2,003 research outputs found

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Towards automated knowledge-based mapping between individual conceptualisations to empower personalisation of Geospatial Semantic Web

    No full text
    Geospatial domain is characterised by vagueness, especially in the semantic disambiguation of the concepts in the domain, which makes defining universally accepted geo- ontology an onerous task. This is compounded by the lack of appropriate methods and techniques where the individual semantic conceptualisations can be captured and compared to each other. With multiple user conceptualisations, efforts towards a reliable Geospatial Semantic Web, therefore, require personalisation where user diversity can be incorporated. The work presented in this paper is part of our ongoing research on applying commonsense reasoning to elicit and maintain models that represent users' conceptualisations. Such user models will enable taking into account the users' perspective of the real world and will empower personalisation algorithms for the Semantic Web. Intelligent information processing over the Semantic Web can be achieved if different conceptualisations can be integrated in a semantic environment and mismatches between different conceptualisations can be outlined. In this paper, a formal approach for detecting mismatches between a user's and an expert's conceptual model is outlined. The formalisation is used as the basis to develop algorithms to compare models defined in OWL. The algorithms are illustrated in a geographical domain using concepts from the SPACE ontology developed as part of the SWEET suite of ontologies for the Semantic Web by NASA, and are evaluated by comparing test cases of possible user misconceptions

    Neogeography: The Challenge of Channelling Large and Ill-Behaved Data Streams

    Get PDF
    Neogeography is the combination of user generated data and experiences with mapping technologies. In this article we present a research project to extract valuable structured information with a geographic component from unstructured user generated text in wikis, forums, or SMSes. The extracted information should be integrated together to form a collective knowledge about certain domain. This structured information can be used further to help users from the same domain who want to get information using simple question answering system. The project intends to help workers communities in developing countries to share their knowledge, providing a simple and cheap way to contribute and get benefit using the available communication technology

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure

    Geospatial Semantics

    Full text link
    Geospatial semantics is a broad field that involves a variety of research areas. The term semantics refers to the meaning of things, and is in contrast with the term syntactics. Accordingly, studies on geospatial semantics usually focus on understanding the meaning of geographic entities as well as their counterparts in the cognitive and digital world, such as cognitive geographic concepts and digital gazetteers. Geospatial semantics can also facilitate the design of geographic information systems (GIS) by enhancing the interoperability of distributed systems and developing more intelligent interfaces for user interactions. During the past years, a lot of research has been conducted, approaching geospatial semantics from different perspectives, using a variety of methods, and targeting different problems. Meanwhile, the arrival of big geo data, especially the large amount of unstructured text data on the Web, and the fast development of natural language processing methods enable new research directions in geospatial semantics. This chapter, therefore, provides a systematic review on the existing geospatial semantic research. Six major research areas are identified and discussed, including semantic interoperability, digital gazetteers, geographic information retrieval, geospatial Semantic Web, place semantics, and cognitive geographic concepts.Comment: Yingjie Hu (2017). Geospatial Semantics. In Bo Huang, Thomas J. Cova, and Ming-Hsiang Tsou et al. (Eds): Comprehensive Geographic Information Systems, Elsevier. Oxford, U

    Service-oriented design of environmental information systems

    Get PDF
    Service-orientation has an increasing impact upon the design process and the architecture of environmental information systems. This thesis specifies the SERVUS design methodology for geospatial applications based upon standards of the Open Geospatial Consortium. SERVUS guides the system architect to rephrase use case requirements as a network of semantically-annotated requested resources and to iteratively match them with offered resources that mirror the capabilities of existing services

    A conceptual framework and a risk management approach for interoperability between geospatial datacubes

    Get PDF
    De nos jours, nous observons un intĂ©rĂȘt grandissant pour les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es sont dĂ©veloppĂ©es pour faciliter la prise de dĂ©cisions stratĂ©giques des organisations, et plus spĂ©cifiquement lorsqu’il s’agit de donnĂ©es de diffĂ©rentes Ă©poques et de diffĂ©rents niveaux de granularitĂ©. Cependant, les utilisateurs peuvent avoir besoin d’utiliser plusieurs bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es peuvent ĂȘtre sĂ©mantiquement hĂ©tĂ©rogĂšnes et caractĂ©risĂ©es par diffĂ©rent degrĂ©s de pertinence par rapport au contexte d’utilisation. RĂ©soudre les problĂšmes sĂ©mantiques liĂ©s Ă  l’hĂ©tĂ©rogĂ©nĂ©itĂ© et Ă  la diffĂ©rence de pertinence d’une maniĂšre transparente aux utilisateurs a Ă©tĂ© l’objectif principal de l’interopĂ©rabilitĂ© au cours des quinze derniĂšres annĂ©es. Dans ce contexte, diffĂ©rentes solutions ont Ă©tĂ© proposĂ©es pour traiter l’interopĂ©rabilitĂ©. Cependant, ces solutions ont adoptĂ© une approche non systĂ©matique. De plus, aucune solution pour rĂ©soudre des problĂšmes sĂ©mantiques spĂ©cifiques liĂ©s Ă  l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles n’a Ă©tĂ© trouvĂ©e. Dans cette thĂšse, nous supposons qu’il est possible de dĂ©finir une approche qui traite ces problĂšmes sĂ©mantiques pour assurer l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ainsi, nous dĂ©finissons tout d’abord l’interopĂ©rabilitĂ© entre ces bases de donnĂ©es. Ensuite, nous dĂ©finissons et classifions les problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique qui peuvent se produire au cours d’une telle interopĂ©rabilitĂ© de diffĂ©rentes bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Afin de rĂ©soudre ces problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique, nous proposons un cadre conceptuel qui se base sur la communication humaine. Dans ce cadre, une communication s’établit entre deux agents systĂšme reprĂ©sentant les bases de donnĂ©es gĂ©ospatiales multidimensionnelles impliquĂ©es dans un processus d’interopĂ©rabilitĂ©. Cette communication vise Ă  Ă©changer de l’information sur le contenu de ces bases. Ensuite, dans l’intention d’aider les agents Ă  prendre des dĂ©cisions appropriĂ©es au cours du processus d’interopĂ©rabilitĂ©, nous Ă©valuons un ensemble d’indicateurs de la qualitĂ© externe (fitness-for-use) des schĂ©mas et du contexte de production (ex., les mĂ©tadonnĂ©es). Finalement, nous mettons en Ɠuvre l’approche afin de montrer sa faisabilitĂ©.Today, we observe wide use of geospatial databases that are implemented in many forms (e.g., transactional centralized systems, distributed databases, multidimensional datacubes). Among those possibilities, the multidimensional datacube is more appropriate to support interactive analysis and to guide the organization’s strategic decisions, especially when different epochs and levels of information granularity are involved. However, one may need to use several geospatial multidimensional datacubes which may be semantically heterogeneous and having different degrees of appropriateness to the context of use. Overcoming the semantic problems related to the semantic heterogeneity and to the difference in the appropriateness to the context of use in a manner that is transparent to users has been the principal aim of interoperability for the last fifteen years. However, in spite of successful initiatives, today's solutions have evolved in a non systematic way. Moreover, no solution has been found to address specific semantic problems related to interoperability between geospatial datacubes. In this thesis, we suppose that it is possible to define an approach that addresses these semantic problems to support interoperability between geospatial datacubes. For that, we first describe interoperability between geospatial datacubes. Then, we define and categorize the semantic heterogeneity problems that may occur during the interoperability process of different geospatial datacubes. In order to resolve semantic heterogeneity between geospatial datacubes, we propose a conceptual framework that is essentially based on human communication. In this framework, software agents representing geospatial datacubes involved in the interoperability process communicate together. Such communication aims at exchanging information about the content of geospatial datacubes. Then, in order to help agents to make appropriate decisions during the interoperability process, we evaluate a set of indicators of the external quality (fitness-for-use) of geospatial datacube schemas and of production context (e.g., metadata). Finally, we implement the proposed approach to show its feasibility

    Linking Moving Object Databases with Ontologies

    Get PDF
    This work investigates the supporting role of ontologies for supplementing the information contained in moving object databases. Details of the spatial representation as well as the sensed location of moving objects are frequently stored within a database schema. However, this knowledge lacks the semantic detail necessary for reasoning about characteristics that are specific to each object. Ontologies contribute semantic descriptions for moving objects and provide the foundation for discovering similarities between object types. These similarities can be drawn upon to extract additional details about the objects around us. The primary focus of the research is a framework for linking ontologies with databases. A major benefit gained from this kind of linking is the augmentation of database knowledge and multi-granular perspectives that are provided by ontologies through the process of generalization. Methods are presented for linking based on a military transportation scenario where data on vehicle position is collected from a sensor network and stored in a geosensor database. An ontology linking tool, implemented as a stand alone application, is introduced. This application associates individual values from the geosensor database with classes from a military transportation device ontology and returns linked value-class pairs to the user as a set of equivalence relations (i.e., matches). This research also formalizes a set of motion relations between two moving objects on a road network. It is demonstrated that the positional data collected from a geosensor network and stored in a spatio-temporal database, can provide a foundation for computing relations between moving objects. Configurations of moving objects, based on their spatial position, are described by motion relations that include isBehind and inFrontOf. These relations supply a user context about binary vehicle positions relative to a reference object. For example, the driver of a military supply truck may be interested in knowing what types of vehicles are in front of the truck. The types of objects that participate in these motion relations correspond to particular classes within the military transportation device ontology. This research reveals that linking a geosensor database to the military transportation device ontology will facilitate more abstract or higher-level perspectives of these moving objects, supporting inferences about moving objects over multiple levels of granularity. The details supplied by the generalization of geosensor data via linking, helps to interpret semantics and respond to user questions by extending the preliminary knowledge about the moving objects within these relations
    • 

    corecore