f(x) = f(λx).

This principle expresses the desired invariance of the (statistical) procedure to the

measurement scale that is used. For example, if the quantities in Table 2.1 would be

measured in kilograms instead of grams, the analysis should not be influenced. This

property stresses the fact that compositions contain relative information.

Permutation invariance

As a second principle, it is stated that any analysis should be permutation invariant.

This means that the analysis should not be affected by a permutation of the parts

of the composition.

Even though this assumption may seem rather trivial at first, it is not generally

satisfied. For example, to overcome the difficulty of the sum-to-one constraint

(as this constraint leads to the singularity of the covariance matrix reported in

Section 2.2.2) we could, once the closing operation is performed, choose to ignore

the last column in our analysis. Indeed, this does not lead to any loss of information.

The covariance matrix can then be computed only using the remaining columns.

This would eliminate the singularity problem. However, when this procedure is

repeated using a permutation of the parts, the resulting covariance matrix will be

different. Any procedure that uses this covariance matrix might be affected by this

permutation.

Subcompositional coherence

As a third principle, subcompositional coherence requires that erasing non-informative

data should not influence the result of the analysis.

To illustrate this principle, consider the data in Tables 2.4(a) and 2.4(b). The

data in both tables characterize three soil samples. In the table in panel (a) the

soil samples are characterized by the proportional contributions of the three soil

separates sand, silt and clay to the sample. The table in panel (b) extends this

characterization by including the relative contribution of organic matter to the

sample. Apart from this last column, both tables contain the same information.

Stated differently, the data in the left panel is a {1, 2, 3}-subcomposition of the

data in the right panel. Now, assume that a (statistical) procedure is used to

characterize the dependencies between the proportions of the three soil separates

(sand, silt and clay). As the organic matter content is non-informative for this

characterization, the subcompositional coherence principle states that disregarding

the data (panel (a) or (b)) that is used, the result should be the same.

The principle of subcompositional coherence is often stated by means of examples
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§2.4. The Aitchison geometry

Table 2.4: (a) Data from Table 2.1 after applying the closure operator (and rounding).
(b) Data from Table 2.1 with an additional column representing the quantity of organic
matter after applying the closure operation (and rounding).

sand silt clay

S 1 0.223 0.723 0.053

S 2 0.221 0.735 0.044

S 3 0.361 0.602 0.036

(a)

sand silt clay OM

S 1 0.202 0.654 0.048 0.096

S 2 0.181 0.602 0.036 0.181

S 3 0.306 0.510 0.031 0.153

(b)

like the one given above. Even though it is often referred to as being the most

important principle, we did not find a formal description of this principle. In this

sense the description in [5] is worth mentioning “ Subcompositions should behave

as orthogonal projections do in conventional real analysis. The size of a projected

segment is less than or equal to the size of the segment itself ”. This is the most

formal definition of subcompositional coherence that we could find.

2.4.2. Applying the principles to traditional statistics

As a traditional statistic that is often used, consider the sample mean and the

sample variance. For the relative amount of sand given in Table 2.4(a) we obtain a

sample mean of 0.2683 and a variance of 0.0064. Computing these statistics using

Table 2.4(b), we respectively obtain 0.2297 and 0.0045. Clearly, these values differ,

which violates the subcompositional coherence principle. As a result, it is advisable

not to use the sample mean and sample variance when analyzing compositional

data. This conclusion should not come as a surprise, as these statistics do not take

the compositional nature of the data into account.

2.4.3. Compositional data and log-ratios

To enforce the relative nature of the compositional data, it would be natural to

consider ratios of the different elements of compositional vectors instead of the

raw values of the elements themselves [1]. Moreover, for x ∈ Sd0, we have that

xi/xj ∈ R+
0 for i, j = 1, . . . , d. Finally, as we are more familiar with working in

R, we can take logarithms of these ratios. This is the main motivation given in

[1] to use log-ratios. Any x ∈ Sd0 can be represented by the following matrix of

log-ratios:


ln(x1/x1) · · · ln(x1/xd)

...
. . .

...

ln(xd/x1) · · · ln(xd/xd)
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Using this representation, we can easily construct statistics that respect the three

main principles of compositional data analysis. For example, let X = (X1, . . . ,Xd)
be a d-part compositional random vector, then we can define the following ma-

trix:

ΓX =


var(ln(X1/X1)) · · · var(ln(X1/Xd))

...
. . .

...

var(ln(Xd/X1)) · · · var(ln(Xd/Xd))


The sum of all elements in ΓX can be used as a measure for the total variability

of the compositional random vector. This measure (and its maximum likelihood

estimator) respect the three principles. This matrix will be used in Part II of this

dissertation.

Even though the matrix representation introduced above seems interesting, it

contains a lot of redundancy. Indeed, this representation uses d× d real numbers

to represent a d × 1 vector. Moreover, these d × d real numbers cannot be seen

as free variables. Due to its construction, given only a few entries of this matrix,

the remaining entries trivially follow. This means that one can easily construct a

matrix that cannot correspond to any compositional vector. To overcome these

problems Aitchison introduced the log-ratio transform [4] and the centered log-ratio

transform[1].

Definition 2.7 (Log ratio-transformation). The log-ratio transformation l is de-

fined by the following mapping:

l : Sd0 → Rd−1

x 7→
(

ln
(
x1

xd

)
, . . . , ln

(
xd−1

xd

))
Definition 2.8 (Centered log ratio-transformation). The centered log-ratio trans-

formation g is defined by the following mapping:

g : Sd0 → Rd

x 7→
(

ln
(
x1

g(x)

)
, . . . , ln

(
xd
g(x)

))
were g(x) represents the geometric mean of x.

Both transformations have advantages and disadvantages. The log-ratio transform

is a bijection between Sd0 and Rd−1. Unfortunately, this transformation is clearly not

permutation invariant. The centered log-ratio transform is permutation invariant.

Moreover, this transform is a bijection between Sd0 and {y ∈ Rd |
∑d
i=1 yi = 0}.

This means that all transformed compositions lie in a subspace of Rd. Conse-

quently, the sum constraint of the simplex is simply exchanged with another

constraint.
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Even though these transformations have several shortcomings, they have been used

extensively within the field of compositional data analysis and, more importantly,

form the basis for the isometric log-ratio transform (ilr-transform) [7] that is

introduced hereafter.

2.4.4. A vector space for compositional data

Due to the structure of the Euclidean vector space, two vectors can be added, a

vector can be multiplied with a scalar and the angle between two vectors can be

computed. Unfortunately, these basic operations that data-analysts are familiar

with cannot be used in the simplex. As a simple example, consider two compositions

x,y ∈ Sd0. Using vector addition as defined on the Euclidean vector space, we

have

x + y = (x1 + y1, . . . , xd + yd)
> .

Naturally, we have that x + y /∈ Sd0. The same holds for scalar multiplication (we

say that Sd0 is not closed under these operations). This means that Sd0 is not a

(normed) vector space. Because of that, elementary operations such as computing

distances cannot be performed in a mathematically sound manner. Nevertheless,

the ability to compute distances (or similarities) is a necessity for most statistical

procedures. In this section, we give three operations that give Sd0 an inner product

space structure, following [8, 9].

Definition 2.9 (Perturbation). The perturbation of a composition x ∈ Sd0 with a

composition y ∈ Sd0 is given by:

x⊕ y = c(x1y1, . . . , xdyd) .

It is easy to see that the neutral element of (Sd0,⊕) is 1d/d. For a given x ∈ Sd0,

its inverse is c(x−1
1 , . . . , x−1

d ), we use x−1 to denote that inverse. Additionally, we

define the operator 	 as follows: x	 y = x⊕ y−1.

Definition 2.10 (Power transformation). The power transformation of a compo-

sition x ∈ Sd0 with a scalar α ∈ R is given by:

α� x = c(xα1 , . . . , x
α
d ) .

It can be shown [5] that (Sd0,⊕,�) is a vector space. However, before this space

can be used in a data-analysis setting, it should be verified that the perturbation

and power transformation have some intuitive properties. Even though such a

motivation exists, we do not elaborate on this here. However, we mention that

these operations respect the three principles defined in Section 2.4.1.
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Definition 2.11 (Aitchison inner product). The inner product of x,y ∈ Sd0 is

defined as:

〈x,y〉a =
1

2d

d∑
i=1

d∑
j=1

ln

(
xi
xj

)
ln

(
yi
yj

)
.

The norm associated with this inner product is denoted ‖x‖a =
√
〈x,x〉a. The

simplex, endowed with the perturbation transformation, the power transformation

and the Aitchison inner product is a normed vector space. We refer to this

structure as the Aitchison geometry. Moreover, defining the distance function

da(x,y) = ‖x	 y‖a, we have that:

da(x,y) =

√√√√ 1

2d

d∑
i=1

d∑
j=1

(
ln

(
xi
xj

)
− ln

(
yi
yj

))2

.

From this formula it can be seen that the normed vector space is intuitively appealing

(this distance function will appear several times in Part II of this dissertation).

Firstly, it only uses ratios of x and y, therefor the distance function uses only

relative information. Moreover, the distance is defined by means of the sum of

squared differences between these ratios, leading to an expression that is highly

similar to the Euclidean distance.

2.4.5. A coordinate representation for compositional data

The log-ratio transformation is a bijection, as it is an isomorphism between Sd0
and Rd−1. From a data-analysis point of view, this property could allow us to

use this tranformation to: (1) express a compositional dataset as a set of points

in Rd−1, (2) use standard data analysis procedures, and (3) backtransform to Sd0.

Unfortunately, this transformation is not permutation invariant. Moreover, it is

not an isometry w.r.t. the Aitchinson geometry, i.e. ‖x	 y‖a 6= ‖l(x)− l(y)‖2.

Therefore, this approach is only of limited use. To overcome these difficulties, [7]

defined the isometric log-ratio transformation, a transformation that is an isometry

between Sd0 and Rd−1. We present this transformation hereafter.

Let {e1, . . . , ed−1} be an orthonormal basis of Sd0 (w.r.t. the Aitchison geometry).

A composition x ∈ Sd0 can be expressed as:

x =

d−1⊕
i=1

x∗i � ei , where x∗i = 〈x, ei〉a .

The vector x∗ = (x∗1, . . . , x
∗
d−1)> is the vector of coordinates of x with respect to

this orthogonal basis. This transformation is generally called the isometric log-ratio
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transform and was introduced in [7].

Definition 2.12 (Isometric log-ratio transformation). Given an orthonormal basis

E = {e1, . . . , ed} of Sd0, the isometric log-ratio transformation is the following

mapping:

iE : Sd0 → Rd−1

x 7→ (〈x, e1〉a , . . . , 〈x, ed−1〉a)
>

It can be shown that iE is a bijection. We use i−1
E to denote the inverse mapping.

Moreover, we have that for any x,y ∈ S+
0 and α, β ∈ R:

(α� x)⊕ (β � y) = i−1
E (α iE(x) + β iE(y))

and

〈x,y〉a = 〈iE(x), iE(y)〉 ,

showing that iE is an isometry.

Even though the isometry defined by the isometric log-ratio transformation has

several interesting properties, from a data-analysis point of view, a transformation

is mainly useful if the resulting coordinates can be interpreted in a simple manner.

To obtain an interpretable coordinate representation, an interpretable basis is

needed. Here we give an example (adapted from [5]) that illustrates how an

interpretable basis can be chosen. Moreover, this example will turn out to be

particularly interesting in Part IV of this dissertation.

As a starting point, given an orthonormal basis E = {e1, . . . , ed} of Sd0, let Φ be a

d× (d− 1) matrix such that the ithe column of Φ equals g(ei)
>. Interestingly, we

have that Φ>Φ = Id−1. It can be shown that [7], for any x ∈ S+
0 :

iE(x) = Φ>g(x) and x = c(exp(Φ iE(x))) .

As the centered log-ratio transformation that is used to define Φ is an isometry,

we can translate the problem of choosing a basis E into the problem of choosing

an appropriate matrix Φ. Therefore, for notational convenience, we write iE = iΦ.

Following the example in Egozcue et al. [7], we can use the following procedure to

obtain this matrix for Sd0 (these steps are illustrated in Table 2.5 for d = 5).

1. Construct a recursive binary partitioning matrix B, see Appendix 2.A for a

clarification on how such a matrix can be constructed and interpreted.

2. Let rj , (resp. sj) be the number of times +1 (resp. -1) occurs in the jth

column of the binary partitioning matrix B.
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3. We now let

Φi,j =


0 , if Bi,j = 0 ,

1
rj

√
rjsj
rj+sj

, if Bi,j = +1 ,

− 1
sj

√
rjsj
rj+sj

, if Bi,j = −1 .

(2.1)

This procedure defines the matrix Φ completely. From this matrix, we can derive

the corresponding orthonormal basis E of Sd0. Now, for given matrices B, Φ and

x ∈ Sd0, let x∗ = iE(x) and let rj (resp. sj) be defined as before, we have that

x∗j =

√
rjsj
rj + sj

ln



 ∏
{i|Bi,j=+1}

xi

1/rj

 ∏
{i|Bi,j=−1}

xi

1/sj


. (2.2)

This coordinate has a simple interpretation. Considering the partitioning encoded

in the jth column of B, the sign of x∗j expresses whether the geometric mean of

the elements belonging to the positive class (+1) is greater than the geometric of

the elements belonging to the negative class (-1). Moreover,
∣∣x∗j ∣∣ is proportional

to the difference between these geometric means. The coefficient
√

rjsj
rj+sj

ensures

that different coordinates are scaled appropriately. Due to this scaling, the sizes

|x∗l | and |x∗l | of two coordinates can be compared in a meaningful manner.

Table 2.5: (a) The central part of this table represents a 5× 4 partitioning matrix B.
The bottom rows count the number of times the labels +1 (represented by r) and -1
(represented by s) appear in each column, (b) The central part of this table visualizes the
matrix Φ that is computed based on B, using Eqn. (2.1).

Order 1 2 3 4

x1 +1 0 0 +1

x2 +1 0 0 -1

x3 -1 +1 +1 0

x4 -1 +1 -1 0

x5 -1 -1 0 0

r 2 2 1 1

s 3 1 1 1

(a)

Order 1 2 3 4

x1

√
3
10

0 0
√

1
2

x2

√
3
10

0 0 -
√

1
2

x3 -
√

2
15

√
1
6

√
1
2

0

x4 -
√

2
15

√
1
6

-
√

1
2

0

x5 -
√

2
15

-
√

2
3

0 0

(b)
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§2.5. Probability distributions on the simplex

2.5. Probability distributions on the simplex

The Dirichlet distribution remains the most popular distribution on the sim-

plex (even though other distributions exist, see for instance [8]). When a ran-

dom vector X = (X1, . . . ,Xd) is Dirichlet distributed with parameter vector

β = (β1, . . . , βd)
> ∈ R+,d

0 , its probability density function ρX is given by

ρX (x;β) =
1

B(β)

d∏
k=1

xβk−1
k ,

for x ∈ Sd0. B(β) is a constant calculated as

B(β) =

d∏
k=1

Γ(βk)

Γ

(
d∑
k=1

βk

) ,

and Γ(.) denotes the Gamma function. Let us define s as

s =

d∑
k=1

βk ,

then the Dirichlet distribution has an expected value of (E[X1], . . . ,E[Xd]) =

(β1/s, . . . , βd/s).

s is called the concentration parameter of the distribution. The concentration pa-

rameter allows an intuitive alternative parametrization of the Dirichlet distribution.

Thereto, let α = β/s. Naturally, we have that α ∈ Sd0 and ρX (x;β) = ρX (x; sα).

Figure 2.1 shows two contour plots of the Dirichlet distribution on S3
0. In both

panels, the parameter vector α is the same but the concentration parameter s is

different in both panels.

2.6. Compositional data analysis in this disserta-

tion

In this chapter, a brief overview of the field of compositional data analysis was

presented. Throughout this dissertation, we will often rely on some of the prin-

ciples that have been described in this chapter. Nevertheless, as stated at the

beginning of this chapter, it is not our aim to contribute to the fundamentals of

compositional data analysis. Instead, we will use the mathematical tools that have

been developed in this field as well as the underlying philosophy repeatedly within

this dissertation.
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Chapter 2. The analysis of mixtures and compositional data analysis

(a)

(b)

Figure 2.1: Contour plot of the probability distribution function of a Dirichlet distributed
random vector with α = (0.15, 0.25, 0.60)>. In panel (a) s = 40 and in panel (b) s = 100.
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§2.6. Compositional data analysis in this dissertation

The attentive reader may have noticed that the fundamentals of compositional

data analysis are in conflict with a part of his own opinion. Indeed, the strict focus

on log-ratios within this field may lead to problems on several occasions. Most

importantly, the use of log-ratios hampers the analysis of data that contain zeros.

Most of the analysis methods that have been presented here break down when zeros

are involved. Secondly, the methodology that is put forward in this chapter implies

that observational noise has a multiplicative effect on the compositions. However,

in particular when this noise is due to measuring equipment or rounding, this

assumption may be questionable in some cases. This problem will occur in Part IV

of this dissertation (where the Aitchison distance is used on several occasions).

Interestingly, for most datasets we have seen, a visual inspection of the log-ratio

transformed data reveals inexplicable patterns at the boundaries of the sample

space. This phenomenon will appear in the experimental results in Part IV of this

dissertation. Moreover, in Part III of this dissertation, we will be using the linear

mixture model (LMM), which is a very natural model to consider for describing

mixtures. Unfortunately, there seems to be no clear link between the LMM and

the philosophy that is set forth in this chapter.
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Chapter 2. The analysis of mixtures and compositional data analysis

2.A. The recursive binary partitioning matrix

A recursive binary partitioning matrix can be seen as a matrix that encodes a

recursive binary partitioning of a discrete set. A recursive binary partitioning can

most easily be represented by a binary tree. For example, Figure 2.2 visualizes a

recursive binary partitioning of a set of 5 components by means of a tree. Naturally,

for any partitioning tree (of d components) we have that the number of terminal

nodes equals d. Each split in this tree corresponds to a column of the binary

partitioning matrix B ∈ {−1, 0, 1}5×4. The tree in this figure leads to the following

matrix:

B =



+1 0 0 +1

+1 0 0 −1

−1 +1 +1 0

−1 +1 −1 0

−1 −1 0 0


.

For example, the second column represents the split of the components 3, 4 and 5.

As components 1 and 2 are not involved in the split, we have that B1,2 = B2,2 = 0.

Moreover, in this split, the 5th component is separated from the 3rd and the 4th

component. Consequently, have that B3,2 = B4,2 = +1 and on the other hand

B5,2 = −1 (notably, +1 and -1 could have been interchanged).

1

2

3

4

Figure 2.2: Visualization of a recursive binary partitioning by means of a tree for d = 5
components. Each split corresponds to a column in the d× (d− 1) matrix B.
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3 Mathematical optimization

Mathematical optimization is a central theme in this dissertation. This chapter

outlines the general concept of mathematical optimization. The aim of this chapter

is threefold. Firstly, it serves as a general introduction to the field of mathemati-

cal optimization and can therefore be used to position the contributions of this

dissertation in the broad field of mathematical optimization. Secondly, it collects

several definitions and properties that will be used later in this work. Thirdly,

it may assist the reader who is less familiar with mathematical optimization in

appreciating some of the (technical) results in this dissertation.

Most of the material that is presented in this chapter can be found in the textbooks

Convex Optimization [10] (a standard work on modern convex optimization) and

Numerical Optimization [11] (a standard work on nonlinear optimization). To a

smaller extent, the textbook Global Optimization: Deterministic Approaches [12]

was used as reference on branch and bound methods. The textbook Combina-

torial Optimization: Algorithms and Complexity [13] was used as a reference on

combinatorial optimization and time complexity.

This chapter is organized as follows:

• In Section 3.1, we illustrate the manner in which mathematical optimization

will be used in this dissertation by means of an example.

• In Section 3.2, several definitions and conventions are presented that will be

used throughout this dissertation.

• In Section 3.3, several classes of optimization problems are discussed.

• In Section 3.4, the class of continuous optimization problems is briefly re-

viewed. Several known results on continuous optimization (that will be

used in this dissertation) are summarized. Moreover, some popular solution

strategies and software implementations are briefly reviewed. This section is

mainly intended for the inexperienced reader and can safely be skipped by

the reader who is familiar with continuous optimization.

• In Section 3.5, we briefly describe the class of discrete optimization problems

(can be skipped safely by the experienced reader).

3.1. The essence of optimization

Numerous problems in engineering, statistics, physics, . . . , but also in everyday life

involve the search for an optimal state. Typically such questions are phrased in
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Chapter 3. Mathematical optimization

loose wordings (using a natural language). As an example, consider the following

problem:

“ Given the dataset in Table 3.1, define a line that optimally separates the points in

the positive class from the points in the negative class.”

The attentive reader may have several remarks regarding the way this problem is

described (generally, we say that this problem is ill-defined). Indeed, one could for

example wonder what is meant by an optimal separation of points. Nevertheless,

problem settings as the one above are rather common in several fields of applied

research. In the following paragraph, we elaborate on this particular example

and outline a general strategy that can be followed for solving this and similar

problems. Even though the problem setting in this example is not new1, the

general strategy for solving it is very illustrative for the general philosophy of this

dissertation.

1. As a first step, let us recall that the object we are looking for is a line.

Mathematically, given three scalars a1, a2 and b, a line is represented by the

set {(x1, x2) | a1x1 + a2x2 + b = 0}. In essence, this trivial observation can

be used to translate the problem of finding a line into the problem of finding

three scalars a1, a2 and b. We call a1, a2 and b the optimization variables.

2. Secondly, the optimal line should separate the points of the two classes. In

essence, this requirement puts constraints on the values that the optimization

variables can take. Mathematically, this requirement can be translated

into a set of inequalities. For notational purposes, let D+ (resp. D−) be

a dataset that contains the coordinates of points belonging to the positive

(resp. negative) class (D+
i,j represents the jth coordinate of the ith point in

this dataset). Using this notation, the following inequalities are obtained:

a1D
+
i,1 + a2D

+
i,2 + b ≥ 0 , i = 1, . . . , 4 , (3.1)

a1D
−
i,1 + a2D

−
i,2 + b ≤ 0 , i = 1, . . . , 4 , (3.2)

This set of eight inequalities puts constraints on the optimization variables

encoding the requirement that the optimal line should separate the classes.

1 The way this problem is solved is inspired by the general philosophy that forms the basis of
support vector machines [14].

Table 3.1: Artificial dataset with two features X1 and X2 and label Y .

X1 X2 Y X1 X2 Y

0.41 0.18 + 0.18 0.42 -

0.62 0.20 + 0.21 0.80 -

0.85 0.31 + 0.43 0.57 -

0.64 0.41 + 0.72 0.81 -
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Figure 3.1: Visualization of the dataset in Table 3.1 (negative class (black) and positive
class (red)) and three potential (separating) lines. Panels (a) and (c) represent feasible
solutions, panel (b) represents an infeasible solution.

These constraints are called problem constraints and the set of the triples

(a1, a2, b) that respect these constraints is called the feasible set. Figure 3.1

shows three situations, panels (a) and (c) represent feasible lines, panel (b)

represents an infeasible line.

3. Thirdly, the line should optimally separate the classes. Unfortunately, the

problem description does not define an optimality criterion. However, when

looking at the plots in Figure 3.1, it would be natural to prefer the line in

panel (c) over the line in panel (a). Nevertheless, the problem description

does not allow us to express such a preference without making additional

assumptions. As a result, in order to proceed, assumptions need to be made

regarding what is meant by optimal. Such assumptions can be expressed

by means of a score function f : R3 → R, that assigns a score to each

feasible triple (a1, a2, b). Subsequently, we can attempt to find the triple that

maximizes this score and use this triple to construct the separating line. As
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a score function, the Euclidean distance from the line to the nearest point

can be used. Mathematically, this score function is described as follows:

f(a1, a2, b) = min
i

(
|a1Di,1 + a2Di,2 + b|√

a2
1 + a2

2

)
,

where D is the dataset that contains the coordinates of all points.

4. The score function f and the inequality constraints defined in step 3 can now

be used to define the following formal optimization problem: “Find the triple

(a1, a2, b) that maximizes f and respects constraints (3.1) and (3.2) .” This

problem can be denoted as follows:

maximize
(a1,a2,b)∈R3

min
i

(
|a1Di,1 + a2Di,2 + b|√

a2
1 + a2

2

)
subject to a1D

+
i,1 + a2D

+
i,2 + b ≥ 0 , i = 1, . . . , 4 ,

a1D
−
i,1 + a2D

−
i,2 + b ≤ 0 , i = 1, . . . , 4 .

Unfortunately, even though it can be proven that this optimization has at

least one solution, most standard numerical optimization solvers will not

be able to solve this problem directly. However, the following optimization

problem is equivalent (two optimization problems are equivalent if the solution

of the first can readily be obtained from the solution of the second, and vice

verse) to the original problem, but this new problem can be solved easily:

maximize
(a1,a2,b,t)∈R4

t

subject to a1D
+
i,1 + a2D

+
i,2 + b ≥ t , i = 1, . . . , 4 ,

a1D
−
i,1 + a2D

−
i,2 + b ≤ −t , i = 1, . . . , 4 ,

a2
1 + a2

2 ≤ 1 .

We will return on this issue later.

5. As a final step, the optimization problem needs to be solved. In general, three

options exist: (1) solve the problem by hand, (2) implement a procedure that

is capable of solving this problem, or (3) use existing numerical solvers to

solve this problem. Because of the size of the problem, solving the problem

by hand is highly unpractical. Moreover, even though several numerical

procedures have been described in literature that can solve problems like the

one above, making an efficient implementation of these procedures is a highly

specialized task, requiring years of experience. Because of that, we will often

be using existing high-quality implementations of these procedures.
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The five steps described above illustrate the translation of a loosely formulated

problem to a well-defined optimization problem. These steps are at the center

of several parts of this dissertation. Interestingly, when looking at the definition

of mathematical optimization provided by INFORMS2, it can be seen that this

definition perfectly covers these five steps. This contrasts the common perception

(see for instance on Wikipedia) of mathematical optimization as a field that solely

focuses on the development and application of numerical procedures for solving

optimization problems.

3.2. Mathematical optimization: definitions and

conventions

3.2.1. The (mathematical) optimization problem

As a starting point of this section, we define a mathematical optimization problem.

This definition is commonly used in textbooks such as [11] and [10].

Definition 3.1 ((mathematical) Optimization problem). Consider a set X ⊆ Rn

and the (vector) functions f : X → R, g : X → Rp and h : X → Rq. A

(mathematical) optimization problem is the problem of finding an element x ∈ X
that minimizes the function f and respects the vector inequality constraint g(x) ≤ 0p
and the vector equality constraint h(x) = 0q. We denote such a problem as:

minimize
x∈X

f(x)

subject to g(x) ≤ 0p ,

h(x) = 0q .

The set X is called the domain of the optimization problem. The vector x =

(x1, . . . , xn)> is called the optimization variable, f is the objective function, g(x) ≤
0p is a vector inequality constraint and h(x) = 0q is a vector equality constraint.

A point x ∈ X is said to be feasible if it respects the vector inequality constraint

g(x) ≤ 0p and vector equality constraint h(x) = 0q. Moreover, the set of all

feasible points is called the feasible set. When the feasible set is empty, we say that

the problem is unfeasible.

The optimal value p∗ of an optimization problem is:

p∗ = inf{f(x) | x ∈ X ,g(x) ≤ 0p ,h(x) = 0q}

2 the society for professionals in the field of operations research (O.R.), management science, and
analytics
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We allow that p∗ = ±∞. More precisely, when there exists a sequence of feasible

points such that f(xk)→ −∞ as k → +∞, we say that the problem is unbounded

below.

Moreover, we call a point x∗ an optimal point if it is feasible and f(x∗) = p∗ (or

equivalently, x∗ solves the optimization problem). The set of all optimal points is

called the optimal set.

Now, let X = Rn, we say that x• is a locally optimal point if there exists an r > 0

such that:

f(x•) = inf{f(x) | x ∈ X ,g(x) ≤ 0p ,h(x) = 0q , ‖x− x•‖2 ≤ r} .

Additionally, we call a locally optimal point x• a strict locally optimal point if we

can find an r > 0 such that the following implication holds:

(x ∈ {x ∈ X | g(x) ≤ 0p ,h(x) = 0q , ‖x− x•‖2 ≤ r} ∧ f(x) = f(x•))⇒ x = x• .

Note that the definition of a locally optimal point can be extended to any metric

space X. Here, we only consider the case where the metric d(·, ·) is given by

d(x1,x2) = ‖x1 − x2‖2.

Note 1: Within this dissertation, a solution of an optimization problem is not

necessarily an optimal point. Instead, we loosely say that a point x is a solution of

an optimization problem if it is a feasible point that results from an attempt to

solve that optimization problem.

Note 2: Definition 3.1 defines an optimization problem as a minimization problem.

However, in this dissertation we will encounter both minimization problems and

maximization problems. A maximization problem is defined as follows. Given the

functions f : X → R, g : X → Rp and h : X → Rq. A maximization problem is the

problem of finding an element x ∈ X that maximizes the function f and respects

the vector inequality constraint g(x) ≤ 0p and the vector equality constraint

h(x) = 0q. We denote such a problem as:

maximize
x∈X

f(x)

subject to g(x) ≤ 0p ,

h(x) = 0q .

An optimal point of this problem is a feasible point x for which

f(x) = sup{f(x) | x ∈ X ,g(x) ≤ 0p ,h(x) = 0q} .

It is well known that the following statements are equivalent:

- x is an optimal point of the maximization problem with objective function f

40



§3.2. Mathematical optimization: definitions and conventions

and constraint functions g and h.

- x is an optimal point of the minimization problem with objective function

−f and constraint functions g and h.

Due to this equivalence, we can transform any maximization problem into a mini-

mization problem. Note 3: Occasionally, we use the term mathematical program to

refer to an optimization problem. These terms can be used interchangeably.

An instance of an optimization problem

As mentioned above, an optimization problem is completely defined by its objective

function f , its inequality constraint function g and its equality constraint function

h. However, when speaking of an optimization problem, often a distinction is made

between a general optimization problem, with generic functions f , g and h and an

instance of an optimization problem, in which these functions are precisely specified.

We will be making this distinction several times throughout this dissertation.

3.2.2. General definitions

This section collects several definitions and properties that are frequently used

within the field of mathematical optimization. Most of these definitions will be

used on multiple occasions within this dissertation. We will also state the relevance

of (most) definitions w.r.t. the scope of this dissertation. Most of the definitions

presented here can be found in textbooks on convex analysis such as [15].

Sets

Whenever a set S is a subset of the n-dimensional Euclidean space, we write

S ⊆ Rn.

We start with the definition of a convex set. As we will see later, convex sets play

a dominant role in the field of mathematical optimization. Moreover, convex sets

will be used extensively in Part III of this dissertation.

Definition 3.2 (Convex set). A set S ⊆ Rn is convex if for any pair of points x1,

x2 ∈ S and scalar θ ∈ [0, 1], we have that

θ x1 + (1− θ) x2 ∈ S .

As a special type of convex sets, we define convex polytopes (which are n-dimensional

generalizations of convex polyhedrons).

Definition 3.3 (Convex polytope). A set S ⊆ Rn is called a convex polytope

if there exists a matrix A ∈ Rm×n and a vector b ∈ Rm such that we have the
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following identity:

S = {x | Ax + b ≤ 0m} .

As can be expected from its name, a convex polytope is a convex set. The proof is

trivial.

Definition 3.4 (Cone). A set S ⊆ Rn is called a cone if for any x ∈ S and

θ ∈ [0,+∞[, we have that:

θ x ∈ S .

One can easily prove that a cone is not necessarily convex. However, the class

of convex cones is very important in modern mathematical optimization. More

precisely, we will mainly be interested in proper cones.

Definition 3.5 (Proper cone). A set S ⊆ Rn is called a proper cone if

• S is a convex cone,

• S is closed,

• int(S) 6= ∅3,

• S contains no lines (we say S is pointed).

Definition 3.6 (Dual cone). For a given proper cone K ⊂ Rn, the set

K∗ = {y ∈ Rn | (∀x ∈ K)(x> y ≥ 0)} ,

is the dual cone of K.

Definition 3.7 (L2 Lorentz cone). The set

KL2
= {(x, t) ∈ Rn+1 | ‖x‖2 ≤ t} ,

is the L2 Lorentz cone.

Definition 3.8 (Sublevel set). For a given function f : X → R and a scalar a ∈ R
the set {x ∈ X | f(x) ≤ a} is called the a-sublevel set of f .

Definition 3.9 (Convex hull). Let S ⊂ Rn, the convex hull conv(S) of S is the

following set

conv(S) =

{
k∑
i=1

θi ai | ai ∈ S, θi ≥ 0, i = 1, . . . , k ;

k∑
i=1

θi = 1

}
.

Definition 3.10 (Supporting hyperplane). Let S ⊂ Rn and x0 ∈ bnd(S). If

a ∈ Rn (and a 6= 0n) such that

3 The boundary of a set S (denoted bnd(S)) is the subset of S that contains the points which can be
approached both from S and from the outside of S. The interior of the set is int(S) = S \bnd(S)
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• a>x ≤ a>x0 for all x ∈ S, or

• a>x ≥ a>x0 for all x ∈ S,

then the hyperplane {x ∈ Rn | a>x = a>x0} is called a supporting hyperplane of S

at x0.

(Quasi-)Convex functions

Just as convex sets, convex functions play a dominant role in the field of mathemat-

ical optimization. In the following definitions, we will assume that X is a convex

subset of Rn.

Definition 3.11 (Convex function). Let X be a convex subset of Rn. A function

f : X → R is called convex if for any x1, x2 ∈ X and θ ∈ [0, 1] we have that

f(θ x1 + (1− θ) x2) ≤ θ f(x1) + (1− θ) f(x2) .

When a function f : X → R is twice differentiable over its domain and ∇xxf(x) is

positive semi-definite for every x ∈ X, we have that f is convex.

Definition 3.12 (Concave function). Let X be a convex subset of Rn. A function

f : X → R is called concave if −f is convex.

Even though convex functions are amenable for optimization purposes, requiring

convexity is sometimes too restrictive. Instead, the class of quasi-convex functions

is more general and has some properties that allow for efficient optimization as

well.

Definition 3.13 (Quasi-convex function). Let X be a convex subset of Rn. A

function f : X → R is called quasi-convex if all its sublevel sets are convex.

Definition 3.14 (Quasi-concave function). Let X be a convex subset of Rn. A

function f : X → R is called quasi-concave if −f is quasi-convex.

It can easily be shown that each convex function is quasi-convex. However, the

converse is not generally true.

Generalized inequalities

Traditionally, given two vectors x,y ∈ Rn, we write x ≤ y if and only if xi ≤ yi for

each i = 1, . . . , n. Because of that, we have the following trivial equivalence:

x ≤ y ⇐⇒ y − x ∈ Rn+ .

It is well known that this vector inequality (as it operates on vectors) defines a

partial ordering on Rn. A generalized inequality defines a partial ordering that
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has many of the properties of the vector inequality above. To define a generalized

inequality, we will be using proper cones (this presentation is based on [10]).

Using a proper cone K ⊂ Rn, a partial ordering (or a generalized inequality) is

defined as follows

x 4K y if y − x ∈ K .

Equivalently, a strict partial ordering is defined as follows

x ≺K y if y − x ∈ int(K) .

Generalized inequalities can be used to define (convex) sets. As an example,

consider a proper cone K, a m× n matrix B and an n-vector b. It can easily be

shown that

B = {x | B x 4K b}

is a convex set.

3.3. Classes of optimization problems

Once an optimization problem has been constructed, the next logical step is to

try to solve it (i.e. find an optimal point x∗). Unfortunately, due to the general

nature of the optimization problem in Definition 3.1, there exists no algorithm that

is capable of solving all optimization problems (at least not within a reasonable

amount of time). As a result, to be able to study optimization problems and develop

new solvers, optimization problems are subdivided into several classes.

A class of optimization problems is a set of instances (of optimization problems)

that share some properties. For instance, the class of linear programs4 is the set of

instances for which f , g and h are affine vector functions (and X = Rn).

3.3.1. Continuous versus discrete optimization

Optimization problems can (at first sight) be naturally divided in two classes:

continuous optimization problems and discrete optimization problems.

In the former class, the optimization variables take real values. Generally, the

domain X of the optimization problem is an uncountably infinite set. For all

continuous optimization problems within this dissertation, we will assume that

X = Rn. Whenever a situation requires that X ⊂ Rn, this will be encoded by

adding inequalities to reduce the feasible set. Typical examples of continuous

4 We could also say linear optimization problem, but the term linear program is more commonly
used.
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optimization include linear programming and least squares problems. We will

encounter numerous optimization problems that belong to this class throughout

this dissertation (mainly in Parts III and IV).

In the latter class, the optimization set is a finite set (or possibly countably infinite).

Typical examples include timetabling problems, the traveling salesman problem

and the shortest path problem. Within this dissertation, we will be dealing with

discrete optimization problems in Part II only.

Typically, the strategies that are used to solve problems from the class of continuous

optimization problems differ quite strongly from the strategies that are used to

solve discrete optimization problems. It should be noted, however, that there

exists a rather smooth transition from the class of discrete problems to the class of

continuous optimization problems. For example, in mixed integer linear programs,

some of the optimization variables are continuous whereas others are discrete.

3.3.2. Easy to solve versus hard to solve

Mostly, when referring to the difficulty of an optimization problem, we look at the

time that it takes to solve the problem (i.e. the time it takes to guarantee that an

optimal point has been found).

The theoretical framework of time complexity (see for instance [13]) provides a

criterion that can be used to distinguish easy from hard problems. Loosely speaking,

the time complexity of a problem combined with an algorithm is a function that

expresses the time it takes to solve a problem as a function of the size of the problem

with that algorithm. As an example, consider the traveling salesman problem. This

problem consists of finding the shortest path in a completely connected weighted

graph that visits every node exactly once. The size of this problem is measured

by the number of nodes n in the graph. Assume that our algorithm exhaustively

searches through the space of possible paths. This means that in total n! paths

need to be computed. The time complexity of this algorithm thus is O(n!) (of the

order n factorial). It is generally assumed that when the best known algorithm has

a complexity that is exponential, the problem is considered hard to solve5.

Interestingly, with respect to time complexity, it can be noted that the class of linear

programs (shortly described before) has been a class of hard optimization problems

for quite some time. That is, it is only since the late 1970s that an algorithm

exists that can be proven to solve all instances from the class of linear programs in

polynomial time. Nevertheless, even today, the simplex algorithm (developed in the

late 1940s) is still used even though it has a complexity that is exponential. Despite

of these theoretical issues, the simplex algorithm can solve linear programs with

5 This discussion might insinuate a reference to the class of NP-complete problems, however, this
(rather technical) debate is beyond the scope of this dissertation.
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hundreds of variables and thousands of constraints within a reasonable amount of

time. It even outperforms several polynomial time algorithms.

In this dissertation, even though we take several theoretical aspects regarding time

bounds into account, we will mainly be focusing on the practical runtime of an

algorithm.

3.4. Continuous optimization problems

In this section, we (briefly) describe the most important classes and elaborate

shortly upon the classes that are of special interest for this dissertation.

3.4.1. Smooth versus non-smooth optimization

Within the class of continuous optimization problems, we distinguish between

smooth optimization problems and non-smooth optimization problems. A smooth

optimization problem is an optimization problem with a smooth objective function,

and smooth inequality and equality constraint functions. Here, smooth means

that derivatives of these functions with respect to each decision variable (i.e. the

function gradients), are continuous. If at least one of these functions is not smooth,

the problem is non-smooth.

In general, smooth optimization problems can be solved more easily (or at least, the

methodology for solving them is more established) than non-smooth optimization

problems [16]. However, as we shall see hereafter there exist several broad classes

of non-smooth optimization problems that can be solved efficiently as well. Within

this dissertation, we will encounter both types of problems.

Smooth optimization: Characterizing locally optimal points

We now consider optimization problems for which the functions f : X → R,

g : X → Rp and h : X → Rq are twice continuously differentiable. In this case

there exist several well-known results that can be used to characterize locally optimal

points. The most famous of these characterizations are the Karush-Kuhn-Tucker

conditions (KKT-conditions) [17]. As these conditions will be used explicitly later

in this dissertation (Part III), we briefly elaborate upon them. This presentation is

adapted from [11].

Definition 3.15 (Active set). For a given optimization problem, the active set

A(x) of a point x ∈ X is a subset of the equality and inequality constraint functions,

including

• each function gi for which gi(x) = 0,

• each function hi for which hi(x) = 0.
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We call the elements of A(x) the active constraints at x.

Definition 3.16 (LICQ). Given a point x ∈ X and its active set A(x), we say

that the linear independence constraint qualification (LICQ) holds if the gradient

vectors of the active constraints evaluated at x are linearly independent.

Definition 3.17. The Lagrangian function of an optimization problem is the

function

` : X × Rp × Rq → R
(x,λ,γ) 7→ f(x) + λ>g(x) + γ>h(x) .

These definitions can now be used to state the KKT conditions, which are first

order necessary conditions for locally optimal points.

Proposition 3.1 (KKT conditions). Suppose that x• is a locally optimal point

for a given optimization problem with Lagrangian function ` and that LICQ holds

at x•, then there exist two Lagrange multiplier vectors λ• ∈ Rp and γ• ∈ Rq such

that

∇x`(x
•,λ•,γ•) = 0n ,

g(x•) ≤ 0p ,

h(x•) = 0q ,

λ• ≥ 0p ,

λ•i gi(x
•) = 0 , i = 1, . . . , p .

Unfortunately, the KKT conditions are not sufficient conditions for locally optimal

points. However, there exist several classes of optimization problems for which

these conditions are sufficient. From a numerical point of view, the KKT conditions

are important as well, as most solvers attempt to find a solution to this system

of equalities and inequalities. However, as we will be needing sufficient conditions

for locally optimal points in Part III, we present the sufficient conditions here as

well.

Definition 3.18. Consider an optimization problem, a given point x for which the

KKT conditions hold with Lagrangian multiplier vectors λ and γ and the active

set A(x). We define the tangent cone to the feasible set at x as follows:

F1(x) =

αd | α ∈ [0,+∞[ ,d ∈ Rn ,
d>∇xhi(x) = 0 , for i = 1, . . . , q ,

d>∇xgi(x) = 0 , for all gi ∈ A(x)


Moreover, the subset of adherent directions of this cone is defined as

F2(λ) = {d ∈ F1 | d>∇xgi(x) = 0 for all gi ∈ A(x) with λi > 0} .
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This definition is used to state the second order necessary conditions.

Proposition 3.2 (Second order necessary conditions). Suppose that x is a locally

optimal point of an optimization problem and that LICQ holds. Let λ and γ be

two Lagrangian multiplier vectors for which the KKT conditions are satisfied and

let F2(λ) be defined as above. Then

d>∇xx`(x,λ,γ) d ≥ 0 , for all d ∈ F2(λ) .

Similarly, we can state second order sufficient conditions.

Proposition 3.3 (Second order sufficient conditions). Suppose that for some

feasible point x there is a pair of Lagrangian multiplier vectors λ and γ such that

the KKT conditions are satisfied and let F2(λ) be defined as above. If

d>∇xx`(x,λ,γ) d > 0 , for all d ∈ F2(λ),d 6= 0 ,

then x is a locally optimal point.

These propositions provide a useful characterization of locally optimal points. We

will be using this characterization in Part III.

Non-smooth optimization: Characterizing locally optimal points

For non-smooth optimization problems, similar characterizations can be made.

However, these characterizations are outside the scope of this dissertation.

3.4.2. Convex optimization problems

An optimization problem is called a convex optimization problem if f is a convex

function, g is a vector of convex functions and h is a vector of affine functions.

This class is by far the most amenable class for optimization. Indeed, owing to

the fact that within this class any locally optimal point is also globally optimal, a

procedure that is guaranteed to find a locally optimal point can be used to solve

the problem. Moreover, except for some degenerate cases, convex optimization

problems have a unique globally optimal point.

Nevertheless, convexity of a problem does not guarantee the existence of an

algorithm that allows the problem to be solved in a reasonable amount of time. To

be able to provide these guarantees, we need to make further restrictions.

Linear programs

A linear program is an optimization problem with an affine objective function and

affine inequality and equality constraint functions. This class of problems is among
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the oldest and most extensively studied classes of optimization problems. As a

result linear programs are used extensively in a variety of (not to say almost any)

research disciplines. In the life sciences several recent examples include optimal diet

composition [18], protein structure prediction [19] or the impact of the water and

agriculture policy on farming [20]. These examples illustrate that the use of linear

programming is very common. A simple search through literature quickly reveals

hundreds of relevant publications. Interestingly, even though not stated explicitly,

many of the publications that use linear programming in applied domains resemble

the flow that was presented in the introduction of this chapter.

We will be using linear programs in Part III of this dissertation.

(convex) Quadratic optimization problems

A quadratic optimization problem is an optimization problem with a quadratic

objective function and quadratic inequality and equality constraint functions. It

can easily be seen that the class of quadratic optimization problems extends the

class of linear programs. However, in general the class of quadratic optimization

problems is not convex. Therefore this class is further subdivided into:

• Linearly constrained convex quadratic optimization problems [11]: this is the

most well-known class of quadratic optimization problems. The objective

function is a convex quadratic functions and the inequality and equality

constraint functions are linear. As an example, support vector machines [14]

lead to this type of optimization problems. Another traditional example

is the Markowitz portfolio optimization problem [21]. Linearly constrained

convex quadratic optimization problems will be encountered in Part IV.

• Quadratically constrained convex quadratic optimization problems [11]: this

class extends the previous one by allowing the inequality constraint functions

to be convex quadratic functions.

• Quadratically constrained quadratic optimization problems: this class is the

most general class of quadratic optimization problems and allows (possibly

non-convex) quadratic objective functions and quadratic inequality and

equality constraint functions. Unfortunately, these problems are generally

hard to solve [22].

As a special case, we consider (generalized) bilinear programs [23]. Bilinear

programs are quadratic optimization problems that contain bilinear functions.

More precisely, a bilinear function f is a quadratic function that can be

written as f : Rs × Rt → R such that for a fixed pair (u,v) ∈ Rs × Rt,
we have that both f(u, ·) and f(·,v) are affine functions. Even though the

generalized bilinear program is less known in applied research, it has been

used in the life sciences (see for instance [24] for an application in farm
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management). We will study a specific case of the bilinear program in Part

III of this dissertation.

(convex) Conic optimization problems

The class of conic optimization problems is without doubt the most general class

of convex optimization problems (it includes any type of smooth convex quadratic

optimization problem [10]). As a general definition, we say that a conic optimization

problem is a mathematical optimization problem of the following form.

minimize
x∈X

f(x)

subject to Ax + b 4K 0p ,

Cx + d = 0q ,

where A ∈ Rp×n, b ∈ Rp, C ∈ Rq×n, d ∈ Rq and K is a proper cone. Interestingly,

only using a limited number of cones, an overwhelming number of convex mathe-

matical optimization problems can be encoded in a uniform manner. Popular cones

include the (second order) Lorentz cone and the semi-definite cone. For instance

the second order Lorentz cone allows the inclusion of (non-smooth) constraints of

the type

‖Ax + b‖2 ≤ r>x + s

where A and b are defined as before and r ∈ Rn, s ∈ R. This this type of

constraints is used extensively in the field of robust optimization (and robust

parameter estimation) [25].

In this dissertation, we will use this type of constraints in Parts III and IV.

3.4.3. Quasi-convex optimization problems

A quasi-convex optimization problem is a mathematical optimization problem with

a quasi-convex objective function f , a vector g of convex inequality constraint

functions and a vector h of affine equality constraint functions (this definition

is similar to the one given in [26]). In the previous section, we stated that

convex optimization problems are amenable for optimization, the most important

reason for this being the property that locally optimal points are always globally

optimal. Most quasi-convex optimization problems share this property. We say

most, because quasi-convex objective functions can have flat regions, and according

to the definition of locally optimal points these regions are essentially sets of

locally optimal points. This means that (in most cases), here as well, a procedure

that guarantees to converge to a locally optimal point can be used to solve the

problem.
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Unfortunately, a lot of procedures that can efficiently optimize convex optimization

problems exploit the convexity of the objective function. This means that these

procedures cannot be applied directly to solve quasi-convex optimization problems.

However, in several cases, quasi-convex optimization problems can be solved by

converting them into a sequence of convex optimization problems [10]. To do

this, we define a parametrized family of convex functions (with parameter a)

φa : Xn → R such that the following implication holds:

f(x) ≤ a⇒ φa(x) ≤ 0 .

We can now fix a and solve the following optimization problem.

minimize
(x,s)∈X×R

s

subject to φa(x) ≤ s ,
g(x) ≤ 0p ,

h(x) = 0q .

It is easy to see that when the optimal value (p∗) of the original quasi-convex

optimization problem is smaller than or equal to a, the optimal value (p•(a)) of

the mathematical optimization problem above will be smaller than or equal to zero.

This property can be used to solve the quasi-convex optimization problem:

1. Choose a value for a, and a tolerance ε.

2. Compute p•(a) and go to step 3.

3. If |p•(a)| ≤ ε: stop, else, go to step 4.

4. If p•(a) < 0: reduce the value of a and go to step 2, else, go to step 5.

5. If p•(a) > 0: increase the value of a and go to step 2.

When this procedure is iterated, it will converge to a globally optimal value for the

quasi-convex optimization problem.

In this dissertation, we will encounter quasi-convex optimization problems in Part

III.

3.4.4. Solving continuous optimization problems

Once an optimization problem has been defined, it generally needs to be solved, i.e.

an optimal point needs to be found. For some small or trivial cases, finding the

optimal point can be done by hand. Unfortunately, most optimization problems

cannot be solved by hand. However, in most cases we can use computers to assist

us in trying to find an optimal point. Typically, computers use (iterative) numerical

procedures to find such optimal points. In fact, the main purpose of the different

classes of optimization problems presented before is to allow the development of
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specialized and efficient numerical procedures. Indeed, as stated before, there exists

no unique numerical procedure that allows to solve all mathematical optimization

problems. In fact, a lot of numerical optimization problems cannot be solved at all

(even with the help of the most advanced numerical procedures).

Local optimization

The main purpose of using a numerical optimization procedure is to find an optimal

point. Unfortunately, finding an optimal point turns out to be a very difficult task

in the general case. Finding a locally optimal point is an easier task. Because

of that, we will be focusing here on finding locally optimal points. Moreover, as

mentioned before, for convex optimization problems, any local optimal point is a

globally optimal point.

As the purpose of this dissertation does not aim at the development of novel opti-

mization procedures (at least not for the continuous case), we will not go into much

detail here. Instead, we refer the interested reader to several excellent textbooks

on continuous numerical optimization (both textbooks [11] and [10] elaborate on

the development of algorithms for solving optimization problems). However, as we

will be using existing implementations of several numerical procedures, we give a

brief overview of the general ideas behind these procedures and some references to

existing software.

In the case of smooth continuous optimization, the KKT conditions can be used to

characterize locally optimal points. Note that these conditions are simply a system

of equalities and inequalities. In essence most numerical optimization procedures

exploit this property and will, for a given optimization problem, generate a sequence

of points

(x0,λ0,γ0), (x1,λ1,γ1), (x2,λ2,γ2), . . . ,

that will (hopefully) converge to a solution of the KKT system. In some cases, the

first point of this sequence is provided by the user. During the past 60 years, a

variety of methods has been developed that can be used to find such a point. Some

of them, such as for instance the famous simplex algorithm by Dantzig, can only

be used to solve a specific subclass of optimization problems (linear programs in

case of the simplex algorithm), others are more widely applicable. The numerical

procedures that are developed to be very generally applicable are often called

general purpose solvers.

General purpose solvers

There exists a variety of general purpose solvers. Depending on the philosophy

on which they are based or the reference that is used, such methods are called
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logarithmic barrier methods, augmented Lagrangian methods, sequential quadratic

programming, primal-dual methods or interior point methods (some of the classes

mentioned may considered as subclasses of others).

To be useful in practice, a procedure should be implemented in an efficient manner.

Indeed, it is generally known that an efficient implementation is key to the usability

of any procedure. Making such an efficient implementation is often a highly special-

ized and time-consuming task. Fortunately, several high-quality implementations of

a variety of numerical procedures exist. Such implementations include LANCELOT

[27] (an augmented Lagrangian method), IPOPT [28] (a primal-dual interior point

solver), or the fmincon-function of MATLAB [29] (containing, amongst others,

an implementation of sequential quadratic programming). It should be noted

however that, even though these implementations represent the state of the art,

they are only local optimization methods. Moreover, when the constraints are

non-convex, there is no guarantee that a general purpose solver will even find a

feasible point.

Linear and linearly constrained convex quadratic programming solvers

Since the introduction of the first (generally available) numerical procedure for

solving linear programs by Dantzig in 1947, there has been a huge interest in

the development of efficient numerical procedures for solving linear and linearly

constrained convex quadratic optimization problems. These developments have

led to a variety of both, freely available and commercial solvers. Popular solvers

include the CPLEX solver [30] or the MOSEC solver [31]. Modern implementation

implementations that use sparse matrix representations allow problems with tens of

thousands of optimization variables and millions of constraints to be solved within

several minutes. The main reason for this efficiency is that fact that these methods

exploit the specific structure of this class.

Conic programming solvers

In the paragraph above, the efficiency of linear and linearly constrained convex

quadratic programming solvers was attributed to the fact that these solvers exploit

the problem structure. As the class of conic optimization problems is very large,

it can be expected that the problem structure that is shared by all instances in

this class is considerably less. In the general case, we could argue that this is

indeed the case. However, throughout the past decade the research community

of conic programming has mainly been focusing on the development of efficient

optimization procedures for a limited number of proper cones (mainly the second

order Lorentz cone and the semi-definite cone). This restriction allows to exploit

specific properties of these cones, resulting once more in highly efficient procedures.

Examples of broadly used (and freely available) implementations are SeDuMi [32]

and SDPT3 [33]. Generally speaking, when a convex optimization problem can

be translated into a conic optimization problem that uses the Lorentz cone or

the semi-definite cone, it can be solved efficiently. As an example, consider the
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optimization problem presented in the first section of this chapter (step 4). We

could attempt to use a general purpose solver to solve this problem (in this case,

this solver would definitely find the optimal point). However, using the Lorentz

cone, this problem can be rewritten as a conic optimization problem. Solving the

problem in the latter form will be more efficient.

Global optimization

Essentially, the procedures that have been described before are local optimization

procedures. This means that these methods look for locally optimal points. Natu-

rally, for convex optimization problems locally optimal points are globally optimal

as well. However, this does not generally hold for non-convex optimization problems.

Most non-convex optimization problems have multiple locally optimal points. As

the general purpose solvers introduced before can only guarantee convergence to

a locally optimal point, the solutions that are offered by these procedures cannot

generally be assumed to be globally optimal.

As a simple alternative, we could try to compose an exhaustive list of locally

optimal solutions (using the general purpose solvers) and simply take the solution

with the minimal objective function value as the global solution. Even though this

procedure could be applied in some simple cases, it is often very hard (in terms

of time complexity) to compose such an exhaustive list. Therefore, this (at first

sight) very simple procedure turns out to be rather impractical. Below, we present

several alternatives.

Heuristics

As a first alternative, we could settle for a feasible point that has a low objective

function value. In that case, we need to define what we mean with a low objective

function value. In some cases, the application at hand can indicate whether a given

feasible point has an acceptably low objective function value. Alternatively, we

could translate low to “as low as we can given a limited amount of resources”.

In this dissertation, we define a heuristic as a procedure that is intended to find

a feasible point with a low objective function value of an optimization problem,

without the guarantee that this point is optimal.

As a first heuristic, we can choose a (feasible) point and use this point as a starting

point for a general purpose solver. This strategy will generally result in a locally

optimal point. However, knowing that locally optimal points can still lead to high

the objective function values, such a strategy will not necessarily lead to a result

that is satisfactory. As a simple extension, multiple (feasible) points can be chosen

and used successively as starting points for a general purpose solver. Subsequently,

the minimum of the resulting points can be selected. Such an approach is for

instance used in [34].

54



§3.4. Continuous optimization problems

Alternatively, several heuristics have been developed that are inspired on (evolu-

tionary) processes in nature. Examples include: particle swarm optimization [35],

genetic algorithms [36] and simplex simulated annealing [37]. These procedures

typically start from a (set of) random point(s) and recursively apply a rule base

that acts upon these points. By selecting a well-thought rule base, it is hoped that

that at least one of these points will converge to a solution with a low objective

function value. Unfortunately, there are close to no guarantees regarding the quality

of the solution that will be found. We will use similar procedures (for discrete

optimization) in Part II of this dissertation.

Branch and bound (B & B) procedures

The discussion above illustrates that solving general non-convex optimization

problems can be hard. In this section, we briefly describe the main principle of

branch and bound procedures (see [12] for a standard work). The solutions provided

by this class of procedures are guaranteed to be ε-optimal. This means that the

objective function value of the solution that is obtained is at most ε higher than

the optimal value. Here, ε is an arbitrary tolerance parameter. Even though these

methods are very appealing, the main drawback is the time complexity, which can

be excessive in some cases. Below we present the main philosophy behind this class

of methods. We will develop a branch and bound procedure in Part III of this

dissertation.

Definition 3.19 (A (convex) lower bound). Consider the sets X ⊆ Rn and C ⊆ X
and the functions f : X → R and f̄C : X → R. We say that f̄C is a lower bound

on f over the set C if, for any x ∈ C, we have that:

f̄C(x) ≤ f(x) .

Moreover, when f̄C is convex, we call it a convex lower bound on f .

Similarly, we can define a convex upper bound.

To be useful in a B & B setting, it is preferable that f̄C is an element of a family of

functions that is parametrized by C. Moreover, the following (natural) properties

are required [38]:

(a) For C ′ ⊂ C ⊂ Rn, we have that f̄C
′
(x) ≥ f̄C(x) for all x ∈ C ′.

(b) If C = {x}, we have that f̄C(x) = f(x).

Property (a) ensures that deleting points from a subset does not lead to a decrease of

the lower bound. Property (b) ensures that singleton subsets are not unnecessarily

loose.

We will assume that there are no equality constraints (this is not a restriction as

any equality constraint can be written as a pair of equality constraints). A branch

and bound procedure will try to solve an optimization problem by using convex
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lower bounds to define relaxed versions of the original optimization problem.

Definition 3.20 (Convex C-relaxation). Consider an optimization problem with

convex domain X, objective function f and vector inequality constraint function

g : X → Rp as well as their convex lower bounds f̄C and ḡC , where C is a bounded

subset of X. We call the optimization problem

minimize
x∈X

f̄C(x)

subject to ḡC(x) ≤ 0p ,

x ∈ C ,

a convex C-relaxation of the original optimization problem.

It can easily be seen that the optimal value of the convex C-relaxation will be

smaller than or equal to the optimal value of the original problem (when constrained

to C). A branch-and-bound procedure will recursively partition the domain of

the original optimization problem and solve a sequence of convex relaxations as

illustrated below.

1. Construct a partitioning P = {C1, . . . , Cs} of the bounded domain X and

choose a tolerance parameter ε.

2. For each Ci ∈ P (this is called bounding):

• Find a locally optimal point of the following optimization problem:

minimize
x∈X

f(x)

subject to g(x) ≤ 0p ,

x ∈ Ci ,

we call the locally optimal value the upper bound of the optimal value

on Ci.

• Find the optimal point of the convex Ci-relaxation of the optimization

problem above. We call this optimal value the lower bound on Ci.

3. Let x• be the locally optimal point with the lowest objective function value

found so far.

• Remove each C ∈ P that has a lower bound that is greater than x•

from P .

• Remove each C ∈ P for which the gap between the upper and the lower

bound is smaller than ε from P .

4. If P 6= ∅: select (by some criterion, called the branching rule) an element

C ∈ P , partition C and add this partitioning to P , subsequently, delete C
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from P and go back to step 2. Else: stop, conclude that x• is an ε-optimal

point.

Note that the scheme above is only one variant of the general branch and bound

framework. Other variants or practical implementations can slightly deviate from

this scheme.

3.5. Discrete optimization problems

The domain of a discrete optimization problem is a finite or countably infinite set

[13]. Similar to continuous optimization problems, there exist several classes of

discrete optimization problems. Historically, there has always been a strong link

between discrete optimization and graph theory. The connection between those

two disciplines is very natural as most discrete optimization problems can be seen

as graph problems. Because of that, several problem classes have names that are

related to graphs, for example: the shortest path problem or the minimum spanning

tree problem. Other classes have more problem-oriented names, for example: the

traveling salesman problem and vehicle routing problems. However, as we will

not be using these classes within this dissertation, we do not elaborate on this

topic here. Instead, we will only briefly introduce the class of subset selection

problems.

Subset selection problems

For a given finite set I of size n, let 2I denote the power set of I. A subset selection

problem is an optimization problem of the following form:

minimize
x∈2I

f(x)

subject to g(x) ≤ 0p ,

h(x) = 0q .

Equivalently, we can write:

minimize
x∈{0,1}n

f(x)

subject to g(x) ≤ 0p ,

h(x) = 0q .

Here, the problem has been rewritten as an integer programming problem (as the

domain is a subset of Zn). As a typical example, consider the knapsack problem.

This problem is formulated as follows:

“You have been given a set I of n items. Each item is represented by a vector
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(vi, wi), where vi represents the monetary value of the ith item and wi represents

its weight. Additionally, you have been given a knapsack that has a weight limit of

W . From all the items, select a subset that has the highest possible monetary value

and respects the weight limit.”

This problem can be translated into the following optimization problem.

minimize
x∈{0,1}n

n∑
i=1

xi vi

subject to

n∑
i=1

xi wi ≤W .

Using this representation, a point x for which xi = 1 represents a subset that

includes the ith item, whereas xj = 0 denotes that a subset does not include the

jth item.

Solving subset selection problems

Unfortunately, even though the problem formulation above seems rather simple,

finding an optimal point turns out to be hard for large n. This problem has an

exponential time complexity. Because of that, people often resort to heuristics

for solving this and related problems. More precisely, meta-heuristics such as

ant colony optimization [39], genetic algorithms [40, 41] or tabu search [42] are

frequently used to find (suboptimal) solutions of this type of problems. In Part II

of this dissertation, we will develop a novel ant colony optimization procedure that

can be used to solve subset selection problems. Moreover, we will show that this

procedure has several interesting theoretical properties.
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4 Scoring the subsets of a compositional

dataset

4.1. Introduction

Modern high-throughput measuring equipment allows researchers to analyze large

numbers of samples in a limited amount of time. The use of this equipment for the

analysis of the (chemical) composition of mixtures often results in large databases

containing compositional data. Even though the acquisition of these databases

is generally interesting, it is often only a single step of an entire research project.

In some cases, the post-processing of these samples (or the data obtained from

them) is more expensive. For instance, a further analysis might call for a complex,

time-consuming laboratory analysis, or the analysis of the resulting dataset needs

to be performed by a numerical procedure that scales badly with the size of the

dataset. Here, due to budgetary or time constraints, a researcher is sometimes

forced to select a subset of the original set of samples (or data instances).

As a starting point for this chapter, we will assume that we have been given a

collection of n mixtures. Each mixture is characterized by a d-part composition,

representing the proportional contribution of d parts to the mixture. Subsequently,

this characterization will be used to select a subset of size m (where m < n) from

the collection of mixtures. More precisely, this characterization will be used to

select a subset that optimizes a (diversity) criterion.

A small literature review shows that the problem setting described here (or at least

strongly related problems settings) appears in several research disciplines. For

example, in the field of bioinformatics the problem of ‘core subset selection’ exists

of the selection of a subset of a genetic pool, i.e. a collection of (micro-) organisms,

that maintains as much as possible of the genetic diversity present in the original

collection. This problem has attracted a lot of attention during the last decades

[43, 44, 45, 46, 47]. Naturally, the characterization of a micro-organism does not

lead to a compositional dataset. In that sense the core subset selection is somewhat

different from the problem that will be tackled in this chapter. However, due to its

similarity, several ideas can be borrowed from this field. As a second example, in

several branches of (bio-)chemistry, the problem of selecting a subset of a collection

of samples that captures the variability of the entire collection appears frequently.

Here, the goal often exists in reducing the collection of samples based on some

high-throughput preliminary analysis, prior to more costly or time-consuming post-

processing steps. As a result, subset selection procedures like the Kennard-Stone

procedure [48] are implemented in popular chemometrics software packages such
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Chapter 4. Scoring the subsets of a compositional dataset

as The Unscrambler® [49]. From a computational point of view, the selection of a

representative subset of some collection can be interesting as well [50]. In applied

machine learning, these procedures are sometimes used to split a given dataset in

a train and a test set [51].

The examples above illustrate that the problem of selecting a subset of a collection

of samples that optimally captures the diversity that is present in the original col-

lection is rather common. Because of that, several procedures have been developed

that allow to select such a subset. Especially in the field of applied biochemistry,

there exist several applications that require the selection of a subset of mixtures

from a large collection. In these cases, mixtures are sometimes represented by

an enumeration of their components and a compositional vector indicating the

proportional contribution of these components to these mixtures [52, 41]. Never-

theless, to the best of our knowledge, there exists no publication that explicitly

takes the compositional nature of these data into account when selecting such a

subset.

In this chapter, we address how the compositional nature of the data can affect

such a selection. More precisely, by using some of the results introduced in the

Chapter 2 of this dissertation, we will show that the procedures that respect the

relative nature of the data can lead to subsets that strongly differ from the ones

that are obtained by procedures that discard this property. Moreover, we will

illustrate that most existing subset selection procedures can be tailored to handle

compositional data in a sound manner.

The remainder of this chapter is organized as follows:

• In Section 4.2, score functions for the selection of subsets are introduced.

• In Section 4.3, the (optimization) problem of selecting an optimal subset is

described.

• In Section 4.4, we experiment with several score functions.

4.2. Optimality criteria

4.2.1. Why do we need optimality criteria?

Naturally, when a collection of samples or the associated dataset needs to be

reduced, we want this reduction to be optimal with respect to some criterion.

Stated differently, the selected subset should be a ‘good’ subset with respect to

this criterion. Several research papers in which (new) subset selection procedures

are proposed or applied in a specific setting start by translating a ‘good’ subset as

a subset that is:
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. . . diverse and representative [53],

. . . sampled with the goal of maximizing diversity and minimizing redundancy

[46],

. . . a set of representative objects from a database [52].

As can be seen from these examples, the general concept of a good subset is often

described quite loosely. Therefore, in a second phase, these loose definitions are

generally formalized. Mostly, the general idea of a subset that is representative

or diverse is re-expressed as a subset that is uniformly spread over the dataset.

Subsequently, some methods translate this requirement in a formal score function

that unambiguously ranks all candidate subsets. Note that only a limited number of

approaches actually define such score functions. For example the famous Kennard-

Stone procedure [48] is only a heuristic that is claimed to lead to a representative

subset of the data. In the original paper that introduces the Kennard-Stone

procedure, there is no reference to a formal criterion that is optimized. In this

chapter, we will mainly focus on procedures that do use a formal score function.

Nevertheless, we will illustrate that other procedures can be modified to handle

compositional data in a simple manner. Before formally introducing the type of

score functions that we will be using, we end this paragraph by describing the

general applicability of the methods we will be discussing.

Inevitably, the reduction of a data set will infer a loss of information. However,

we can attempt to select a subset that minimizes the loss of information that is

relevant w.r.t. a specific research goal. To be able to compare subsets, i.e. to be

able to state that a given subset contains more relevant information than another

subset, a score function can be constructed. Such a score function can be seen as an

instrument that measures the amount of relevant information contained in a subset.

It should be stressed that such a score function is highly application-dependent.

Because of that, there exists probably no general-purpose score function that works

well for all applications. Therefore, an objective function should always be chosen

with the final research goal in mind. However, in this chapter we ẃıll consider

general-purpose score functions. Therefore, the score functions described here

should generally only be used if (1) a selection needs to be made prior to the

description of research goals, or (2) the research goals are known but we lack the

information to define a problem-oriented score function.

4.2.2. General-purpose score functions

Notational conventions

From this point on, we assume to have been given an (indexed) set S = {s1, . . . , sn}
of n items. Moreover, it is assumed that each item is characterized by a (feature)
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vector. For the ith item, this vector is denoted zi ∈ Z ⊆ Rd (Z is called the feature

space of the items). The jth element of zi is denoted zi,j . These feature vectors

can be collected in a matrix Z = (z1, . . . , zn)>. In summary, S is an indexed set of

items (for example a set of mixtures) and Z is a matrix in which the ith row is the

feature vector of the ith item in S (for instance a matrix of d-part compositions).

Moreover, Zi,. is the ith row of this matrix, Z.,j is the jth column of this matrix

and Zi,j is the element in the jth column on the ith row.

A subset x ∈ 2S can be written as an n-tuple 〈sj11 , . . . , sjnn 〉, where ji = 1 if si ∈ x

and ji = 0 if si /∈ x. Let xi be the i-th component of this n-tuple. We have that

xi ∈ {s0
i , s

1
i }. Finally, the matrix Zx is a matrix that contains the feature vectors

of the items in x. Similarly, the matrix Z−x is a matrix that contains the feature

vectors of the items that are not in x.

It could be noted that this notation is somewhat heavy. However, we will be using

(and extending) this notation in the following chapters.

General diversity measures

As good subsets are subsets that are diverse and representative for the collection,

a score function can use measures of diversity. In some cases, existing diversity

measures can be used. For example, for a core collection selection problem, the

allelic richness of a candidate core can be used as a diversity measure [54]. Even

though the allelic richness can be seen as a rather problem-specific score function,

we feel that it fits within well within the class of general-purpose score functions.

We motivate this as follows. Firstly, there is no concrete research question from

which this objective (function) directly follows, and secondly, the authors explicitly

express the hope that a selection based on this criterion will turn out to be useful for

further activities such as breeding or long-term species survival. Another, perhaps

slightly more widely applicable diversity measure is proposed in [41]. Here, the

authors propose to use the following diversity criterion for a subset x ∈ 2S :

min
j

(
var(Zx

.,j)

var(Z.,j)

)
, (4.1)

where var(Z.,j) is the (sample) variance of the jth column of Z. Formally, the

function var is defined as:

var : Rn → R
a 7→ 1

n

∑n
i=1 a

2
i −

(
1
n

∑n
i=1 ai

)2
.
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Metric-based score functions

The diversity of a subset could be defined as an aggregation of the distances

between the pairs of items within that subset. Similarly, the representativity of

a subset w.r.t. the entire collection could be defined as the aggregated similarity

between items that are included into the subset and items that are excluded from

the subset. These aggregated similarities or dissimilarities can be used to define a

score function. Therefore, we call these score functions metric-based score functions.

It should be noted that this definition is new, i.e. we did not find publications that

explicitly describe this strategy for constructing loss functions. However, some

publications can be seen as examples of this general approach.

Formally, metric-based score functions use a metric (or a distance function) on

pairs of feature vectors. Generally, a metric is a measure of the dissimilarity of two

items. As the items are represented by their feature vectors, we need a metric on

the feature space of the items. To construct a score function that is based on this

metric, several strategies exist:

(i) The distance between each pair of items in the subset is computed and

subsequently, these computed distances are aggregated using an aggregation

function. For this aggregation, we can for instance use the mean, the minimum,

the maximum , . . . . The Kennard-Stone procedure [48] can be interpreted

as a heuristic that tries to optimize this measure (when the aggregation

function is the minimum). Moreover, the approach used in [44] falls within

this category.

(ii) For each item in S that is not in the subset, the distance to the nearest point

in the subset is computed and subsequently, these computed distances can be

aggregated. The k-means clustering algorithm (that is often used to select

representative subsets [52]) can be seen as a heuristic that optimizes this

criterion.

(iii) The principles described in (i) and (ii) are combined.

Using this characterization, strategy (i) could be used to maximize the diversity,

and strategy (ii) could be used to maximize the representativity. However, the most

important conclusion that can be drawn here is that metric-based score functions

translate the problem of defining a score function into the problem of defining a

metric. Fortunately, there exists a huge literature on metrics on a variety of feature

spaces. As a simple example, when the feature space is Rd, the Euclidean distance

can easily be used. On the other hand, problem-specific knowledge may suggest

other metrics.

Relationship between diversity criterion (4.1) and metric-based score

functions

Interestingly, we could find a link between diversity criterion (4.1) and metric-based
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score functions. This link is due to the following lemma.

Lemma 4.1. For a given vector a ∈ Rn, we have that

var(a) =
1

2n2

n∑
i=1

n∑
j=1

(ai − aj)2 .

Proof. Even though the proof is rather trivial, we present it here for completeness.

var(a) =
1

n

n∑
i=1

a2
i −

(
1

n

n∑
i=1

ai

)2

=
1

n

(
n∑
i=1

a2
i

2

)
+

1

n

 n∑
j=1

a2
j

2

− 1

n2

 n∑
i=1

n∑
j=1

ai aj


=

1

n2

 n∑
i=1

n∑
j=1

a2
i

2
+
a2
j

2

− 1

n2

 n∑
i=1

n∑
j=1

ai aj


=

1

n2

 n∑
i=1

n∑
j=1

a2
i

2
+
a2
j

2
− ai aj


=

1

2n2

n∑
i=1

n∑
j=1

(ai − aj)2 .

This lemma suggests that, when the feature space is R, the variance of a set

of observations is proportional to the sum of the squared distances between the

observations. As a result, it is similar to the approach followed in strategy (i) of

metric based score functions. Here, the squared difference can be used as a measure

of dissimilarity between the points in the set and the aggregation functions can

be the arithmetic mean. As a result, both score functions are identical (up to a

scaling factor). Unfortunately, the squared difference is not a metric. Therefore,

it is generally not recommended to be used as a measure of dissimilarity. This

observation has two consequences: Firstly, it can help in gaining insight in diversity

measures that use the variance. Secondly, as the squared difference (or more general

squared Euclidean distances) is not a metric on scalars, we should be careful when

looking at the variance as an aggregation of distances.

Diversity measures for compositional data

When a criterion is used to compute the diversity of a subset of compositional

vectors, it should (according to the philosophy of compositional data analysis)

respect the three main principles of compositional data analysis. From the discussion
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in Chapter 2, it trivially follows that the diversity criterion given in Eq. (4.1) does

not respect these principles. Therefore, it can be argued that this criterion is

not appropriate here. However, we can derive a highly similar criterion that does

respect these three principles. To obtain this measure, recall from Chapter 2 that,

for a given compositional random vector Y = (Y1, . . . ,Yd), we defined the following

matrix:

ΓY =


var(ln(Y1/Y1)) · · · var(ln(Y1/Yd))

...
. . .

...

var(ln(Yd/Y1)) · · · var(ln(Yd/Yd))

 .

Moreover, the sum of all entries in this matrix can be used as a measure for the

variability in Y . The manner in which the variability is characterized by this

measure is highly similar to the manner in which the variability of a multivariate

random vector (with sample space Rd) is characterized. In the latter case, the

trace of the covariance matrix is often used to characterize the variability. It can

be proven [1] that the sum described above behaves in a similar manner. Naturally,

we need a sample-based version of this measure. Using the notation introduced

before, let Y be a n× d matrix, where the rows are d-part compositions, we define

the matrix Γ̂Y as a d× d matrix

(Γ̂Y)i,j =
1

n

n∑
`=1

(ln(Y`,i/Y`,j))
2 − 1

n

(
n∑
`=1

(ln(Y`,i/Y`,j))

)2

.

It can easily be seen that Γ̂Y is an asymptotically unbiased estimator of ΓY . The

reasoning suggests that the diversity of a subset x can be defined as:

∑
i,j

(Γ̂Zx)i,j

(Γ̂Z)i,j
.

Or, we could obtain a diversity criterion that is more similar to (4.1), as fol-

lows:

min
i 6=j

(
(Γ̂Zx)i,j

(Γ̂Z)i,j

)
.

Metric-based score functions for compositional data

From the discussion in Section 4.2.2, it follows that metric-based score functions

for compositional data can easily be constructed by using a proper metric on

compositional vectors and an aggregation function. From Chapter 2, we know that

the Aitchison distance is a metric that respects the main principles of compositional

data analysis. Even though there exists a vast number of aggregation functions that
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can be used, we will be focusing on the minimum, the maximum and the arithmetic

mean. Formally, we can construct score functions using the three strategies in

Section 4.2.2.

(i) According to strategy (i), the score function assigns the following score to

Zx:

min
i6=j

da(Zx
i,.,Z

x
j,.) . (4.2)

Note that the minimum can be replaced by another aggregation function.

(ii) According to strategy (ii), the score function assigns the following score to

Zx:

−max
j

min
i
da(Zx

i,.,Z
−x
j,. ) . (4.3)

When using this function, the score of a subset x is determined by the point

in Z−x that has the largest distance to any point in Zx. Naturally, this

distance should be as small as possible. However, to respect the convention

that good subsets should have high score function values, a minus-sign was

added. Here as well, other aggregation functions can be used.

4.3. Selecting an optimal subset

Once a score function has been chosen, the selection of an optimal subset can easily

be translated into a mathematical optimization problem. For example, the search

for the optimal subset of a fixed size k leads, using score function (4.2), to the

following mathematical optimization problem.

maximize
x∈2S

min
i 6=j

da(Zx
i,.,Z

x
j,.)

subject to |x| = k .

Moreover, this optimization problem is a specific example of the subset selection

problem. Consequently, existing strategies for solving subset selection problems

can be used to solve this problem. One of these strategies will be the topic of the

following chapter. In the following sections, we elaborate on several of the issues

that arise when trying to solve this problem.

4.3.1. Directly optimizing the score function

As the subset selection problem is a discrete optimization problem, an exhaustive

search through the search space can be considered as a first approach to solve the

problem. Unfortunately, when |S| is large, an exhaustive search through 2S cannot

be performed within a reasonable amount of time. For example, in the last chapter
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of this part of the dissertation, we consider a problem that requires a subset of 100

items to be selected from a set that contains 1000 items. An exhaustive search

would require 6.3851 · 10139 evaluations of the score function. Nevertheless, an

exhaustive search can be interesting for small sets. We will use this approach to

illustrate some properties of the score functions that were proposed earlier in this

chapter.

As an exhaustive search through the search space is infeasible in most practical

cases, we could attempt to construct a more efficient optimization algorithm that

is capable of solving the problem. Unfortunately, it is unlikely that there exists an

algorithm that can be used to solve the class of problems that we described within

a reasonable amount of time1. As an alternative we could focus on constructing a

good heuristic for this problem. The construction of such a heuristic will be the

topic of the following chapter.

k-means procedure

We end this section by mentioning that the k-means procedure is an iterative

procedure that attempts to maximize the following score function [55]:

f(x) = −
∑
j

min
i

(
∥∥Zx

i,. − Z−x
j,.

∥∥2

2
) .

However, there are no guarantees that this procedure will find an optimal point.

Therefore, we generally refer to this procedure as a heuristic.

4.3.2. Surrogate problems and numerical recipes

Even though the approach that has been described before is a natural approach to

solve sample selection problems, a considerable number of publications advocates

the use of (what we loosely call) surrogate problems [52, 48, 50, 53]. In these

publications, the sample selection problem is not solved directly. Instead, a different

problem is defined and solved. Subsequently, it is hoped that the solution of this

surrogate problem is a good solution to the original problem. Moreover, most

publications do not explicitly state the objective function of the surrogate problem.

Often, a numerical recipe is presented that is claimed to select a representative

subset. Unfortunately, mostly there are close to no guarantees that the solution

that is presented by these procedures will be close to the optimal subset according

to a given score function. Nevertheless, some of these procedures, like the Kennard

and Stone procedure [48] or the Optisim procedure [53] are used extensively and

are generally assumed to be good subset selection procedures.

1 However, for some specific cases, such an algorithm may exist.
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Kennard and Stone procedure

The Kennard and Stone procedure aims at constructing a subset that covers the

complete range of the original dataset in a uniform manner. However, the authors

do not optimize a specific score function. Instead, they present a procedure that

iteratively extends a given subset. As a starting point, the point that is closest to

the multivariate arithmetic mean of the dataset according to some distance measure

is selected. Note that this procedure thus requires a vector space structure on the

sampling space. However, a simple modification of this starting point selection rule

can relax that requirement. Subsequently, the procedure iterates as follows

1. From each point that is not in the subset, compute the distance to the subset

(i.e. the distance to the closest point in the subset).

2. Add the point for which this distance is maximal and return to step 1.

Interestingly, this often celebrated procedure can be seen as a heuristic for the

score function defined by (4.2). Therefore, the characteristics of solutions for that

score function may be illustrative for solutions of the Kennard and Stone procedure

as well. Moreover, using the vector space structure of the simplex described in

Chapter 2, the Kennard and Stone procedure can be applied to compositional data.

Lastly, when the Kennard-Stone procedure is used to select a subset of size k from

a set of size n, the complexity is of order O(k n2).

4.4. Experiments with different score functions

4.4.1. The Euclidean sample space

In this section, we illustrate that the choice of a particular metric-based loss function

strongly influences the characteristics of the optimal subset. It was mentioned in

Section 4.2.2 that we can generally distinguish between score functions that favor

diversity (strategy (i)) and score functions that favor representativity (strategy

(ii)). We illustrate the influence of this choice on an artificial dataset. We choose

not to elaborate too strongly on this issue as there are several papers that indirectly

compare these strategies as well. In these publications, Kennard and Stone and

related selection procedures are compared with k-means like procedures. As the

former can be seen as a heuristic for (strategy (i)) and the latter as a heuristic

for (strategy (ii)), the conclusions we draw here are expected to be similar to the

conclusions drawn in those papers [44, 52].
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Figure 4.1: Scatter plot of the artificial dataset described in Section 4.4.1. The left
panel shows the optimal subset using f1 (selected points are indicated in red), the middle
panel shows the optimal subset using f2 and the right panel shows the optimal subset
using f3.

Optimal subsets were selected according to three score functions.

f1(x) =
∑
i,j

∥∥Zx
i,. − Zx

j,.

∥∥
2
,

f2(x) = min
i 6=j

∥∥Zx
i,. − Zx

j,.

∥∥
2
,

f3(x) = −max
j

min
i

∥∥Zx
i,. − Z−x

j,.

∥∥
2
.

Score functions f1 and f2 are examples of strategy (i), using different aggregation

functions. Score functions f3 is an example of strategy (ii).

An artificial dataset was generated by sampling 25 observations from a two-

dimensional random vector that is uniformly distributed over [0, 1]2. Figure 4.1

shows scatter plots of the data and the optimal subsets. This example illustrates

that maximizing the mean distance (f1) between the points in the subset generally

leads to a subset that is located near the convex hull of the dataset. Moreover,

by using the minimum as aggregation function (f2) instead of the sum, it seems

the selected points are further apart. This is conform a remark in [44], where the

authors conclude that a maximization of the minimum distance generally leads

to a high average distance as well. However, the opposite is not generally true.

Moreover, maximization of the minimum distance allows for the selection of points

that are in the interior of the convex hull of the dataset. On the other hand,

maximization of the sum of the distances between the observations in the subset

encourages the selection of extreme points. This should not come as a surprise

due to the link with the maximization of the sample variance given in Lemma 4.1.

Lastly, as can be expected, strategy (ii) (using f3) leads to a subset that is less

focused on the extremes.
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4.4.2. The (reduced) simplex sample space

In Chapter 2, it was argued that statistical methods that are used to analyze

compositional data should respect the three main principles of compositional data.

The methodology described in the current chapter suggests that interesting score

functions can be obtained by considering metric-based score functions that uses

the Aitchison distance. The resulting score functions are both intuitive and they

respect the three main principles of compositional data analysis. In this section,

we set up several (small-sized) sample selection problems to study the behaviour of

these score functions. More precisely, we will compare the obtained subsets with

those obtained using Euclidean distance.

An artificial dataset

As a first test case, we consider an artificial compositional dataset (the sample

space is S3
0) that contains 24 points2. For this simulation experiment, we used the

score function defined by (4.3). Moreover, when a problem has multiple optimal

points, the optimal point with the smallest value for objective function (4.2) is

visualized. Figure 4.2 shows the obtained subsets for subset sizes k = 2, 4, 6, 8 using

the Euclidean distance and the Aitchison distance. From these plots, it can clearly

be seen that the choice of the distance measure strongly influences the selection of

a subset.

To explain this behaviour, we use Figure 4.3 that visualizes the artificial dataset.

From a first visual inspection of these ternary plots, it can be suspected that these

data are organized in two clusters. To see the influence of the distance measure

used, consider Table 4.1 that reports the Euclidean and Aitchison distance between

the points a, b, and c, d in Figure 4.3. For these points, it is clear that the Euclidean

distance strongly differs from the Aitchison distance. For the Euclidean distance,

a and b are farther apart than c and d. According to the Aitchison distance, c

and d are farther apart. Knowing that the Aitchison distance only takes relative

information into account, this can easily be explained. Both pairs mainly differ in

the relative amount of component A. In an absolute manner, the difference between

the relative amounts of component A is larger for couple (a, b) than for couple

(c, d). However, using the relative difference, we obtain that c and d differ by a

factor of 4 whereas a and b only differ a factor of 2. Similarly, using the Euclidean

distance, the variability within the lower cluster (containing a and b) will be much

higher than the variability in the upper cluster (containing c and d). Therefore,

more points will be selected from this cluster. Using the Aitchison distance, the

variability of both clusters will be more or less equal. Therefore, points from both

clusters are selected.

2 This dataset was generated by sampling from three Dirichlet distributions, the complete sampling
procedure is described in Appendix 4.A.

72



§4.4. Experiments with different score functions

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5
0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1

1

1

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5
0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1

1

1

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5
0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1

1

1

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5
0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1

1

1

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5
0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1

1

1

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5
0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1

1

1

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5
0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1

1

1

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5
0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1

1

1

Figure 4.2: Ternary plot of the artificial dataset. Optimal subsets using score function
f(x) = −maxj mini

∥∥Zx
i,. − Z−x

j,.

∥∥
2

(left column) versus f(x) = −maxj mini da(Zx
i,.,Z

−x
j,. ).

The selected points are indicated in red. In the first (resp. 2nd, 3rd and 4th) row the
subset size is k = 2 (resp. k = 4, 6, 8).
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Figure 4.3: Ternary plot of the artificial dataset.

Table 4.1: Euclidean distance and Aitchison distance between the points a, b, and c, d
in Figure 4.3.

couple Euclidean distance Aitchison distance

(a, b) 0.25 0.82

(c, d) 0.08 1.37

4.5. Concluding remarks

In this chapter, we illustrated that the often loosely described problem of sample

subset selection can be formalized in several manners (Objective II.1). However,

the manner in which this problem is translated into a mathematical optimization

problem strongly influences the resulting subset. Firstly, when a metric-based score

function is used, there is an influence of the strategy that is followed (diversity

versus representativity). Secondly, when selecting a subset of compositional data,

the Aitchison distance leads to subsets that strongly differ from those obtained

using the Euclidean distance. However, it should be noted that the examples

here mainly have an illustrative purpose. Therefore, the aim of this chapter is to

illustrate, combine and link approaches from different areas of research.

The score functions that were introduced in this chapter can be expected to be

hard to maximize efficiently. Therefore, in the following chapter, we resort to a

meta-heuristic optimization strategy. However, provided that we can find a convex

relaxation of one (or more) of these score functions, more efficient solution strategies

(for example using B&B approaches) may be within reach. Unfortunately, it seems

not trivial to come up with such a convex relaxation. The development of convex

relaxations could be a suggestion for future research.
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§4.5. Concluding remarks

Finally, this chapter motivates the following chapter in which a meta-heuristic

procedure will be developed that can be used to find high-quality solutions of the

optimization problems that were encountered in this section.
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Chapter 4. Scoring the subsets of a compositional dataset

4.A. Data generation procedure

To generate the data that is presented in Figure 4.3, 24 points were sampled

from three Dirichlet distributions (8 observations from each distributions). The

parameter vectors (s and α) are given hereafter:

• Distribution 1: s = 35, α = (1/3, 1/3, 1/3),

• Distribution 2: s = 35, α = (0.05, 0.45, 0.50),

• Distribution 3: s = 35, α = (0.03, 0.03, 0.94).
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5 An Ant Colony Optimization

Algorithm for subset selection

5.1. Introduction

From the previous chapter, it is clear that the sample subset selection problem

naturally leads to a mathematical optimization problem. Moreover, using the

classification of Chapter 4, it can be seen as a specific case of the class of subset

selection problems. Interestingly, it is well known that a lot of optimization

problems in this class are very hard to solve (see for instance [56] for the example

of feature-subset selection or [57, 58] for the knapsack problem, both problems

are examples of subset selection problems that are hard to solve). Unfortunately,

this also (probably) holds for (most of) the sample subset selection problems

described in the previous chapter. As these subset selection problems are so hard

to solve, there has been an interest in the past decades in developing heuristics

that provide good but not necessarily optimal solutions to these problems. These

heuristics range from problem-specific heuristics such as for instance the k-means

procedure1 to general meta-heuristics (such as genetic algorithms [59]) that are less

problem-specific and can easily be adapted to solve a wide range of problems.

In this chapter, we study the applicability of the Ant Colony Optimization meta-

heuristic (introduced in [60]), to solve subset selection problems. Moreover, as the

sample subset selection problem is a special case of the subset selection problem,

this study is relevant for solving sample subset problems as well. Interestingly, even

though Ant Colony Optimization (ACO) has proven to be a useful heuristic for

discrete optimization problems, such as the traveling salesman problem and several

vehicle routing problems, it turns out that the basic variant of ACO performs very

poorly on subset selection problems. This observation forms the main motivation of

this chapter. By studying several properties of ACO for subset selection problems,

we try to explain its inferior behavior. Moreover, these results will be used to

present a modified ACO procedure that performs well in practice. The remainder

of this section is organized as follows:

• In Section 5.2, the (traditional) application of ACO to subset selection is

described.

• In Section 5.3, negative search bias in ACO is described.

1 In the previous chapter, it was argued that the k-means procedure is a heuristic for the sample
subset selection with a specific score function.
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• In Section 5.4, bias-countering strategies are introduced and analyzed theo-

retically.

• In Section 5.5, we experiment with a novel procedure that implements bias-

mitigating strategies in Ant System.

• In Section 5.6, the Max-Min Ant System is extended with bias-mitigating

strategies.

• In Section 5.7, the special case of bias mitigation in sample subset selection

problems is described.

• In Section 5.8, several conclusions are presented.

5.2. Ant colony optimization for subset selection

5.2.1. Notational conventions

As a starting point of this section, consider the general subset selection problem as

defined in Chapter 3. For a given set S = {s1, . . . , sn} of n items and constraint

functions g : 2S → Rp and h : 2S → Rq, the following optimization problem is

called a subset selection problem:

minimize
x∈2S

f(x)

subject to g(x) ≤ 0p ,

h(x) = 0q .

However, in view of the goals of this chapter, this formulation is needlessly com-

plicated. Instead, for a given triple (S, f, g) with item set S, objective function

f : 2S → R and constraint function g : 2S → {0, 1}, the previous optimization

problem can be rewritten as follows:

maximize
x∈2S

f(x)

subject to g(x) = 1 .

In this form, the problem consists of an objective function, and a single constraint

function that determines whether a subset is feasible (g(x) = 1) or infeasible

(g(x) = 0).

In the following sections, subsets of S will often be denoted as n-tuples, requiring

an ordering/indexing of the elements of S, i.e. S = {s1, . . . , sn}. Formally, a

subset x ∈ 2S can be written as an n-tuple 〈sj11 , . . . , sjnn 〉, where ji = 1 if si ∈ x

and ji = 0 if si /∈ x. Let xi be the i-th component of this n-tuple. We have

78



§5.2. Ant colony optimization for subset selection

that xi ∈ Xi = {s0
i , s

1
i }. Denoting X i ] = X1 × . . . × Xi (i ≤ n) we can write

2S ≡ Xn ] = X1 × . . .×Xn. Using this tuple notation, we define the feasible space

X f

n ] = {x ∈ Xn ] | g(x) = 1}. Now consider the set Si = S \ {si+1, . . . , sn} and

yi ∈ 2Si . yi can be written as an i-tuple: yi = 〈sj11 , . . . , s
ji
i 〉 ∈ X i ]. Moreover,

let yik ] = 〈sj11 , . . . , s
jk
k 〉 be the first k (k ≤ i) components of the i-tuple yi, then

yik ] ∈ Xk ]. For i-tuples, the feasible space is defined as X f

i ] = {yi ∈ X i ] | (∃x ∈
X f

n ])(x i ] = yi)}. Finally, using the concatenation operator ⊕ on tuples, we can

write x = x i ] ⊕ 〈s
ji+1

i+1 , . . . , s
jn
n 〉.

It should be recognized that this notation is rather heavy. Indeed, the notational

conventions above extend the general notation used so far. However, to be able

to describe our findings in a mathematically concise manner, the extension is

necessary. Moreover, this notation can be seen as a compromise between the

notation that is often encountered in the literature on ACO and the notation used

in this dissertation.

5.2.2. Ant systems for subset selection

Ant System (AS) [60] was the first real ACO algorithm, inspired on the behavior

of real ants. Since its development, this basic version of ACO has been altered

numerous times in order to increase its performance or to adapt it to specific

problem settings [61]. Although it is sometimes argued that the performance of AS

is inferior to younger variants such as the Max-Min Ant System (MMAS) [62], we

will mainly use it as the basic algorithm for this study. This choice seems justified

since AS contains all the basic ACO elements. Interestingly, even in recent studies

[63, 64], AS is still used and achieves state-of-the-art results. Additionally, it is

the simplest form of an ACO algorithm. Moreover, rather than constructing a

new state-of-the-art algorithm, our main goal is to study the behavior of ACO

algorithms in general. Nevertheless, we can incorporate our methodology into ACO

variants such as MMAS, as will be illustrated later.

Informal presentation of AS

The description of AS given here is (our interpretation of) AS for subset selection,

closely following the original AS [60]. For the reader who is less familiar with

ACO, we give an informal presentation of AS for subset selection in this section.

This section briefly describes the general philosophy of AS, while the following

section introduces AS in a formal manner. For this informal description, consider a

knapsack problem2 with item set S = {s1, s2, s3}. The values and weights of these

items are presented in Table 5.1. The capacity constraint equals 4.

2 For a formal description of the knapsack problem see Chapter 3.
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Table 5.1: Weights and values for a 0/1 unidimensional knapsack problem, with a
capacity constraint that is equal to 4.

item s1 s2 s3

w1, w2, w3 2 3 1

v1, v2, v3 4 5 2

Figure 5.1: Panel (a) shows a graph representation of the subset selection problem. The
path that is marked in blue represents the solution 〈s11, s02, s03〉. Panel (b) illustrates an
ant that is located at the starting node of the graph. The partial solution of this ant is
the empty subset 〈〉. This ant will use the values of the pheromone trail parameters τ01
and τ11 to decide whether or not to include the first item in the subset. This decision is
based on a probabilistic decision rule that uses τ01 and τ11 . Panel (c) illustrates an ant
that has a partial solution 〈s11〉. Due to the capacity constraint, including item s2 is not
permitted. Therefore, the ant will be forced to extend its partial solution with component
s02 leading to 〈s11, s02〉.
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Intuitively, AS can be explained by representing this problem by means of a

directed graph. Figure 5.1(a) shows a possible graph representation of this problem.

Each path in this directed graph that starts at the ‘start’ node and ends at

the ‘end’ node represents a (possibly infeasible) subset. The path that has been

highlighted in blue represents the subset 〈s1
1, s

0
2, s

0
3〉. The objective value of this

path is 2. Following the AS paradigm, multiple ants will construct solutions,

i.e. paths on this graph. AS is an iterative procedure, therefore the ants are

organized multiple generations. Typically, within each generation, individual ants

will act independently. However, the paths that have been constructed by the ants

in generation t will influence the paths that will be constructed by the ants in

generation t + 1. In the following paragraphs, we illustrate how individual ants

construct a solution and how generations influence each other.

We start with the path construction procedure. An ant constructs a solution by

incrementally constructing a path on the directed graph (therefore also called the

construction graph). Such a path starts at the ‘start’ node that represents an empty

partial solution 〈〉, see Figure 5.1(b) for an illustration. Subsequently, the ant

makes a transition to one of the neighbouring nodes. For example, in Figure 5.1(c),

a transition has been made from the start node to node s1
1 representing that item

s1 has been added to the subset. This process is iterated until the ‘end’ node is

reached.

During this construction procedure, an ant will use a series of probabilistic decision

rules. These rules are based on so-called pheromone trail parameters. Thereto,

each node is assigned a pheromone trail parameter. For example, for component

s1
2 this parameter is denoted τ1

2 . The value of this parameter during generation t

is denoted τ1
2 (t). See Figure 5.1(b) for an illustration. The probabilistic decision

rule states that an ant that is located at node sji will select s0
1 (resp. s1

1) to extend

its path with probability τ0
1 /(τ

0
1 + τ1

1 ) (resp. τ1
1 /(τ

0
1 + τ1

1 )). This principle is used

iteratively until the ‘end’ node is reached.

To prevent infeasible solutions from being constructed, this probabilistic decision

rule is slightly modified in some cases. For example, Figure 5.1(c) represents a

partial solution 〈s1
1〉, the weight of this solution is 2. This means that, if item s2

(that has a weight of 3) would be added, the weight of the partial solution would be

5. As this weight is in violation with the capacity constraint, this item is prevented

from being selected.

During one generation, a (predetermined) number of ants will generate solutions

using the construction procedure described before. These ants will act independently.

Once all ants of generation t have generated a path, the pheromone trail parameters

are updated. Firstly, all pheromone trail parameters are multiplied by a constant

(1 − ρ), where ρ ∈ [0, 1] represents the evaporation rate. This operation mimics

the evaporation of pheromones observed in nature. Secondly each ant will raise

the values of some of the pheromone trail parameters. For example, an ant that
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constructed the path x = 〈s1
1, s

0
2, s

0
3〉 (the blue path) will update the parameters

τ1
1 , τ0

2 and τ0
3 . To each of these parameters, the value f(x) will be added. Once

this procedure is completed, the algorithm moves on to generation t+ 1 and the

construction procedure recommences.

On average, the trail parameters that correspond to nodes that lie on paths (or

solutions) with large objective values will (hopefully) receive an update that is higher

than trail parameters of nodes that correspond to solutions with lower objective

values. This means that high-quality solutions will have a higher probability of

being generated than low-quality solutions. As a result, the search converges to

regions in the search space that represent high-quality solutions. It should be noted

that the wording used in this section reflects the origin of the AS as a procedure

that is inspired on the behavior of real ants. Naturally, from an algorithmic point

of view, this link is unnecessary.

Formal presentation of AS

We now present AS in a formal manner. As mentioned in the informal description,

we assign a pheromone trail parameter τ ji to each sji where τ ji (t) ∈ R+ denotes the

value of this parameter at generation (iteration) t. Moreover, we will use T to refer

to the complete matrix of pheromone trail parameters (and T (t) their values at

time t). Since ACO is a constructive metaheuristic, each individual agent (ant)

builds its own solution starting from scratch. As such, an agent starts with an

empty partial solution (a tuple of length zero) y0 = 〈〉 and extends it through

concatenation at each construction step. During the i-th (i = 1, . . . , n) construction

step, the tuple yi ∈ X i ] is constructed as yi = yi−1 ⊕ 〈sji 〉 (with j ∈ {0, 1} and

yi−1 ∈ X f

i−1 ]), where sji is the result of a probabilistic decision rule, parameterized

by T :

Pr(sji | y
i−1, T (t)) =

τ ji (t)η(sji )∑
{ski ∈Eyi−1}

τki (t)η(ski )
, for all sji ∈ Eyi−1 . (5.1)

Here η(sji ) represents the heuristic information, a simple (optional) weight that

gives a rough estimate of the a priori desirability of adding this component given

the current partial solution. Eyi−1 = {α ∈ Xi | (∃x ∈ X f

n ])(x i ] = yi−1 ⊕ 〈α〉)}
contains the component values that can be used to extend the partial solution

yi−1 such that yi can still lead to feasible solutions. Consequently, we will denote

the construction procedure as SolutionConstruction. Using Eq. (5.1), we have

Pr(x | T (t)) =
∏n−1
i=0 Pr(xi+1 | x i ], T (t)).

Once all ants within one generation have built their solution, each ant will individu-

ally update the pheromone trail parameters. In the t-th iteration, K ants construct
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a set of n-tuples At. This set is used in the following update rule:

τ ji (t+ 1) = (1− ρ) τ ji (t) + ρ

∑
{x∈At|sji∈x}

f∗(x)∑
{x∈At}

f∗(x)
, (5.2)

where f∗(x) is a monotone transformation of f(x) (often f∗(x) = f(x)). This

update is performed for all pheromone trail parameters τ ji . As a consequence of

this kind of update rule, the pheromones linked with solution components that

were part of multiple solutions with high objective function values will receive high

updates. Note that Eq. (5.2) is the update rule used in the hyper-cube framework

(HCF) [65]. When the denominator in Eq. (5.2) is omitted, the standard AS update

is obtained. This procedure will be denoted as PheromoneUpdate. Combining

the principles described above leads to algorithm BasicAS.

1: procedure BasicAS(Xn ], f, g)

2: T (0)←InitializePheromones

3: while no convergence do . terminated if converged

4: solutionsLastGen ← null

5: for ant = 1, . . . ,K do . make paths

6: x← SolutionConstruction(T (t))

7: solutionsLastGen.add(x)

8: end for

9: PheromoneUpdate(T (t), solutionsLastGen)

10: end while

11: return convergedSolution

12: end procedure

5.2.3. Why ACO?

As a meta-heuristic, ACO provides a flexible framework for solving discrete op-

timization problems. Once an ACO procedure is found that performs well for

a particular problem, it is likely that only minor changes are needed to adapt

that procedure to solve a new (yet related) problem [61, 66]. In Part II of this

dissertation, we study such a setting. Different, yet related score functions need to

be optimized. Clearly, other (less recent) meta-heuristics such as genetic algorithms

or simulated annealing exhibit a flexibility that is similar to that of ACO. Given

the successful application of ACO to a variety of discrete optimization problems

[61] and the fact that ACO has not yet been applied extensively to subset selection

problems, it seems an interesting algorithm to study. Nevertheless, in the following

chapter, we will compare its performance with other heuristics.
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5.3. Bias in metaheuristics

Search bias is a key concept in the field of evolutionary algorithms. Starting from an

initial state, evolutionary algorithms (such as ACO or GAs) are expected to evolve

towards the more promising regions in the search space. Typically, these algorithms

start searching through the search space in a random, undirected manner. The

solutions with the highest objective function values that are found during the

first iteration will influence the search direction in the following iteration; they

will bias the search towards the point in the search space they represent. This

process continues as the solutions that are found during the second iteration will

influence the search direction in the third iteration, and so on. As a result, the

search might be drawn towards the promising regions in the search space. Stated

differently, several positions in the search space will compete for attention from

the algorithm. In order to find good solutions, the most attractive points in the

search space should have the highest objective function values (and thus be good

solutions). Unfortunately, the objective function values are not the only factors

that influence the attractiveness of particular regions in the search space. Firstly, as

we will see below, the search space can over-represent some solutions, making these

solutions more attractive for the search procedure. Secondly, several properties

of the evolutionary algorithm that is used can (unintentionally) direct the search

towards specific regions in the search space. When such regions represent low-

quality solutions, this type of bias can be harmful for an evolutionary algorithm.

This phenomenon has been the subject of intensive study in GAs [67, 68, 69, 70]

and is sometimes referred to as negative search bias. In the field of ACO, negative

search bias has drawn some attention as well [65, 71, 72, 73]. In these studies,

several (at least three) sources of bias have been identified (we review these sources

below). Moreover, Merkle and Middendorf [74] define and use a deterministic model

to study the dynamics of ACO. More precisely, they use a fixed point analysis of

the deterministic model to explain several dynamical properties of ACO.

In the following sections, we give a short overview of several sources of bias that

can occur in AS. However, as the problem representation is important w.r.t. the

presence of bias, we briefly elaborate on that first.

5.3.1. Representations for subset selection

For a given subset selection problem, the presence of bias is heavily influenced by

the definition of the search space and associated pheromone model. The version

of AS described in the previous section has strong resemblance to the bit string

representation (BSR) for subset selection problems introduced for GAs in [75], and

further used by [76] in ACO. An n-tuple 〈sj11 , . . . , sjnn 〉 can be represented by the bit

string (j1, . . . , jn). In terms of representation spaces, each solution is represented
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Figure 5.2: Panel (a) shows a graph representation of the knapsack problem in Table 5.1.
This graph is undirected. The path highlighted in blue represents a subset that contains
items s1 and s2. Panel (b) illustrates a pheromone model that associates pheromone trail
parameters with the nodes of the graph. Here the pheromones represent the desirability of
visiting a node. Panel (c) illustrates a pheromone model that associates pheromone trail
parameters with the edges of the graph. Here the pheromones represent the desirability
of selecting a specific edge.

by an n-tuple, which is equivalent to a bit string. As such, the search space is the

set of all bit strings of length n. Note that any other ordering/indexing of the

elements in S, i.e. S = {s′1, . . . , s′n}, results in a corresponding X ′i ] and BSR. Other

representations exist as well. In [40], the variable length representation (VLR)

was introduced to solve the 0/1 unidimensional knapsack problem. The VLR has

been used several times in the field of ACO [39, 71, 77]. In principle, during the

construction procedure, an agent iteratively chooses an (unselected) item from S.

This procedure leads to an ordered list of selected items. In this setting, typically

one pheromone trail parameter is assigned to each item (this parameter is a measure

for the desirability of selecting the item it is linked with). As such, the search space

consists of a set of ordered lists of variable length. Figure 5.2 visualizes the con-

struction graph of the VLR for the knapsack problem introduced earlier as well as

two types of pheromone representations. For more details see the papers cited above.

Construction tree for the bit string representation

The graphical representations used before are generally interesting to gain some

insight into the general strategy of ACO. However, the practical benefits of such

representations are rather limited (at least w.r.t. this dissertation). Moreover,

there exists another representation that will turn out to be more useful here. This

representation is generally called the construction tree. In this binary tree, the

root represents an empty partial solution. The leaves represent complete solutions.

Each split represents a decision. One branch represents the selection of an item,

the other branch represents its non-selection. Moreover, such a construction tree
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Figure 5.3: Construction tree of the knapsack problem in Table 5.1. The solution
construction process can be visualized as a path that starts in the root node and progresses
towards a leaf node in every iteration. Branches in the tree that lead to infeasible (partial)
solutions are represented by dashed lines.

allows infeasible (partial) solutions to be represented graphically. Figure 5.3 shows

a construction tree3 of the knapsack problem from Table 5.1.

5.3.2. Sources of bias

Three main sources of bias have been described in literature. Firstly, in [71, 72, 73],

the authors identify what they call representation bias. This type of bias emerges

from the fact that (depending on the representation or pheromone model) a single

solution x ⊆ S can be mapped upon several points in the representation space.

As a consequence of the pheromone update procedure, solution components that

are contained in solutions that are over-represented will be updated more fre-

quently than other solutions. As a result, the search will be attracted by these

over-represented solutions. ACO procedures that use the VLR are affected by

representation bias. Indeed, as the construction procedure leads to an ordered list,

each subset of S is represented by all possible permutations of its items. As the

number of possible permutations of a subset increases with its cardinality, larger

subsets will be over-represented compared to smaller subsets. On the other hand,

when the BSR is used, each subset of S is represented by a single bit-string. As

such, ACO procedures that use the BSR are not affected by representation bias.

Secondly, in Montgomery et al. [71], construction bias is identified as a conse-

quence of problem constraints. Due to these constraints, it is stated that certain

component choices lead to restrictions later in the solution construction process.

This makes strongly constrained solutions more likely to be produced than uncon-

strained solutions. Both VLR and BSR are affected by this type of bias. From

3 We say ‘a’ construction tree as each re-ordering of the items leads to a different construction tree.
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the construction tree in Figure 5.3, it can be seen that solutions 〈s1
1, s

0
2, s

0
3〉 and

〈s1
1, s

0
2, s

1
3〉 are more heavily constrained than the remaining solutions. Indeed,

when during a solution construction phase an ant has a partial solution 〈s1
1〉, it will

be forced (in order to respect the capacity constraint) to proceed to node 〈s1
1, s

0
2〉

and its children 〈s1
1, s

0
2, s

0
3〉 and 〈s1

1, s
0
2, s

1
3〉. Therefore, these solutions are called

constrained solutions.

In general, the probability of constructing a highly constrained solution is higher

than the probability of constructing an unconstrained solution. This can easily be

explained by means of the construction tree in Figure 5.3. Assume that during the

solution construction procedure, at an unconstrained node, an agent decides to

proceed to the left or right branch with equal probability. This means that solution

〈s0
1, s

0
2, s

0
3〉 will be constructed with a probability of 1/8. On the other hand, due

to the presence of problem constraints, solution 〈s1
1, s

0
2, s

0
3〉 will be constructed

with a probability of 1/4. As the constrained solution is constructed with a higher

probability, its solution components will be updated with a higher probability. This

will cause the search to be guided toward these constrained solutions.

Thirdly, Montgomery et al. [71] identify assignment order bias. The tuple notation,

or equivalently the BSR, introduces an order on the items. Subsequently, this

order is used during the solution construction phase. The order in which the

items are considered can have an important influence on the probability that

items are selected [71]. It should be noted, however, that this type of bias is

strongly related to construction bias. To illustrate this, consider the 0/1 unidi-

mensional knapsack problem. Here, the selection of items in the beginning of

the construction procedure is unlikely to be heavily influenced by the capacity

constraint. However, towards the end of the construction procedure, the prob-

lem constraints will prevent items from being selected. Therefore, both types of

bias are heavily influenced by the problem constraints. As such, measures that

mitigate the negative effect of the former are likely to (partly) resolve the latter too.

5.3.3. Detecting (harmful) bias

In the previous sections, different types and causes of bias were reviewed in the

ACO framework. Although we focused mainly on subset selection problems, this

negative bias can be present in other combinatorial optimization problems as well.

Montgomery et al. [71] discuss whether bias can be expected to be present in

some well-known combinatorial optimization problems based on problem-specific

characteristics. An interesting tool to detect the presence of harmful bias is

presented in [65, 73]. The authors use the evolution of the expected iteration

quality as an indicator for the presence of a harmful bias. For an instance of a
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combinatorial optimization problem and a given pheromone matrix T (t) at iteration

t, the expected iteration quality W (T (t)) is defined as:

W (T (t)) =
∑

{x∈Xf
n ]
}

f(x)Pr(x | T (t)) . (5.3)

Here Pr(x | T (t)) is the probability of constructing n-tuple x given pheromone

matrix T (t). Moreover, the expected update is computed as

τ ji (t+ 1) = (1− ρ)τ ji (t) + ρ

∑
{x∈Xf

n ]
|sji∈x}

f∗(x)Pr(x | T (t))

∑
{x∈Xf

n ]
}
f∗(x)Pr(x | T (t))

, (5.4)

where the denominator is only required in the HCF and typically f∗(x) = f(x).

The authors argue that it is desirable that W (T (t)) is an increasing function of time.

They link the absence of this characteristic to the presence of harmful bias.

Essentially, the formulas above describe the limit behavior of AS as the number of

ants per iteration grows to infinity. Even though this limit case can be interesting

to study the behavior of AS, there are no theoretical guarantees that this limit

case is representative for a setting with a finite number of ants. This should be

taken into consideration when judging an AS procedure by means of the expected

iteration quality. As a result, we argue that the expected iteration quality of an AS

procedure is an interesting characteristic. Moreover, an analysis of an AS procedure

should incorporate, but not be limited to, an evaluation of the expected iteration

quality.

5.4. Countering the bias

The presence of negative bias is acknowledged in many evolutionary algorithms. It

has been indicated several times that the inclusion of bias countering strategies

can (but does not necessarily) increase the performance of evolutionary algorithms

[67, 78]. In the field of ACO, research on countering negative search bias is, as

far as we know, limited to a few studies [71, 73, 77, 79]. An overview of some

theoretical aspects about negative search bias can be found in [80]. These studies all

adopt the same approach. Different representation spaces and pheromone models

are proposed for the same problem, and based on mainly empirical results, the

most appropriate among them is chosen. The experiments in these studies show

that the choice of a specific representation can have an important influence on

the performance of ACO. However, the authors mostly agree that none of the

representations they propose is entirely free of bias. In the remainder of this section,

we will formulate some basic ideas that can be considered to counter negative bias
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1/16 1/16 1/16 1/16 1/8 1/8 0 0 1/16 1/16 1/8 0 1/8 1/8 0 0

Figure 5.4: Construction tree of an artificial (toy) subset selection problem using the BSR.
The n-tuples at terminal nodes represent complete solutions. The tuples at non-terminal
nodes represent partial solutions. Solid edges represent paths that lead to feasible solutions,
dashed edges represent infeasible paths. The conditional probabilities depicted near the
edges are obtained with Eq. (5.1) using τ ji = c (with c ∈ R+ a constant representing the
initial pheromone concentration) and discarding the heuristic information parameter. At
each leaf, the probability that this leaf is reached using SolutionConstruction is given
in bold. Note that, due to the presence of a construction bias, these probabilities are not
equal.

in the AS algorithm applied to subset selection problems.

5.4.1. A modified update rule

As starting point, the BSR for a subset selection problem is chosen. Here, the

search space can be visualized easily as a binary tree. As an introduction to our

first bias-countering measure, consider the construction tree of an artificial (toy)

subset selection problem depicted in Figure 5.4. An ant that has constructed the

complete sequence x = 〈s1
1, s

1
2, s

0
3, s

1
4〉, will cause an update of the pheromones

associated to all solution components that were selected. Even though component

s0
3 was merely added due to the problem constraints, it will still receive an update.

Assuming equal objective function values for all feasible solutions, the expected

update4 for trail parameter τ0
3 is the triple of the expected update received by s1

3.

Since s0
3 and s1

3 are competing for selection, s0
3 will be favored in future iterations

notwithstanding the fact that it does not lead to superior solutions. In this context

4 The expected update is computed using Eqs. (5.1) and (5.4). No heuristic information is used to

compute the expected pheromone update, which means that η(sji ) = 1 for all i and j. Moreover,

all pheromone trail parameters are given identical values, i.e. τ ji (t) = c for all i and j.
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we define forced tuples.

Definition 5.1. For a given subset selection problem (S, f, g) and a search space

Xn ], an i-tuple yi ∈ X f

i ] is called a forced tuple (FT) if:∣∣∣Eyi
i−1 ]

∣∣∣ = 1 ,

where
∣∣∣Eyi

i−1 ]

∣∣∣ denotes the cardinality of the set Eyi
i−1 ]

.

Using this definition, we denote XFT

i ] ⊆ X i ] as the set of forced i-tuples. When yi is

a forced tuple, one of the probabilities Pr(s0
i | yii−1 ], T (t)) and Pr(s1

i | yii−1 ], T (t))

(computed using Eq. (5.1)) equals zero, while the other equals one, due to the

presence of problem constraints. In BasicAS, forced tuples can cause over-updates

of some pheromone trail parameters. To prevent the effects of forced tuples from

propagating through the algorithm, we propose a modification of the pheromone

update rule. This modification simply consists of excluding components that were

the result of forced tuples from the update procedure. Assuming that all solutions

have the same objective function value, this will cause equal expected updates

for components that compete for selection. This update procedure will be called

forcedUpdate and leads to a new algorithm referred to as ForcedAS, which

only differs from the original BasicAS in its update rule. More precisely, update

procedure (5.2) is replaced with:

τ ji (t+ 1) = (1− ρ) τ ji (t) + ρ

∑
{x∈At|sji∈x∧x i ] /∈XFT

i ]
}

f∗(x)

∑
{x∈At|x i ] /∈XFT

i ]
}

f∗(x)
. (5.5)

This procedure seems to be able to counter the propagation of the negative search

bias (see experimental section). However, it does not prevent the agents from

constructing some solutions more frequently than others. The probabilities given

in Figure 5.4 remain valid. To counter this preferential behavior, a modified

probabilistic decision rule is proposed in the next section. However, first we prove

that the expected iteration quality W (T (t)) of ForcedAS is an increasing function

of time. As such, it is illustrated that, in addition to its intuitive nature, ForcedAS

has some appealing theoretical property. In this manner, we follow the approach

of Dorigo et al. [65]. In [65], it was proven that for unconstrained problems the

expected iteration quality of AS is an increasing function of time. Due to the

presence of problem constraints, the proposition of Dorigo et al. does not apply to

our setting. As we prove hereafter, ForcedAS provides a way to generalize the

result of Dorigo et al. to problems with constraints. In this proof, we will be using

the following lemma (see [81]).
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Lemma 5.1. Let M ∪ ∂M denote the manifold with boundary given by x = (xi,j)

where xi,j : xi,j ≥ 0 and

qi∑
j=1

xi,j = 1


where q1, . . . , qk is a set of nonnegative integers. Let W be a polynomial5 in the

variables {xi,j}, with nonnegative coefficients. Let h be a mapping h : M →M∪∂M
defined by y = h(x) where

yi,j =
xi,j

∂W
∂xi,j

qi∑
k=1

xi,k
∂W
∂xi,k

.

Then for any x ∈M and any 0 ≤ ρ ≤ 1, it holds that

W (x) ≤W ((1− ρ)x+ ρ h(x)) .

Proposition 5.2. Given a subset selection problem (S, f, g) and a search space

Xn ], the expected iteration quality W (T (t)) of ForcedAS (with f∗(x) = f(x)),

is an increasing function of the iteration step t, more precisely

W (T (t)) ≤W (T (t+ 1))

with equality if and only if T (t) = T (t+ 1).

Proof. The expected iteration quality of ForcedAS for a given pheromone matrix

T (t) can be computed using Eq. (5.3), where Pr(x | T (t)) is computed using

Eq. (5.1). Moreover, when we choose T (t) such that 0 ≤ τ0
i (t), τ1

i (t) ≤ 1 and

τ0
i (t) + τ1

i (t) = 1, (i = 1, . . . , n), we have for all x = 〈sj11 , . . . , sjnn 〉 ∈ X f

n ]

Pr(x | T (t)) =

n∏
i=1

Pr(sjii | x i−1], T (t)) (5.6)

where for each sjii

Pr(sjii | x i−1 ], T (t)) =

{
τ jii (t) , if x i−1 ] ⊕ 〈sjii 〉 /∈ XFT

i ] ,

1 , else.

Since the expected pheromone update should exclude solution components that

were the result of forced tuples, it is computed as

5 The original theorem in [81] is only valid for homogeneous polynomials, however in the same
publication the authors extend the theorem to nonhomogeneous polynomials.
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τ0
i (t+ 1) = (1− ρ)τ0

i (t)

+ ρ

∑
{x∈Xf

n ]
|s0i∈x∧x i ] /∈XFT

i ]
}

f(x) Pr(x | T (t))

∑
{x∈Xf

n ]
|s0i∈x∧x i ] /∈XFT

i ]
}

f(x) Pr(x | T (t)) +
∑

{x∈Xf
n ]
|s1i∈x∧x i ] /∈XFT

i ]
}

f(x) Pr(x | T (t))
. (5.7)

The update formula for τ1
i (t + 1) is obtained in a similar way. Note that, when

0 ≤ τ0
i (t), τ1

i (t) ≤ 1 and τ0
i (t) + τ1

i (t) = 1, the same will hold for their values at

t+ 1. As such, they can be considered as probabilities (for an argumentation see

[65]). Moreover, starting with a suitable T (0), the expected evolution of T (t) can

be computed by iteratively using Eqs. (5.6) and (5.7).

Recall that W (T ) can be seen as a polynomial function of the variables τ jii (whereas

W (T (t)) denotes the value of this function at time t). Using this notation, the

partial derivative of W (T ) w.r.t. to τ0
i (and analogously for τ1

i ) at a given time t

can be written as

∂W (T )

∂τ0
i

∣∣∣∣
T (t)

=
∑

{x∈Xf
n ]
|s0i∈x∧x i ] /∈XFT

i ]
}

f(x)
Pr(x | T (t))

τ0
i (t)

.

When using ρ = 1, Eq. (5.7) can be reformulated as

τ0
i (t+ 1) =

τ0
i
∂W (T )
∂τ0
i

∣∣∣
T (t)

τ0
i
∂W (T )
∂τ0
i

∣∣∣
T (t)

+ τ1
i
∂W (T )
∂τ1
i

∣∣∣
T (t)

.

Therefore, the update formula (Eq. (5.7)) can be identified with the function

h in Lemma 5.1. This means that, from Lemma 5.1, we have that W (T (t)) ≤
W (T (t + 1)). The same proposition can be used to extend this result to other

values of ρ.

Proposition 5.2 can be generalized towards combinatorial optimization problems

where |Xi| > 2. A typical example is the quadratic assignment problem [82]. As a

result, our approach can be seen as a generalization of the proposition given in [65]

to problems with constraints. This generalization is presented hereafter.
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5.4.2. The expected iteration quality for assignment prob-

lems

Proposition 5.2 can be generalized to assignment problems (such as the quadratic

assignment problem [83]) where Xi = {s1
i , . . . , s

qi
i } with qi ∈ N (where the cardi-

nality of this set was equal to two in Proposition 5.2). An n-tuple x with xi = sji
now represents a solution that assigns item si to group j (with j = 1, . . . , qi).

Construction rule (5.1) can still be used, however, now Eyi−1 ⊆ Xi. First, in

analogy with Definition 5.1, we call the i-tuple yi ∈ X f

i ] a forced tuple if:∣∣∣Eyi
i−1 ]

∣∣∣ < qi .

Subsequently, we propose the following probabilistic decision rule to extend a

partial solution yi−1 with a component sji ∈ Eyi−1 :

Pr(sji | y
i−1, T (t)) =


τji (t)∑

{sj
i
∈E

yi−1}

τji (t)
, if Eyi−1 = Xi ,

1

|Eyi−1 | , else.

(5.8)

In analogy to the forcedUpdate procedure, a pheromone update procedure can

be constructed as

τ ji (t+ 1) = (1− ρ) τ ji (t) + ρ

∑
{x∈At|sji∈x∧x i ] /∈XFT

i ]
}

f∗(x)

∑
{x∈At|x i ] /∈XFT

i ]
}

f∗(x)
. (5.9)

The AS algorithm obtained by combining probabilistic decision rule (5.8) and update

procedure (5.9) is a generalisation of ForcedAS to combinatorial optimization

problems where |Xi| > 2. Moreover, for this generalized procedure as well, it

can be proved that W (T (t)) is an increasing function of t. When applied to

unconstrained problems (meaning g(x) = 1 for all x) this procedure reduces to the

setting discussed by [65]. As such, it can be seen as a generalization of the setting in

[65] to constrained optimization problems. Unfortunately, for some combinatorial

optimization problems, this procedure can lead to inefficient algorithms. The

main reason for this being that, when |Xi| is large, it becomes likely that a lot

of solution construction steps will lead to forced tuples and prevent updates from

occurring. However, the ideas put forward here might serve as a basis for future

research.
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5.4.3. Modified probabilistic decision rule

In this section, a modified update rule is proposed that mitigates the preferential

behavior towards highly constrained solutions. To present this modification more

clearly, some new notations are introduced. For an i-tuple yi, denote Lyi = {x ∈
Xn ] | x i ] = yi} and Lf

yi = Lyi ∩X f

n ]. When representing the search space as a

tree (e.g. Figure 5.4), Lyi represents the set of terminal nodes (leaves) of the subtree

rooted in yi. Using this notation, we have Lf

yi = Lf

yi⊕s0i+1
∪Lf

yi⊕s1i+1
. This notation

is used in the following probability mass function, for any yi−1 ∈ X f

i−1 ]:

Pr
(
sjii | y

i−1
)

=



∣∣∣Lf

yi−1⊕s0i

∣∣∣∣∣∣Lf

yi−1

∣∣∣ , if ji = 0 ,∣∣∣Lf

yi−1⊕s1i

∣∣∣∣∣∣Lf

yi−1

∣∣∣ , if ji = 1 .

(5.10)

Proposition 5.3. Given a subset selection problem (S, f, g) and a search space

Xn ], Pr(x) =
∏n
i=i Pr(xi | x i−1 ]) =

∣∣∣X f

n ]

∣∣∣−1

for each x ∈ X f

n ] using Eq. (5.10)

to compute the conditional probabilities Pr(xi | x i−1 ]).

Proof. First, we prove that the conditional probabilities computed using Eq. (5.10)

can be used to define a (conditional) probability mass function on the solution

components s0
i and s1

i . Consequently, we need to prove that for any yi−1 ∈ X f

i−1 ],

we need that Pr(s0
i | yi−1) and Pr(s1

i | yi−1) are positive and that these probabilities

add up to one.

Since Eq. (5.10) only uses ratios of cardinalities of sets, the result will be positive.

Moreover, we have for each yi ∈ X f

i ]∣∣∣Lf

yi⊕s0i+1

∣∣∣∣∣∣Lf

yi

∣∣∣ +

∣∣∣Lf

yi⊕s1i+1

∣∣∣∣∣∣Lf

yi

∣∣∣ =

∣∣∣Lf

yi

∣∣∣∣∣∣Lf

yi

∣∣∣ = 1 .

As a result, the multiplication rule can be used to compute Pr(x).

Next, we prove that Pr(x) =
∏n
i=i Pr(xi | x i−1 ]) =

∣∣∣X f

n ]

∣∣∣−1

. Substituting all

conditional probabilities with Eq. (5.10) and Lf
x 0 ]

= X f

n ] gives:

Pr(x) =

∣∣∣Lf
x 1 ]

∣∣∣∣∣∣Lf
x 0 ]

∣∣∣ ×
∣∣∣Lf

x 2 ]

∣∣∣∣∣∣Lf
x 1 ]

∣∣∣ × . . .×
∣∣∣Lf

xn−1 ]

∣∣∣∣∣∣Lf
xn ]

∣∣∣ =
∣∣∣X f

n ]

∣∣∣−1

,

which completes the proof.
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The probabilistic decision rule given in Eq. (5.10) can be incorporated in the

AS solution construction procedure. Several ways exist to do so. However, the

information obtained using Eq. (5.10) can be seen as some sort of domain knowl-

edge or (variable) heuristic information. Because of this, the following combined

probabilistic decision rule is proposed:

Pr
(
sjii | y

i−1, T (t)
)

=



∣∣∣Lf

yi−1⊕s0i

∣∣∣ τ0
i (t)∣∣∣Lf

yi−1⊕s0i

∣∣∣ τ0
i (t) +

∣∣∣Lf

yi−1⊕s1i

∣∣∣ τ1
i (t)

, if ji = 0 ,

∣∣∣Lf

yi−1⊕s1i

∣∣∣ τ1
i (t)∣∣∣Lf

yi−1⊕s0i

∣∣∣ τ0
i (t) +

∣∣∣Lf

yi−1⊕s1i

∣∣∣ τ1
i (t)

, if ji = 1 .

(5.11)

Eq. (5.1) is then replaced by Eq. (5.11) in the solution construction procedure.

When τ0
i = τ1

i , this procedure guarantees a completely uniform search over all

feasible solutions. However, applying this modified construction procedure in

combination with the standard pheromone update procedure can lead to an over-

update of some pheromone trail parameters. As an example, consider the expected

updates for τ0
1 and τ1

1 in the artificial (toy) problem (Figure 5.4). When f(x) = c

for all x ∈ X f

n ] and τ0
i (0) = τ1

i (0), it is desirable that τ0
1 (1) = τ1

1 (1) since there

is no reason to prefer s0
1 over s1

1. Nevertheless, the expected values for τ0
i (1) and

τ1
i (1) (resp. 6/11 and 5/11 when ρ = 1) computed using Eq. (5.4) in combination

with Eq. (5.11), are not equal. In order to counter this over-update, guided tuples

are defined as a generalization of forced tuples.

Definition 5.2. For a given subset selection problem (S, f, g) and a search space

Xn ], an i-tuple yi ∈ X f

i ] is called a guided tuple (GT) if:∣∣∣Lf

yi
i−1 ]
⊕s0i

∣∣∣ 6= ∣∣∣Lf

yi
i−1 ]
⊕s1i

∣∣∣ .
For example, in Figure 5.4, the partial solution y = 〈s1

1〉 is a guided tuple as∣∣∣Lf

s01

∣∣∣ = 6 and
∣∣∣Lf

s11

∣∣∣ = 5. Essentially, guided tuples are the result of a propagation

of the problem constraints towards the start of the solution construction procedure

(i.e. the top of the construction tree). They are linked with probabilistic decisions

that were influenced by the (Hamming) distance from the current partial solution to

the boundary of the feasible search space. The probabilistic decision rule given by

Eq. (5.11) uses this information to reduce the influence of the problem constraints.

Notably, the modified probabilistic decision rule only differs from the original

decision rule at guided tuples.

The modified probabilistic decision rule (Eq. (5.11)) ensures that the search space
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is sampled in a uniform manner. However, as illustrated earlier, this decision rule

may cause an imbalance in the pheromone update. To restore this imbalance, a

modification of forcedUpdate is proposed. The principle of the update procedure

remains, the only change concerns the size of update. The construction of a tuple

x with xi = sji will cause an update of τ ji of size

f∗(x) = 2

1−

∣∣∣Lf
x i ]

∣∣∣∣∣∣Lf
x i−1 ]

∣∣∣
 f(x) . (5.12)

The update rule referred to as guidedUpdate, consists of the standard update rule

given in Eq. (5.2) where f∗(x) is computed using Eq. (5.12). Applying the modified

solution construction procedure and update rule in AS leads to an algorithm that

we will refer to as GuidedAS. Moreover, from this discussion, the following lemma

follows directly.

Proposition 5.4. Given a subset selection problem (S, f, g) and a search space

Xn ], and f(x) = c for all x ∈ X f

n ]. For an initial pheromone matrix T (0), where

τ0
i (0) = τ1

i (0) for i = 1, . . . , n, we have τ0
i (t) = τ1

i (t) for all t when τ ji is computed

using Eq. (4) in combination with Eqs. (5.11) and (5.12).

From this proposition, we have that, in the (artificial) situation where all solu-

tions have equal objective function values, GuidedAS will cause equal expected

pheromone updates for each pair of (competing) components s0
i and s1

i . As such,

GuidedAS exhibits no preferential behavior towards specific components.

5.4.4. Towards a working algorithm

As described above, GuidedAS requires knowledge of the construction tree to

compute Eqs. (5.11) and (5.12). At worst, an enumeration of the entire search

space will be needed to calculate the required probabilities. However, as will

be shown in the application section, for some subset selection problems these

probabilities can be obtained efficiently without such an enumeration. For other

subset selection problems, we resort to an approximation of the construction tree to

compute Eqs. (5.11) and (5.12). A simple heuristic that can be used to approximate

the tree is illustrated in Figures 5.5 and 5.6. Here, it is initially assumed that

X f

n ] = Xn ]. As an agent discovers infeasible regions, the presence of these regions

will be taken into account when computing (5.11) and (5.12) for all future agents.

The location of these infeasible regions can be stored efficiently in a data structure

that is generally known as a ‘binary tree’. This data structure strongly reduces

the computational overhead. Moreover, during a single run of GuidedAS only

a small part of the search space is actually explored. Consequently, only a small

part of the (feasible) search space will have to be stored in memory. This keeps

the memory requirements within acceptable limits. It should be noted that this
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§5.4. Countering the bias

heuristic can be adapted towards specific subset selection problems. In case of the

knapsack problem, the typical symmetric pattern within the construction tree can

be used to get an improved estimate of the tree structure.

5.4.5. An analysis of bias-mitigating strategies

In the previous sections, a set of bias-mitigating measures has been proposed. These

measures were constructed with the goal in mind that, when τ ji = c, the (expected)

update received by any component, or pheromone trail parameter associated to

it, should only be affected by the average objective function value of all solutions

this component is part of. More precisely, the ratio of the updates received by

(two) components (s1
i and s0

i ) that compete for selection should only depend on

the ratio of the average objective function value of the solutions that contain one

of these solution components. GuidedAS enforces this property by successively

forcing a uniform distribution of the feasible solution sequences through a modified

construction rule, and applying an appropriate update rule. Even though these

principles do not explicitly eliminate the sources of bias discussed in Section 5.3.2,

they were designed to eliminate the propagation (possibly negative) of this bias

throughout the pheromone model.

Since GuidedAS uses the BSR, a one-to-one mapping exists between n-tuples x ∈
Xn ] and subsets x ∈ 2S . As such, representation bias does not exist. Construction

bias on the other hand, will be present due to problem constraints. An important

consequence of this type of bias is the systematic over-update some components

receive. From Proposition 5.4 it follows that GuidedAS counters this consequence.

As a final type of bias, we consider assignment order bias. Since the BSR requires

a specific ordering to traverse the decision variables, this ordering might influence

the probability that the algorithm will converge to a specific solution [71]. Here, we

define assignment order bias as a property of an AS algorithm applied to a subset

selection problem.

Definition 5.3. The application of an AS algorithm to a subset selection problem

(S, f, g) is affected by assignment order bias if there exist at least two bit string

representations BSR1 and BSR2 (where these representations only differ in the

ordering that is used) such that(
∃x ⊆ S

) (
p̂1(x | T (0)) 6= p̂2(x | T (0))

)
,

where p̂1(x | T (0)), resp. p̂2(x | T (0)), denotes the probability that AS will converge

to solution x using BSR1, resp. BSR2, for a given initial pheromone matrix T (0).

Simple simulation experiments show that the assignment order can have a strong

influence on the performance of BasicAS when using the BSR. This finding is
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Chapter 5. An Ant Colony Optimization Algorithm for subset selection

Figure 5.5: Use of a heuristic to approximate the construction tree (part one). The
arrow indicates the partial solution in the memory of the ant. Initially, all solutions
are assumed to be feasible. As the solution is extended, the tree’s structure is partially
discovered. By back propagation, the estimates of the number of feasible leaves under
each of the nodes and associated probabilities are updated. The explored part (denoted
in black) is actually stored in memory. The gray, unexplored part is not stored.
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§5.4. Countering the bias

Figure 5.6: Use of a heuristic to approximate the construction tree (part two).
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Chapter 5. An Ant Colony Optimization Algorithm for subset selection

strengthened by several studies arguing that some orderings can have a positive

effect on the performance of AS in case of quadratic assignment problems. It can

be shown (empirically) that GuidedAS is affected by assignment order bias as well.

However, as illustrated in the experimental section, its effects are strongly mitigated.

As pointed out in [71], assignment order bias and construction bias are closely

related. In the presence of constraints, the ordering in which the items are traversed

influences the intensity of the search in several parts of the search space. Different

orderings will result in different construction trees favoring different parts of the

search space. As such, the ordering can be used to bias the search towards

promising regions in the search space. Moreover, it has been argued that randomly

permuting the items each time an agent constructs a solution sequence acts as

a bias-mitigating measure. We shall refer to this procedure as PermutedAS.

It turns out that GuidedAS and PermutedAS have several similarities in the

way they try to mitigate search bias. Firstly, from Proposition 5.3 it follows

that, when τ0
i = τ1

i , the probabilistic decision rule (5.11) will produce a uniform

distribution (i.e. the distribution with maximal entropy) over all feasible solutions.

For any fixed ordering of the items, the distribution implied by BasicAS and

decision rule (5.1) will be non-uniform and have a lower entropy. When applying

PermutedAS, the resulting distribution can be obtained by averaging over all

orderings, often resulting in an increased entropy. Secondly, from Proposition 5.4

it follows that, when all objective function values are equal, there is a balanced

(expected) update between solution components that compete for selection. Even

though PermutedAS cannot cause these expected updates to become completely

equal, its averaging effect has the tendency to level out these updates. Taking this

similarity into account, it might be argued that PermutedAS can be used as an

efficient alternative to GuidedAS. However, as we will illustrate in the application

section, problems might occur when the probability of constructing a specific

solution sequence is too heavily influenced by the ordering of the items. Since the

behavior of individual agents that are confronted with the same pheromone matrix

will be very diverse, convergence problems might occur. Moreover, it might take

numerous agents per generation to obtain the averaging behavior that is needed to

establish the properties described above.

5.5. Algorithmic performance: experimental setup

In this section, we illustrate how bias-avoidance mechanisms affect the performance

of AS for subset selection problems. To be able to study the effects caused by

negative bias, we choose not to extend the basic AS with frequently used elitism-like

techniques here (in Section 6, we will embed our bias-mitigating strategies within

the Max-Min Ant System [62] to improve performance). The 0/1 unidimensional
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§5.5. Algorithmic performance: experimental setup

knapsack problem will often be used as a reference. Formally, this knapsack

problem can be seen as a subset selection problem (S, f, g) where each item

si can be represented by a couple (wi, vi) ∈ R+2, where f(x) =
∑
{si∈x} vi, and

g(x) =
[∑
{si∈x} wi ≤ C

]
, with C ∈ R+ the capacity constraint and [.] the indicator

function.

5.5.1. Implementation of AS variants

To be able to experiment with the algorithmic ideas introduced earlier, a Java

(Java SE 6) library was developed that includes implementations of BasicAS,

ForcedAS, GuidedAS and GuidedAS with the construction tree heuristic as

well as a number of facilities that allow the experiments in the following sections to

be performed. This library allows (an approximation of) the construction tree of a

subset selection problem to be generated in a dynamical manner. The building

block of this implementation is a set of classes that implement a binary tree data

structure.

5.5.2. Unpreferential behavior: an example

ForcedAS and GuidedAS were developed to mitigate the (undesired) preferen-

tial behavior of BasicAS towards some solutions. To illustrate the effect of the

modifications that were proposed, consider the (artificial) subset selection problem

depicted in Figure 5.4. In a first experiment, all (feasible) solution sequences

were given objective function value 10. Each variant of the AS algorithm was

run 1000 times (with an initial pheromone concentration of 100, ρ = 0.3, and we

chose as many ants as there are items, i.e. 4 ants per generation) until conver-

gence. Individual runs were considered to have converged once a particular solution

sequence appeared at least 18 times in a series of 20 successively constructed

solution sequences. Figure 5.7 (a, d, g, k) represents the probability of convergence

to each of the feasible solution sequences (based on these 1000 runs). Since all

objective function values are equal, it is desirable that there is no preferential

behavior towards specific solutions. It can be seen in Figure 5.7 (a, d, g, k) that

GuidedAS gives the best approximation to a uniform distribution over the feasible

solution sequences, indicating that this algorithm is probably the least influenced

by (negative) search bias. Moreover, BasicAS shows a strong preference towards

some solution sequences, whereas ForcedAS shows intermediate behavior. Per-

mutedAS leads to a smoother histogram than BasicAS, however, it shows a bias

towards 〈s0
1, s

0
2, s

0
3, s

0
4〉. This can be explained by observing that, within the set

of feasible 4-tuples, for each i, s0
i is more (or equally when i = 3) abundant than

its competitor s1
i , causing higher updates for τ0

i . On the other hand, preferential

behavior towards other components will be mitigated by the random permutations.
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Chapter 5. An Ant Colony Optimization Algorithm for subset selection

Table 5.2: Weights and values for two examples of the 0/1 unidimensional knapsack
problem, both with a capacity constraint of 10.

item s1 s2 s3 s4

w1, . . . , w4 3 5 6 2

v1, . . . , v4 for problem 1 4 5 9 1

v1, . . . , v4 for problem 2 3 5 5 4

As a second experiment, consider a 0/1 unidimensional knapsack problem where S

contains four items with weights, values and capacity constraints given in Table 5.2.

Note that the construction tree of both problems is identical to the one in Figure 5.4.

However, the objective function values of the solution sequences are different here.

As can be seen from Figure 5.7 (b,e,h,j), all variants converge to high-quality

solutions. It can be seen that the probability that BasicAS converges to the

optimal solution is heavily influenced by the location (with respect to infeasible

solutions) of this optimum in the construction tree. ForcedAS and GuidedAS

seem to be less influenced by this location. PermutedAS is able to mitigate

the effects of BasicAS for the first knapsack problem, however, its performance

is inferior to the other modified AS versions here. Moreover, when the optimal

region is located in a region that is favoured by BasicAS, it outperforms the other

variants.

5.5.3. Experiments on knapsack problems

In [65], the authors argue that it is desirable that the expected iteration quality

W (T (t)) of a combinatorial optimization problem is an increasing function of time.

They relate a (temporary) drop in the expected iteration quality to the presence of

negative search bias. For ForcedAS, we have proven that the expected iteration

quality is an increasing function of time. However, we were unable to extend this

idea to GuidedAS. To examine the evolution of the expected iteration quality

here, 30 000 instances of the 0/1 unidimensional knapsack problem were created

following the method of [84] with a size ranging from 5 to 20 items. For each

of these instances, the expected iteration quality of GuidedAS increased as a

function of t. Depending on the tightness ratio (which is the ratio of the capacity

of the knapsack and the added weights of all items, this ratio ranged between 0.25

and 0.50) used to create these instances, the expected iteration quality of BasicAS

exhibited temporary drops in 5 - 50 % of the cases.

The toy examples given before illustrate the negative influence that bias can have on

the performance of AS. Experiments with knapsack problems (generated according

to [84]) indicate that our bias-avoidance mechanisms have a positive influence on

102



§5.5. Algorithmic performance: experimental setup

9
0

6
0

3
0

0
1

9
1
0
5

6
5

1
3

4
9

1
0

9
0

6
0

3
0

0
4

5
9

5
9

7
8

3
8

1
2

0
4

5
9

5
9

7
8

3
8

1
2

9
0

6
0

3
0

0
4

5
9

5
9

7
8

3
8

1
2

9
0

6
0

3
0

0
1

9
1
0
5

6
5

1
3

4
9

1
0

9
0

6
0

3
0

0
1

9
1
0
5

6
5

1
3

4
9

1
0

9
0

6
0

3
0

3
0

2
0

1
0

1
0
1
0
1
0
1
0
1
0
1
0

1
0
1
0

1
0

1
0
1
0

3
0

2
0

1
0

1
0
1
0
1
0
1
0
1
0
1
0

1
0
1
0

1
0

1
0
1
0

3
0

2
0

1
0

1
0
1
0
1
0
1
0
1
0
1
0

1
0
1
0

1
0

1
0
1
0

0
1

9
1
0
5

6
5

1
3

4
9

1
0

9
0

6
0

3
0

0
4

5
9

5
9

7
8

3
8

1
2

9
0

6
0

3
0

3
0

2
0

1
0

1
0
1
0
1
0
1
0
1
0
1
0

1
0
1
0

1
0

1
0
1
0

Figure 5.7: Frequency of convergence (based on 1000 runs) of the four AS variants (from
top to bottom: BasicAS, ForcedAS, GuidedAS and PermutedAS) to all feasible
solution sequences depicted in Figure 5.4; (a, d, g, k): in case of equal objective function
values for all feasible solutions. (b, e, h, j): in case of knapsack problem 1 (see Table 5.2).
(c, f, i, l): in case of knapsack problem 2. The numbers above the bars represent the
objective function values of the corresponding solutions.
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Chapter 5. An Ant Colony Optimization Algorithm for subset selection

Figure 5.8: Frequency counts for a knapsack problem containing 60 items (generated
according to [84]). The frequency counts are based on the objective function values of the
solutions to which the algorithms converged. These frequency counts are based on 250
runs of each AS variant.

the quality of the solutions that are found by AS. As an illustration, consider

Figure 5.8. For each AS variant, this figure gives an (empirical) distribution of

the objective function values of the solutions that are found. For GuidedAS, the

construction tree heuristic was used. For each AS variant, the initial pheromone

concentration was 5000, ρ = 0.3 and we chose K = 10 ants. Here as well, an

individual run was considered to have converged as soon as a particular solution

occurred at least 18 times in a series of 20 consecutive solution sequences. It can

be seen that both modified algorithms outperform the basic algorithm. However,

ForcedAS and GuidedAS lead to solutions with similar objective function values.

It should be noted that the number of iterations needed to achieve convergence was

approximately the same for all variants (on average 380 generations for the depicted

problem). As such, the number of times the fitness function f had to be evaluated

before achieving convergence differed little between the three variants.

5.5.4. Artificial problems

Experiments with knapsack problems indicate that BasicAS is often outperformed

by the adapted algorithms. The difference between ForcedAS and GuidedAS is

less clear (Figure 5.8). Although GuidedAS is assumed to be less biased, it is not

able to outperform ForcedAS for knapsack problems. However, when considering

the structure of a knapsack problem, it can be seen that optimal solutions are

positioned at the boundary of the feasible space. As can be derived from the

construction tree and the results in Figure 5.7 (b), the ForcedAS variant focuses

on these regions. This internal property of ForcedAS might explain this behavior.

To verify this hypothesis, artificial subset selection problems (S, f, g) were created,

in which the link between the objective function value of a solution and its closeness

to the infeasible region is broken. In the following procedure, dH(x,x′) denotes

the Hamming distance between the n-tuples x and x′.

1. Define a set of items S and a search space Xn ].

2. Compute the objective function value for each x ∈ Xn ] as follows:
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§5.5. Algorithmic performance: experimental setup

Figure 5.9: (a) Frequency distribution of all objective function values present in this
artificial problem. (b) Frequency counts of the objective function values of the solutions to
which ForcedAS converged. (c) Frequency counts of the objective function values of the
solutions to which GuidedAS converged. These counts are the result of 100 individual
runs of both AS variants.

(i) Choose a set of prototypes F = {x∗1, . . . ,x∗k} ⊂ Xn ] and assign an

objective function value to each prototype: f(x∗1), . . . , f(x∗k).

(ii) For each x ∈ Xn ] \ F , set f(x) =

∑
{x∗
i
∈F} dH(x,x∗i )−1f(x∗i )∑
{x∗
i
∈F} dH(x,x∗i )−1 .

3. Compute the feasibility for each x ∈ Xn ] as follows:

(i) Choose a set of prototypes G = {x+
1 , . . . ,x

+
` } ⊂ Xn ] and assign a

feasibility value (0 or 1) to each prototype: g(x+
1 ), . . . , g(x+

` ).

(ii) For each x ∈ Xn ] \G, set g(x) = 1 if

∑
{x+
i
∈G}

dH(x,x+
i )−1g(x+

i )∑
{x+
i
∈G}

dH(x,x+
i )−1

> 0.5.

The objective function f , that is obtained by applying the procedure above, interpo-

lates the objective function values of a predefined set of prototypes. Similarly, the

feasibility function g interpolates the feasibilities of a (different) set of prototypes.

Since both sets are chosen independently, the objective function value of a solution

is independent of the distance to the feasibility boundary.

Using the procedure described above, several artificial subset selection problems

were generated and used as a test bench for ForcedAS and GuidedAS. Fig-

ure 5.9 shows the distribution of the objective function values of the solutions

that were found by both AS variants for a representative example with 16 items

(initial pheromone concentration, number of ants, evaporation rate and convergence

criterion were chosen as in the previous experiment). From this figure, it can be

seen that the solutions found by GuidedAS have (on average) higher objective

function values than the solutions found by ForcedAS. As such, we can conclude

that GuidedAS to is able to outperform ForcedAS in this setting.
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5.6. Max-Min Ant System with bias-avoidance

Up to this point, the central theme of this chapter was the study of bias in AS and

how it can be avoided or mitigated. The experiments (on artificial problems) that

were presented illustrate that the incorporation of our bias mitigating strategies

leads to a procedure that outperforms the original AS. However, the development

of top-performing procedures typically relies on the fruitful combination of multi-

ple algorithmic ideas, and not only the bias-avoidance strategies presented here.

Therefore, we opted to combine existing ideas, such as for example the incorpo-

ration of elitism, with our bias avoidance strategies in an attempt to develop a

top-performing procedure. To that end, the Max-Min Ant System (MMAS) can be

seen as one of the most efficient ACO procedures developed up to now. In essence,

MMAS combines two ideas (elitism and pheromone trail constraining) that lead to

an efficient procedure.

Bias-avoidance mechanisms can be easily incorporated into MMAS. Our imple-

mentation closely follows the framework described in [62] (note that we consider a

maximization problem rather than a minimization problem in [62]). More precisely,

let xGB be the globally best solution found up to generation t. We define the

pheromone trail limits τMAX = 1
ρf(xGB) and τMIN = τMAX(1− n

√
pbest)/ n

√
pbest, where

pbest ∈ [0, 1] is an additional parameter that is related to the probability that the

best solution so far will be constructed. The pheromone trail constraining procedure

uses these bounds as described hereafter. The pheromones are constrained to lie

within the interval [τMIN, τMAX] on line 11 of the procedure, i.e. when a pheromone

trail parameter has a value smaller (resp. larger) than τMIN (resp. τMAX), it is set

equal to τMIN (resp. τMAX). Below, we provide the pseudocode of the implementation

that was used for the experiments with guidedMMAS.

1: procedure guidedMMAS(Xn ], f, g)

2: T (0)←InitializePheromones

3: for all generations do

4: solutionsLastGen ← null

5: for ant = 1, . . . ,K do . make paths

6: x← construct solution using decision rule (5.11)

7: solutionsLastGen.add(x)

8: end for

9: xIB ← solution sequence in ’solutionsLastGen’ with highest fitness

10: Use only xIB to update pheromones using guidedUpdate

11: Update xGB, τMAX and τMIN and keep pheromones within limits

12: end for

13: return xGB

14: end procedure

In this chapter, we do not present any experiments with this guidedMMAS. The
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§5.7. The sample subset selection problem

reason for this is twofold. Firstly, to be able to answer the question whether

guidedMMAS can compete with the state of the art in a wide variety of subset

selection problems requires an extensive simulation study (including well-thought

problem instances, fair comparison measures, etc.). Such a study is outside the scope

of this dissertation and can be a topic of further research. Secondly, in the following

chapter, we will use guidedMMAS to solve a sample subset selection problem

that uses a compositional representation of the samples. That chapter will include

experiments where guidedMMAS is compared with alternative approaches.

5.7. The sample subset selection problem

We now return to the original problem of selecting a subset of a given size k from

a collection of mixtures. When both |S| and k are large (in the following chapter

we have that n ≈ 1000 and k = 100) a brute force application of GuidedAS

would require the construction tree heuristic. However, the constraint used in this

problem allows an efficient computation of (5.11) and (5.12) without the need of

an explicit form of the construction tree. It can easily be seen that for a given

partial solution yi, it holds that∣∣∣Lf

yi

∣∣∣ =

(
k −

∣∣yi∣∣
n− i

)
.

Therefore, GuidedAS can be applied very efficiently here.

The observation above suggests that GuidedAS is particularly useful for optimizing

the score functions described in the first chapter of this part of the dissertation.

Consequently, this procedure will be used in the next chapter as a heuristic for

finding an optimal subset of a collection of mixtures.

5.8. Conclusions and discussion

The presence of (negative) search bias can have a strong influence on the perfor-

mance of metaheuristics. This bias can be negative when it directs the search

towards low-quality regions in the search space. This phenomenon has been studied

intensively in the field of GAs. However, few studies deal with this bias in an

ACO setting. In this chapter, the problem of negative search bias was studied

and basic ideas were proposed to counter this bias. In several experiments, it was

shown that (simple) bias-reducing techniques can improve the performance of AS

for subset selection problems. In this chapter, we focused on the avoidance of

bias to improve the performance of AS. However, the addition of an intentional

bias towards promising regions might be worth considering as well. Moreover, the
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inclusion of local search procedures may be another path that can be followed to

obtain a better performing procedure. Nevertheless, it remains to be seen how

local search procedures can be merged with the bias-avoidance strategies that were

presented in this chapter.

The findings in Section 5.7 show that GuidedAS can be used efficiently to solve

sample subset selection problems (Objective II.2). Moreover, the results that were

obtained from experiments on synthetic problems hint that GuidedAS can be a

promising procedure for finding good sample subsets.

The main theoretical finding is presented in Proposition 5.2, which states that

the expected iteration quality of ForcedAS is a non-decreasing function of time.

Even though the evolution of the expected iteration quality can be thought of as

an interesting measure to assess the performance of an optimization procedure,

other measures may be worth considering here as well. Therefore, future research

may be directed towards finding new ways to quantify the behavior of ACO

procedures.

We end this chapter by pointing out the tentative link between AS and Markov

chain Monte Carlo (MCMC) methods [85]. This link becomes more apparent

when we think about the pheromone matrix as a way to encode a probability

mass function over all feasible subsets. The solutions that are constructed are

observations drawn from that probability mass function. Subsequently, these

observations are used to modify the parametrization (i.e. the pheromone matrix) of

that distribution. Indeed, MCMC algorithms such as the Metropolis-Hastings [86]

algorithm use a parametrized ‘proposal’ density function. The observations that

are drawn from the proposal density function are used to change the values of its

parameters. Interestingly, MCMC algorithms have been studied for several decades,

and, as a result, are quite well understood. Due to the link between MCMC and

AS, some of the results used in the MCMC field may be useful for gaining insight

into AS. However, it remains to be seen whether the connection between MCMC

and AS is strong enough for that.
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6 Selecting an optimal subset of

mixtures: numerical experiments

6.1. Introduction

In Chapter 4, the problem of selecting a subset of a collection of mixtures was

translated into several formal optimization problems. Moreover, the resulting

problems were classified as subset selection problems. Additionally, in Chapter 5,

an Ant Colony Optimization procedure was proposed as a general heuristic for

solving subset selection problems. In this chapter, the results from Chapters 4

and 5 will be used to select a subset of a collection of mixtures in a real-life

application.

The chosen application is a data reduction problem in the field of agriculture. It

should be noted that the application itself was proposed and described in detail

in [41]. However, in that work, the compositional nature of the data was not taken

into account. Moreover, based on the discussion in Chapter 4, the form of the score

function used in [41] has several drawbacks. Finally, in [41] different heuristics

were used to solve the subset selection problem. Therefore, this chapter can be

seen as an extension of the work in [41]. Interestingly, the results obtained in [41]

can be used as a reference to test the performance of the ACO procedure that was

proposed in Chapter 5.

The remainder of this chapter is organized as follows:

• In Section 6.2, a real-life application in agriculture is introduced (original

setting of [41]).

• In Section 6.3, the results obtained with the ACO procedures described in

Chapter 5 are compared with the results obtained in [41].

• In Section 6.4, the compositional nature of the data is taken into account

by using the score functions introduced in Chapter 4. In this section, the

experiments focus on the influence of the metric as well as the type of

metric-based score function that is used.
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6.2. A subset selection problem in agriculture

6.2.1. General problem setting

The complete dataset in this study contains the representations of n = 1033 milk

samples. Each sample is represented by a 45-part composition, that contains the

(observed) proportional amounts (mass percentages) of q = 45 milk fatty acids.

These milk samples belong to e = 6 different experiments, in which cows were

subjected to different diets.

Milk fatty acids have been shown the potential to monitor dietary changes and

diagnose metabolic disorders such as acidosis and ketosis [87]. The concentrations of

the 45 fatty acids of the 1033 milk samples in the initial dataset were obtained using

a simple but relatively inaccurate reference method (according to [88]). However,

this simplified reference method is not able to resolve all milk fatty acids. To be

able to study the fatty acid concentrations in detail the fatty acid concentrations

need to be determined in a complete and accurate manner. However, for budgetary

reasons one has to select a subset of k = 100 reference samples on which detailed

milk fatty acids analysis is to be performed. The objective is thus to select a subset

that is as informative as the total dataset, meaning that the variability of original

dataset should be preserved in the subset.

Interestingly, this brief description fits relatively well within the discussion in

Section 2.2.1. Indeed, there are no formal research goals presented that can be

directly translated into an application-oriented score function. Therefore, we can

apply a general purpose score function.

6.2.2. Problem representation and objective function

The problem that was described in the previous section is now written using the

notation of Chapters 4 and 5.

The bit string representation (BSR) for this sample selection problem can be easily

obtained. The item set S consists of the set of (1033) milk samples (s1, . . . , s1033).

Firstly, samples were ordered according to their experiment number, and within

experiments the ordering was randomized. Subsequently, using that ordering, a

search space Xn (with n = 1033) is defined. Pheromone trail parameters can be

defined as described in Section 5.3.1. The objective function that will be used

is the one proposed for GAs in [41]. Naturally, this objective function uses the

representation of the samples by means of the mass percentages of the fatty acids.

In words, the objective is to maximize the variance (of mass percentages) of the

selected subset with the soft constraint that samples should be selected from each

experiment. The size of the subset is constrained to be exactly 100. Note that
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the requirement that a subset should contain at least two samples (otherwise

the variance is zero) from each of the six experiments is not encoded explicitly

as a problem constraint. However, solutions that do not respect this constraint

are given an objective function value of zero (therefore, we call it a soft problem

constraint).

The vectors of mass percentages are grouped into a 1033× 45 matrix Z. Moreover,

let Zj denote the matrix containing the mass percentages of the samples from the

jth experiment (j = 1, . . . , e). Following the notation introduced in Chapter 4,

(Zx)j denotes the matrix that only contains the rows that correspond to samples

that are present in subset x and are part of the jth experiment. Lastly, (Zx)j.,i
is the ith column of that matrix. Using this notation, the objective function is

written as:

f(x) =
e

min
j=1

 q

min
i=1

var
(

(Zx)j.,i

)
var
(

(Z)j.,i

)
 , (6.1)

The required size k of the subset is encoded as a hard constraint implying g(x) = 1

if |x| = k and g(x) = 0 if |x| 6= k. These functions are combined in the following

mathematical optimization problem:

maximize
x∈2S

e
min
j=1

 q

min
i=1

var
(

(Zx)j.,i

)
var
(

(Z)j.,i

)


subject to g(x) = 0 ,

Since the number of items is large, a brute force application of GuidedAS would

require the construction tree heuristic. However, the constraint used in this problem

allows an efficient computation of (5.11) and (5.12) without the need of an explicit

form of the construction tree. Indeed, as mentioned in the previous chapter, for a

given partial solution yi, we have that∣∣∣Lf

yi

∣∣∣ =

(
q −

∣∣yi∣∣
n− i

)
.

6.3. Experiments and results

As the problem described before is a subset selection problem, the AS variants

can be directly applied as described in the experimental section of Chapter 5.

However, unlike in Chapter 5, where we illustrate that bias avoidance allows the
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search procedure to focus on high-quality regions in the search space, we want to

illustrate that the use of bias-avoidance mechanisms is beneficial in a practical

application. As such, the experiments in this section differ from the experiments

described before. Firstly, we implement our bias-avoidance mechanisms within the

Max-Min Ant System (MMAS) [62]; as this younger AS variant often outperforms

the original AS algorithm, it is likely to be a suited basis for our bias-avoidance

strategies. The algorithm that is obtained by incorporating the bias-avoidance

mechanisms in MMAS is further referred to as GuidedMMAS. Secondly, our goal

will be to find a good solution sequence as efficiently as possible. As such, instead

of desiring convergence, we aim to find a high-quality solution using only a limited

number of iterations.

To be able to make a fair comparison between the existing evolutionary approach

using GAs, the standard AS and MMAS variants, and the variants that incorporate

bias-avoidance mechanisms, the total number of fitness function evaluations was

fixed at 15000. Each algorithm was run 30 times, and per run the best solution

with the highest fitness was stored. Table 6.1 reports the best, worst and average

solution qualities (fitnesses) that were found over 30 runs for each algorithm, as

well as the results for the non-evolutionary approaches reported in [41] for the same

problem (note that best, worst and average solution qualities are equal here since

these methods are non-stochastic). Moreover, for each algorithm, parameters were

optimized by a grid search.

Table 6.1 shows that that the non-deterministic approaches are outperformed by

GAs, GuidedAS and GuidedMMAS. Moreover, BasicAS and BasicMMAS are

completely useless in this setting as they both seem unable to create a subset that

contains items from all experiments (the soft constraint). This can be expected as

the BSR that is used here will heavily suffer from construction bias. This construc-

tion bias forces these algorithms towards regions in the search space that violate

the soft constraints (typically regions that will be favored by construction bias only

contain experiments from the first two experiments). Even though GuidedAS

outperforms the non-evolutionary algorithms, GAs are clearly performing better.

We can nevertheless conclude that the adapted AS algorithm has an added value

with respect to the original AS algorithm. The most competitive algorithm in

this experiment is definitely GuidedMMAS. This application clearly illustrates

that the implementation of bias-avoidance mechanisms into MMAS can lead to a

well-performing algorithm.

Finally, we devote some attention to PermutedAS. From the results in Table 6.1

it is clear that PermutedAS does not perform well in this setting. Moreover,

the performance results obtained with PermutedAS are not better than the

ones obtained by a random (undirected) search through the search space (i.e.

randomly picking 15000 feasible points and selecting the one with the highest

fitness). Additional experiments with PermutedAS showed that it never converged
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Table 6.1: Summary of the best, worst and average solution qualities found by eight
subset selection methods on the application in agriculture (results based on 30 runs
per algorithm). The results of the Kennard and Stone algorithm are presented with
the Euclidean Distance (ED). For the AS algorithm the results of Basic(MM)AS,
PermutedAS, GuidedAS and GuidedMMAS are listed.

Method Best quality Worst Quality Average Quality

ED 0.400 0.400 0.400

k-means 0.089 0.089 0.089

OptiSim 0.100 0.100 0.100

GA 0.880 0.679 0.787

Basic(MM)AS 0.000 0.000 0.000

PermutedAS 0.415 0.296 0.354

GuidedAS 0.743 0.593 0.662

GuidedMMAS 0.946 0.694 0.807

(after 14 days, computations were stopped). The strong influence of the assignment

order on the probability of constructing a particular solution sequence can explain

this behavior. Indeed, when τ0
i = τ1

i for j = 1, . . . , n, for a given ordering, the

probability that, for example, the set of selected items will be a subset of the first

200 items is approximately 2832 ≈ 10250 times the probability that this selection

is a subset of the last 200 items. As such, even in the (unlikely) case that the

pheromone matrix is close to convergence, the constantly changing assignment

orderings will prevent it from achieving complete convergence, and the result will

be a pseudo-random search through the search space.

6.4. Metric-based score functions in practice

From the discussions in Chapter 5, it follows that objective function given in

Eq. (6.1) has several (potential) drawbacks:

• As Eq. (6.1) maximizes the marginal variances, it will strongly focus on

extreme samples, i.e. samples that have a representation that lies close to

the convex hull of the dataset.

• As Eq. (6.1) maximizes the marginal variances, it does not take the composi-

tional nature of the data into account.

To overcome these problems, the metric-based score functions introduced in Chapter

5 will be used here. Moreover, from a methodological point of view, we did not

feel the need here to incorporate the experiment number into the objective nor in

the constraints. We experiment with the following objective functions:
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f1(x) = min
i6=j

(
d
(
Zx
i,.,Z

x
j,.

)2)
, (6.2)

f2(x) =

 1

100

∑
j

(
min
i

(
d
(
Zx
i,.,Z

−x
j,.

)2))−1

, (6.3)

f3(x) =

(
max
j

(
min
i

(
d
(
Zx
i,.,Z

−x
j,.

)2)))−1

. (6.4)

In these objective functions, the metric that is used is either Euclidean distance

(denoted fe
1 , fe

2 and fe
3 ) or the Aitchison distance (denoted fa

1 , fa
2 and fa

3 ). Note

that the exponents in (6.3) and (6.4) were used to obtain score functions that need

to be maximized.

6.4.1. Aitchison distance versus Euclidean distance

From the discussion in the introductory chapter on compositional data, it could

be concluded that (from a methodological point of view) the Aitchison distance

is to be preferred over Euclidean distance when composing a metric based score

function. Moreover, in Chapter 4, it was illustrated with an artificial problem that

the metric that is used strongly influences the types of subsets that are selected.

However, from a more pragmatic point of view, the question may be raised whether

this observation translates to real-life datasets. To look into this problem, a small

experiment was set up. The results are presented in Table 6.2. The experimental

setup is summarized hereafter:

1. Fatty acids for which at least one sample with a concentration of zero was

reported, were removed from the dataset. This action can be justified by the

fact that the FA concentrations were measured by means of an inaccurate

reference method. More extensive measurements showed that the zeros that

are present in this dataset are rounding zeros. Nevertheless, we recognize that

the deletion of these FAs can have an impact on the subset that is selected.

In total, 17 FAs were retained.

2. fe
1 was maximized using GuidedAS. The optimization procedure was run 5

times.

3. The (five) subsets that resulted from the previous step were scored using fe
1

and fa
1 (separately).

4. The minimum and the maximum of the scores computed using fe
1 and fa

1

are presented in Table 6.2.
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5. Steps (2)–(4) are repeated for score functions fe
2 and fa

2 , and fe
3 and fa

3 .

From the results that are presented in Table 6.2, it can be suspected that the

metric (Euclidean versus Aitchison) that is used to build a metric-based score

function has a strong influence on the subsets that will be selected. More precisely,

a subset with a high score for a score function that uses the Euclidean distance

may not be optimal with respect to a score function that uses the Aitchison

distance. For example, consider columns fe
1 and fa

2 in Table 6.2. From the five

runs of GuidedAS in which fe
1 was optimized, the best subset (according to score

function fe
1 ) had a score of 6.32 × 10−4. On the other hand, from the five runs

of GuidedAS in which fa
1 was optimized, the best subset (according to score

function fe
1 ) had a score of 1.18× 10−4. Interestingly, when comparing this last

number with the values in column f1 (the random case), it can be seen that the

best of 100 randomly drawn subsets had a score of 1.66× 10−4, which is clearly

higher than 1.18 × 10−4. Similar observations can be made for the other score

functions. Lastly, it should be mentioned that the magnitudes of the similarities or

dissimilarities of the scores that are observed in this experiment possibly depend on

the characteristics of the dataset at hand. However, as this experiment illustrates,

one cannot blindly say that the influence of the loss function that is choosen can

be neglected beforehand.

6.4.2. Maximizing diversity or representability

Recall from the first chapter of this part, that we distinguished between two types

of metric-based score functions. The first type exists of score functions can be

used to find a set with maximal variability, whereas the second type exists of score

functions that can be used to find a subset that is representable for a given dataset.

It is clear that f1 belongs to the former type whereas f2 and f3 belong to the

second type. As in the previous subsection, it can be asked whether these score

functions are interchangeable in practical situations. To look into this question, an

experiment was setup. The experimental setup is described hereafter.

1. Fatty acids for which at least one sample with a concentration of zero was

reported, were removed from the dataset.

2. fa
1 was maximized using GuidedAS. The optimization procedure is run 5

times.

3. For each run and each score function (fa
1 , fa

2 and fa
3 ) the subset (from those

five) with the lowest (resp. highest) score is reported in Table 6.3.

4. Steps (2)–(3) are repeated for fa
2 and fa

3 .

Table 6.3 shows the performance results obtained in this experiment. As a reference,

the last column reports the scores of 100 randomly generated subsets. Firstly, as

expected, it can be concluded that the explicit maximization of a specific score
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Table 6.2: Performance results for different score functions. Per column, one objective
function was maximized (5 times), the rows present the minimum and maximum scores
observed using Euclidean distance or Aitchision distance. The last three columns present
the minimal and maximal scores for a sequence of 100 randomly generated subsets. The
numbers in these columns can be used as a reference.
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Table 6.3: Performance results for different score functions. Per column, one objective
function was maximized (5 times), the rows present the minimum and maximum scores
observed using either fa

1 , fa
2 or fa

3 . The last three columns present the minimal and
maximal scores for a sequence of 100 randomly generated subsets. The numbers in these
columns can be used as a reference.

function leads to a subset that has a high score for the score function that was

optimized. Moreover, as compared to the randomly generated subsets, there is a

clear increase in the scores that are obtained. However, a subset that results from

optimizing fa
2 will generally have a low score for fa

1 . Surprisingly, the best of 100

randomly generated subsets had a higher score for fa
1 than a subset that results

from optimizing fa
2 . On the other hand, a subset that results from optimizing

fa
3 will generally have a high score for fa

2 (a similar conclusion can be drawn

when fa
2 and fa

3 are interchanged). Therefore, from these experiments we can

cautiously conclude that the tradeoff between the maximization of variability and

representativity persists in this problem. Subsets with high scores for fa
1 (a score

function that favors variability) do not necessarily have high scores for fa
2 and fa

3

(score functions that favor representativity), or vice versa. On the other hand,

subsets that are obtained by maximizing fa
2 with GuidedAS generally have high

scores for fa
3 , or vice versa.

6.5. Conclusions and discussion

The main objective of this chapter was the performance evaluation of the ACO

procedure that was derived in the previous chapter in a real-life setting (Objective

II.3). Moreover, the metric-based score functions that were described in Chapter 4

were critically evaluated in a real-life setting.

6.5.1. Performance of ACO procedures

The experimental results presented in Section 6.3 illustrated that GuidedMMAS

performs well in practice. From the results that are reported, it seems that Guid-

edMMAS is competitive and can potentially outperform competing methodologies,
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such as GAs in particular. Moreover, the combination of bias-avoidance techniques

with MMAS allows to convert the basic Ant System from an (in this setting) useless

approach into a well-performing procedure.

Even though the results that were presented in this chapter show that Guided-

MMAS (or perhaps bias-avoidance in general) is a well-performing procedure,

several remarks can be made with respect to the approach that is presented here,

or the experimental setup in general. The following remarks can be interpreted

as personal criticism and suggestions for further research. Firstly, it can be asked

whether the comparison between the subset selection approaches that is presented

here is fair. For example, to compare the AS procedures with GAs in Table 6.1, we

choose to limit the number of function evaluations that is allowed. To investigate

the potential of an optimization procedure, such an approach can be considered

as being reasonable as the evaluation of the objective can be computationally

most demanding. On the other hand, several problems have an objective function

that can be evaluated efficiently (for example, Eq. (6.1) can be evaluated rather

efficiently). In those cases, the constructive manner in which an AS procedure

generates new candidate solutions is computationally demanding in some cases.

Indeed, to construct a new candidate solution, a large number of pseudo-random

numbers need to be generated, and especially for GuidedMMAS the computation

of |Lf

yi | can be demanding (even in the simple case presented here). In those

cases, fixing the actual run-time might be more fair than fixing the number of

function evaluations. However, such an approach will put an additional emphasis

on an efficient implementation of the procedures. This raises the question on how

GuidedMMAS can be optimized to obtain an optimal run-time efficiency.

6.5.2. An evaluation of metric-based score functions

The experiments in Subsection 6.4.1 suggest that, for a given metric-based score

function, the replacement of the Euclidean distance with the Aitchison distance

has a strong impact on the subsets that are selected. We conclude that, besides its

mathematical elegance, the Aitchison distance also influences the type of subsets

that are selected in a real-life subset selection problem.

Finally, from the results in Subsection 6.4.1, we conclude that there exists a tradeoff

between subsets that are diverse and subsets that are representative. However, it

must be recognized that these conclusions are based on a single real-life test case.

It remains to be seen whether these conclusions translate to other subset selection

settings. Moreover, the results presented here are based on five runs per case (of

a stochastic procedure). Consequently, the results that are obtained should be

interpreted with some caution.
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A SET ESTIMATOR FOR THE
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7 Unmixing of a mixture with a

set-based representation of the sources

7.1. Introduction

We start this introduction with an example of an unmixing problem.

Assume you have been given a cup of water with a salinity of 21 ppt (parts per

thousand). Moreover, you are told that the water in this cup is a blend of fresh

water (salinity of 2 ppt) and sea water (salinity of 40 ppt). Subsequently, you are

asked to estimate the proportional amount of fresh water (x1) in the cup.

It may seem rather intuitive to give x1 = 50% as an answer to this problem.

Indeed, when the proportional amount reflects the ratio of the number of fresh

water molecules to the total number of molecules in the cup, this assertion is valid.

Using the terminology of the chapter on compositional data analysis (Chapter 2),

the salinity can be used to represent the mixture (y), the source of fresh water

(c1 = 2) and the source of sea water (c2 = 40). To obtain the answer x1 = 50%,

we can solve the following system of linear equations.

{
x1 c1 + x2 c2 = y

x1 + x2 = 1
.

Naturally, the solution of this system should satisfy x1, x2 ≥ 0. Even though this

description may seem rather trivial at first sight, it entails one important assumption

that is generally referred to as the linear mixing model (LMM) assumption. Loosely

speaking, this assumption implies a linear relationship between the fractional

abundance of the fresh water (x1) in the mixture and the representation of this

mixture (the salinity in this case). The first equation in the system above expresses

this assumption mathematically. The second equation states that x1 and x2 should

be proportions (i.e. add up to one). In this example, this assumption may seem

rather trivial. Unfortunately, this is not necessarily the case in all applications. We

elaborate on this later.

We will generally refer to the fresh water and the sea water as sources and the

vectors c1 and c2 as prototype vectors of these sources; y is called the mixture

vector.

In this example, where the representations of the mixture and the sources are

scalars, one can readily obtain an estimate for x1 and x2. However, in most
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applications, the information about the sources is less explicit. For instance, we

might only know that c1 ∈ [1, 3] and c2 ∈ [30, 45]. In this setting, any solution

(x1, x2, c1, c2) to the system 

y = x1c1 + x2c2 ,

1 = x1 + x2 ,

x1 ≥ 0 ,

x2 ≥ 0 ,

c1 ≥ 1 ,

c2 ≥ 30 ,

c1 ≤ 3 ,

c2 ≤ 45 ,

can be considered to contain a possible estimate for x1 and x2. This means that

the information on the sources lacks the required precision to allow for a unique x1

and x2 to be extracted.

We now briefly elaborate on the origin of this imprecision. Firstly, we state what

it is not: the imprecision is not due to some measurement error, neither does it

result from an underlying stochastic process. Instead, it reflects the imprecision

that is inherent in the way the source is defined. Here, the sources are stated to

be fresh and sea water. Naturally, there exists a variety of fresh and sea water

sources. For example, the salinity of water taken from the Mediterranean Sea

differs from the salinity of water taken from the North Sea. Therefore, a precise

answer to the question raised before cannot be given. Instead, we can provide a

set of values (proportions) for x1 that can explain our observation. More precisely,

for each proportion in this set, there exists at least one couple of prototype vectors

c1 ∈ [1, 3] and c2 ∈ [30, 45] that could have been used to create a mixture such

that y = x1 c1 + (1− x1) c2.

For the example given above, it can easily be shown that the solution set for

x1 (and x2) is a closed interval. The minimal (resp. maximal) element of this

interval can be found by solving the following minimization (resp. maximization)

problem:

minimize
(x1,x2,c1,c2)∈R4

x1

subject to y = x1 c1 + x2 c2 ,

1 = x1 + x2 ,

x1 ≥ 0 , x2 ≥ 0 ,

c1 ∈ [1, 3] ,

c2 ∈ [30, 45] .
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In this toy example where y, c1, c2 ∈ R, there exists a simple, closed-form solution.

However, the unmixing problem becomes non-trivial in the more general setting

where y, c1, c2 ∈ Rq and c1 ∈ [1, 3] and c2 ∈ [30, 45] are replaced by c1 ∈ C1 and

c2 ∈ C2 with C1 and C2 two subsets of Rq. In the introductory example, such a

situation may occur when we are provided with a more extensive characterization

of the fresh and sea water. For example, we could use the characterization of water

in terms of the concentrations of calcium, potassium and bromine1. Similarly, the

unmixing problem becomes more complicated when more than two sources are

considered. In the introductory example, this situation could occur when the water

in the cup is a mixture of deep ocean water, sea water and fresh water.

In Part III of this dissertation we will develop a general methodology for solving

unmixing problems such as the one presented in the introductory example. In the

present chapter, we illustrate that these problems occur frequently in (applied)

research and review related literature. In the following chapter, we develop a series

of algorithms that can be used to solve the mathematical optimization problems

that are encountered in these problem settings.

The remainder of this chapter is organized as follows:

• In Section 7.2, the unmixing problem that is described above is generalized

and formalized.

• In Section 7.3, several problem settings are presented that allow to derive a

set-based representation of sources from data.

• In Section 7.4, several (potential) applications are presented.

• In Section 7.5, related work is reviewed.

• In Section 7.6, conclusions are presented and discussed.

7.2. Formal problem description

A multivariate process can often be interpreted as a mixture of multiple (n) source

processes. Several applications require an estimate of the proportional contribution

of at least one of these sources to such a mixture. In this chapter, we propose

a procedure that provides a set-based estimate of the proportional contribution

of a source of interest to a mixture. To be able to provide such an estimate, we

will –as most existing approaches do– require that the mixture and the sources are

represented in the same Euclidean vector space. When such a vector representation

is available, the linear mixing model (LMM) (see for instance [89]) is the most

popular model to describe such a mixture. In its most general form, this model

1 In this example, the concentrations of calcium, potassium and bromine are the features that are
used to describe or characterize a mixture.
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can be written as

y =

n∑
i=1

xi ci , (7.1)

with prototype vectors c1, . . . , cn ∈ Rq, mixture vector y ∈ Rq and vector of mixing

coefficients x = (x1, . . . , xn)> ∈ Rn such that
∑n
i=1 xi = 1 and 0 ≤ xi ≤ 1. In

this model, xi represents the proportional contribution of the ith source to the

mixture.

When the prototype vectors are given, deriving x1, . . . , xn is trivial (we briefly

return to the setting in the following chapter). In practice, however, prototype

vectors are rarely known explicitly. Instead, we only have a rough description of

these prototype vectors. In some cases, probability density functions can be used to

model this lack of knowledge (either assumed to be given or estimated from data),

and Bayesian modeling approaches are used to derive estimates for xi (or credibility

intervals if needed). However, often the amount of information (or data) that is

available is insufficient to specify (or estimate) the required probability density

functions. In such cases, one must resort to a less expressive way of describing the

sources. One option consists of representing a source by a set, i.e. the ith source is

represented by the set Ci ⊆ Rq, representing the knowledge that the ith prototype

vector ci ∈ Ci.

Now, let C1, . . . , Cn ⊆ Rq and y ∈ Rq be given, the feasible set X(y, (Ci)
n
i=1) is

defined as

X(y, (Ci)
n
i=1) =

{
x ∈ Sn |

(
∃ (ci)

n
i=1 ∈

n×
i=1

Ci

)(
y =

n∑
i=1

xi ci

)}
, (7.2)

where Sn is the n-dimensional simplex. This means that each element inX(y, (Ci)
n
i=1)

is a vector of mixing proportions that respects our knowledge about the sources and

the LMM. Moreover, we define the following projection of X(y, (Ci)
n
i=1):

Xk(y, (Ci)
n
i=1) = {z ∈ [0, 1] | (∃x ∈ X(y, (Ci)

n
i=1))(xk = z)} .

The set Xk(y, (Ci)
n
i=1) can be interpreted as the set of all possible values for the

proportional contribution of the kth source to the mixture represented by y. As

such, any element from Xk(y, (Ci)
n
i=1) can be used as a point estimate for xk.

Moreover2, without making further assumptions, one cannot select a single best

element out of Xk. Because of that, we propose Xk as a set estimator for xk.

Fortunately, as we will show later, under quite general conditions we have that

Xk = [inf(Xk), sup(Xk)], consequently, in these cases we will refer to our estimator

as an interval estimator. In those cases, Xk can be considered as a natural extension

2 For notational convenience we will use Xk as the short-hand notation for Xk(y, (Ci)
n
i=1) , the

arguments y and (Ci)
n
i=1 can be dropped, as they often can be considered fixed. The extended

notation will reappear in Section 5.
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Figure 7.1: Graphical representation of the set-based description of three sources (C1,
C2 and C3) as well as three prototype vectors (c1, c2 and c3) that were used to create a
mixture with representation y.

of the more familiar point estimator of xk. Here, the computation of this interval

can be performed by solving two optimization problems. This is the main topic

of the next chapter. Interestingly, it will turn out that the resulting optimization

problems can be solved globally in an efficient manner.

A graphical representation

The data (y and C1, . . . , Cn) can easily be visualized. Figure 7.1 illustrates the

geometry of this problem in case n = 3 and q = 2.

Convex sets

We end this section by pointing at the special, yet interesting case where the

sets C1, . . . , Cn are compact and convex. We will show in the following chapter

that in this case Xk(y, (Ci)
n
i=1) is an interval, i.e. we have that Xk(y, (Ci)

n
i=1) =

[inf(Xk(y, (Ci)
n
i=1)), sup(Xk(y, (Ci)

n
i=1))]. This property is appealing, as we are

used to expressing uncertainty on a predicted value by means of an interval.

Moreover, to compute Xk, it suffices to find its minimal and its maximal elements.

This naturally leads to the following optimization problem:

minimize
x∈Rn,(ci)ni=1∈Rq

xk

subject to y =
∑n
i=1 xi ci ,

1 =
∑n
i=1xi ,

xi ≥ 0 , for i = 1, . . . , n ,

ci ∈ Ci , for i = 1, . . . , n .

It can be seen that directly solving this optimization problem will be difficult due
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to the bilinear equality constraint. However, in the next section, we propose an

equivalent3 optimization problem that can be solved efficiently.

7.3. A set-based representation of sources

We will consider problem settings in which the sources are represented by means

of sets instead of points. Therefore, we say that the description of the sources

is set-based (as opposed to the case were the sources are represented by single

points). As a result, we can refer to our estimator as a set-based set estimator.

Indeed, it uses set-based representations of the sources ánd the resulting estimate

is a set.

To be able to use our set estimator Xk(y, (Ci)
n
i=1), its arguments need to be

specified. In a practical setting, we will be given a noisy observation of y (denoted

ỹ) instead of y. Moreover, the set-based representation (Ci)
n
i=1 of the sources may

not be directly available in most applications. Naturally, there exist cases in which

these sets are known, as for instance in the introductory example. However, this

will not be the case in general. Fortunately, there exist several manners to obtain

estimates (Ĉi)
n
i=1 of (Ci)

n
i=1 in an indirect manner. In conclusion, we often will be

forced to use Xk(ỹ, (Ĉi)
n
i=1) as an estimate for Xk(y, (Ci)

n
i=1).

7.3.1. Convex hulls

Even though a set-based representation (Ci)
n
i=1 of the n sources may not be directly

available in most applications, in some of these applications, data is available that

captures the (natural) variability in these sources. In these cases, the convex hull

of these data points can be used to obtain conservative estimates of (Ci)
n
i=1 as

illustrated in Figure 7.2. To motivate this approach, let us return to the introductory

problem setting. Assume that sea water and silt water are characterized by means

of multiple components. Moreover, let two matrices C1 ∈ Rm1×q and C2 ∈ Rm2×q

be given in which the rows represent observations of sea water (C1) and fresh water

(C2). We refer to these observations as observed prototypes. Figure 7.2 shows a

scatter plot of these datasets (q = 2) as well as their convex hulls (see Chapter 2

for a definition). Now let a and b be two elements of C1. Recall that a and b

are representations of two types of sea water (i.e. two prototype vectors). These

prototypes of sea water can be mixed to obtain a third prototype by choosing

θ ∈ [0, 1] and defining d = θ a + (1 − θ) b (we typically say that d is a convex

combination of a and b). Naturally, a blend of two types of sea water results in a

mixture that solely consists of sea water. Therefore, d represents sea water as well.

3 Here equivalent means that the solution of the first can be readily obtained from the solution of
the latter.
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Figure 7.2: Scatter plots of two artificial datasets C1 (left) and C2 (right) as well as
their convex hulls. The solid dots represent observed points, the red dot is a convex
combination of a and b. The red line segment groups all points that can be written as
convex combinations of a and b.

Interestingly, the convex hull of the observed prototype vectors in C1 (which is

denoted conv(C1)) contains all vectors that can be constructed using this strategy.

Therefore, it is a natural set to consider. This principle is illustrated in Figure 7.2.

It should be noted that the resulting sets are generally not equal to C1 and C2, but

only approximations of these sets. Therefore, we denote them as Ĉ1 and Ĉ2.

7.3.2. Extensions of the convex hull

Continuing along the reasoning above, the convex hulls are extremely conservative.

Indeed, we probably have that Xk(y, (conv(Ci))ni=1) ⊂ Xk(y, (Ci)
n
i=1). Therefore,

other procedures can be used to obtain estimates of (Ci)
n
i=1. For example, we could

use the minimal volume enclosing hyper-spheres of the given data or hyper-ellipsoids

that enclose the data. It can be argued, however, that the choice for a particular

method for constructing a set that extends the convex hull of the data is rather

arbitrary. In the next chapter, we encounter several examples that do allow us to

extend the convex hull in an intuitive manner.

7.4. Real-life applications

In this section, we discuss several applications that require the estimation of

mixing proportions. In most applications, the sets C1, . . . , Cn used to construct

X(y, (Ci)
n
i=1) are not given. Instead, these sets are replaced with their estimates

Ĉ1, . . . , Ĉn. These sets can then be used to compute the estimated feasible set

X(y, (Ĉi)
n
i=1), and its projection Xk(y, (Ĉi)

n
i=1).

Notably, close to none (we elaborate on this later) of the publications that we found

use the approach that is described in this chapter. Instead, existing applications

focus on estimating proportions using a single-point representation of the sources
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rather than a set representation. Alternatively, a few authors define priors on

the sources and the mixing proportions and subsequently use Bayesian inference

procedures to obtain estimates for the mixing proportions.

7.4.1. Detecting fraudulent adulteration of (vegetable) oils

Edible vegetable oils, such as for instance olive oil, are often adulterated with

other edible oils for a number of reasons. To some extent, such an adulteration is

allowed. However, often there exists a legal limit on the percentage of adulteration.

To be able to detect fraudulent levels of adulteration, procedures are needed that

provide estimates of the percentage of adulteration in a given oil mixture. As oils

are mainly characterized by their fatty acid composition, we can choose y to be

the fatty acid composition vector of such a mixture, and the prototype vectors

c1, . . . , cn represent the fatty acid composition of the sources (i.e. the pure oils)

in the LMM. Moreover, a vast amount of literature exists reporting the fatty acid

composition of pure (source) oils extracted from plants that were grown under

different circumstances. Using this information, Ĉi is defined as the convex hull of

all fatty acid vectors reported for the ith oil. Note that we use the convex hull of the

observed prototype vectors, rather than the observed prototype vectors themselves

to define Ĉi. We argue that this is correct, as any element of the convex hull that

describes such a source can be obtained by blending some of the observed pure oils.

This means that each element in the convex hull represents a pure blend.

We acknowledge that this interesting example was brought to our attention by

researchers from the Department of Food Safety and Food Quality of the faculty

of Bioscience Engineering of Ghent University. Moreover, within the field of food

technology there seems to be an interest in detecting fraudulent levels of adulteration

of vegetable oils (see for instance [90, 91, 92, 93, 94]). In most of these publications

the focus is mainly on the detection of adulteration using chemical information on

the samples as features in a machine learning setting. The research in these papers

is mainly data-driven and there is no incorporation of knowledge of the sources

or their natural variability. On the other hand, there exists a literature on the

decomposition of oil mixtures based on the triacylglyceride (TAG) distribution of

both the mixture and the sources (see [95] and references therein). However, the

TAG distributions of the sources are generally considered as (noisy observations

of) fixed prototype vectors.

7.4.2. Estimating abundance fractions in mixed pixels

Due to the low spatial resolution of hyperspectral sensors used in earth observation

studies, the area that is covered by a single pixel often contains several types

of land use classes (for instance, forest, agricultural land, urban zone). The
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hyperspectral signal that is measured for such a pixel only contains the average

amount of radiation emitted through each of the land use classes that is present.

As such, a large amount of sub-pixel information is lost. However, we can assume

that the proportion of the area covered by the ith land use class is equal to the

relative contribution of this class to the observed signal (which is in fact the LMM

assumption). Here, y is the observed hyperspectral signal, and c1, . . . , cn represent

the hyperspectral signals of the prototypes. As before, Ĉi can be constructed

as the convex hull of a set of hyperspectral signals that are known to belong to

the ith class. To obtain these prototype signals, several options exist. As the

majority of pixels in an image represent pure land cover classes that are easily

recognizable on sight, the source signals can be hand picked. As a second option,

several algorithmic procedures have been developed that allow for an automated

determination of prototype vectors (often called endmembers in this field) in a

given image (for instance [96, 97]). However, due to the high dimensionality of the

signals, problems may arise due to the presence of noise in the data. We return on

this issue in the next chapter.

Interestingly, there exists an extensive literature on what is called spectral unmixing

of mixed pixels, see for instance [89, 98, 99], that is closely related to the description

given above. In these papers, the abundance fractions of the different land use

classes in mixed pixels are estimated using the observed spectral signature of

these pixels. Mostly, the spectral signatures of the pure classes (endmembers) are

given and the LMM assumption is used to obtain an estimate of these abundance

fractions in a least squares approach (we elaborate on this later).

7.4.3. Applications in the earth sciences

In several branches of the earth sciences, such as geochemistry, petrology and

mineralogy, there is an interest in decomposing a series of observations (for example

sediments) into the proportional contribution of several (assumed) sources of parent

material. The underlying assumption here is that observed sediments are mixtures

of parent material. Often, the representation of this parent material is assumed

unknown. Therefore, unsupervised data mining techniques are used to provide

data-driven decomposition of the observations into several endmembers (what we

call prototype vectors) and the proportional contribution of these endmembers

to each of the samples. An interesting summary of this work can be found in

[100].

7.4.4. Applications in (molecular) biology and medicine

In the field of (applied) biology and bioinformatics, several studies can be found

that describe the estimation of mixing coefficients. For instance in [101, 102], the
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authors use differential gene expression, registered by micro-arrays, to estimate

the relative amount of cells in a specific stage of the cell cycle. When studying

the chemical composition of mixtures with spectrometric techniques, the LMM is

often used to estimate the relative abundance of a chemical component. To be able

to provide such an estimate, researchers sometimes use libraries of source spectra

(one spectrum for each source) [103].

7.4.5. Applications: Concluding remarks

As illustrated in this section, the decomposition of mixtures has applications

in several research areas. These applications share the goal of estimating the

proportional contribution of several sources (or endmembers) to a mixture. Some

authors start from a single-point description of these sources, whereas others

use probabilistic descriptions of these sources or use a completely data-driven

methodology to compensate for the absence of prior knowledge on the sources.

Unfortunately, depending on the application domain, highly similar problems are

often given different names. During our literature search, we came across names

such as spectral mixture analysis, spectral deconvolution, deconvolution of mixtures,

spectral unmixing, endmember modeling, unmixing, quantification, . . . . The variety

in the naming of the methods that have been proposed is even more exuberant.

Moreover, the description of these methodologies is often strongly problem oriented.

As a result, the number of cross-references between these application domains

is extremely small. On the other hand, within the more general (less problem-

specific) data analysis literature, we could not find publications that deal with

these problems in a fundamental manner.

Because of the issues raised above, it is hard to verify the novelty of any problem

setting or analysis procedure. In the following section, we will describe the most

important solution strategies that we found in literature without reference to a

specific application.

7.5. Related work

In this section, we will describe the most important solution strategies that we

found in literature in a mathematical manner.

7.5.1. The LMM assumption

We start this related work section by pointing at the subtle difference between xi
in the LMM, and the proportional contribution of the ith component to a mixture.

When the LMM is used, both are assumed equal. However, when the mixing
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process is nonlinear in the representation that is chosen, this assumption is wrong.

In applied research domains, such as for instance remote sensing, nonlinear mixing

models have been proposed that allow to model specific nonlinear mixing processes,

see [89] and the references therein. Moreover, it has been shown that in some

cases, inappropriate use of the LMM may cause misleading estimates of the mixing

coefficients [89]. In blind source separation4, nonlinear mixing models have been

studied as well [104]. Following the majority of research in mixture analysis, we will

be using the LMM in this chapter. This means that most conclusions are only valid

when the LMM assumption is correct, or at least provides a good approximation

to the real mixing process.

In several settings, the LMM assumption can easily be derived from (and verified

by) our knowledge about the system under study. For example, in the introductory

example, the linear mixing model is a natural model to use. However, in more

complicated settings, the knowledge that is required to verify the LMM assumption

is not available. In those cases, the LMM assumption can be verified by means

of an experiment. For example, mixtures can be created artificially by mixing

multiple sources. As the mixing proportions are known in this case, they can be

used as ground truth. Subsequently, to construct a representation of the mixture

and the sources, several characteristics are measured (the observed values for these

characteristics are the source vectors and the mixture vector). Lastly, estimates for

the mixing proportions can be obtained using the LMM and these estimates can

be compared to the ground truth. Based on that a comparison, it can be decided

if the LMM assumption is valid.

7.5.2. Statistical estimation procedures

Below, we briefly describe two popular statistical approaches for estimating the

mixing coefficients in the LMM. First, we consider a constrained least squares

estimation approach, which is very popular in several applied domains (for instance,

oil mixtures in food industry [95], remote sensing [98] and medicine [105]). Generally,

least squares methodologies assume that an observed mixture vector y can be

written as a linear combination of n prototype vectors plus an additional error

term, leading to the following model

ỹ =

n∑
i=1

xi ci + ε , (7.3)

which differs from the LMM (7.1) by a q × 1 error vector. When y and c1, . . . , cn
are given, the constrained least squares estimator x̂ is the optimal point of the

4 Blind source separation is a branch in signal processing/machine learning that focuses on the
data-driven decomposition of mixtures of signals into their constituents. Here matrix factorization
methods are often used.
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following optimization problem.

minimize
x∈Rn

‖y −
∑n
i=1xi ci‖

2

2

subject to
∑n
i=1xi = 1 ,

x1, . . . , xn ≥ 0 .

This formulation5 mainly applies to situations where q >> n, such that the

solution of the optimization problem is uniquely defined. Three main differences

exist between our set estimator described in the introduction and the setting to

which the constrained least squares estimator applies. Firstly, the least squares

approach requires a single-point description of the sources; as such, our approach

can be seen as more generally applicable. Secondly, the least squares approach is

generally designed for high-dimensional, (and thirdly) noisy data. On the other

hand, our set-based estimator mainly applies to situations where q < n. Moreover,

up to now, our set estimator is defined in a noise-free setting. From Eq. (7.2)

it can be seen that, as the dimensionality q increases, the cardinality of the set

X(ỹ, (Ci)
n
i=1) will generally decrease. Moreover, it is not hard to show that as

q → ∞ we have that X(ỹ, (Ci)
n
i=1) → ∅. This will typically occur in a setting

where observed (high-dimensional) spectra are used to represent the mixture. It

is clear that, in these situations, the current version of our set-based estimator

will be rather useless. Fortunately, we can deal with this issue in a methodological

manner. We will return to this issue in the following chapter.

Bayesian modeling approaches have been used to estimate mixing coefficients.

Mainly for the analysis and deconvolution of spectral data, Bayesian modeling

strategies have proven to be very effective (see for instance [103] for Bayesian

modeling with NMR data, or [106] for an application on Raman spectroscopy). In

Astle et al. [103], a Bayesian procedure is proposed for predicting the abundance

of metabolites in a complex biological mixture based on the H-NMR spectrum of

that mixture. The authors use the LMM (7.3). To define priors over the sources,

a library containing H-NMR profiles of frequently occurring metabolites, is used.

Moreover, their method takes into account that some metabolites may not be

present in the library. Estimates (or credibility intervals) for the abundance of

the metabolites of interest are obtained by likelihood maximization. The work

of Astle et al. [103] is related to the interval estimates that were proposed in the

introduction, as the data driven construction of priors in [103] provides an imprecise,

probabilistic description of the sources (the metabolites). In the same spirit, the

sets C1, . . . , Cn provide a set-based alternative to the imprecise description of

sources.

Finally, we mention the link between this chapter and blind source separation

5 Note that this constrained least squares problem falls within the class of convex, linearly con-
strained least squares problems and can be solved efficiently.
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(BSS). Even though the aim of blind source separation (i.e. the decomposition of an

(observed) multivariate signal into a set of (independent) source signals), is different

from the one we discuss here, the use of the LMM is highly similar. Moreover, BSS

is sometimes used to predict mixing coefficients in settings where a description of

the sources is missing, but can be derived from data. Examples include non-negative

matrix factorization [107] or Bayesian positive source separation [108].

7.5.3. Point estimators, probability estimators or set estima-

tors

The constrained least squares estimator and the Bayesian modeling approach can

be related to our set estimator. We argue that these estimators mainly differ in

the assumptions that are made. As such, these methods can complement each

other, rather than being competitive. Firstly, the restricted least squares estimator

implies that the sources are known exactly, and that the observed mixture vector

ỹ is a noisy observation of the true mixture vector y, as expressed by Eq. (7.3). In

this perspective, the constrained least squares method provides a point estimate of

the mixing coefficients. The uncertainty on the estimate x̂ only results from the

noise in the observation. If needed, by making several assumptions about the noise

term, this uncertainty can be translated into a confidence interval.

Secondly, the Bayesian modeling approach can be seen as a conceptual generalization

of the constrained least squares estimator, as it allows to include uncertainty on the

sources (in addition to the noise term). Bayesian modeling strategies express this

uncertainty by defining priors on the sources. When, as in the motivating examples

or in [103], data are available about these sources, these data can be used to define

a data-driven prior. The estimated posterior distribution on x, resulting from this

modeling procedure, can be used to assess the uncertainty on the mixing coefficients

in a probabilistic manner (if needed by using credibility intervals). However, the

adequacy of this assessment strongly depends on the appropriateness of the priors

that are used.

Thirdly, our set estimator requires that the uncertainty about the sources is

described in an epistemic manner (using sets) rather than a probabilistic manner.

The set that is obtained has a clear possibilistic interpretation; it represents a range

of values for xi that can explain our observation (i.e. possible values), in contrast

to the Bayesian approach that gives an interval of likely values (i.e. probable

values) for the mixing coefficient. From this reasoning, it follows that a good

interval estimate for xk can only be obtained when the sets Ĉ1, . . . , Ĉn provide a

good approximation to C1, . . . , Cn. This contrasts the Bayesian approach, which

requires that the distributions over these sets are specified correctly. Figure 7.3

illustrates the connection between the three estimators.
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Figure 7.3: Comparison of three estimators: the least squares point estimate x̂LS
k ,

the Bayesian (estimated) posterior distribution (dotted line), and the set estimate
[inf(X̂k), sup(X̂k)].

7.5.4. An interval estimator in remote sensing

During our search through literature, we came across one publication [109] that

deserves special attention here due to its similarity to our set estimator. Even

though Bajjouk et al. [109] strongly focus on a specific remote sensing application,

there are some elements that are strongly related to our approach. More precisely,

the authors start from a hyperspectral image, extract a collection of endmembers

(prototype vectors using our terminology) and group these endmembers into n

classes. Essentially, in this manner they obtain matrices C1 ∈ Rm1×q, . . . , Cn ∈
Rmn×q where the rows of the ith matrix represent the endmembers that belong

to the ith class (cfr. C1 and C2 in Section 7.3.1 of this chapter). Subsequently,

for a given mixture vector y, the contribution of the first class to y is argued

to be somewhere in the interval [a, b], where a is the optimal value of a linear

program (this linear program is described in detail in Appendix 7.A at the end of

this chapter). Similarly, b is the optimal value of the maximization problem with

the same objective function and the same (in)equality constraints.

In [110] (different authors), the method introduced in [109] was named bundle

unmixing. However, in [110], close to no fundamental contributions were made to

the method proposed in [109]. These papers have been cited several times but, as

far as we know, the methodology was never extended nor applied extensively.

In comparison to our work, we argue that our set estimator is more holistic than

the approach of [109]. Firstly, we provide a more profound motivation for our

methodology. Secondly, our estimator allows the sources to be described by generic

sets, whereas the work in [109] focuses on (specific forms of) polytopes.

7.6. Conclusions and discussion

In this chapter, we proposed the general principle of set-based unmixing of mixture

data (Objective III.1). As the examples in this chapter illustrate, the development

of unmixing procedures can be of interest to data-analysts and researchers in a
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variety of research domains. As a result, multiple methodologies have been proposed

that allow to unmix mixture data. However, such methods are generally designed

to provide point estimates of the proportional contribution of a series of sources to

a mixture and therefore require single-point representations of these sources. Even

though these approaches are generally interesting and useful in practice, they have

one potential shortcoming. These methods require a description of the sources by

means of a point in the Euclidean space or a probability distribution on this space,

which is not necessarily available. Therefore, the requirements of our set estimator

are less strict. They only require the sources to be described by subsets of the

Euclidean space.

As will be proven in the following chapter, the set Xk(y, (Ci)
n
i=1) is a closed interval

when the sets C1, . . . , Cn are compact and convex. Consequently, Xk(y, (Ci)
n
i=1)

is defined by its minimal and its maximal element. This naturally leads to an

optimization problem. In the following chapter, we will develop several algorithms

that can be used to solve this optimization problem efficiently.

We end this discussion with several open questions regarding the relationship

between the unmixing of mixture data and traditional compositional data analysis.

It is clear that, at least mathematically, the n-vector x of proportional contribu-

tions of each of n sources to a mixture is a composition. Therefore, it could be

argued (based on the reasoning in Chapter 2) that procedures that are used to

obtain any ‘estimate’ of x should respect the main principles of compositional

data analysis. Unfortunately, the relationship between the traditional analysis of

compositional data and the methods that have been developed for the unmixing

of mixtures remains unclear. For example, it is still unclear how the main prin-

ciples of compositional data analysis should be related to the (estimates of) the

mixing proportions in an LMM context. In this context, we have two seemingly

contradictory approaches:

(i) The unmixing problem is often considered as a prediction problem, i.e. a

predicted composition x̂ ∈ Sn should be close to the ‘true’ vector x̂ ∈ Sn.

To make such a prediction, the mixture vector y ∈ Rq can be used. A

traditional machine learning approach would require a dataset of instances

{(xi,yi)}ni=1 to learn a mapping f : Rq → Sn. As the output is a composition,

the discussion in Chapter 2 suggests that the loss functions (that operate

on compositions) should respect the main principles of compositional data

analysis and therefore only use relative information (which translates into

the use of ratios).

(ii) In practice, to solve the unmixing problem and to incorporate ‘prior knowledge

on the sources’, the LMM model is often used. Moreover, the LMM is an

intuitively appealing model that is very popular in practice. However, we

were unable to find an intuitive manner that allows the LMM to be expressed

by means of ratios of x. Therefore, it is hard to relate the constrained least

135



Chapter 7. Unmixing with a set-based representation of the sources

squares estimator of Section 7.5 to the main principles of compositional data

analysis.

At this point, we can only conclude that LMM most likely conflicts with the princi-

ples of compositional data analysis. Even though both the LMM and compositional

data analysis can be justified from a methodological point of view, they remain (at

least for us) incompatible in several aspects.
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7.A. Computation of [a, b]

In this appendix, we elaborate on the computation of the interval [a, b] (repre-

senting the set of possible mixing proportions for the kth source) as described in

Section 7.5.4. Given the matrices C1 ∈ Rm1×q, . . . , Cn ∈ Rmn×q where the rows

of the ith matrix represent the endmembers that belong to the ith class, a is the

optimal value of the following optimization problem:

minimize
(zi)ni=1∈Rmi

z>k 1mk

subject to
∑n
i=1z

>
i 1mi = 1 ,∑n

i=1C
i>zi = y .

zi ≥ 0mi .

Notably, this approach can be seen as a special case of our set estimator. Based

on the results that we have introduced so far, this may not seem a trivial result.

However, using some of the results obtained in the following chapter, it can

easily be shown that the method proposed in [109] coincides with the case where

C1, . . . , Cn are convex polytopes. More precisely, in that case, when Ci is a matrix

of which the rows contain the coordinates of the vertices of Ci, we have that

Xk(y, (Ci)
n
i=1) = [a, b]. Therefore, the method described in [109] can be used to

compute Xk(y, (Ci)
n
i=1) in the case that C1, . . . , Cn are convex polytopes of which

the corner points are given (or can easily be obtained).
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8 Optimization procedures for

set-based unmixing

8.1. Introduction

Given a mixture with mixture vector y ∈ Rq and a collection of n sources described

by sets C1, . . . , Cn ⊂ Rq, we defined (in Chapter 7) the set X(y, (Ci)
n
i=1) and

referred to it as a set estimator of the proportional contribution of the sources the

mixture. Moreover, we defined Xk(y, (Ci)
n
i=1) as the projection of this set on the

kth dimension. However, to be useful in practice, Xk should be representable in

a compact manner. As Xk is a set of scalars, we could partially represent it by

its infimum and its supremum. However, these values do not necessarily provide

a complete characterization of Xk. Indeed, in general there might exist values

a ∈ [inf(Xk), sup(Xk)] for which it holds that a /∈ Xk. Nevertheless, as a partial

characterization, the infimum and supremum can be interesting. Moreover, inf(Xk)

can easily be seen to be the optimal value of the following optimization problem

(without loss of generality, we will assume that k = 1):

M1 : minimize
x∈Rn,(ci)ni=1∈Rq

x1

subject to y =
∑n
i=1 xi ci ,

1 =
∑n
i=1xi ,

xi ≥ 0 , for i = 1, . . . , n ,

ci ∈ Ci , for i = 1, . . . , n .

We will refer to this mathematical optimization problem asM1. Similarly, sup(Xk)

can easily be seen to be the optimal value of the following optimization prob-

lem:

M2 : maximize
x∈Rn,(ci)ni=1∈Rq

x1

subject to y =
∑n
i=1 xi ci ,

1 =
∑n
i=1xi ,

xi ≥ 0 , for i = 1, . . . , n ,

ci ∈ Ci , for i = 1, . . . , n .

In this chapter we will show that for compact and convex sets C1, . . . , Cn ⊂ Rq,
it holds that Xk = [min(Xk),max(Xk)]. As a result, solving the optimization
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problems above then leads to a complete characterization of Xk. Additionally, we

develop an efficient optimization scheme that can be used to find these extreme

points. Moreover, as argued in the previous chapter, y and (Ci)
n
i=1 will not

be directly available in practical situations. Instead, we can only use a noisy

observation ỹ and indirectly derived (possibly noisy) estimates (Ĉi)
n
i=1 of the

true sources. In Sections 8.5 and 8.6 we will address this problem and potential

consequences. Finally, we consider several interesting cases where the sources are

described by non-convex sets.

Note 1: A complete characterization of Xk requires both min(Xk) and max(Xk)

to be computed. However, as the computation of min(Xk) is similar to the

computation of max(Xk) , we can often limit our analysis to one of the two.

Note 2: Unless stated differently, we will assume that C1, . . . , Cn are compact and

convex subsets of Rq.

Note 3: The mixture vector y and the sets C1, . . . , Cn can be seen as data or

parameters of the optimization problems above. Naturally, the optimal points of

these optimization problems depend on the values of these parameters. When we

want to stress that we are using specific values for y and C1, . . . , Cn, this will be

indicated using the following notation M1(y, (Ci)
n
i=1).

Note 4: To ensure that M1(y, (Ci)
n
i=1) and M2(y, (Ci)

n
i=1) are feasible optimiza-

tion problems, y should be an element of the convex hull of
⋃n
i=1 Ci. Symbolically,

this is denoted as y ∈ conv (
⋃n
i=1 Ci).

Note 5: When y ∈ C1, it is trivial to see that the optimum of M2 is equal to 1.

Therefore, we will often exclude this case from our analysis.

8.2. A brute force search for min(Xk) and max(Xk)

Due to the presence of bilinear equality constraints, the optimization problems

presented before are not convex. This means that, in general, directly solving

M1 and M2 is not computationally tractable. Even finding a feasible point is

potentially very hard. Disregarding these potential threats, it can be attempted

to (locally) solve these optimization problems. Interestingly, when C1, . . . , Cn are

convex polytopes, M1 and M2 are instances of the class of generalized bilinear

programs. To see this, recall from Chapter 2 that a convex polytope can be

represented by a set of inequalities. Therefore, all constraints in M1 and M2 are

linear or bilinear, ensuring that these programs are special cases of the generalized

bilinear program [23].

The generalized bilinear program (GBP) is non-convex and can have multiple

local optima, making it a hard problem to solve globally. Most research on global

optimization of the generalized bilinear programming problem has focused on
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branch-and-bound like approaches [23, 111]. Even though these methods mostly

guarantee to find the global optimum within a finite number of iterations, the

computing time needed to obtain the optimum still increases exponentially with

the problem size. As such, globally solving the generalized bilinear program in its

most general form using branch-and-bound approaches is only tractable when both

q and n are small. To verify whether the aforementioned time-complexity issues

are of any practical concern, a branch-and-bound strategy was implemented in

Matlab. From this exercise, we concluded that these theoretical time-complexity

issues are of practical concern as well.

Fortunately, as we will show next,M1 andM2 are specific cases of the generalized

bilinear program. More precisely, M1 and M2 have additional structure that can

be exploited to derive an efficient optimization procedure.

8.3. A characterization of Xk

As a starting point, we define the following optimization problem:

M3 : maximize
α,ᾱ∈R,c,c̄∈Rq

α

subject to y = α c + ᾱ c̄ ,

1 = α+ ᾱ ,

0 ≤ α, ᾱ ,
c ∈ C1 ,

c̄ ∈ conv (
⋃n
i=2Ci) .

Proposition 8.1. Let y ∈ conv(
⋃n
i=1 Ci), let x∗1 be the optimal value ofM2(y, (Ci)

n
i=1)

and α∗ the optimal value of M3(y, (Ci)
n
i=1), then we always have that x∗1 = α∗.

Proof. Firstly, given a point (x, c1, . . . , cn) that is feasible forM2, we can construct

a feasible point (α, ᾱ, c, c̄) for M3 as follows:

α = x1 , (8.1)

ᾱ = 1− x1 , (8.2)

c = c1 , (8.3)

c̄ =

n∑
i=2

xi ci
1− x1

. (8.4)

Naturally, for these points, the objective function value of M2 is equal to the

objective function value for M3.
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Given a point (α, ᾱ, c, c̄) that is feasible for M3, there exists at least one point

(x, c1, . . . , cn) that is feasible for M2. To see this, we can take

x1 = α , (8.5)

c1 = c . (8.6)

As c̄ ∈ conv(
⋃n
i=2 Ci), there exists at least one tuple (x′2, . . . , x

′
n) ∈ Sn−1 and

c2 ∈ C2, . . . , cn ∈ Cn such that c̄ =
∑n
i=2 x

′
ici. Consequently, we can choose

(x2, . . . , xn) = (1− α)(x′2, . . . , x
′
n). Here as well, we have that for these points, the

objective function value of M2 is equal to the objective function value for M3.

This means that, for each feasible point for M2 (resp. M3), there exists at least

one feasible point for M3 (resp. M2) such that the objective function values are

equal.

The former proposition implies that the solution ofM3 leads to a solution ofM2. As

a result, we can focus on solvingM3. However,M3 can easily be seen as an instance

of M2 with only two sources. The first source is represented by C1 and the second

source is represented by C̄ = conv (
⋃n
i=2Ci). This means that M2(y, (Ci)

n
i=1)

and M2(y, (C1, C̄)) are equivalent. Therefore, we can simply focus on solving

M2(y, (C1, C2)) (where C̄ is replaced by C2 merely for notational purposes). For

notational convenience, we formally define the mathematical optimization problem

M4 that is a specific case of M2 with only two sources.

M4 : maximize
x1∈R,x2∈R,c1∈Rq,c2∈Rq

x1

subject to y = x1 c1 + x2 c2 ,

1 = x1 + x2 ,

0 ≤ x1, x2 ,

c1 ∈ C1 ,

c2 ∈ C2 .

In what follows, we derive an optimization scheme for M4. To formulate this

scheme, and show its convergence to the global optimum, the following definitions

will be used.

Definition 8.1. A scalar x1 is called M4(y, C1, C2)-feasible (or shorthand M4-

feasible) if there exists a point (x1, x2, c1, c2) ∈ R× R× Rq × Rq that is a feasible

point of M4(y, C1, C2).

Definition 8.2. A couple (c1, c2) ∈ Rq × Rq is called M4(y, C1, C2)-feasible (or

shorthand M4-feasible) if there exists a point (x1, x2, c1, c2) ∈ R × R × Rq × Rq

that is a feasible point of M4(y, C1, C2).

These definitions are used in the following propositions.

142



§8.3. A characterization of Xk

Proposition 8.2. For everyM4(y, C1, C2)-feasible couple (c1, c2) ∈ Rq×Rq, there

exists exactly one couple (x1, x2) ∈ [0, 1]2 such that (x1, x2, c1, c2) is a feasible point

of M4. Moreover, for this couple we have

x1 =
‖c2 − y‖2

‖c1 − y‖2 + ‖c2 − y‖2
.

Proof. This proof is a trivial consequence of the LMM.

Proposition 8.3. If both scalars x̄1 and ẋ1 are M4(y, C1, C2)-feasible, then any

scalar z = α x̄1 + (1− α) ẋ1, with α ∈ [0, 1], is M4(y, C1, C2)-feasible as well.

Proof. In this proof, we will assume that y = 0q. This does not affect the generality

of the proof as this case can always be obtained by translating the coordinate

system (which does not affect the optimal value).

As x̄1 and ẋ1 are M4-feasible, there exist at least two points (x̄1, x̄2, c̄1, c̄2) and

(ẋ1, ẋ2, ċ1, ċ2) that are feasible points of M4. Let us define the vector functions

h1 : [0, 1]→ Rq and h2 : [0, 1]→ Rq as follows

h1(β) = c̄1 β + ċ1 (1− β) ,

h2(β) = c̄2 β + ċ2 (1− β) .

For any β ∈ [0, 1], we have that h1(β) ∈ C1 and h2(β) ∈ C2. Moreover, as (c̄1, c̄2)

(resp. (ċ1, ċ2)) is an M4-feasible couple, we have that

c̄2 = c̄1 t̄ and ċ2 = ċ1 ṫ , (8.7)

for some scalars t̄, ṫ < 0. Additionally, these equalities can be used to rewrite h2 as

follows

h2(β) = c̄1 t̄ β + ċ1 ṫ (1− β) .

Now consider the vector

m =

(
x1(β), x2(β),h1(β),h2

(
ṫ

(
1− β
β

t̄+ ṫ

)−1
))>

,

where

x1(β) =
1

1− (1−β) t̄+β ṫ

t̄ ṫ

, and x2(β) = 1− x1(β) .

It can easily be verified for any β ∈ [0, 1] that m is a feasible point of M4.
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Moreover, by applying Proposition 8.2, we obtain that

x1(0) = x̄1 =
1

1− 1/t̄
, and x1(1) = ẋ1 =

1

1− 1/ṫ
. (8.8)

As x1(β) is a continuous, monotone function of β, we know that (from the in-

termediate value theorem) the range of x1(β) is [x̄, ẋ]. This means that, for any

z = α x̄1 + (1− α) ẋ1, there exists a β ∈ [0, 1] such that z = x1(β).

The above proposition implies that for any convex sets C1 and C2, the set Xk

is an interval. Moreover, we can efficiently verify whether a scalar x ∈ [0, 1] is

M4-feasible using the following convex feasibility problem:

minimize
t∈R,c1∈Rq,c2∈Rq

t

subject to − t1q ≤ x c1 + (1− x) c2 − y ≤ t1q ,
c1 ∈ C1 ,

c2 ∈ C2 .

Let t∗ be the solution of this feasibility problem; we have that x is M4-feasible if

and only if t∗ = 0. Moreover, as Xk is an interval, we can use a bisection algorithm

to find inf(Xk) and sup(Xk). For example, the following procedure can be used to

find sup(Xk).

1. Select an M4-feasible scalar x and let a := x and b := 1. Lastly, choose a

tolerance parameter ε.

2. If |a− b| ≤ ε, quit and return a, else compute c := (a+ b)/2.

3. Check whether c is an M4-feasible scalar.

• If c is an M4-feasible scalar, set a := c and go to step 2.

• Else set b := c and go to step 2.

To be able to guarantee that this will lead to an efficient procedure, an initial

value x that is M4-feasible is needed. Unfortunately, such a value is generally not

given in practice. Moreover, finding such a value seems a non-trivial task. We

would like to note that the objective function value of the feasibility problem could

potentially be used to find such an initial value. However, we will not consider

such an approach in depth.

Conclusion

In this section, the following results were obtained:

• The optimization problem M4 was introduced and shown to be equivalent

to M2.
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• We have shown that, for convex subsets C1, . . . , Cn of Rq, Xk(y, (Ci)
n
i=1) is

an interval.

• Once an M4-feasible scalar is given, the interval Xk(y, (Ci)
n
i=1) can be

computed efficiently using a bisection algorithm.

8.4. Efficiently computing Xk

In the previous section, we have proven that Xk is an interval. Moreover, this

property implies that a bisection approach can be used to find inf(Xk) and sup(Xk).

In this section, we derive a more in-depth characterization of the solution of M4

that will allow us to gain further insight into the problem and derive a more

general optimization procedure. It should be stated that the main results are

rather intuitive and can easily be understood using the basic geometry of the

problem. Therefore, the general intuition behind the solution strategy is presented

in the following subsection and the technical details are presented in a separate

subsection.

8.4.1. An intuitive approach

As a starting point, we consider the case where q = 1, which implies that C1 =

[bl1, b
u
1 ] and C2 = [bl2, b

u
2 ] are intervals. An example of this case is presented in

Figure 8.1. We now focus on the computation of sup(Xk). The geometry behind

the computation of sup(Xk) is rather simple. Recall from Proposition 8.2 that, for

a given M4(y, C1, C2)-feasible couple (c1, c2), the proportional contribution x1 of

c1 is

x1 =
‖c2 − y‖2

‖c1 − y‖2 + ‖c2 − y‖2
.

Geometrically, the couple (c1, c2) for which x1 is maximal, is the couple for which

c2 is as far away from y as possible and c1 is as close to y as possible. In the

example in Figure 8.1, this amounts to setting c1 = bu1 and c2 = bu2 ; as a result, we

obtain that sup(X1) =
bu2−y
bu2−bu1

. This closed-form solution is applicable to any case

in which bu1 < y ≤ bu2 (this is formally shown (and generalized) in the following

section). Later in this section, we will see that this simple case serves as a building

block for computing sup(Xk) in settings where the dimensionality q is greater than

one.

8.4.2. Several properties of M4 for q = 1

Let C1 = [bl1, b
u
1 ], C2 = [bl2, b

u
2 ] and y ∈ conv(C1 ∪ C2) \ C1 (see Notes 4 and 5

in Section 8.1). Let (x∗1, x
∗
2, c
∗
1, c
∗
2) be an optimal point of M4(y, C1, C2). In this
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Figure 8.1: Visualization of the search space when q = 2. We use the notation
bl1 = inf(C1) (resp. bl2 = inf(C2)) and bu1 = sup(C1) (resp. bu2 = sup(C2)).

section we show that

(x∗1, x
∗
2, c
∗
1, c
∗
2) =



(
y−bu2
bu1−bu2

, 1− y−bu2
bu1−bu2

, bu1 , b
u
2 ) , if bu1 < y < bu2 , (a)

(0, 1, .,y) , if bu1 < y = bu2 , (b)

(
y−bl2
bl1−bl2

, 1− y−bl2
bl1−bl2

, bl1, b
l
2) , if bl2 < y < bl1 , (c)

(0, 1, .,y) , if bl2 = y < bl1 , (d)

where the dot indicates that there are multiple optimal points. Additionally, we

show that there are no (other) locally optimal points.

For cases (b) and (d) it is clear that the points listed are the only feasible points.

Therefore, it is trivial that they are optimal.

Lemma 8.4. Let C1 = [bl1, b
u
1 ], C2 = [bl2, b

u
2 ], and bu1 < y < bu2 , then every feasible

point of M4(y, C1, C2) satisfies LICQ1.

Proof. We start by rephrasing M4 slightly, by eliminating x2 and transforming it

into a more simple form (i.e. writing it in the formulation of Definition 3.1). This

leads to the following optimization problem:

minimize
x1∈R,c1∈Rq,c2∈Rq

− x1 (8.9)

subject to

x1 c1 + (1− x1) c2 − y = 0 , (8.10)

−x1 ≤ 0 , (8.11)

−1 + x1 ≤ 0 , (8.12)

−c1 + bl1 ≤ 0 , (8.13)

−c2 + bl2 ≤ 0 , (8.14)

−bu1 + c1 ≤ 0 , (8.15)

−bu2 + c2 ≤ 0 . (8.16)

The partial derivatives of these constraints are listed in the Table 8.1. Additionally,

1 Linear independence constraint qualification, see Chapter 3 for a definition.
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Table 8.1: The second column of this table contains the partial derivatives of constraints
(8.10)–(8.16). Additionally, the bullets in the third column indicate which combinations
of active constraints are possible. Each column represents a combination of constraints
that can be active at the same time (evidently, subsets of these constraints are possible
as well).

Constraint Gradient vector Combinations act. constr.

number bu1 < y < bl2 bl2 < y < bu2

(8.10) ( c1 − c2, x1, 1− x1 ) • • • • • •
(8.11) ( −1, 0, 0 ) • •
(8.12) ( 1, 0, 0 )

(8.13) ( 0, -1, 0 ) • •
(8.14) ( 0, 1, 0 ) • •
(8.15) ( 0, 0, -1 ) • • •
(8.16) ( 0, 0, 1 ) • • •

the bullets in the third column indicate which combinations of active constraints

are possible. Each column represents a combination of constraints that can be

active at the same time (evidently, subsets of these constraints are possible as well).

As can be seen from this table, every possible combination leads to a set of linearly

independent gradient vectors. This means that LICQ holds at every feasible point.

The situation y = bl2 is not covered in this Table 8.1. However, in that case

constraint (8.14) can be eliminated from the optimization procedure. In that case,

an analysis that is highly similar to the one presented above shows that the LICQ

holds at every feasible point.

Lemma 8.5. Let C1 = [bl1, b
u
1 ], C2 = [bl2, b

u
2 ], and bl2 < y < bl1, then every feasible

point of M4(y, C1, C2) satisfies LICQ.

Proof. The proof is analogous to the proof of Lemma 8.4.

Lemma 8.6. Let C1 = [bl1, b
u
1 ] and C2 = [bl2, b

u
2 ], and bu1 < y < bu2 . The point

(x∗1, x
∗
2, c
∗
1, c
∗
2) = (

y−bu2
bu1−bu2

, 1− y−bu2
bu1−bu2

, bu1 , b
u
2 ) is the only KKT point of M4(y, C1, C2).

Proof. As a starting point, it is trivial to verify that (x∗1, x
∗
2, c
∗
1, c
∗
2) is a feasible

point. To simplify the proof, we eliminate x2 by replacing it with 1− x1 (which

follows from the summation constraint), such that (x1, x2, c1, c2) ≡ (x1, c1, c2).

Moreover, we rewrite the maximization problem in the from of Eqs. (8.9)–(8.16).

For this problem, the Lagrangian (L) becomes

L((x1, c1, c2),λ,γ) = −x1 + λ1(x1 c1 + c2 − x1 c2 − y)− γ1(x1)− γ2(1− x1)

−γ3(c1 − bl1)− γ4(c2 − bl2)− γ5(bu1 − c1)− γ6(bu2 − c2) .
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The partial derivatives of the Lagrangian with respect to c1, c2 and x1 are:

∂L

∂x1
= −1 + λ1(c1 − c2)− γ1 + γ2 , (8.17)

∂L

∂c1
= λ1x1 − γ3 + γ5 , (8.18)

∂L

∂c2
= λ1(1− x1)− γ4 + γ6 . (8.19)

It can easily be seen that (x∗1, c
∗
k, c
∗
2) is a feasible point, moreover, at this point,

only the constraints x1c1 + c2 − x1 c2 = y, bu − c1 ≥ 0 and b̄u − c2 ≥ 0 are

active, which means (using the complementarity conditions of the KKT conditions)

that γ1 = γ2 = γ3 = γ4 = 0. Setting the partial derivatives of the Lagrangian

equal to zero, taking into account the complementarity conditions and plugging in

(x∗1, c
∗
k, c
∗
2) leads to the following Lagrange multipliers:

λ1 =
1

c1 − c2
< 0 , γ5 = −λ1

y − bu2
bu1 − bu2

> 0 , γ6 = −λ1
y − bu2
bu1 − bu2

> 0 .

As such, the KKT conditions hold at (x∗1, c
∗
1, c
∗
2), which means that the necessary

conditions hold.

We now show that there exist no other points that satisfy the KKT conditions.

Firstly, consider a generic point (x0
1, c

0
1, c

0
2). When this point is limited to be in the

interior (not at the bounds) of the search space, none of the Lagrange multipliers

are zero. It can easily be shown that solving the KKT system in this case leads

to Lagrange multipliers, for the inequality constraints, of which at least one is

negative. The same holds when only one of the variables is located at its bounds,

as well as when both c0
1 = b`1 and c0

2 = b`2.

Lemma 8.7. Let C1 = [bl1, b
u
1 ], C2 = [bl2, b

u
2 ] and bl2 < y < bl1, then the point

(x∗1, x
∗
2, c
∗
1, c
∗
2) = (

y−bl2
bl1−bl2

, 1− y−bl2
bl1−bl2

, bl1, b
l
2) is the only KKT point of M4(y, C1, C2).

Proof. The proof is analogous to the proof of Lemma 8.6.

Proposition 8.8. Let C1 = [bl1, b
u
1 ], C2 = [bl2, b

u
2 ] and bu1 < y < bu2 , then the point

(x∗1, x
∗
2, c
∗
1, c
∗
2) = (

y−bu2
bu1−bu2

, 1 − y−bu2
bu1−bu2

, bu1 , b
u
2 ) is globally optimal for M4(y, C1, C2).

Moreover, there are no other locally optimal points.

Proof. From Lemma 8.4, we have that the linear independence constraint qualifi-

cation (LICQ) holds at every feasible point. As such, any local minimizer of M4

must necessarily satisfy the KKT conditions. Moreover, from Lemma 8.6, we have

that (x∗1, x
∗
2, c
∗
1, c
∗
2) is the only KKT point. Therefore, it is the only candidate for

being an optimal point.

We now use the reformulation ofM4 in Lemma 8.4. We have that only constraints

(8.10), (8.14) and (8.16) are active at (x∗1, c
∗
1, c
∗
2). Using the Table 8.1, it is easy to
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show that the tangent cone to the feasible set (Definition 3.18) is given by

F1(x∗1, c
∗
1, c
∗
2) = 03 .

Therefore, the second order sufficient conditions (Proposition 3.3) for a locally

optimal point trivially hold. As there are no other KKT points, (x∗1, c
∗
1, c
∗
2) is the

globally optimal point of M4.

Proposition 8.9. Let C1 = [bl1, b
u
1 ], C2 = [bl2, b

u
2 ] and bl2 < y < bl1, then the point

(x∗1, x
∗
2, c
∗
1, c
∗
2) = (

y−bl2
bl1−bl2

, 1 − y−bl2
bl1−bl2

, bl1, b
l
2) is globally optimal for M4(y, C1, C2).

Moreover, there are no other locally optimal points.

Proof. The proof is analogous to the proof of Proposition 8.8.

8.4.3. Several properties of M4 for q > 1

The results that were obtained above can now be used to characterize the solution

of M4 when q > 1. To gain insight into this generalized case, we will often resort

to the geometrical interpretation of the problem for q = 2. Nevertheless, the results

obtained here are not limited to q = 2. As a running example, we will use the

case presented in Figure 8.2(a). Recall the discussion in Section 8.4.1 where it was

stated that, for a given M4(y, C1, C2)-feasible couple (c1, c2), the proportional

contribution x1 of c1 is

x1 =
‖c2 − y‖2

‖c1 − y‖2 + ‖c2 − y‖2
.

Geometrically, the couple (c1, c2) for which x1 is maximal, is the couple for which

c2 is as far away from y as possible and c1 is as close to y as possible. Naturally,

for (c1, c2) to be feasible in the case where q > 1, c1 and c2 should be collinear with

y. This complicates the analysis of the problem. Nevertheless, this geometrical

interpretation leads to insights into the problem.

We start our analysis by formally introducing the following notation for a line

segment and a line; for any two distinct vectors a,b ∈ Rq, we will denote

(a,b) = {v ∈ Rq | (∃ t ∈ [0, 1]) (v = ta + (1− t) b)} ,
(a,b) = {v ∈ Rq | (∃ t ∈ R) (v = a + t (a− b))} .

Note that, when fixing c1 ∈ C1 and c2 ∈ C2 such that y ∈ (c1, c2), the solution of

M4 directly follows from Proposition 8.8. Moreover, we define several sets that

will be used in the reasoning hereafter:

C ′1 = {c1 ∈ C1 | (∃ c2 ∈ C2) (∃t ∈ [0, 1])(y = t c1 + (1− t) c2)}

149



Chapter 8. Optimization procedures for set-based unmixing

C ′2 = {c2 ∈ C2 | (∃ c1 ∈ C1) (∃t ∈ [0, 1])(y = t c1 + (1− t) c2)}

For an illustration, see Figure 8.2(b). Note that C ′1 is a subset of C1 that is

obtained by removing all elements from C1 that can never occur in feasible points

(due to the bilinear equality constraint). Consequently, replacing C1 by C ′1 in the

optimization problem will not reduce the feasible space. Next, we define the convex

sets C̄1 and C̄2:

C̄1 = {c ∈ Rq | (∃ c1 ∈ C ′1) (∃t ∈ [1,∞[) (c− y = t (c1 − y))} ,
C̄2 = {c ∈ Rq | (∃ c2 ∈ C ′2) (∃t ∈ [1,∞[) (c− y = t (c2 − y))} .

For an illustration, see Figure 8.2(c). Finally, we define the set C∗1 :

C∗1 = {c ∈ C ′1 | ¬ ((∃ c′ ∈ C ′1) (∃t ∈ ]0, 1]) (c′ = ty + (1− t) c))} .

From this definition, it is clear that C∗1 is a subset of the boundary of C ′1. For an

illustration see Figure 8.2(d).

Let us now fix ċ2 ∈ C ′2, the couple (c1, ċ2) is an M4-feasible couple if and only

if c1 ∈ (y, ċ2) ∩ C ′1, which is a line segment. Moreover, from Proposition 8.8, it

follows that on this line segment the point c1 that maximizes the objective function

can be found at the endpoint that is closest to y. As such, if (x∗1, c
∗
1, c
∗
2) is locally

optimal, then c∗1 will be located at the boundary of C1. More precisely, we have

that c∗1 ∈ C∗1 .

Combining the reasoning above with Proposition 8.2 allows the following reformu-

lation of the original optimization problem:

M5 : maximize
x1∈R,c1,c2∈Rq

‖c2 − y‖2
‖c1 − y‖2 + ‖c2 − y‖2

subject to y = x1 c1 + (1− x1) c2 ,

0 ≤ x1 ,

x1 ≤ 1 ,

c1 ∈ C∗1 ,
c2 ∈ C ′2 .

This optimization problem can be still be simplified. More precisely, for a fixed

vector c2 ∈ C̄2, there exists only one c1 ∈ C∗1 such that the bilinear equality

constraint of M5 holds. As such, c1 can be written as a (vector) function of c2.
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Figure 8.2: (a) An example of the sets C1, C2 and a mixture vector y for q = 2. (b)
Illustration of the sets C′1 and C′2. (c) Illustration of the sets C̄1 and C̄2. (d) Illustration
of the set C̄∗1 . (e) Illustration of the set Ge. (f) Illustration of the upper level set Ḡe of
f6 (at level e) and the optimal source vector c∗2.
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This vector function is denoted2

g : C̄2 → C∗1
c2 7→ (y, c2) ∩ C∗1

As the definition of g assures that the bilinear constraints are always satisfied, the

bilinear constraint can be left out of the optimization procedure. Additionally,

as the objective function of M5 is automatically constrained to the unit interval,

the bounds on x1 can be dropped as well (in fact x1 can be eliminated from the

optimization problem). As such, we arrive at the following reformulation:

M6 : maximize
c2∈Rq

‖c2 − y‖2
‖g(c2)− y‖2 + ‖c2 − y‖2

subject to c2 ∈ C ′2 .

As we will be using the objective function of M6 several times in the remainder of

this section, we denote this function as f6.

We now show that the set of contour vectors of the objective function ofM6, i.e. the

vectors c2 for which f6(c2) = e (where e ∈ [0, 1] is a constant), equals

Ge = {c ∈ Rq | (∃ c1 ∈ C∗1 ) (c− y =
e

e− 1
(c1 − y))} .

For an illustration, see Figure 8.2(e). As before, we show this for y = 0q (which

can always be obtained by a translation). We start by noting that for any given

c2 ∈ C ′2, there exists a d < 0 such that g(c2) = d c2. On the other hand, for any

c2 ∈ C ′2, we have that c2 = d c1 for some c1 ∈ C∗1 and d < 0. As such, we can

choose a vector ċ1 ∈ C∗1 and a scalar t < 0 and let ċ2 = t ċ1. This leads to the

following equality (ċ1, ċ2) = (ċ1, t ċ1) = (g(ċ2), ċ2). We then have

f6(ċ2) =
‖ċ2‖

‖g(ċ2)‖+ ‖ċ2‖
=

−t ‖ċ1‖
‖ċ1‖ − t ‖ċ1‖

=
−t

1− t
. (8.20)

The equality above shows that, for a fixed t and any c2 that can be written as

c2 = t c1, where c1 ∈ C∗1 , we have f6(c2) = −t/(1 − t). To obtain the contour

f6(c2) = e, we simply choose t = e
e−1 . This shows that every vector in Ge has the

same objective function value.

Any point c2 ∈ C̄2 can be written as c2 = d ge, where ge ∈ Ge and d > 0.

Moreover, there exists a unique c∗1 ∈ C∗1 such that ge = e
e−1c∗1. We have that

2 Strictly speaking, the function that is presented here maps a vector to a set. However, this set is
always a singleton, and the unique element in this set is a q-dimensional vector. As a result, we
identify this mapping with a vector function that maps an input to a q-dimensional vector.
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g(ge) = g(c2) = c∗1, leading to:

f6(c2) =
‖c2‖2

‖g(c2)‖2 + ‖c2‖2
=

d ‖ge‖2
‖c∗1‖2 + ‖d ge‖2

=
−d e

e−1

1− d e
e−1

.

For a point c2 ∈ C ′2 that can be written as c2 = d ge for some d > 0 and ge ∈ Ge,
we now have that

- If d ∈ [0, 1[, then f6(c2) < e.

- If d = 1, then f6(c2) = e.

- If d ∈ ]1,∞[, then f6(c2) > e.

These implications show that if c2 ∈ C ′2 \Ge, then f6(c2) 6= e, so Ge contains all

contour vectors, and no others.

Let us now define the following set:

Ḡe = {c ∈ C̄2 | (∃ c2 ∈ C ′2) (∃t ∈ [1,∞[) (f6(c2) = e ∧ c = t c2)} .

For an illustration, see Figure 8.2(f). The implications given above show that

for any c2 ∈ Ḡe, we have that f6(c2) ≥ e (i.e. Ḡe is the upper level set of f6).

Moreover, the following equivalence holds:

c2 ∈ Ḡe ⇐⇒ (∃ c1 ∈ C̄1)

(
c2 =

e

e− 1
c1

)
. (8.21)

From this equivalence, we have that Ḡe can be seen as a point reflection of C̄1

through the origin followed by an isotropic scaling. As each of these operations

preserves the convexity of a set, it can be concluded that Ḡe is a convex set.

As such, C ′2 ∩ Ḡe, which is the upper level set of the objective function on the

feasible domain, is a convex set. This means that optimization problem M6 is a

quasi-concave maximization problem (see Definition 3.14), having (except for some

degenerate cases) one local (and thus global) optimal point.

The optimal value is attained by increasing e up to the point where C ′2 ∩ Ḡe
is a singleton. For this case, we have that e = sup(X1). Moreover, when the

optimal point ofM4 is denoted as (x∗1, x
∗
2, c
∗
1, c
∗
2), we have that c∗2 = Ḡx∗1 ∩C

′
2 (see

Figure 8.2(f) for an illustration).

Conclusions

The reasoning above has three important implications:

• Firstly, instead of solving M4 directly, we can optimize an equivalent quasi-

concave optimization problem (which leads to a series of convex feasibility

problems). As such, it generalizes the approach proposed in the previous

section, as this procedure does not require an initial feasible point.
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Figure 8.3: (a) An illustration (blue line) of the supporting hyperplane of the sets C2

and Ḡx∗1
at c∗2. (b) An illustration (green line) of the supporting hyperplane of C1 at c∗2

and parallel to the former hyperplane (blue line). (c) An illustration of the projection of
C1, C2 and y on a direction that is orthogonal to the supporting hyperplanes.
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• Secondly, it lays the foundations for a deeper characterization of the solution

of M4:

The optimal value occurs when e is chosen such that the upper level set C ′2∩Ḡe
is the singleton {c∗2}. For this value (i.e. e = x∗1), we have that the convex

set Ḡe touches C2. This means that there exists at least one hyperplane

passing through C ′2 ∩ Ḡe that is a supporting hyperplane (see Definition 3.10)

for both C ′2 and Ḡe at c∗2 (see Figure 8.3(a) for an illustration). Moreover,

as Ḡe is a scaled point reflection of C̄1, there exists a hyperplane that is

parallel to the former one, and is supporting for C ′1 at (c∗2,y) ∩ C∗1 = {c∗1}
(see Figure 8.3(b) for an illustration).

• We can now (orthogonally) project C1, C2 and y on a line that is orthogonal

to these hyperplanes (see Figure 8.3(c) for an illustration). Moreover, it is

easy to see that when solving the optimization problem in this projected

space, the optimal objective function value is identical to the original one. In

the following section we will derive a procedure that allows to compute this

direction very efficiently.

• Lastly, as a consequence of the previous item, in the special case that C1 and

C2 are convex polytopes, we have that at least one of c∗1 and c∗2 is located at

a vertex of C1 or C2 when q = 2.

8.4.4. Reformulation as a (linear) fractional program

In this section, we will show that M4(y, C1, C2) is equivalent to the following

fractional program:

M7 : minimize
a∈Rq,b1,b2∈R

b2 − 〈a,y〉
b2 − b1

subject to ‖a‖2 = 1 ,

b1 ≥ 〈c1,a〉 , for all c1 ∈ C1 ,

b2 ≥ 〈c2,a〉 , for all c2 ∈ C2 ,

b1 < 〈a,y〉 ,
b2 > 〈a,y〉 .

The reasoning behind M7 is the following. When the sets C1 and C2 and the

vector y are projected orthogonally onto the direction a, M4 is transformed into a

one-dimensional format. More precisely, given a unit vector a ∈ Rq, the coordinate

of a point d ∈ Rq on the axis that is defined by a, can be computed (and denoted)

as follows

Pa(d) = 〈a,d〉 ,
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Figure 8.4: Derivation of a direction a such that M4(y, C1, C2) and
M4(Pa(y), Pa(C1), Pa(C2)) are equivalent. Here, we let y = 02.

moreover, the projection of a set D ∈ Rq on a is

Pa(D) = {〈a,d〉 | d ∈ D} .

This projection can be used to transform M4(y, C1, C2) into a new optimiza-

tion problem M4(Pa(y), Pa(C1), Pa(C2)). Interestingly, the optimal value of

M4(Pa(y), Pa(C1), Pa(C2)) is greater than or equal to the optimal value of

M4(y, C1, C2) (we show this hereafter). On the other hand, from the previ-

ous section, we know that there exists a direction such that the optimal values

of both optimization problems are equal. In this perspective, M7 searches the

direction a that minimizes the optimal value of M4(Pa(y), Pa(C1), Pa(C2)). We

now formally prove that M4 and M7 are equivalent. The optimal direction is

illustrated in Figure 8.4.

Proposition 8.10. Let C1 and C2 be subsets of Rq such that M4(0q, C1, C2) has

feasible points and 0q /∈ C1; then we have the following correspondence between

the optimal point (x∗1, c
∗
1, c
∗
2) of M4(0, C1, C2) and the optimal point (a∗, b∗1, b

∗
2) of

M7(0, C1, C2):

x∗1 =
b∗2

b∗2 − b∗1
.

Proof. From the discussion in Section 8.4.3, we know that there exists at least

one pair of parallel hyperplanes such that the first hyperplane of this pair is a

supporting hyperplane of C1 at c∗1 and the second hyperplane of this pair is a

supporting hyperplane of C2 at c∗2. We now assume that a∗ is the normal vector

of these hyperplanes (we show later that this is assumption is correct).
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We now have that
〈a∗, c∗2〉

〈a∗, c∗2〉 − 〈a∗, c∗1〉
= x∗1 .

Moreover, we have that 〈a∗, c1〉 ≤ 〈a∗, c∗1〉 for all c1 ∈ C1, and 〈a∗, c2〉 ≤ 〈a∗, c∗2〉
for all c2 ∈ C2. This means that, for M7, the point (a∗, b1, b2) is feasible, with

b1 = 〈a∗, c∗1〉 , (8.22)

b2 = 〈a∗, c∗2〉 . (8.23)

The procedure described above allows, given (x∗1, c
∗
1, c
∗
2), for the construction of a

point (a∗, b1, b2) that is feasible for M7, and moreover

x∗1 =
b2

b2 − b1
.

We will now show that

(i) a∗ is the normal vector of a pair of parallel supporting hyperplanes such that

the first hyperplane of this pair is a supporting hyperplane of C1 at c∗1 and

the second hyperplane of this pair is a supporting hyperplane of C2 at c∗2,

(ii) b∗1 = 〈a∗, c∗1〉,

(iii) b∗2 = 〈a∗, c∗2〉.

Firstly, when a is fixed (instead of an optimization variable forM7), it is easy to see

that setting b1 = max(Pa(C1)) and b2 = max(Pa(C2)) optimizes M7. Moreover,

when a is the normal vector of the supporting hyperplanes at c∗1 and c∗2, it is easy

to see that b1 = max(Pa(C1)) = 〈a, c∗1〉 and b2 = max(Pa(C2)) = 〈a, c∗2〉. We now

prove that a∗ is the normal vector of these hyperplanes (and optimal for M7).

For any unit vector a, it can easily be seen (as c∗1 = t c∗2 for some t ∈ R) that

〈a, c∗2〉
〈a, c∗2〉 − 〈a, c∗1〉

= x∗1 .

Moreover, as Pa(c∗1) ∈ Pa(C1), we have that Pa(c∗1) ≤ max(Pa(C1)) (and, equiva-

lently, Pa(c∗2) ≤ max(Pa(C2))). This means that, when a is feasible,

x∗1 =
〈a, c∗2〉

〈a, c∗2〉 − 〈a, c∗1〉
≤ max(Pa(C2))

max(Pa(C2))−max(Pa(C1))
. (8.24)

More precisely, when choosing a orthogonal to the supporting hyperplane of C1

(resp. C2) passing through c∗1 (resp. c∗2), inequality (8.24) becomes an equality.

This completes the proof that the point in (i)–(iii) is a minimizer of M7.
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With respect to the proposition above, it should be noted that, for (a∗, b∗1, b
∗
2)

to be a strict local minimizer, there should exist exactly one pair of parallel

supporting hyperplanes at c∗1 and c∗2. Indeed, if multiple pairs of parallel supporting

hyperplanes exist, each of these pairs can be used to obtain a unit vector that

turns (8.24) into an equality. Loosely speaking, we can say that if the boundary of

C1 in the neighborhood of c∗1 or C2 in the neighborhood of c∗2 is smooth, then the

local minimizer is strict.

From Proposition 8.10, we have the equivalence betweenM4 andM7. This means

that M7 can be used as a substitute for M4. When dropping the norm constraint

in M7, a fractional program (M8) is obtained that is equivalent to M7 (however,

implicitly we need that ‖a‖2 6= 0). Formally, we define M8 as:

M8 : minimize
a∈Rq0,b1,b2∈R

b2 − 〈a,y〉
b2 − b1

subject to b1 ≥ 〈c1,a〉 , for all c1 ∈ C1 ,

b2 ≥ 〈c2,a〉 , for all c2 ∈ C2 ,

b1 < 〈a,y〉 ,
b2 > 〈a,y〉 .

In M8, the objective function is the ratio of two affine functions of b1 and b2.

Moreover, the affine function in the denominator is strictly positive in the feasible

domain. As such, the objective function of M8 is quasi-convex. All problem

constraints are affine, making M8 a potentially tractable optimization problem.

We say potentially, as the number of affine inequality constraints can be infinite.

However, several measures can be taken to overcome this problem. We elaborate

on these cases in the following section.

8.4.5. Solving fractional program M8

As a starting point of this section, consider the constraint(s):

b1 ≥ 〈c1,a〉 , for all c1 ∈ C1 . (8.25)

As stated at the end of the previous section, the expression above potentially

implies an infinite number of affine constraints. Fortunately, these constraints can

easily be translated into a single constraint:

b1 ≥ sup
c1∈C1

〈c1,a〉 .

These observations could suggest to use cutting plane algorithms [12] to solve M8.
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Even though this approach potentially allows for very generic forms of C1 and C2

for whichM8 can be solved efficiently, we will focus on two specific cases here that

do not require the use of cutting plane algorithms.

• Notably, when C1 and C2 are convex polytopes, the constraints ofM8 reduce

to a finite set of linear inequalities. More precisely, the first set of constraints

can be replaced with

〈c1,a〉 ≤ b1 , for all vertices c1 of C1 .

In this case,M8 reduces to a linear fractional program. It is well known that

linear fractional programs can be transformed into equivalent linear programs

that can be solved efficiently3.

• As a second interesting situation, we consider the case where C1 and C2

are ellipsoids. An ellipsoid in a q-dimensional space can be described by a

q-vector and a positive definite q × q matrix. Therefore, let the vectors v1

and v2 as well as the positive definite matrices V1 and V2 be given such

that:

C1 = {v1 + V1u | u ∈ Rq ∧ ‖u‖2 ≤ 1} ,
C2 = {v2 + V2u | u ∈ Rq ∧ ‖u‖2 ≤ 1} .

It is well known that [10]

max{a>c1 | c1 ∈ C1} = v>1 a +
∥∥V1a

∥∥
2
.

Therefore, constraint (8.25) reduces to the following second order cone con-

straint4:

v>1 a +
∥∥V1a

∥∥
2
≤ b1 .

An equivalent procedure can be applied to C2.

Note that, when C1 and C2 are polytopes, we argued that the resulting opti-

mization problem can be transformed into an equivalent linear programming

problem. Fortunately, the presence of the second order cone constraint does

not prevent us from applying a similar strategy here. Therefore, once this

transformation is applied, second order cone programming solvers can be

used to optimize the resulting program efficiently.

Conclusions

In this section, we proposed a reformulation of M4 that can be solved efficiently

3 As we do not wish to disturb the flow of this chapter, we defer a description of this transformation
to Appendix 8.A.

4 This constraint is called a second order cone constraint as it can be written as a generalized
inequality using the second order Lorentz cone.
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with existing mathematical programming solvers. In the following chapter, we will

be focusing on applying these solvers to compute Xk for a wide range of problem

settings.

8.5. Robust set estimators

Up to this point, the problem data y and (Ci)
n
i=1 were assumed to be known

exactly. However, in practice, there can be some uncertainty or variation on y and

Ci. Such uncertainty can for instance be attributed to the presence of noise, or the

imprecision that arises from rounding. In this section, we derive more robust set

estimators. Firstly, we propose a set estimator that is robust w.r.t. y. Secondly,

we propose an estimator that is robust w.r.t. (estimates of) C1 and C2.

8.5.1. A y-robust estimator

To derive our y-robust estimator, we will assume that y is given in an imprecise

manner. More specifically, we will assume that y is an element of a given convex set

Y ⊂ Rq (Figure 8.5.(a)). This contrasts the original setting, where y was assumed

to be a fixed vector. In that perspective, the robust counterpart of the feasible set

X(y, (Ci)
n
i=1) is now defined as

X(Y, (Ci)
n
i=1) =

{
x ∈ Sn |

(
∃ (ci)

n
i=1 ∈

n×
i=1

Ci

)( n∑
i=1

xi ci ∈ Y

)}
. (8.26)

In the introduction, Xk(y, (Ci)
n
i=1) was interpreted as the set of all possible values

for the proportional contribution of the kth source to the mixture. Similarly, the

set Xk(Y, (Ci)
n
i=1) is defined as

Xk(Y, (Ci)
n
i=1) =

{
z ∈ R | (∃x ∈ Xk(Y, (Ci)

n
i=1))(xk = z)

}
.

Here, Xk(Y, (Ci)
n
i=1) is the set of all possible values for the proportional contribution

of the kth source to an imprecisely defined mixture. It is easy to see that, for

any y ∈ Y , we have Xk(y, (Ci)
n
i=1) ⊆ Xk(Y, (Ci)

n
i=1). When Y is a convex set,

Xk(Y, (Ci)
n
i=1) is an interval. In the following section, we derive an optimization

problem that can be used to compute sup(Xk(Y, (Ci)
n
i=1)) efficiently. In what

follows, we will generally assume that k = 1.

As a starting point, we define the mapping h : (Rq, 2Rq , 2Rq )→ R as follows:

h(y, C1, C2) =

{
sup(X1(y, C1, C2)) , if X1(y, C1, C2) 6= ∅ ,

−∞ , else.
(8.27)
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Figure 8.5: An illustration of a setting in which the mixture vector is described
(imprecisely) by means of the set Y .

Using this function, we have

sup(X1(Y,C1, C2)) = sup
y∈Y

h(y, C1, C2) . (8.28)

To compute this supremum, we distinguish three cases:

• Firstly, when Y ∩C1 6= ∅, we have the trivial solution sup(X1(Y,C1, C2)) = 1.

• Secondly, when Y ∩ conv(C1 ∪ C2) = ∅, we have the trivial solution

sup(X1(Y,C1, C2)) = −∞ (i.e. the problem is unfeasible).

• Thirdly, when Y ∩C1 = ∅ and Y ∩conv(C1∪C2) 6= ∅, there exists a nontrivial

supremum. Moreover, in this case, we have

sup(X1(Y,C1, C2)) = sup
y∈Y ′

h(y, C1, C2) , (8.29)

where Y ′ = Y ∩conv(C1∪C2). Moreover, as we show next, h is a quasi-concave

function of y when its domain is restricted to Y ′.

Definition 8.3. Given y ∈ Rq, C1 ∈ 2R
q

and C2 ∈ 2R
q

, the vector a ∈ Rq is called

M8(y, C1, C2)-feasible if there exists a pair of scalars b1, b2 such that (a, b1, b2) is

a feasible point of M8(y, C1, C2).

Lemma 8.11. Consider a function f : R→ R on the interval [a, b] and two scalars
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Figure 8.6: Illustration for the poof of Lemma 8.11.

c, d ∈ ]a, b[ such that c < d. If

f is quasi-convex over the interval [a, d], (8.30)

f is quasi-convex over the interval [c, b], (8.31)

f(c) 6= f(d), (8.32)

then f is quasi-convex over [a, b].

Proof. Recall that a function f : R→ R is quasi-convex over an interval [`, r] if for

any pair c1, c2 ∈ [`, r] the following inequality holds:

f(α c1 + (1− α) c2) ≤ max(f(c1), f(c2)) , for all α ∈ [0, 1] .

We now have the following property of a quasi-convex function: Given a function

f that is quasi-convex over [`, r] and two scalars c1 < c2 ∈ [`, r] such that f(c1) <

f(c2). For any c3 ∈ [c2, r], we have that f(c3) ≥ f(c2) (this can easily be proven

by contradiction). Similarly, when c1 < c2 are such that f(c1) > f(c2), then for

any c3 ∈ [`, c1], we have that f(c1) > f(c2). We will use these properties later on.

We now use the results above to prove Lemma 8.11. Using the definition of a

quasi-convex function, it suffices to prove that for any pair x, y where x ∈ [a, c[ and

y ∈]d, b] (see Figure 8.6 for an accompanying illustration to this proof) we have

that

f(αx+ (1− α) y) ≤ max(f(x), f(y)) , for all α ∈ [0, 1] .

Firstly, we will assume that f(c) < f(d). We will now distinguish two options:

Option 1: f(x) ≤ f(c): Combining this option with the assumption that f(c) <

f(d) and the property of quasi-convex functions mentioned above, trivially leads

to the following pair of inequalities:

f(d) ≤ f(y) , f(x) < f(y) .

From this, we have that it suffices to prove that f(z) ≤ f(y) for any z ∈ [x, y]. We

now have three options for z:

• z ∈ [x, c]: We have that f(x) ≤ f(c). As f is quasi-convex over [a, d], we

have that f(z) ≤ f(c), implying that f(z) < f(y).
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• z ∈ [c, d]: We have that f(c) < f(d). As f is quasi-convex over [a, d], we

have that f(z) ≤ f(d), implying that f(z) ≤ f(y).

• z ∈ [d, y]: We have that f(d) ≤ f(y). As f is quasi-convex over [c, b], we

have that f(z) ≤ f(y).

Option 2: f(x) > f(c): Combining this option with the assumption that f(c) <

f(d) and the property of quasi-convex functions mentioned above, trivially leads

to the following inequality:

f(d) ≤ f(y) .

We now prove that f(z) ≤ max(f(x), f(y)) for any z ∈ [x, y]. For z, we have the

same three options as before. Moreover, only the proof for the first option differs

from the previous case:

• z ∈ [x, c]: We have that f(x) > f(c). As f is quasi-convex over [a, d], we

have that f(z) < f(x).

The proof for the case f(c) > f(d) is analogous.

The following lemma slightly generalizes Lemma 8.11.

Lemma 8.12. Consider a function f : R→ R on the interval [a, b] and two scalars

c, d ∈ ]a, b[ such that c < d. If

f is quasi-convex over the interval [a, d], (8.33)

f is quasi-convex over the interval [c, b], (8.34)

∃ e ∈ [c, d] such that f(e) 6= f(c), (8.35)

then f is quasi-convex over [a, d].

Proof. This lemma can easily be proven by applying Lemma 8.11. As e ∈ [c, d], we

have that f is quasi-convex over the interval [e, b]. We now have that [a, d] and

[e, b] are overlapping intervals such that f(d) 6= f(e). From Lemma 8.11, it follows

that f is quasi-convex over [a, b].

Corollary 8.13. Consider a function f : R → R on the interval [a, b] and two

scalars c, d ∈ ]a, b[ such that c < d. If

f is quasi-concave over the interval [a, d], (8.36)

f is quasi-concave over the interval [c, b], (8.37)

∃ e ∈ [c, d] such that f(e) 6= f(c), (8.38)

then f is quasi-concave over [a, d].
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Proof. This corollary is a trivial consequence of Lemma 8.12.

Proposition 8.14. Let Y be a convex subset of R2, C1 and C2 be convex polytopes

in R2 such that X1(Y,C1, C2) 6= ∅ and Y ∩ C1 = ∅, then for any two vectors

y1,y2 ∈ Y ∩ conv(C1 ∪ C2) the following holds:

−h(αy1 + (1− α) y2, C1, C2) ≤ max(−h(y1, C1, C2),−h(y2, C1, C2)) ,

for each α ∈ [0, 1] (in words, this means that h is a quasi-concave function of y).

Proof. Let Y ′ = Y ∩conv(C1∪C2). For any y ∈ Y ′, it holds that sup(X1(y, C1, C2))

is equal to the optimal value ofM8(y, C1, C2). As a result, we can replace sup(X1)

with the optimal value of M8 in the definition of h (Eq. (8.27)). Additionally, for

any y ∈ Y ′, we define a∗ as the unit vector that optimizesM8(y, C1, C2) (provided

that M8 is feasible). Finally, we note that, if a is M8(y, C1, C2)-feasible, then the

(sub)optimal value that can be obtained for M8(y, C1, C2) is

max(Pa(C2))− 〈a,y〉
max(Pa(C2))−max(Pa(C1))

(8.39)

To keep the notation in the remainder of this proof uncluttered, we will drop C1

and C2 as arguments from h or M8 (as they remain constant throughout the

proof).

We limit the proof to the case where y1 and y2 are chosen such that h(y1) ≤ h(y2)

(the proof for the case where h(y1) > h(y2) is similar). Moreover, we let y3 =

αy1 + (1− α)y2 (for α ∈ [0, 1]).

We now consider two settings (1) a∗3 is both M8(y1) and M8(y2)-feasible and (2)

a∗3 is not M8(y1)-feasible or not M8(y2)-feasible.

Setting 1: a∗3 is both M8(y1)- and M8(y2)-feasible.

We now consider two cases:

• Case 1: 〈a∗3,y1〉 ≤ 〈a∗3,y2〉.

From the definition of y3, it follows that

〈a∗3,y1〉 ≤ 〈a∗3,y3〉 ≤ 〈a∗3,y2〉 .

Using these inequalities, we obtain

h(y3) =
max(Pa∗3

(C2))− 〈a∗3,y3〉
max(Pa∗3

(C2))−max(Pa∗3
(C1))

≥
max(Pa∗3

(C2))− 〈a∗3,y2〉
max(Pa∗3

(C2))−max(Pa∗3
(C1))

.
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Comparing this inequality with (8.39), it can be seen that (provided that

a∗3 is feasible) the right hand side is a suboptimal value of M8(y2). This

means that the right-hand side is larger than h(y2). Combining this with

h(y2) ≥ h(y1), we have that h(y3) ≥ h(y2) ≥ h(y1). This means that

−h(y3) ≤ max(−h(y1),−h(y2)) = −h(y1) ,

which completes the proof for this case.

• Case 2: 〈a∗3,y1〉 ≥ 〈a∗3,y2〉.

Similar arguments as before lead to

h(y3) =
max(Pa∗3

(C2))− 〈a∗3,y3〉
max(Pa∗3

(C2))−max(Pa∗3
(C1))

≥
max(Pa∗3

(C2))− 〈a∗3,y1〉
max(Pa∗3

(C2))−max(Pa∗3
(C1))

.

Here, the right-hand side is larger than h(y1). Because of that, we have the

following inequalities: h(y1) ≤ h(y3) and h(y1) ≤ h(y2). This means that

−h(y3) ≤ max(−h(y1),−h(y2)) = −h(y1) .

Setting 2: a∗3 is not M8(y1)-feasible or not M8(y2)-feasible.

We now generalize to the case where a∗3 is not M8(y1)-feasible or not M8(y2)-

feasible. To make this generalization, we will explicitly assume that C1 and C2 are

convex polytopes. Let us denote

yα = y1 + α(y2 − y1) . (8.40)

In what follows, we will show that there always exist α1 < . . . < αk+1 ∈ [0, 1] with

α1 = 0 and αk+1 = 1 such that h is quasi-concave over (yαi ,yαi+2) (i = 1, . . . , k−1).

Using the result in Corollary 8.13, we can then conclude that h is quasi-concave

over (y1,y2).

(i) Let y be an element of the interior of conv(C1 ∪ C2) \ C1, and denote

the optimum of M4(y, C1, C2) as (x∗1, x
∗
2, c
∗
1, c
∗
2). From the discussion in

Section 8.4.3, we have that at least one of c∗1 or c∗2 is a vertex of C1 or C2.

(ii) Without loss of generality, we assume that c∗2 is a vertex of C2. Moreover,

let a∗ be the unit vector that optimizes M8(y). Now consider the triangle

Ty with top c∗2 and as base the line segment of C∗1 that contains c∗1 (see

Figure 8.7(a) for an illustration). We know that a∗ is orthogonal to the

base of Ty. It follows that for each y′ ∈ Ty, a∗ is optimal for M8(y′). As a

consequence, the contour lines of h in Ty are parallel to the base of Ty (see

Figure 8.7(b) for an illustration).

(iii) Let y1 and y2 be two vectors such that Ty1
6= Ty2

have one line segment
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Figure 8.7: (a) Illustration of the triangle Ty. (b) Illustration of the contour lines of h.
(c) Illustration of a setting in which Ty1 ∩ Ty2 is a line segment. y3 is located at the
intersection of that line segment with (y1,y2).
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in common. It follows that (y1,y2) ⊂ Ty1 ∪ Ty2 . Finally, let {y3} =

Ty1
∩ Ty2

∩ (y1,y2) and let a∗3 be a unit vector that optimizes M8(y3) (see

Figure 8.7(c) for an illustration). As y3 is an element of Ty1
∩ Ty2

, we know

that a∗1 is M8(y3)-feasible and that a∗2 is M8(y3)-feasible. Therefore, from

Setting 1, we have that h is quasi-concave over (y1,y3) and (y3,y2).

(iv) From (ii), it follows that both a∗1 and a∗2 are optimal forM8(y3). Let us select

a∗3 = a∗1, implying that a∗1 is M8(y3)-feasible. Clearly, a∗1 is not necessarily

M8(y2)-feasible. However, we now show that there always exists an ε ∈ ]0, 1]

such that a∗3 is M8(y3 + ε(y2 − y3))- and M8(y3 + ε(y1 − y3))-feasible (see

Figure 8.8(a) for an illustration).

(a) As a∗3 = a∗1 and y3 + ε(y1 − y3) ∈ Ty1
for any ε ∈ [0, 1], we have from

(ii) that a∗3 is M8(y3 + ε(y1 − y3))-feasible for any ε ∈ [0, 1]. Moreover,

a∗3 is optimal for M8(y3 + ε(y1 − y3)).

(b) As a∗3 is optimal for M8(y3), it holds that:

max(Pa∗3
(C1)) < 〈a∗3,y3〉 ,

max(Pa∗3
(C2)) > 〈a∗3,y3〉 .

Moreover, we have that

〈a∗3,y3 + ε(y2 − y3)〉 = 〈a∗3,y3〉+ 〈a∗3, ε(y2 − y3)〉 .

As the inequalities above are strict, it holds that when choosing ε ]0, 1]

sufficiently small, the following inequalities hold:

max(Pa∗3
(C1)) < 〈a∗3,y3 + ε (y2 − y3)〉 , (8.41)

max(Pa∗3
(C2)) > 〈a∗3,y3 + ε (y2 − y3)〉 . (8.42)

The means that a∗3 is M8(y3 + ε(y2 − y3))-feasible.

As a∗3 is optimal forM8(y3+ε(y1−y3)) and a∗3 isM8(y3+ε(y2−y3))-feasible,

h we have from Setting 1 that h is quasi-concave over

(y3 + ε(y1 − y3),y3 + ε(y2 − y3)).

(v) Additionally, we have that h(y3 +ε(y2−y3)) 6= h(y3) or h(y3 +ε(y1−y3)) 6=
h(y3). Combining this with (iii) and (iv), we have from Lemma 8.12 that h

is quasi-concave over (y1,y2).

We can now extend the reasoning above to the case where Ty1
and Ty2

do not

have a line segment in common (see Figure 8.8(b) for an illustration). Clearly,

there always exists a set of triangles {Tyi}ki=1 such that (y1,y2) ⊂
⋃k
i=1 Tyi . Let

α2 < . . . < αk ∈ ]0, 1[ such that yαj (defined using (8.40)) with j = 2, . . . , k,

correspond to the intersections of the triangles in {Tyi}ki=1 with line segment

(y1,y2) (see Figure 8.8(b) for an illustration). Lastly, let α1 = 0 and αk+1 = 0.
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Figure 8.8: (a) Illustration item (iii) of the proof of Proposition 8.14. ε can be choosen
such that a∗3 is M8(y3 + ε(y2 − y3)) and M8(y3 + ε(y1 − y3))-feasible. (b) Illustration
of a setting in which Ty1 and Ty2 do not have a line segment in common.

It is clear that the line segments (yαi ,yαi+2) with i = 1, . . . , k − 1 are overlapping

line segments. Moreover, applying (i)–(v), we know that h is quasi-concave over

each of these line segments. As a result, h is quasi-concave over (y1,y2).

8.5.2. A Ci-robust estimator

It is clear that the sets C1, . . . , Cn have an important influence on the set

X(y, (Ci)
n
i=1). The examples in the previous chapter suggest that defining C1, . . . , Cn

as the convex hulls of sets of observed prototype vectors provides an interesting

special case. Let us now formally assume that, for the ith source, we are given mi

data vectors vi1, . . . ,v
i
mi . Mathematically, we now can define Ci as

Ci = conv
(
{vi1, . . . ,vimi}

)
. (8.43)

We will now generalize our estimator to the case where vi1, . . . ,v
i
mi are defined

imprecisely. More specifically, we will assume that the exact value of vij is un-

known; instead, we have that vij ∈ V ij , where V ij is a convex set (Figure 8.9(a)).

These sets can now be used to create robust estimators of inf(Xk(y, C1, C2)) and

sup(Xk(y, C1, C2)).

Depending on the semantics of the sets V ij , several ‘robust’ estimators can be

defined. In this section, we interpret the sets V ij as a collection of sets that are

known to contain the ‘true’ data vectors vij . This means that V ij are imprecise
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Figure 8.9: (a) A visualization of the observed prototype vectors v1
j and v2

j , and the sets
V 1
j and V 2

j (with j = 1, . . . , 6) that can be used to describe prototypes in an imprecise
manner. (b) The convex hulls of {V 1

j }6j=1 and {V 2
j }6j=1.

observations of these data vectors. This imprecision can be translated into a robust

version of sup(Xk(y, (Ci)
n
i=1)) in two manners.

• Firstly, in a conservative manner, we could argue that our estimator should

be an upper bound on sup(Xk(y, (Ci)
n
i=1)). Such an upper bound is defined

as:

u = max
dij∈V ij

(
sup

(
Xk
(
y, (conv({dij}

mi
j=1))ni=1

)))
.

It is not hard to see that (for an illustration see Figure 8.9(b))

u = sup
(
Xk
(
y, (conv({V ij }

mi
j=1))ni=1

))
.

• Secondly, in an optimistic manner, we could as well try to find a lower bound

on sup(Xk(y, (Ci)
n
i=1)):

` = min
dij∈V ij

(
sup

(
Xk
(
y, (conv({dij}

mi
j=1))ni=1

)))
.

In any case, we have that sup(Xk(y, (Ci)
n
i=1)) ∈ [`, u].

It can easily be seen that (here for two classes) these bounds can be obtained by

the following optimization problems (which are based on M8):
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To obtain the upper bound, we can solve:

M9 : minimize
a∈Rq0,b1,b2∈R

b2 − 〈a,y〉
b2 − b1

subject to b1 ≥ max(Pa(V 1
j )) , for j = 1, . . .m1 ,

b2 ≥ max(Pa(V 2
j )) , for j = 1, . . .m2 ,

b1 < 〈a,y〉 ,
b2 > 〈a,y〉 .

To obtain the lower bound, we can solve:

M10 : minimize
a∈Rq0,b1,b2∈R

b2 − 〈a,y〉
b2 − b1

subject to b1 ≥ min(Pa(V 1
j )) , for j = 1, . . .m1 ,

b2 ≥ min(Pa(V 2
j )) , for j = 1, . . .m2 ,

b1 < 〈a,y〉 ,
b2 > 〈a,y〉 .

Similar to the ellipsoidal sets in Section 8.4.5, a computationally interesting case

arises when V 1
j and V 2

j are ellipsoids. More precisely, let

V 1
j = {v̄1

j + V1
ju | u ∈ Rq ∧ ‖u‖2 ≤ 1} ,

where v̄ij ∈ Rq and V1
j ∈ Rq×q are fixed.

We now have that

max{a>v | v ∈ V 1
j } = v̄1>

j a +
∥∥V1

ja
∥∥

2
≤ b1 .

This reduces the constraints to a finite number of second-order cone constraints.

Unfortunately, the constraints in the optimization problem for the lower bound do

not lead to second order cone constraints. Moreover, it is not difficult to show that

this optimization problem is not (quasi-) convex and probably a hard problem to

optimize.
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8.6. Noisy observations

8.6.1. The LMM with a noisy observation of y

In the previous sections, it is assumed that the sets C1 and C2 and the mixture

vector y are given. Moreover, the noisefree linear mixture model (7.1) was used to

define X(y, (Ci)
2
i=1). However, in practice, we will often be dealing with a noisy

observation ỹ of the mixture vector y. In that case, a mixture model that is capable

of modeling the error that is associated with y may lead to more informative results.

Consider the following probabilistic linear mixture model:

Ỹ =

n∑
i=1

xi ci︸ ︷︷ ︸
y

+E , (8.44)

where E is a q × 1 random vector of error terms. Moreover, we assume that

E[E ] = 0q. The random vector Ỹ models a noisy version of the mixture vector

y. In the remainder of this section, we will assume that ỹ is an observation of

Ỹ.

It is clear that, in general, we have that Xk(ỹ, C1, C2) 6= Xk(y, C1, C2). In the

remainder of this section, we present a procedure that can be used to construct an

interval for which we can show that the probability that Xk(y, C1, C2) is a subset

of this interval is bounded from below (at a controllable level).

Let r ∈ ]0,+∞[ and h ∈ Rq, we now define a hypercube that is centered at h and

has a side with length r:

H(r,h) = {r d + h | d ∈ [−1/2, 1/2]q} .

Moreover, given α ∈ [0, 1], let rα > 0 be a choosen such that

Pr(E ∈ H(rα,0q)) = α .

For example, when E is multivariate normally distributed with mean vector 0q and

known covariance matrix, the equicoordinate quantile function of Genz and Bretz

[112] can be used to compute rα.

As Ỹ = y + E , it is not hard to show that Pr(y ∈ H(rα, Ỹ)) = α. We can now use

H(rα, Ỹ) to define the random sets X(H(rα, Ỹ), C1, C2) and Xk(H(rα, Ỹ), C1, C2).

Moreover, we can give the following probabilistic interpretation to these sets:

Pr
(
Xk(y, C1, C2) ⊆ Xk(H(rα, Ỹ), C1, C2)

)
≥ α .
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In words, this means that the random interval Xk(H(rα, Ỹ), C1, C2) will contain

Xk(y, C1, C2) with a probability of at least α. Lastly, to compute the estimator

above in practice for an observation ỹ of Ỹ , the insights of Section 8.5.1 can be useful.

More precisely, as H(rα, ỹ) is a convex subset of Rq, the results in Section 8.5.1 can

be used to develop an optimization problem to compute sup(Xk(H(rα, ỹ), C1, C2))

efficiently.

8.6.2. The LMM with a noisy observation of vji

In the same spirit as the previous section, in many practical situations, the sets

C1 and C2 are unknown but rather need to be estimated from data (we assume

y is known exactly). We will simplify the discussion here by assuming that

C1 = conv({v1
1, . . . ,v

1
m1
}) and C2 = conv({v2

1, . . . ,v
2
m2
}), where v1

i and v2
i are

observed prototype vectors. However, instead of vji , we have been given an

observation ṽji of the random vector Ṽji :

Ṽji = vji + Eji ,

where Eji is a q × 1 random vector of error terms. Moreover, we assume that

E[Eji ] = 0q and cov(Eji ) = Σ.

Given β ∈ [0, 1], let rβ > 0 be a choosen such that

Pr(Eji ∈ H(rβ ,0q)) = m
√
β ,

where m = m1 +m2. It is not hard to show that Pr(vji ∈ H(rβ , Ṽji )) = m
√
β. Let

us now define the random sets C̃β1 and C̃β2 :

C̃β1 = conv({H(rβ , Ṽ1
i )}m1

i=1) and C̃β2 = conv({H(rβ , Ṽ2
i )}m2

i=1) .

It is not hard to see that Pr(C1 ⊆ C̃β1 and C2 ⊆ C̃β1 ) ≥ β. As a result, we have

that

Pr(Xk(y, C1, C2) ⊆ Xk(y, C̃β1 , C̃
β
2 )) ≥ β .

Given two sets of noisy observed prototype vectors {ṽ1
1, . . . , ṽ

1
m1
} and {ṽ2

1, . . . , ṽ
2
m2
}

we can efficiently compute

sup(Xk(y, conv({H(rβ , ṽ
1
i )}

m1
i=1), conv({H(rβ , ṽ

2
i )}

m2
i=1)))

using the methodology described in Section 8.5.2. Lastly, it should be noted that

the bound that is reported here is likely to be extremely conservative.
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8.6.3. High-dimensional problems and non-informative di-

mensions

Up to this point, the dimensionality q of the space in which the sources and the

mixture were represented (by means of the sets C1 C2 and the vector y) was fixed.

By increasing the dimensionality of the representation space, the description of

the sources becomes more informative, and from the definition of X(y, C1, C2) and

Xk(y, C1, C2), it can easily be seen that this increased dimensionality will lead

to a reduction of the size of both X(y, C1, C2) and Xk(y, C1, C2). In most cases

this reduction is interesting as it will reduce the uncertainty associated with our

estimator.

When a representation space is extended with a new feature (let the sets C↑1 , C
↑
2 ∈

Rq+1 and the vector y↑ ∈ Rq+1 be the representations of the sources and the mixture

vector in the extended space), we say that this new dimension is non-informative

if

X(y, C1, C2) = X(y↑, C↑1 , C
↑
2 )

for all y (and y↑). For example, when a new feature is a copy of an existing feature,

the new feature will be non-informative. Another example is the case where a

new feature can be written as a function (for instance a linear combination) of

features that are already present. Based on this discussion, we may conclude that

non-informative features are neither helpful nor harmful for our problem. However,

when a non-informative feature is measured in a noisy setting, it will lead to a

reduction in the size of Xk(y↑, C↑1 , C
↑
2 ). Especially when the number of noisy

non-informative features is high, this may lead to intervals that are overly narrow.

In those cases we may consider using dimensionality reduction techniques that can

recover a limited number of informative (latent) features. We can for instance use

dimensionality reduction techniques such as (robust) principal component analysis.

The assumption here is that the variability of the (noisy) observed prototype

vectors ṽji will be high in the informative directions and low in all other directions.

Unfortunately, both the choice of a particular dimensionality reduction technique,

and the dimensionality of the projected space, remain rather arbitrary.

8.7. Sparse solutions

Up to this point, C1, . . . , Cn were assumed to be convex sets. In this section, we

will relax this assumption. More precisely, we will assume that Ci is the union of

multiple (elliptical) convex sets. We start this section by motivating why this case

can be interesting to consider in a data analysis setting.
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8.7.1. Why do we need sparse solutions?

As argued before, in several applications, the sets C1, . . . , Cn are defined as the

convex hulls of observed prototype vectors vji . Moreover, to mitigate the influence

of noise (or imprecision) on the observations, we proposed a relaxation of the

original problem by replacing each vji by a set V ji (where V ji is for instance a ball

centered at vji ). Such a relaxation extends the range of Xk. In some cases, the

intervals that are obtained in this manner can be rather wide. A natural way of

reducing the range of Xk exists of reducing the size of the sets C1, . . . , Cn (i.e. not

defining them as the convex hulls of V ji ). Several procedures can be used to reduce

the size of these sets. However, the resulting sets should still be interpretable. An

interesting case can be obtained by defining C1, . . . , Cn as follows:

C1 =

m1⋃
i=1

V 1
i , . . . , Cn =

mn⋃
i=1

V ni . (8.45)

When V ji is a ball centered at vji (which can for instance be an observed prototype

vector), this formulation will imply that ck is located near one of the observed

prototype vectors {vki }
mk
i=1. In a two-class case (i.e. n = 2, see Figure 8.10) this

would imply that a mixture (with mixture vector y) can only be created by blending

two (imprecise) observed prototype vectors V 1
i and V 2

j . We call this solution sparse

for the following reasons. Firstly, taking the situation given in Figure 8.11 as an

example, for the vector (x∗1, c
∗
1, c
∗
2) that optimizes M4(y, conv(C1), conv(C2)) we

can write

c∗2 = β1 c1∗
2 + β2 c2∗

2 + β3 c3∗
2 (8.46)

where c1∗
2 ∈ V 2

1 , c2∗
2 ∈ V 2

2 , c3∗
2 ∈ V 2

3 , β1 + β2 + β3 = 1 and βi ≥ 0. Moreover, as

can be seen from this figure, both β1 and β2 are strictly positive. As such, we

call this solution non-sparse. Secondly, for the vector (x•1, c
•
1, c
•
2) that optimizes

M4(y, C1, C2) we have that

c•2 = α1 c1•
2 + α2 c2•

2 + α3 c3•
2 ,

where c1•
2 ∈ V 2

1 , c2•
2 ∈ V 2

2 , c3•
2 ∈ V 2

3 , α1 + α2 + α3 = 1 and αi ≥ 0. Moreover,

in this case, we can choose c1•
2 , c

2•
2 and c3•

2 such that only α3 is strictly positive.

In that sense, we will obtain sparse solutions. This contrasts the original setting,

where c∗1 and c∗2 can both be blends of multiple (imprecise) observed prototype

vectors. Indeed, in some applications this can be considered as unlikely. As such,

the presented approach puts an additional emphasis on the data that is used to

represent the classes.
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Figure 8.10: (a) C1 and C2 are defined as the convex hulls of ball-shaped sets. The
dotted line gives the convex hulls of the centers (vj

i ) of the sets V j
i . (b) C1 and C2 are

defined as the union of ball-shaped sets.

Figure 8.11: Illustration of the sparseness of solutions: (a) Non-sparse case, (x∗1, c
∗
1, c
∗
2)

is the vector that optimizes M4(y, conv(C1), conv(C2)). β1 c1∗
1 + β2 c2∗

2 = c∗2 and β3 = 0.
(b) Sparse case, (x•1, c

•
1, c
•
2) is the vector that optimizes M4(y, C1, C2) .
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8.7.2. Optimizing with a sparsity constraint

From (8.45), it can easily be seen that C1, . . . , Cn are not convex. Because of that,

M1 cannot be solved efficiently using the approaches that have been described

up to this point. More fundamentally, in this case we do not have the guaran-

tee that Xk(y, (Ci)
n
i=1) is an interval. However, this does not prevent us from

attempting to find sup(Xk(y, (Ci)
n
i=1)) here. In the remainder of this section, we

will derive a branch and bound (B & B) procedure that can be used to search for

sup(Xk(y, (Ci)
n
i=1)).

A B & B procedure for the case n = 2

We will first discuss the case n = 2. For simplicity, we will assume that y ∈
conv(C1 ∪ C2). Note that this does not guarantee that Xk(y, (Ci)

n
i=1) 6= ∅. We

can now use the fact that C1 and C2 are the union of convex sets to obtain the

following equality:

sup(Xk(y, (Ci)
2
i=1)) = max

i=1,...,m1
j=1,...,m2

h(y, V 1
i , V

2
j ) . (8.47)

A brute-force approach would require m1 ×m2 function evaluations of h. When

both m1 and m2 are large, this can become computationally quite demanding.

Moreover, when n > 2, the complexity of this brute-force approach increases rapidly

(when m1 = m2 = . . . = mn, the complexity is exponential in n). Because of

that, we propose a branch and bound procedure for solving (8.47). Within this

procedure, the sets C1 and C2 will be split recursively by a branching rule to

obtain more restricted optimization problems. Hereafter, we describe the upper

bound, lower bound, branching rule and pruning rule that are used within the

B & B procedure.

Let I1 ⊆ {1, . . . ,m1} and I2 ⊆ {1, . . . ,m2} be two index sets. We can now

denote

Ct1 =
⋃
i∈I1

V 1
i , and Ct2 =

⋃
i∈I2

V 2
i ,

as the sets that are used at the t-th node of the B & B tree.

Upper bound: It can easily be seen that h(y, conv(Ct1), conv(Ct2)) bounds

sup(Xk(y, Ct1, C
t
2)) from above. Indeed, as Ct1 ⊆ conv(Ct1) and Ct2 ⊆ conv(Ct2),

M4(y, conv(Ct1), conv(Ct2)) is a relaxation of M4(y, Ct1, C
t
2). Moreover, if

h(y, conv(Ct1), conv(Ct2)) = −∞, we can decide that this node is infeasible.

Lower bound: In general, any feasible point can be used as a lower bound on

sup(Xk(y, (Cti )
2
i=1)). Unfortunately, the search for feasible points can be quite

demanding in the general case. Instead, we propose the following strategy:

176



§8.7. Sparse solutions

1. Firstly, let the optimum ofM4(y, conv(Ct1), conv(Ct2)) be given by (x∗1, c
∗
1, c
∗
2);

if both

c∗1 ∈ V 1
k for some k ∈ I1 , and c∗2 ∈ V 2

` for some ` ∈ I2 ,

it follows that the point (x∗1, c
∗
1, c
∗
2) is feasible for M4(y, Ct1, C

t
2). Moreover,

as x∗1 = h(y, conv(Ct1), conv(Ct2)), it is globally optimal for M4(y, Ct1, C
t
2).

This means that the t-th node should not be split further.

2. Secondly, if (x∗1, c
∗
1, c
∗
2) is not feasible, we could use heuristics (or an exhaustive

search) to find a feasible point (or conclude that such a point does not exist).

Such a feasible point could then be used to obtain an ε-bound on the optimality

of a solution. However, due to the computational effort that is needed to

accomplish this, we will not attempt to do so. Instead, the t-th node will

remain active as a candidate for splitting. If at some point a feasible value is

found for one of the descendants of the t-th node, the t-th node can inherit

that lower bound.

Pruning rule: We will only be using a very simple pruning rule. Let the best

feasible value for x1 that has been found up to a given point be denoted xL
1. Any

(active) node t for which h(y, conv(Ct1), conv(Ct2)) < xL
1 is pruned.

Branching rule: In the branching phase (also see Figure 8.12) we will, from all

active nodes, select the one with the highest upper bound. Let the t-th node be

the one that is selected for branching. Moreover, let (x∗1, c
∗
1, c
∗
2) be optimal for

M4(y, conv(Ct1), conv(Ct2)). As the t-th node is active, we know that

c∗1 /∈
⋃
k∈I1

V 1
k or c∗2 /∈

⋃
k∈I2

V 2
k .

Without loss of generality, we can assume that c∗2 /∈
⋃
k∈I2 V

2
k .

We now choose a partitioning {IL
2 , I

R
2 } of the set I2, and use this partitioning to

define the following sets:

CLt
2 =

⋃
i∈IL2

V 2
i , and CRt

2 =
⋃
i∈IR2

V 2
i .

The sets {Ct1, C
Lt
2 } and {Ct1, C

Rt
2 } are then used to construct the two descendants

of the t-th node. The partitioning {IL
2 , I

R
2 } can be constructed in several manners.

Naturally, would like to select a partitioning rule that leads to a B & B procedure

that will converge quickly. To achieve this, we will take the following rules into

account:

1. It should hold that c∗2 /∈ conv(CLt
2 ) and c∗2 /∈ conv(CRt

2 )

2. The size of both conv(CLt
2 ) and conv(CRt

2 ) should be small.
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3. Sets conv(CLt
2 ) and conv(CRt

2 ) that are “lengthy” in the direction of the

line segment (y, c∗2) are preferred over sets that are lengthy in a direction

orthogonal to (y, c∗2).

4. We should have |IL
2 | ≈ |IR

2 |.

These rules were constructed intuitively, to minimize the number of splits needed

in the B & B procedure. We now propose a simple heuristic that provides a

partitioning, taking the rules above into account. Firstly, we reduce the ball-shaped

sets V 2
k with (k ∈ I2) to their centers v2

k. Secondly, we define a hyperplane (in

the q-dimensional space) passing through5 c∗2 and y. This hyperplane can be used

to separate the vectors v2
k. Let z be a normal vector of this hyperplane. We now

choose the sets IL
2 and IR

2 as follows:

IL

2 = {i ∈ I2 | z> (v2
i − y) ≤ 0} and IR

2 = {i ∈ I2 | z> (v2
i − y) > 0} .

A B & B procedure for the case n > 2

We now generalize the procedure above to the case n > 2. Most concepts of the

case where n = 2 can be transferred. In this section, we elaborate on the most

important differences and pitfalls.

Up to this point, disregarding the value for n, the computation of sup(Xk) always

relied on a reformulation of the original optimization problem to an equivalent

optimization problem that has only two classes. Unfortunately, the definition

of the sets Ci in (8.45) severely complicates such a reformulation in the general

case. However, as we show next, we can easily provide a relaxation of the original

problem that does allow a reformulation. Without loss of generality, we assume

that we want to compute sup(X1). Moreover, assume that, at the t-th node in

the B & B tree, we have the index sets I1, . . . , In, where I` ⊆ {1, . . . ,m`}. We now

define Ct1 and Ct• as:

Ct1 =
⋃
i∈I1

V 1
i , for k = 1 . . . , n ,

and

Ct• =

n⋃
j=2

(⋃
i∈Ij

V ji

)
.

5 When q > 2, the hyperplane passing through c∗2 and y is not unique. In those cases, to define
a unique hyperplane q − 2 additional points are needed. The first point that is included is
the arithmetic mean of the prototype vectors belonging to the current node. When q > 3, the
remaining points are randomly drawn from [0, 1]q .
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Figure 8.12: The branching rule of the B & B procedure when n = 2.
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Upper bound: Similar to the previous section, h(y, conv(Ct1), conv(Ct•)) can be

used as an upper bound on sup(X1(y, (Ci)
n
i=1)).

Lower bound: Let (x∗1, c
∗
1, c
∗
•) be the vector that optimizesM4(y, conv(Ct1), conv(Ct•)).

We now have two options:

1. When c∗1 /∈ Ct1: the relaxed solution is not feasible for the original problem.

In this case, the second step is not considered. The node remains active.

2. When c∗1 ∈ Ct1: We can always find a set of k non-identical vectors {z1, . . . , zk} ⊂
Ct• (where k ≤ q) that can be used to decompose c∗• as follows

c∗• =

k∑
i=1

γi zi ,

such that
∑k
i=1 γi = 1, γi > 0. As c∗• is located at the boundary of conv(Ct•),

this decomposition is unique. Moreover, {z1, . . . , zk} can easily be obtained

from the results of the optimization procedure that computes the upper

bound. If, for each of the n − 1 classes that contribute to Ct•, we have at

most one zi ∈ Ctk, then (x∗1, c
∗
1, c
∗
•) represents a solution that is feasible for

the original optimization problem. In that case, we do not need to branch the

current node any further. Moreover, (x∗1, c
∗
1, c
∗
•) is optimal for that branch.

Pruning rule: This rule is identical to the case n = 2.

Branching rule: In the branching phase we will, from all active nodes, select the

one with the highest upper bound. Here as well two options exist:

1. When c∗1 /∈ Ct1: we partition the set Ct1, using the same criteria as before.

Let {IL
1 , I

R
1 } be a partitioning of I1. This partitioning can be used to define

the following sets:

CLt
1 =

⋃
i∈IL1

V 1
i , and CRt

1 =
⋃
i∈IR1

V 1
i .

We can now use the sets {CLt
1 , C

t
2, . . . , C

t
n} and {CRt

1 , Ct2, . . . , C
t
n} to construct

the descendants of the t-th node.

2. When c∗1 ∈ Ct1 and the relaxed solution is not feasible: using the decomposi-

tion of ct• above, we have at least one triplet of indices i, j, k such that both

zi, zj ∈ Ctk. We can now split Ctk, using a procedure that is similar to the

case n = 2. A hyperplane is constructed that can be used to separate vk` .

This hyperplane passes through the points y, γi zi+γj zj and q−2 additional

points (see footnote). Note that γi zi + γj zj is the equivalent of c∗2 in the

case q = 2.

Let {IL

k , I
R

k } be a resulting partitioning of Ik. This partitioning can be used

180



§8.8. Conclusions and discussion

to define the following sets:

CLt

k =
⋃
i∈ILk

V ki , and CRt

k =
⋃
i∈IRk

V ki .

We can now use the sets {Ct1, . . . , C
Lt

k , . . . , C
t
n} and {Ct1, . . . , C

Rt

k , . . . , C
t
n} to

construct the descendants of the t-th node.

The B & B procedure described above has a worst-case complexity that is equal to

the complexity of the exhaustive procedure. However, in practice, the worst case

scenario seldom occurs.

8.8. Conclusions and discussion

In this chapter, a series of optimization problems were proposed that can be used

to compute the interval estimator that was introduced in the previous chapter in

an efficient manner (Objectives III.2 and III.3). Moreover, the interval estimating

procedure is extended to allow settings in which sources have a high-dimensional

representation (Objective III.4). Finally, an estimation procedure that forces

sparsity in the solution was proposed (Objective III.4).

The general methodology and the optimization problems that were proposed in this

chapter allow interval estimators for the unmixing of imprecisely described sources

to be computed in a variety of settings. We mainly focused on the development of

a flexible methodology that provides a sound way to work with uncertainty when

estimating the proportional contribution of a source to a mixture. Naturally, such

an estimate can only be accurate when the set-based description of the sources is

sufficiently precise. Several approaches were proposed that can be used to derive a

set-based description from data. However, the theoretical basis for these approaches

is rather limited. For example, we argued why the convex hull of a set of datapoints

is probably a suboptimal estimate of the “true” set that describes a source. Several

alternatives were presented. Nevertheless, it remains an open question how these

datapoints can be optimally translated into a set.

When the set-based description of a source is derived from a dataset (by taking

the convex hull, or one of the alternatives that were proposed) the influence of

a particular (extreme) point in that dataset may heavily influence the interval

estimate that is obtained. This can be considered as a potential threat for our

methodology especially in situations where outliers are likely to occur. In those

cases, it may be interesting to attribute a grade of belief to the intervals that

are obtained. Intervals that are supported by a large part of the dataset (i.e.

the removal of a few points does not influence the interval estimate too heavily)

could receive a higher grade of belief than intervals that are only supported by a

limited number of extreme datapoints. Similarly, in several applied settings, the
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datapoints may be given a grade of belief (for example, datapoints obtained through

a thorough chemical analysis of a sample may be graded higher than datapoints

that are found in some on-line data repository). This differential grading may be

taken into account when attributing a degree of belief to an interval.

In this chapter, we limited our discussion to linear mixing models. However, as

illustrated in the previous chapter, several processes require nonlinear mixing

models. A direct extension of the estimators that were proposed here will probably

lead to optimization problems that are hard to solve (even finding a feasible point

may prove to be difficult). The development of a procedure that generalizes the

current methodology towards those settings may prove challenging.
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8.A. Equivalent linear programs and SOCPs

In Section 8.4.5 it was argued that, in some cases, M8 can be transformed into

an equivalent linear program or second order cone program. In this appendix,

this transformation is briefly described. The transformation that is used here is

generally known as the Charnes and Cooper transformation [113]. It was originally

developed for transforming a linear fractional program into a linear program. When

the sets C1 and C2 are convex polytopes,M8 reduces to a linear fractional program

and the Charnes and Cooper transformation can be applied directly.

Instead of presenting the complete transformation, we apply it directly to M8. As

a starting point, consider the following tranformation of the vector of optimization

variables (b1, b2,a
>)>:

z =
1

b2 − b1

 b1

b2

a

 .

It can easily be seen that, using this variable, the objective function of M8 can be

rewritten as (
0 1 −y>

)
z .

The inequality constraints can be rewritten as:

(
−1 0 c>1

)
z ≤ 0 , for all c1 ∈ C1 ,(

0 −1 c>2

)
z ≤ 0 , for all c2 ∈ C2 ,(

1 0 −y>
)

z < 0 ,(
0 −1 y>

)
z < 0 .

However, z is not a free variable. The transformation that is used in the definition

of z implies that

(
−1 1 0>q

)
z =

(
−1 1 0>q

) 1

b2 − b1

 b1

b2

a

 = 1 .

Therefore, the constraint (
−1 1 0>q

)
z = 1 ,

should be included as well.

This transformation leads to the following optimization problem:
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M11 : minimize
z∈Rq+2

(
0 1 −y>

)
z

subject to

(
−1 0 c>1
0 −1 c>2

)
z ≤ 02 , for all c1 ∈ C1 and c2 ∈ C2 ,

(
1 0 −y>

0 −1 y>

)
z ≤ 02 ,

(
−1 1 0>q

)
z = 1 ,

The equivalence betweenM8 andM11 follows from the general result of [113].

Unfortunately, as M8, the new optimization problem M11 has an infinite num-

ber of inequality constraints. However, as argued before, when C1 is a convex

polytope, (
−1 0 c>1

)
z ≤ 0 , for all c1 ∈ C1 ,

reduces to (
−1 0 c>1

)
z ≤ 0 , for each vertex c1 of C1 .

Moreover, when C1 is ellipsoidal, i.e.

C1 = {v1 + V1u | u ∈ Rq ∧ ‖u‖2 ≤ 1} ,

where v1 is a q-vector and V1 a q × q positive definite matrix,(
−1 0 c>1

)
z ≤ 0 , for all c1 ∈ C1 ,

reduces to

v>1


z3

...

zq+2

+

∥∥∥∥∥∥∥∥V
1


z3

...

zq+2


∥∥∥∥∥∥∥∥

2

≤ z1 .

This inequality is a second order cone constraint.
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9 Set-based unmixing of mixtures

in practice

9.1. Introduction

In Chapter 7, a set estimator for the proportional contribution of a source to a

mixture was introduced. Moreover, it was argued that this estimator is somehow

complementary to the more traditional point estimators and probability distri-

bution estimators. In Chapter 8, several mathematical optimization problems

were developed that allow an efficient computation of the set estimator. Moreover,

multiple methodological extensions were made that resulted in robust or sparse

versions of the set estimator. In the current chapter, we experiment with the

methodology that was described in Chapters 7 and 8. More precisely, this chapter

is organized as follows:

• In Section 9.2, the methodology described in Chapters 7 and 8 is illustrated

by means of series of experiments on synthetic data. The set estimator

is compared with point estimators and probability distribution estimators.

Moreover, the influence of robustness and sparseness on the estimator is

illustrated.

• In Section 9.3, the set estimator is applied to detect fraudulent levels of

adulteration in vegetable oils.

• In Section 9.4, conclusions are presented and discussed.

9.2. Experiments on synthetic data

9.2.1. Point estimates, probability distribution estimates and

set estimates

As a starting point of this section, consider the convex polyhedral sets C1, C2 ⊂ R2

in Figure 9.1 and Table 9.1 that represent two (imprecisely described) sources

(referred to as source 1 and source 2). These sources have been used to create a

mixture with (observed) mixture vector y = (0.4, 0.4)>.

Set estimator

As the feasible sets C1 and C2 are convex polyhedrons of which the vertices are

known, X1(y, C1, C2) can be computed using the following optimization problem
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Figure 9.1: Visualization of the experiment with synthetic data. The coordinates of the
vertices of the polyhedrons are given in Table 9.1.

Table 9.1: Synthetic data representing the observed prototypes of two sources.

Source number Feature 1 Feature 2 Source number Feature 1 Feature 2

1 0.5264 0.1082 1 0.5435 0.2047

1 0.8298 0.0266 2 0.1125 0.5038

1 0.8677 0.0708 2 0.3911 0.5399

1 0.8648 0.0800 2 0.3849 0.6085

1 0.7780 0.2179 2 0.0502 0.9242

1 0.6153 0.3398 2 0.0268 0.6835
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Figure 9.2: (a) Visualization of the location of the ‘optimal’ prototype vectors corre-
sponding to the minimal (red) and maximal (blue) elements of X1. (b) Visualization of
the least squares point estimator.

(cfr. M8)

minimize
a∈Rq0,b1,b2∈R

b2 − 〈a,y〉
b2 − b1

subject to b1 ≥ 〈c1,a〉 , for all vertices c1 ∈ C1 ,

b2 ≥ 〈c2,a〉 , for all vertices c2 ∈ C2 ,

b1 < 〈a,y〉 ,
b2 > 〈a,y〉 .

As this programme is a linear fractional program, it can be transformed into

an equivalent linear program (see Appendix 8.A). The resulting linear program

can be solved using any linear programming solver. Here, we used the linprog

routine in Matlab, resulting in X1(y, C1, C2) ≈ [0.247, 0.713] (where we used ≈ to

denote potential rounding errors). Figure 9.2(a) shows the location of the ‘optimal’

prototype vectors corresponding to the minimal (red) and maximal (blue) elements

of X1.

Point estimator (least squares)

Recall from Chapter 7 that the least squares estimator requires a precise description

of the sources. To derive such a representation, we could for example use the center

of mass of the polyhedrons C1 and C2. These are given by c̄1 ≈ (0.69, 0.16)> and

c̄2 ≈ (0.18, 0.67). These points are shown in Figure 9.2(b). Subsequently, the

following optimization problem is solved
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minimize
x∈R2

∥∥∥y −∑2
i=1xi c̄i

∥∥∥2

2

subject to x1 + x2 = 1 ,

x1, x2 ≥ 0 .

The minimizer of this optimization problem is the point estimator xLS. This is

a linearly constrained convex quadratic optimization problem that can be solved

by any quadratic programming solver. We used the quadprog routine in Matlab,

resulting in x̂1 = 0.484. In this example, the least squares estimate lies within

the interval obtained by the set estimator. However, this is not the case in

general.

We now provide a geometrical interpretation of the least squares estimator (see

also Figure 9.2(b)). As y does not lie on the line segment that connects c̄1 and c̄2

(denoted (c̄1, c̄2)), y cannot be written as a convex combination of these centers of

mass. Therefore, the least squares estimator locates the vector y′ ∈ (c1, c2) that

minimizes the Euclidean distance between y′ and y. Once y′ has been found, the

proportional contribution of the first source to y′ is

‖c̄2 − y‖2
‖c̄1 − y‖2 + ‖c̄2 − y‖2

.

This value is equal to xLS
1 . Therefore, the least squares estimator implicitly assumes

that y is a noisy observation of the true vector y′. Moreover, the distribution of

the noise vector y − y′ is assumed to be isotropic.

Probability distribution estimator

To derive the probability distribution estimator of x1, each source is described

by means of a bivariate random vector. Let these bivariate random vectors be

C1 = (C1
1 , C1

2) for the first source and C2 = (C2
1 , C2

2) for the second source. Moreover,

the mixing proportions are random variables as well. Let X = (X1,X2) be the

random vector of mixing proportions. A mixture vector is obtained using the

following scheme:

1. Draw an observation c1 from C1 (the first prototype vector).

2. Draw an observation c2 from C2 (the second prototype vector).

3. Draw an observation (x1, x2) from X (the mixing proportions).

4. Define y using the LMM: y = x1c1 + x2c2.

According to this generative scheme, the mixing vector itself is modeled through

a bivariate random vector Y that is defined as follows: Y = X1 C1 + X2 C2. The

probability distribution estimator is the conditional probability density function

fX1|Y .
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Finding a closed-form solution for fX1|Y is often a difficult task. Therefore, we

resort to stochastic simulation to obtain an approximation of fX1|Y . We proceed

in the following manner.

1. Simulate a large sample of the random vector (X1,Y).

2. Use a kernel density estimator to obtain an approximation f̂X1,Y (resp. f̂Y)

of fX1,Y (resp. fY)

3. Use f̂X1,Y/f̂Y to approximate fX1|Y .

For C1 (resp. C2) uniformly distributed over C1 (resp. C2), X1 uniformly distributed

over [0, 1] (with X2 = 1 − X1), and assuming that C1, C2 and X are mutually

independent random vectors, Figure 9.3 (solid line) shows an approximation1 of

fX1|Y(. | (0.4, 0.4)). From this figure, it can be seen that the support of the

approximated conditional probability density function approximates the interval

obtained by the set estimator (the fact that the support is somewhat larger is due

to approximation errors of the density estimation). Moreover, in addition to the

support, the distribution estimator gives information about the likelihood of the

mixing proportions. Therefore, it could be argued that the distribution estimator

is more informative than the set estimator. However, the increased information

content comes at some cost. Firstly, the added information is only (approximately)

correct if the assumption of uniformly distributed source vectors (approximately)

holds. Secondly, we are only able to obtain an approximation of the conditional

probability density function. Unfortunately, the approximation methods scale

badly. An increase of the dimensionality of the source vectors quickly leads to large

approximation errors and excessive computational requirements.

To illustrate the influence of the distribution of the sources, the result of a second

experiment is given (dotted line in Figure 9.3). In this experiment, C1 and C2

are bivariate normally distributed. The mean vectors and the covariance matrices

of these distributions were the sample means and the sample covariances of the

vertices of the polytopes C1 and C2. Comparing the resulting estimate with the

estimate obtained for the uniform distributions, it can clearly be seen that the

conditional distribution function is heavily influenced by the (assumed) distribution

of the sources.

9.2.2. The influence of robustness

In the previous section, the sets C1 and C2 were defined as the convex hulls of

two collections of (observed) prototype vectors. In Section 8.5 of the previous

chapter, it was argued that, in some cases, this approach can be too restrictive.

1 To obtain this approximation, a sample with sample size 1000 was simulated using a rejection
sampling algorithm. For the kernel density estimation, a Gaussian kernel was used. The bandwith
of the kernel was computed using the Hpi routine in the R-package ks (version number 1.8.13 [114])
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Figure 9.3: An approximation of the conditional probability density function fX1|Y(. |
(0.4, 0.4))

for C1 (resp. C2) uniformly distributed over C1 (resp. C2) (solid line), and for C1
and C2 bivariate normally distributed (dotted line).

For example, when the observed prototype vectors are noisy, the obtained interval

estimate can be inaccurate. Indeed, when the convex hulls of these noisy points

are used as estimates (denoted Ĉ1 and Ĉ2) for C1 and C2, we generally have that

Xk(y, C1, C2) 6= Xk(y, Ĉ1, Ĉ2). As a result, the true mixing proportions may lie

outside the estimated interval2.

To overcome this problem, an alternative method for estimating C1 and C2 was

proposed. In this setting, for each observed prototype vector, an ellipsoid is defined

that encloses the observed vector. Subsequently, it is assumed that any point within

the ellipsoid is a valid observed prototype vector. As this procedure is applied to

each prototype vector, two sets of ellipsoids are obtained. Consequently, C1 and

C2 are estimated by the convex hulls of these sets (for a formal description of this

procedure, we refer to Section 8.5).

We now apply this procedure to the synthetic problem from the previous section

(see Figure 9.4). Unfortunately, the synthetic problem does not provide a natural

way to define the ellipsoids. Therefore, we decided (somewhat arbitrary) to use the

eigenvectors of the covariance matrix of the observed prototype vectors3 as directions

for the main axes of the ellipsoids. Moreover, the ellipsoids were centered at the

observed prototype vectors and the lengths of the axes were chosen proportional to

2 Alternatively, the obtained interval may be too wide as well. Unfortunately, as argued in
Section 8.5, this case does not lead to an optimization problem that can be solved efficiently.
Therefore, we do not consider this case in depth.

3 The covariance matrix of the prototypes of the first and the second class were computed indepen-
dently. As a result, the orientation of the ellipsoids of the two classes is different.
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Figure 9.4: Enclosing of the prototype vectors in ellipsoids. The sets C1 and C2 are
estimated by means of the convex hulls of these ellipsoids (shaded areas). The lengths
of the axes of the ellipsoids are proportional to their eigenvalues (the eigenvalues are
denoted λ1

1 ≈ 0.028, λ1
2 = 0.007, λ2

1 ≈ 0.046 and λ2
2 = 0.014). The axes lengths are aλ1

and aλ2, where a is a positive constant.

the eigenvalues (λ1
1 and λ1

2 for the first class and λ2
1 and λ2

2 for the second class) of

the covariance matrix. More precisely, the lengths of the axes are a λ1
1 and a λ1

2

where a ∈ R+ (resp. a λ2
1 and a λ2

2).

To illustrate the influence of this procedure on the interval estimate, Figure 9.5

shows the interval estimate for a ranging in the interval [0, 10]. Naturally, inf(X1) is

a decreasing function of a and sup(X1) is an increasing function of a. Moreover, this

figure suggests a linear relationship between a and inf(X1) and sup(X1). However,

we have no theoretical guarantees regarding the linearity of this relationship.

9.2.3. Sparse estimates

The discussion in this section describes some of the principles that are introduced

in Section 8.7 of the previous chapter. The following description can be seen as a

wordy version of Section 8.7.

Up to this point, the observed prototype vectors are used only to define the convex

hulls needed to estimate C1 and C2. Essentially, this approach uses the information

that is present in the data to define a set. It could be argued that this approach has

at least two downsides. Firstly, a considerable part of the information present in the

data is ignored by the set estimator. Secondly, even though the obtained interval

is both mathematically and semantically correct, it may imply that mixtures are

generated using mixing procedures that are unlikely to occur in practice. To make
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Figure 9.5: Evolution of inf(X1) and sup(X1) as a function of a, for the experimental
setup described in Figure 9.4.

this more clear, consider the situation depicted in Figure 9.6(a). Essentially, this

figure is a copy of Figure 9.2(a), with some additional formatting. To obtain

sup(X1) ≈ 0.713, it is assumed that the mixture with mixture vector y can be

obtained as follows:

1. Use the observed prototype vectors v2
1 and v2

2 to create a mixture with

mixture vector c∗2.

2. Create the mixture with mixture vector y by mixing c∗2 and v1
5:

y = 0.713 v1
5 + 0.287 c∗2 .

The above procedure implies that, at some point, an ‘intermediate’ mixture (c∗2)

is created. Depending on the application at hand this may be implausible. For

example, consider an application where two types of vegetable oil are blended (we

consider this example in detail in the following section). It could seem nonrealistic

that a producer of vegetable oil will blend two pure oils of the same type prior to

blending those oils with a third vegetable oil of another type. In this small example,

that strategy may still be reasonable. However, in general the intermediate mixture

will often be a blend of q (where q is the dimensionality of the problem) observed

mixtures. As the dimensionality (q) of the problem increases, the number of

prototypes that is needed may become nonrealistically high.

To overcome these problems, we can constrain the number of observed prototypes

that is used to create the intermediate mixture. However, to be able to do this, we

are forced to assume that the observed prototype vectors are noisy observations of

the true prototype vectors (using the principles from the previous subsection). As

an example, consider the case where the intermediate mixture is constrained to
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Figure 9.6: (a) Visualization of the geometry of a set estimator that uses the convex
hulls of the observed prototypes. This visualization illustrates that, to construct a mixture
with mixture vector y and a proportional contribution of the first source that is equal
to inf(X1), the source vectors c∗2 and c∗1 = v1

5 are used. (b) Enclosing of the observed
prototype vectors in discs with radius a. The sets C1 and C2 are estimated by as union
of these discs (shaded areas).

be near one of the observed mixtures. This situation can be encoded by enclosing

each observed prototype vector into a disc with radius a. Subsequently, the sets C1

and C2 are estimated as the union of these discs (see Figure 9.6). The estimator

that is obtained in this manner is called a sparse estimator (for an explanation of

this name, see Section 8.7).

To compute inf(Xk) and sup(Xk), the branch and bound procedure introduced

in Section 8.7 can be used. Table 9.2 presents the results obtained for different

radii a. From this table, we can see that as a goes to zero, the sparse estimate

results in an empty set. However, to verify that this set is empty, only 13 second

order cone programs (SOCPs) needed to be solved whereas a naive approach would

require 5× 7 = 35 SOCPs to be solved. Secondly, the difference between the sparse

estimate and the robust estimate (using the convex hull) can be quite large. For

example, for a = 0.01, the estimates for the infimum are rather different.

9.3. Demonstration: Detecting fraudulent levels

of adulteration in vegetable oils

9.3.1. Problem setting and data

As already suggested in Chapter 7, the adulteration of (pure) vegetable oils such as

for instance mustard oil with (often cheaper) other vegetable oils such as soybean
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Table 9.2: Values obtained for inf(X1) and sup(X1) for the problem visualized in
Figure 9.6 using different radii. Results are presented for the case where C1 and C2 are
defined as the convex hulls of the discs in Figure 9.6(a) (2nd and 4th column) as well as
the case where C1 and C2 are defined as the union of these discs. To compute the values
for the union, the branch and bound method described in Section 8.7 was used. The
number between brackets represents the number of relaxed problems that were solved
during a run of the branch and bound procedure. A dash (-) represents infeasible cases,
i.e. cases were X1 is empty.

Radius inf(X1) sup(X1)

a Convex hull Union Convex hull Union

0.001 0.246 - (13) 0.714 - (13)

0.01 0.230 0.447 (9) 0.729 0.729 (5)

0.05 0.159 0.219 (3) 0.782 0.779 (5)

oil is a common practice. Multiple reasons exist for this adulteration. In some

cases, the adulteration leads to an oil blend with tractable properties (e.g. a good

taste). However, mostly oils are adulterated for economic reasons. Indeed, when

comparing the production costs of a pure high-quality vegetable oil with a blend

of the high-quality (expensive) oil with a cheaper vegetable oil, one often finds a

considerable difference in these costs. When vegetable oils are marketed, some level

of adulteration θ can often be allowed4. However, due to the economic impact,

these allowable levels are sometimes exceeded. To detect these fraudulent cases, a

variety of methodologies and procedures has been developed throughout the past

decades. These methods mainly differ in: the type of (chemical) information about

the oil blends that is required, and the (statistical) methodology that is used to

obtain an estimate of the level of adulteration.

The demonstration in this section fits within the general problem setting described

above. More precisely, we will use our set-estimator to detect fraudulent levels of

adulteration. We use a problem setting borrowed from [115] (notably, this problem

setting is rather popular), where the authors use the fatty composition of vegetable

oils to detect adulteration. In [115], the authors aim to detect adulteration of

mustard seed oil with soybean oil. In their study, the authors collected (mainly

from literature) more than 200 fatty acid profiles mostly of oils extracted from

oil-producing Brassica species and soybean oil. Fatty acid profiles consist of the

mass percentages of the following 13 fatty acids: C16:0, C16:1, C18:0, C18:1, C18:2,

C18:3, C20:0, C20:1, C20:2, C22:0, C22:1, C24:0 and C24:1. In our experiments, we

use these fatty acid profiles to represent the mixtures. To that end, all profiles of

Brassica species and soybean oils (197 in total) were extracted. Moreover, following

the original manuscript, the oils were classified in three groups: Brassica oils with

a high erucic acid content (C22:1 content higher than 12 %, 138 observations),

4 The allowed adulteration level is expressed as the relative amount of adulterating oil to the total
amount of oil in a blend (in this work mass percentages).
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Brassica oils with a low erucic acid content (37 observations) and soybean oils (22

observations).

9.3.2. Estimating the level of adulteration

The main goal consists of detecting, for a given oil blend, whether the adulteration

level (the adulterating oil is soybean oil) is above a given threshold. Let the sources

be Brassica oils with a high erucic acid content (source 1), Brassica oils with

a low erucic acid content (source 2) and soybean oil (source 3). Moreover, let

x1, x2 and x3 be the proportional contributions of these sources to the oil blend

with observed mixture vector y. For a given threshold θ, this problem reduces to

assessing whether x3 > θ. However, following the philosophy of our set estimator,

such an assessment is often non-trivial (at least not without making additional

assumptions). The representation of the (pure) oils (the sources) by means of their

fatty acid profiles can be used to construct set-based descriptions of the three pure

oils. Therefore, let Ci (with i = 1, 2, 3) be defined as a subset of R13 that contains

the representation of all pure oils that belong to source i. Moreover, let y be the

mixture vector of a given oil blend. For a fixed threshold θ, we know that

(i) If θ < inf(X3(y, C1, C2, C3)) the adulteration level x3 of y is above θ.

(ii) If θ > sup(X3(y, C1, C2, C3)) the adulteration level x3 of y is below θ.

(iii) If θ ∈ X3(y, C1, C2, C3) it can not be concluded whether the adulteration

level x3 is above or below the threshold θ.

Naturally, the usefulness of this procedure strongly depends of the expressiveness

of the sets C1, C2 and C3. Indeed, when these sets contain little information

that can be used to discriminate the components in the mixture, the interval

X3(y, C1, C2, C3) can become too wide to be useful in practice.

Unfortunately, the sets C1, C2 and C3 are unknown. Additionally, we are only

given a (potentially noisy) observation ỹ of the mixture vector y. The data

described before can be used to obtain estimates Ĉ1, Ĉ2 and Ĉ3 (for example by

taking the convex hull). Moreover, the observed mixture vector ỹ can be used as

a substitute for y. Subsequently, X3(ỹ, Ĉ1, Ĉ2, Ĉ3) can be used in the decision

process above.

Hereafter, several experiments are described in which our set estimator is applied

to obtain an interval estimate of the adulteration level of soybean oil in an oil

blend. All experiments were performed on a standard desktop computer (Intel

Dual Core with 4Gb RAM). Moreover, in the following experiments a single run of

a solver never took more than 15 seconds to achieve convergence (except for the

B&B procedure, which takes about 15 minutes to complete). It should be noted

that all data were centered and scaled (to ensure a sample variance of one for each

fatty acid).
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Figure 9.7: (a) Visualization of a sample (by means of a histogram) of inf(X3) (sample
size 200) for Experiment 1. (b) Visualization of a sample (by means of a histogram) of
sup(X3) (sample size 200) for Experiment 1.

Experiment 1. In a first experiment, the convex hulls of the fatty acid profiles

(referred to as the observed prototype vectors) in the three datasets are used to

estimate C1, C2 and C3. To obtain a mixture vector y, from each source, an observed

prototype vector was randomly selected. Let C1, C2, C3 denote the random variables

that represent the observed prototypes that were selected. Subsequently, the vector

of mixing proportions is generated, by sampling from a uniform distribution over the

simplex with the constraint that x3 = 0.2. Let the random vector X = (X1,X2,X3)

represent these mixing proportions. y is now simulated using the LMM. Let Y be

the random mixture vector:

Y = X1 C1 + X2 C2 + X3 C3 .

The histograms in Figure 9.7 visualize a sample of the random variable

inf(X3(Y, Ĉ1, Ĉ2, Ĉ3)) and sup(X3(Y, Ĉ1, Ĉ2, Ĉ3)) with a sample size of 200. The

histograms in these figures can be interpreted as approximations of the probability

density functions of the random variables they were sampled from.

Based on Figure 9.7 we argue that the set estimator is useful in cases that are

representative for the experimental setup that was used. Indeed, when we choose

θ = 0.25 we can see from Figure 9.7(b) that the majority of the simulated blends

(where the adulteration level was 0.2) will be considered non-fraudulent. In

approximately 10% of the cases, the test will be inconclusive. Similar conclusions

can be made when we choose θ = 0.15. Here most (approximately 95%) of the

simulated samples will be considered fraudulent.

Experiment 2. Unfortunately, the simulation study above is not representative

for most real-life applications. There are at least two problems with the procedure

above. Firstly, it is assumed that the observation of the mixture vector is free of

noise. Secondly, the prototype vectors that are used to create a real-life mixture may

not be included in the datasets. To investigate the influence of these shortcomings,
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a second simulation experiment was conducted. The experimental setup of this

experiment was identical to the one in Experiment 1, except for two modifications.

Firstly, the noisy LMM was used instead of the original LMM. Consequently, we

have that

Ỹ = X1 C1 + X2 C2 + X3 C3 + E .

The random noise vector E was chosen to be multivariate normally distributed

with a diagonal covariance matrix. Moreover, the variance of Ei was set to 5% of

the variance of Yi. Secondly, the three observed prototype vectors that were used

to construct ỹ were not used in the estimation procedure of Ĉ1, Ĉ2 and Ĉ3.

In this experiment, for each of 200 repetitions, we obtained X3(ỹ, Ĉ1, Ĉ2, Ĉ3) = ∅.
Based on the discussion in Section 8.6 in the previous chapter, this should not

come as a surprise. Indeed, the dimensionality q of the problem is 13. Comparing

this dimensionality with the number of observed prototypes in class three (23

minus 1 observations), it can be expected that Ĉ3 (which is the convex hull of

these observations) has a very low cardinality (when the cardinality is measured

by means of the volume of Ĉ3). More strongly, it is not unlikely that Ĉ3 is (almost

completely) part of a subspace of R13. As a result, it is unlikely that the extracted

prototype vector will be an element of that convex hull. Consequently, we can

expect that X3(ỹ, Ĉ1, Ĉ2, Ĉ3) = ∅. Similar claims can be made regarding the

influence of the error term.

Experiment 3. The ‘problems’ that were encountered in the previous experiment

can be dealt with in two manners. Firstly, the sets Ĉ1, Ĉ2 and Ĉ3 can be extended

using the ideas presented in the robust version of our set estimator. Secondly,

following the discussion in Experiment 2, we could recognize that (based on the

data that is available) the true dimensionality of the data is smaller than 13 and

reduce the dimensionality. In this experiment, we take the former approach. In

Experiment 4, the latter approach is considered.

In this experiment, we mimic the situation presented in Figure 9.4, with the

exception that we use hyperspheres (with radius a) instead of ellipsoids. The

radius a can be seen as parameter of our method. The choice of a is crucial to the

usability of our set estimator. Indeed, when a is too large, the obtained intervals

will be overly wide, whereas a value that is too small would lead to empty sets.

Therefore, the following heuristic was used to estimate a. For each point in the

dataset, the distance to its nearest neighbor was computed. From these distances,

the maximum was selected. The parameter a was then set equal to this maximum

(a = 1.9). The remaining settings of the experiment are identical to the settings

in Experiment 2. It can easily be seen that this value for a will prevent X3 from

being empty. The histogram in Figure 9.8 visualizes a sample of the random

variable sup(X3(Y, Ĉ1, Ĉ2, Ĉ3)) with a sample size of 200. For each of the 200

runs, the infimum was zero. From Figure 9.8 it can be seen that the intervals that

were obtained obtained are very wide. Unfortunately, the width of these intervals
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Figure 9.8: Visualization of a sample (by means of a histogram) of inf(X3) (sample size
200) for Experiment 3, with radius a = 1.9.

strongly limits the possibility to detect fraudulent blends. Indeed, we can only state

that most of the blends that were made have an adulteration level that is below

70%. As the true adulteration level was only 20%, this is a very weak result.

We argue that the results above cannot be attributed to the potential inadequacy

of our method. On the contrary, these results illustrate that within this limited

setting, we can only make very weak statements regarding the potential fraudulence

of a given blend.

To reduce the width of the estimated intervals, we can reduce the size of the

estimates Ĉ1, Ĉ2, Ĉ3. A simple way to achieve this consists of reducing the radius

a of the hyperspheres. However, it should be noted that this reduction can lead to

estimated intervals that potentially exclude the true adulteration level of 20%. We

argue that the reduction of the radius implicitly adds assumptions to the estimation

procedure. Naturally, when these assumptions do not hold, wrong conclusions can

be drawn. Figure 9.9(a)–(b) shows histograms of the infima and the suprema of

Xk for a = 0.4 (based on 200 runs). It should be noted that 11 of the runs lead

to an empty interval, illustrating that the implied assumptions do not fully hold.

Figure 9.9(a)–(b) (resp. 9.9(c)–(f)) shows histograms of the infima and the suprema

of X3 for a = 0.4 (resp. a = 0.2 and a = 0.15), based on 200 runs. From these

figures, it can be seen that the estimated intervals narrow down. Unfortunately, the

number of cases where X3 = ∅ increases. For a = 0.2, 25 runs resulted in empty

sets. For a = 0.15, this number increases to 54. Moreover, from Figure 9.9(e)–(f),

it can be seen that for a = 0.4, 0.2 or 0.15 there are several cases where the true

adulteration level of 20% is outside the estimated interval. The number of cases

were X3 = ∅ increases as the radius a decreases.
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Figure 9.9: (a), (c), (e) Visualization of a sample (by means of a histogram) of inf(X3)
(sample size 200) for Experiment 3. (b), (d), (f) Visualization of a sample (by means of a
histogram) of sup(X3) (sample size 200) for Experiment 3. For (a) and (b) the radius
a = 0.4. For (c) and (d) the radius is a = 0.2. For (e) and (f) the radius is a = 0.15.
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Figure 9.10: (a), (c), Visualization of a sample (by means of a histogram) of inf(X3)
(sample size 200) for Experiment 4. (b), (d), Visualization of a sample (by means of a
histogram) of sup(X3) (sample size 200) for Experiment 4. For (a) and (b) the number of
retained principal components is k = 6. For (c) and (d) the number of retained principal
components is k = 8.

Experiment 4. We now elaborate on the dimensionality reduction approach

referred to in Experiment 3. Following the discussion in Section 8.6, we choose

to reduce the dimensionality by only considering the first k principal component

directions of the fatty acid data. Naturally, k is a parameter. Interestingly, the

influence of k is similar to the influence of the radius a in Experiment 3. From

several preliminary experiments5, it was concluded that for k < 6, the intervals

that are obtained are unusably wide. On the other hand, for k > 9, the number of

‘mistakes’, i.e. cases where X3 = ∅ or 20% /∈ X3 is above 1/3. Figure 9.10(a)–(b)

(resp. Figure 9.10(c)–(d)) shows histograms of the infima and the suprema of X3

for k = 6 (resp. k = 8), based on 200 runs. It should be noted that, for k = 6 the

number of runs where X3 = ∅ was 28, whereas this number was 60 for k = 8.

Experiment 5. Following the discussion in Section 9.2.3 of this chapter, the

intermediate blends that are implied in Experiments 3 and 4, may require a

(unrealistically) large number of prototypes to be mixed. For example, when k = 6

in the previous experiment and using the geometric interpretation of the problem,

the intermediate mixture may require up to 7 observed prototypes. To reduce

5 The experimental setup was, except for the dimensionality reduction, identical to Experiment 2.
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Figure 9.11: Visualization of a sample (by means of a histogram) of sup(X3) (sample
size 200) for Experiment 5.

this number, the sparse estimator is used in this experiment. The experimental

setting is identical to the one used in Experiment 3 (except for the use of the sparse

estimator). We choose a = 0.3. This value is slightly higher than the optimal one

found in Experiment 3. However, due to the additional constraints implied by the

sparse estimator (resulting from taking the union in stead of the convex hull), this

relaxed form was preferred to reduce the number of cases where X3 = ∅.

Figure 9.11 shows a histogram of sup(X3), obtained using the sparse estimation

procedure. It can be seen, as compared to the previous experiments, that the

suprema that are obtained here are slightly lower. Nevertheless, only few cases

occurred where the true adulteration rate of 20 % was lower than the estimated

supremum. Therefore, we can conclude that the sparse estimator is an interesting

estimator in this setting. Unfortunately, the branch and bound routine that is

needed to compute this interval has a computational demand that is considerably

higher than that of the other approaches. Solving the optimization problems in

Experiments 1–4 takes only a few seconds on a desktop computer, whereas the

branch and bound procedure takes approximately 10 minutes to complete.

9.4. Conclusions and discussion

In this chapter, the use of set-based unmixing procedures was illustrated by means

of an experiment on artificial data as well as a real-life case study (Objective

III.5). From the experiments on artificial data, it is clear that the interval estima-

tor complements the probability distribution estimator and the point estimator.

Moreover, it was illustrated that the robust and sparse variants of the interval
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estimator clearly lead to different estimated intervals. As expected, in medium-to-

high-dimensional settings (such as the case study) the robust and sparse variants

are strongly influenced by the radii (the parameter a) that is used.

From the case study, it can be concluded that (at least in this case), the interval

estimates that are obtained can be useful in practice to detect fraudulent levels

of adulteration in some cases. Nevertheless, from the width of the histograms in

Figures 9.9–9.11 it can be concluded that, when the true adulteration level only

mildly exceeds the allowed adulteration level, the approach will often lead to a

decision which is inconclusive. Depending on the application, this can be considered

as problematic in some cases. However, this potential shortcoming cannot fully be

attributed to the estimation procedure. On the contrary, we argue that the width

of the intervals is the result of a lack of information in the data. As our interval

estimator only makes very few assumptions, it heavily depends on the information

that is present in the data. On the other hand, probability density estimators

(and the resulting intervals) more heavily depend on assumptions. Naturally, these

assumptions lead to more narrow intervals. However, as argued in Chapter 7, the

assumptions that are typically made by probability distribution estimators are

hard to verify. Therefore, the resulting intervals may be highly inaccurate in some

cases. Moreover, the interpretation that can be given to these intervals often differs

from the interpretation that is needed for the application at hand.

It seems that the requirement of sparsity in the solution can lead to more informative

(more narrow) intervals. Interestingly, this can be related to the previous paragraph

as requiring sparsity can be seen as an implicit way of making assumptions. Indeed,

a sparse estimate implies the assumption that the mixture was created by blending

a small number of prototypes. When those assumptions are violated, the resulting

estimated interval may not contain the ‘true’ mixing proportion. Nevertheless, the

assumption that is made here has a clear interpretation. Consequently, the intervals

that are obtained here allow a clear interpretation as well. In Experiment 5, the

mixtures were simulated using prototype vectors that were excluded from the data

that was used to estimate the sets C1, C2 and C3. This means that the assumption

of sparsity (i.e. mixtures can be made using only a limited number of prototypes)

is potentially violated. Nevertheless, the resulting intervals seem to be informative.

This illustrates that the requirement of sparseness seems to be robust towards

slight violations of the assumptions.
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10 Learning to predict compositions:

a machine learning problem

10.1. Introduction

As a starting point of this section, we return to the (introductory) problem setting

of Chapter 2, involving the prediction of the relative amount of water, fat and oil in

a minced meat sample based on the Near Infra Red (NIR) spectrum of that sample

(see Table 10.1). This problem can be classified as a prediction problem. More

precisely, we are interested in constructing a function that maps a NIR spectrum

to a 3-part composition. Stated differently, the meat sample can be represented in

two manners. Firstly, it can be represented by the proportional contributions of a

set of components. Secondly, it can be represented by means of its NIR spectrum.

The prediction problem can then be seen as the problem of finding a link between

the two representations.

Table 10.1: Analysis results of five minced meat samples. The first column shows
the sample number (conform the original dataset). The second (resp. third and fourth)
column shows the relative amount (mass percentages) of water (resp. fat and protein)
in the sample. The masses are expressed relative to the total amount of water, fat and
protein in the sample. The fifth column shows a graphical display of the NIR-spectra of
these samples (wavelength (nm) versus log(1/R)). This dataset is a subset of a publicly
available dataset known as the tecator dataset [2]. The complete dataset contains 240
instances.
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Probably, if it even exists, it would be extremely hard to find a perfect link between

the NIR spectrum of a sample and its composition. This means that it is unlikely

that a function can be found that is capable of predicting the composition of any

given sample using only its NIR spectrum without making mistakes. Mostly, the
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predicted composition of a sample will not be identical to the true composition.

As a result, we will need to tolerate some prediction errors. Naturally, functions

that lead to small prediction errors should be preferred over functions that lead to

large errors.

Within the scope of this dissertation, the (rather trivial) observations above allow

the prediction problem to be recast as an optimization problem. Indeed, from a set

of functions that map a NIR spectrum to a 3-part composition (the search space),

we want to select the function that minimizes the prediction error (the objective

function). Naturally, to transform this loosely described problem into a formal

mathematical optimization problem, several choices need to be made regarding the

set of functions that is considered (e.g. affine functions versus non-linear functions)

and the error measure that is used.

The problem description given above perfectly fits within the field of machine

learning. Consequently, in Part IV of this dissertation, we describe how several

advances in the field of machine learning can be used to predict compositions. The

main focus is twofold. We focus on translating the prediction problem into a formal

optimization problem as well as on solving the resulting optimization problem

in a variety of problem settings. The remainder of this chapter is organized as

follows:

• In Section 10.2, we give a brief introduction to statistical learning theory (the

experienced reader may safely skip this section).

• In Section 10.3, several strategies are presented that can be used to construct

predictive models with compositional outputs.

• In Section 10.4, we experiment with the strategies that were presented in

Section 10.3.

• In Section 10.5, conclusions are presented and discussed.

10.2. A brief introduction to statistical learning

theory

This introductory section groups together several well-known results that can be

found in textbooks1 such as Statistical Learning Theory [116], Pattern Recognition

and Machine Learning [55], Learning with Kernels [117] or Modern Multivariate

Statistical Techniques [118]. It should be noted that this introduction is far from

complete. We mainly focus on the principles that will be used later on in this

dissertation. This introductory section is mainly intended for the reader who is

1 The textbooks referred to hereafter are well known textbooks in the field of machine learning.
Much of the insights that I (the author of this dissertation) have acquired throughout the years
preceding the submission of this dissertation stem from reading those textbooks.
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§10.2. A brief introduction to statistical learning theory

unfamiliar with statistical learning theory, regularization and hypothesis spaces.

The experienced reader can safely skip this section.

10.2.1. The basis of statistical learning theory

Statistical learning theory2 provides a theoretical basis for (the automation of)

inductive inference processes. An inductive inference process mainly consists of

three phases: (1) the observation of a phenomenon; (2) the construction of a model

for that phenomenon; and (3) the use of that model to make predictions. Naturally,

this process is described rather loosely. Statistical learning theory formalizes this

process. As we have seen several times throughout this dissertation, a formalization

often entails several choices, simplifications and assumptions. We elaborate on

these issues hereafter.

As we will only be dealing with prediction problems, we limit this discussion to

that type of problems. In the first phase, the observation of a phenomenon gives

rise to a (multi)set of input-output pairs. In the most general case, the inputs are

elements of some input set X. We do not make any assumptions regarding the

structure3 of X. In a similar way, the outputs are elements of a set Y . As for X,

no additional assumptions are required on Y in the most general case. However, we

limit this discussion to situations where Y is a subset of Rq. We generally denote an

input-output pair as (x,y) ∈ X ×Y . Statistical learning theory assumes that there

exists a probabilistic model that is capable of completely describing the observed

phenomenon. This means that input-output pairs can be modeled as observations

of some random vector (X ,Y) whose sample space is X × Y . Therefore, the link

between several input-output pairs is that they are independent observations of

the same random vector (we say that these observations are i.i.d. or independently

and identically distributed). Notably, the probabilistic model implies that, given

an input x, there is not a single corresponding output, but a multitude of outputs

with conditional probability distribution function ρY|X (· | x).

We now proceed to the modeling step of the inductive process. Note that a random

vector (X ,Y) is completely described by its probability density function ρX ,Y .

Therefore, in the modeling phase, it can be attempted to induce the unknown

probability distribution ρX ,Y using the observations that were made in the first

phase. However, for prediction problems, the approximation of ρX ,Y is not the

ultimate goal. Instead, we are interested in finding a function f : X → Y that can

be used to predict the output that corresponds to an observed input. Therefore,

the result of the modeling phase (phase 2) is such a function. As argued before,

the underlying probabilistic model implies that a single input x often can be linked

2 The starting point of this section is inspired on [119]. A more complete discussion of some of the
principles described here can be found therein.

3 In traditional examples, X is often a subset of Rp. However, X can as well be a set of graphs,
pictures, . . . .
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with a multitude of outputs. As we want to learn a deterministic function f , we

will need to tolerate some errors. More precisely, given an observation (x,y), it is

likely that f(x) 6= y. Naturally, it is desirable that the dissimilarity between f(x)

and y is as small as possible. Therefore, let ` : Y × Y → R+ be a function that

measures the dissimilarity between two elements of Y such that `(y,y) = 0 for all

y ∈ Y . We typically call this function a loss function. Given an input vector x, the

loss function ` can be used to define the risk associated with a prediction ŷ:

∫
Y

`(ŷ,y) ρY|X (y | x) dy . (10.1)

In words, this formula simply measures the expected value of the loss function

when ŷ is used to predict the output of an observed object with input vector x.

Subsequently, writing the formula above as a function of y, the optimal prediction

y∗ can be defined as

y∗ = arg min
ŷ

∫
Y

`(ŷ,y) ρY|X (y | x) dy ,

where we assume that the minimizer is unique. Similarly, the ‘optimal’ prediction

function f∗ : X → Y is defined as:

f∗(x) = arg min
ŷ

∫
Y

`(ŷ,y) ρY|X (y | x) dy . (10.2)

Interestingly, Eq. (10.2) completely defines the optimal prediction function f∗.

However, its computation requires the conditional distribution of Y given X = x

to be known for every value of x. Unfortunately, in most cases, this distribution is

unknown. Instead, we are only given a finite sample of the random vector (X ,Y).

We generally denote that sample (with sample size n) as T = {(xi,yi)}ni=1. The

(multi)set T is often called the training (data)set, as it can be used to build or

train a predictive model. Two options exist to obtain an approximation of f∗ using

dataset T . We elaborate on these options hereafter.

Firstly, T can be used to estimate the conditional distribution of Y given X = x.

Subsequently, this estimate can be used to replace the conditional distribution in

Eq. (10.2). This approximation problem is generally known as a density estimation

problem. For example, a histogram of the observations could be used here to

estimate ρY|X (in some cases).

As a second option, a set of functions H (generally called the hypothesis space)

is defined. For example, H can be the set of affine functions with domain X and

co-domain Y . The risk of a function f ∈ H is defined as:

r(f) =

∫
X×Y

`(f(x),y) ρX ,Y(x,y) dx dy , (10.3)
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Now, let f̃ ∈ H be the function that minimizes this risk, i.e.

f̃(x) = arg min
f∈H

∫
X×Y

`(f(x),y) ρX ,Y(x,y) dx dy (10.4)

= arg min
f∈H

∫
X×Y

`(f(x),y) ρY|X (y | x) ρX (x) dx dy (10.5)

Here, Eq. (10.5) shows the link between Eqs. (10.4) and (10.2). Eqs. (10.3) and

(10.4) still require the joint distribution of (X ,Y) to be known. However, the set

T can be used to estimate the risk of a function f ∈ H (given in Eq. (10.3)) as

follows:

re(f) =
1

n

n∑
i=1

`(f(xi),yi) . (10.6)

This approximation is called the empirical risk. The minimizer f̂ ∈ H of the

empirical risk can be used to obtain a function that can be used to make predic-

tions:

f̂(x) = arg min
f∈H

1

n

n∑
i=1

`(f(xi),yi) .

Hypothesis spaces and regularization

In principle, the risk function r scores the functions in H. Subsequently, the element

of H that has minimal risk can be selected as the optimal prediction function.

However, as the risk function requires knowledge of the joint distribution, it cannot

be used in practice. Instead, the empirical risk is used. Therefore, it is hoped

that the element of H that minimizes the empirical risk re also (approximately)

minimizes the risk r, i.e. f̃ is similar to f̂ . Unfortunately, when the size of H is

large, it is likely that H will contain functions f for which re(f) < re(f̃). In those

cases, the minimizer of re may not be optimal. On the other hand, when H is too

small, it is likely that f̃ and f∗ are very dissimilar.

As a generic approach, we could initially choose H to be a rather large hypothesis

space and, subsequently from this space exclude all ‘unlikely’ functions (i.e. func-

tions for which it is believed that they are bad candidates for building a predictive

model). Theoretical as well as applied work has demonstrated that the elimination

of extremely irregular candidates from H is often beneficial. Therefore, given a

function c : H → R+ that measures the irregularity of the elements of H, and a

scalar λ > 0 we can use {f ∈ H | c(f) ≤ λ} as a ‘restricted’ hypothesis space. This

leads to the following constrained estimator:

arg min
f∈{g∈H|c(g)≤λ}

1

n

n∑
i=1

`(f(xi),yi) . (10.7)
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In the formulation above, highly irregular functions were excluded from the hypoth-

esis space. Alternatively, the selection of highly irregular (or complex) functions

can be avoided by using a so-called regularized empirical risk:

reλ(f) =
1

n

n∑
i=1

(`(f(xi),yi)) + λ c(f) . (10.8)

We now define

f̂λ = arg min
f∈H

reλ(f) .

Interestingly, there exist a strong relationship between the minimizer in Eq. (10.7)

and f̂λ.

It is generally known that when a regularized empirical risk function is used to learn

a function that can be used for prediction, there exists a trade-off between the fit

of the function to the data (expressed by the empirical loss) and the complexity or

regularity of the function (expressed by the magnitude of the norm). Therefore, the

term λ c(f) of the regularized empirical risk is often called the regularization term.

λ is called the regularization parameter. In summary, the regularized empirical

risk function will favor functions that fit reasonably well to the data and have a

low complexity.

Remark. In this section, it was argued that the goal of a predictive modeling

problem exists in finding a function f that minimizes the risk r(f). Naturally, the

loss function that is choosen to define r can have a strong impact on the result. As

the computation of r(f) is infeasible in practice, it was argued that the (regularized)

empirical risk could be used as a criterion to select a function. The discussion

above may suggest that the loss function that is used in the definition of the risk

should be identical to the one that is used to define the (regularized) empirical risk.

However, this is not necessarily the case. There exist plenty examples in which a

better predictive model can be obtained by using a loss function for the empirical

risk that differs from the loss function used to define the risk.

10.2.2. Statistical learning as an optimization problem

Interestingly, the statistical learning framework presented above can be seen as a

(rigorous) optimization problem. Indeed, predictive modeling problems often start

with a loosely described problem setting such as “find a function that optimally

predicts the output variable for new observations”. To formalize this problem,

statistical learning theory assumes that there exists a probabilistic model that fully

describes the observed phenomenon. To arrive at a formal optimization problem,

several other choices need to be made:

(i) A loss function ` : X ×X → R+ has to be defined.
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(ii) The hypothesis space H needs to be defined.

(iii) A regularity criterion c : H → R has to be defined.

(iv) A value for the regularization parameter λ has to be selected.

Given these ingredients, the regularized empirical risk function can be used to trans-

late the learning problem into a formal mathematical optimization problem:

minimize
f∈H

n∑
i=1

`(f(xi),yi) + λ c(f) .

The procedures that can be used to solve the optimization problem above strongly

depend on the choice of the hypothesis space as well as on the loss function used.

For example, let X = Rp and Y = R. In that case the learning problem is a

traditional regression problem. Consequently, we can for instance choose the

squared loss function: `(y, ŷ) = (y− ŷ)2. Moreover, when we choose H as the space

of all affine functions that map X to Y , each f ∈ H can be identified with a vector

(a>, b) ∈ Rp+1 such that f(x) = a>x + b for all x ∈ X. Here, the irregularity of a

function f(x) = a>x + b can be measured by the squared Euclidean norm (also

called the L2-norm) of a, i.e. c(f) = ‖a‖22. When combining all these ingredients,

the following optimization problem is obtained:

M1 : minimize
(a,b)∈Rp×R

n∑
i=1

(a>xi + b− yi)2 + λ ‖a‖22 .

The strategy described above is known as ridge regression [120] and is one of the

most popular regression methods used in practice.

Naturally, there exist other loss function that can be used instead of the squared loss.

A popular alternative is the ε-insensitive loss function: l(y, ŷ) = max(0, |y − ŷ| − ε).
The resulting strategy is known as support vector regression [116]:

M2 : minimize
(a,b)∈Rp×R

n∑
i=1

max
(
0,
∣∣a>xi + b− yi

∣∣− ε)+ λ ‖a‖22 .

Alternatively, we could also use the L1-norm of the parameter vector a as a complex-

ity measure, i.e. c(f) = ‖a‖1 to obtain the following optimization problem:

M3 : minimize
(a,b)∈Rp×R

n∑
i=1

(a>xi + b− yi)2 + λ ‖a‖1 .

This strategy is generally known as lasso regression [121].
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From an optimization point of view,M1 can be solved as an unconstrained smooth

and convex optimization problem. Alternatively, there exists a closed form solution

ofM1, however, this method requires the inversion of a p× p matrix, which can be

computationally demanding. M2 can be transformed into an equivalent linearly

constrained convex quadratic optimization problem [117] that can be solved using

standard optimization software. Lastly, M3 can be transformed into an equivalent

second order cone program [10].

10.2.3. Concluding remarks

In this section, the general framework of statistical learning theory was briefly

described. In part IV of this dissertation, we will often be relying on the theory

that was reviewed in this introductory section.

10.3. Predictive modeling of compositional data

Surprisingly, there exists only a very limited literature on the predictive modeling

of compositional data. Most related work that deals with the modeling of com-

positional data focuses on statistical modeling [1, 5]. In those studies, modeling

is mainly used in the scope of statistical hypothesis testing. As a result, issues

involving regularization and high-dimensional data have (as far as we know) not

been dealt with. Therefore, in the following sections, we present several approaches

that can be adopted.

10.3.1. Approaches to predictive modeling of compositional

data

As a starting point of this section, recall the problem setting presented in Sec-

tion 10.1, where a predictive model needs to be constructed that can be used to

predict the composition of a meat sample from its NIR spectrum. Clearly, the

output space is Y = S3. On the other hand, the input space X is the space

of all NIR spectra. For simplicity, we assume that X = Rp. As a result, the

learning phase should result in a function f : Rp → Sq (with q = 3). Therefore, the

hypothesis space H can be defined as the set of functions f : Rp → S3 that can be

written in the following form:

fi(x) =
exp(a>i x + bi)

1 +
∑q−1
i=1 exp(a>i x + bi)

, for i = 1, . . . , q − 1 , (10.9)

fq(x) =
1

1 +
∑q−1
i=1 exp(a>i x + bi)

,
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where ai ∈ Rp and bi ∈ R. Moreover, this formulation allows for the following

complexity criterion c(f) =
∑q−1
j=1 ‖aj‖

2
2.

Lastly, a suitable loss function needs to be choosen. As the output is a vector of

real values, the component-wise squared loss function could be selected, i.e.

`s(y, ŷ) =

q∑
j=1

(yj − ŷj)2 = ‖y − ŷ‖22 .

This leads to the following optimization problem:

minimize
(aj ,bj)

q−1
j=1∈R(p+1)×(q−1)

n∑
i=1

‖f(xi)− yi‖22 + λ

q−1∑
j=1

‖aj‖22 . (10.10)

Unfortunately, this problem is highly non-convex. Therefore, we can only attempt

to solve it locally. Additionally, the exponential terms can result in numerical

instability. As an alternative, we could attempt to use (a variant of) the multinomial

deviance [122] as a loss function, i.e.

`d(y, ŷ) = −
q∑
j=1

yj log(ŷj) .

The use of this loss function leads to the following optimization problem:

minimize
(aj ,bj)

q−1
j=1∈R(p+1)×(q−1)

n∑
i=1

q∑
j=1

yi,j log(fj(xi)) + λ

q−1∑
j=1

‖aj‖22 . (10.11)

It can be shown that the optimization problem above is convex (see for instance

[10]).

With respect to the discussion in the introductory chapter on compositional

data analysis, it may be argued that a loss function that is used to measure

the dissimilarity between two compositions should respect the main principles

of compositional data analysis. Therefore, we could use the squared Aitchison

distance as a loss function, i.e.

`a(y, ŷ) = da(y, ŷ)2 .

This loss function can be used to construct another optimization problem. However,

recall from Chapter 2 that da(y, ŷ)2 = ‖iE(y)− iE(ŷ)‖22, where iE represents the

isometric log-ratio transform with orthonormal basis E. Therefore, we can use

the (more familiar) squared loss in the transformed space instead of the Aitchison

distance. Moreover, as the sample space of iE(y) is Rq−1 (as opposed to Sq), the

hypothesis space H can be the space of affine vector functions:
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H = {f : Rp → Rq−1 | (∃(A,b) ∈ R(q−1)×p×Rq−1)(∀x ∈ Rq−1)(f(x) = Ax+b)} .

Combining these ingredients, we obtain a multivariate regularized least squares

problem (also called a multiple output least squares problem) [118]:

minimize
(A,b)∈R(q−1)×p×Rq−1

n∑
i=1

‖Axi + b− iE(yi)‖22 + λ

q−1∑
j=1

‖Aj,.‖22 . (10.12)

Let (Â, b̂) be the optimal point of this optimization problem. Naturally, the

function f̂(x) = Âx + b̂ can not be used directly to predict the composition of new

mixtures. Instead, we need to use the inverse log-ratio transform: i−1
E (f̂(x)).

10.3.2. Selecting a loss function

The discussion in the previous sections may raise the question on how to select

a particular hypothesis space, loss function and complexity term. Unfortunately,

there is no direct answer to this question. A lot depends on the application to

which the methodology is applied. With respect to the choice of a particular

loss function, it is advisable to start by choosing an application-oriented loss

function to define the risk r. For example, if an application requires a focus on the

relative information contained in the compositional vector, then it may be worth

considering the Aitchison distance as a loss function. On the other hand, if the

focus is on the absolute, rather than the relative information (even though this

may be questionable), the squared loss could be used.

Secondly, when selecting a loss function that will be used to construct the (regular-

ized empirical risk) objective of an optimization problem, different criteria need to

be considered (see also Remark 1). In particular, properties of the data such as

the size of the dataset, the (assumed) presence of outliers, the complexity of the

resulting optimization problem, and the loss function used to define r can be taken

into account.

To gain insight into some of the differences between the three loss functions proposed

earlier, we will now consider the case where q = 2. Figure 10.1 shows the loss

functions for the isometric tranformation (`a), deviance (`d) and least-squares (`s)

loss functions. This figure illustrates the clear difference between the three loss

functions. In contrast to `s, both `a and `d are unbounded loss functions that

become strongly asymmetric as the values of the labels tend to 0 or 1. Moreover,

`a becomes very steep at the boundaries of [0, 1]. This property makes the learning
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Figure 10.1: A visualization of the loss functions `(y, .): the isometric transformation
with least squaes (`a), deviance (`d) and least-squares (`s) loss functions. The left and
right figure give the loss when the true label vectors are y = (0.5, 0.5) and y = (0.1, 0.9),
respectively (note that `d(y,y) 6= 0, therefore the panels show `d(y, .)− `d(y, (0.5, 0.5)),
resp. `d(y, .)− `d(y, (0.1, 0.9))).

procedure that uses `a sensitive to outliers or noisy datapoints located at the

endpoints of the simplex. Consequently, we could argue that `d and `s are more

robust loss functions, which could result in more stable models.

10.3.3. Selecting the hypothesis space

In the examples presented earlier in this chapter, we mainly used a hypothesis

space of affine (vector) functions (for example in M1) or transformations of affine

functions (for instance Eq. (10.9)). Naturally, several alternatives exist here. For

example, as an extension of a hypothesis space of affine functions, we could select a

space of all mth order polynomials or a spline basis. Alternatively, the hypothesis

space could consist of all possible regression trees [123, 124]. Prior knowledge could

be used to make such a selection. We elaborate on the selection of the hypothesis

space in the following chapters.

10.3.4. Selecting a complexity criterion

In Section 10.2.2, a complexity criterion was introduced as a measure of the

irregularity of a function. However, in a more general form, it can be seen as a

manner to express a prior preference towards some functions in the hypothesis space.

Therefore, the learning process is biased towards functions that are preferred by the

complexity criterion. For example, the L2-norm that is used in M1 and M2 will

result in a function that is biased towards 0p. As a result, this complexity criterion
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introduces some prior belief that the distance between the optimal parameter vector

and 0p is not too large. Naturally, if this prior belief is correct, this approach will

improve the performance.

This reasoning suggests that different types of regularization terms can be used to

include different types of of prior belief or prior knowledge. This interpretation of

the regularization is very popular in a Bayesian approach to predictive modeling

[55]. In the following chapter, different regularization strategies will be applied to

the predictive modeling of compositional data.

10.4. An experimental study of loss functions for

compositional data

In Subsections 10.3.1 and 10.3.2, we made several claims about three loss functions

(`a, `s and `d) that can be used for learning predictive models for compositional data.

In this section, we experiment with the tecator dataset (presented in Section 10.1)

to investigate these claims. More precisely, in this section, predictive models

are learned using these loss functions. The estimation procedures are described

hereafter.

• Minimizing `s: the regularized empirical risk function described in Eq. (10.10)

is minimized. However, instead of using models that are inherently linear

functions of the inputs, the hypothesis space is extended by allowing any

third order polynomial of the inputs. The complexity parameter λ is tuned

using a tuning set (which is a subset of the data used to train the model).

• Minimizing `d: the regularized empirical risk function described in Eq. (10.11)

is minimized. Here as well, the model space is extended by allowing third

order polynomials. The complexity parameter λ is tuned using a tuning set

(which is a subset of the data used to train the model).

• Minimizing `a: the regularized empirical risk given in Eq. (10.12) is minimized.

Here as well, the model space is extended by allowing third order polynomials.

The complexity parameter λ is tuned using a tuning set (which is a subset of

the data used to train the model). Moreover, the orthonormal basis E and

corresponding matrix Φ that are used to define the ilr-transform consists of

the following vectors4:

Φ.,1 =

−
√

2√
2

0

 , and Φ.,2 =

−
√

6

−
√

6

2
√

6

 .

4 This basis was chosen because it is the result of applying the methodology originally proposed
in [7] when introducing the ilr-transform.
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§10.4. An experimental study of loss functions for compositional data

Figure 10.2: The ternary diagram of the tecator dataset.

Subsequently, a separate test set was used to estimate the expected value of

the empirical loss (for each of the three loss functions). Given a test dataset

T ′ = ((x′i,y
′
i))

m
i=1 and a model f : X → S3 three error measures were computed:

(1) the empirical squared loss is computed using
√

1
3m

∑m
i=1 `s(f(x′i),y

′
i) (where

the square root was used to enhance interpretability), (2) the empirical deviance

is computed using 1
3m

∑m
i=1 `d(f(x′i),y

′
i) and (3) the loss function based on the

Aitchison distance is computed using 1
m

∑m
i=1 `a(f(x′i),y

′
i).

The tecator dataset consists of 240 datapoints. Each datapoint consists of a 3-

part composition describing the proportional amounts of fat, meat and water (see

Figure 10.2 for an illustration) of a meat sample as well as the NIR spectrum of that

sample (100 wavelengths). To investigate the influence of the loss function that is

used in the learning process, a subset containing 140 observations was sampled from

the original data set and used to train three predictive models (each model was

trained with a different loss function). Subsequently, the remaining 100 datapoints

were used to evaluate the performance of the model. Each model was evaluated

using the error measures defined above. Lastly, to reduce the influence of the

particular training dataset that was sampled, this process was repeated 100 times.

Table 10.2 reports the arithmetic mean, the standard deviation and the median

of the performance measures for each of these runs. Moreover, Table 10.3 reports

frequency counts on the number of times (out of 100 runs) that a specific learning

strategy outperformed the other strategies for a given performance measure.

When the goal consists of minimizing the performance measure that is based

on `s, it can be seen from Tables 10.2 and 10.3 that the use of `s in the learning

phase outperforms the alternatives. The same conclusion can be drawn in case we

want to optimize the measure based on `d. Here, using `d in the learning phase

outperforms the other methods. It should be noted that the magnitude of the

absolute differences of the performances obtained by the different methods is hard
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Table 10.2: Performance results of 100 repetitions of the learning process. The column
header shows the loss function that was used for learning, the row header shows the loss
function that was used for performance evaluation. The numbers denote : “median (mean,
standard deviation)” of the performances obtained for 100 runs. The numbers in bold
indicate the optimal strategy for each of the performance evaluation measures.

Training

`a `s `d

Testing

`a 0.359 (0.622, 0.663) 1.548 (1.658, 0.913) 0.281 (0.450, 0.508)

`s 0.092 (0.092, 0.025) 0.052 (0.053, 0.015) 0.082 (0.081, 0.023)

`d 0.306 (0.312, 0.027) 0.307 (0.310, 0.020) 0.297 (0.303, 0.023)

Table 10.3: Performance results of 100 repetitions of the learning process. The column
header shows the loss function that was used for learning, the row header shows the loss
function that was used for performance evaluation. For example, the number 4 in the
second row of the first column shows that, when `s is used as a performance measure, in
4 out of 100 repetitions training with `a outperformed the remaining strategies.

Training

`a `s `d

Testing

`a 25 5 70

`s 4 95 1

`d 11 27 62

to interpret. Moreover, due to the skewness of the histograms of the performances

that were obtained, the mean and standard deviation are not very informative.

Nevertheless, when comparing the performance results using the frequency counts

in Table 10.3, it can be concluded that in 95 out of 100 runs, the approach that

minimizes `s outperformed the other methods when the evaluation measure was `s.

Similarly, in 62 out of 100 runs the approach that minimizes `d outperformed the

other methods when the evaluation measure was `d.

When the goal exists of minimizing the performance measure that is based on

`a, it can be seen from Tables 10.2 and 10.3 that the model that is trained by

minimizing the empirical risk based on `d will probably outperform a model that

is trained by minimizing the empirical risk based on `a. This may seem somewhat

counter-intuitive. However, as indicated in Figure 10.2 multiple datapoints in the

tecator dataset are located near the boundary of the ternary diagram (in these

cases the relative amount of fat is very low). Unfortunately, the ilr-transformation

(and the Aitchison geometry in general) is very sensitive to slight variations in

those datapoints. Indeed, when transforming the data using the ilr-transform,

the ratios that are used lead to coordinates that are strongly influenced by small

perturbations of the original dataset, often leading to extreme values. Therefore,

noise or rounding errors in those datapoints strongly influence the learning process.

On the other hand, it was argued that `d is quite similar to `a but can be expected
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to be less sensitive to these extreme points. This can explain the fact that, even

though the performance is evaluated using `a, a strategy that is based on `d can

outperform a strategy that is based on `a.

10.5. Conclusions and discussion

In this chapter, predictive modeling of compositional data was formally introduced

and situated within the field of machine learning. Moreover, we briefly introduced

the main principles of statistical learning theory (we will be needing some of these

principles in the following chapter). Three loss functions were described that can

be used when learning to predict compositional data and we highlighted the main

differences between these loss functions. Combining the reasoning in this chapter

with the information in the introductory chapter on compositional data analysis,

we conclude that `s and `a represent two ways of looking at compositional data.

While `s focuses on the absolute values of the compositional vector, `a will result

in a predictive model that puts emphasis on the relative information in the data.

With respect to this dichotomy, `d is hard to situate. Nevertheless, it is a valid

loss function that shows some similarity to `a. Moreover, we argued that `d could

be used as a robust approximation of `a.

In the experiments with the tecator dataset, the distinction between `s and `a
reappears. In settings where `a is used to judge the performance of a model, it

seems that a model that is learned using `s performs badly. On the other hand,

when `s is used to judge the performance of a model, it seems that models that

are learned with `a lead to inferior performances. Moreover, the presumption that

`d can be used as a robust approximation of `a seems to be confirmed by these

experiments. In several cases where `a was used to measure the performance of a

model, the model that is learned using `d outperforms the model that is learned

using `a.

Some of the findings in this chapter form the basis for the following chapters. In

Chapter 11, we focus on the construction of predictive models that minimize an

empirical loss function that is based on `a. Due to the close relation between `a
and `d, we focus in Chapter 12 on models that minimize an empirical loss function

that is based on `d. In both chapters, we will be relying on existing principles

and introduce novel ideas that aim to improve the predictive performance of the

“traditional” models that have been used in this chapter.
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11 Incorporating prior knowledge in

multiple-output regression with

kernel-based vector functions

11.1. Introduction

The isometric log-ratio transformation (see Chapter 2) is an interesting tool for

the predictive modeling of compositional data. This transformation allows com-

positional data to be transformed to an Euclidean (coordinate) space. Therefore,

when the initial output space is Sq0 with the Aitchison geometry, the log-ratio

transformation can be used to map the data into an isometric Euclidean space

Rq−1. As a result, the initial predictive modeling problem is transformed into an

equivalent problem in which we want to learn a function f : X → Rq−1. This

problem is generally known as a multivariate regression problem1. Moreover, as

opposed to the predictive modeling of compositional outputs, the modeling of

multivariate (Euclidean) outputs has been studied for some time (the first papers

appearing around 1970). Therefore, we can rely on some well-established method-

ologies from that field. Nevertheless, it should be mentioned that compared to

the univariate output setting, the field is much less mature. Moreover, for many

researchers outside the field of predictive modeling these approaches are mostly

unknown.

This chapter combines several ideas that can be used to learn high-quality predictive

models for vector-valued outputs. More precisely, to obtain these models, we

attempt to incorporate prior knowledge or domain knowledge into the learning

process. We will mainly rely on the framework of [125] for learning vector-valued

functions, introduced in 2005.

The remainder of this chapter is organized as follows:

• In Section 11.2, several approaches to multivariate regression are briefly

reviewed.

• In Section 11.3, several types of prior knowledge in the multivariate regression

setting are discussed.

• In Section 11.4, an approach to the inclusion of prior knowledge is discussed.

• In Section 11.5, several computational aspects are considered.

1 Here multivariate refers to the fact that the output space exists of (multivariate) vectors as
opposed to traditional (univariate) scalar outputs.
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• In Section 11.6, numerical experiments are presented that illustrate the

potential of our approach.

• In Section 11.7, conclusions are presented and discussed.

11.2. Multivariate regression approaches

This section contains some background on multivariate regression, as well as several

personal insights.

11.2.1. Notation and ridge regression

X will denote the input space, Y = Rq will denote the q-dimensional Euclidean

output space and ρX,Y will denote a joint distribution over the input-output space.

Unless stated differently, we will assume that X = Rp. Similar to many existing

studies, we focus on learning a model that obtains optimal predictive performance

in terms of label-wise mean squared error. This implies that one intends to find a

q-dimensional vector function f∗ that minimizes the expected loss

f∗ = arg min
f∈H

∫
X×Y

q∑
j=1

(yj − fj(x))
2
ρX,Y (x,y)dxdy ,

over a hypothesis space H of vector functions f with fj : X → R the j-th

component of the vector function and y = (y1, ..., yq)
>. In practice ρX,Y is

unknown and an approximation of f∗ should be learned from an i.i.d. dataset

{(x1,y1), . . . , (xn,yn)} ⊂ X × Y (all vectors are column vectors by convention).

Furthermore, we write Y = (y1, . . . ,yn)> and X = (x1, . . . ,xn)>, if X is a vector

space. Moreover, we will assume that X and Y are centered, i.e. the column-wise

arithmetic mean is zero. For a generic matrix A, Vec(A) denotes the vectorization

of A formed by stacking the columns of A into a single column vector. Additionally,

we denote Vec(A) = Vec(A>). Lastly, given two matrices A and B, we use A⊗B

to denote the Kronecker product.

Now let q = 1 (there is only one output). Let the hypothesis space be the space

of linear functions, with parameter vector a (the constant term is zero due to

the centering). Using squared loss and L2-regularization, we obtain the following

optimization problem:

minimize
a∈Rp

1

n

n∑
i=1

(a>xi − yi)2 + λ ‖a‖22 . (11.1)

The optimal point â of this optimization problem is the well-known univariate

222



§11.2. Multivariate regression approaches

ridge estimator of a [120]. Matrix notation can be used to write down the closed

form solution of this optimization problem:

â = (X>X + nλ Ip)
−1X>Y . (11.2)

Notably, when λ = 0, the resulting estimate is called the ordinary least squares

(OLS) estimate.

11.2.2. An example of multivariate regression

In this section, several popular multivariate regression approaches are described.

However, let us first consider the following simple example of a multivariate

regression setting. Assume that X is a 2× 1 random vector. Moreover, let a∗1 ∈ R2

be a fixed parameter vector such that the 2× 1 random vector Y is2(
Y1

Y2

)
=

(
a∗1,1 a

∗
1,2

a∗1,1 a
∗
1,2

)
︸ ︷︷ ︸

A∗

(
X1

X2

)
+

(
E1
E2

)

where E1 and E2 are independent and identically distributed random variables.

In short, we have that Y = f∗(X ) + E , where f∗(x) = A∗x. Moreover, assume

that we have n i.i.d. observations {(x1,y1), . . . , (xn,yn)} of ρX ,Y at our disposal.

We could fit two separate linear regression models for the first and the second

output. For example, for the first output we can use the ridge estimate â =

(X>X + nλ Ip)
−1X>Y.,1. However, as the models for both outputs are identical,

we could interpret the observations of Y2 as additional observations for Y1. Indeed,

this would allow us to generate a dataset containing 2n instances. Naturally, as

the size of the dataset is doubled, the accuracy of the ridge estimate will improve

as well.

This simple example illustrates that the quality of the predictive function that is

learned can be improved by taking the relationships between the outputs (or the

models corresponding to those outputs) into account. This simple idea is at the

heart of most multivariate regression approaches.

11.2.3. Naive multivariate regression

As an initial attempt to solve problems such as the one presented above, a linear

vector function f̂(x) = Ax could be used to estimate f∗ where A is a q×p parameter

matrix. The multivariate ridge estimator Â of A is the solution of the following

optimization problem:

2 Note that A∗1,. = A∗2,..
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minimize
A∈Rq×p

1

n

n∑
i=1

‖Axi − yi‖22 + λ

q∑
j=1

‖Aj,.‖22

This optimization problem has the following closed form solution: Â> = (X>X +

nλ Ip)
−1X>Y. Unfortunately, it can be shown (see for instance [118]) that each

of the columns of Â> can be computed using only the information contained in

X and the corresponding column of Y. Therefore, this approach does not exploit

potential relationships or dependencies between the outputs. As a result, we call it

a naive multivariate regression approach.

11.2.4. The nature of multivariate regression

In literature, there exist several methods that try to take relationships between

outputs into account. Most of these methods use a form of regularization to

exploit dependencies between the outputs. Recall from the previous chapter that

L2-regularization forces the entries of Â to be small. Therefore, L2-regularization

can be seen as a way to encode our prior knowledge that the true model f∗ can

be approximated well by a linear model of which the coefficients are close to

zero. Now, let us return to the illustration from the previous section. To encode

that the first and the second row of A∗ are highly similar, a suited complexity

criterion could be used. For example, the squared norm ‖A1,. −A2,.‖22 could be

used to measure the complexity of A. Such a regularization term would encode our

knowledge that the true model can be approximated well by a model that has highly

similar coefficients for both outputs. Naturally, the information that these rows are

(approximately) equal is typically not given in practice. However, this information

is partly contained within the sample covariance matrix of Y. Therefore, dataset-

specific complexity criteria can be derived from that matrix. Most multivariate

regression methods can be shown to fit within the general framework described

here.

Below, a procedure is described that is rather frequently used to solve multivariate

regression problems. Interestingly, most variants of this method can be shown to fit

withing the regularization framework described before. We will be using a similar

procedure later in this chapter.

1. Construct a q × s transformation matrix U (typically s ≤ q) such that the

columns of Ỹ = YU are (approximately) uncorrelated and preferable can be

predicted easily using the data in X (we call the resulting variables latent

variables).

2. Build s univariate regression models to predict the s latent variables inde-

pendently. Let f̃ be the resulting vector function.
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3. In the prediction phase, given a new observation x, first compute ỹ = f̃(x).

Secondly, use the inverse of the transformation applied in the first step to

obtain ŷ

11.2.5. Literature on multivariate regression

In this section, we review several multiple output regression methods. Multiple

output regression has been extensively studied in statistics, where (often) an

underlying linear statistical model is assumed:

Y = AX + E , (11.3)

with x (resp. y) a p× 1 (resp. q× 1) real-valued random vector, A = (a1, . . . ,aq)
>

a (fixed) q × p parameter matrix and E a q × 1 random noise vector. The learning

procedure then results in an estimate Â of A.

A suboptimal way of handling this problem consists of neglecting the multivariate

nature of Y and learn q independent models by optimizing the empirical least

squares on the training data (X,Y). This gives the OLS estimate Ã = (ã1, . . . , ãq)
>.

To dominate the OLS estimate in terms of predictive power, most multivariate

regression methods provide an estimate Â by regularizing Ã – see e.g. [126] for a

detailed discussion. Examples of such methods are reduced-rank regression [127],

FICYREG [128] and the Curds & Whey procedure [126], where Â is typically

a low-rank approximation of Ã. As an explanation for the increased predictive

performance of such methods, often a connection with James-Stein estimation is put

forward. Other methods, such as 2-block partial least squares [129], latent variable

methods [130] and the use of weight sharing with neural networks can be enlisted

here as well. Even though their behavior has been less analyzed theoretically, they

tend to imply a regularizer that exploits the multivariate nature of the data.

Apart from an obvious extension from linear to nonlinear models, modern machine

learning algorithms often adopt very similar mechanisms to outperform the baseline

of learning a model for every output independently. One of these methods is stacking,

a generic approach that has been mainly applied to the related setting of multi-label

classification – see e.g. [131, 132]. This method adopts a two-phase procedure.

Independent regression models are fitted in a first phase for every output, and the

resulting predictions are taken as features in a second regression phase, thereby

exploiting potential dependencies between outputs. Notably, the Curds & Whey

procedure can be seen as a special case of stacking.
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11.2.6. Kernel-based vector-valued functions

Kernel-based scalar functions

In the previous section the hypothesis space was often chosen to be a space of affine

functions of the (real-valued) inputs. This situation is rather limiting for at least

two reasons. Firstly, there is a clear restriction on the type of functions that can

be learned (i.e. only affine functions). Secondly, the input space is required to be

a real coordinate space. Kernel-based approaches (see for instance [117]) can deal

with both limitations. Roughly speaking, kernel methods provide a flexible way of

constructing hypothesis spaces. As these spaces are equipped with an inner product

these hypothesis spaces are generally called Hilbert spaces. We now elaborate

on a specific type of Hilbert spaces that will be used extensively hereafter, i.e.

reproducing kernel Hilbert spaces. As a starting point, we define a positive definite

kernel

Definition 11.1 (Positive Definite Kernel (adapted from [117])). Let X be a

nonempty set. A symmetric function

κ : X ×X → R
(x,x′) 7→ κ(x,x′)

is a positive definite kernel if for all m ∈ N and all x1, . . . ,xm ∈ X, we have that

the m×m matrix K, where Ki,j = κ(xi,xj), is positive definite.

Now, let k : X × X → R be a positive definite kernel. This kernel can be

used to define a Hilbert space H of functions. Firstly, given arbitrary m ∈ N,

α1, . . . , αm ∈ R and x1, . . . ,xm ∈ X, we take linear combinations of the form

f(.) =

m∑
i=1

αi κ(.,xi) .

The set H contains all functions of this form (i.e. for arbitrary m, αi and xi).

Additionally, given

f(.) =

m∑
i=1

αi κ(.,xi) , and g(.) =

n∑
j=1

βj κ(.,x′j) ,

the following bilinear form can be used as inner product:

〈f, g〉H =

m∑
i=1

n∑
j=1

αiβjκ(xi,x
′
j) .
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Moreover, we have that

〈f, f〉H = ‖f‖2H =

m∑
i,j=1

αiαjκ(xi,xj) .

Lastly, it can be shown (see for instance [117]) that 〈., .〉H is an inner product.

Moreover, we have that

〈κ(.,x), κ(.,x′)〉H = κ(x,x′) , (11.4)

which is called the reproducing property of the kernel. Due to that, H is often

called a reproducing kernel Hilbert space.

Even though the derivation above is interesting from a theoretical point of view, the

elements of H may be infinite sums. As a result, it is hard to derive an optimization

procedure that can be used to search in that type of hypothesis space. However, in

a lot of cases, the element of H that optimizes a regularized empirical loss function

can be written as a (finite) weighted sum of kernel function evaluations in the

training points. The theorem stating this property is known as the representer

theorem [117, 133].

Theorem 11.1. Let H be a kernel Hilbert space with positive definite kernel κ, `

a loss function and Ω : R→ R a strictly increasing function, we have that for any

given dataset {(xi, yi)}ni=1 ∈ (X × R)n the function f ∈ H that minimizes

n∑
i=1

`(f(xi),yi) + λΩ(‖f‖H) ,

admits a representation of the form

f(x) =

n∑
i=1

αiκ(x,xi) ,

where α1, . . . , αn ∈ R.

Kernel-based vector functions

The theory of reproducing kernel Hilbert spaces (RKHSs) for vector-valued func-

tions [125] extends the well-known scalar RKHSs. Most concepts of scalar RKHSs

have close parallels in the vector-valued case1. The most important difference

is the fact that the kernel function is matrix-valued, i.e. K : X × X → Rq×q,
where K(xi,xj) is a positive semi-definite matrix for any xi,xj ∈ X. To stress

1 We provide only some necessary concepts. For a recent more detailed introduction to the topic,
see for instance [134, 135] and the references therein.
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the similarity with the scalar case, K can be described by a scalar kernel g :

(X × {1, . . . , q})2 → R that acts jointly on the objects xi and xj and the output

indices r and s ∈ {1, . . . , q} [136, 137],

(K(xi,xj))r,s = g((xi, r), (xj , s)) .

Recall that this type of joint input-output kernel differs from the traditional joint

kernels encountered in structured output prediction, because only the output indices

are used in contrast to considering the full output space. A vector valued RKHS

implied by a kernel K is a space H of vector functions f : X → Rq that can be

written as

f(.) =

∞∑
i=1

K(x′i, ·)ci, x′i ∈ X , ci ∈ Rq ,

where the inner product 〈·, ·〉H in H has the reproducing property.

For a given dataset, the empirical L2-regularized squared error can be written as

rE(f) =

q∑
j=1

n∑
i=1

1

n
(fj(xi)− yi,j)

2 + λ ‖f‖2H . (11.5)

The minimizer of rE with respect to f is given by (an extension of) the representer

theorem [137]

f(x) =

n∑
i=1

K(xi,x)ci , (11.6)

where ci ∈ Rq are obtained as

c∗ = (K(X,X) + nλIqn)−1y∗ . (11.7)

Here, c∗ = Vec((c1, . . . , cn)) is an nq vector, moreover y∗ = Vec(Y) and K(X,X)

is a block (Gram) matrix

K(X,X) =


K1,1(X,X) · · · K1,q(X,X)

...
...

Kq,1(X,X) · · · Kq,q(X,X)


where block Kr,s(X,X) is an n× n (scalar) Gram matrix

(Kr,s(X,X))i,j = g((xi, r), (xj , s)) ,

where g is defined as before.

Eq. (11.6) is generally called the dual solution of the learning problem. The vectors

ci are called the dual parameter vectors.
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11.3. Prior knowledge for multivariate regression

In this section, we further specify the three types of prior knowledge. ‘Prior knowl-

edge’ is a very broad term. As such, we start by specifying what we mean with the

three types of prior knowledge described before.

Output-output relations. We can consider a setting where the output space

has the form Y = Y1 × . . .× Yq and prior knowledge allows to map each output

Yj , j = 1, . . . , q, to a (meta-)feature space S with inner product 〈·, ·〉S . This inner

product can be used to describe the similarity between outputs according to this

embedding. For a set of q outputs, let s1, . . . , sq ∈ S denote the representation of

these outputs in S. The inner products (or similarities) are summarized in a q × q
positive definite matrix S where

Sk,l = 〈sk, sl〉S .

As an example, in multiple output regression problems where a set of meta-features

describing the outputs is available, the inner product between these features can

be used to construct S. However, S can be more general than this. Indeed, any

valid kernel that provides a mapping S × S → R can be used here. For instance,

when the relatedness between outputs can be described by a graph3. Let us also

remark that the relatedness of a pair of outputs is often described through the

covariance between several observed values for these outputs. In terms of prior

knowledge, S can be seen as (an approximation of) the population-level covariance

between outputs. Indeed, often such a covariance matrix can be considered to

describe useful dependencies between outputs. However, as we will show in the

experimental section, thoughtless use of such a covariance matrix can deteriorate

the predictive performance.

Input-output relations. Information about which features are likely to play a

key role for predicting certain outputs can be very helpful to steer the learning

process. In this chapter, we will use output-dependent transformations of the input

space to represent prior knowledge on input-output relations. Since we will be

dealing with kernel methods, this leads in the dual form to the use of an output-

dependent kernel. As such, we will define a set of kernels κ1, . . . , κq : X ×X → R.

3 For example, consider the case where the outputs are the concentrations of a set of metabolites. A
metabolic network can be used to derive relationships between these metabolites. More precisely,
the metabolites can be represented as the nodes of a graph and the presence of a relationship
between two metabolites can be encoded by means of an edge. The resulting graph can be used
to measure the overall relatedness of the metabolites and define a mapping of the metabolites
into a (meta-)feature space. The diffusion kernel [138] implies such a mapping and can be used
to encode the domain knowledge (the information from the metabolic network) into the learning
problem.

229



Chapter 11. Incorporating prior knowledge in multiple-output regression

For each output, the learning scheme should allow the corresponding kernel to

dominate the learning process. In addition, output-independent kernels can be

used, as if no prior knowledge was available.

Input-input relations. In the spirit of [139], we can consider a setting where the

feature space has the form X = X1 × . . .×Xp and prior knowledge allows to map

each feature Xj , j = 1, . . . , p, to a meta-feature space M with inner product 〈·, ·〉M .

Let mk and ml ∈ M be the representations of Xk and Xl, then the similarity

between Xk and Xl can be expressed as 〈mk,ml〉M . Combining all pairwise inner

products results in a positive definite matrix M with entries Mk,l = 〈mk,ml〉M .

In practice, prior knowledge can be present explicitly by means of meta-features.

More general, a kernel function that maps pairs of features to a real value can

be used as well. When X = Rp one might use the sample covariance matrix (or

a smoothened version thereof) for M . This would mean that the embedding of

a feature is obtained by observing its value for several test points. When the

Mahalanobis distance is used as a distance measure on the input space, this is

exactly what is happening. Once more, thoughtless use of such a covariance matrix

can deteriorate the predictive performance.

11.4. Including prior knowledge in kernel-based

vector-valued functions

We will use the kernel function K to include the three types of prior knowledge

defined before. In what follows, we will see that all three types of prior knowledge

can be encoded into a kernel of the form

K(xi,xj) =

m∑
l=1

κ(xi,xj)Bl , (11.8)

where κ : X × X → R is a scalar kernel and Bl is a positive definite matrix as

defined below. In what follows, we describe how the three types of prior knowledge

can be incorporated in such a kernel.

11.4.1. Input-input knowledge

As this type of prior knowledge is present in single output-learning as well, we can

use results from the extensive literature on prior-knowledge incorporation for single

outputs. The prior knowledge that can be available is often very application-specific

and we will provide several examples in the experimental section. However, for now

assume that this prior knowledge leads to a scalar kernel κ : X ×X → R.
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11.4.2. Output-output knowledge

The separable kernel4

K(xi,xj) = κ(xi,xj)B , (11.9)

where B is a (fixed) positive semi-definite matrix is a simple construction to

transform a scalar kernel into a matrix-valued kernel. It turns out that a lot of

literature about matrix-valued kernels leads to kernels of this type (see [134] for

an extensive overview). It is clear that, for this kind of kernel, the dependencies

between the outputs are contained within B. As prior knowledge on output-

output relations allows to define a positive definite matrix S (see Section 11.3) that

provides a rough estimate of these dependencies, we may set B = S. However, even

though this approach leads to a valid kernel, it remains to be seen whether the

resulting kernel effectively captures our prior knowledge. In the remainder of this

paragraph, we present several results (partly theoretical, partly based on simulation

experiments), that can be used to gain insight into this problem. The goal of the

discussion presented hereafter is to compare the quality of several strategies that

can be adopted to choose B.

We assume the following multivariate (statistical) model :

Y = A∗ X + E (11.10)

= f∗(X ) + E ,

where X is a p-dimensional normally distributed random vector with E[X ] = 0p
and cov(X ) = Σ and E is normally distributed with E[E ] = 0q and cov(E) = σ Iq.

A∗ is a (fixed) q × p matrix.

For a given dataset T containing n independent observations of (X ,Y), and a

hypothesis space H implied by the matrix-valued kernel function K(xi,xj) =

κ(xi,xj)B, the minimizer of the empirical L2-regularized squared error defined

in Eq. (11.5), i.e. f̂ = arg minf∈H rE(f) is used to estimate f∗. Subsequently, to

measure the quality of f̂ , the risk is used

r(f̂) =

∫
X×Y

q∑
j=1

(
yj − f̂j(x)

)2

ρX,Y (x,y) dx dy .

Naturally, the estimate f̂ and the risk r(f̂) depend on the training dataset T .

However, as T consists of i.i.d. observations of (X ,Y), this dataset can be interpreted

as a random variable as well. Therefore, an interesting measure of the quality

of an estimation procedure can be obtained by computing the expected value of

4 Separable kernels are, following [135], matrix-valued kernels that can be written in the form
presented in Eq. (11.9). These kernels are called separable as they can be written as a product
of a scalar kernel (encoding the relatedness between the inputs) and a matrix (encoding the
dependencies between the outputs).
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r(f̂), denoted E[r(f̂)] where the expectation runs over all training datasets of size

n.

In this study, we let κ(xi,xj) = x>i xj . In this case, the implied hypothesis space

H is a set of linear functions. Computing E[r(f̂)] in this setting is often referred to

as a random design analysis (see for instance [140] for an analysis in the univariate

case). Unfortunately, this type of analysis is rather complicated. Therefore, we

further restrict ourselves to cases where the sample covariance matrix of the sample

is identical to the population covariance matrix, i.e. X>X = nΣ. This case is

often referred to as a fixed design analysis. Moreover, it can be shown that (see for

instance [140]) the risk associated with the minimizer of rE is not affected by a

rotation of the input space. Therefore, we can, without loss of generality assume

that Σ is a diagonal matrix. The diagonal elements are equal to the eigenvalues of

Σ and are denoted γ1, . . . , γp.

Now, let f̂ be the (random) minimizer of the L2-regularized risk, with K(xi,xj) =

x>i xjB and given λ > 0. Moreover, let UDU> be the eigendecomposition of B

such that columns of U are the eigenvectors of B. In that case, we have that

E[r(f̂i)] =
σ2

n

q∑
j=1

U2
i,j

p∑
k=1

(
γk

γk + λ
Dj,j

)2

︸ ︷︷ ︸
variance

+

p∑
k=1

γk

 q∑
j=1

(
γk

γk + λ
Dj,j

− 1

)
Ak,.U.,jUi,j

2

︸ ︷︷ ︸
bias

. (11.11)

The technical details concerning the derivation of this equation are given in Ap-

pendix 11.A. As indicated in this equation, E[r(f̂i)] is decomposed into a part that

can be attributed to the bias of the procedure and a part that can be attributed

to the variance of the procedure. This formula can be used to investigate the

performance of a specific strategy for choosing B. Figures 11.1 and 11.2 visualize

several results obtained with this formula. More precisely, to obtain these figures,

the statistical model given in Eq. (11.10) was used with:

Σ =

(
4 0

0 10

)
, σ = 1 , n = 10 , A = (a1,a2)> ,

a1 =

(
1

2

)
, a2 =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
a1 .

The rotation angle θ guides the similarity between the parameter vectors for the
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two outputs. It can be seen that, for θ = 0, we have that a1 = a2. On the other

hand, for θ = π/2, the parameter vectors are orthogonal, whereas for θ = π we

have that a1 = −a2. Finally, it must be noted that E[r(f̂1)] is a function of the

regularization parameter λ. As Figures 11.1 and 11.2 are used to compare several

strategies, each strategy should have its own ‘optimal’ value for λ (for each θ).

Therefore, for every rotation angle and every method, the value of λ that minimizes

E[r(f̂1)] was computed (using a bisection search).

The green lines in Figures 11.1 and 11.2 represent the case where B = cov(Y).

On the other hand the blue lines represent the case where B = cov(Y) − cov(E)

and the red lines represent the case where the models are learned independently.

From Figure 11.2 it can be seen that, when both parameter vectors are highly

similar, including prior knowledge into the learning process is capable of reducing

the expected error E[r(f̂1)]. Moreover, at the cost of a slight increase in the bias,

these strategies allow for a drastic reduction of the variance as compared to learning

both models independently. When the models are very dissimilar (around θ = π/2)

the use of the covariance matrices does not lead to a decrease in the expected error.

Moreover, there is a clear symmetry in the effect of the rotation angle.

Lastly, the black lines represent the situation where B is not given a priori, but needs

to be estimated from data. In this study, we used B = 1
nY>Y. Unfortunately,

we were unable to derive an analytical expression for this error. Therefore, a

simulation experiment was set up in which X and E (the matrix of error terms)

were sampled from bivariate normal distributions (mean and covariance matrices

were equal to the matrices used for the other experiments). For each θ, we averaged

over 10000 repetitions. From Figures 11.1 and 11.2, it can be seen that estimating

B by means of the sample covariance matrix of the outputs is only beneficial

when the parameter vectors of both outputs are highly similar. For all other cases,

learning the outputs independently leads to a smaller error. However, it should be

noted that, as the number of outputs increases, the benefit from using multivariate

regression methods (as compared to univariate variants) may increase as well. For

a large number of outputs, the sample-based estimate of B may outperform the

independently learned models in a number of settings. However, we were unable to

verify this assertion in a quantitative manner.

11.4.3. Input-output knowledge

Recall the example from Section 11.2, where the models of both outputs were

identical. We now consider the opposite case, where the relationship between the
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0

Figure 11.1: The expected error E[r(f̂1)], decomposed in a bias and a variance part,
according to different strategies for determining B.
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Figure 11.2: The expected error E[r(f̂1)] according to different strategies for determining
B.
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models is very weak, i.e.(
Y1

Y2

)
=

(
a∗1,1 0

0 a∗2,2

)
︸ ︷︷ ︸

A∗

(
X1

X2

)
+

(
E1
E2

)
.

The remainder of the experimental setup remains the same.

From this model, it can be seen that Y1 only depends on the value of the first input

and Y2 only depends on the value of the second input. This type of knowledge

can be incorporated into the estimation procedure of A∗ by using a matrix-valued

kernel of the following form:

K(x,x′) =

(
κ1(x,x′) 0

0 κ2(x,x′)

)
,

with κ1(x,x′) = x1 x
′
1 and κ2(x,x′) = x2 x

′
2. According to the representer theorem,

the minimizer of the L2-regularized squared loss (Eq. (11.5)) for this kernel can be

written as

f(x) =

n∑
i=1

(
κ1(x,x′) 0

0 κ2(x,x′)

)(
ci,1

ci,2

)
,

From this construction, it is clear that the model that is learned will respect our

prior knowledge. Naturally, this example is rather extreme. Therefore, let us

assume a more general case where both models can share information. This can be

accomplished by using the following kernel:

K(x,x′) = (κ1(x,x′) + κ2(x,x′)) B +

(
κ1(x,x′) 0

0 κ2(x,x′)

)
.

Notably, this kernel can be rewritten as follows:

K(x,x′) = κ1(x,x′)

(
B1,1 + 1 B1,2

B2,1 B2,2

)
+ κ2(x,x′)

(
B1,1 B1,2

B2,1 B2,2 + 1

)
.

We now generalize and parametrize this approach. Assume that, for a multivariate

output regression problem consisting of q outputs, prior knowledge of the two types

described above leads to kernel κ and matrix B. If we additionally possess of

output-specific knowledge expressed through the kernels κ1, . . . κq, the following
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kernel combines all predefined sources of prior knowledge:

K(xi,xj) = κ(xi,xj)B + α

κ1(xi,xj)


B1,1 + γ · · · B1,q

...
...

Bq,1 · · · Bq,q



+ . . .+ κq(xi,xj)


B1,1 · · · B1,q

...
...

Bq,1 · · · Bq,q + γ


 , (11.12)

where α and γ are two parameters. The values of α and γ determine the extent to

which output-specific prior knowledge is incorporated into the learning procedure.

Firstly, when γ is large compared to κ(xi,xj) and the entries in B, and α ≈ 1,

outputs are learned independently, and each output only uses its output-specific

kernel. Secondly, when γ is large compared to κ(xi,xj) and the entries in B and

α ≈ 1/γ, the output-specific kernels are used separately for each output but outputs

are related through the first term κ(xi,xj)B. Thirdly, when γ is in the order of

magnitude of the entries in B and α ≈ 1, the output-specific nature of κ1, . . . , κq
is somewhat reduced, and the kernels are shared among outputs. As a special case,

when γ = 0, no output-specificity is used, as (11.12) can be written as k̃(xi,xj)B,

where k̃(xi,xj) = κ(xi,xj) + α(κ1(xi,xj) + . . .+ κq(xi,xj)).

11.5. Computational aspects

11.5.1. Directly computing the dual parameters

Optimizing the L2-regularized squared error in Eq. (11.5) leads to an optimization

problem for which the closed form solution in the dual form is given by Eq. (11.7).

However, the closed form solution requires the inverse of (K(X,X) + nλIqn) to

be computed. Unfortunately, as K(X,X) is an nq × nq matrix, the complexity

of computing this inverse is of the order O(q3n3), which is too expensive for

many real-life datasets. Furthermore, when K(X,X) is non-sparse, the amount of

computer memory required to store this matrix (O(q2n2)) can become excessive

even for medium-sized datasets. Fortunately, by exploiting several mathematical

properties of the kernel function that we proposed, more efficient procedures can be

derived to compute c∗. For separable kernels of the form κ(xi,xj)B, Baldassarre

et al. [141] provide a simple procedure that avoids the explicit computation of

K(X,X), leading to a complexity O(q3 + n3), making the method applicable in

practice. However, their procedure cannot be applied to kernels of the form given

in (11.8). As a result, this procedure can not be used to solve learning problems

that use (11.8) in a computationally tractable manner. Therefore, in the following
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paragraphs we focus on developing a procedure that can be used to fit models that

use (11.8).

11.5.2. An efficient conjugate gradient procedure

In what follows, we derive a conjugate gradient method that can be used to

obtain an accurate approximation of c∗ in an efficient manner, both in terms of

memory requirements and computational complexity, for kernels of the form given

by Eq. (11.8).

For the reader who is unfamiliar with conjugate gradient methods, we elaborate on

the general principles of these methods hereafter, before applying them to optimize

the empirical regularized risk. This description is inspired on [11].

The linear conjugate gradient method

Essentially, the linear conjugate gradient method [142] is a method that is used for

solving systems of linear equations:

Ax = b ,

where A is an m×m symmetric positive definite matrix and b is an m× 1 vector.

As a first step, the linear system is transformed into the following equivalent

optimization problem (i.e. a problem of which the optimal point solves the

system):

minimize
x∈Rm

1

2
x>Ax− b>x .

A steepest gradient descent procedure could be used to solve this problem. Due to

the convexity of the problem, such an approach will converge to the global optimum.

However, the number of iterations that is required may be rather large. Moreover,

as the gradient direction can be expensive to compute, the whole approach may

be computationally expensive. Conjugate gradient methods use an alternative set

of search directions that can be computed easily. Moreover, it can be shown that

at most m iterations are required to obtain convergence. Below, we present the

pseudo-code of the linear conjugate gradient method.
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1: procedure CG(A,b,x0)

2: r0 ← Ax0 − b, p0 ← −r0, k ← 0

3: while r0 6= 0m do

4:

αk ←
r>k rk

p>k Apk
xk+1 ← xk + αkpk

rk+1 ← rk + αkApk

βk+1 ←
r>k+1rk+1

r>k rk
pk+1 ← −rk+1 + βk+1pk

k ← k + 1

5: end while

6: end procedure

In this procedure, rk is the residual (Axk − b) of the linear system at iteration

k. Interestingly, rk is also equal to the derivative of the objective at iteration k.

Moreover, pk and αk represent the search direction at iteration k and the step

length in that direction. The main computational task that needs to be performed

here is the computation of Apk (the computations p>k (Apk) and r>k rk are mostly

less demanding). This means that in order to obtain an efficient numerical scheme,

we need to be able to compute the matrix-vector product Apk efficiently. This will

be the main objective of the remainder of this section.

Optimizing the empirical risk

We start by noting that, for the matrix-valued kernel K(xi,xj) =
∑m
l=1 κl(xi,xj)Bl,

K(X,X) can be written as

K(X,X) =

m∑
l=1

Bl ⊗ κl(X,X) ,

where κ(X,X) denotes the Gram matrix for kernel κl and (training) matrix X,

i.e. κl(X,X)i,j = κl(xi,xj). Moreover, the normal equations obtained for solving

Eq. (11.5) in that case are(
m∑
l=1

Bl ⊗ kl(X,X) + nλ Iqn

)
c = y∗ , (11.13)

which is a system of linear equations in c with a positive definite coefficient matrix.

As such, conjugate gradient methods can be used to generate a sequence of vectors

c that converges to c∗. The order of complexity of one iteration of a conjugate

gradient method equals the order of complexity of multiplying the coefficient matrix
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with a vector. For a vector a ∈ Rnq, we have that(
m∑
l=1

Bl ⊗ kl(X,X) + nλ Iqn

)
a = Vec

(
m∑
l=1

BlAkl(X,X)

)
+ nλa , (11.14)

where Vec(A) = a. The complexity of this multiplication is O((q2n + qn2)m).

Moreover, this multiplication avoids the explicit computation of K(X,X), resulting

in strongly reduced memory requirements.

When using the kernel given in Eq. (11.12), we have m = q + 1 and a complexity

of O(q3n+ q2n2). However, a further reduction is possible by observing that this

kernel can be written as the sum of a dense component and a sparse component.

Let Ol(γ) denote a q × q matrix where all entries are zeros except for the l-th

diagonal element, which is equal to γ. Using this notation, Eq. (11.12) can be

rewritten as

K(xi,xj) =

(
κ(xi,xj) + α

(
q∑
l=1

κl(xi,xj)

))
B +

q∑
l=1

ακl(xi,xj)O
l(γ) ,

the resulting kernel (Gram) matrix being

K(X,X) = B⊗

(
κ(X,X) + α

(
q∑
l=1

κl(X,X)

))
+

q∑
l=1

αOl(γ)⊗ κl(X,X) .

As Ol(γ) contains only one non-zero entry, the computational cost of multiplying

a vector with the second term of this kernel matrix can now be performed with a

complexity of O(n2q) (instead of O(n2q2) for the non-sparse case). This reduces

the total computational cost of one iteration to O(q2n + qn2). To solve system

(11.13) exactly, at most qn iterations are needed. However, as we will illustrate

in the experimental section, the actual number of iterations needed to obtain an

acceptable approximation is much smaller. Moreover, it has been noted on several

occasions that early-stopping has a beneficial regularizing effect [141].

11.6. Experimental results

In this section, we demonstrate the potential of our approach. As such, the goal of

this section is twofold. Firstly, we show that including prior knowledge using the

methodology described before can lead to a model with increased predictive power.

We will illustrate this on a series of artificial test problems. Secondly, we show that

the optimization procedure that is applied is capable of handling high-dimensional

datasets, both in terms of the number of inputs as in the number of outputs.
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11.6.1. An artificial problem

As an artificial problem, we consider the linear regression model (11.3). In this

experiment, dependencies between the outputs were acquired by including depen-

dencies between the rows of A = (a1, . . . ,aq)
> through the following hierarchical

model. Firstly, a prototype vector a∗ ∈ Rp is drawn from a multivariate normal

distribution with mean 0p and an identity covariance matrix. Using this prototype,

a1, . . . ,aq are constructed as {
Pr(ar,i = a∗i ) = 0.6

Pr(ar,i = 0) = 0.4

where Pr(ar,i = a∗i ) denotes the probability that the ith element of ar equals the ith

element of a∗. Moreover, to generate train and test sets, we choose X ∼ N (0p, Ip)

and E ∼ N (0q, 1.5 Iq). As it is our aim to illustrate that using prior knowledge can

improve the predictive performance, we will optimize the empirical L2-regularized

risk function, using a range of kernels, encoding different types of prior knowledge.

As a baseline (referred to as SEP-VAR), outputs are learned independently. To

this end, we use a separable kernel (11.9) with B a diagonal matrix, where the ith

diagonal element is the variance of the ith output computed on training data. As a

first competitor, we use the separable kernel, where B is the covariance matrix on

training data (SEP-COV-Tr). Subsequently, we use the separable kernel, where B

is the population covariance matrix (SEP-COV-Pop), exploiting knowledge of the

population covariance as prior knowledge. As a final alternative (COV-Pop-IO), we

use the newly introduced kernel (11.12). The output-specific kernels are chosen as

linear kernels on a subset of the inputs, i.e. input xi is included in the computation

of output-specific kernel κr with probability 0.8 if ar,i 6= 0 and with probability 0.2

if ar,i = 0. For all experiments, we set q = p = 30.

Table 11.1 reports, for training sets of variable size, the mean squared prediction

error on separate test sets. The reported errors are averaged over 50 replicates of

the data generation procedure. The regularization parameter λ was tuned using

nested cross-validation; α = 1/1000 and γ = 1000 were both kept fixed. Note that

these parameter setting imply high output-specificity of the output-specific kernels.

As such, every method had only one parameter to be tuned. From Table 11.1,

it can be seen that the inclusion of prior knowledge is capable of boosting the

performance of models that are learned by optimizing the empirical L2-regularized

squared loss. It is clear that learning tasks independently leads to inferior models.

Moreover, this table suggests a relation between the size of the training set and

the effectiveness of including prior knowledge. Indeed, the results presented in this

table suggest that the inclusion of prior knowledge is most beneficial in data-scarce

settings.
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Table 11.1: Mean squared error on artificial data using four alternatives for the kernel
function. The last column shows results for the malicious example.

Method n = 10 n = 15 n = 25 n = 50 Malicious

SEP-VAR 145.18 115.15 82.15 38.51 1.34

SEP-COV-Tr 144.67 114.95 72.79 32.87 1.75

SEP-COV-Pop 144.36 112.70 68.29 29.02 1.45

COV-Pop-IO 141.93 107.98 67.61 30.41 -

In addition to these experiments, Table 11.1 shows a simple result when prior

knowledge on correlations on the outputs is used wrongly. For this experiment, the

goal is to learn the identity map between inputs and outputs, i.e. the ith output

equals the ith input with some additive noise (E ∼ N (0p, 0.5Iq)). Correlation

between outputs is now introduced by sampling the inputs from a multivariate

normal distribution with a covariance matrix V 6= Ip. As such, even though the

models for different outputs are strongly dissimilar, there exists correlation between

the outputs. As such, using this correlation in a manner that forces models to

become more similar is expected to lead to a decreased performance. For this

experiment, we choose p = q = n = 10.

11.6.2. Assessing the computational complexity

A similar experimental setup can be used to assess the computational complexity

of the conjugate gradient based optimization procedure. As shown in Section 3,

the time complexity of one conjugate gradient iteration is O(q2n+ n2q). However,

in the worst case, the number of iterations needed to converge is np. Figure 11.3

shows that this worst-case complexity is unlikely to occur. The left panel illustrates

that the number of iterations that is needed decreases as n increases, seemingly to

converge to a constant value, suggesting that (at least in this setting) the actual

number of iterations will not become excessive as n increases. on the other hand,

the right panel suggests the number of iterations that is required to be a linear

function of the number of outputs q.

11.6.3. An illustration in agriculture, with discussion

The fatty acid composition of the milk of lactating cows is a rich source of in-

formation. For example, the abundance of several fatty acids can be used as an

indicator for the presence of metabolic disorders in the lactating animal (such as

for instance ketosis [143]). Additionally, when milk is used for consumption its

fatty acid composition might be of interest to the consumer as it may, in turn,

affect a consumer’s health [144]. For those reasons, in the dairy industry, there

exists a general interest in methodologies that can be used to assess the fatty acid
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Figure 11.3: Number of iterations needed to achieve convergence: (left) versus number
of instances with q = 30 fixed, (right) versus number of outputs, with n = 50 fixed.
For both settings, we set p = 100. Two values for the regularization parameter λ were
chosen: 0 (no regularization) and 0.02 (an approximately optimal value determined with
cross-validation)

composition of milk samples in an accurate and efficient manner. One of these

methodologies uses spectrophotometry. More precisely, these methodologies use

the near infra red spectrum or the Raman spectrum of a milk sample as a basis for

assessing the fatty acid composition of a milk sample. Naturally, such an approach

requires a mapping that takes a spectrum as an input and returns a predicted

fatty acid composition as the output (in some fields, such a mapping is called a

calibration function). It is clear that the problem of finding such a mapping is a

predictive modeling problem, where the input space X is the space of spectra and

the output space Y = Sq (where q is the number of fatty acids).

The collection of the data required to build such a calibration function, as well as

the construction of such calibration functions was part of the PhD research of Ivan

Stefanov [145]. In the current section, we experiment with a subset of the data

that were collected in [145]. In this experiment, we used a dataset containing 75

input-output pairs. These datapoints were obtained by measuring the fatty acid

compositions of 75 milk samples (by means of gas chromatography), as well as the

Raman spectra (3000 different wave numbers) of these samples. Naturally, these

data can be used to build a predictive model that uses the Raman spectrum of a

milk sample to predict the fatty acid composition of that sample.

The goal of this section is to illustrate that the inclusion of prior knowledge into this

learning problem potentially leads to models with improved predictive performance.

As a starting point, we describe the potential sources of prior knowledge that can

be used in this setting.

• Output-output knowledge: Due to budgetary constraints, the Raman spectra

and accurate fatty acid concentrations could only be determined for about 75

milk samples. However (see also Part II), these samples were selected from a

collection of 1033 samples of which a crude estimation of the concentration of
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multiple fatty acids is available. Therefore, this extended dataset can be used

to obtain a more accurate estimate of the population covariance structure of

the outputs.

• Input-output knowledge: The fundamental principles of most spectropho-

tometric methods are known rather well. As a result, given the molecular

structure of a fatty acid of interest, an experienced user of spectrophotomet-

ric methods can delineate regions in the spectrum that are informative for

determining the concentration of a particular fatty acid. As the molecular

structure for the fatty acids of interest is known beforehand, such regions

(which are specific for each fatty acid) can be delineated and used within the

learning phase by constructing output-specific kernels that focus on these

regions.

• Input-input knowledge: The inputs for this learning problem are Raman

spectra. Traditionally, spectral data is considered as a type of functional

data5. This notion typically implies that the inherent dimensionality of the

data is much lower than the observed dimensionality (approximately 3000 in

this case). This can be taken into account by using kernel functions that are

designed for working with spectral data. Examples include wavelet kernels

[146] or kernels based on spline smoothing [147].

As argued in the introductory section of this chapter, to transform the predictive

modeling of compositional data into a multivariate regression problem, the output

space Sq needs to be transformed to a Euclidean space. Unfortunately, most of

the prior knowledge on the output-output relations or input-output relations is

available in the original space (which is Sq). Therefore, if this space is transformed,

it remains to be seen whether the prior knowledge that is available can be translated

to this new space. Interestingly, by choosing a suited set of basis vectors, the ilr-

transformation allows such a translation. Indeed, as illustrated in the introductory

chapter on compositional data analysis, the ilr-coordinates can often be interpreted

as ratios of several components. As these ratios have a clear interpretation, the

prior knowledge can at least be partially translated. For example, the input-output

knowledge described above can easily be translated. Given two fatty acids with

their respective wavelength-regions of interest, the ratio of the concentration of

those fatty acids can be assumed to be influenced by the wavelengths in the union

of those regions. For this particular example, the output-output knowledge can be

translated even more easily. As the population covariance matrix is estimated by

5 In functional data analysis, it is assumed that each object is characterized by a function. Therefore,
the p-dimensional vector that constitutes the observation of an object can be seen as an observation
of that function. In case of spectrophotometric data, an object is characterized by its reflectance,
emission or transmission spectrum (depending on the technique that is used). The reflectance,
emission or transmission that is registered is typically assumed to be a function of the wavelength
that is considered. Assuming that there is a continuum of wavelengths, the complete spectrum of
an object can be seen as a function that maps a wavelength to an object’s reflectance, emission
or transmission. The data vector that is observed is a sample of that function.
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means of the sample covariance matrix of a (large) sample, the observations in this

sample can simply be transformed into the new space, prior to the computation of

the covariance matrix.

Unfortunately, the prior knowledge that was available at the writing of this disserta-

tion does not allow the inclusion of all types of prior knowledge. Therefore, we limit

this discussion to a setting where only output-output knowledge is incorporated.

Moreover, the concentration of a considerable number of fatty acids seems to

be extremely hard to predict using the dataset that was available (this was also

concluded in [145]). Additionally, a large number of the fatty acids that were

available in the training dataset were not reported in the large dataset (of 1033

observations). To obtain a setting that can be used to illustrate our approach, out

of the original datasets, only 10 fatty acids were retained (the selection is based on

[66] p. 93, the selected fatty acids are listed in Appendix 11.B). Subsequently, the

ilr-transformation was used to transform the compositional vectors into a Euclidean

space. The matrix of basis vectors that was used is presented in Appendix 11.B.

Unfortunately, from several preliminary experiments in which independent models

were fit to the individual transformed outputs, it turned out that only 3 of the

9 outputs (output nrs 6, 7 and 9) could be modeled. For the remaining outputs,

there was close to no link between the spectrum that was measured and the output

(this was decided based on visual inspection of plots of the predicted output versus

the observed output). Therefore, the learning experiment was further narrowed

down to those three outputs.

To investigate the potential advantage of incorporating prior knowledge on output-

output correlations in this problem setting, the framework of kernel-based vector-

functions was used. To fit the models, the empirical L2-regularized squared loss was

minimized. Moreover, we used a separable kernel of the form K(x,x′) = x>x′B,

where B was choosen according to one of the following strategies:

1. B = I3,

2. B is the sample covariance matrix of the large “prior knowledge” dataset

containing 897 points. Only 897 from a total of 1033 datapoints were retained.

A number of datapoints were deleted as for those datapoints, the reported

concentration of at least one fatty acid was zero. Moreover, as the training

dataset did not contain zero-entries, the zeros in the “prior knowledge” dataset

are probably rounding zeros or measurement errors.

3. B is the sample covariance matrix of the large training dataset.

To obtain a training dataset, 60 input-output pairs were selected randomly (out

of the total of 75 points) (the training set). The remaining 15 points were used

to assess the performance of the model (the test set). The performance measure

was the sum of squared Euclidean distances (in the ilr-transformed space) between

the predictions and the observed values in the test set. To tune the complexity
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Table 11.2: Median, mean and standard deviation of the performances (expressed as
the sum of squared errors) obtained by re-sampling 100 train and test sets.

Setting 1 Setting 2 Setting 3

Median (of squared errors) 12.9140 11.4521 11.7179

Mean (of squared errors) 16.6222 15.5561 15.6770

Standard deviation 11.3570 10.8612 10.9209

Table 11.3: Pairwise comparison of the three settings. The reported number represents
the number of times that a given setting outperforms another setting over 100 runs, when
the performance is expressed by means of the sum of squared errors.

Number of times (out of 100)

Setting 2 outperforms setting 1 82

Setting 3 outperforms setting 1 90

Setting 2 outperforms setting 3 68

parameter λ, a 5-fold cross validation strategy was used. This process was repeated

100 times. Table 11.2 shows the median, the mean and the standard deviation of

the test error over 100 runs. Additionally, Table 11.3 reports pairwise comparisons

between the three strategies. From these tables, it can be seen that strategies 2 and

3 outperform the case where models are learned independently (B = I3). This can

be seen in both tables. The median performance of both methodologies is better

than the case where B = I3 However, the size of the improvement is rather limited.

Moreover, from 100 runs both strategies outperform the first setting in over 80% of

the cases. On the other hand, based on these experiments, it can be expected that

the setting with prior knowledge (setting 2) mostly will outperform the strategy

where B equals the sample covariance matrix of the training dataset. Given the

limited size of the dataset, it is hard to draw statistically relevant conclusions here.

Nevertheless, we cautiously conclude that the incorporation of prior knowledge can

improve the predictive capabilities of the resulting model.

11.7. Conclusions and discussion

11.7.1. Predicting compositional data and prior knowledge

In this chapter, the ilr-transform was used to transform the problem of predicting

compositional data into a (more traditional) multivariate regression problem.

This transformation allows a plenitude of multivariate regression methods to be

used that are dedicated to exploiting dependencies between multiple outputs to

improve the predictive performance of a model. More precisely, we focused on the

incorporation of prior knowledge when learning kernel-based vector functions. The

246



§11.7. Conclusions and discussion

main contributions of this chapter are (1) the specification of three types of prior

knowledge, (2) the development of a kernel that can incorporate these types of

knowledge into a learning problem, (3) a (partial) theoretical analysis of the effect

of incorporating prior knowledge and (4) the development of a computationally

tractable optimization procedure that can be used during the learning phase.

From a theoretical analysis, it follows that for separable kernels of the form

K(x,x) = κ(x,x) B, choosing B = cov(Y) is a good choice when minimizing the

expected risk. This observation suggests that the incorporation of information

on the (population) covariance structure in a separable kernel can lead to an

improvement of the predictive performance of the models that are learned. This

observation reappears in the experiments, suggesting that the methodology that

is proposed can lead to improved predictive models. It should be noted, however,

that the increase in predictive power is rather limited. Naturally, the importance

of such an improvement depends on the application at hand. Additionally, one

should be careful when drawing conclusions about the potential of an approach

based on only one dataset. With respect to that, more empirical experiments are

needed (on different datasets) to confirm these results.

Experiments on artificially generated data illustrate that the inclusion of input-

output relations can lead to models with improved predictive performance. Mainly

in data-scarce settings, this type of prior knowledge can be advantageous. More-

over, this experiment suggests that the kernel that was proposed can effectively

incorporate the three types of prior knowledge that were described. However,

it remains unclear how these types of prior knowledge interact. For example,

given two outputs that seem to be correlated (assume we have prior knowledge

on this relation), on the other hand, prior knowledge on input-output relations

suggests that these outputs depend on two disjoint sets of inputs. This situation

can naturally occur when the inputs are correlated. It remains to be seen here how

both types of prior knowledge can be optimally combined, as at first sight they

may seem to steer the learning process in opposite directions. It is likely that the

issues that are discussed here will appear in several situations. Moreover, the study

of these issues may lead to more insights in the general learning problem.

11.7.2. Alternative ways to incorporate prior knowledge

We continue this discussion with some alternatives to the incorporation of prior

knowledge in multivariate regression problems. As stated before, choosing K(x,x) =

κ(x,x) B, with B = cov(Y) seems to be beneficial for the predictive performance

of the resulting model. Indeed, we have some theoretical guarantees that choosing

B = cov(Y) is not bad. On the other hand, there may exist other manners to

define B that outperform the current approach. Perhaps, a more profound study

of the expected risk could lead to superior approaches.
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To conclude this discussion, we briefly elaborate on a very intuitive way to incorpo-

rate prior knowledge on input-input correlations and output-output correlations. To

that end, consider the idealized setting where output Y is a q-dimensional random

vector and the input X is a p-dimensional random vector. Moreover, assume that

we know (this is our prior knowledge) that cov(Y) = ΣY and cov(X ) = ΣX. The

goal exists of learning a linear function f , with parameter matrix A such that

f(x) = Ax.

To ensure that A satisfies the prior knowledge, the following constraint can be

enforced:

cov(AX ) = ΣY .

This constraint can be rewritten as AΣXA> = ΣY.

This leads to the following optimization problem:

minimize
A∈Rp×p

1

n

n∑
i=1

‖Axi − yi‖22 + λ

q∑
j=1

‖Aj,.‖22

subject to AΣXA> = ΣY

Unfortunately, the equality constraint in this optimization problem is highly non-

linear (see Appendix 11.C for a discussion on how this optimization problem can

be solved). Nevertheless, the problem formulation itself provides a very intuitive

way of incorporating prior knowledge. As opposed to the method we proposed to

incorporate prior knowledge when learning vector-valued functions, this approach

forms a direct way of enforcing the prior knowledge that is given. More precisely,

the resulting model will respect the prior knowledge whereas the methodology

proposed earlier will only guide the learning phase.

11.A. Computation of the expected risk

In this appendix, we derive the formula in Eq. (11.11) to compute E[r(f̂i)]. We

start from the following statistical model:

Y = AX + E , (11.15)

where cov(X ) = Σ, E[X ] = 0q cov(E) = σ2Iq and E[E ] = 0q.

However, as we will perform a fixed design analysis, the inputs are considered fixed.

More precisely, we assume to have been given n input vectors x1, . . . ,xn such that
1
nX>X = Σ. In this case, the model reduces to

Yi = Axi + E i , (11.16)
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where A = (a1, . . . ,aq)
>, cov(E i) = σ2Iq and all E i are independent. It should

be noted that as usual, a single observed training data set T is denoted T =

{(xi,yi)}ni=1 = (X,Y). Moreover, we denote the matrix of error terms as E =

Y −XA>. Notably, when re-sampling a dataset, the inputs X persist but the

outputs and the error terms are renewed.

11.A.1. Preliminaries

Univariate case

As a starting point, let us consider the single-output case (taking q = 1) and assume

that the underlying statistical model is

Yi = a>xi + E i , (11.17)

where a ∈ Rp.

Now, let â be the minimizer of the L2-regularized squared loss (Eq. (11.1)). This

means that â = (X>X+nλIp)
−1X>Y (this is called the ridge estimate)6. Moreover,

let f̂(x) = â>x, it is well known that (see for instance [140])

E[â] = Diag

(
γk

γk + λ

)
a , (11.18)

and

E[r(f̂)] =

variance︷ ︸︸ ︷
E
[
‖â− E[â]‖2Σ

]
+

bias︷ ︸︸ ︷
‖E[â]− a‖2Σ (11.19)

=
σ2

n

p∑
i=j

(
γj

γj + λ

)2

+

p∑
j=1

a2
i

γj
(1 + γj/λ)2

. (11.20)

Equivalently, we can minimize the L2-regularized squared loss in the dual form,

given a kernel k and an implied hypothesis space H:

f̃ = arg min
f∈H

1

n

n∑
i=1

(f(xi)− Yi)2 + λ ‖f‖2H .

When κ(x,x′) = x>x′ (this is the linear kernel), it can be shown (see for instance

[148]) that f̃ = f̂ . Therefore, we can restrict the analysis to the primal form.

The multivariate case

6 It must be stressed that â is a random vector (even though we do not use the random vector
notation here).
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We now turn our attention to the multivariate case. Interestingly, Baldassarre et al.

[141] have shown that for a matrix-valued kernel of the form K(x,x′) = κ(x,x′)B

(where B is a positive definite matrix) and a dataset (X,Y), the minimizer f̂

of
1

n

n∑
i=1

‖f(xi)− yi‖22 + λ ‖f‖2H ,

can be computed efficiently using the following procedure (where we immediately

use κ(x,x′) = x>x):

1. Compute the eigendecomposition of B, i.e. B = UDU>, such that U =

(u1, . . . ,uq) and ui is the ith eigenvector of B and D is a diagonal matrix

such that Di,i is the ith eigenvalue of B

2. Compute the transformed output matrix Ỹ = YU>.

3. Compute Ã = (ã1, . . . , ãq)
> where

ãj = (X>X + nλ/Dj,j Ip)
−1X>Yuk︸︷︷︸

Ỹ.,j

. (11.21)

4. Compute Â = UÃ. Let f̂(x) = Âx.

Interestingly, this computational trick shows that the application of the multivariate

ridge regression estimate implicitly leads to q uni-variate ridge estimates in a

transformed space. This analogy will be used to derive a formula to compute the

expected risk.

11.A.2. Multivariate expected risk

As in the univariate case, we will be working in a fixed design setting. Therefore,

we assume the following statistical model:

Yi = Axi + E i , (11.22)

where A = (a1, . . . ,aq)
>, 1

nX>X = Σ and cov(E i) = σ2Iq (and all E i are indepen-

dent and normally distributed).

Computation of the variance

We first focus on computing the variance associated with the ith output. More

precisely, we compute

E
[
‖âi − E[âi]‖2Σ

]
.

As a starting point of our analysis, let us reconsider steps 3 and 4 of the procedure

presented above. From steps 3 and 4, we have that âi =
∑q
j=1 Ui,j ãj .
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E
[
‖âi − E[âi]‖2Σ

]
= E


∥∥∥∥∥∥

q∑
j=1

(ãj − E[ãj ])Ui,j

∥∥∥∥∥∥
2

Σ


=

q∑
j=1

E[‖ãj − E[ãj ]‖]2Σ

+2
∑
k<l

Ui,kUi,lE[(ãk − E[ãk])>Σ(ãl − E[ãl])
>] .

We now show that E[(âk − E[âk])>Σ(âl − E[âl])] = 0 for k 6= l.

Combining Eq. (11.21) and Y = XA> + E, it can easily be seen that E[âk] =

(X>X + nλ/Dj,j Ip)
−1X>XA>uk. Moreover, we have that

ãk = E[ãk] + (X>X + nλ/Dj,j Ip)
−1X>Euk .

It was assumed that E is a matrix of independent normally distributed random

variables. Using this assumption, and due to the orthogonality of uk and ul, the

random vectors Euk and Eu` are independent. Moreover E[Euk] = E[Eul] = 0n.

Now let

ek = (X>X + nλ/Dj,j Ip)
−1X>Euk .

It is easy to see that ek and el (where k 6= l) are independent random vectors and

E[ek] = E[el] = 0p. The identities above are combined to obtain the following

result:

E[(âk − E[âk])>Σ (âl − E[âl])] = E[e>k Σ el] = 0 .

Combining this result with Eq. (11.20), we obtain that

E
[
‖âi − E[âi]‖2Σ

]
=

q∑
j=1

E[‖ãj − E[ãj ]‖]2Σ (11.23)

=
σ2

n

q∑
j=1

U2
i,j

p∑
k=1

(
γk

γk + λ
Dj,j

)2

(11.24)

Computation of the bias

Now let A• = U>A and A• = (a•1, . . . ,a
•
q)
>. It can easily be seen that ai =
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∑q
j=1 Ui,ja

•
j . Therefore, we have that

‖E[âi]− ai‖2Σ =

∥∥∥∥∥∥
q∑
j=1

(E[ãj ]− a•j )Ui,j

∥∥∥∥∥∥
2

Σ

. (11.25)

As ãj can be seen as the ridge estimate of a•j , it follows from Eq. (11.18) that

E[ãj ] = Diag

(
γk

γk + λ
Dj,j

)
a•j .

Using a•j = A>uj , Eq. (11.25) can be rewritten as follows:

‖E[âi]− ai‖2Σ =

∥∥∥∥∥∥
q∑
j=1

Diag

(
γk

γk + λ
Dj,j

− 1

)
A>ujUi,j

∥∥∥∥∥∥
2

Σ

. (11.26)

Moreover, as Σ = Diag(γk), we have that:

‖E[âi]− ai‖2Σ =

p∑
k=1

γk

 q∑
j=1

Diag

(
γk

γk + λ
Dj,j

− 1

)
A>ujUi,j

2

. (11.27)

Combining Eqs. (11.24) and (11.27) leads to Eq. (11.11).

11.B. Computation of an orthogonal basis

The following fatty acids were retained: iso C14:0, iso C15:0, anteiso c15:0, iso

c16:0, iso c17:0, c17:0, trans10 c18:1, trans 11 c18:1, c 9 t 11 c18:2, c15:0.

The following matrix Φ was used to obtain the ilr-transformed data (using the

reasoning in Section 2.4, this matrix can be used to obtain an orthogonal basis E).
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1 2 3 4 5 6 7 8 9

iso C14:0 -0.707 -0.408 -0.289 -0.224 -0.183 -0.154 -0.134 -0.118 -0.105

iso C15:0 0.707 -0.408 -0.289 -0.224 -0.183 -0.154 -0.134 -0.118 -0.105

anteiso c15:0 0.000 0.816 -0.289 -0.224 -0.183 -0.154 -0.134 -0.118 -0.105

iso c16:0 0.000 0.000 0.866 -0.224 -0.183 -0.154 -0.134 -0.118 -0.105

iso c17:0 0.000 0.000 0.000 0.894 -0.183 -0.154 -0.134 -0.118 -0.105

c17:0 0.000 0.000 0.000 0.000 0.913 -0.154 -0.134 -0.118 -0.105

trans10 c18:1 0.000 0.000 0.000 0.000 0.000 0.926 -0.134 -0.118 -0.105

trans 11 c18:1 0.000 0.000 0.000 0.000 0.000 0.000 0.935 -0.118 -0.105

c 9 t 11 c18:2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.943 -0.105

c15:0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.949

11.C. Encoding prior knowledge via geometrically

constrained programming

Clearly, the following optimization problem is not convex.

minimize
A∈Rp×p

1

n

n∑
i=1

‖Axi − yi‖22 + λ

q∑
j=1

‖Aj,.‖22

subject to AΣXA> = ΣY

As a result, globally solving it is probably hard. Nevertheless, it can be attempted

to find a local optimum to this problem. Hereafter, we will assume that p = q

(however, this can probably be generalized). Unfortunately, the structure of

this problem prevents traditional local solvers (such as for instance sequential

quadratic programming solvers) from being used. This is mainly due to the fact

that the equality constraint can not be linearized (or at least the linearized form

deviates strongly from the original form). However, we can rewrite the equality

constraint using the eigendecomposition of the matrices ΣX and ΣY. Let PX

(resp. PY) be the matrix of eigenvectors of ΣX (resp. ΣX), and DX (resp. DX) be a

diagonal matrix containing the eigenvalues of ΣX (resp. ΣY), i.e. ΣX = PXDXP>X
(resp. ΣY = PYDYP>Y ). We now have that

(
D
− 1

2
X P−1

X

)
ΣX

(
D
− 1

2
X P−1

X

)>
= Ip , (11.28)

and

ΣY =
(
PYD

1
2
Y

)
Ip

(
PYD

1
2
Y

)>
. (11.29)

Now, let U be a p× p orthonormal matrix. From Eq. (11.28), we have that

U
(
D
− 1

2
X P−1

X

)
ΣX

(
D
− 1

2
X P−1

X

)>
U> = Ip .
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Combining this with Eq. (11.29) and using P−1
X = P>X and P−1

Y = P>Y , we obtain

that (
PYD

1
2
Y

)
U
(
D
− 1

2
X P−1

X

)
ΣX

(
D
− 1

2
X P−1

X

)>
U>

(
PYD

1
2
Y

)>
= ΣY ,

or, equivalently,((
PYD

1
2
Y

)
U
(
D
− 1

2
X P−1

X

))
︸ ︷︷ ︸

A

ΣX

((
PYD

1
2
Y

)
U
(
D
− 1

2
X P−1

X

))>
︸ ︷︷ ︸

A>

= ΣY

In summary, we can let the matrix U be the optimization variable with the con-

straint that U is an orthonormal matrix, and define A =
(
PYD

1
2
Y

)
U
(
D
− 1

2
X P−1

X

)
.

This leads to the following optimization problem

minimize
A∈Rp×p

1

n

n∑
i=1

∥∥∥(PYD
1
2
Y

)
U
(
D
− 1

2
X P−1

X

)
xi − yi

∥∥∥2

2

+ λ

q∑
j=1

∥∥∥∥((PYD
1
2
Y

)
U
(
D
− 1

2
X P−1

X

))
j,.

∥∥∥∥2

2

subject to U U> = Ip

The equality constraint U U> = Ip is known as a geometric constraint [149],

expressing that the optimization variable should belong to the manifold of orthonor-

mal matrices. Even though geometrically constrained programming is a rather

recent area of research, several algorithms have been developed that can be proven

to converge to a local optimum [149, 150].
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12 Predictive modeling of compositional

outputs with ordered components

12.1. Introduction

We start this chapter with a motivating (real life) problem setting in agriculture.

Head blight is a fungal disease in cereal crops that has a considerable economic

impact [151]. Therefore, this disease has been studied rather extensively during

the past decades. It is known that the infection degree of a field with head blight

is strongly influenced by the micro-climate during the flowering season. As a result,

information on the micro-climate of a wheat field could be used to build a model

that can be used to assess the expected degree of infection of that field. The setting

described here naturally leads to a predictive modeling problem where the goal

is to predict the infection degree of a field (the output) using the information of

the micro-climate on that field (the input). Naturally, such a predictive modeling

problem requires a thorough description of the degree of infection of a field. Such a

description is presented in [152]. The authors presented a dataset that describes the

degree of infection of cereal crops with head blight disease in Flanders (Belgium).

To describe the degree of infection of a wheat field, a number of ears are selected

randomly from the field. Each ear is classified by an expert in one of five ordinal

classes: not infected, slightly infected, moderately infected, heavily infected, fully

infected. As such, the fractions of ears in each class constitute a compositional vector

describing the infection degree of the field. As inputs to this predictive modeling

problem, 45 micro-climatological variables were recorded at each field.

In this chapter, we develop a class of predictive models that can be used to solve

prediction problems such as the one above. In a first attempt, we could neglect

the ordinal nature of the classes, use the isometric log-ratio transform and solve

the problem as a multivariate regression problem using the techniques described

in the previous chapter. However, in the current chapter we investigate several

alternative approaches that can be used to solve this problem. The remainder of

this chapter is organized as follows:

• In Section 12.2, we elaborate on the use of multinomial deviance as a loss

function.

• In Section 12.3, models for compositional data with ordered components are

introduced.

• In Section 12.4, the added value of the proposed methodology is illustrated

by means of an extensive set of experiments on artificially generated data.
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• In Section 12.5, the proposed methodology is illustrated on a real-life problem

setting.

• In Sections 12.6 and 12.7, a relaxation of the initial model is proposed.

• In Section 12.8, concluding remarks are formulated.

12.2. Multinomial deviance for predicting compo-

sitional data

As a starting point, we focus on constructing predictive models that do not take

the order relation on the components into account. Therefore, assume that we

have been given a training dataset T = {(xi,yi)}ni=1 with yi ∈ Sq. Recall from

Chapter 11 that the hypothesis space H can be a set of functions f : Rp → Sq that

can be written in the following form:

fk(x) =
exp(w>k x + bk)

1 +
∑q−1
k=1 exp(w>k x + bk)

, for k = 1, . . . , q − 1 , (12.1)

fq(x) =
1

1 +
∑q−1
k=1 exp(w>k x + bk)

,

where wk ∈ Rp and bk ∈ R. Moreover, this formulation allows for the following

complexity criterion c(f) =
∑q−1
k=1 ‖wk‖22. When using the multinomial deviance as

a loss function, i.e. l(y, ŷ) =
∑q
k=1 yk log(ŷk), the following regularized empirical

risk function is obtained

r(f) =

n∑
i=1

q∑
k=1

yi,k log(fk(xi)) + λ

q−1∑
k=1

‖wk‖22 . (12.2)

Clearly, this regularized empirical risk function is (almost) identical to the risk

function for multi-class logistic regression [122, 153, 154] which is very popular

in multi-class classification. The only difference here is that yi ∈ Sq, whereas

yi ∈ {0, 1}q (more precisely, a vector containing q − 1 zeros and a one at the

position that represents the class to which the instance belongs) in the classification

setting. There is a simple link between both settings. To show this, we create a

new dataset T ∗ = {x∗i,j ,y∗i,j}
n,τ
i=1,j=1 that contains τ duplicates of each instance in

T . In this new dataset, we have that x∗i,j = xi for all i and j. The outputs are

elements of {0, 1}q that are assigned such that they respect the proportions given

in yi. More precisely, we require that

yi,k ≈
1

τ

τ∑
j=1

y∗i,j,k .

256



§12.3. Predicting compositional data with ordered components

This relation shows that, from a methodological point of view, both methods are

strongly related. Moreover, this similarity suggests that numerical procedures used

to fit multi-class logistic regression models can be used to find the minimizer of

r(f). However, it should be noted here that the size of T ∗ can be rather large,

leading to intractable optimization problems. However, some approaches such as

the sequential minimal optimization approach of [153, 155] can trivially be extended

to handle compositional vectors directly.

Using the same analogy, the resulting method can easily be kernelized. Therefore,

let gk, k = 1, . . . , q − 1, be a linear function such that gk(x) = w>k x. These

functions can be used to rewrite Eq. (12.1):

fk(x) =
exp(gk(x) + bk)

1 +
∑q−1
k=1 exp(gk(x) + bk)

, for k = 1, . . . , q − 1 ,

fq(x) =
1

1 +
∑q−1
k=1 exp(gk(x) + bk)

,

More generally, given a kernel κ : X ×X → R, a reproducing kernel Hilbert space

H of functions can be constructed (following the methodology of Chapter 11).

Following [133, 154], the minimizer of the regularized empirical loss function

r(f) =

n∑
i=1

q∑
k=1

yi,k log(fk(xi)) + λ

q−1∑
k=1

‖gk‖2H ,

admits a representation of the form ĝk(x) =
∑n
i=1 αi,kκ(x,xi).

12.3. Predicting compositional data with ordered

components

The previous section illustrates the close link between multi-class classification

models and predictive models for compositional data that use multinomial deviance

as a loss function. As ordinal regression can be seen as a special case of multi-class

classification, it is worth investigating whether ideas from the field of ordinal

regression can be borrowed to construct predictive models for compositional data

with ordered components. Therefore, we elaborate on ordinal regression models

hereafter.

12.3.1. Models for ordinal regression problems

In a multi-class classification setting, the goal is to learn a mapping from an input

space X to a finite set C = {C1, . . . , Cq} containing q labels. To this end, each
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object is usually represented by a p-dimensional feature vector x ∈ X and a class

label y ∈ C. A training dataset T of n i.i.d. observations can then be denoted

as a set of couples {(xi, yi)}ni=1 with xi = (xi,1, . . . , xi,p)
>, in which we assume

that the couples (xi, yi) are realizations of the random vector (X ,Y). Moreover,

using this notation, an ordinal regression problem can be seen as a special case of

a classification problem where the label set is endowed with a linear order relation

C1 ≺ C2 ≺ · · · ≺ Cq.

Ordinal regression has been studied quite extensively in statistics [122, 156]. This

problem can be seen as a specific case of the general multi-class classification

problem and thus be modeled with the same techniques. However, multi-class

classification methods neglect the order endowed on the label set. Several types

of ordinal regression models are capable of taking this order into account, such

as adjacent-categories models, continuation-ratio logit models and latent variable

models [122]. Within each of these types, the order on the labels is looked upon from

a different perspective. Latent variable models are probably the most important

type of ordinal regression models [157, 158, 159, 160, 161]. These models motivate

the ordinal scale as the result of coarse measurements of a continuous variable,

called the latent variable. It is typically assumed that the latent variable is difficult

to measure or cannot be observed itself. This type of models can be represented in

the following general form

f(x) =


C1 , if g(x) ≤ θ1 ,

C2 , if θ1 < g(x) ≤ θ2 ,
...

Cq , if θq−1 < g(x) ,

(12.3)

with g : X → R the function that models the latent variable and θ1 < . . . < θq−1

a set of thresholds. Therefore, fitting ordinal regression models boils down to

estimating a function g and a set of thresholds.

The proportional odds model [162] is in statistics without doubt the best known

and most applied model to represent ordinal responses. It is naturally derived

from the latent variable motivation. As a starting point, this model assumes that

the relationship between the random variable Y that models the output and the

random input vector X is the following:

Y =


C1 , if g(X ) + E ≤ θ1 ,

C2 , if θ1 < g(X ) + E ≤ θ2 ,
...

Cq , if θq−1 < g(X ) + E ,

(12.4)

where E is an error term that follows a logistic distribution with mean 0. Moreover,
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it is assumed that g(X ) = w>X (i.e. the latent variable function is linear). This is

visualized in Figure 12.1(a).

The (cumulative) probability that the label Y of an instance with a given feature

vector X = x is smaller than or equal to Ck is denoted Pr(Y ≤ Ck | X = x). We

now have that

Pr(Y ≤ Ck | X = x) = Pr(g(x) + E ≤ θk) = Pr(E ≤ θk − g(x)) .

Using the logistic distribution of E and g(x) = w>x, it follows that

Pr(Y ≤ Ck | X = x) =


exp(−w>x + θk)

1 + exp(−w>x + θk)
, if k = 1, . . . , q − 1 ,

1 , if k = q ,

This is visualized in Figure 12.1(b).

Fitting proportional odds models

We now use the short-hand notation pk(x) = Pr(Y ≤ Ck | X = x). The parameters

w and θ1, . . . , θq−1 are obtained by maximum likelihood estimation. Given a

dataset (X,Y) the likelihood is

n∏
i=1

Pr(Y = yi | X = xi) .

To simplify this expression, we use a recoding of the labels. Let y∗i ∈ {0, 1}q such

that y∗i,k = 1 if yi = Ck and y∗i,k = 0 otherwise. Using the short-hand notation

given before, we obtain

n∏
i=1

Pr(Y = yi | X = xi) =

n∏
i=1

q−1∏
k=1

(p̄k(xi)− p̄k+1(xi))
y∗i,k . (12.5)

As a final step, we can take the negative logarithm of the likelihood function, and

minimize the resulting expression w.r.t. w and θ1, . . . , θq−1.

12.3.2. Performance measures for ordinal regression prob-

lems

Besides model structure, another important difference between multi-class clas-

sification and ordinal regression can be found in the performance measure (loss

function) that is used (optimized). To evaluate the performance of a given multi-

class classification model, the accuracy on a test dataset is typically measured, and

a differentiable approximation of accuracy such as the binomial deviance or hinge

259



Chapter 12. Predictive modeling for compositions with ordered components

1

Figure 12.1: (a) A model underlying ordinal data in a 4-class case, the horizontal axis
indicates the value of a (one-dimensional) feature vector x, the vertical axis contains the
value of the latent variable. The latent (random) variable G for a given feature vector
X = x is assumed to follow a logistic distribution with mean g(x). θ1, θ2 and θ3 represent
the thresholds on the latent variable. The areas marked in gray indicate the probabilities
Pr(f(xa) = C3) and Pr(f(xb) = C3). (b) A visualization of the proportional odds model
with the latent variable on the horizontal axis and the cumulative class probabilities on
the vertical axis.

loss is typically optimized on training data to fit the parameters of the model. In

an ordinal setting, however, the use of accuracy seems unnatural. For instance,

when the class labels are {bad, moderate, good}, classifying a good instance as bad

is worse than classifying it as moderate. Accuracy does not take this into account.

Specific performance measures should be used instead, such as the C-index or

concordance index [163] or the volume under the ROC surface [164].

12.3.3. Modeling compositional outputs with ordered com-

ponents

In multivariate regression analysis, the following (probabilistic) model is often

assumed to underlay the data

Y = f(X ) + E (12.6)

with f : X → Rq and E a random vector of noise terms with E[E ] = 0q. Naturally,

for a probabilistic model for compositional outputs, it is required that the codomain

of f is Sq. Moreover, the sample space of Y is Sq.

Ordinal regression can be seen as a specific example of multi-class classification.

Likewise, compositional data with ordered components are a specific example of

compositional data. As a result, model (12.6) can be used in this setting as well.
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However, it does not take the order on the classes into account. Therefore, it is

shown that the ordinal information on the classes can be incorporated into (12.6)

by adding an additional constraint on f . Consider the following probabilistic model

of compositional data

Y = h(g(X )) + E (12.7)

with g : X → R, h = (h1, . . . , hq) : R → Sq, E is a random vector of noise terms

and the sample space of Y is Sq. It can easily be seen that (12.7) is a special case

of (12.6). In the following paragraphs, it is shown that this model is particularly

useful to model compositional data with ordered components.

An example

For illustrative purposes, we represent model (12.7) graphically for an example

where the output space is S3 and the input space R. Figure 12.2 gives a visual

representation of the conditional probability density function ρY|X (. | x) of Y given

X = x. The solid line represents E[Y | X = x]. The conditional random variable Y
given X = x is Dirichlet distributed with a fixed concentration parameter.

The dominance relation

In an ordinal regression setting, the latent variable motivation suggests that

a monotone relationship exists between the latent variable and the output (the

predicted class label). When modeling compositional data with ordered components,

we want to preserve this monotone relationship between the latent variable and

the output (which is in this case a composition). However, to be able to speak of

a monotone relationship between a latent variable and a composition, an order

relation has to be defined on the outputs. Unfortunately, unlike the crisp ordinal

regression case, the general problem setting does not define a linear order on the

compositions. Therefore, an order has to be assumed that reflects the natural

ordering on the class labels. We propose an order relation that is strongly related to

the concept of first order stochastic dominance [165], which defines a partial order

relation on probability density functions. The concept of stochastic dominance

was introduced in decision theory and it has for example been used in rough sets

[166, 167] and instance-based learning algorithms [168, 169]. First, the notion of a

cumulative q-part composition is introduced.

Definition 12.1. For the q-part compositions y and f(x), the cumulative q-part

compositions y = (y1, . . . , yq) and f(x) = (f1(x), . . . , fq(x)) are defined as

yk =

k∑
l=1

yl and fk(x) =

k∑
l=1

fl(x) for k = 1, . . . , q .
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Figure 12.2: Visual representation of probabilistic model (12.7) with output space S3.
The conditional probability density function ρY|X (. | x) of Y given X = x is shown
by means of several contour plots. The solid line represents E[Y | X = x]. Moreover,
the conditional random variable Y given X = x is Dirichlet distributed with a fixed
concentration parameter.
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Using cumulative compositions, the notion of stochastic dominance can be used

to obtain a partial order relation on compositions, notwithstanding the fact that

these vectors do not represent distributions.

Definition 12.2. Given two q-part compositions y1, y2 ∈ Sq, we say that y1

dominates y2 (denoted y1 <SD y2) if the following holds for the cumulative

compositions y1 = (y1,1, . . . , y1,q) and y2 = (y2,1, . . . , y2,q):

(∀k ∈ {1, . . . , q})
(
y1,k ≤ y2,k

)
.

We say that y1 strictly dominates y2 if

y1 <SD y2 and y1 6= y2 . (12.8)

It can easily be seen that the dominance relation defines a partial order relation on

a given set of q-part compositions. Moreover, it forms a generalization of the linear

order on the label set. To illustrate this, consider two crisp labels Ck, Cl ∈ C. If

Ck ≺ Cl, the compositional representation of Cl will dominate the one of Ck. This

dominance relation is now used to define the following property.

Definition 12.3. A mapping h : R→ Sq is monotone with respect to the dominance

relation if for any s1, s2 ∈ R the following implication holds:

s1 ≥ s2 ⇒ h(s1) <SD h(s2) .

Motivation of the ordinal model

The dominance relation, combined with the latent variable interpretation, can

be used to motivate the structure of model (12.7). For this model, the vector of

functions f : X → Sq was redefined as

f(x) = h(g(x)) , (12.9)

where g : X → R and h = (h1, ..., hq) : R → Sq. In this form, f can be seen as a

two-step process. Firstly, g determines an object’s value for the latent variable.

Secondly, this value is mapped to Sq by h. Here, h can be chosen to be monotone

with respect to the dominance relation, however, this requires some additional

constraints on h. Consider the cumulative counterpart h = (h1, . . . , hq) of h,

where

hk(u) =

k∑
l=1

hl(u) , for k = 1, . . . , q; ∀u ∈ R.

Note that a one-to-one correspondence exists between h and h. This duality is ex-

ploited in the following obvious proposition, which states that requiring h1, . . . , hq−1
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to be decreasing functions suffices to obtain a monotone mapping.

Proposition 12.1. A mapping h : R → Sq is monotone with respect to the

dominance relation if and only if h1, . . . , hq−1 are decreasing functions.

The constraints on h1, . . . , hq−1 are illustrated in Figure 12.3. They assure that an

object will dominate all objects having a smaller value for the latent variable.

The discussion above suggests that, with a proper choice of h, model (12.7) can be

used to model compositional data with ordered components. In particular, when h

is monotone with respect to the dominance relation, an increase in the value of

the latent variable will lead to an increase in the porportional contribution of the

higher classes. These findings are summarized in the following property.

Definition 12.4. Model (12.7) is called monotone with respect to the dominance

relation if for any two feature vectors x1 and x2, the following equivalence holds

E[Y | X = x1] <SD E[Y | X = x2]⇔ g(x1) ≥ g(x2) ,

where E[Y | X = xi] represents the expected value of label Y, conditioned on the

input X = xi.

We now provide sufficient conditions such that probabilistic model (12.7) is mono-

tone with respect to the dominance relation. These conditions are provided by

means of the following proposition, of which the proof is a trivial consequence

of the discussion above and the properties of the Dirichlet distribution given in

Chapter 2 .

Proposition 12.2. Model (12.7) is monotone with respect to the dominance

relation if the following properties hold:

(i) h1, . . . , hq−1 are decreasing functions

(ii) The conditional distribution of Y given X = xi is a Dirichlet distribution

with parameter set β(x) = (β1(x), . . . , βK(x)) where

βk(x) = s hk(g(x)) , for k = 1, . . . , q; x ∈ X

where s ∈ R+
0 .

12.3.4. Performance measures for compositions with ordered

components

When modeling compositional data without an ordering on the components, the

Euclidean or Manhattan distance between a prediction/label pair (f(x),y) can

be used as loss function. However, such a loss function is not suitable in case of
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Figure 12.3: (Top) For 4-part compositions with ordered components, an example of
a set {h1, . . . , h4} is given that establishes a monotone relationship between the latent
variable and the resulting compositions. (Middle) Two compositions constructed from
these functions. (Bottom) The cumulative counterparts of the compositions in the middle.
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Figure 12.4: Illustration of three compositions with q = 3. y1 and y2 differ through
an exchange between the proportions of C1 and C2. y1 and y3 differ through the same
amount of exchange between C1 and C3.

compositional data with ordered components since it neglects the order on the

classes. To illustrate this, consider the compositions y1, y2 and y3 in Figure 12.4.

In this case, the Manhattan distance between y1 and y2 equals the Manhattan

distance between y1 and y3. When an ordering C1 ≺ C2 ≺ C3 is present, this

seems unnatural: y2 differs from y1 through an exchange between the proportions

of C2 and C3. On the other hand, y3 and y1 differ through the same amount of

exchange, but now between C1 and C3, which are further apart. To incorporate

the order into the performance measure, the Manhattan distance on the cumulative

compositions can be used instead [170, 171]. Formally, we call this the mean

absolute error on the cumulative compositions (`MAEC):

`MAEC(f(x),y) =

q∑
k=1

∣∣fk(x)− yk
∣∣ . (12.10)

Applying this to the example in Figure 12.4 gives `MAEC(y1,y2) < `MAEC(y1,y3).

12.3.5. A proportional odds model for predictive modeling

of compositional outputs with ordered components

The proportional odds model as introduced in Section 12.3.1 naturally establishes

a monotone relationship between the latent variable and the estimated class proba-

bilities, since the logistic functions fitted by this model on the latent variable axis

respect the constraints given in Proposition 12.1 (see for instance Figure 12.1(b)).

As a result, the fitted logistic curves are particularly useful to model data with

an underlying model of type (12.7). Based on these findings, we propose a minor

extension of the proportional odds model for learning to predict compositions with

ordered responses. As a hypothesis space H, we consider the set of vector functions

f : X → Sq of which the cumulative counterpart can be written as follows:

fk(x) =


exp(−w>x + θk)

1 + exp(−w>x + θk)
, if k = 1, . . . , q − 1 ,

1 , if k = q ,

(12.11)
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with w ∈ Rp and θ1 ≤ . . . ≤ θq−1 ∈ R.

This construction naturally implies that each function f ∈ H can be written

as h(g(x)) where h is monotone with respect to the dominance relation and

g(x) = w>x.

To fit the traditional proportional odds model to a dataset, the negative log-

likelihood (see Eq. (12.5)) is usually considered as a loss function. In our approach,

we present a slightly modified loss function that also takes a regularization term

into account:

r(f) = λ ‖w‖22 − log

(
n∏
i=1

q−1∏
k=1

(f̄k(xi)− f̄k+1(xi))
yi,k

)
(12.12)

= λ ‖w‖2 −
n∑
i=1

log
(
f1(xi)

yi,1
)

−
n∑
i=1

q∑
k=2

log
(

(fk(xi)− fk−1(xi))
yi,k
)
, (12.13)

In this way, the original likelihood function, which has a completely probabilistic

interpretation, is here adopted as a regular loss function. As such, this loss function

looses its probabilistic interpretation, because compositions should not necessarily

be interpreted as prior probability estimates. However, the above loss function

has interesting properties, since it is differentiable and convex, leading to an

optimization problem that retains its computational tractability. The parameters

w and θ1, . . . , θq−1 can be estimated with a gradient descent algorithm.

As the proportional odds model for predictive modeling of compositional data with

ordered responses can be seen as a special case of the setting described in Section

12.2, it can be kernelized as well. Given a kernel κ : X ×X → R, a reproducing

kernel Hilbert space H of functions can be constructed (following the methodology

of Chapter 11). Following [133], the minimizer f̂ of the regularized empirical loss

function

r(f) = λ ‖g‖2H −
n∑
i=1

log
(
f1(xi)

yi,1
)
−

n∑
i=1

q∑
k=2

log
((
fk(xi)− fk−1(xi)

)yi,k) ,
admits a representation of the form ĝ(x) =

∑n
i=1 αiκ(x,xi) (along with the inter-

cepts θ̂i, i = 1, . . . , q − 1). Therefore, the regularization term can be written as

‖g‖2H = α>Kα, where K is the Gram matrix, i.e. Ki,j = κ(xi,xj). Similar to

the standard proportional odds model, the model parameters can be estimated

by minimizing the (regularized) loss function. Since the loss function retains its

convexity and differentiability, standard optimization algorithms such as gradient

descent can be applied to this end. The kernel form of the regularized empirical

loss function was implemented in R [172]. To minimize this loss function the BFGS
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algorithm (which is a quasi-Newton method) [173] that is included in the base

distribution of R was used.

Remark. The proportional odds models requires that θ̂1 ≤ θ̂2 ≤ . . . ≤ θ̂q−1.

Therefore, it could be argued that these inequalities should be implemented as

constraints in the resulting optimization problem. Unfortunately, standard imple-

mentations of the Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) do not

allow constraints to be included. However, it is easy to see that at the minimizer

of r, the inequality constraints will generally not be active. Therefore, given a

feasible starting point of the BFGS algorithm, the iterates will generally not leave

the feasible part of the search space. In the unlikely case that an iterate would

leave the feasible region, this can be remedied by reducing the step size for that

iteration.

12.4. Experiments on synthetic data

When the set of class labels is equipped with an order, it should be beneficial (in

terms of predictive performance) to use models that take this ordering into account.

To verify this claim in case of compositional data with ordered components, a series

of experiments on synthetic data is presented in this section. On these datasets, the

performance of the kernelized proportional odds model for compositional outputs

with ordered components (POC) will be compared with some alternative (less

model-driven) approaches. It should be noted that, to the best of our knowledge,

there are no existing models capable of learning compositional data with ordered

components.

12.4.1. Alternative methods

For a given training dataset T of size n, the mean1 composition y∗T can be obtained

as

y∗T =
1

n

 ∑
(xi,yi)∈T

yi,1, . . . ,
∑

(xi,yi)∈T

yi,q

 . (12.14)

As a baseline method, this mean can be used as a model, f(x) = y∗T (referred to

as Mean). Secondly, as a first ‘real’ model, we choose to modify random forest

regression (RF) as introduced in [124], to enable it to learn compositional data with

ordered components. Since the standard entropy measure (mean squared error) has

no meaning in this setting, a different entropy measure is used. For a given node

and associated dataset Tl, the average value of `MAEC(y∗Tl ,y), where y runs over all

1 Note that we use the traditional arithmetic mean here, as opposed to the average that is implied
by the Aitchison geometry.
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compositions in Tl, is used as a entropy measure. This modified entropy measure

assures that the random forest directly optimizes `MAEC. Similar to the original

algorithm, among all possible splits, the candidate that maximizes the decrease in

entropy is chosen to expand the tree. As with regression trees, an ensemble of trees

is grown on bootstrap samples of the training set and the predictions are averaged

to obtain the final result. However, since the predictions are compositions instead

of real numbers, the average is taken over these compositions.

As a third alternative, we also compare with the extended version of multi-class

kernel logistic regression model for compositions with unordered components, as

proposed in [174] by extending multi-class kernel logistic regression (MKLR). The

extended MKLR algorithm is not specifically designed for an ordinal setting, but

it delivers quite satisfactory results for learning from compositional data when no

order is present on the classes. Since it can be seen as a variant of the proportional

odds model without the latent variable assumption, it seems obvious to compare our

extension of the proportional odds model with this algorithm. Moreover, standard

kernel logistic regression is one of the state-of-the-art algorithms in multi-class

classification.

12.4.2. Experimental setup

With some carefully designed experiments on synthetic data, we will try to demon-

strate the performance of our algorithms and illustrate some specific properties.

In all experiments, model (12.7) is used as the model underlying the data. More

precisely, we will investigate the influence of g and h on the predictive capabilities

of the models. Both g and h strongly influence the complexity of the model. The

latent variable function g can vary from a (simple) linear to a complex, highly non-

linear function. On the other hand, due to the constraints in Proposition 12.1, the

functions h1, . . . , h4 are highly nonlinear by definition, making it difficult to speak

in terms of complexity for these functions. However, as mentioned in Section 12.3.5,

the POC constructs h by means of a set of logistic functions. Consequently, a vector

of functions h that cannot be approximated well by means of logistic functions

might require a more complex model.

The (joint) influence of g and h on the predictive performance will be investigated

in four different experimental settings (A–D) (Table 12.1). In Setting A, g is linear

and h is a set of logistic functions (Figure 12.5(a)). In Setting B, g is linear and

h strongly deviates from the logistic shape (Figure 12.5(b)). In Setting C, g is

nonlinear and h strongly deviates from the logistic shape (Figure 12.5(b)). In

Setting D, g is nonlinear and h constitutes a typical Ruspini partition (Figures

12.5(c) and 12.5(d)). In this last experiment, we want to simulate a setting in

which the functions hi have a traditional fuzzy set-like shape.
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Table 12.1: Overview of experimental settings A-D. In the linear case, g(x) = 4(x1 +

x2 +x3 +x4) +x5 +x6 + 2x7−25. In the nonlinear case, g(x) = 9

√∣∣∣x1+x2−x3−x4
x5+x6−x7

∣∣∣−1.2.

h logistic h non-logistic h Ruspini partition

(Figure 12.5(a)) (Figure 12.5(b)) (Figure 12.5(c))

g linear Setting A Setting B -

g nonlinear - Setting C Setting D

12.4.3. Data generation and parameter estimation

For each of Settings A-D, a synthetic dataset of size n can be generated using the

following scheme:

1. Choose an input space X and define a random vector X with probability

density function fX , g : X → R, h : R → S4 monotone with respect to the

dominance relation (e.g. Table 12.1).

2. To obtain a set of n feature vectors x1, . . . ,xn:

(i) Choose an interval [a, b] ⊂ range(g) and divide it in n non-overlapping

sub-intervals of equal length.

(ii) Sample candidate feature vectors x from fX until sufficient values of

each sub-interval of g(x) are retrieved so that each subinterval contains

at least one.

(iii) From each sub-interval, randomly choose one feature vector to obtain

x1, . . . ,xn.

3. For each selected feature vector xi, obtain yi as a sample from

Dir(s h1(g(xi)), . . . , s h4(g(xi))) .

with s ∈ R+ a parameter.

According to Proposition 12.2, the obtained dataset originates from a model that

is monotone with respect to the dominance relation. As such, this data generation

process represents a setting with compositional outputs with ordered components.

Note that, instead of step 2, the feature vectors could have been sampled directly

from fX . However, the procedure described here ensures that the values for g(x)

are uniformly spread over a chosen interval. With an appropriate choice for this

interval w.r.t. h, this increases the variability of h(g(x1)), . . . ,h(g(xn)) in the

dataset, leading to more interesting cases.
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Figure 12.5: (a) Representation of h in Setting A. (b) Representation of h in Settings
B and C. (c) h1, . . . , h4 constitute a typical Ruspini partition, this partition is monotone
with respect to the dominance relation and used in Setting D. (d) The cumulative version
of (c).

271



Chapter 12. Predictive modeling for compositions with ordered components

For each setting, a training set containing 20 data points was created. fX was

chosen uniform over [1, 7]7, [a, b] = [−1, 10] and s = 100. A separate validation set

is sampled to tune the hyper-parameters (regularization parameter λ and kernel

parameter σ), with a grid search from 2−8 to 28 and a step size 2 (multiplicative)

for both parameters. Besides the extended proportional odds model and the

MKLR model, we also tune the enhanced random forest classifier that serves as a

comparison. Based on the out-of-bag error, the number of trees is set to 500 and

the number of candidate features for each split is set to 3. The final performance

statistics are based on a test set of size 1000. Each experiment is repeated 30

times. For each of these settings, the performance (in terms of LMAEC) is calculated

for 6 different methods: global mean (Mean), random forest (RF), MKLR with

linear kernel (MKLR-Lin), MKLR with RBF kernel (MKLR-RBF), proportional

odds for compositions with a linear kernel (POC-Lin) and proportional odds for

compositional outputs with an RBF kernel (POC-RBF). Note that the use of a

linear kernel is the same as using no basis expansion, resulting in a linear model

for the latent variable.

12.4.4. Results

Table 12.2 summarizes the performance (in terms of the average `MAEC) for all

6 methods in each setting, averaged over 30 repetitions. In setting A, POC

substantially outperforms the other methods. This does not come as a surprise,

because Setting A was especially designed to favor our approach (g linear and h

logistic). The use of an RBF kernel does not increase performance since linear

models are flexible enough for this setting. Furthermore, one can also observe that

the RF classifier behaves much worse than the kernel methods. This phenomenon

can be explained by the fact that we are fitting here a linear model, which can be

easily simulated with a linear kernel, while random forests have more difficulties

with simulating such models.

For Setting B, it can be seen that the main conclusions from Setting A remain

valid when the components of h deviate from the logistic functions, but the use

of an RBF kernel now seems to improve performance. This observation supports

the claim that, notwithstanding the linearity of g, more flexible models are able to

improve performance when the components of h are not logistic. Thus, although

the kernelized proportional odds model considers a specific logistic shape for h, it

can fit datasets with other shapes quite well. In Setting C, the need for nonlinear

models increases. Two main conclusions can be drawn from this experiment, both

of them being in line with initial expectations. Firstly, as the complexity of the

latent variable function increases, the performance in terms of `MAEC decreases.

This observation holds for all models that are investigated. Secondly, the need

for using nonlinear models becomes even more striking than in Setting B. POC

with an RBF kernel still obtains the best performance, followed by MKLR with an
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Table 12.2: Summarizing table of the experiments on synthetic data for the four different
settings. For each method, the average `MAEC over 30 repetitions is given and the standard
deviation is shown between brackets.

Method Setting A Setting B Setting C Setting D

Mean 0.924 (0.020) 0.686 (0.032) 0.645 (0.040) 0.888 (0.050)

RF 0.566 (0.050) 0.435 (0.032) 0.583 (0.042) 0.798 (0.045)

MKLR-Lin 0.123 (0.017) 0.280 (0.035) 0.601 (0.048) 0.800 (0.090)

MKLR-RBF 0.145 (0.024) 0.267 (0.030) 0.514 (0.064) 0.680 (0.076)

POC-Lin 0.108 (0.012) 0.242 (0.016) 0.574 (0.049) 0.751 (0.067)

POC-RBF 0.107 (0.013) 0.232 (0.016) 0.479 (0.050) 0.551 (0.072)

RBF kernel, but their linear counterparts cannot predict the data well, since the

performance of the RF classifier is now similar to the kernel methods with linear

kernels. So, one can conclude that POC remains a useful tool for datasets with

nonlinear relationships, but definitely nonlinear kernel functions have to be used.

Finally, consider Setting D. Here as well, POC-RBF clearly outperforms all other

methods. The same reasoning as in Setting B can be adopted. The kernel function

is able to correct again for the triangular or trapezoidal shape of h.

12.5. An illustration in agriculture

In this section we return to the introductory motivating example, where the goal

consists of learning a predictive model that can handle compositional data with

ordered components.

We explored a dataset presented in [152]. This dataset describes the degree of

infection of cereal crops with head blight disease in Flanders (Belgium). To describe

the degree of infection of a wheat field, a number of ears are selected randomly

from the field. Each ear is classified by an expert in one of five ordinal classes: not

infected, slightly infected, moderately infected, heavily infected, fully infected. As

such, the fractions of ears in each class constitute a composition describing the

infection degree of the field. It is known that the infection degree of a field with

head blight is strongly influenced by the micro-climate during the flowering season.

In this scope, 45 micro-climatological variables were recorded at each field. In total,

210 fields were analyzed in the year 2007 and 248 were analyzed in 2008.

The climatological variables can be used to build a predictive model for the infection

degree of a field. Accordingly, MKLR-Lin and POC-Lin were fit to this dataset.

In a first experiment, the data of 2007 was used to train the model, subsequently

the performance of this model was evaluated on the data of 2008. In the second

experiment, the data of 2008 was used for training and the data of 2007 for
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Table 12.3: Performance results of MKLR-Lin, and POC-Lin in terms of `MAEC on the
head blight dataset.

Method 2007 2008

MKLR-Lin 0.79 0.20

POC-Lin 0.72 0.19

performance evaluation. Table 12.3 shows the performance of MKLR-Lin and POC-

Lin in terms of `MAEC. The results indicate that POC is able to outperform MKLR in

terms of predictive power. However, it should be noted that the difference between

both methods is rather limited. Moreover, when plotting the predicted outputs

versus the observed outputs, it can be seen that the output cannot be predicted

accurately. More strongly, we concluded that there exists close to no relationship

(in this dataset) between the inputs and the outputs. Unfortunately, the dataset

turned out to be inadequate to make statements about the superiority of one of the

two methods. Therefore, we do not elaborate further on this experiment.

12.6. Modeling compositional data with ordered

components on a bounded domain

Recall from Section 12.3.5 that vector functions of the form f(x) = h(g(x)) are

interesting candidates for modeling compositional data with ordered components,

provided that h is monotone with respect to the dominance relation. The extension

of the proportional odds model presented in Section 12.3 uses a class of functions f

of which the cumulative counterpart can be written as

fk(x) =


exp(−w>x + θk)

1 + exp(−w>x + θk)
, if k = 1, . . . , q − 1 ,

1 , if k = q .

(12.15)

This parametrization ensures that the implied vector function h is monotone with

respect to the dominance relation. However, the hypothesis space implied by this

parametrization can be too restrictive in several situations. Indeed, one can easily

find a vector function h that is monotone with respect to the dominance relation, but

cannot be written in the form implied by Eq. (12.15) (we provide several examples

later in this section). Therefore, we propose a generalization of the proportional

odds model that allows for a more flexible modeling of compositional data with

ordered components. This generalization requires that the input domain X is a

bounded subset of Rp. Moreover, we will illustrate that the original proportional

odds model can be seen as a special case for which X = Rp.
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12.6.1. The hypothesis space of the proportional odds model

As a starting point, we formally describe the hypothesis space that is implied by

the proportional odds model. For the remainder of this section, we will assume

that the input space X is a subset of Rp. The output space Y = Sq. Moreover, let

SqX = {f : X → Sq} be the space of functions that map X into Sq. Let

Rq−1
≤ =

{
θ ∈ Rq−1 | (∀k ∈ {1, . . . , q − 2})(θk ≤ θk+1)

}
.

Now, consider the following mapping:

φ : Rp × Rq−1 → SqX

(w,θ) 7→


exp(−〈w, .〉+ θ1)/(1 + exp(−〈w, .〉+ θ1))

exp(−〈w, .〉+ θ2)/(1 + exp(−〈w, .〉+ θ2))
...

1

 .
(12.16)

Using the mapping φ, we can easily construct the cumulative counterpart of the

hypothesis space of the proportional odds model:

H̄ = {φ(w,θ) | (w,θ) ∈ Rp × Rq−1
≤ } . (12.17)

From this formulation, it is clear that for each f̄ ∈ H̄, the components f̄1, . . . , f̄q−1

share the same parameter vector w. This characteristic is a natural result of the

latent variable motivation of the proportional odds model. However, in some cases,

such an approach may be too restrictive. As an example, consider a phenomenon for

which the (expected) cumulative compositions are modeled by the vector function

b̄ : [0, 1]→ [0, 1]3:

b̄(x) =


exp(x)/(1 + exp(x))

exp(a x+ 1)/(1 + exp(a x+ 1))

1

 ,

where a ≥ 1 is a parameter.

When a = 1 we have that b̄ ∈ H̄. However, when a > 1 it is clear that b̄ /∈ H̄.

Such cases can occur when the latent variable assumption is not fulfilled. To model

such phenomena, three options exist:

(i) Use the proportional odds model to approximate b̄. This can lead to a good

model when a ≈ 1, i.e. the latent variable assumption is only mildly violated.
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(ii) Use multi-class logistic regression to approximate b̄. This strategy can lead to

a good model when a >> 1, i.e. the latent variable interpretation is heavily

violated.

(iii) Slightly relax the latent variable assumption and use a set of functions that

extends H̄.

In the following section, we elaborate upon the third option.

12.6.2. An extended hypothesis space

The hypothesis space H̄ can be extended to include functions such as b̄. However,

we need to take into account that such an extended set still represents cumulative

compositions. This means that the (extended) hypothesis space Ḡ should at least

satisfy the following conditions.

1. For any f̄ ∈ Ḡ and x ∈ X, we should have that f̄1(x) ≥ 0.

2. For any f̄ ∈ Ḡ and x ∈ X, we should have that f̄k(x) ≤ f̄k+1(x), for

k = 1, . . . , q − 1.

3. For any f̄ ∈ Ḡ and x ∈ X, we should have that f̄q(x) = 1.

Such a hypothesis space can be constructed using the approach that was used to

define H̄. Therefore, consider the mapping ψ:

ψ :
q−1

×
k=1

Rp × Rq−1 → SqX

((wk)q−1
k=1,θ) 7→


exp(−〈w1, .〉+ θ1)/(1 + exp(−〈w1, .〉+ θ1))

exp(−〈w2, .〉+ θ2)/(1 + exp(−〈w2, .〉+ θ2))
...

1


. (12.18)

Similar to Eq. (12.17), we could construct a hypothesis space{
ψ((wk)q−1

k=1,θ) | ((wk)q−1
k=1,θ) ∈

q−1

×
k=1

Rp × Rq−1

}
.

Unfortunately, this space does not satisfy the second of the conditions given before.

To resolve this issue, we can attempt to remove the elements that violate the second

property. Mathematically, the removal of those elements boils down to reducing

276



§12.6. Modeling compositional data with ordered components on a bounded domain

the set above to a new set{
ψ((wk)q−1

k=1,θ) | ((wk)q−1
k=1,θ) ∈ O

}
,

where O is a subset of×q−1

k=1
Rp × Rq−1. This reasoning does not state how to

choose O. In the remainder of this section, we develop a characterization of O that

is amenable for optimization purposes.

As a starting point, recall that the second property requires that for any k ∈
{1, . . . , q − 2} and for any x ∈ X we have that

exp(−w>k x + θk)

1 + exp(−w>k x + θk)
≤

exp(−w>k+1x + θk+1)

1 + exp(−w>k+1x + θk+1)
,

which is equivalent to

−w>k x + θk ≤ −w>k+1x + θk+1 ,

or also

(wk+1 −wk)>x + θk − θk+1 ≤ 0 . (12.19)

When X = Rp, this condition implies that wk+1 = wk and θk ≤ θk+1. However,

this constraint can be relaxed by explicitly taking into account that X is a bounded

subset of Rp. In this case, a convex polytope B can be defined such that X ⊆ B.

Formally, using an m × p matrix B and an m-vector b, this polytope is defined

as:

B = {x ∈ Rp | Bx ≤ b} . (12.20)

Using this polytope, the problem of finding a good hypothesis space reduces to the

problem of choosing O such that for any x ∈ X and for any ((wk)q−1
k=1,θ) ∈ O, it

holds that
q−2∧
k=1

(wk+1 −wk)>x + (θk − θk+1) ≤ 0 , (12.21)

where
∧q−2
k=1 denotes the Boolean conjunction of the q − 2 clauses.

Let us now focus on one of these clauses, i.e.

(wk+1 −wk)>x + (θk − θk+1) ≤ 0 .
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Notably, the requirement that inequality (12.19) holds for any x ∈ B is equivalent

to requiring that the system

B x ≤ b

(wk+1 −wk)>x + (θk − θk+1) > 0

has no solution w.r.t. x. The vectors ((wk)q−1
k=1,θ) for which this system has no

solution are collected in the following set

Ok =
{

((wk)q−1
k=1,θ) | ¬

(
(∃x ∈ Rp)

(B x ≤ b) ∧ ((wk+1 −wk)>x + (θk − θk+1) > 0)
)}

. (12.22)

However, Ok only takes one inequality into account, whereas (12.21) requires

q − 2 inequalities to hold simultaneously. Including these inequalities leads to the

following set

O =
{

((wk)q−1
k=1,θ) | ¬

(
(∃x ∈ Rp)

(B x ≤ b) ∧
(q−2∨
k=1

((wk+1 −wk)>x + (θk − θk+1) > 0)
))}

. (12.23)

Using the set O, we can now obtain a hypothesis space Ḡ that satisfies the three

conditions listed at the beginning of Section 12.6.2:

Ḡ =
{
ψ((wk)q−1

k=1,θ) | ((wk)q−1
k=1,θ) ∈ O

}
. (12.24)

12.6.3. Learning from compositional data with Ḡ

Using a dataset (X,Y), a loss function (on the cumulative compositions) ` and a

complexity criterion c : Ḡ→ R+, the following regularized empirical loss function

can be constructed

rE : Ḡ → R
f̄ 7→

∑n
i=1 `(f̄(xi), ȳi) + c(f̄) .

(12.25)

The minimizer of rE can be found by solving the following optimization prob-

lem:

minimize
f̄∈Ḡ

n∑
i=1

`(f̄(xi), ȳi) + c(f̄) .

Moreover, as the mapping ψ is a bijection between O and Ḡ, this optimization

problem can be written in a form that can be solved using numerical optimization
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procedures:

M1 : minimize
(wk)q−1

k=1,θ

n∑
i=1

`(ψ((wk)q−1
k=1,θ)(xi), ȳi) + c((wk)q−1

k=1,θ)

subject to ((wk)q−1
k=1,θ) ∈ O .

It will be shown later in this chapter that we can easily construct a regularized

empirical loss function (similar to the one presented in Eq. (12.12)) that is a

convex function of ((wk)q−1
k=1, θ). However, the implementation of the constraint

((wk)q−1
k=1,θ) ∈ O is more complicated. Therefore, an alternative characterization

of O is presented in the following subsection.

An alternative characterization of O

In this section, we present an alternative characterization of O that is amenable to

be used in optimization procedures. As a starting point, we present an alternative

characterization of the set Ok in the following proposition. It should be noted

that the mathematical characterization that is used here is inspired on [175] who

used a similar characterization to incorporate knowledge in support vector machine

classifiers.

Proposition 12.3. Let {x | B x ≤ b}, with B ∈ Rm×p and b ∈ Rp, be a nonempty

set. Let Ok be defined as in Eq. (12.22). We have that

Ok =
{

((wl)
q−1
l=1 ,θ) | (∃u ∈ Rm)

(
B>u−wk+1 + wk = 0p)

∧ (b> u + θk − θk+1 ≤ 0) ∧ (u ≥ 0m)
)}

.

The proof of this proposition is rather technical and is given in Appendix 12.A (at

the end of this chapter).

The proposition above can easily be generalized to obtain an alternative characteri-

zation of O.

Proposition 12.4. Let {x | B x ≤ b}, with B ∈ Rm×p and b ∈ Rp, be a nonempty

set. Let O be defined as in Eq. (12.23). We have that

O =

{
((wk)q−1

k=1,θ) |
(
∃ (uk)q−2

k=1 ∈ Rm×(q−2)
)(q−2∧

k=1

(uk ≥ 0m)
)

∧
(q−2∧
k=1

(B>uk −wk+1 + wk = 0p)
)
∧
(q−2∧
k=1

(b> uk + θk − θk+1 ≤ 0)
)}

.

Corollary 12.5. The set O is a convex set.
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Proof. As O can be written as the solution set of a system of affine equalities and

inequalities, it is convex.

The proposition above allows to reformulate optimization problem M1 as fol-

lows:

minimize
(wk)q−1

k=1,θ,(uk)q−2
k=1

n∑
i=1

`(ψ((wk)q−1
k=1,θ)(xi), ȳi) + c((wk)q−1

k=1,θ)

subject to 0p = B>uk −wk+1 + wk , for k = 1, . . . , q − 2 ,

0 ≥ b> uk + θk − θk+1 , for k = 1, . . . , q − 2 ,

0m ≤ uk , for k = 1, . . . , q − 2 .

A convex loss function for M1

As a starting point, consider the loss function that is used in the proportional odds

model for compositional data with ordered components:

`(f̄(x), ȳ) = − log(f̄1(x)y1)−
q∑

k=2

log
(
(f̄k(x)− f̄k−1(x))yk

)
.

We now have the following proposition.

Proposition 12.6. The loss function

`(ψ((wk)q−1
k=1,θ)(x), ȳ) = − log(f̄1(x)y1)−

q∑
k=2

log
(
(f̄k(x)− f̄k−1(x))yk

)
,

where f̄(.) = ψ((wk)q−1
k=1,θ)(.), is a convex function of ((wk)q−1

k=1,θ) ∈ O.

The proof is given in Appendix 12.A.

A complexity criterion for M1

In this section we derive a flexible complexity criterion that allows a smooth

transition between settings with ordered components and settings in which the

components are unordered. More precisely, we derive a complexity criterion c of

the form

c((wk)q−1
k=1,θ) = λ1 c1((wk)q−1

k=1,θ) + λ2 c2((wk)q−1
k=1,θ) .

The complexity of a function ψ((wk)q−1
k=1,θ) can be measured by the squared L2-

norm of the vectors wk. Therefore, the first term of the complexity criterion
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is

c1((wk)q−1
k=1,θ) =

q−1∑
k=1

‖wk‖22 .

To motivate the second term of the complexity criterion, let us compare traditional

multi-class classification strategies with ordinal regression strategies. Ordinal regres-

sion can be interpreted as a restricted form of multi-class classification. Whereas a

traditional multi-class classification model contains O(p q) parameters that need to

be estimated, ordinal regression models only have O(p+ q) parameters that need

to be estimated. From statistical learning theory, we know that this reduction of

the size of the parameter set will reduce the variance of the model (see for instance

[147]). On the other hand, because of the assumptions they make, ordinal regression

models have a stronger bias than multi-class classification models. In terms of

predictive power, ordinal regression models will generally outperform multi-class

classification models when these assumptions are (approximately) correct, as the

increased bias will be dominated by the reduction of the variance. However, when

these assumptions do not hold, the increased bias will generally dominate the

reduction in variance and lead to poor predictive power.

The extended hypothesis space Ḡ leads to an increase in the number of parameters

as compared to the proportional odds model for compositional data with ordered

components. Indeed, the number of parameters is O(p q) here. However, we can

use regularization to bias our model towards the proportional odds model for

compositional data with ordered components. This can be achieved by penalizing

the complexity of ψ((wk)q−1
k=1,θ) as follows:

c2((wk)q−1
k=1,θ) =

q−2∑
k=1

(wk −wk+1)> (wk −wk+1) .

Note that c2 is a convex function of ((wk)q−1
k=1,θ).
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A reformulation of M1

Combining the ingredients of the previous subsections, the following optimization

problem is obtained:

minimize
(wk)q−1

k=1,θ,(uk)q−2
k=1

n∑
i=1

(
− log(f̄1(xi)

yi,1)−
q∑

k=2

log
(
(f̄k(xi)− f̄k−1(xi))

yi,k
))

+

q−1∑
k=1

‖wk‖22 +

q−2∑
k=1

(wk −wk+1)> (wk −wk+1)

subject to 0p = B>uk −wk+1 + wk , for k = 1, . . . , q − 2 ,

0 ≥ b> uk + θk − θk+1 , for k = 1, . . . , q − 2 ,

0m ≤ uk , for k = 1, . . . , q − 2 ,

where f̄(.) = ψ((wk)q−1
k=1,θ)(.).

12.7. Beyond convex polytopes

The power of the extended hypothesis space Ĝ heavily depends upon the appro-

priateness of the set B. A good set B (as defined in Eq. (12.20)) should have the

following properties:

1. X ⊆ B.

2. B \X should be small.

3. B should lead to an optimization problem that can be solved efficiently.

The first property is needed to ensure that condition 2 (Section 12.6.2) holds for

the set Ĝ. We motivate the second property as follows. From Proposition 12.4, it

can easily be seen that the size of the set O (and the resulting hypothesis space Ḡ

) increases when the size of B decreases. In the most extreme case, when B = Rp,
we have that w1 = w2 = . . . = wq−1 and our extended model reduces to the

proportional odds model for compositional data with ordered components. The

third (logical) property can be considered to be the most limiting one. Indeed

this property prevents us from choosing B equal to X. Up to now, we have been

limited to let B be a convex polytope. We will use generalized inequalities to relax

this limitation hereafter. Interestingly, the approach presented here can be used to

generalize the setting of Fung et al. [175].

Generalized inequalities can be used to define (convex) sets. As an example,

consider a proper cone K, an m× p matrix B and an m-vector b. It can easily be

shown that

B = {x | B x 4K b}

282



§12.7. Beyond convex polytopes

is a convex set. For the remainder of this section, we will assume that B is defined

in that way. Moreover, we assume that X ⊆ B.

12.7.1. A hypothesis space using proper cones

Most of the results obtained in Sections 12.6.2 and 12.6.3 can be generalized by

replacing B = {x | B x ≤ b} with B = {x | B x 4K b}, where K is a given proper

cone. For example, Eqs. (12.23) and (12.24) can be generalized as follows:

O =
{

((wk)q−1
k=1,θ) | ¬

(
(∃x ∈ Rp)(

(B x 4K b) ∧
(q−2∨
k=1

(wk+1 −wk)>x + (θk − θk+1) > 0
)))}

, (12.26)

and

Ḡ =
{
ψ((w)q−1

i=1 ,θ) | ((w)qi=1,θ) ∈ O
}
. (12.27)

Proposition 12.7. Given a proper cone K ⊂ Rp and its dual K∗, a matrix

B ∈ Rm×p and an m-vector b such that the solution set of Bx ≺K b is not empty.

Let O be defined as in Eq. (12.26). We have that

O =

{
((wk)q−1

k=1,θ) | (∃ (uk)q−2
k=1 ∈ Rm×(q−2))

((q−2∧
k=1

uk <K∗ 0m

)
∧
(q−2∧
k=1

B>uk −wk+1 + wk = 0p

)
∧
(q−2∧
k=1

b> uk + θk − θk+1 ≤ 0
))}

.

This proposition can be used to construct a set of inequality and equality constraints

for optimization problem M1. This generalizes the original setting:

M2 : minimize
(wk)q−1

k=1,θ,(uk)q−2
k=1

n∑
i=1

`(ψ((wk)q−1
k=1,θ)(xi), ȳi) + c((wk)q−1

k=1,θ)

subject to 0p = B>uk −wk+1 + wk , for k = 1, . . . , q − 2 ,

0 ≥ b> uk + θk − θk+1 , for k = 1, . . . , q − 2 ,

0m 4∗K uk , for k = 1, . . . , q − 2 .

This optimization problem is a convex conic program. During the past decade,

several conic programming solvers have been developed that are capable of solving

a limited number of convex conic optimization problems efficiently [32, 33]. The
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most important factor that determines whether a conic program can be solved

with an existing convex programming solver, is the type of proper cone that is

used. Most conic solvers can handle the L2 Lorentz cone and the semidefinite cone.

This means that, even though the theoretical results obtained before do not put

any restrictions on the proper cones that are used, we are limited to using the L2

Lorentz cone or the semidefinite cone.

12.7.2. An example

As an example, let us consider the case where B is a hypersphere:

B = {x ∈ Rp | ‖x‖2 ≤ 1} ,

We will now illustrate that X can be described by means of a generalized inequality.

First we define the L2 Lorentz cone KL2 is given by:

KL2
= {(u, v) ∈ Rp+1 | ‖u‖2 ≤ v} .

It can easily be seen that this cone can be used to describe B as follows:

B =

{
(x, t) ∈ Rp × R

∣∣∣∣∣ diag(−1>p , 0)

(
x

t

)
4KL2

(
0p

1

)}
,

where 0p (resp. 1p) is a p-vector of zeros (resp. ones).

It can be noted that there might exist more elegant manners to encode a hypersphere

by means of a generalized inequality. However, KL2
has the appealing property

that it is self-dual, i.e. KL2
= K∗L2

. Therefore, the dual cone that is used in the

last inequality of M2 is the Lorentz cone itself. This means that the resulting

optimization problem can be solved using existing second order cone programming

solvers.

12.8. Conclusions and discussion

In this chapter, we have introduced the problem of predicting compositional data

with ordered components. The natural order on the components was translated

into a partial order relation on compositions. It was argued that this order relation

should be taken into account when learning to predict compositions with ordered

components. An extension of the proportional odds model was used as a basis

for creating those predictive models. From the results obtained from an extensive

set of experiments with artificially generated data, it can be concluded that the

proposed approach can outperform competing approaches that do not take the
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Figure 12.6: Hierarchical representation of the ordered components of a 3-part compo-
sition.

ordinal nature of the data into account.

Unfortunately, we were unable to verify if the proportional odds model for compo-

sitional data with ordered components can outperform its competitors in a real-life

setting. To make such a comparison, the relationship between the inputs and the

outputs in the fusarium dataset clearly was too weak to be modeled.

In Section 12.6, the proportional odds model for predicting compositions with

ordered components was extended. The extended version (which can be seen as

a relaxation of the original model) allows to model situations in which the latent

variable motivation is slightly violated. However, the applicability of this relaxed

version still needs to be supported by empirical evidence. Such evidence will

require experiments on artificially generated data as well as experiments on real-life

data.

The discussions in Chapters 10 and 11 may raise the question whether the principles

that have been used here to encode the ordinal nature of the data can be translated

to a setting that uses the Aitchison geometry. We conclude this discussion with

several proposals that could serve as a link between this chapter and the previous

chapter. As a starting point, consider a setting where the outputs are 3-part

compositions with ordered components. Assume that these components are labeled

Bad, Medium, Good and Very good. Now consider the hierarchy presented in

Figure 12.6. This hierarchy suggests that three models can be built. A first model

can be used to distinguish the relative amount of Bad from the relative amount of

Medium and Good and Very good. A second model can be used to distinguish the

relative amount of Medium from the relative amount of Good and Very good. A

third model can be used to distinguish the relative amount of Good from the relative

amount of Very good. If there exists some latent variable, it can be assumed that

the parameter vectors these three models should be identical. Interestingly, when

using the ilr-transform with a properly chosen set of basis vectors, this approach
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can easily be combined with the Aitchison geometry. In this example the following

basis can be used.

Φ.,1 Φ.,2 Φ.,3

Bad −3/
√

12 0 0

Medium 1/
√

12 2/
√

6 0

Good 1/
√

12 −1/
√

6 −
√

2/2

Very good 1/
√

12 −1/
√

6
√

2/2

The first coordinate in the transformed space expresses the balance between the

proportional amount of Bad versus the proportional amount of Medium and good.

The second coordinate expresses the proportional amount of Medium versus the

proportional amount of good. Subsequently, three models with identical parameter

vectors can be learned simultaneously in the ilr-transformed space. Moreover,

this approach allows a relaxed form that is highly similar to the one presented in

Section 12.6.

The suggestions that are made above can be considered as guidelines for merging

Chapters 11 and 12. However, theoretical as well as empirical work is needed to

confirm that this approach can be useful in practice.
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12.A. Proofs of propositions 12.3–12.7

In this appendix, we provide the proofs of Propositions 12.3–12.7.

12.A.1. Preliminaries

As a starting point of this appendix, we summarize several results that can be found

in literature and that will be used in the proofs in the following section.

Proposition 12.8 (Nonhomogeneous Farkas theorem [176]). For a given m× n
matrix A, two m-vectors b and c and a scalar d, exactly one of the following two

statements is true:

• Statement 1: The system (system 1)

A x ≤ b

c> x > d

has a solotion w.r.t. x.

• Statement 2: The system (system 2)

A>y = c , (12.28)

b> y ≤ d , (12.29)

y ≥ 0m , (12.30)

has a solution w.r.t. y, or the system (system 3)

A>y = 0n , (12.31)

b> y < 0 , (12.32)

y ≥ 0m , (12.33)

has a solution w.r.t. y.

The following corollary is a trivial consequence of the non-homogeneous Farkas

theorem (it can as well be seen as an alternative way of formulating the theo-

rem).

Corollary 12.9. For a given m×n matrix A, two m-vectors b and c and a scalar

d, such that the solution set of Ax ≤ b is not empty, the following equivalence

holds:

(∀x ∈ Rn) (Ax ≤ b⇒ c> x ≤ d)

⇐⇒
(

(∃y ∈ Rm)(A> y = c ∧ b> y ≤ d ∧ y ≥ 0m)
)
.
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The non-homogeneous Farkas theorem (NHFT) can be generalized to systems

involving generalized inequalities. However, the result that can be obtained in that

case is slightly weaker

Proposition 12.10 (NHFT for generalized inequalities [177]). For a given m× n
matrix A, two m-vectors b and c, a scalar d and a proper cone K, such that the

solution set of Ax 4K b is not empty, the following implication holds:(
(∃y ∈ Rm)(A> y = c ∧ b> y ≤ d ∧ y <K∗ 0m)

)
⇒ (∀x ∈ Rn) (Ax 4K b⇒ c> x ≤ d) .

If additionally, we have that the solution set of Ax ≺K b is nonempty, we have

that

(∀x ∈ Rn) (Ax 4K b⇒ c> x ≤ d)

⇒
(

(∃y ∈ Rm)(A> y = c ∧ b> y ≤ d ∧ y <K∗ 0m)
)
.

12.A.2. Proofs of Propositions 12.3–12.7

Proposition 12.3 Let {x | B x ≤ b}, with B ∈ Rm×p and b ∈ Rp, be a nonempty

set. Let Ok be defined as in Eq. (12.22). We have that

Ok =
{

((wl)
q−1
l=1 ,θ) | (∃u ∈ Rm)

(
B>u−wk+1 + wk = 0p)

∧ (b> u + θk − θk+1 ≤ 0) ∧ (u ≥ 0m)
)}

.

Proof. Choosing ((wl)
q−1
l=1 ,θ) ∈ Ok is equivalent to choosing (wk, θk,wk+1, θk+1)

such that the following system

B x ≤ b

(−wk + wk+1)>x + (θk − θk+1) > 0

has no solution (w.r.t. x).

As a consequence of the non-homogeneous Farkas theorem, we have that exactly

one of the following statements is true:

• Statement 1: The system (system 1)

B x ≤ b

(−wk + wk+1)>x + (θk − θk+1) > 0

has a solotion w.r.t. x.
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• Statement 2: The system (system 2)

B>u−wk+1 + wk = 0p , (12.34)

b> u + θk − θk+1 ≤ 0 , (12.35)

u ≥ 0m , (12.36)

has a solution w.r.t. u, or the system (system 3)

B>u = 0p , (12.37)

b> u < 0 , (12.38)

u ≥ 0m , (12.39)

has a solution w.r.t. u.

From this theorem, it can easily be seen that, when system 2 has a solution, that

system 1 does not have a solution. Moreover, when selecting x ∈ {x | B x ≤ b},
and solving system 3 for u, we obtain that:

0 ≥ u>(B>x− b) .

Additionally, we have that

u>(Bx− b) = x>B>u− b>u = −b>u .

From system 3, we have that −b>u > 0, which contradicts our starting point.

This means that when system 1 has no solution system 2 will have a solution. This

means that the set of vectors of the form ((wl)
q−1
l=1 ,θ) for which system 2 has a

solution w.r.t. u is identical to the set Ok.

Remark 1. The proof given above uses form of the non-homogeneous Farkas

theorem as a traditional theorem of the alternative. However, using Corollary 12.9

the proof trivially follows. Indeed, according to this corollary, requiring that for all

x ∈ {x | Bx ≤ b} the following inequality holds

−w>k x + θk ≤ −w>k+1x + θk+1 ,

is equivalent to requiring that there exists a u ∈ Rm such that

(B>u−wk+1 + wk = 0) ∧ (b>u + θk − θk+1 ≤ 0) ∧ (u ≥ 0m) ,

is true.

The proof of Proposition 12.4 is a trivial extension of the proof given above.

289



Chapter 12. Predictive modeling for compositions with ordered components

Proposition 12.6 The loss function

`(ψ((wk)q−1
k=1,θ)(x), ȳ) = − log(f̄1(x)y1)−

q∑
k=2

log
(
(f̄k(x)− f̄k−1(x))yk

)
,

where f̄(.) = ψ((wk)q−1
k=1,θ)(.), is a convex function of ((wk)q−1

k=1,θ) ∈ O.

Proof. Recall that O is a convex set. To prove that ` is convex, we will use the

following properties and facts of convex functions

(i) If β : R → R is a convex (resp. concave) function, then −β is a concave

(resp. convex) function.

(ii) The nonnegative weighted sum of two convex (resp. concave) functions is

convex (resp. concave).

(iii) If β : R→ R is a convex function, then β(a> x + b) is a convex function of x.

(iv) A function is convex (resp. concave) if and only if it is convex (resp. concave)

over any line segment in its domain.

(v) The function log(exp(x)/(1 + exp(x))) is a concave function.

By combining (v) with (i) and (iii) it can easily be seen that − log(f̄1(x)y1) is

convex.

We now show that for any k ∈ {2, . . . , q}, we have that

− log((f̄k(x)− f̄k−1(x))yk)

is a convex function of ((wk)q−1
k=1,θ) ∈ O. When restricting this function to a line

segment in its domain, the resulting univariate function has the following form

α(t) = log(exp(a1t+ b1)/(1 + exp(a1t+ b1))− exp(a2t+ b2)/(1 + exp(a2t+ b2))) ,

where a1, a2, b1, b2 are scalars that are determined by the segment to which the

restriction applies. Note that the domain of α is a closed subset of R (as it is a

subset of O).

We now have that:

d2 α

d t2
=
e(a1+a2)t+b1+b2(a1 − a2)2

(ea1t+b1 + ea2t+b2)2
+

a2
1e
a1t+b1

(1 + ea1t+b1)2
+

a2
2e
a2t+b2

(1 + ea2t+b2)2
.

From this equation, we can easily see that d2
α(t0)

d t2
> 0, for any t0 in the domain of

α, meaning that (using property (iv)) α is convex.

When combining this result with (ii), it follows that ` is convex.
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Proposition 12.7 Given a proper cone K ⊂ Rp and its dual K∗, a matrix

B ∈ Rm×p and an m-vector b such that the solution set of Bx ≺K b is not empty.

Let O be defined as in Eq. (12.26). We have that

O =

{
((wk)q−1

k=1,θ) | (∃ (uk)q−2
k=1 ∈ Rm×(q−2))

((q−2∧
k=1

uk <K∗ 0m

)
∧
(q−2∧
k=1

B>uk −wk+1 + wk = 0p

)
∧
(q−2∧
k=1

b> uk + θk − θk+1 ≤ 0
))}

.

Proof. As a starting point, consider the case where K = Rp+. In that case, the

proposition reduces to Proposition 12.4, where the traditional non-homogeneous

Farkas theorem can be used. In particular, we can use the argumentation of

Remark 1 to prove the proposition. Interestingly, the generalization of the non-

homogeneous Farkas theorem given in Proposition 12.10 can be used to generalize

this reasoning to cases where K is a generic cone. As Proposition 12.10 generalizes

Corollary 12.9 to generic proper cones K, the reasoning in Remark 1 can be applied

here as well. However, to obtain the equivalence that is needed, it is required that

the solution set of Bx ≺K b is not empty.
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13 General conclusions and outlook

In this chapter, the main conclusions that can be drawn from the work in this

dissertation are summarized. Moreover, we highlight several aspects that may be

interesting for further research. The work in this dissertation can be positioned at

the crossroads of compositional data analysis and mathematical optimization. As

a general approach, several data-analysis questions that may arise when working

with (compositional) data of mixtures were translated into formal mathematical

optimization problems and solved using numerical optimization procedures.

In part II of this dissertation, we studied the problem of selecting a subset of

mixtures from a large set. This problem can be seen as a data selection problem.

It turns out that several approaches exist that can be used to solve this data

selection problem. However, these approaches have two potential shortcomings:

(1) they lack a formal objective that is optimized, and (2) when directly applied to

compositional data, they neglect the compositional nature of the data. To overcome

these problems, two classes of metric-based score functions were proposed that

take these issues into account. Moreover, it was shown that the incorporation of

the compositional nature of the data into the objective (by using the Aitchison

distance) leads to the selection of completely different subsets. These findings are

supported by empirical evidence.

To find an optimal subset within a reasonable amount of time, a new Ant Colony

Optimization (ACO) procedure was proposed. To improve upon existing ACO-

procedures, bias-mitigating strategies were proposed and embedded into the basic

Ant System procedure. Theoretical and empirical evidence illustrate that negative

search bias can have a strong impact on the performance of ACO-procedures.

The mitigation of this bias, using the strategies that were proposed, has a strong

impact on the overall performance of ACO-procedures. Moreover, it was hinted

at that the applicability of the bias-mitigating measures stretches beyond subset

selection problems. It can be concluded that bias mitigation is important in

practice. Therefore, it is worth considering how bias mitigation can be improved

and practically be used to solve other (traditional) combinatorial optimization

problems. Even though several suggestions were already made in that direction,

several fundamental issues still need to be resolved. As could be concluded from

the experimental sections, the incorporation of bias-mitigating strategies in MMAS

(which includes for instance elitism) leads to a well-preforming procedure. Therefore,

it can be expected that the incorporation of alternative ideas such as for instance

local search strategies or heuristic information in the search procedure can lead

to improved procedures. Nevertheless, it remains to be seen how these strategies

interfere with the bias-mitigating measures.
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We conclude the discussion of Part II of this dissertation by looking back at research

objectives II.1–II.3. We have formally translated the mixture subset selection

problem into a number of mathematical optimization problems (Objective II.1).

Subsequently, we have successfully developed and analyzed (both theoretically and

by means of a case study) an Ant Colony algorithm that is capable of solving these

mathematical optimization problems (Objectives II.2 & II.3). We end this discussion

with a point of criticism. One of the main motivations for the development of a

meta-heuristic was our presumption that constructing an exact algorithm (with a

tractable running time) would be extremely difficult. The successful development

of a B&B procedure in Part III (for solving a hard problem), raises the question if

exact approaches such as B&B could be used to solve (practical) subset selection

problems as well.

In Part III of this dissertation, a set-estimator was proposed that allows to estimate

the proportional contribution of an imprecisely described source to a given mixture.

Several variants of this estimator were proposed and mathematical optimization

problems were presented that can be used to compute this estimator in prac-

tice. Moreover, it was proven that the mathematical optimization problems that

were presented can be solved efficiently. It was illustrated that this estimator

is complementary to several existing estimators. Importantly, the set-estimator

provides an intuitive way of handling uncertainty. It does not rely on distributional

assumptions to quantify the reliability of a (point) estimate. For the past few

years, there has been an evolution in several research fields towards a routinely

assessment of the influence of multiple sources of uncertainty on conclusions that

are drawn and decisions that are made. However, a considerable number of problem

settings in these fields does not allow this uncertainty to be captured by means of

probability distributions. Here, our set-estimator can be seen as a valuable alterna-

tive. Therefore, stimulating the use of this set-estimator and related approaches is

probably the most challenging direction for future research. On that account, the

development of a user-friendly application may be worth considering. Moreover, to

solve the optimization problems that were proposed, we rely on existing numerical

solvers. Even though these solvers can be considered to be the state-of-the-art, they

remain (to some extent) general-purpose solvers that are not optimized to solve

the optimization problems that were proposed in this dissertation. Here as well, it

may be worth considering to develop special-purpose solvers that are specialized at

solving the optimization problems that were proposed in Part III.

We conclude the discussion of Part III of this dissertation by looking back at

research objectives III.1–III.5. The unmixing problem was formally translated into

a mathematical form that led to the definition of a set estimator (Objective III.1).

Subsequently, it was shown that in the case where the sources are described by

convex sets, the set estimator reduces to an interval estimator. The computation

of this interval led to a mathematical optimization problem (Objective III.2).

Moreover, we derived an optimization problem (that was shown to be equivalent
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to the former one) that can be solved efficiently and thus provides a practical

way of computing our interval estimator in practice. Lastly, we studied several

specific settings (high-dimensional settings and settings that require sparseness)

in depth (Objectives III.3 & III.4). The real-life applicability of our set estimator

(Objective III.5) was tested in a case study. From this case study, we could conclude

that our set estimator can be useful in practice. However, an extensive validation

of our approach would require more and larger real-life datasets. Unfortunately,

it turned out that it is rather hard to find data in the public domain that can be

used to validate unmixing procedures. Therefore, it is our sincerest hope that our

work will stimulate the collection of those data as well as the development of novel

unmixing procedures.

In Part IV of this dissertation, several learning procedures were developed that can

be applied to learn (from data) a predictive model (a function) that can be used to

predict compositions. Several loss functions were presented that can be used within

these learning procedures. Empirical evidence was presented showing that a model

that is optimal with respect to a specific loss function is likely to be sub-optimal

for another loss function. Interestingly, the isometric log-ratio transform can be

used to convert the problem of learning a function with compositional outputs into

the more familiar multivariate regression regression problem. In this transformed

setting, we focused on the incorporation of prior knowledge into the learning

procedure. Three types of prior knowledge were identified and a matrix-valued

kernel was proposed that can be used to jointly incorporate these types of prior

knowledge. A conjugate gradient procedure was proposed that can be used to

minimize the empirical regularized squared loss for that kernel. Theoretical and

empirical results have shown that the incorporation of prior knowledge into the

learning procedure can lead to an improved predictive performance. Nevertheless,

further research is needed to gain insight into the way different types of prior

knowledge interact during the learning phase. Unfortunately, in a real-life case

study, we were only capable of achieving marginal improvements with respect

to the predictive performance. Therefore, to be able to conclude whether the

procedures that were proposed can lead to real-life improvements, more empirical

evidence is needed. In numerous problem settings prior knowledge is potentially

available. For example, in chemometrics, information on the molecular structure

of the molecules that are considered can be a rich source of prior knowledge (for

example in pointing out which wavelengths can be used to discriminate between

two substances). Nevertheless, popular chemometrics software packages (such as

for instance Unscrambler) do not allow this information to be incorporated. The

(partly automated) inclusion of this type of knowledge could be achieved using the

principles that were put forward in Part IV of this dissertation.

A linear ordering on the components of a composition can be interpreted as a

special type of prior knowledge. Unfortunately, the ordering on the components

does not imply a natural ordering on the compositions. A partial ordering (inspired
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on stochastic dominance) was defined on compositions with ordered components. A

modification of the well-known proportional odds model was proposed that allows to

predict compositions with ordered components accurately. Moreover, a relaxation

of this model was proposed that provides a flexible way of learning models that

can be used to predict compositions with ordered components. By means of an

extensive set of experiments, it is shown that taking the order on the components

into account results in an improved predictive performance. Interestingly, this

relaxed version leads to a conic optimization problem that can be solved efficiently.

Even though the philosophy behind this relaxed form seems natural, it remains to be

seen whether this procedure will lead to well-performing predictive models.

We conclude the discussion of Part IV of this dissertation by looking back at research

objectives IV.1–IV.3. We studied several loss functions that can be used when

learning to predict compositions (Objective IV.1). By using the ilr-transformation,

the problem of learning to predict compositions was transformed into a (more

traditional) multivariate regression problem. To improve the predictive performance

of the multivariate regression model, we developed a general methodology that can

be used to incorporate prior knowledge into the learning problem (Objective IV.2).

Lastly, we developed several procedures that can be used to learn predictive models

for compositional outputs with ordered components (Objective IV.3).
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14 Dutch summary

– Nederlandstalige samenvatting

14.1. Inleiding

In verschillende onderzoeksgebieden en industrietakken komen wetenschappers en

ingenieurs in aanraking met mengsels. Daarom staan mengsels centraal in allerhande

onderzoeksvragen en ingenieursproblemen. Als typevoorbeeld beschouwen we een

bodemstaal. Men kan een bodemstaal (enigszins vereenvoudigd) beschouwen als

een mengsel van zand, leem en klei. Een bodemkundige kan dan bijvoorbeeld

gëınteresseerd zijn in het verband tussen de samenstelling van dit staal en de diepte

waarop het werd genomen. Om de onderzoeksvragen die hieruit voortvloeien te

kunnen beantwoorden, zal men vaak data moeten verzamelen en analyseren. Deze

data zullen ondermeer bestaan uit observaties van de samenstelling van mengsels.

Bijzonder aan deze data is het relatieve karakter ervan. Wanneer men bijvoorbeeld

de samenstelling van een bodemstaal rapporteert zal men de aandelen zand, leem

en klei vaak relatief uitdrukken tegenover een geheel (bijvoorbeeld de massa zand

versus de totale massa van het bodemstaal) om zo een relatief aandeel (vaak een

percentage) te bekomen. Datavectoren die men op deze manier bekomt, bevatten

enkel positieve getallen die men (zonder verlies van informatie) kan herschalen zodat

ze sommeren tot één. Men noemt dergelijke vectoren composities (of compositionele

data). Om dergelijke data te analyseren kan men zich wenden tot technieken uit

het domein van de compositionele data-analyse. In dit domein werden gedurende

de laatste decennia verschillende technieken ontwikkeld die men kan aanwenden om

compositionele data te analyseren. Echter, de technieken die hier ontwikkeld werden,

situeren zich in de eerste plaats binnen de traditionele statistische modellering en

testen van hypothesen. Een aantal probleemstellingen werden tot nog toe niet

diepgaand behandeld binnen dit domein. In dit proefschrift worden een aantal

(minder traditionele) probleemstellingen binnen de compositionele data-analyse

behandeld, meer bepaald (1) het selecteren van subsets van compositionele datasets,

(2) de propagatie van onzekerheid in de beschrijving van de componenten van een

mengsel naar (de inschatting van) het proportioneel aandeel van deze componenten,

en (3) predictieve modellering met compositionele outputs.

Het succes van moderne data-analysetechnieken is vaak het gevolg van een vrucht-

bare combinatie van de volgende basiscomponenten: probleemkennis, wiskundige

optimalisatietechnieken en basisinzichten in data-analyse. In dit proefschrift vallen

we dan ook vaak terug op deze basiscomponenten. Probleemstellingen worden

vertaald in formele wiskundige optimalisatievraagstukken. Om deze vertaling te
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kunnen maken, worden resultaten uit de compositionele data-analyse aangewend

alsook een aantal inzichten uit machine learning. Vaak blijkt dat de optima-

lisatieproblemen die bekomen worden, voorbeelden zijn van meer algemeen gekende

optimalisatieproblemen. Het voordeel hiervan is tweeledig. Vooreerst kunnen

nieuwe optimalisatietechnieken die werden ontwikkeld ook gebruikt worden buiten

de context van dit proefschrift. Daarenboven kunnen we binnen dit proefschrift

ook beroep doen op bestaande optimalisatiesoftware.

Besluitend kunnen we stellen dat dit proefschrift zich bevindt op het kruispunt van

compositionele data-analyse en wiskundige optimalisatie. De vertaling van concrete

probleemstellingen binnen de compositionele data-analyse in formele wiskundige

optimalisatieproblemen, alsook het oplossen van deze problemen vormt de kern

van dit proefschrift. In de secties die hierna volgen wordt dieper ingegaan op deze

probleemstellingen.

14.2. Optimale selectie van mengsels

Moderne high-throughput screening technieken laten onderzoekers toe om een groot

aantal stalen te analyseren in een beperkte tijdspanne. Deze technieken geven

aanleiding tot grote databanken die compositionele data bevatten. Het aanleggen

van dergelijke databanken is nuttig, maar is meestal slechts een onderdeel van een

groter onderzoeksproject. De verdere verwerking van deze stalen (of de data die

men uit deze stalen bekomt) vergt soms meer tijd en is bijgevolg veelal duurder.

In dergelijke gevallen kan het aangewezen zijn om een selectie te maken van de

stalen die verdere analyse zullen ondergaan. Om deze selectie te maken kan

men de gegevens die bekomen werden uit de high-throughput screening gebruiken.

Uiteraard wil men de informatie-inhoud die aanwezig is binnen deze selectie zo hoog

mogelijk houden. De strategie die aangewend wordt in Deel II van dit proefschrift

om een informatieve selectie te maken, is gebaseerd op scorefuncties. Dergelijke

functies ‘scoren’ de informatie-inhoud van een gegeven selectie. Vervolgens kan

men de selectie kiezen die de scorefunctie maximaliseert. Door een scorefunctie te

kiezen, vertaalt men het selectieprobleem in een wiskundig optimalisatieprobleem.

Deze vertaling (Hoofdstuk 4), alsook het ontwikkelen van een procedure die het

resulterende optimalisatieprobleem kan oplossen (Hoofdstuk 5), vormen de kern

van Deel II van dit proefschrift.

In Hoofdstuk 4 van dit proefschrift worden metriekgebaseerde scorefuncties gede-

finieerd. Deze functies herleiden het kiezen van een scorefunctie tot het kiezen van

een metriek (of afstandsmaat). Binnen de compositionele data-analyse werden reeds

verschillende afstandsmaten gedefinieerd voor composities. Deze afstandsmaten

worden in Hoofdstuk 5 dan ook gebruikt om zinvolle metriekgebaseerde scorefuncties

te bekomen.
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Het selectieprobleem dat hiervoor beschreven werd, kan gezien worden als een

voorbeeld van het (meer algemene) subset-selection problem. Helaas zijn dergelijke

optimalisatieproblemen vaak moeilijk op te lossen. Bijgevolg doet men vaak een

beroep op heuristieken. In Hoofdstuk 6 van dit proefschrift wordt een mierenkolonie-

algoritme ontwikkeld (een meta-heuristiek) die men kan gebruiken om een (sub-

optimale) oplossing voor het selectieprobleem te vinden. In de literatuur over

mierenkolonie-algoritmen werd reeds meermaals gerapporteerd dat deze algoritmen

kunnen worden misleid door wat men ‘negatieve zoek-bias’ noemt. Daarom werd,

binnen de context van subset-selection, de invloed van deze zoek-bias onderzocht.

Bovendien werd een nieuw mierenkolonie-algoritme ontwikkeld dat resistent is

tegen deze zoek-bias. Uit een theoretische en experimentele analyse blijkt dat het

voorgestelde (uitgebreide) algoritme een duidelijke verbetering biedt ten opzichte

van het basis mierenkolonie-algoritme.

Tenslotte worden in Hoofdstuk 7 de scorefuncties uit Hoofdstuk 5 en het mierenkolo-

nie-algoritme uit Hoofdstuk 6 gebruikt om een subset te selecteren uit een verza-

meling stalen in een praktijkvoorbeeld. Door een vergelijking te maken met een

aantal andere algoritmen wordt onder meer gëıllustreerd dat het ontwikkelde

mierenkolonie-algoritme performant is. Bovendien wordt gëıllustreerd dat het

gebruik van de Aitchison-afstand (een specifieke afstandsmaat voor composities)

een sterke invloed heeft op de selectie die wordt gemaakt.

14.3. Ontmengen van mengsels met imprecies

beschreven componenten

Beschouw, bij wijze van inleiding, de volgende probleemstelling.

Beschouw een glas water met een zoutgehalte van 21 ppt (parts per thousand).

Daarenboven weet je dat het water in dit glas een mengsel is van zoet water

(zoutgehalte van 2 ppt) en zeewater (zoutgehalte van 40 ppt). Er wordt je vervolgens

gevraagd wat het relatieve aandeel (uitgedrukt in ppt) aan zoet water in dit glas

is.

Mits inachtname van een aantal eenvoudige basisprincipes betreffende de manier

waarop mengsels worden gevormd, is een relatief aandeel van 50% het (enige)

correcte antwoord op deze vraag. Deze (triviale) probleemstelling wordt enigszins

complexer wanneer men stelt dat de zoutgehalten van zoet water en zeewater niet

exact gekend zijn, maar binnen de intervallen [1, 3], resp. [30, 45], liggen (zoals

op aarde het geval is). Men noemt deze beschrijving van de ‘bronnen’ zoet water

en zeewater imprecies. In dit geval kan men voor een gegeven mengsel met een

zoutgehalte van 21 ppt niet ondubbelzinnig bepalen wat het aandeel zoet water

is. Daarentegen kan men wel een verzameling geven van percentages die mogelijks

aanleiding kunnen geven tot een mengsel met een zoutgehalte van 21 ppt. In dit
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voorbeeld kan met aantonen dat deze verzameling een gesloten interval is. Bijgevolg

herleidt het bepalen van deze verzameling zich tot het bepalen van het maximum

van dit interval (een maximalisatieprobleem) en het minimum van dit interval (een

minimalisatieprobleem).

Als een verdere uitbreiding kan men situaties beschouwen waarin de bronnen

beschreven worden door deelverzamelingen van Rn (i.p.v. deelverzamelingen van

R zoals in het voorbeeld hierboven). Deze uitbreidingen vormen de kern van

Deel III van dit proefschrift. In Hoofdstukken 7 en 8 van dit proefschrift wordt

aangetoond dat (onder bepaalde voorwaarden) de verzameling van mogelijke per-

centages opnieuw een interval is. Tevens worden in deze hoofdstukken wiskundige

optimalisatieproblemen gedefinieerd waarvan de oplossingen de eindpunten van dit

interval beschrijven. Bovendien worden equivalente conische optimalisatieproble-

men gedefinieerd die op een efficiënte manier kunnen worden opgelost (Hoofdstuk 8).

Daarnaast worden een aantal uitbreidingen voorgesteld die de aanwezigheid van

observatieruis op een methodologisch weldoordachte manier in rekening brengen.

Tenslotte wordt in Hoofdstuk 9 aan de hand van een case-study aangetoond dat de

ontwikkelde methodologie ook in de praktijk bruikbaar is.

14.4. Predictieve modellering met compositionele

outputs

Een mengsel kan op verschillende manieren gekarakteriseerd worden. De samen-

stelling van het mengsel is waarschijnlijk de meest voor de hand liggende karak-

terisatie. Zo kan men bijvoorbeeld een melkstaal karakteriseren door middel van

zijn vetzurensamenstelling. Anderzijds kan men datzelfde staal karakteriseren door

middel van zijn (gemeten) nabije infra-rood (NIR) spectrum. Beide karakterisaties

hebben een (vermoedelijk vrij sterke) verwantschap. Bijgevolg kan men trachten

om de samenstelling van een mengsel te ‘voorspellen’ op basis van een alternatieve

karakterisatie (bijvoorbeeld het NIR spectrum). In deel IV van dit proefschrift wor-

den predictieve modelleringstechnieken ontwikkeld die kunnen aangewend worden

om modellen te leren uit data (die beide karakterisaties bevat).

Het leren van predictieve modellen uit data behoort tot het domein van machine

learning. Deel IV van dit proefschrift situeert zich dan ook binnen machine

learning. In Hoofdstuk 10 worden verschillende verliesfuncties besproken die

men kan gebruiken om predictieve modellen te leren die men kan gebruiken om

composities te voorspellen. Uit de experimentele sectie in dit hoofdstuk kunnen we

besluiten dat de keuze van de verliesfunctie een sterke invloed heeft op de modellen

die geleerd worden.

In Hoofdstuk 11 wordt dieper ingegaan op verliesfuncties die gebruik maken

van de Aitchison-afstand. Door gebruik te maken van de isometrische log-ratio
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transformatie kan men een predictieprobleem waarbij de output een compositie is

transformeren in een equivalent predictieprobleem waarbij de output een vector is

in de Euclidische vectorruimte. Bijgevolg kan men dit probleem beschouwen als

een klassiek multiple-output regressieprobleem en een beroep doen op bestaande

technieken. Vaak beschikt men over bijkomende probleemkennis die men kan

trachten te gebruiken om tot een model te komen dat een betere predictieve

performantie heeft. In het voorbeeld hierboven kan men bijvoorbeeld vermoeden

dat een aantal delen van het NIR-spectrum voornamelijk gerelateerd zijn aan de

concentratie van één welbepaalde component, maar van weinig belang zijn voor

de overige componenten. Echter, de huidige inzichten in het incorporeren van

probleemkennis in multiple-output regressieproblemen zijn beperkt. Daarom wordt

in Hoofdstuk 11 van dit proefschrift een methodologie voorgesteld die toelaat

om verschillende types van domeinkennis te incorporeren in een multiple-output

regressieprobleem. Hiervoor wordt gebruik gemaakt van het bestaande framework

van kernel-based vector-valued functions.

Tenslotte wordt in Hoofdstuk 12 van dit proefschrift een probleemstelling beschouwd

waarin de componenten waaruit een mengsel bestaat een natuurlijke (lineaire) orde

bevatten. Deze orde kan gezien worden als een specifiek geval van domeinkennis

die men tracht te incorporeren in een leerprobleem. Om deze domeinkennis te

incorporeren in het leerprobleem wordt de lineaire orde op de componenten vertaald

in een partiële orde op composities. Deze partiële orde is gëınspireerd op het principe

van stochastische dominantie. Bovendien blijkt dat een uitbreiding van het gekende

proportional odds model toelaat om composities met geordende componenten te

voorspellen. Een experimentele evaluatie illustreert dat de voorgestelde procedure

leidt tot modellen met sterke predictieve eigenschappen. Echter, de flexibiliteit

van dit model is beperkt. Bijgevolg kan dit model in bepaalde situaties te rigide

zijn en kan men meer performante modellen bekomen door de assumpties die het

proportional odds model impliceert te relaxeren. Een dergelijke relaxatie wordt

voorgesteld in Hoofdstuk 12 van dit proefschrift. Bovendien wordt aangetoond dat

de gerelaxeerde vorm aanleiding geeft tot een conisch optimalisatieprobleem dat

men efficiënt kan oplossen.
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