132 research outputs found

    Design of Efficient TLB-based Data Classification Mechanisms in Chip Multiprocessors

    Full text link
    Most of the data referenced by sequential and parallel applications running in current chip multiprocessors are referenced by a single thread, i.e., private. Recent proposals leverage this observation to improve many aspects of chip multiprocessors, such as reducing coherence overhead or the access latency to distributed caches. The effectiveness of those proposals depends to a large extent on the amount of detected private data. However, the mechanisms proposed so far either do not consider either thread migration or the private use of data within different application phases, or do entail high overhead. As a result, a considerable amount of private data is not detected. In order to increase the detection of private data, this thesis proposes a TLB-based mechanism that is able to account for both thread migration and private application phases with low overhead. Classification status in the proposed TLB-based classification mechanisms is determined by the presence of the page translation stored in other core's TLBs. The classification schemes are analyzed in multilevel TLB hierarchies, for systems with both private and distributed shared last-level TLBs. This thesis introduces a page classification approach based on inspecting other core's TLBs upon every TLB miss. In particular, the proposed classification approach is based on exchange and count of tokens. Token counting on TLBs is a natural and efficient way for classifying memory pages. It does not require the use of complex and undesirable persistent requests or arbitration, since when two ormore TLBs race for accessing a page, tokens are appropriately distributed classifying the page as shared. However, TLB-based ability to classify private pages is strongly dependent on TLB size, as it relies on the presence of a page translation in the system TLBs. To overcome that, different TLB usage predictors (UP) have been proposed, which allow a page classification unaffected by TLB size. Specifically, this thesis introduces a predictor that obtains system-wide page usage information by either employing a shared last-level TLB structure (SUP) or cooperative TLBs working together (CUP).La mayor parte de los datos referenciados por aplicaciones paralelas y secuenciales que se ejecutan enCMPs actuales son referenciadas por un único hilo, es decir, son privados. Recientemente, algunas propuestas aprovechan esta observación para mejorar muchos aspectos de los CMPs, como por ejemplo reducir el sobrecoste de la coherencia o la latencia de los accesos a cachés distribuidas. La efectividad de estas propuestas depende en gran medida de la cantidad de datos que son considerados privados. Sin embargo, los mecanismos propuestos hasta la fecha no consideran la migración de hilos de ejecución ni las fases de una aplicación. Por tanto, una cantidad considerable de datos privados no se detecta apropiadamente. Con el fin de aumentar la detección de datos privados, proponemos un mecanismo basado en las TLBs, capaz de reclasificar los datos a privado, y que detecta la migración de los hilos de ejecución sin añadir complejidad al sistema. Los mecanismos de clasificación en las TLBs se han analizado en estructuras de varios niveles, incluyendo TLBs privadas y con un último nivel de TLB compartido y distribuido. Esta tesis también presenta un mecanismo de clasificación de páginas basado en la inspección de las TLBs de otros núcleos tras cada fallo de TLB. De forma particular, el mecanismo propuesto se basa en el intercambio y el cuenteo de tokens (testigos). Contar tokens en las TLBs supone una forma natural y eficiente para la clasificación de páginas de memoria. Además, evita el uso de solicitudes persistentes o arbitraje alguno, ya que si dos o más TLBs compiten para acceder a una página, los tokens se distribuyen apropiadamente y la clasifican como compartida. Sin embargo, la habilidad de los mecanismos basados en TLB para clasificar páginas privadas depende del tamaño de las TLBs. La clasificación basada en las TLBs se basa en la presencia de una traducción en las TLBs del sistema. Para evitarlo, se han propuesto diversos predictores de uso en las TLBs (UP), los cuales permiten una clasificación independiente del tamaño de las TLBs. En concreto, esta tesis presenta un sistema mediante el que se obtiene información de uso de página a nivel de sistema con la ayuda de un nivel de TLB compartida (SUP) o mediante TLBs cooperando juntas (CUP).La major part de les dades referenciades per aplicacions paral·leles i seqüencials que s'executen en CMPs actuals són referenciades per un sol fil, és a dir, són privades. Recentment, algunes propostes aprofiten aquesta observació per a millorar molts aspectes dels CMPs, com és reduir el sobrecost de la coherència o la latència d'accés a memòries cau distribuïdes. L'efectivitat d'aquestes propostes depen en gran mesura de la quantitat de dades detectades com a privades. No obstant això, els mecanismes proposats fins a la data no consideren la migració de fils d'execució ni les fases d'una aplicació. Per tant, una quantitat considerable de dades privades no es detecta apropiadament. A fi d'augmentar la detecció de dades privades, aquesta tesi proposa un mecanisme basat en les TLBs, capaç de reclassificar les dades com a privades, i que detecta la migració dels fils d'execució sense afegir complexitat al sistema. Els mecanismes de classificació en les TLBs s'han analitzat en estructures de diversos nivells, incloent-hi sistemes amb TLBs d'últimnivell compartides i distribuïdes. Aquesta tesi presenta un mecanisme de classificació de pàgines basat en inspeccionar les TLBs d'altres nuclis després de cada fallada de TLB. Concretament, el mecanisme proposat es basa en l'intercanvi i el compte de tokens. Comptar tokens en les TLBs suposa una forma natural i eficient per a la classificació de pàgines de memòria. A més, evita l'ús de sol·licituds persistents o arbitratge, ja que si dues o més TLBs competeixen per a accedir a una pàgina, els tokens es distribueixen apropiadament i la classifiquen com a compartida. No obstant això, l'habilitat dels mecanismes basats en TLB per a classificar pàgines privades depenen de la grandària de les TLBs. La classificació basada en les TLBs resta en la presència d'una traducció en les TLBs del sistema. Per a evitar-ho, s'han proposat diversos predictors d'ús en les TLBs (UP), els quals permeten una classificació independent de la grandària de les TLBs. Específicament, aquesta tesi introdueix un predictor que obté informació d'ús de la pàgina a escala de sistema mitjançant un nivell de TLB compartida (SUP) or mitjançant TLBs cooperant juntes (CUP).Esteve García, A. (2017). Design of Efficient TLB-based Data Classification Mechanisms in Chip Multiprocessors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86136TESI

    CROSS-LAYER CUSTOMIZATION FOR LOW POWER AND HIGH PERFORMANCE EMBEDDED MULTI-CORE PROCESSORS

    Get PDF
    Due to physical limitations and design difficulties, computer processor architecture has shifted to multi-core and even many-core based approaches in recent years. Such architectures provide potentials for sustainable performance scaling into future peta-scale/exa-scale computing platforms, at affordable power budget, design complexity, and verification efforts. To date, multi-core processor products have been replacing uni-core processors in almost every market segment, including embedded systems, general-purpose desktops and laptops, and super computers. However, many issues still remain with multi-core processor architectures that need to be addressed before their potentials could be fully realized. People in both academia and industry research community are still seeking proper ways to make efficient and effective use of these processors. The issues involve hardware architecture trade-offs, the system software service, the run-time management, and user application design, which demand more research effort into this field. Due to the architectural specialties with multi-core based computers, a Cross-Layer Customization framework is proposed in this work, which combines application specific information and system platform features, along with necessary operating system service support, to achieve exceptional power and performance efficiency for targeted multi-core platforms. Several topics are covered with specific optimization goals, including snoop cache coherence protocol, inter-core communication for producer-consumer applications, synchronization mechanisms, and off-chip memory bandwidth limitations. Analysis of benchmark program execution with conventional mechanisms is made to reveal the overheads in terms of power and performance. Specific customizations are proposed to eliminate such overheads with support from hardware, system software, compiler, and user applications. Experiments show significant improvement on system performance and power efficiency

    Real-time operating system support for multicore applications

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2014Plataformas multiprocessadas atuais possuem diversos níveis da memória cache entre o processador e a memória principal para esconder a latência da hierarquia de memória. O principal objetivo da hierarquia de memória é melhorar o tempo médio de execução, ao custo da previsibilidade. O uso não controlado da hierarquia da cache pelas tarefas de tempo real impacta a estimativa dos seus piores tempos de execução, especialmente quando as tarefas de tempo real acessam os níveis da cache compartilhados. Tal acesso causa uma disputa pelas linhas da cache compartilhadas e aumenta o tempo de execução das aplicações. Além disso, essa disputa na cache compartilhada pode causar a perda de prazos, o que é intolerável em sistemas de tempo real críticos. O particionamento da memória cache compartilhada é uma técnica bastante utilizada em sistemas de tempo real multiprocessados para isolar as tarefas e melhorar a previsibilidade do sistema. Atualmente, os estudos que avaliam o particionamento da memória cache em multiprocessadores carecem de dois pontos fundamentais. Primeiro, o mecanismo de particionamento da cache é tipicamente implementado em um ambiente simulado ou em um sistema operacional de propósito geral. Consequentemente, o impacto das atividades realizados pelo núcleo do sistema operacional, tais como o tratamento de interrupções e troca de contexto, no particionamento das tarefas tende a ser negligenciado. Segundo, a avaliação é restrita a um escalonador global ou particionado, e assim não comparando o desempenho do particionamento da cache em diferentes estratégias de escalonamento. Ademais, trabalhos recentes confirmaram que aspectos da implementação do SO, tal como a estrutura de dados usada no escalonamento e os mecanismos de tratamento de interrupções, impactam a escalonabilidade das tarefas de tempo real tanto quanto os aspectos teóricos. Entretanto, tais estudos também usaram sistemas operacionais de propósito geral com extensões de tempo real, que afetamos sobre custos de tempo de execução observados e a escalonabilidade das tarefas de tempo real. Adicionalmente, os algoritmos de escalonamento tempo real para multiprocessadores atuais não consideram cenários onde tarefas de tempo real acessam as mesmas linhas da cache, o que dificulta a estimativa do pior tempo de execução. Esta pesquisa aborda os problemas supracitados com as estratégias de particionamento da cache e com os algoritmos de escalonamento tempo real multiprocessados da seguinte forma. Primeiro, uma infraestrutura de tempo real para multiprocessadores é projetada e implementada em um sistema operacional embarcado. A infraestrutura consiste em diversos algoritmos de escalonamento tempo real, tais como o EDF global e particionado, e um mecanismo de particionamento da cache usando a técnica de coloração de páginas. Segundo, é apresentada uma comparação em termos da taxa de escalonabilidade considerando o sobre custo de tempo de execução da infraestrutura criada e de um sistema operacional de propósito geral com extensões de tempo real. Em alguns casos, o EDF global considerando o sobre custo do sistema operacional embarcado possui uma melhor taxa de escalonabilidade do que o EDF particionado com o sobre custo do sistema operacional de propósito geral, mostrando claramente como diferentes sistemas operacionais influenciam os escalonadores de tempo real críticos em multiprocessadores. Terceiro, é realizada uma avaliação do impacto do particionamento da memória cache em diversos escalonadores de tempo real multiprocessados. Os resultados desta avaliação indicam que um sistema operacional "leve" não compromete as garantias de tempo real e que o particionamento da cache tem diferentes comportamentos dependendo do escalonador e do tamanho do conjunto de trabalho das tarefas. Quarto, é proposto um algoritmo de particionamento de tarefas que atribui as tarefas que compartilham partições ao mesmo processador. Os resultados mostram que essa técnica de particionamento de tarefas reduz a disputa pelas linhas da cache compartilhadas e provê garantias de tempo real para sistemas críticos. Finalmente, é proposto um escalonador de tempo real de duas fases para multiprocessadores. O escalonador usa informações coletadas durante o tempo de execução das tarefas através dos contadores de desempenho em hardware. Com base nos valores dos contadores, o escalonador detecta quando tarefas de melhor esforço o interferem com tarefas de tempo real na cache. Assim é possível impedir que tarefas de melhor esforço acessem as mesmas linhas da cache que tarefas de tempo real. O resultado desta estratégia de escalonamento é o atendimento dos prazos críticos e não críticos das tarefas de tempo real.Abstracts: Modern multicore platforms feature multiple levels of cache memory placed between the processor and main memory to hide the latency of ordinary memory systems. The primary goal of this cache hierarchy is to improve average execution time (at the cost of predictability). The uncontrolled use of the cache hierarchy by realtime tasks may impact the estimation of their worst-case execution times (WCET), specially when real-time tasks access a shared cache level, causing a contention for shared cache lines and increasing the application execution time. This contention in the shared cache may leadto deadline losses, which is intolerable particularly for hard real-time (HRT) systems. Shared cache partitioning is a well-known technique used in multicore real-time systems to isolate task workloads and to improve system predictability. Presently, the state-of-the-art studies that evaluate shared cache partitioning on multicore processors lack two key issues. First, the cache partitioning mechanism is typically implemented either in a simulated environment or in a general-purpose OS (GPOS), and so the impact of kernel activities, such as interrupt handlers and context switching, on the task partitions tend to be overlooked. Second, the evaluation is typically restricted to either a global or partitioned scheduler, thereby by falling to compare the performance of cache partitioning when tasks are scheduled by different schedulers. Furthermore, recent works have confirmed that OS implementation aspects, such as the choice of scheduling data structures and interrupt handling mechanisms, impact real-time schedulability as much as scheduling theoretic aspects. However, these studies also used real-time patches applied into GPOSes, which affects the run-time overhead observed in these works and consequently the schedulability of real-time tasks. Additionally, current multicore scheduling algorithms do not consider scenarios where real-time tasks access the same cache lines due to true or false sharing, which also impacts the WCET. This thesis addresses these aforementioned problems with cache partitioning techniques and multicore real-time scheduling algorithms as following. First, a real-time multicore support is designed and implemented on top of an embedded operating system designed from scratch. This support consists of several multicore real-time scheduling algorithms, such as global and partitioned EDF, and a cache partitioning mechanism based on page coloring. Second, it is presented a comparison in terms of schedulability ratio considering the run-time overhead of the implemented RTOS and a GPOS patched with real-time extensions. In some cases, Global-EDF considering the overhead of the RTOS is superior to Partitioned-EDF considering the overhead of the patched GPOS, which clearly shows how different OSs impact hard realtime schedulers. Third, an evaluation of the cache partitioning impacton partitioned, clustered, and global real-time schedulers is performed.The results indicate that a lightweight RTOS does not impact real-time tasks, and shared cache partitioning has different behavior depending on the scheduler and the task's working set size. Fourth, a task partitioning algorithm that assigns tasks to cores respecting their usage of cache partitions is proposed. The results show that by simply assigning tasks that shared cache partitions to the same processor, it is possible to reduce the contention for shared cache lines and to provideHRT guarantees. Finally, a two-phase multicore scheduler that provides HRT and soft real-time (SRT) guarantees is proposed. It is shown that by using information from hardware performance counters at run-time, the RTOS can detect when best-effort tasks interfere with real-time tasks in the shared cache. Then, the RTOS can prevent best effort tasks from interfering with real-time tasks. The results also show that the assignment of exclusive partitions to HRT tasks together with the two-phase multicore scheduler provides HRT and SRT guarantees, even when best-effort tasks share partitions with real-time tasks

    Extending the reach of microprocessors : column and curious caching

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 162-167).by Derek T. Chiou.Ph.D

    A tuneable software cache coherence protocol for heterogeneous MPSoCs

    Get PDF
    ABSTRACT In a multiprocessor system-on-chip (MPSoC) private caches introduce the cache coherence problem. Here, we target at heterogeneous MPSoCs with a network-on-chip (NoC). Existing hardware cache coherence protocols are less suitable for MPSoCs because many off-the-shelf processors used in MPSoCs do not support these protocols. Furthermore, these protocols typically rely on global visibility and serialization of writes which does not match well with the parallel pointto-point communication provided by a NoC. Therefore, we propose a software cache coherence protocol, which can be applied in a heterogeneous MPSoC with a NoC. The software cache coherence protocol relies on explicit synchronization in the software. More specifically, caches are guaranteed to be coherent according to the Release Consistency model, on top of which we have implemented the standard Pthreads communication library. Heterogeneous MPSoCs with off-the-shelf processors can easily be supported, because processors are only required to provide cache control operations, e.g., clean and invalidate. All cache coherence operations are interruptible and do not impact the execution of tasks on other processors, therefore this protocol is suitable for predictable MPSoCs. Our software cache coherence protocol is implemented on an ARM926EJ-S MPSoC which is mapped on an FPGA. From experiments we conclude that the protocol overhead is low for the applications taken from the SPLASH-2 benchmark set. For these applications we observed a speedup between 1.89 and 2.01 on the two processor MPSoC

    Exploiting cache locality at run-time

    Get PDF
    With the increasing gap between the speeds of the processor and memory system, memory access has become a major performance bottleneck in modern computer systems. Recently, Symmetric Multi-Processor (SMP) systems have emerged as a major class of high-performance platforms. Improving the memory performance of Parallel applications with dynamic memory-access patterns on Symmetric Multi-Processors (SMP) is a hard problem. The solution to this problem is critical to the successful use of the SMP systems because dynamic memory-access patterns occur in many real-world applications. This dissertation is aimed at solving this problem.;Based on a rigorous analysis of cache-locality optimization, we propose a memory-layout oriented run-time technique to exploit the cache locality of parallel loops. Our technique have been implemented in a run-time system. Using simulation and measurement, we have shown our run-time approach can achieve comparable performance with compiler optimizations for those regular applications, whose load balance and cache locality can be well optimized by tiling and other program transformations. However, our approach was shown to improve significantly the memory performance for applications with dynamic memory-access patterns. Such applications are usually hard to optimize with static compiler optimizations.;Several contributions are made in this dissertation. We present models to characterize the complexity and present a solution framework for optimizing cache locality. We present an effective estimation technique for memory-access patterns to support efficient locality optimizations and information integration. We present a memory-layout oriented run-time technique for locality optimization. We present efficient scheduling algorithms to trade off locality and load imbalance. We provide a detailed performance evaluation of the run-time technique

    Language independent modelling of parallelism

    Get PDF
    To make programs work in parallel contexts without any hazards, programming languages require changes to their structures and compilers. One of the most complicated parts is memory models and how programming languages deal with memory interactions. Different processors provide a different level of safety guarantees (i.e. ARM provides relaxed whereas Intel provides strong guarantees). On the other hand, different programming languages provide different structures for parallel computation and have individual protocols for communicating with parallel processes. Unfortunately, no specific choice is best in all situations. This thesis focuses on memory models of various programming languages and processors highlighting some positive and negative features from the point of view of programmability, performance and portability. In order to give some evidence of problems and performance bottlenecks, some small programs have been developed. This thesis also concentrates on incorrect behaviors, especially on data race conditions in programs, providing suggestions on how to avoid them. Also, some litmus tests on systems featuring different vendors' processors were performed to observe data races on each system. Nowadays programming paradigms also became a big issue. Some of the programming styles support observable non-determinism which is the main reason for incorrect behavior in programs. In this thesis, different programming models are also discussed based on the current state of the available research. Also, the imperative and functional paradigms in different contexts are compared. Finally, a mathematical problem was solved using two different paradigms to provide some practical evidence of the theory

    Support for Programming Models in Network-on-Chip-based Many-core Systems

    Get PDF
    corecore