
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/195806533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A HYBRID ALGORITHM FOR LOGIC CIRCUIT SYNTHESIS

Cećılia Reis, J. A. T. Machado and L. Figueiredo
GECAD - Knowledge Engineering

and Decision Support Group
Institute of Engineering - Polytechnic of Porto

Porto, Portugal
{cmr,jtm,lbf}@isep.ipp.pt

J. Boaventura Cunha
Engineering Department

Univ. of Trás-os-Montes and Alto Douro
Vila Real, Portugal
jboavent@utad.pt

Abstract—In view of the fact that Genetic Algorithms
(GAs) are not well suited for fine-tuning structures that
are close to optimal solutions [1], this paper suggests the
incorporation of local improvement operators into the GA
recombination phase. This study presents a hybrid ge-
netic algorithm, also known as Memetic Algorithm (MA),
applied to the design of combinational logic circuits. MAs
are evolutionary algorithms (EAs) that apply a separate lo-
cal search process to refine individuals (i.e. that improve
their fitness by hill-climbing). Under different contexts and
situations, MAs are also known as hybrid EAs or genetic
local searchers. The proposed MA associates a GA with
the gate type local search (GTLS). Combining global and
local search is a strategy used by many successful global
optimization approaches, and MAs have in fact been recog-
nized as a powerful algorithmic paradigm for evolutionary
computing. We also modify the calculation of the fitness
function by including a discontinuity evaluation that mea-
sures the error variability of the Boolean table. The results
show an improvement of the final fitness function followed
by a reduction of the average number and the standard de-
viation of generations required to reach the solutions, for
all the tested circuits.

keywords - Evolutionary algorithms, logic circuits,
memetic algorithms

I. INTRODUCTION

In the last decade genetic algorithms (GAs) have been
applied in the design of electronic circuits, leading to
a novel area of research called Evolutionary Electronics
(EE) or Evolvable Hardware (EH) [2].

EE considers the concept for automatic design of elec-
tronic systems. Instead of using human conceived mod-
els, abstractions and techniques, EE employs search algo-
rithms to develop good designs [3].

One decade ago Sushil and Rawlins (1991) applied GAs
to the combinational circuit design problem. They com-
bined knowledge-based systems with the GA and defined
a genetic operator called masked crossover. The scheme
produced new types of children that were not possible to
achieve with classical crossover operators [4].

John Koza (1992) adopted Genetic Programming (GP)
for the design of combinational circuits through AND, OR

and NOT logic gates [5].
Coello, Christiansen and Aguirre (1996) presented a

computer program capable of generating high-quality cir-
cuit designs [6]. They used five possible types of gates
(AND, NOT, OR, XOR and WIRE) with the objective
of finding a functional design minimizing the use of gates
other than WIRE (essentially a logical no-operation).

Miller, Thompson and Fogarty (1997) applied evolu-
tionary algorithms for the design of arithmetic circuits.
The technique was based on evolving the functionality and
connectivity of a rectangular array of logic cells, with a
model of the resources available on the Xilinx 6216 FPGA
device [7].

Kalganova, Miller and Lipnitskaya (1998) proposed an-
other technique for designing multiple-valued circuits.
The EH was easily adapted to distinct types of multiple-
valued gates, associated with operations corresponding to
different types of algebra, by taking advantage of the ca-
pability of including other logical expressions [8]. This
approach is, in fact, an extension of EH method for bi-
nary logic circuits proposed in [7].

In order to solve complex systems, Torresen (1998) pro-
posed the method of increased complexity evolution. The
idea consisted in evolving a system gradually as a kind
of divide-and-conquer method. The scheme was first un-
dertaken individually on a large number of simple cells.
The resulting functions were the basic blocks adopted in
further evolution or assembly of larger and more complex
systems [9].

More recently, Hollingworth, Smith and Tyrrell (2000)
described the first attempts to evolve circuits using the
Virtex Family of devices. They implemented a simple 2-
bit adder, where the inputs to the circuit are the two 2-bit
numbers and the expected output is the sum of the two
input values [10].

A major bottleneck in the evolutionary design of elec-
tronic circuits is the problem of scale. This refers to the
very fast growth of the number of gates, used in the target
circuit, as the number of inputs of the evolved logic func-
tion increases. This results in a huge search space that

Knowledge and Decision Technologies

297

is difficult to explore even with evolutionary techniques.
Another related obstacle is the time required to calculate
the fitness value of a circuit [11]. A possible method to
solve this problem is to use building blocks either than
simple gates. Nevertheless, this technique leads to an-
other difficulty, which is how to define building blocks
that are suitable for evolution.

Timothy Gordon (2002) suggested an approach that al-
lows evolution to search good inductive bases for solving
large-scale complex problems. This scheme generated, in-
herently, modular and iterative structures, that exist in
many real-world circuit designs but, at the same time,
allowed evolution to search innovative areas of space [12].

The approaches described so far, based on pure meth-
ods, have poor scalability in logic circuit design, so hybrid
methods have been applied in order to try to solve this
problem. As it is known EAs are restricted to relatively
small circuits (with small truth tables) [13]. However,
the most interesting aspect of evolutionary design is the
possibility of studying the emergent patterns [13, 14].

Following this line of research, this paper proposes a hy-
brid algorithm, namely a Memetic Algorithm (MA) [15]
for the design of combinational logic circuits. Section 2
gives an overview of the background and related work.
Section 3 describes the MA approach and presents the
adaptation and implementation details. Section 4 com-
pares the GA versus the MA results for two cases, namely
for a fitness function with and without the error discon-
tinuity measure. Section 5 studies the MA convergence
while section 6 outlines the scalability problem in logic
circuit synthesis. Finally, section 7 summarizes the main
conclusions.

II. BACKGROUND AND RELATED WORK

In our previous work, we have developed a GA for com-
binational logic circuits design [16]. The circuits are spec-
ified by a truth table, can have multiple inputs and mul-
tiple outputs and the goal is to implement a functional
circuit with the least possible complexity. For that pur-
pose, it is defined a set of logic gates and the circuits are
generated with components of that specific set.

Table I shows the four gate sets defined, being Gset 2
the simplest one (i.e., a RISC-like set) and Gset 6 a more
complex gate set (i.e., a CISC-like set).

For each gate set, the GA searches the solution space
of a function through a simulated evolution aiming the
survival of the fittest strategy. In general, the best indi-
viduals of any population tend to reproduce and survive,
thus improving successive generations. However, inferior
individuals can, by chance, survive and reproduce [1]. In
our case, the individuals are digital circuits, which can
evolve until the solution is reached (in terms of function-
ality and complexity).

Table I

GATE SETS

Gate Set Logic gates

Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE}
Gset 3 {AND,OR,XOR,WIRE}
Gset 2 {AND,XOR,WIRE}

In what concerns to the circuit encoding as a chromo-
some, EH systems develop chromosomes that encode the
functional description of a given circuit. As with many
GA applications, the resulting circuit is the phenotype,
as it comprises several smaller logic cells or genotypes.
The adopted terminology reflects the conceptual similar-
ity between EH, natural evolution and genetics [17].

In the GA scheme a rectangular matrix (row × col-
umn = r × c) of logic cells encodes de circuits (figure
1).

X
Inputs

a11

a31

a21

a12

a32

a22

a13

a23
Y

Outputs

a33

Fig. 1. A 3 × 3 matrix A representing a circuit with
input X and output Y

Three genes represent each cell:
<input1><input2><gate type>, where input1 and
input2 are one of the circuit inputs, if they are in the
first column, or one of the previous outputs, if they are
in other columns. The gate type is one of the elements
adopted in the gate set. As many triplets of this kind as
the matrix size demands constitute the chromosome. For
example, the chromosome that represents a 3 × 3 matrix
is depicted in figure 2.

...

...

Input Input Gate

0 1 2

a11

Input Input Gate

24 25 26

a33

genes

matrix element

Fig. 2. Chromosome for the 3 × 3 matrix A

The GA starts by generating the initial population of
circuits (strings) at random. The search is then carried
out among this population. The three different opera-
tors used are reproduction, crossover and mutation, as
described in the sequel.

Successive generations of new strings are reproduced
on the basis of their fitness function. In this case, tour-

Knowledge and Decision Technologies

298

nament selection [1] is used to select the strings from the
old population, up to the new population.

For the crossover operator, the strings in the new pop-
ulation are grouped together into pairs at random. Sin-
gle point crossover is then performed among pairs. The
crossover point is only allowed between cells to maintain
the chromosome integrity.

The mutation operator changes the characteristics of a
given cell in the matrix. Therefore, it modifies the gate
type and the two inputs, meaning that a completely new
cell can appear in the chromosome. An elitist algorithm
is applied to retain the best solutions for the next gener-
ation.

To run the GA we have to define the number of individ-
uals to create the initial population P . This population
is always the same size across the generations, until the
GA reaches the solution.

The crossover rate CR represents the percentage of the
population P that reproduces in each generation. Like-
wise, MR is the percentage of the population P that mu-
tates in each generation.

The calculation of the F in (1) is divided in two parts,
f1 and f2, where f1 measures the circuit functionality
and f2 measures the circuit simplicity. In a first phase,
we compare the output Y produced by the GA-generated
circuit with the required values YR, according with the
truth table, on a bit-per-bit basis. By other words, f11 is
incremented by one for each correct bit of the output until
f11 reaches the maximum value f10, that occurs when we
have a functional circuit (eq. 1a and 1b).

In order to measure the output error variability (sub-
sections 3.1 and 3.3) f11 is decremented by δ for each
YR – Y error discontinuity (i.e., when passing from YR –
Y = 0 to YR – Y = 1, or vice-versa) by comparing two
consecutive levels of the truth table (eq. 1c).

Once the circuit is functional, in a second phase, the GA
tries to generate circuits with the least number of gates.
This means that the resulting circuit must have as much
genes <gate type> ≡ <wire> as possible. Therefore, the
index f2, that measures the simplicity (the number of null
operations), is increased by one (zero) for each wire (gate)
of the generated circuit (eq. 1d), yielding:

• First phase, circuit functionality:

f10 = 2ni × no ((1)a)

f11 = f11 + 1,
if {bit i of Y} = {bit i of YR} ,

i = 1, ..., f10

((1)b)

f1 = f11 − δ,
if errori �= errori−1, i = 1, ..., f10

((1)c)

(when measuring discontinuity)

• Second phase, circuit simplicity:

f2 = f2 + 1, if gate type = wire ((1)d)

F =
{

f1, F < f10

f1 + f2, F ≥ f10
((1)e)

where i = 1, . . . , f10, ni and no represent the number of
inputs and outputs of the circuit.

The GA has three stop criteria with the following hier-
archy: i) based on the matrix size, it is reached a possible
best solution; ii) the variation of the average fitness func-
tion, for 10 consecutive generations, is less or equal to 1
(meaning that the algorithm has stabilized) and iii) after
having attained 10.000 generations.

III. THE MEMETIC ALGORITHM

Our previous experiments in GA-based logic circuit de-
sign illustrated that the individuals of the population tend
to be similar, leading to difficult or to premature conver-
gence. Therefore, in this work we adopt a MA, that is, an
evolutionary algorithm that includes a stage of individual
optimization as part of its search strategy, being the indi-
vidual optimization in the form of a local search. MAs are
inspired by models of adaptation in natural systems that
combine evolutionary adaptation of populations of indi-
viduals with individual learning within a lifetime [18]. As
it is known, MAs are metaheuristics that take advantage
of the evolutionary operators in determining interesting
regions of the search space. Moreover, MAs adopt a local
search that rapidly finds good solutions in a small region
of the search space [19]. Additionally, MAs are inspired
by Richard Dawkins’ concept of a meme, which represents
a unit of cultural evolution that can exhibit local refine-
ment [20]. Bearing these ideas in mind, figure 3 presents
the MA implemented in this work.

As figure 4 shows the proposed MA includes a GA and
a local search algorithm, where the GA corresponds to
the algorithm implemented in first stage of development.

Over the last decade, MAs have relied on the use of
a variety of different methods as the local improvement
procedure. Some recent studies on the choice of local
search method employed have shown that this choice sig-
nificantly affects the efficiency of problem searches [21].

The local search method investigates a small area
around a solution and adopts the best-found solution. By
other words, the procedure tries to find a fitter solution in
the neighborhood of the current solution. If the algorithm
finds a better solution, then the new solution replaces the
current solution, and the neighborhood restarts. Local
search methods are iterative algorithms that seek to en-
hance the solution by stepwise improvements. The sim-
plest form of local search attempts to swap elements in
combinatorial optimization problems.

Knowledge and Decision Technologies

299

Generate initial population
Evaluate the population
While stop criteria not attended

Selection
Crossover
Mutation
Apply local search algorithm
Evaluate new population

End

Fig. 3. The memetic algorithm

GENETIC ALGORITHM
(Global search algorithm that generates the

initial solutions)
+

LOCAL SEARCH ALGORITHM
(Solution improvement algorithm through
stepwise changes of the initial solutions)

Fig. 4. GA and a local search algorithm

In our case, it is implemented a gate type local search
(GTLS) algorithm as shown in figure 5.

For all population
 For the entire chromossome
 Substitute de gene gate type with a neighbour
 If the new solution has better fitness function
 New solution replaces old solution
 End for
End

Fig. 5. The local search algorithm

IV. COMPUTATIONAL RESULTS

This section shows the implementation of four different
combinational logic circuits, namely, a 2-to-1 multiplexer
(M2 − 1), a one-bit full adder (FA1), a four-bit parity
checker (PC4) and a two-bit multiplier (MUL2), as fol-
lows:

• the PC4 circuit, has 4 inputs X = {A3, A2, A1 A0}
and 1 output YR = {P}. The matrix A size is 4 × 4,
and the length of each string representing a circuit
(i.e., the chromosome length) is CL = 48. In this case
ni = 4 and no = 1, resulting f10 = 16 and F ≥ 24,

• the M2−1 circuit, has 3 inputs X = {S0, I1, I0} and
1 output YR = {O}. The matrix A size is 3 × 3,
and CL = 27. Since the 2-to-1 multiplexer has ni = 3
and no = 1, it results f10 = 8 and F ≥ 12,

• the FA1 circuit, has 3 inputs X = {A, B, Cin} and 2
outputs YR = {S, Cout}. The matrix A size is 3 × 3,
and CL = 27. Since the one-bit full adder has ni = 3
and no = 2, it results f10 = 16 and F ≥ 20,

• the MUL2 circuit, has 4 inputs X = {A1, A0, B1,
B0} and 4 outputs YR = {C3, C2, C1, C0}. The
matrix A size is 4 × 4, and CL = 48 and it yields
ni = 4 and no = 4, leading to f10 = 64 and F ≥ 72.

The input bits are grouped according with the Gray
Code and Table 2 presents the Boolean truth Tables for
the circuits under study.

A. Fitness without discontinuity measure (δ = 0)

In this sub-section we analyze the MA when adopting
the fitness function without including the discontinuity
measure δ error. The GA results are also included allow-
ing the comparison between the algorithms.

Due to the stochastic nature of the EAs, in order to
evaluate its performance, for each gate set, we perform
20 simulations. The best gate set is the one that presents
the solution with the higher final fitness function F requir-
ing the smaller number of generations N and the smaller
standard deviation S.

Analyzing the PC4, the M2 − 1 and the FA1 circuits
we can see that the best case occurs for Gset 3 with the
MA algorithm, because it leads to the smallest Nav and
the best Fav.

In respect to the MUL2 circuit, the best results are
obtained applying the MA algorithm, but in this case Gset
6 is the best in terms of Nav being the Gset 3 superior in
respect to Fav..

Figure 6 depicts the average of the fitness function Fav

versus the average number of generations to achieve the
solution Nav, for the GA and the MA algorithms, for all
gate sets and all circuits under analysis.

10

100

1 10 100 1000 10000

N av

F
av

Gset 6 GA

Gset 6 MA

Gset 4 GA

Gset 4 MA

Gset 3 GA

Gset 3 MA

Gset 2 GA

Gset 2 MA2-to-1 Multiplexer

1-bit Full Adder

4-bit Parity Checker

2-bit Multiplier

Fig. 6. Average fitness function Fav versus the average
number of generations Nav to achieve the solution for
P = 3000 with δ = 0

The superior performance of the MA algorithm is ob-
vious for all gate sets and all the circuits, particularly in
the perspective of the Nav. Moreover, Gset 3 reveals to
be the most efficient gate set.

Knowledge and Decision Technologies

300

PC4
A3 A2 A1 A0 P
0 0 0 0 0
0 0 0 1 1
0 0 1 1 0
0 0 1 0 1
0 1 1 0 0
0 1 1 1 1
0 1 0 1 0
0 1 0 0 1
1 1 0 0 0
1 1 0 1 1
1 1 1 1 0
1 1 1 0 1
1 0 1 0 0
1 0 1 1 1
1 0 0 1 0
1 0 0 0 1

MUL2
A1 A0 B1 B0 C3 C2 C1 C0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
0 1 0 1 0 0 0 1
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 1 1 0 0 1
1 1 1 0 0 1 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0

M2 − 1
S0 I1 I0 O
0 0 0 0
0 0 1 1
0 1 1 1
0 1 0 0
1 1 0 1
1 1 1 1
1 0 0 0
1 0 0 0

FA1
A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 1 0 1
0 1 0 1 0
1 1 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 1 0

Table II: CIRCUIT TRUTH TABLES

B. Fitness with discontinuity measure (δ = 0.5)

In this sub-section we analyze the MA improvement
when adopting the fitness function including the discon-
tinuity measure δ error.

The experiments were done for all the gate sets and all
the circuits under study in this paper. Figure 7 presents
the results for the PC4, the M2−1 and the FA1 circuits,
using a population size P = 10. Since the MUL2 circuit
has a higher complexity it is required to increase the pop-
ulation size to P = 1000. The results, are shown in figure
8.

1

10

100

1000

10000

1 10 100 1000 10000
N av

S
av

Gset 6 MA
Gset 6 MA with discontinuity
Gset 4 MA
Gset 4 MA with discontinuity
Gset 3 MA
Gset 3 MA with discontinuity
Gset 2 MA
Gset 2 MA with discontinuity

4-bit Parity Checker

1-bit Full Adder

2-to-1 Multiplexer

Fig. 7. Average standard deviation Sav versus the
average number of generations Nav to achieve the so-
lution for the PC4, the M2 − 1 and the FA1 circuits
with P = 10 and using δ = 0.5 (for the MA with dis-
continuity cases)

The improvement of the MA algorithm through appli-
cation of the fitness function with the error discontinuity
measure δ is more evident in terms of the standard devi-
ation. Moreover, the number of generations to achieve a
solution is also slightly improved.

10

100

1000

10 100 1000

N av

S
av

Gset 6 MA

Gset 6 MA with discontinuity

Gset 4 MA

Gset 4 MA with discontinuity

Gset 3 MA

Gset 3 MA with discontinuity

Gset 2 MA

Gset 2 MA with discontinuity

2-bit Multiplier

Fig. 8. Average standard deviation Sav versus the av-
erage number of generations Nav to achieve the solu-
tion for the MUL2 circuit with P = 1000 using δ = 0.5
(for the MA with discontinuity cases)

V. Convergence Analysis

This section addresses an important issue of the evo-
lutionary algorithms because in general, due to their
stochastic nature, the algorithms may present conver-
gence problems. In this line of thought, we analyze the
average number of generations Nav to achieve the solution
and the standard deviation Sav for different population
sizes P . The logic circuit in study here is the PC4 circuit
with the gate set 2.

Figure 9 presents the Sav versus Nav for the PC4 and
the Gset 2, with the processing time PT as parameter.
Ignoring the PT [22], we obtain the better results (a low
number of generations to achieve the solution with a low
standard deviation) the higher the population P . How-
ever, in terms of PT the best results occur for P = 100
and P = 20 for the GA and MA cases, respectively. Sim-
ilar conclusions result for the other gate sets and rest of
the circuits.

Knowledge and Decision Technologies

301

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05

N av

S
av

GAMA

(PT,P)=(0.267,2)

(PT,P)=(1.626,2)

(PT,P)=(0.354,1000)
(PT,P)=(0.651,1000)

Fig. 9. Processing time PT versus the standard de-
viation of the number of generations to achieve the
solution Sav and the average number of generations
to achieve the solution Nav, for the MA and the GA
algorithms, Gset 2 and the four-bit parity checker cir-
cuit, with δ = 0

VI. Scalability Analysis

Another issue that emerges with the increasing num-
ber of the circuit inputs and outputs is the scalability
problem. Since the truth table grows exponentially, the
computational burden to achieve the solution increases
dramatically [13]. We have developed this study using
the parity checker family circuits of {2, 3, 4, 5 and 6 bit}.

Figure 10 shows the evolution of Fav versus N av for the
parity checker family of circuits, for an increasing number
of bits.

1

10

100

1 10 100

N av

F
av

Gset 6 GA

Gset 4 GA

Gset 3 GA

Gset 2 GA

Gset 6 MA

Gset 4 MA

Gset 3 MA

Gset 2 MA

Parity Checker Family

Fig. 10. Fav versus Nav for the parity checker family,
for the GA and the MA algorithms and for the Gsets
under evaluation for P = 3000, with δ = 0

VII. Conclusions

As it is known, in general, most real world problems
are too complex for any single optimization technique to
solve it in isolation. The modern trend and philosophy
for constructing fast, globally convergent algorithms is to

combine a simple globally convergent algorithm with a
fast locally convergent heuristic, to form a more suitable
and faster hybrid.

GAs are well known for exploring the solution space
effectively but are unable to fine-tune the search. In or-
der to improve the GAs search capabilities, a local search
technique is often integrated with a GA to form a hybrid
called Memetic Algorithms. Accordingly, the hybrid MA
tends to incorporate the exploration capability of GAs
with the exploitation features of local search, which we
have confirm in this work.

The experiments have shown that the MA proposed in
this paper is more efficient in combinational logic circuit
design when compared with classical GA approaches. On
the other hand, the incorporation of the error discontinu-
ity measure in the fitness function calculation leads also
to an algorithm improvement.

VIII. Acknowledgements

The authors would like to acknowledge FCT, FEDER,
POCTI, POSI, POCI and POSC for their support to R&D
Projects and GECAD Unit.

IX. References

[1] Goldberg, D. E. Genetic Algorithms in Search Op-
timization and Machine Learning. Addison-Wesley,
1989.

[2] Zebulum, R. S., Pacheco, M. A. and Vellasco, M. M.
Evolutionary Electronics: Automatic Design of Elec-
tronic Circuits and Systems by Genetic Algorithms.
CRC Press, 2001.

[3] Thompson, A. and Layzell, P. Analysis of unconven-
tional evolved electronics. In Com. of the ACM, Vol.
42, pages 71–79, 1999.

[4] Louis, S.J. and Rawlins, G. J. Designer Genetic Al-
gorithms: Genetic Algorithms in Structure Design. In
Proc. of the Fourth International Conference on Ge-
netic Algorithms, 1991.

[5] Koza, J. R. Genetic Programming. On the Program-
ming of Computers by means of Natural Selection.
MIT Press, 1992.

[6] Coello, C. A., Christiansen, A. D. and Aguirre, A. H.
Using Genetic Algorithms to Design Combinational
Logic Circuits. In Intelligent Engineering through Ar-
tificial Neural Networks, Vol. 6, pages 391–396, 1996.

[7] Miller, J. F., Thompson, P. and Fogarty, T. Algo-
rithms and Evolution Strategies in Engineering and
Computer Science: Recent Advancements and Indus-
trial Applications. Chapter 6, Wiley, 1997.

Knowledge and Decision Technologies

302

[8] Kalganova, T., Miller, J. F. and Lipnitskaya, N.
Multiple-Valued Combinational Circuits Synthesised
using Evolvable Hardware. In Proc. of the 7th Work-
shop on Post-Binary Ultra Large Scale Integration
Systems, 1998.

[9] Torresen, J. A Divide-and-Conquer Approach to
Evolvable Hardware. In Proc. of the Second Interna-
tional Conference on Evolvable Hardware, Vol. 1478,
pp. 57–65.1998.

[10] Hollingworth, G. S., Smith, S. L. and Tyrrell, A.
M. The Intrinsic Evolution of Virtex Devices Through
Internet Reconfigurable Logic. In Proc. of the Third
International Conference on Evolvable Systems, Vol.
1801, pp. 72–79, 2000.

[11] Vassilev, V. K. and Miller, J. F. Scalability Problems
of Digital Circuit Evolution. In Proc. of the Second
NASA/DOD Workshop on Evolvable Hardware, pp.
55–64, 2000.

[12] Gordon, T. G. and Bentley, P. Towards Develop-
ment in Evolvable Hardware. In Proc. of the 2002
NASA/DOD Conference on Evolvable Hardware, pp.
241–250, 2002.

[13] Miller, J. F., Job, D. and Vassilev, V. K. Princi-
ples in Evolutionary Design of Digital Circuits - Part
I. In Genetic Programming and Evolvable Machines
1(1/2), pages 7–35, 2000.

[14] Coello, C. A., Christiansen, A. D. and Aguirre, A.
H. Use of Evolutionary Techniques to Automate the
Design of Combinational Circuits. In International
Journal of Smart Engineering System Design, Vol. 2,
No. 4, pages 299–314, 2001.

[15] P. Moscato. On Evolution, Search, Optimiza-
tion, Genetic Algorithms and Martial Arts: Towards
Memetic Algorithms. In Tech. Rep. Caltech Concur-
rent Computation Program, Report. 826, California
Institute of Technology, Pasadena, California, USA,
1989.

[16] Ceclia Reis, J. A. Tenreiro Machado, and J. Boaven-
tura Cunha. Evolutionary Design of Combinational
Logic Circuits. In Journal of Advanced Computational
Intelligence and Intelligent Informatics, Vol. 8, No.
5, pages 507–513, Fuji Technology Press, September
2004.

[17] Hounsell, B. and Arslan, T. A Novel Evolvable Hard-
ware Framework for the Evolution of High Perfor-
mance Digital Circuits. In Proc. of the Genetic and
Evolutionary Computation Conference, pages 525–
532, 2000.

[18] Krasnogor, N. Studies on the Theory and Design
Space of Memetic Algorithms. PhD thesis, University
of the West of England, Bristol, June, 2002.

[19] P. Merz and B. Freisleben. A Comparison of Memetic
Algorithms, Tabu Search, and Ant Colonies for the
Quadratic Assignment Problem. In Proc. of the 1999
Congress on Evolutionary Computation, pages 2063–
2070, IEEE Press, 1999.

[20] Dawkins, R. The Selfish Gene. Oxford University
Press, New York, 1976.

[21] Y. S. Ong and A.J. Keane. Meta-Lamarckian in
Memetic Algorithm. In IEEE Transactions On Evo-
lutionary Computation, Vol. 8, No. 2, pages 99–110,
April, 2004.

[22] Ceclia Reis, J. A. Tenreiro Machado, and J. Boaven-
tura Cunha. Population Size and Processing Time in
a Genetic Algorithm. In Proc. of the IEEE Interna-
tional Conference on Computational Cybernetics, Vi-
enna University of Technology, 2004.

Knowledge and Decision Technologies

303

