36,034 research outputs found

    A hybrid algorithm for logic circuit synthesis

    Get PDF
    In view of the fact that Genetic Algorithms (GAs) are not well suited for fine-tuning structures that are close to optimal solutions [1], this paper suggests the incorporation of local improvement operators into the GA recombination phase. This study presents a hybrid genetic algorithm, also known as Memetic Algorithm (MA), applied to the design of combinational logic circuits. MAs are evolutionary algorithms (EAs) that apply a separate local search process to refine individuals (i.e. that improve their fitness by hill-climbing). Under different contexts and situations, MAs are also known as hybrid EAs or genetic local searchers. The proposed MA associates a GA with the gate type local search (GTLS). Combining global and local search is a strategy used by many successful global optimization approaches, and MAs have in fact been recognized as a powerful algorithmic paradigm for evolutionary computing. We also modify the calculation of the fitness function by including a discontinuity evaluation that measures the error variability of the Boolean table. The results show an improvement of the final fitness function followed by a reduction of the average number and the standard deviation of generations required to reach the solutions, for all the tested circuits.N/

    A Memetic Algorithm for the Generalized Traveling Salesman Problem

    Get PDF
    The generalized traveling salesman problem (GTSP) is an extension of the well-known traveling salesman problem. In GTSP, we are given a partition of cities into groups and we are required to find a minimum length tour that includes exactly one city from each group. The recent studies on this subject consider different variations of a memetic algorithm approach to the GTSP. The aim of this paper is to present a new memetic algorithm for GTSP with a powerful local search procedure. The experiments show that the proposed algorithm clearly outperforms all of the known heuristics with respect to both solution quality and running time. While the other memetic algorithms were designed only for the symmetric GTSP, our algorithm can solve both symmetric and asymmetric instances.Comment: 15 pages, to appear in Natural Computing, Springer, available online: http://www.springerlink.com/content/5v4568l492272865/?p=e1779dd02e4d4cbfa49d0d27b19b929f&pi=1

    Cooperative co-evolution of GA-based classifiers based on input increments

    Get PDF
    Genetic algorithms (GAs) have been widely used as soft computing techniques in various applications, while cooperative co-evolution algorithms were proposed in the literature to improve the performance of basic GAs. In this paper, a new cooperative co-evolution algorithm, namely ECCGA, is proposed in the application domain of pattern classification. Concurrent local and global evolution and conclusive global evolution are proposed to improve further the classification performance. Different approaches of ECCGA are evaluated on benchmark classification data sets, and the results show that ECCGA can achieve better performance than the cooperative co-evolution genetic algorithm and normal GA. Some analysis and discussions on ECCGA and possible improvement are also presented

    A controlled migration genetic algorithm operator for hardware-in-the-loop experimentation

    Get PDF
    In this paper, we describe the development of an extended migration operator, which combats the negative effects of noise on the effective search capabilities of genetic algorithms. The research is motivated by the need to minimize the num- ber of evaluations during hardware-in-the-loop experimentation, which can carry a significant cost penalty in terms of time or financial expense. The authors build on previous research, where convergence for search methods such as Simulated Annealing and Variable Neighbourhood search was accelerated by the implementation of an adaptive decision support operator. This methodology was found to be effective in searching noisy data surfaces. Providing that noise is not too significant, Genetic Al- gorithms can prove even more effective guiding experimentation. It will be shown that with the introduction of a Controlled Migration operator into the GA heuristic, data, which repre- sents a significant signal-to-noise ratio, can be searched with significant beneficial effects on the efficiency of hardware-in-the- loop experimentation, without a priori parameter tuning. The method is tested on an engine-in-the-loop experimental example, and shown to bring significant performance benefits
    corecore