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Abstract 

 

Genetic algorithms (GAs) have been widely used as soft computing techniques in 

various applications, while cooperative co-evolution algorithms were proposed in the 

literature to improve the performance of basic GAs. In this paper, a new cooperative 

co-evolution algorithm, namely ECCGA, is proposed in the application domain of 

pattern classification. Concurrent local and global evolution and conclusive global 

evolution are proposed to improve further the classification performance. Different 

approaches of ECCGA are evaluated on benchmark classification data sets, and the 

results show that ECCGA can achieve better performance than the cooperative co-

evolution genetic algorithm and normal GA. Some analysis and discussions on 

ECCGA and possible improvement are also presented.  
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1. Introduction  

Genetic algorithms (GAs) have been successfully applied to a wide range of 

optimization problems including design, scheduling, routing, and control, etc. As 

typical algorithms in evolutionary computation, GAs have also attracted much 

attention and become one of the most popular techniques for pattern classification [1] 

[2]. Fidelis et al. [3] presented a classification algorithm based on GA that discovers 

comprehensible rules. Merelo et al. [4] presented a general procedure for optimizing 

classifiers based on a two-level GA operating on variable size chromosomes. Among 

these systems, rule-based solution is widely used for classification problems, either 

through supervised or unsupervised learning [5]. The advantage of GA becomes more 

compelling when the search space of a task is much larger. 

 

In the literature, various models and approaches have been proposed to address 

difficulties in mapping the domain solutions into GA models, while avoiding the 

possibility of being trapped into local optima. For example, Holland [6] indicated that 

crossover induces a linkage phenomenon. It has been shown that GAs work well only 

if the building blocks are tightly linked on the chromosome [1]. In order to tackle the 

linkage-learning problem, some algorithms have been proposed to include linkage 

design into problem representation and recombination operator or use some 

probabilistic-based models. For instance, the linkage learning genetic algorithm 

(LLGA) was proposed in [7] for tackling the linkage and ordering problem, while 

several Probabilistic Model Building Genetic Algorithms (PMBGAs) have been 

proposed [8] to generate new child population based on probabilistic models. For 

multi-objective optimization problems, incremental multi-objective genetic 
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algorithms have been employed to search for the Pareto-optimal set more accurately 

and efficiently [9][10].  

 

In another aspect, complex systems can be decomposed and evolved in the form of 

interacting co-evolution systems. Classifier systems evolves interacting rule whose 

individual fitness are determined by their interaction with other rules, and concept of 

niches and species is employed [11] [12]. In the island model, a number of 

subpopulations compete each other, and individuals may migrate from one 

subpopulation to another [13].  

 

Cooperative co-evolution has attracted more research interests as an effective 

approach to decompose complex structure and achieve better performance. The idea 

of cooperative co-evolution mainly derives from the species in the nature. As a 

normal practice, a complex problem may be decomposed into several sub-problems. 

The partial solutions in the subpopulations evolve separately, but with a common 

objective. Cooperative co-evolution, together with incremental learning, has been 

applied with many soft computing techniques such as neural networks [14-18]. The 

introductive work on cooperative co-evolution in the GA domain was conducted by 

Dejong and Potter [19] [20]. In their work, the cooperative co-evolution genetic 

algorithm (CCGA) was initially designed for function optimization, and later the 

general architecture was proposed for cooperative co-evolution with co-adapted 

subcomponents.  

 

In this paper, the cooperative co-evolution scheme is revisited with a rule-based GA 

system for pattern classification [21-24]. In order to improve further the classification 
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performance, an enhanced cooperative co-evolution genetic algorithm (ECCGA) 

approach is proposed. The concurrent global and local evolution and conclusive 

global evolution are integrated into the ECCGA. Different approaches with ECCGA 

are evaluated on benchmark data sets. The experimental results show that ECCGA 

performs better than the CCGA and normal GA. On the basis of the results, we have 

an extended discussion on the inner mechanisms and possible improvements. 

 

The integration of the local fitness element is a major feature of ECCGA. We 

postulate that, apart from the global fitness as exercised normally in CCGA, the local 

fitness element is also a suitable indicator and facilitator for the whole evolution. 

Therefore, both local and global fitness are employed to guide the evolution. Our 

experimental results have supported such postulation. It is found that the additional 

evolution pressure from the local fitness element may produce more opportunities to 

escape from traps in local optima and advance the evolution further.  

 

The rest of the paper is organized as follows. In section 2, the design of GA and 

CCGA is introduced. Then, the details of ECCGA are elaborated in section 3. The 

experimental results of CCGA/ECCGA on four benchmark data sets and their 

analysis are reported in section 4. Section 5 presents some analysis and discussions 

based on the experimental results, and section 6 concludes the paper. 

 

2. Design of GA and CCGA  

In normal GA, an initial population is created randomly. Based on fitness evaluation, 

some chromosomes are selected by a selection mechanism. Crossover and mutation 

will then be applied to these selected chromosomes and the child population is thus 
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generated. Certain percentage of the parent population will be preserved and the rest 

will be replaced by the child population. The evolution process will continue until it 

satisfies the stopping criteria [1] [24].  

 

Let us assume a classification problem has c classes in the n-dimensional pattern 

space, and p vectors ( )iniii xxxX ...,,, 21= , ,,...,2,1 pi =  cp >> , are given as 

training patterns. The task of classification is to assign instances to one out of a set of 

pre-defined classes, by discovering certain relationship among attributes. Then, the 

discovered rules can be evaluated by classification accuracy or error rate either on the 

training data or test data. 

 

 

 

 

 

 

 

 

 

Figure 1. Pseudocodes of CCGA 

 

Figure 1 shows the algorithm of CCGA. As the first step, the original problem should 

be decomposed into n sub-problems, and each of which is handled by one species. 

Then, each species evolves in a round robin fashion using the same procedure as the 

normal GA, with the exception of fitness evaluation. When an individual in one 

Decompose the problem into n species;  

gen=0; 

for each species s  

{  randomly initialize population p(gen); 

 evaluate fitness of each individual; 

} 

while (not termination condition)  

{ gen++; 

for each species s  

 { select p(gen) from p(gen-1) based on fitness; 

  apply genetic operators to p(gen); 

  evaluate fitness of each individual in p(gen); 

 } 

} 
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species is evaluated, it will be combined with other individuals from the other species 

and the fitness of the resulting chromosome is evaluated and returned. 

 

In our rule-based GA system, we use the non-fuzzy IF-THEN rules with continuous 

attributes for classifiers. A rule set consisting of a certain number of rules is a solution 

candidate for a classification problem. The detailed designs are discussed in the 

following subsections and can be found further in [22].  

 

2.1 Encoding Mechanism 

An IF-THEN rule is represented as follows: 

iR : IF )()...()( maxminmax22min2max11min1 nnn VxVVxVVxV ≤≤∧≤≤∧≤≤  THEN Cy =     

 

Where Ri is a rule label, n is the number of attributes, (x1, x2,… xn) is the input 

attribute set, and y is the output class category assigned with a value of C. Vjmin and 

Vjmax are the minimum and maximum bounds of the jth attribute xj respectively. We 

encode rule Ri according to the diagram shown in Figure 2.  

 

Antecedent Element 1 …… Antecedent Element n Consequence Element 

Act1 V1min V1max …… Actn Vnmin Vnmax C 

Notes:   

1. Actj denotes whether condition j is active or inactive, which is encoded as 1 or 0 respectively; 

2. If Vjmin is larger than Vjmax at any time, this element will be regarded as an invalid element. 
  

Figure 2. Encoding mechanism 

 

Each antecedent element represents an attribute, and the consequence element stands 

for a class. Each chromosome CRj consists of a set of classification rules Ri 

(i=1,2,…,m) by concatenation: 

i
mi

j RCR
,1=

= ∪      ,...,s,j 21=    (1) 
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where m is the maximum number of rules allowed for each chromosome, s is the 

population size. Therefore, one chromosome will represent one rule set. Since we 

know the discrete value range for each attribute and class a priori, Vjmin, Vjmax, and C 

can be encoded each as a character by finding their positions in the ranges. Thus, the 

final chromosome can be encoded as a string.  

 

2.2 Genetic Operators 

One-point crossover is used in this paper. It can take place anywhere in a 

chromosome. Referring to the encoding mechanism, the crossover of two 

chromosomes will not cause inconsistency as all chromosomes have the same 

structure. On the contrary, the mutation operator has some constraints. Different 

mutation is available for different elements. For example, if an activeness element is 

selected for mutation, it will just be toggled. Otherwise when a boundary-value 

element is selected, the algorithm will select randomly a substitute in the range of that 

attribute. The rates for mutation and crossover are selected as 0.01 and 1.0.  

 

We set the survival rate or generation gap as 50% (SurvivorsPercent=50%), which 

means half of the parent chromosomes with higher fitness will survive into the new 

generation, while the other half will be replaced by the newly created children 

resulting from crossover and/or mutation. Roulette wheel selection
 
is used in this 

paper as the selection mechanism [25]. In this investigation, the probability that a 

chromosome will be selected for mating is given by the chromosome's fitness divided 

by the total fitness of all the chromosomes.  

 

2.3 Fitness Function  
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As each chromosome in our approach comprises an entire rule set, the fitness function 

actually measures the collective behavior of the rule set. The fitness function simply 

measures the percentage of instances that can be correctly classified by the 

chromosome’s rule set. 

 

Since there is more than one rule in a chromosome, it is possible that multiple rules 

matching the conditions for all the attributes but predicting different classes.  We use 

a voting mechanism to help resolve any conflict. That is, each rule casts a vote for the 

class predicted by itself, and finally the class with the highest votes is regarded as the 

conclusive result. If any classes tie on one instance, it means that this instance cannot 

be classified correctly by this rule set. 

 

2.4 Stopping Criteria  

There are three factors in the stopping criteria. The evolution process stops after a 

preset generation limit, or when the best chromosome’s fitness reaches a preset 

threshold (which is set at 1.0 through this paper), or when the best chromosome’s 

fitness has shown no improvement over a specified number of generations -- 

stagnationLimit. The detailed settings are reported along with the corresponding 

results. 

 

 

3. Design of ECCGA 

Figure 3 illustrates the concepts of normal GA and ECCGA. As shown in Figure 3(a), 

a normal GA maps attributes to classes directly in a batch manner, which means all 

the attributes, classes, and training data are used together to train a group of GA 

chromosomes. ECCGA is significantly different. As shown in Figure 3(b), there are n 
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species (SP), each of which evolves the sub-solution for one attribute in classification. 

The normal GA is employed in each species to advance the local evolution.  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Illustrations of (a) normal GA and (b) ECCGA 

 

The global interaction in ECCGA can take place in predefined intervals. During such 

interaction, the global fitness of individuals in species will be assessed. Another 

enhancement is the introduction of the conclusive global evolution (CGE), which 

follows the completion of all sub-evolution in species. The objective of CGE is to 

escape from possible traps by the local optima in the local evolution of species and 

evolve further to the final solution.  
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Following the notations presented above, we denote the evolution in each species of 

ECCGA as: 

  CXf ii →)(:   ni ,...,2,1=    (2) 

where, if  is a sub-solution for the sub-problem based on the i -th attribute. iX  is the 

vector of training patterns with the i -th attribute, and C is the set of output classes.  

  

 Construct s species each of which dealing with one attribute; 

 Initialize the fitness elements and prepare the training data for each species; 

 gen=0; 

 for each species s  

  { randomly initialize population p(gen); 

   evaluate local and global fitness of each individual; 

   fitness=(local fitness + global fitness)/2; 

   compute the average global fitness; 

  } 

 while (not termination condition)  

  { gen++; 

   for each species s  

   { select p(gen) from p(gen-1) based on fitness; 

    apply genetic operators to p(gen); 

    evaluate local fitness of each individual in p(gen); 

    if (gen % genInterval = = 0)  

     { evaluate global fitness of each individual in p(gen); 

     update the average global fitness; 

     } 

    else  
     assign the average global fitness in the previous generation  

as the global fitness of each individual; 

    fitness=(local fitness + global fitness)/2; 

   } 

 Construct initial population by utilizing the chromosomes in all species; 

 Conduct a normal GA as a conclusive global evolution; 

 

Figure 4.  Pseudocode of ECCGA 

 

Figure 4 shows the pseudocode of ECCGA. Compared to the CCGA shown in Figure 

1, ECCGA has been innovated with new improvement. First, the fitness function is 

revised. The fitness in CCGA only involves the global fitness, while that of ECCGA 

consists of two elements, i.e. global fitness and local fitness. The global fitness is 
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obtained with the same method as for CCGA. The local fitness is evaluated on the 

single attribute in each species. That is, the individual in each species classifies the 

partially masked training data, where only the training data portion matched with the 

targeted attribute function will be applied while the portion for the other attributes are 

treated as non-contributing. The resulting classification rate is recorded as its local 

fitness. The global and local fitness are then averaged as the representative fitness. In 

order to save training time, the global fitness is not computed in each generation. 

Instead, an option for a predefined interval (genInterval) is provided. When the 

evolution in each species advances with a certain number of generations and reaches 

the preset genInterval, the global fitness of each individual will be assessed. 

Otherwise, the average global fitness in the last generation will be inherited and used 

as the global fitness element. As normal evolution process advances steadily, the 

average global fitness will not change abruptly. Therefore, inheriting the average 

global fitness in the previous generation is an acceptable and reasonable choice. As 

the evaluation of global fitness involves the chromosome combination process which 

is time-consuming, it is aimed to save training time to conduct such evaluation in 

predefined intervals. After all the species reach the termination condition, the 

evolution will continue with a CGE. An initial population is constructed by 

combining the randomly selected individuals from the chromosomes in all species, 

with a definite inclusion of the best global solution recorded during the earlier 

evolution and the combination of the best chromosomes in all species. A normal GA 

is then continued until it reaches the stopping criteria. The best chromosome with the 

highest CR is recorded as the final solution.   
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Figure 5. Chromsome combination and fitnesss evalaution 

  

Figure 5 shows how the global fitness is obtained during the global interaction. When 

the preset genInterval is met, the chromosomes from all species are combined, and the 

resulting chromosome is evaluated and the fitness value will be returned as the global 

fitness component. In order to add more choices and increase robustness, we adopt the 

method used in [26]. That is, there are two ways to combine chromosomes coming 

from species. Either the evaluated individual is combined with the current best 

individual in each other species, or it is combined with individuals selected randomly 

from each other species. The two resulting chromosomes are then evaluated and the 

better of them is returned as the individual’s global fitness. This method has been 

fully explored in [26], and it is found that it performs well in function optimization 

and it successfully escapes from the local optima resulting from interacting variables.  

 

chromosome from species 2chromosome from species 1

1 a j 1 h s 2 1 b m 1 c g

1 a j 1 b m ...

Combined chromosome

...21 1 1 d p 1 e m ...21...

chromosome from species n

...

1 d p 1 1 h s 1 c g ... 1 e m 2 ...

Figure 6. Combining chromsomes from species  

 

SP 1 
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SP 2 SP n-1 SP n . . . . . . 
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Figure 6 shows the format of chromosomes in species and how they are combined to 

form a full candidate solution. One individual chromosome is selected from each 

species. Then the attribute elements coming from each species with the same class are 

combined to form a rule. In this way, rules can be built up in turn to form a combined 

chromosome – rule set. The resulting chromosome is then evaluated against the full 

training data, obtaining a global fitness value. 

 

4. Experiments and Analysis  

We have implemented several classifiers running on four benchmark data sets, which 

are the yeast data, glass data, housing data, and diabetes data. They all are real-world 

problems, and are available in the UCI machine learning repository [27]. The 

information of these data sets is provided in Table 7 of the Appendix. Each data set is 

equally partitioned into two parts. One half is for training, while the other half is for 

testing. 

 

All experiments are completed on Pentium IV 1.4GHz PCs with 256MB memory. 

The results reported are all averaged over 10 independent runs. The parameters, such 

as mutation rate, crossover rate, generation limit, stagnation limit etc., are given under 

the results. We record the evolution process by noting down some indicative results, 

which include initial classification rate (CR), generation cost, training time, training 

CR, and test CR. (Their exact meanings can be found in the notes under Table 1.) 

 

Table 1 shows the performance comparison on the yeast data among ECCGA, CCGA, 

and GA. The improvement percentage compared to the normal GA is also computed. 

For ECCGA, three different values for genInterval have been tried, i.e. genInterval=1, 
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5, and 10. As ECCGAs involve the additional CGE, both the generations and training 

time comprise two elements. The latter element indicates the additional generations 

and training time incurred by CGE. Here, the training time for CCGA and the first 

training time element for ECCGA are the summary of the time cost of all species in a 

serial implementation. If the evolution in species is implemented in parallel, or run in 

a multi-processor system with each computing element running for one species 

evolution, the training time can be tremendously reduced.  

 

Table 1. Performance comparison on the yeast data – ECCGA, CCGA and GA 

 
 

Notes: 

1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=100, 

stagnationLimit=30, generationLimit=200; 

2. “Initial CR” means the best classification rate achieved by the initial population; 
     “Generations” means the number of generations needed to reach the stopping criteria; 

     “CPU time (ms)” means the CPU time cost, and its unit is millisecond; 

     “Ending CR” means the best classification rate achieved by the resulting population on the 

training data;  

      “Test CR” means the classification rate achieved on the test data;  

3. The percentage shown for CCGA and ECCGA is the percent improvement over the normal GA. 

4. The other tables follow the same notations as this table. 

 

It is found from Table 1 that all ECCGAs and CCGA outperform the normal GA in 

terms of training CR and test CR, with a significant improvement around 20% - 40%. 

ECCGAs also outperform CCGA, which means the enhancement really helps achieve 

better performance. As for the comparison among the three ECCGAs, we find that 

ECCGA with genInterval=1 achieves the best performance and the performance 

degrades with the increase of the genInterval, which means the more frequent global 

interaction, the better the final results. 

 

Summary GA CCGA 
ECCGA 

(genInterval=1) 

ECCGA 

(genInterval=5) 

ECCGA 

(genInterval=10) 

 Initial CR 0.2356 0.2961 0.2996 0.2911 0.2947 

Generations 139.6 91.3 152+104.6 131.5+121.5 106.5+110.5 

CPU Time (ms) 592.5 7912.9 10082+454.1 3964.3+486.6 2024.4+469.0 

Ending CR 0.3406 0.4147 (21.8%) 0.4771 (40.1%)  0.4493 (31.9%) 0.4156 (22.0%) 

Test CR 0.3257 0.3908 (20.0%) 0.4348 (33.5%) 0.4147 (27.3%) 0.3936 (20.8%) 
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It is also found that training time becomes longer in CCGA and ECCGAs, compared 

to the normal GA. It is because that the chromosome combination and global fitness 

evaluation takes more time. Considering the larger improvement on the CRs, this is 

affordable. Furthermore, we can also find that with a larger value of genInterval, the 

training time can be largely reduced with a small degradation in performance. 

Therefore, we can choose to set a larger value for genInterval when the time cost is an 

issue.    

Table 2. Performance comparison on the glass data – ECCGA, CCGA and GA 

 
 

Notes: 

1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=100, 

stagnationLimit=30, generationLimit=200. 

 

 

Table 3. Performance comparison on the housing data – ECCGA, CCGA and GA 

 
 

Notes: 

1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=100, 

stagnationLimit=30, generationLimit=200. 

 

 

Table 4. Performance comparison on the diabetes data – ECCGA, CCGA and GA 

 

 

Notes: 

1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=100, 

stagnationLimit=30, generationLimit=200. 

 

Summary GA CCGA 
ECCGA 

(genInterval=1) 

ECCGA 

(genInterval=5) 

ECCGA 

(genInterval=10) 

 Initial CR 0.3271 0.3710 0.3673 0.3869 0.3673 

Generations 98.6 92.1 104.4+88.2 115.1+85.7 96.5+112.6 

CPU Time (ms) 77.5 3162.1 1534.6+41.4 1309.9+66.5 622.6 +88.0 

Ending CR 0.5262 0.6327 (20.2%) 0.7374 (40.1%) 0.7159 (36.1%) 0.6972 (32.5%) 

Test CR 0.3841 0.4112 (7.1%) 0.4701 (22.4%) 0.4654 (21.2%) 0.4374 (13.9%) 

Summary GA CCGA 
ECCGA 

(genInterval=1) 

ECCGA 

(genInterval=5) 

ECCGA 

(genInterval=10) 

 Initial CR 0.4553 0.5372 0.5301 0.5364 0.5344 

Generations 106.8 80.8 137.8+151.6 88.1+105.1 69.2+93.9 

CPU Time (ms) 98.3 7291.6 6168.4+155.4 1950.8+110.9  972.4+93.3 

Ending CR 0.6526 0.6941 (6.4%) 0.8506 (30.3%) 0.7700 (18.0%) 0.7364 (12.8%) 

Test CR 0.4368 0.4593 (5.2%) 0.5747 (31.6%) 0.4791 (9.7%) 0.4672 (7.0%) 

Summary GA CCGA 
ECCGA 

(genInterval=1) 

ECCGA 

(genInterval=5) 

ECCGA 

(genInterval=10) 

 Initial CR 0.6297 0.6526 0.6508 0.6521 0.6516 

Generations 180.4 70.7 102.5+129.5 79.3+126.2 90.5+158.5 

CPU Time (ms) 406.1 4012.3 2809.9+157.9 2288.8+302.8 1674.7+373.1 

Ending CR 0.7403 0.7440 (0.5%) 0.7776 (5.0%) 0.7672 (3.6%) 0.7706 (4.1%) 

Test CR 0.6935 0.7250 (4.5%) 0.7407 (6.8%) 0.7401 (6.7%) 0.7242 (4.4%) 
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The experimental results on the glass, housing, and diabetes data sets are reported in 

Tables 2, 3, and 4 respectively. Similar results as the yeast data are obtained. That is, 

ECCGAs outperform CCGA, and CCGA outperforms the normal GA. The 

improvement percentage over the normal GA is different for each data set. The 

improvement on the glass and house data is significant, but relatively smaller on the 

diabetes data. The ECCGA with genInterval=1 still achieves the best performance 

among the three ECCGAs on all three data sets. 

 

5. Analysis and Discussion 

In this section, we will have some analysis and discussion on the inner mechanisms of 

the ECCGA, the issues of parameter selection, and possible further improvement.  

 

First, we investigate the contribution of local fitness in the fitness function. Figure 7 

shows a typical run of the ECCGA (genInterval=1) and CCGA in one species on the 

yeast data, excluding the CGE stage for the ECCGA. Both ECCGA and CCGA 

perform similarly in the earlier stage of evolution. However, it is found that CCGA is 

trapped later and stagnates around the 110-th generation, while ECCGA advances 

steadily and reaches a higher CR finally. If we recall the design of ECCGA and 

CCGA, the only difference here is that CCGA only employs global fitness, while 

ECCGA involves the local fitness in addition. That means the local fitness of ECCGA 

will give another opportunity to escape from traps in local optima and advance the 

evolution further.  
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Figure 7. A typical run of ECCGA and CCGA in species on the yeast data  

 

We also have some investigation on the weightage of local and global fitness. As 

shown in earlier experiments, local fitness and global fitness are averaged as 

representative fitness. We like to explore further the effect of changing their 

percentage weights. 

 

Table 5. Performance of different combinations of fitness elements on the yeast data  

Notes: 

1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=100, 

stagnationLimit=30, generationLimit=200; 
2. The pair of numbers shown in the column head indicates the weights for the two fitness elements. 

e.g. (0.8 vs 0.2) means representative fitness=0.8*local fitness + 0.2*global fitness. 
 

 

Summary 

ECCGA 

(genInterval=1) 

(0.0 vs 1.0) 

ECCGA 

(genInterval=1) 

(1.0 vs 0.0) 

ECCGA 

(genInterval=1) 

(1/2 vs 1/2) 

ECCGA 

(genInterval=1) 

(0.8 vs 0.2) 

ECCGA 

(genInterval=1) 

(1/3 vs 2/3) 

 Initial CR 0.2928 0.2882 0.2996 0.2950 0.2916 

Generations 114.4+75.1 52+153.4 152+104.6 134.5+146.5 165.8+109.3 

CPU Time (ms) 5177.7+293.7 652.0+620.9 10082+454.1 8720.5+577.4 10830+462.6 

Ending CR 0.4349 0.4399 0.4771 0.4755 0.4770 

Test CR 0.4048 0.4046 0.4348 0.4332 0.4322 
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Table 5 shows the performance comparison of different combinations of fitness 

elements. Each column shows one weight percentage combination. We have 

purposely tried several combinations, including two extremities, i.e. exclusively 

relying on either pure local fitness (1.0 vs 0.0) or pure global fitness (0.0 vs 1.0) (see 

note 2 under Table 5 for the meaning of weights).  The results show that both 

selections with extremities receive worse results, while using a more balanced 

combination of local and global fitness helps achieve better results. The other three 

weight combinations for these two elements do not show significant difference. It 

may be due to the randomness of the GA process that smoothens the difference during 

evolution. As the best combination may vary for different data sets, it is reasonable to 

use the average weight combination. 

 

 

 

 

 

 

 

 

Figure 8. Niche-based ECCGA 

 

In order to improve further the performance, we have proposed a niche-based 

ECCGA approach. In the current CCGA/ECCGA method, the attribute domain is 

fully decomposed, i.e. each species dealing with only one attribute. As shown in 

Figure 8, in the niche-based ECCGA, the original n attributes are assigned into m 
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niches, and the CCGA is employed in each niche. The conclusive global evolution 

process combines partial solutions from these niches and evolves further as the final 

solution.  

 

CCGA/ECCGA is computation-intensive algorithms, as each time when a 

chromosome needs fitness evaluation, the chromosomes from all subpopulations 

should be combined together. With the niche-based approach, training time is 

expected to be shorter, as more evolution and fitness evaluation are conducted locally 

inside niches. Furthermore, the niche-based attribute decomposition may have some 

advantage to improve the classification rates. As mentioned earlier in section 1, the 

linkage phenomenon exists in GA-based learning, which means some attribute may be 

tightly linked and breaking their linkage may harm the final performance [7] [24]. 

Therefore, the niche-based ECCGA may avoid linkage-breaking and obtain better 

performance.  

 

Table 6. Performance of niche-based ECCGA on the yeast data 

Notes: 

1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%, ruleNumber=30, popSize=100, 

stagnationLimit=30, generationLimit=200. 

2. In the 2-niche and 4-niche approaches, attributes are assigned into niches according to their 

original sequence.  
 

 

Table 6 shows the results of niche-based ECCGA on the yeast data. Four different 

scenarios have been tried with selections on different niche number and genIntervals. 

It is found that there is some improvement over their counterparts of normal ECCGA 

shown in Table 1, although the improvement is minor. Also, with some preliminary 

Summary 
ECCGA 

(genInterval=5) 

ECCGA-niche 

(genInterval=5) 

(2-niche) 

ECCGA-niche 

(genInterva=5) 

(4-niche) 

ECCGA 

(genInterval=10) 

ECCGA-niche 

(genInterval=10) 

(2-niche) 

ECCGA-niche 

(genInterval=10) 

(4-niche) 

Initial CR 0.2911 0.2952 0.3066 0.2947 0.3041 0.2967 

Generations 131.5+121.5 137.5+144.8 118+130.4 106.5+110.5 111.2+150.6 119.4+133.1 

CPU Time(ms)3964.3+486.6 2365.7+601.8 1565.6+579.8 2024.4+469.0 1314+612.6 963.0+549.1 

Ending CR 0.4493 0.4530 (0.8%) 0.4512 (0.4%) 0.4156 0.4496 (8.2%) 0.4282 (3.0%) 

Test CR 0.4147 0.4205 (1.4%) 0.4155 (1.9%) 0.3936 0.4170 (5.9%) 0.3984 (1.2%) 
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experiments, we do not find significant difference on performance with different 

niche numbers. 

 

It is not easy to determine how to assign attributes into different niches for better 

performance. We consider it as future work to implement a scheme to explore the best 

performance using an attribute-shifting method. Under this scheme, the attributes in 

different niches may migrate in niches after a round of ECCGA, as shown in Figure 8. 

A new round of ECCGA will restart after attribute shifting, until the stopping criteria 

are met. The best overall solution is recorded during the whole process. The whole 

procedure is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Attribute shifting in Niche-based ECCGA 

 

The niche-based ECCGA may also facilitate incremental learning on new arriving 

attributes. When new attributes are being introduced into some current niches, we 

only need to restart the evolution in the corresponding niches, keeping the other 

niches untouched. The CGE continues to obtain the final solution for the new full set 

of attributes. It may be achieved in a relatively shorter time [22] [28]. 
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6. Conclusions  

In this paper, the cooperative co-evolution scheme is revisited with a rule-based GA 

system in the application domain of pattern classification. An innovative approach of 

ECCGA is proposed to improve further the classification performance. In this 

approach, the original problem is decomposed into several species, each dealing with 

one attribute only. The evolution in each species advances together based on the 

evaluation on both local fitness and global fitness. After all species reach 

convergence, CGE is used for further global evolution.   

 

The simulation results on four benchmark data sets showed that ECCGA outperforms 

CCGA and the normal GA. The introduction of local fitness and CGE is helpful to the 

classification performance. Finally, the inner mechanism of ECCGA is analyzed and 

possible improvement such as the niche-based ECCGA is discussed. The future work 

involves further exploration on the niche-based ECCGA and its performance in 

tackling newly arriving attributes. 

 

Appendix  

Table 7 lists the number of instance, attributes, and classes in each experimental data 

set [27]. The yeast problem predicts the protein localization sites in cells. The glass 

data set contains data of different glass types. The results of chemical analysis of glass 

splinters (the percentage of eight different constituent elements) plus the refractive 

index are used to classify a sample to be either float processed or non-float processed 

building windows, vehicle windows, containers, tableware, or head lamps. The 

housing data concern housing values in suburbs of Boston. The diabetes data contain 

the diagnostic data to investigate whether the patient shows signs of diabetes 
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according to World Health Organization criteria such as the 2-hour post-load plasma 

glucose. 

Table 7. Datasets used for the experiments 

Data Set 
No. of 

Instances 

No. of 

Attributes 

No. of 

Classes 

Yeast 1484 8 10 

Glass 214 9 6 

Housing 506 13 3 

Diabetes 768 8 2 
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