
UNIVERSIDADE FEDERAL DE SANTA CATARINA
PROGRAMA DE PÓS-GRADUAÇÃO EM

ENGENHARIA DE AUTOMAÇÃO E SISTEMAS

Giovani Gracioli

REAL-TIME OPERATING SYSTEM SUPPORT FOR
MULTICORE APPLICATIONS

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor in Automation and Systems
Engineering.
Advisor: Prof. Dr. Antônio Augusto
Medeiros Fröhlich

Florianópolis

2014

Giovani Gracioli

REAL-TIME OPERATING SYSTEM SUPPORT FOR
MULTICORE APPLICATIONS

This thesis was accepted in its present form by the Programa
de Pós-Graduação em Engenharia de Automação e Sistemas as a
partial fulfillment of the requirements for the degree of Doctor in
Automation and Systems Engineering.
Florianópolis, 04/07/2014.

Rômulo Silva de Oliveira, Dr.
Graduate Program Coordinator

Doctoral Committee:

Antônio Augusto Medeiros Fröhlich, Dr.
Advisor

Rivalino Matias Júnior, Dr., UFU

Rodolfo Pellizzoni, Dr., UW

Mario Antonio Ribeiro Dantas, Dr., UFSC

Rômulo Silva de Oliveira, Dr., UFSC

Carlos Barros Montez, Dr., UFSC

To my beloved wife and best friend, Juli-
ana, and my mother, Rosilene.

ACKNOWLEDGEMENTS

I am grateful to several people that helped me to get in the
graduate school and that supported me during these almost five years.
First of all, I would to thank my mother, Rosilene Marisa Bertochi, for
all the encouragement words and support, and my wife, Juliana Sielski
Favretto, for being my best friend and giving all the emotional support,
mainly in the last year of this journey.

I would like to thank my advisor, Prof. Antônio Augusto Medei-
ros Fröhlich, for the valuable scientific discussions and assistance. The
academic and administrative support and the scientific environment at
LISHA were fundamental to achieve the research results of this thesis.
Many thanks also to all colleagues at LISHA.

I would also like to thank Prof. Sebastian Fischmeister and
Prof. Rodolfo Pellizzoni for the valuable academic environment and
discussions during my stay at the University of Waterloo and for the
fruitful research collaborations that we established over the past years.
Also, I would like to thank all the co-authors of my published papers.

I am also grateful to Prof. Rivalino Matias Junior, Prof. Rodolfo
Pellizzoni, Prof. Mario Antonio Ribeiro Dantas, Prof. Rômulo Silva
de Oliveira, and Prof. Carlos Barros Montez for serving on my thesis
committee and for their kind comments.

Last but not least, many thanks to CAPES for the financial
support during four years in the graduate program, which was essential
for living in Florianópolis.

RESUMO

Plataformas multiprocessadas atuais possuem diversos ńıveis da
memória cache entre o processador e a memória principal para es-
conder a latência da hierarquia de memória. O principal objetivo da
hierarquia de memória é melhorar o tempo médio de execução, ao custo
da previsibilidade. O uso não controlado da hierarquia da cache pelas
tarefas de tempo real impacta a estimativa dos seus piores tempos de
execução, especialmente quando as tarefas de tempo real acessam os
ńıveis da cache compartilhados. Tal acesso causa uma disputa pelas
linhas da cache compartilhadas e aumenta o tempo de execução das
aplicações. Além disso, essa disputa na cache compartilhada pode
causar a perda de prazos, o que é intolerável em sistemas de tempo
real cŕıticos.

O particionamento da memória cache compartilhada é uma
técnica bastante utilizada em sistemas de tempo real multiproces-
sados para isolar as tarefas e melhorar a previsibilidade do sistema.
Atualmente, os estudos que avaliam o particionamento da memória
cache em multiprocessadores carecem de dois pontos fundamentais.
Primeiro, o mecanismo de particionamento da cache é tipicamente im-
plementado em um ambiente simulado ou em um sistema operacional
de próposito geral. Consequentemente, o impacto das atividades rea-
lizados pelo núcleo do sistema operacional, tais como o tratamento de
interrupções e troca de contexto, no particionamento das tarefas tende
a ser negligenciado. Segundo, a avaliação é restrita a um escalonador
global ou particionado, e assim não comparando o desempenho do
particionamento da cache em diferentes estratégias de escalonamento.

Ademais, trabalhos recentes confirmaram que aspectos da im-
plementação do SO, tal como a estrutura de dados usada no escalo-
namento e os mecanismos de tratamento de interrupções, impactam
a escalonabilidade das tarefas de tempo real tanto quanto os aspec-
tos teóricos. Entretanto, tais estudos também usaram sistemas ope-
racionais de propósito geral com extensões de tempo real, que afetam
os sobrecustos de tempo de execução observados e a escalonabilidade
das tarefas de tempo real. Adicionalmente, os algoritmos de escalo-
namento tempo real para multiprocessadores atuais não consideram
cenários onde tarefas de tempo real acessam as mesmas linhas da ca-
che, o que dificulta a estimativa do pior tempo de execução.

Esta pesquisa aborda os problemas supracitados com as es-

tratégias de particionamento da cache e com os algoritmos de esca-
lonamento tempo real multiprocessados da seguinte forma. Primeiro,
uma infraestrutura de tempo real para multiprocessadores é projetada e
implementada em um sistema operacional embarcado. A infraestrutura
consiste em diversos algoritmos de escalonamento tempo real, tais como
o EDF global e particionado, e um mecanismo de particionamento da
cache usando a técnica de coloração de páginas. Segundo, é apresentada
uma comparação em termos da taxa de escalonabilidade considerando
o sobrecusto de tempo de execução da infraestrutura criada e de um
sistema operacional de propósito geral com extensões de tempo real.
Em alguns casos, o EDF global considerando o sobrecusto do sistema
operacional embarcado possui uma melhor taxa de escalonabilidade do
que o EDF particionado com o sobrecusto do sistema operacional de
propósito geral, mostrando claramente como diferentes sistemas opera-
cionais influenciam os escalonadores de tempo real cŕıticos em multi-
processadores. Terceiro, é realizada uma avaliação do impacto do par-
ticionamento da memória cache em diversos escalonadores de tempo
real multiprocessados. Os resultados desta avaliação indicam que um
sistema operacional “leve” não compromete as garantias de tempo real
e que o particionamento da cache tem diferentes comportamentos de-
pendendo do escalonador e do tamanho do conjunto de trabalho das
tarefas. Quarto, é proposto um algoritmo de particionamento de tarefas
que atribui as tarefas que compartilham partições ao mesmo processa-
dor. Os resultados mostram que essa técnica de particionamento de
tarefas reduz a disputa pelas linhas da cache compartilhadas e provê
garantias de tempo real para sistemas cŕıticos. Finalmente, é proposto
um escalonador de tempo real de duas fases para multiprocessadores.
O escalonador usa informações coletadas durante o tempo de execução
das tarefas através dos contadores de desempenho em hardware. Com
base nos valores dos contadores, o escalonador detecta quando tarefas
de melhor esforço interferem com tarefas de tempo real na cache. As-
sim é posśıvel impedir que tarefas de melhor esforço acessem as mesmas
linhas da cache que tarefas de tempo real. O resultado desta estratégia
de escalonamento é o atendimento dos prazos cŕıticos e não cŕıticos das
tarefas de tempo real.

Palavras-chave: Sistemas operacionais de tempo real, escalonamento
tempo real em multiprocessadores, particionamento de tarefas, partici-
onamento da memória cache compartilhada.

ABSTRACT

Modern multicore platforms feature multiple levels of cache me-
mory placed between the processor and main memory to hide the
latency of ordinary memory systems. The primary goal of this ca-
che hierarchy is to improve average execution time (at the cost of
predictability). The uncontrolled use of the cache hierarchy by real-
time tasks may impact the estimation of their worst-case execution
times (WCET), specially when real-time tasks access a shared cache
level, causing a contention for shared cache lines and increasing the ap-
plication execution time. This contention in the shared cache may lead
to deadline losses, which is intolerable particularly for hard real-time
(HRT) systems.

Shared cache partitioning is a well-known technique used in mul-
ticore real-time systems to isolate task workloads and to improve sys-
tem predictability. Presently, the state-of-the-art studies that evaluate
shared cache partitioning on multicore processors lack two key issues.
First, the cache partitioning mechanism is typically implemented either
in a simulated environment or in a general-purpose OS (GPOS), and
so the impact of kernel activities, such as interrupt handlers and con-
text switching, on the task partitions tend to be overlooked. Second,
the evaluation is typically restricted to either a global or partitioned
scheduler, thereby by falling to compare the performance of cache par-
titioning when tasks are scheduled by different schedulers.

Furthermore, recent works have confirmed that OS implementa-
tion aspects, such as the choice of scheduling data structures and inter-
rupt handling mechanisms, impact real-time schedulability as much as
scheduling theoretic aspects. However, these studies also used real-time
patches applied into GPOSes, which affects the run-time overhead ob-
served in these works and consequently the schedulability of real-time
tasks. Additionally, current multicore scheduling algorithms do not
consider scenarios where real-time tasks access the same cache lines
due to true or false sharing, which also impacts the WCET.

This thesis addresses these aforementioned problems with cache
partitioning techniques and multicore real-time scheduling algorithms
as following. First, a real-time multicore support is designed and imple-
mented on top of an embedded operating system designed from scratch.
This support consists of several multicore real-time scheduling algo-

rithms, such as global and partitioned EDF, and a cache partitioning
mechanism based on page coloring. Second, it is presented a compari-
son in terms of schedulability ratio considering the run-time overhead
of the implemented RTOS and a GPOS patched with real-time ex-
tensions. In some cases, Global-EDF considering the overhead of the
RTOS is superior to Partitioned-EDF considering the overhead of the
patched GPOS, which clearly shows how different OSs impact hard real-
time schedulers. Third, an evaluation of the cache partitioning impact
on partitioned, clustered, and global real-time schedulers is performed.
The results indicate that a lightweight RTOS does not impact real-time
tasks, and shared cache partitioning has different behavior depending
on the scheduler and the task’s working set size. Fourth, a task par-
titioning algorithm that assigns tasks to cores respecting their usage
of cache partitions is proposed. The results show that by simply as-
signing tasks that shared cache partitions to the same processor, it is
possible to reduce the contention for shared cache lines and to pro-
vide HRT guarantees. Finally, a two-phase multicore scheduler that
provides HRT and soft real-time (SRT) guarantees is proposed. It is
shown that by using information from hardware performance counters
at run-time, the RTOS can detect when best-effort tasks interfere with
real-time tasks in the shared cache. Then, the RTOS can prevent best-
effort tasks from interfering with real-time tasks. The results also show
that the assignment of exclusive partitions to HRT tasks together with
the two-phase multicore scheduler provides HRT and SRT guarantees,
even when best-effort tasks share partitions with real-time tasks.

Keywords: Real-time operating systems, multicore real-time schedu-
ling, task partitioning, shared cache memory partitioning.

LIST OF FIGURES

1 (a) An architecture with shared Level-2 cache. (b) An
architecture with a cluster sharing Level-2 and all cores
sharing the Level-3. 47

2 Example of a direct-mapped cache. A main memory
block can be placed in only one of the four cache lines. . . 48

3 Example of a fully-associative cache. A main memory
block are placed in any of the four cache lines. 49

4 The format of an address in a fully-associative cache or-
ganization. 49

5 An example of a 2-way set-associative cache. A main
memory block can be placed in one of the two cache
locations. 50

6 The form of an address in a n-way set-associative and
direct-mapped cache organizations. 50

7 Translation of a linear address into physical address in
the Intel 32-bits paging mode (Intel Corporation, 2011). . . . 53

8 Example of the data consistency problem in a multicore
processor (HENNESSY; PATTERSON, 2006). 54

9 MESI protocol state diagram (SONG, 2013). 59
10 MOESI protocol state diagram (SONG, 2013). 60
11 Comparison of MESIF (a) and MESI (b) protocols. ME-

SIF protocol reduces the bus traffic (QIAN; YAN, 2008). . . 62
12 Illustration of Local APIC and I/O APIC in the proces-

sor underlying the experiments in Chapters 5, 6, 7, and 8.
The Local APICs handle per-processor interrupts, such
as timer and PMU interrupts, and IPIs. External devices
generate interrupts through the I/O APIC. 66

13 Illustration of APIC Timers and TSCs in the processor
underlying the evaluations in Chapters 5, 6, 7, and 8. . . . 68

14 States of a task/process in an OS (TANENBAUM, 2007). . 71
15 (a) single-threaded and (b) multi-threaded proces-

ses (SILBERSCHATZ et al., 2008). 72
16 Writing a character to an UART device using PIO. 75
17 The handling of an interrupt by the OS (TANENBAUM,

2007). 77

18 Illustration of HRT and SRT utility functions (BURNS,
1991). (a) HRT utility function. (b) SRT utility func-
tion. There is no value in a late HRT job, whereas for a
late SRT job, the value decreases with increasing tardiness. 83

19 Overview of the three schedulability test classes. 84
20 An example of RM scheduling with two tasks. 88
21 An example of EDF scheduling with two tasks. 91
22 Example of the first-fit bin-packing heuristic. 95
23 Example of the best-fit bin-packing heuristic. 95
24 Example of the worst-fit bin-packing heuristic. 96
25 Example of the worst-fit decreasing bin-packing heuristic. 97
26 An example of the sources of overhead in an RTOS (BRAN-

DENBURG; ANDERSON, 2009). 103
27 Classification of cache partitioning approaches: (a) over-

view of the index-based partitioning. (b) overview of the
way-based partitioning. 109

28 Examples of cache locking variations: (a) overview of the
way locking. (b) overview of the cache line locking. 111

29 Physical address view from the cache (on top) and from
the OS (bottom) . 115

30 Mapping physical pages to cache locations. 115
31 Digram of the LITMUSRT main components. Adapta-

tion from (BRANDENBURG, 2011). 149
32 During the system compilation, hardware mediators are

diluted into components. (a) hardware mediators before
compilation and (b) hardware mediators after compilation.167

33 A part of the IA32 CPU hardware mediator. The cas
method is declared as inline. 168

34 ADESD methodology overview. 170
35 UML class diagram for the proposed PMU hardware me-

diator API. 172
36 Performance monitoring OS component. 174
37 Perf Mon using the hardware mediator. The hardware

mediator code is “dissolved” into the component at com-
pile time. 175

38 An example of how to use the proposed API. 176
39 API usage example: number of snoops in the L1 data

cache for the three benchmark applications. 177

40 Number of snoops in the L1 data cache for the three
benchmark applications running in Linux. 178

41 Modifying the OS scheduling. 179
42 UML class diagram of the real-time scheduling compo-

nents on EPOS: Thread, Criterion, Scheduler, and Sche-
duling list classes. 182

43 UML class diagram of the real-time scheduling compo-
nents on EPOS: criterion sub classes. 184

44 An example about the interaction among the Criterion,
Trait, and Scheduler classes. 185

45 Periodic thread code example. 186
46 UML sequence diagram of thread sleep method. 187
47 UML sequence diagram of thread wake up method. 188
48 UML sequence diagram of thread reschedule method. . . . 190
49 CPU hardware mediator UML class digram. 191
50 UML communication diagram summarizing the sources

of run-time overhead in EPOS. (a) Operations initiated
by the periodic thread sleep operation. (b) Operations
initiated by the hardware timer. 193

51 IA32 MMU hardware mediator. 195
52 UML class diagram for address space and segment com-

ponents. 196
53 IA32 MMU trait class responsible for enabling page co-

loring. 196
54 UML sequence diagram of the colored application heap

initialization. 198
55 Overload of the EPOS new operator. 199
56 Tracing overhead in LITMUSRT and EPOS. (a) Total

application execution time and (b) individual thread exe-
cution time. 206

57 Average (a) and worst-case (b) context switch overhead. . 208
58 Average (a) and worst-case (b) IPI latency. 210
59 Average (a) and worst-case (b) scheduling overhead. 212
60 Average (a) and worst-case (b) tick counting overhead. . . 213
61 Average (a) and worst-case (b) thread release overhead. . 215
62 CPMD application code. 217
63 Cache-related preemption and migration delay varying

the WSS in microseconds. Note that the y-axis uses a
logarithm scale. 218

64 Comparison between G-EDF and P-EDF with short pe-
riods (a) Uniform light (c) Uniform medium (e) Uniform
heavy (b) Bimodal light (d) Bimodal medium (f) Bimo-
dal heavy. 220

65 Comparison between G-EDF and P-EDF with moderate
periods (a) Uniform light (c) Uniform medium (e) Uni-
form heavy (b) Bimodal light (d) Bimodal medium (f)
Bimodal heavy. 221

66 Comparison between G-EDF and P-EDF with long pe-
riods (a) Uniform light (c) Uniform medium (e) Uniform
heavy (b) Bimodal light (d) Bimodal medium (f) Bimo-
dal heavy. 223

67 Weighted schedulability for short periods. 227
68 Weighted schedulability for light uniform distribution

and long periods. 228
69 Comparison between G-EDF and P-EDF using uniform

utilizations: (a), (b), and (c) light uniform. (d), (e), and
(f) medium uniform, and (g), (h), and (i) heavy uniform. 230

70 Comparison between G-EDF and P-EDF using bimodal
utilizations: (a), (b), and (c) light bimodal, (d), (e), and
(f) medium bimodal, and (g), (h), and (i) heavy bimodal. 231

71 Part of the task function source code. 239
72 (a) Obtained worst-case scaling factors (hard real-time).

(b) Obtained average scaling factors (soft real-time). 242
73 Percentage of tasks that missed their deadline when

varying the data size and using the P-EDF and G-EDF
schedulers in S1 and S3. 244

74 Total application execution time when varying the data
size and P-EDF and G-EDF with and without page co-
loring. 245

75 Overview of the proposed color-aware task partitioning
mechanism. 253

76 Example of the CAP WFD algorithm with eight tasks
and three cores. 259

77 The partition of the same task set as in Figure 76 with
the original WFD heuristic. 260

78 Part of the task function source code. 262

79 Percentage of missed deadlines of the WFD heuristic.
(a) WSS of 32KB and write ratio of 33%; (b) WSS of
32KB and write ratio of 20%. 264

80 Percentage of missed deadlines of the WFD heuristic.
(a) WSS of 64KB and write ratio of 33%; (b) WSS of
64KB and write ratio of 20%. 265

81 Percentage of missed deadlines of the WFD heuristic.
(a) WSS of 128KB and write ratio of 33%; (b) WSS of
128KB and write ratio of 20%. 267

82 Percentage of missed deadlines of the WFD heuristic.
(a) WSS of 256KB and write ratio of 33%; (b) WSS of
256KB and write ratio of 20%. 268

83 The partition of the task set in Table 15 with the CAP-
GS algorithm. 283

84 The partition of the same task set as in Figure 83 with
the original BFD heuristic. 283

85 Part of the source code of the HPC test application. 286
86 Measured number of HITM events. (a) WSS of 128 KB

(b) WSS of 512 KB. 288
87 Measured number of HIT remote events. (a) WSS of

128 KB (b) WSS of 512 KB. 289
88 Measured number of local HIT and remote MISS events.

(a) WSS of 128 KB (b) WSS of 512 KB. 290
89 Measured number of L2 cache lines in the I state. (a)

WSS of 128 KB (b) WSS of 512 KB. 291
90 Measured number of L2 cache lines in the S state. (a)

WSS of 128 KB (b) WSS of 512 KB. 293
91 UML class diagram of the Color-Aware P-RM scheduling

policy. 294
92 Traits of the Thread class. 295
93 New Traits class of Scheduler<Thread>. 296
94 Part of the source code of the Thread init method. 297
95 Example of the CA PRM criterion init method. 297
96 Taking a scheduling decision at every PMU sampling

period. 298
97 Collecting the HPCs values at every sampling period. . . . 298
98 Overview of the two-phase multicore real-time scheduler. 299
99 Part of the best-effort tasks function source code. 302

100 Percentage of missed deadlines of a WSS of 32 KB. (a)
Write ratio of 33%; (b) Write ratio of 20%. 305

101 Percentage of missed deadlines of a WSS of 64 KB. (a)
Write ratio of 33%; (b) Write ratio of 20%. 306

102 Percentage of missed deadlines of a WSS of 128 KB. (a)
Write ratio of 33%; (b) Write ratio of 20%. 307

103 Percentage of missed deadlines of a WSS of 256 KB. (a)
Write ratio of 33%; (b) Write ratio of 20%. 309

104 Average deadline tardiness. (a) Write ratio of 33%; (b)
Write ratio of 20%. 311

105 Total execution time of the test application. (a) Write
ratio of 33%; (b) Write ratio of 20%. 313

LIST OF TABLES

1 The permitted states of a given cache line for any pair
of caches in the MESI protocol (WIKIPEDIA, 2014b). 58

2 The permitted states of a given cache line for any pair
of caches in the MOESI protocol (WIKIPEDIA, 2014d). . . 60

3 The permitted states of a given cache line for any pair
of caches in the MESIF protocol (WIKIPEDIA, 2014c). . . . 61

4 Summary of notation and constraints in the periodic and
sporadic task models (BRANDENBURG, 2011). 80

5 Summary of sources of overhead and our nota-
tion (BRANDENBURG, 2011). 104

6 Comparative table of the reviewed state-of-the-art
mechanisms of index-based cache partitioning with
hardware-specific implementations. 134

7 Comparative table of the reviewed state-of-the-art me-
chanisms of index-based cache partitioning implemented
in software. 136

8 Comparative table of the reviewed state-of-the-art way-
based cache partitioning mechanisms. 137

9 Comparative table of cache locking state-of-the-art me-
chanisms. 139

10 Comparative table of OS memory allocators. 140
11 Comparative table of the features of the analyzed mul-

ticore (real-time) scheduling algorithms. 164
12 Intel i7-2600 processor features and LITMUSRT version. 203
13 Summary of the schedulability ratio comparison between

P-EDF, C-EDF and G-EDF, considering also the run-
time overhead in EPOS and LITMUSRT. 225

14 Parameters of a task set used to exemplify the CAP
WFD algorithm. 258

15 Parameters of a task set used to exemplify the CAP-GS
algorithm. 282

16 Selected hardware events for the Sandy Bridge Intel mi-
croarchitecture (i7-2600 processor). 285

17 WCET, AVG execution time, and standard deviation
(STD) of the timer handler and Thread::collect hpcs
methods. All values are in µs. 314

LIST OF ABBREVIATIONS

ADESD Application-Driven Embedded
System Design.

AIRS Advanced Interactive Real-time
Scheduler.

AOP Aspect-Oriented Programming.
API Application Programming Inter-

face.
APIC Advanced Programmable Inter-

rupt Controller.
AQuoSA Adaptive Quality of Service Ar-

chitecture.
ART Linux Advanced Real-Time Linux.
BE Best-Effort.
BFD Best-Fit Decreasing.
C-EDF Clustered-EDF.
C-RM Clustered-RM.
CA P-RM Color-Aware Partitioned-RM.
CAP-GS Color-Aware task Partitioning

with Group Splitting.
CBD Component-Based Design.
CBS Constant Bandwidth Serve.
ccNUMA cache-coherent Non-Uniform

Memory Access.
CF Compact-FIT.
CIF Cache-Index Friendly.
CPI Cycles per Retired Instruction.
CPMD Cache-related Preemption and

Migration Delay.
CPU Central Processing Unit.
CSI Cycle-Stealing Interrupts.
DI Device Interrupts.
DM Deadline Monotonic.
DMA Direct Memory Access.
EDF Earliest-Deadline First.
EDF-WMR EDF-Window-constrained Mi-

gration and Reservation.
EPOS Embedded Parallel Operating

System.
F-CBS Flexible Constant Bandwidth

Serve.
FBD Family-Based Design.
FFD First-Fit Decreasing.
FIFO First In First Out.
FP Fixed-Priority.
G-DM Global-DM.
G-EDF Global-EDF.
G-FP Global Fixed-Priority.
G-JLDP Global Job-Level Dynamic-

Priority.
G-JLFP Global Job-Level Fixed-Priority.
G-RM Global-RM.
GPOS General-Purpose Operating Sys-

tem.
HAL Hardware Abstraction Layer.
HPC Hardware Performance Counter.
I/O Input and Output.
IC Interrupt Controller.
IMA Integrated Modular Avionics.
IPI Inter-Processor Interrupts.
IRQ Interrupt Request.
ISR Interrupt Service Routine.
JLDP Job-Level Dynamic-Priority.
JLFP Job-Level Fixed-Priority.
KURT Linux Kansas University Real-Time Li-

nux.
Linux/RK Linux/Resource Kernel.
LITMUSRT LInux Testbed for MUltiproces-

sor Scheduling in Real-Time sys-
tems.

LLC Last Level Cache.
LLF Least-Laxity First.
LRU Least Recently Used.
LWFG Largest Working set size First,

Grouping.
MMU Memory Management Unit.
MRU Most Recently Used.

NMI Non-Maskable Interrupts.
OOD Object-Oriented Design.
OS Operating System.
P-EDF Partitioned-EDF.
P-FP Partitioned-FP.
P-LLF Partitioned-LLF.
PAPI Performance API.
PF Proportional Fairness.
PIO Programmable I/O.
PLRU Pseudo-LRU.
PLRUm MRU-based Pseudo-LRU.
PLRUt Tree-based Pseudo-LRU.
PMU Performance Monitoring Unit.
POSIX Portable Operating System In-

terface.
QoS Quality of Service.
RED Linux Real-Time and Embedded Li-

nux.
RM Rate Monotonic.
RTA Response Time Analysis.
RTAI Real-Time Application Inter-

face.
SMI System Management Interrupt.
SMM System Management Mode.
SMP Symmetric Multi-Processor.
SMT Symmetric Multi-Threading.
TI Timer Interrupts.
TLB Translation Lookaside Buffer.
TLSF Two-Level Segregated Fit me-

mory allocator.
TSC TimeStamp Counter.
UART Universal Asynchronous Recei-

ver/Transmitter.
UMA Uniform Memory Access.
WCET Worst-Case Execution Time.
WFD Worst-Fit Decreasing.
WSS Working Set Size.

LIST OF SYMBOLS

τ A task set
Ti The ith task
Ji,j The jth job of a task Ti
ei Execution time of a task Ti
pi Period of Ti or the minimum interval between jobs
di Relative deadline of a task Ti
ui Utilization of a task Ti
δi Density of Ti
ri,j J ′i,j release time
di,j J ′i,j absolute deadline
fi,j J ′i,j completion time
Ri,j J

′
i,j response time

Ri Maximum response time of Ti
m Number of processors in the target platform
∆cxsTime interval to switch the context between two threads
∆scdTime interval to choose a thread to run
∆rel Time interval to release all threads that have reached their release

time
∆tck Time interval to count a tick in a periodic timer interrupt
∆ipi Delay until IPI is received (IPI latency)
∆cpdDelay caused by the loss of cache affinity (CPMD)

TABLE OF CONTENTS

1 INTRODUCTION . 31
1.1 PROBLEM OVERVIEW . 32
1.2 CONTRIBUTIONS . 36
1.2.1 Design and Implementation of a Multicore RTOS 37
1.2.2 Run-Time Overhead Analysis in an RTOS 38
1.2.3 Cache Partitioning Analysis in an RTOS 39
1.2.4 Shared Cache-Aware Task Partitioning 40
1.2.5 Two Phases Multicore Real-Time Scheduler 41

1.3 DOCUMENT ORGANIZATION . 43
2 BACKGROUND . 45
2.1 PROCESSOR AND MEMORY ARCHITECTURES 45
2.1.1 Current Multicore Memory Architectures 45
2.1.2 Cache Organization and Cache Line Replacement

Algorithms . 47
2.1.3 Address Translation . 52
2.1.4 Cache Coherence Protocols . 54
2.1.5 Hardware Performance Counters 63
2.1.6 Interrupts . 64
2.1.7 Timers and Clocks . 66

2.2 OPERATING SYSTEMS . 68
2.2.1 Process Management . 69
2.2.2 Memory Management . 73
2.2.3 Input and Output Management 74

2.3 REAL-TIME TASK MODELS AND CONSTRAINTS 77
2.3.1 Hard and Soft Timing Constraints 81
2.3.2 Schedulability, Feasibility, and Sustainability 82

2.4 REAL-TIME SCHEDULING . 85
2.4.1 Uniprocessor Real-time Scheduling 87
2.4.1.1 Fixed-Priority Scheduling . 87
2.4.1.2 Job-Level Fixed-Priority Scheduling 91
2.4.1.3 Job-Level Dynamic-Priority Scheduling 92

2.4.2 Multiprocessor Real-time Scheduling 93
2.4.2.1 Partitioned Scheduling . 93
2.4.2.2 Global Scheduling . 97
2.4.2.3 Clustered Scheduling . 100

2.5 RUN-TIME OVERHEAD ANALYSIS 101
3 RELATED WORK . 105

3.1 MEMORY MANAGEMENT . 105
3.1.1 Index-based Cache Partitioning Methods 112
3.1.2 Way-based Cache Partitioning Methods 120
3.1.3 Cache Locking Methods . 123
3.1.4 OS Memory Allocators . 127
3.1.5 Cache-related Preemption and Migration Delay . . 131
3.1.6 Summary . 133

3.2 REAL-TIME OPERATING SYSTEMS 138
3.2.1 Embedded Real-Time Operating Systems 142
3.2.2 POSIX-Like Real-Time Operating Systems 143
3.2.3 General-Purpose Operating Systems with Real-

Time Extensions . 145
3.2.4 LITMUSRT . 148
3.2.5 Summary . 150

3.3 RUN-TIME PERFORMANCE MONITORING 151
3.3.1 Performance Monitoring APIs and Tools 151
3.3.2 Run-Time OS Decisions . 152
3.3.3 Summary . 155

3.4 MULTICORE REAL-TIME SCHEDULING 155
3.4.1 Scheduling Algorithms . 155
3.4.2 Run-time Overhead and Implementation Tradeoffs161
3.4.3 Summary . 162

4 REAL-TIME SUPPORT ON EPOS 165
4.1 HARDWARE MEDIATORS . 166
4.1.1 Performance Monitoring Unit . 168
4.1.2 PMU Hardware Mediator Family 171
4.1.3 Performance Monitor . 173
4.1.4 API Usage . 174
4.1.5 Applicability for Scheduling . 178
4.1.6 Guidelines for future PMU designs 179
4.1.7 Summary of the PMU support 181

4.2 SCHEDULING . 181
4.2.1 Periodic Thread Operations . 186
4.2.2 Context Switching . 189
4.2.3 Alarm and Timer Interrupt Handler 191
4.2.4 Summary of Real-Time Extensions and Overhead

Sources . 192
4.3 MEMORY MANAGEMENT . 194
4.3.1 Original Memory Management in EPOS 194

4.3.2 Page Coloring Support . 196
4.3.3 User-Centric Page Coloring . 197
4.3.4 OS-Centric Page Coloring . 199
4.3.5 Summary of Memory Management Extensions . . . 199

5 RUN-TIME OVERHEAD EVALUATION 201
5.1 EXPERIMENTS DESCRIPTION . 202
5.2 TRACING OVERHEAD. 204
5.3 CONTEXT SWITCH OVERHEAD EVALUATION 205
5.4 IPI LATENCY EVALUATION . 207
5.5 SCHEDULING OVERHEAD EVALUATION. 209
5.6 TICK COUNTING OVERHEAD EVALUATION 211
5.7 THREAD RELEASE OVERHEAD EVALUATION 214
5.8 PREEMPTION/MIGRATION DELAY EVALUATION 214
5.9 SCHEDULABILITY TESTS ANALYSIS 218
5.9.1 Run-Time Overhead . 219
5.9.2 Weighted Schedulability . 224
5.9.3 Schedulability Evaluation for 100 Processors 228

5.10 DISCUSSION . 231
6 CACHE PARTITIONING EVALUATION 237
6.1 EXPERIMENT DESCRIPTION . 237
6.2 INDIVIDUAL TASK EXECUTION TIME 240
6.3 DEADLINE MISSES . 241
6.4 TOTAL EXECUTION TIME . 243
6.5 DISCUSSION . 245

7 STATIC COLOR-AWARE TASK PARTITIONING 249
7.1 ASSUMPTIONS AND NOTATIONS . 250
7.2 COLOR-AWARE TASK PARTITIONING 252
7.2.1 Example: partitioning a task set with CAP WFD 258

7.3 EVALUATION . 260
7.3.1 Experiment Description . 260
7.3.2 Percentage of Missed Deadlines 261

7.4 DISCUSSION . 266
8 DYNAMIC COLOR-AWARE SCHEDULING AL-

GORITHM . 273
8.1 ASSUMPTIONS AND NOTATIONS . 275
8.2 ALGORITHM DESCRIPTION . 278
8.2.1 Color-Aware Task Partitioning with Group Split-

ting . 278
8.2.2 Example: partitioning a task set with CAP-GS . . 281

8.2.3 Dynamic Color-Aware Scheduling 284
8.2.3.1 Analysis of Hardware Events . 284
8.2.3.2 Design and Implementation . 292

8.3 EVALUATION . 300
8.3.1 Experiment Description . 300
8.3.2 Percentage of Missed Deadlines 303
8.3.3 Deadline Tardiness . 308
8.3.4 Total Execution Time . 310
8.3.5 Run-Time Overhead of the HPC Analysis 312

8.4 DISCUSSION . 313
9 CONCLUSION . 319
9.1 SUMMARY OF CONTRIBUTIONS . 319
9.1.1 Real-Time Support on EPOS . 320
9.1.2 Run-Time Overhead Evaluation 321
9.1.3 Cache Partitioning Evaluation 322
9.1.4 Static Color-Aware Task Partitioning 323
9.1.5 Dynamic Color-Aware Scheduling Algorithm 325

9.2 CLOSING REMARKS . 327
9.3 FUTURE DIRECTIONS . 329

REFERENCES . 331

31

1 INTRODUCTION

Real-time embedded systems are nowadays present in virtually
any environment. Areas such as automotive, avionics, telecommunica-
tion, and consumer electronics are examples where real-time embedded
systems can be vastly found. In a real-time system, the correctness of
the system depends not only on its logical behavior, but also on the
time in which the computation is performed (LIU; LAYLAND, 1973).
The main distinction is between soft real-time (SRT) and hard real-
time (HRT) systems. In both, applications are typically realized as
a collection of real-time tasks associated with timing constraints and
scheduled according to a chosen scheduling algorithm. However, in a
HRT, the loss of a deadline may cause uncountable or catastrophic da-
mage, such as human lives or a considerable amount of money. In a
SRT, instead, missing a deadline results in just a degradation of the
Quality of Service (QoS) provided by the system. Hence, in order to
provide a correct behavior and a good QoS, a fundamental requirement
for real-time embedded applications is that they must be designed to
always meet their deadlines.

At the same time, the continuous evolution of processor techno-
logy, together with its decreasing cost, has enabled multicore architec-
tures (e.g., Symmetric Multiprocessing - SMP) to be also used in the
real-time embedded system domain (CHO et al., 2006). Besides, real-
time embedded applications are demanding more processing power due
to the evolution and integration of features that can only be satisfied,
in a cost-effective way, by the use of a multicore platform. In an auto-
motive environment, for instance, new safety functionalities like “auto-
matic emergency breaking” and “night view assist” must read and fuse
data from sensors, process video streams, and rise warnings when an
obstacle is detected on the road under real-time constraints (MOHAN
et al., 2011). This is a typical scenario where an increasing demand
for advanced features results in a proportional demand for additional
computational power. Moreover, an increase in system functionality
determines additional costs in terms of power consumption, heat dis-
sipation, and size (e.g., wiring) (CULLMANN et al., 2010). Thereby,
multicore processors represent a cost-effective solution to decrease the
above-mentioned costs, since the additional computational demand can
be allocated from a single processing unit, instead of several processing
units spread over the vehicle.

32 1 INTRODUCTION

Another advantage of a multicore processor in the context of
real-time embedded systems is the development flexibility. Several em-
bedded real-time applications are implemented in hardware logic to
obtain maximum performance and fulfill all application’s requirements
(processing, real-time deadlines, energy consumption, and so on). For
instance, digital signal processing algorithms and baseband processing
in wireless communication must process big amount of data under real-
time conditions. Nevertheless, as they are usually implemented in a
dedicated hardware, these applications present restrictions in terms of
developing support (e.g., bug fixes, updating, and maintainability). In
a multicore processor, instead, the same applications can be implemen-
ted in software, with similar performance and more flexibility. In this
context, an application is implemented on top of a Real-Time Opera-
ting System (RTOS), composed of several real-time cooperating tasks
(tasks that share data).

The goal of this thesis is to provide support, at the Operating
System (OS) level, for real-time applications to safely execute on top
of multicore platforms. However, the execution of real-time tasks on
multicore platforms has several challenges, which are discussed below.

1.1 PROBLEM OVERVIEW

In general, the capability of a real-time system to meet its dea-
dline is verified through a schedulability analysis, i.e., an algorithm that
takes as input a scheduling algorithm and a collection of tasks’ parame-
ters, and returns true if the task set is guaranteed to meet all deadlines
under any possible sequence of operations compatible with the target
system specification (LIU, 2000; DAVIS; BURNS, 2011). A basic assump-
tion, which is common to all such schedulability analysis techniques,
is that an upper bound on the Worst-Case Execution Time (WCET)
of each task is known. However, deriving safe yet tight bounds on
task WCET is becoming increasingly difficult. This is especially true
for multicore architectures, because they have been designed to achieve
maximum performance and therefore feature several latency-hiding me-
chanisms on the paths to hardware resources. The memory hierarchy,
busses, and I/O peripherals in such architectures are usually bridged
to the processors using caches, FIFOs, read-ahead engines, transaction
builders, and many other complex techniques that impact the estima-

1.1 Problem Overview 33

tion of the WCET. Also, these hardware resources are shared among
the processors or cores. Therefore, operations performed by one pro-
cessing unit can result in unregulated contention at the level of any
shared resource and thus unpredictably delay the execution of a task
running on a different processor.

One of the main factors for unpredictability is the CPU ca-
che memory hierarchy (WEHMEYER; MARWEDEL, 2005; SUHENDRA;
MITRA, 2008; MURALIDHARA et al., 2010; ZHURAVLEV et al., 2010; ZHU-
RAVLEV et al., 2012). CPU caches on modern multiprocessors are typi-
cally organized in two or three levels and placed between processor and
main memory to bridge the gap on the high processor speed and low
memory performance. Usually, a smaller Level-1 (L1) cache is private
to each core, while a larger Level-2 (L2) and/or a Level-3 (L3) cache is
shared among all the cores or a cluster of cores. The last level of cache
before the main memory is usually referred as Last Level Cache (LLC).
A cache may experience a cache hit when an instruction or data to be
fetched already resides in the first level of cache or a cache miss when
the instruction or data is not in the first level of cache. In case of a
cache miss, the requested instruction or data must be brought from the
higher levels of cache or directly from the main memory, incurring in
larger execution times.

CPU caches are hardware components that are mostly transpa-
rent to the programmer and that rely on temporal and spatial locality
of memory accesses to reduce the average execution time of applicati-
ons. Thereby, they employ a set of heuristics to keep data that are more
likely to be accessed in a near future and displace old, non-referenced
entries. At a high level, the heuristic behavior of a cache means that
a memory access in the same location throughout the execution of a
task, may or may not result in a cache hit, depending on the history
of the system. In fact, the execution pattern of the task itself, of dif-
ferent tasks on the same core or even of a set of tasks on a different
core can impact the cache hit ratio of a given memory access pattern.
This means that a complex function of the system history can directly
impact the time required by a task to retrieve data from the memory
hierarchy, explaining why cache memories are one of the main sources
of unpredictability.

The contention for cache space is a complex problem, because
cache size is typically limited and real-time tasks compete over the as-
signment of cache lines throughout their executions. When real-time

34 1 INTRODUCTION

tasks executing on different cores in parallel access the same cache lines
due to true or false sharing1, the cache coherence protocol implemen-
ted in hardware invalidates the private cache’s data, causing an implicit
delay in the application’s execution time. Cache line invalidations per-
formed by the cache coherence protocol take hundreds of cycles (about
the same time as accessing the off-chip RAM) and may originate two
kinds of scaling problem (BOYD-WICKIZER et al., 2010): access serializa-
tion to the same cache line carried out by the cache coherence protocol,
which prevents parallel speedup, and saturation in the inter-core inter-
connection, also preventing parallel processing gains.

The contention for shared cache memory space causes a decrease
in the application’s throughput and may lead to deadline losses (KIM et
al., 2013; KENNA et al., 2013; GRACIOLI; FRÖHLICH, 2013). One can ar-
gue that there would be processing speedup by just turning the cache off
and using the main memory directly. Nevertheless, it is a misconception
that WCETs with caches are equal to ones without caches (LIEDTKE et
al., 1997). Moreover, it is common to find a considerable inter-thread
interaction in multithreaded applications. For example, some applica-
tions from NAS parallel and SPEC OMG benchmark suites have up to
20% of inter-thread interaction, and up to 60% of this interaction is af-
fected by cache contention (MURALIDHARA et al., 2010). Reducing the
effects of cache contention can significantly improve the application’s
overall performance and prevent deadline misses.

These problems in the cache memory hierarchy lead us to a first
research question: Can the RTOS offer a mechanism to reduce the
contention for shared cache space and provide HRT/SRT guarantees?

Several recent works have been proposed to deal with shared
caches and to provide real-time guarantees for multicore applications.
The most common and successful approach is shared cache partitio-
ning (WOLFE, 1994; LIEDTKE et al., 1997; SUHENDRA; MITRA, 2008;
KIM et al., 2013; KENNA et al., 2013; GRACIOLI; FRÖHLICH, 2013). By
assigning separate shared cache partitions to individual tasks, it is pos-
sible to isolate task workloads that interfere with one another, leading
to increased system predictability. An alternative approach is to use
cache partitioning together with a cache locking mechanism, which pre-
vents cache lines from being evicted during program execution (SUHEN-
DRA; MITRA, 2008; SARKAR et al., 2012; MANCUSO et al., 2013). The

1False sharing occurs when different tasks running on different processors modify
data that reside on the same cache lines.

1.1 Problem Overview 35

main drawback of cache locking, however, is that it requires specific
hardware support that is not present in many commercial processors.

Other recent works proposed to deal with shared cache through
real-time scheduling (CALANDRINO; ANDERSON, 2008; GUAN et al.,
2009). Tasks that may thrash the shared cache are grouped together
offline and at run-time, a scheduling policy reduces the concurrency
within groups to increase the predictability for SRT applications (CA-
LANDRINO; ANDERSON, 2008). Another proposed approach is to divide
the shared cache into partitions and schedule a task only if it gets an
idle core and enough cache partitions (GUAN et al., 2009).

The cache partitioning and cache-aware scheduling approaches
proposed so far do not consider scenarios where real-time tasks access
the same cache lines due to true or false sharing. Usually, the task mo-
del uses independent tasks, underestimating the contention for shared
cache lines. When cooperating tasks interact with each other either
by sharing data or sharing cache partitions, the cache coherence pro-
tocol invalidates shared cache lines whenever they are written, which
increases the application execution time.

In general, these recent cache partitioning studies implement and
evaluate the proposed approaches either in a simulated environment or
in a general-purpose operating system (GPOS) patched with real-time
extensions (SARKAR et al., 2012; MANCUSO et al., 2013; KENNA et al.,
2013). Despite being a good development platform, real-time Linux-
based studies suffer from the inherent non real-time behavior of Linux,
which interferes with the cache system (when handling an interrupt,
for instance) and may limit the gains obtained by cache partitioning.
Also, due to the complexity of the Linux kernel, it is complicated to
apply cache partitioning to internal OS data structures and to evaluate
the impact of kernel activities, such as interrupt handling and context
switching, which may have a considerable impact on real-time tasks.

Moreover, the cache partitioning mechanism may also impact the
performance of the scheduling algorithm. In partitioned-based schedu-
ling, tasks are assigned to individual processors and remain on each
processor until completing execution. Thus, when a preempted task
resumes its execution, part of its data may still be loaded in the same
processor’s private cache. In global-based scheduling, tasks are instead
allowed to migrate among processors during the program execution.
Consequently, there is cross-core communication initiated by the ca-
che coherence protocol, which increases the WCET. The limitations of

36 1 INTRODUCTION

the current cache partitioning approaches lead us to further questions:
Does cache partitioning impact the performance of different scheduling
algorithms? Does RTOS internal activities cause deadline misses?

Additionally, considering the RTOS point of view, implementa-
tion issues, such as scheduling data structures and interrupt handling,
impact schedulability as much as scheduling theoretic issues (BRAN-
DENBURG; ANDERSON, 2009; BASTONI et al., 2010b). All the recent
works identified in the literature that have measured the influence of
run-time overhead in SRT and HRT multicore schedulers also used a
Linux-based infrastructure to support their studies (BRANDENBURG;
ANDERSON, 2009; BASTONI et al., 2010b; LELLI et al., 2012). As stated
before, Linux-based studies suffer from the inherent non real-time beha-
vior of Linux, which affects the run-time overhead observed in these
works. This leads us to further questions: Are there significant dif-
ferences between Linux-based real-time patches and an RTOS designed
from scratch in terms of run-time overhead? Are these differences sig-
nificant for HRT applications? What is the influence of this run-time
overhead when incorporated into global and partitioned schedulability
analyses?

These open questions motivated the research behind this thesis in
the sense of investigating how an RTOS could use real-time scheduling
together with cache partitioning and other OS techniques to decrease
the contention for shared cache lines while still providing SRT/HRT
guarantees. Below, we present the contributions of this work.

1.2 CONTRIBUTIONS

In this thesis, we propose a multicore RTOS infrastructure to
support the execution of real-time and best-effort (BE) tasks that in-
terfere with each other, either by explicitly sharing data or accessing
the same cache lines (i.e., false sharing). We propose and evaluate two
different scheduling approaches that provide SRT and HRT guarantees
when real-time and/or BE tasks access the same cache lines. The first
scheduling approach relies on task and cache partitioning techniques
while the second approach combines task and cache partitioning with
scheduling decisions performed at run-time. In the following, we briefly
summarize the contributions presented in the subsequent chapters.

1.2 Contributions 37

1.2.1 Design and Implementation of a Multicore RTOS

Central to our work is that current research works of cache par-
titioning and run-time overhead analysis evaluate their contributions
using real-time patches applied to GPOSes. The main reason for that
is that there is no RTOS designed from scratch that supports global and
clustered multicore real-time schedulers. To bridge this existing gap in
the real-time system community, we design and implement a multicore
real-time infrastructure on top of the Embedded Parallel Operating
System (EPOS) (FRÖHLICH, 2001; EPOS, 2014).

The multicore infrastructure extends the EPOS uniprocessor
real-time scheduler to support global, partitioned, and clustered mul-
ticore variants of the Earliest Deadline First (EDF), Rate Monoto-
nic (RM), Deadline Monotonic (DM), and Least Laxity First (LLF)
scheduling policies. In the proposed multicore scheduling design, it is
straightforward to add any new partitioned, global, or clustered sche-
duling policies to the system.

Moreover, we present the design and implementation of an ori-
ginal cache partitioning mechanism for a component-based RTOS. The
mechanism is able to assign partitions to the OS internal data structu-
res and does not rely on any specific hardware support. Additionally,
two different approaches are supported that define from which partition
data should be allocated: the user-centric and the OS-centric approa-
ches.

Also, we propose an Application Programming Interface (API)
for monitoring hardware events specifically designed for multicore
(real-time) embedded systems. The API is designed following
the Application-Driven Embedded System Design (ADESD) con-
cepts (FRÖHLICH, 2001), and it is able to provide with OSes a simple
and lightweight interface for handling the communication between
applications and Performance Monitoring Units (PMU). Through an
API usage example, in which a hardware event is used by the OS to
scheduling decisions, we were able to identify the main drawbacks of
the current PMUs. As a consequence, we propose a set of guideli-
nes, such as the monitoring of address space intervals and OS trap
generation, that can help hardware designers to improve the PMU
capabilities in the future, from the RTOS perspective. The API is used
by a proposed multicore real-time scheduler to detect when real-time
and best-effort tasks access the same cache lines (see Section 1.2.4).

38 1 INTRODUCTION

Additionally, we show how a well-designed object-oriented
component-based RTOS allows code reuse of system components
(e.g., scheduler, thread, semaphore, etc) and easy global, clustered,
and partitioned real-time scheduling extensions. To the best of our
knowledge, EPOS is the first open-source RTOS that supports all
multicore scheduling variants (global, partitioned, and clustered) of
EDF, RM, DM, and LLF. We believe that EPOS can be used to
conduct research for multicore HRT/SRT related areas due to higher
predictability and smaller overhead compared to real-time patches for
GPOSes.

1.2.2 Run-Time Overhead Analysis in an RTOS

The design and implementation of a multicore real-time infras-
tructure in EPOS has opened several research paths. We measure the
run-time overhead in EPOS and compare it with the run-time overhead
of a GPOS patched with real-time extensions. Then, we compare the
schedulability ratio of several task sets using the partitioned, global,
and clustered real-time schedulers when they consider the RTOS run-
time overhead. In summary, we make the following contributions in
the context of run-time overhead analysis of EPOS:

• We show that the RTOS run-time overhead, when incorpora-
ted into Global-EDF (G-EDF), Clustered-EDF (C-EDF), and
Partitioned-EDF (P-EDF) schedulability tests, can provide HRT
guarantees close to the theoretical schedulability tests. Moreo-
ver, in some cases, G-EDF considering the overhead in EPOS
is superior to P-EDF considering the overhead of a GPOS pat-
ched with real-time extensions, which proves that the run-time
overhead plays an important role on the G-EDF, C-EDF, and P-
EDF schedulability analyses, because partitioned schedulers usu-
ally have smaller run-time overhead than global or clustered sche-
dulers (BASTONI et al., 2010b; GRACIOLI et al., 2013). Also, the
schedulability ratio achieved by EPOS is better than the GPOS
with real-time extensions. For instance, the schedulability ratio
for C-EDF considering the overhead of EPOS is up to 26% better
than in the patched GPOS.

• We provide a comparison in terms of task set schedulability ra-

1.2 Contributions 39

tio between P-EDF, C-EDF and G-EDF, considering also the
OS overhead, for HRT tasks. P-EDF has obtained the same or
better performance than G-EDF and C-EDF for all analyzed sce-
narios. In our experiments, P-EDF, C-EDF, and G-EDF had the
same behavior for task sets composed only of heavy tasks, mainly
because of G-EDF’s schedulability test bounds. We observed a
slight improvement in G-EDF for this heavy tasks scenario com-
pared to related work (CALANDRINO et al., 2006), due to the use
of up to date G-EDF schedulability tests (BERTOGNA; CIRINEI,
2007; BARUAH et al., 2009).

• We measure the cache-related preemption and migration delay
(CPMD) on a modern eight-core processor, with shared Level-3
cache, using hardware performance counters (HPCs). We use the
obtained values to compare P-EDF, C-EDF, and G-EDF through
the weighted schedulability metric (BASTONI et al., 2010b).

1.2.3 Cache Partitioning Analysis in an RTOS

The original cache partitioning mechanism implemented in
EPOS made possible the following contributions:

• We evaluate the performance of cache partitioning using the P-
EDF, C-EDF, and G-EDF schedulers when they have total uti-
lization close to the theoretical HRT bounds. Our evaluation is
carried out on a modern eight-core processor, with shared Level-3
cache. Our results indicate that cache partitioning has different
behavior depending on the scheduler and task’s working set size
(WSS). We also show an experimental upper-bound in terms of
HRT guarantees provided by cache partitioning in each scheduler.

• By allocating a different cache partition to the internal EPOS
data structures, we evaluate the cache interference caused by the
RTOS. We show that a lightweight RTOS, such as EPOS, does
not impact HRT tasks with separated partitions.

40 1 INTRODUCTION

1.2.4 Shared Cache-Aware Task Partitioning

The cache partitioning analysis in EPOS has shown interesting
facts. For example, we observed an increase of up to 15 times on the
observed WCET when tasks share cache partitions. The consequent
variations on the execution time of real-time tasks made them miss
up to 97% of their deadlines. Furthermore, a partitioned real-time
scheduler yields tasks sharing cache partitions a more deterministic
behavior. Partitioned scheduling for multicore real-time systems is also
preferred by many researchers because each partition (or processor)
is scheduled and analyzed using well-known uniprocessor scheduling
algorithms and schedulability tests (BASTONI et al., 2010b). Moreover,
partitioned approaches have better HRT bounds and smaller run-time
overhead than global or clustered approaches, which is proved in the
run-time overhead analysis.

Thus, to provide a more deterministic behavior when tasks share
cache partitions, we propose a task partitioning algorithm that assigns
tasks to cores according to the usage of cache memory partitions. Spe-
cifically, tasks that share one or more partitions are grouped together
and the whole group is assigned to the same core using a bin packing
heuristic, avoiding inter-core interference caused by the access to the
same cache lines. We compare our partitioning strategy with an origi-
nal bin packing heuristic (worst-fit decreasing) in a real processor and
using EPOS. Our results indicate that our task partitioning mechanism
is able to provide HRT guarantees that are not achieved by traditional
task partitioning algorithms.

In summary, the main contributions of the shared cache-aware
task partitioning are:

• We propose a Color-Aware task Partitioning (CAP) algorithm
that assigns tasks to cores respecting the usage of shared cache
memory partitions. Shared cache partitioning is performed by
the page coloring mechanism implemented in EPOS (GRACIOLI;
FRÖHLICH, 2013). We assume that each task uses a set of colors
that serves as input to CAP. Then, tasks that use the same colors
are grouped together and the entire group is assigned to the same
core using a bin packing heuristic. A restriction is that the group
utilization must not exceed the processor capacity (given by the
scheduling algorithm and deadline category – see Sections 2.3

1.2 Contributions 41

and 2.4 for details of deadline category and task partitioning,
respectively).

• We compare the CAP approach with an original bin packing heu-
ristic (worst-fit decreasing) in terms of deadline misses of several
generated task sets using the P-EDF scheduler. Our results indi-
cate that it is possible to avoid inter-core interference and deadline
misses by simply assigning tasks that access shared cache lines to
the same core.

• We evaluate the partitioned task sets by running them on a mo-
dern eight-core processor, with shared L3 cache using EPOS. The
experimental evaluation on a real machine and RTOS demonstra-
tes the effectiveness of proposed task partitioning mechanism.

1.2.5 Two Phases Multicore Real-Time Scheduler

The CAP algorithm uses a task model composed of only HRT
tasks. However, this scenario may not be true for every real-time appli-
cation. In fact, emerging real-time workloads, such as multimedia and
entertainment, and some business computing applications, have highly
heterogenous timing requirements and consist of HRT, SRT, and BE
tasks (BRANDENBURG; ANDERSON, 2007). In such applications, there
are few HRT tasks, which represent a small system utilization, and
their deadlines must be guaranteed (RAJKUMAR, 2006). Also, deadline
tardiness for SRT tasks and response times for BE jobs must be mini-
mized (BRANDENBURG; ANDERSON, 2007).

Furthermore, CAP limits the utilization of a task group (i.e.,
tasks that share colors or memory partitions) to the processor capacity
(100% when the scheduling policy is EDF, for instance). However,
the number of memory partitions in a multicore platform is limited.
Consequently, real-time and BE tasks may eventually share memory
partitions and the utilization of these tasks may be greater than the
processor capacity.

To allow the execution of a heterogenous real-time application
and deal with the drawbacks in CAP, we propose a two phases multicore
real-time scheduler. The first phase is an extension of the CAP algo-
rithm. Tasks that share memory partitions are also grouped together,
but the group utilization is allowed to be greater than the capacity gi-

42 1 INTRODUCTION

ven by the scheduling policy for each core. When a group utilization is
greater than the processor capacity, we perform a group splitting, re-
moving the task with smaller utilization from the group and trying to
partition the group again. The second phase is performed at run-time
and consists of collecting tasks’ information through the use of HPCs
to detect when BE tasks are interfering with real-time tasks.

In summary, the main contributions of the proposed two phases
multicore real-time scheduler are:

• We propose a two phases scheduling algorithm able to deal with
a heterogeneous real-time application. The system model con-
siders a real-time application composed of HRT, SRT, and BE
tasks. HRT tasks do not share memory partitions with other
HRT tasks nor with SRT or BE tasks. SRT tasks can share me-
mory partitions with other SRT tasks or BE tasks. The objective
is to have a scheduling mechanism that provides timing guaran-
tees for HRT tasks, while minimizing deadline tardiness for SRT
tasks and allowing the execution of BE tasks whenever possible.

• The first phase of the scheduling mechanism is an extension of
the CAP algorithm, named Color-Aware task Partitioning with
Group Splitting (CAP-GS). The objective of the CAP-GS is to
allow a group of tasks to have a utilization greater than the capa-
city of a processor considering a specific scheduling policy. When
this happens, the task with smaller utilization is removed from
the group and the group partitioning is performed again. This
step is repeated until the group is partitioned or when partitio-
ning fails. Thus, we keep tasks that share memory partitions in
the same processor whenever possible, minimizing the contention
for shared cache lines, while maintaing HRT deadlines, as will be
shown in Chapter 8.

• The second phase is performed at run-time. HPCs are used to
collect information of cache coherence activities initiated by the
cores. This information is then used by the scheduler to dyna-
mically prevent the execution of BE tasks that share colors with
SRT tasks. The objective is to reduce the contention for shared
cache lines at run-time and to improve deadline tardiness of SRT
tasks.

• We design and implement the dynamic phase of our scheduler in

1.3 Document Organization 43

EPOS. We show how a component-based RTOS allows a straight-
forward integration of HPCs with scheduling algorithms.

• We compare the dynamic scheduler with CAP-GS without dyna-
mic optimizations and best fit decreasing bin packing heuristic in
terms of deadline misses and tardiness of several generated task
sets using the Partitioned-RM (P-RM) scheduler. Our results
indicate that it is possible to improve deadline tardiness and to
provide HRT guarantees by combining a color-aware task parti-
tioning with dynamic scheduling optimizations.

• We evaluate the dynamic scheduler in a modern eight-core proces-
sor, with shared L3 cache using EPOS. The experimental evalua-
tion on a real machine and RTOS demonstrates the effectiveness
of our dynamic scheduler.

1.3 DOCUMENT ORGANIZATION

The remainder of this thesis is organized as follows. Chapter 2
describes the background concepts needed to follow the rest of the
document. The chapter presents the required hardware background,
relevant operating system concepts, and related real-time issues, such
as real-time scheduling algorithms and run-time overhead accounting
techniques.

Chapter 3 discusses the state-of-the-art in closely related areas.
The state-of-the-art is divided in four main topics: memory manage-
ment, real-time operating systems, run-time performance monitoring,
and multicore real-time scheduling. For each topic, we present the main
relevant works that have been proposed recently. The chapter ends with
a summary of the state-of-the-art of multicore scheduling algorithms.

Chapter 4 presents the design and implementation of the real-
time support on EPOS. The chapter starts discussing hardware medi-
ators, a method to construct device drivers efficiently. Then, it shows
the design of a performance monitoring API based on the hardware
mediator concept. The design of real-time scheduling on EPOS is sub-
sequently approached, presenting the main changes carried out by this
work to the original EPOS scheduling support. Afterwards, conside-
rations about the implemented memory partitioning mechanism are
stated, emphasizing its design.

44 1 INTRODUCTION

Chapter 5 shows the run-time overhead evaluation. We me-
asure the run-time overhead of EPOS and LITMUSRT and integrate
both overhead into the schedulability analysis of G-EDF, P-EDF, and
C-EDF. Thus, we compare the impact of the run-time overhead in
EPOS and in LITMUSRT on the schedulability of three multicore real-
time schedulers.

Chapter 6 presents the cache partitioning evaluation. From the
cache partitioning mechanism implemented and described in Chapter 4,
we evaluate the cache partitioning impact on three multicore real-time
schedulers: G-EDF, P-EDF, and C-EDF. We also evaluate the impact
of the RTOS on real-time tasks by assigning individual memory par-
titions to the OS. As consequence, we show that a lightweight RTOS
does not have a considerable impact on real-time tasks.

Chapter 7 describes a Color-Aware task Partitioning (CAP)
algorithm that assigns tasks to cores considering the usage pattern of
memory partitions. The chapter also presents an evaluation comparing
the CAP approach with a traditional task partitioning algorithm.

Chapter 8 describes a two-phase dynamic multicore real-time
scheduler. The first phase is an extension of the CAP algorithm and
it is performed offline. The second phase consists of collecting run-
time information through the use of HPCs and to prevent BE tasks to
interfere with real-time tasks in the shared cache.

Chapter 9 concludes the thesis. It reasons about the main
contributions of the thesis and identifies its limitations. Finally, the
perspectives for future works are also considered.

45

2 BACKGROUND

This chapter briefly summarizes the concepts that form the basis
for this thesis. It starts presenting the required hardware background,
following with a discussion of relevant operating system and real-time
system topics, including implementation techniques and scheduling al-
gorithms.

2.1 PROCESSOR AND MEMORY ARCHITECTURES

We begin with a discussion of multicore processors and memory
hierarchy fundamentals. Computer architecture is a wide topic and
a comprehensive review of current multicore processors and memory
hierarchy technologies is beyond the scope of this thesis. Instead, we
focus on describing the topics that affect the design and implementa-
tion of an RTOS, such as memory hierarchy in multicore processors
(Section 2.1.1), cache organization and cache line replacement poli-
cies (Section 2.1.2), address translation (Section 2.1.3), cache cohe-
rence protocols (Section 2.1.4), hardware performance counters (Sec-
tion 2.1.5), interrupt handling (Section 2.1.6), and timer management
(Section 2.1.7).

2.1.1 Current Multicore Memory Architectures

Multicore processors can be classified in three categories (DAVIS;
BURNS, 2011):

• Heterogenous
The processors or cores are different, for instance, with different
frequencies and instruction sets. Thus, the rate of execution of a
task depends on both the processor and the task.

• Homogeneous
All processors or cores are identical or symmetric (Symmetric
Multi-Processor – SMP). Hence, the rate of execution of a task
is the same for all cores.

• Uniform

46 2 BACKGROUND

The rate of execution of a task depends only on the processor
speed. For example, a processor with speed two executes a task
twice faster than a processor with speed one.

In this work, we consider homogeneous or SMP processors. In
SMP systems, each processor fetches its own instructions and ope-
rates on its own data, characterizing a Multiple Instruction Multiple
Data (MIMD) system. They feature a unique shared Uniform Memory
Access (UMA) or a cache-coherent Non-Uniform Memory Access (cc-
NUMA), easing data sharing. Two memory organizations widely used
in today’s SMP processors are presented in Figure 1. In Figure 1(a),
“n” cores have a private level 1 cache and share a larger level 2 cache
and the main memory. An example of processor that uses this archi-
tecture is the Intel Core 2 Quad Q9550. Figure 1(b) shows another
memory hierarchy with two physical dies, each one composed of two
cores. Each core has a private L1 cache, each die shares a L2 cache,
and a L3 cache and main memory are shared by all cores. Intel Xeon
L7455 with 24 cores and 6 dies is an example of this architecture. Note
that there are variations from these two architectures (e.g., Symmetric
Multithreading - SMT, L2 shared cache for all dies, etc), but the same
principle of sharing the higher levels of memory still applies.

When a core accesses data and finds it in the cache, it has a
cache hit. When a core does not find the requested data in cache, a
cache miss occurs. Due to temporal locality which tell us that we might
need the requested data again in the near future, whenever a cache
miss occurs, the requested data must be brought back from the main
memory. However, since caches are organized in lines, the processor
brings back a complete cache line1, instead of bringing back only a
word. Because of spatial locality, there is a high chance of another
word in the line be requested soon. In a cache miss, the program is
stopped until the requested data is brought from the main memory,
incurring in an execution time delay (HENNESSY; PATTERSON, 2006).
When a cache line is brought back from the main memory, it replaces
one that is in the cache. A cache line replacement algorithm chooses
which line must be replaced. The next subsection presents an overview
of the main cache line replacement algorithms and cache organizations,
which have direct impact on the performance of multicore platforms.

1The size of cache lines in current processors can vary from 64 to 128 bytes.

2.1 Processor and Memory Architectures 47

CPU

L1 Cache

Core 1

CPU

L1 Cache

Core n

....

L2 Cache

(a)

CPU

L1 Cache

Core 1

CPU

L1 Cache

Core 2

L2 Cache

CPU

L1 Cache

Core 3

CPU

L1 Cache

Core 4

L2 Cache

L3 Cache

(b)

Figure 1: (a) An architecture with shared Level-2 cache. (b) An
architecture with a cluster sharing Level-2 and all cores sharing
the Level-3.

2.1.2 Cache Organization and Cache Line Replacement
Algorithms

Ideally, all data should be available on the caches, thus impro-
ving the overall program execution time. As caches have a limited size,
the problem is to keep in the cache only the most important data for
a certain period of time. A cache line replacement algorithm is res-
ponsible for choosing which cache line is replaced when a cache miss
occurs. The cache line replacement policy depends on the cache orga-
nization (i.e., cache mapping). Before describing the main cache line
replacement algorithms, we start presenting three used cache organiza-
tions (HENNESSY; PATTERSON, 2006):

• Direct-mapped cache
In a direct-mapped cache, an address in the main memory can
only be placed in one cache line. In this cache organization there

48 2 BACKGROUND

is no cache line replacement policy, since there is no choice of
which cache line should be evicted in a cache miss (there is only
one possibility). Figure 2 shows an example of a direct-mapped
cache. A main memory block can be placed in only one of the four
cache lines. The mapping from a memory address to a cache line
is performed by the following equation: cache line = (memory
block address) modulo (number of cache lines).

Figure 2: Example of a direct-mapped cache. A main memory
block can be placed in only one of the four cache lines.

Direct mapping is simple but inefficient. If the cache size is much
smaller than the main memory, many memory addresses will map
to the same cache lines, thereby leading to conflicts.

• Fully-associative cache

Figure 3 shows an example of a fully-associative cache. Each
main memory block is placed anywhere in the cache. Thus, this
technique implies in parallel search for cache lines, thereby requi-
ring complex hardware control logic and presenting larger access
times.
Figure 4 shows the format of a memory address for a fully-
associative cache. The tag field is a unique cache line identifier
and the block offset field is the address within a cache line. A
cache line search is performed by comparing the tag field of the
line with the tag fields in all cache locations. The tag field has
also other information about the cache line, such as validity bit

2.1 Processor and Memory Architectures 49

Figure 3: Example of a fully-associative cache. A main memory
block are placed in any of the four cache lines.

(the line is valid or not), dirty bit (the line has been modified),
and coherence protocol bits (bits to keep the coherence among
caches, see Section 2.1.4).

Figure 4: The format of an address in a fully-associative cache
organization.

• N-way set-associative cache

A set-associative cache combines characteristics from both,
direct-mapped and fully-associative schemes. It is considered
a compromise between the complex hardware needed by fully-
associative caches and the simplistic mapping of direct-mapped
caches. In a set-associative cache, there is a fixed number of loca-
tions where a cache line can be placed. An n-way set-associative
cache has “n” locations for a cache line. Also, the cache consists
of a number of sets, each of which consists of “n” cache lines. A
main memory block maps to a unique set in the cache and the
cache line can be placed in any element of that set. Figure 5
shows an example of a 2-way set-associative cache.

50 2 BACKGROUND

Figure 5: An example of a 2-way set-associative cache. A main
memory block can be placed in one of the two cache locations.

The set selection is similar to the direct-mapped address trans-
lation: set = (memory address) modulo (number of sets). Since
the cache line can be placed in any element of the set, there is
the need to search all elements within a set. Figure 6 shows the
format of a memory address in a n-way set associative cache. The
block offset field is the address of the requested data within the
cache line, the index field selects the set containing the address,
and the tag field represents the cache line address.

Figure 6: The form of an address in a n-way set-associative and
direct-mapped cache organizations.

Current memory organizations use n-way set associative caches.
For example, the Intel i7-2600 processor has an 8-way set-associative
Level-1 and Level-2 caches and a 16-way set-associative Level-3 cache.
When the set of cache lines is full, the cache line replacement policy
must decide which line will be replaced for the new data that is being
brought from main memory. This algorithm is implemented in hard-
ware, since its execution time is critical for the overall system perfor-

2.1 Processor and Memory Architectures 51

mance. Furthermore, the goal is to evict the line as optimally as possi-
ble. In this context, cache line replacement algorithms are compared to
the theoretical optimal algorithm. The optimal algorithm replaces the
lines that will not be used for the longest period of time (TANENBAUM,
2007). Below, we discuss some of the main cache line replacement
policies:

• Random replacement
This policy evicts a cache line randomly. A random replacement
policy is easy to implement, but its performance is bad, because
the choice of an eviction is not based on the cache lines usage. For
data caches, random performs on average about 22% worse than
the Least Recently Used (LRU) policy (see below) (AL-ZOUBI et
al., 2004).

• Least Recently Used (LRU)
The Least Recently Used (LRU) policy uses the principle of lo-
cality and is an approximation of the optimal algorithm. The
objective is to evict the least recently used line in the hope it will
not be used soon. Consequently, the policy must keep track of
all accesses to cache lines and replace the block that has been
the least recently accessed. For large caches with a great num-
ber of ways, the use of LRU is expensive and its implementation
consumes time and power (AL-ZOUBI et al., 2004).

• First In First Out (FIFO)
The First In First Out (FIFO) heuristic evicts the cache lines in
a sequential order, replacing the oldest cache line. This policy
also takes advantage of the principle of locality, but is simpler
than the LRU. However, for data caches this policy performs on
average about 20% worse than LRU (AL-ZOUBI et al., 2004).

• Pseudo-LRU (PLRU)
The LRU policy has good performance, but requires a com-
plex hardware to keep track of block accesses. The Pseudo-LRU
(PLRU) policy is an approximation of LRU policy which uses less
computational resources. Due to this approximation, the least re-
cently accessed cache line is not always the evicted cache line (AL-
ZOUBI et al., 2004). There are several different ways to implement

52 2 BACKGROUND

PLRU. Two examples are the Most Recently Used (MRU)-based
Pseudo-LRU (PLRUm) and the Tree-based Pseudo-LRU (PL-
RUt). See (AL-ZOUBI et al., 2004) for an explanation of these
two policies. PLRUm ranges from 1% worse than to 3% better
than LRU and PLRUt is 1-5% worse than LRU (AL-ZOUBI et al.,
2004).

Current processors use one of the described policies. For
example, the TriCore 1798, several PowerPC variants (MPC603E,
MPC755, MPC7448) (GRUND; REINEKE, 2010), and Intel Pentium
II-IV (REINEKE et al., 2007) use PLRU. Intel XScale, ARM9, and
ARM11 use FIFO (REINEKE et al., 2007). Intel Pentium I and MIPS
24K/34K use LRU (REINEKE et al., 2007).

2.1.3 Address Translation

Memory management is essential to control the memory usage
by programs or applications. Virtual memory is a memory management
technique to translate virtual memory addresses used by programs to
physical addresses in the memory system. When a program access a
memory address, it is actually accessing a logical address that is map-
ped into its corresponding physical memory location. Virtual memory
was originally proposed by Fotheringham on the Atlas computer sys-
tems at the University of Manchester (FOTHERINGHAM, 1961).

The key idea behind virtual memory is to divide the address
space of a program in blocks, called pages. Each page is a series of con-
tiguous memory addresses, which are mapped into physical memory
locations. The Memory Management Unit (MMU) translates logical
addresses in a page to physical memory addresses dynamically as pro-
grams access their own pages. This mechanism is called paging and it
is available on the most systems that support virtual memory (TANEN-
BAUM, 2007).

Paging in Intel processors. An example of paging in a current
processor is shown in Figure 7. This Figure depicts the translation of a
linear address into the corresponding physical address in the Intel 32-
bit paging mode. A linear address is the output of Intel’s segmentation
mechanism (Intel Corporation, 2011). The MMU implements a two-level
paging system. These two levels are distinguished by naming the top
level page table as “page directory”. Page tables use regular memory

2.1 Processor and Memory Architectures 53

frames and, in this mode, are 4 KB large. Each page can therefore hold
1024 32-bit entries.

Figure 7: Translation of a linear address into physical address in
the Intel 32-bits paging mode (Intel Corporation, 2011).

A 32-bit linear address is split in three parts: directory with ten
bits, table with ten bits, and offset with twelve bits. Each process has
its own page directory. The page directory location in memory is given
by a special register (CR3). The directory field is used as an index in
the page directory table to locate a pointer to the correct page table.
The table field is then used as an index in the page table, retrieving
the physical page address. Finally, the offset field is used to access the
physical address within a page. The size of a page on Intel processors
can be configurable as 4 KB or 4 MB. Depending on the page size, the
linear address bits has different meanings. Figure 7 has shown paging
with pages of 4 KB.

54 2 BACKGROUND

2.1.4 Cache Coherence Protocols

To demonstrate the problem of data consistency in multicore
processors, consider the example in Figure 8 (HENNESSY; PATTERSON,
2006). In this example, three cores access a piece of data u in the main
memory. Cores 1 and 3 read the value of u (events one and two in the
Figure) and keep the current value in their private caches. After, core
3 writes the value 7 into u (event three). However, cores 1 and 2 read
the value of u after the writing (events four and five), getting the old
and wrong value of 5. Hence, the value of u is inconsistent for cores
1 and 2. For this reason, a cache coherence mechanism able to keep
data consistent after reads and writes from/to the same shared data is
required.

Figure 8: Example of the data consistency problem in a multicore
processor (HENNESSY; PATTERSON, 2006).

In this context, a shared cache memory is placed between the
private caches and the main memory. Each core has its own data and
uses its private data cache for speeding up the processing. However,
when cores share data, each copy of the data is placed in the core’s
private cache and a cache coherence protocol is responsible for kee-
ping them consistent, usually by using a bus snooping mechanism or a
directory-based mechanism. A memory system is coherent if it fulfills
two properties (HENNESSY; PATTERSON, 2006):

Write Propagation

2.1 Processor and Memory Architectures 55

A write by one core is eventually visible to other cores.

Write Serialization
Every core sees two writes to the same memory location in the
same order.

Cache coherence mechanisms. In a directory-based mecha-
nism, shared data is placed in a common directory that keeps the con-
sistency among all caches. The directory maintains a global view of
the coherence state of each cache line. It tracks which caches hold each
cache line and in what states. Whenever a core accesses a memory
location, its cache controller sends a coherence request to the directory
(i.e., a unicast message), and the directory looks up the state of the
cache line to determine what actions to take next (SORIN et al., 2011).
Directory-based protocols are used in NUMA processors. To exemplify
the actions of a directory-based protocol, consider the following sce-
nario. The cache controller of a core 1 sends a coherence request to
the directory. Then, the directory might indicate that the requested
cache line is owned by a core 2’s cache and consequently the request
should be forwarded to core 2 to obtain a copy of the cache line. When
the core 2’s cache controller receives the request, it unicasts a response
to the requesting cache controller. Multiple coherence controllers may
send coherence requests to the directory at the same time. However,
the transaction order is determined by the order in which the requests
are serialized at the directory (SORIN et al., 2011). Directory-based pro-
tocols provide greater scalability, because it requires less bandwidth, at
the cost of a level indirection, than bus snooping protocols (SORIN et
al., 2011). This is the reason why directory-based protocols are prefe-
rable for NUMA architectures, which usually feature a large number of
processors. Our focus in this thesis, however, is on UMA or ccNUMA
architectures, that implement a cache coherence protocol based on bus
snooping. Also, bus snooping is the most common cache coherence
mechanism used in current multicore processors.

In a bus snooping mechanism, each processor or cache controller
monitors the bus in order to identify changes in cached data. Bus
snooping tends to be faster than directory-based when there is enough
bandwidth in the bus. However, the main drawback of the bus snooping
mechanism is its scalability (HENNESSY; PATTERSON, 2006; SORIN et al.,
2011). In the next paragraphs, we discuss the main characteristics and
protocols based on bus snooping.

56 2 BACKGROUND

When a core writes into a memory location that other cores have
cached, the cache coherence protocol invalidates all copies, which may
cause an implicit delay in the application’s execution time. At the
same way, when a core reads a memory position that was just writ-
ten by another core, the cache coherence protocol does not return the
data until it finds the cache that has the data, annotates that cache
line to indicate that there is shared data, and recovers the data to
the reading core. These operations are performed automatically by the
hardware and take hundreds of cycles (about the same time as accessing
the off-chip RAM), increasing the application’s execution time (BOYD-
WICKIZER et al., 2010). Two kinds of scaling problem occur due to
shared memory contention (BOYD-WICKIZER et al., 2010): access seria-
lization to the same cache line done by the cache coherence protocol,
which prevents parallel speedup, and saturation of the inter-core inter-
connection, also preventing parallel processing gains.

The contention for shared memory causes a decrease in the ap-
plication’s throughput and deadline losses, in case of real-time systems
(see Section 2.3). One can argue that there would be processing spe-
edup by just turning off the cache and using the main memory direc-
tly. Nevertheless, it is a misconception that worst-case execution times
with caches are equal to ones without caches, because most program’s
WCET are much better with caches than without, even if neither data
nor instructions are accessed twice (LIEDTKE et al., 1997). Caches incre-
ase memory bandwidth significantly even in no-hit situations, because
an entire cache line is brought from cache, instead of only one word,
which favors the spatial locality principle. Moreover, inter-thread in-
teraction in multithreaded application is common. For example, some
applications from NAS parallel and SPEC OMG benchmark suites have
up to 20% of inter-thread interaction, and up to 60% of this interac-
tion is affected by cache line contention (MURALIDHARA et al., 2010).
Reducing the effects of cache line contention can significantly improve
the application’s overall performance and prevent deadline misses.

A cache coherence protocol has distinct implementations depen-
ding on the cache write policy (i.e., write-back or write-through). In
a write-back cache, writes are not immediately forwarded to the main
memory, instead the written locations are marked as dirty. Data in
these locations are written back to the memory when they are evicted
from the cache or by bus activity triggers. Thus, a read miss for a write-
back cache line requires two memory accesses: one to write replaced

2.1 Processor and Memory Architectures 57

data from cache to the store location and one to retrieve the needed
data. In a write-through cache, in contrast, all writes result in upda-
ting the local cache and in a global bus write that updates the copy in
main memory and invalidates/updates all other caches that have the
same cache line. The advantage of a write-through is that it is simple
to implement. The disadvantage, however, is that it consumes more
bus bandwidth than a write-back cache. Thus, write-back schemes are
the most used in current multicore processors. We discuss the main
bus snooping protocols for write-back caches below.

The MESI protocol is the most common bus snooping-based ca-
che coherence protocol supporting write-back caches (PAPAMARCOS;
PATEL, 1984). In the MESI protocol, every cache line has one of the
four states:

• Modified (M): the cache line is present only in the current cache
and its data is dirty. The value must be written to the memory
before a reading. The write-back changes the state to exclusive.

• Exclusive (E): the cache line is present only in the current cache
and it is clean. The state can be changed to the Shared state when
a read request from another core arrives or to the Modified state
when a write operation is performed.

• Shared (S): indicates that the cache line is shared by other ca-
ches and its state is clean.

• Invalid (I): a cache line in this state does not hold a valid copy
of data. The valid data can be in the main memory or in another
processor’s cache.

Table 1 shows the possible combination of cache line states in
any pair of caches that implement the MESI protocol. For example, if
a cache line in a processor is marked as shared (S), the same cache line
in another processor is either in I or S states.

In a cache coherence mechanism based on bus snooping, there are
two different agents that may change a cache line: the processor/core
and the bus. Two operations are performed by processors (SONG, 2013):

• p-load: to read a value from memory system.

• p-store: to write a value to memory system.

58 2 BACKGROUND

Table 1: The permitted states of a given cache line for any pair of
caches in the MESI protocol (WIKIPEDIA, 2014b).

M E S I
M X X X V
E X X X V
S X X V V
I V V V V

There are three possible operations for the shared bus (SONG,
2013):

• bus-read: to read a value from memory. For each bus-read, other
caches should respond if it has the reading memory location (i.e.,
cache line). Two forms of read responses are allowed: (i) bus-
read/s indicating that the cache has the requested cache line and
(ii) bus-read/ns indicating that the cache does not have the re-
quested cache line.

• bus-read-x/bus-write: bus reading exclusive, which has two dif-
ferent meanings: (i) to inform other caches that some memory
location will be written in a cache and (ii) to write a value to the
cache.

• flush: to write a cache line to main memory.

A processor operation may or may not generate a bus operation,
depending on the current cache line state. Figure 9 shows the MESI
protocol state diagram correlating the four states with the processor
and bus operations, which are responsible for triggering a state transi-
tion. Arrows in black denote processor operations, while arrows in grey
denote bus operations. A processor operation is followed to an arrow to
indicate when a processor operation generates a bus operation. Some
observations of the MESI protocol can be made from the state diagram:
(i) every state with p-load remains the same state except the I state;
(ii) A p-store operation leads to M state; (iii) snooping a bus-read-x
operation leads to I state; (iv) snooping a bus-read operation leads to S
state; and (v) leaving M state triggers a flush operation (SONG, 2013).

The MOESI protocol adds a fifth state to the MESI proto-
col (AMD, 2010). The Owned (O) state represents data that is both
modified and shared. This avoids the need to write modified data back

2.1 Processor and Memory Architectures 59

Figure 9: MESI protocol state diagram (SONG, 2013).

to the main memory before sharing it. Only one processor can hold a
cache line in the O state – the same cache line in other processors must
be in the S state. The processor which holds a cache line in the O state
is the only one to respond to a snoop request. When a snoop request
arrives, the cache line switches to the O state, and the duplicate copy
is made into the S state. As a result, any cache line in the O state
must be written back to memory before it can be evicted, and the S
state no longer implies that the cache line is clean, unlike the MESI
protocol. The MOESI protocol requires direct cache-to-cache transfers,
so a cache with the data in the M state can supply that data to another
reader without transferring it to memory (WIKIPEDIA, 2014d). Table 2
shows the possible combination of cache line states in any pair of caches
that use the MOESI protocol. If a processor has a cache line in S state,
the same cache line in another processor can be in I, S, or O states.
Only one processor can have a cache line in O state, the other copies
are either in S or I states.

Figure 10 shows the state transitions of the MOESI protocol.
Some observations of the MOESI protocol behavior can be made from
the state diagram: (i) snooping a bus-read operation in S state remains
the same stats; (ii) every snooping of a bus-write operation leads to I
state; (iii) snooping a bus-read operation in M state leads to O state;
(iv) a p-store operation in O state leads to a coherence communication
and a transition to M state; and (v) the flush operation is only triggered

60 2 BACKGROUND

Table 2: The permitted states of a given cache line for any pair of
caches in the MOESI protocol (WIKIPEDIA, 2014d).

M O E S I
M X X X X V
O X X X V V
E X X X X V
S X V X V V
I V V V V V

when snooping a bus-write in M state.

Figure 10: MOESI protocol state diagram (SONG, 2013).

The MESIF protocol is a cache coherence protocol developed by
Intel for ccNUMA architectures (HUM; GOODMAN, 2005; Intel Corpora-
tion, 2009). The M, E, S, and I states are the same as in the MESI
protocol. The new Forward (F) state is a specialization of S state
and is used to indicate that a cache controller should act as the appro-
priate responder for any request for the given cache line. In a system of
caches employing the MESI protocol, a cache line request is served by
all caches that hold the cache line in S state. Thus, the requestor may
receive multiple redundant responses, wasting bus bandwidth (WIKI-

2.1 Processor and Memory Architectures 61

PEDIA, 2014c). In the MESIF protocol, instead, a cache line request is
served only by the cache holding the cache line in the F state, so cohe-
rence traffic is substantially reduced when multiple copies of the data
exist. As in the MOESI, MESIF requires cache-to-cache communica-
tion capability. Because of that, cache coherence responses in MOESI
and MESIF protocols are faster than in the MESI protocol (Intel Cor-
poration, 2009).

Figure 11 demonstrates the reduced traffic messages of the ME-
SIF protocol when compared to the MESI protocol. In Figure 11(a),
core 3 sends a cache line request. Core 0 has the cache line in I state,
core 1 has the cache line in S state, and core 2 has the cache line in F
state. Thus, the response for the cache line request is only served by
core 3, because it has the cache line in F state. Figure 11(b) exemplify
the same case for the MESI protocol. Cores 1 and 2 have the cache
line in S state and respond to the cache line request from core 3, which
results in redundant responses. In both cases, core 0 does not respond,
because it has an invalid copy of the cache line.

In the MESIF protocol, a cache controller may invalidate a line
in the S or F states, thus it is possible that no cache has a copy in
the F state. In this case, a cache line request is served, less efficiently,
by the main memory. To minimize the chances of having no caches in
F state, whenever a cache controller requests a cache line, the newly
created copy is placed in the F state and the cache line previously in
the F state is put in the S state or in the I state. Thus, there is only
one copy in the F state and the remaining copies are in the S state.
Table 3 shows the possible combination of cache line states for any pair
of caches that use the MESIF protocol. If a cache line is in the F state,
other caches are in either S or I states.
Table 3: The permitted states of a given cache line for any pair of
caches in the MESIF protocol (WIKIPEDIA, 2014c).

M E S I F
M X X X V X
E X X X V X
S X X V V V
I V V V V V
F X X V V X

MESIF and MOESI protocols are usually used in ccNUMA ar-

62 2 BACKGROUND

(a)

(b)

Figure 11: Comparison of MESIF (a) and MESI (b) protocols.
MESIF protocol reduces the bus traffic (QIAN; YAN, 2008).

chitectures, such as Intel Sandy Bridge and AMD Opteron microarchi-
tectures respectively, while MESI is widely used in UMA architectures,
such as Intel dual-core and ARM Cortex MPCore (ARM, 2010).

True and false sharing. If two or more cores operate on in-
dependent data mapped into the same cache line, the cache coherence
protocol invalidates the whole line at every data write, forcing memory
stalls and wasting memory bandwidth. This phenomenon is called false
sharing. False sharing is a well-known performance issue in SMP sys-

2.1 Processor and Memory Architectures 63

tems. True sharing occurs when two or more cores operates on the
same data, which obviously is mapped into the same cache line. The
concepts of true and false sharing are used in the rest of this thesis.

2.1.5 Hardware Performance Counters

Hardware Performance Counters (HPC) are special registers
available in most of the modern microprocessors through a hardware
Performance Monitoring Unit (PMU). HPCs offer support for counting
or sampling several micro-architectural events in real time, such as
cache misses and retired instructions (SPRUNT, 2002).

However, the limited number of hardware registers available on
current processors may be a problem, mainly due to errors caused by
HPC register multiplexing (AZIMI et al., 2005). Intel processors feature
over 200 monitorable events, and multicore ARM processors are rea-
ching the count of 100. One can think that the more, the best, but
due to the increase of circuit power and complexity, event signals need
to be routed to the PMUs, making it impossible to monitor all events
simultaneously. The number of HPCs in Intel and ARM processors are
model-dependent but are, at most, 8 and 6, respectively. Besides the
reduced quantity, the use of HPCs is further restricted by hardware de-
sign when sets of events are mappable only to one HPC or some HPC
is fixed to a unique event.

Multiplexing techniques overcome the limitation in the number
of HPCs at the cost of accuracy (MAY, 2001; SPRUNT, 2002). For ins-
tance, two recent published works correlate power measurements to
HPC values empirically. Bircher and John propose abstract submodels
for CPU and peripherals (BIRCHER; JOHN, 2012), while Bertran et al.
provide detailed submodels for CPU components such as the prefetcher
and the branch prediction unit (BERTRAN et al., 2013). Nevertheless,
what is significant about these models is the fact that they use, res-
pectively, 7 and 11 distinct events. The cited papers show that the
models approximate the power of their systems with acceptable errors.
However, the experimentation scenario used in their evaluation metho-
dology is, in fact, very controlled and, perhaps, unrealistic. In more
realistic scenarios, several events would be monitored to implement not
only power models, but also schedulers (AZIMI et al., 2009; SINGH et al.,
2009) and memory partitioning (TAM et al., 2007) mechanisms, increa-

64 2 BACKGROUND

sing the multiplexing degree.
Another technique used to overcome the limitation in the num-

ber of HPCs and their complex interface (i.e., low-level and difficult to
program) is the use of specific libraries (DONGARRA et al., 2003; GRA-
CIOLI; FRÖHLICH, 2011). These libraries abstract the access to HPCs,
creating a simpler interface to configure and read HPCs, without ad-
ding expressive overhead to the application. Section 3.3 summarizes
the main HPC APIs and libraries and the related works that use HPCs
to perform dynamic optimizations.

2.1.6 Interrupts

An interrupt is a signal to the processor which is emitted by
hardware or software (also called exception or trap) to indicate the
occurrence of an event. The processor responds to an interrupt suspen-
ding the current execution flow and dispatching an Interrupt Service
Routine (ISR). The delay caused by the interrupt increases the execu-
tion time of the current task and must be accounted for in order to
determine the schedulability of a real-time system, as will be discussed
in Section 2.5.

A hardware interrupt is a signal sent by a device, such as disks,
network interface cards, and keyboards. For example, a disk controller
informs the OS when a requested data is ready to be transferred to main
memory by triggering a disk interrupt. The initiation of a hardware
interrupt is called Interrupt Request (IRQ). The number of hardware
interrupts in a processor depends on the number of IRQ lines. Usually,
processors implement a circuit, named Interrupt Controller (IC), which
connects the several device interrupts to one or a few CPU lines. Hard-
ware interrupts are asynchronous and may occur between the execution
of any instruction.

A software interrupt may be triggered by an exception in the
processor or by a special processor instruction, usually called trap. For
instance, if the CPU finds a division by zero, which is impossible, a
division-by-zero exception is generated and the operation is canceled.
Then, the appropriate ISR is called to handle the exception. Interrupt
instructions are used to invoke low-level OS services, such as device
drivers services and system calls. Each interrupt, being it a hardware
or a software interrupt, has its own ISR.

2.1 Processor and Memory Architectures 65

Interrupts can be maskable or non-maskable. Maskable inter-
rupts may be ignored by the OS by setting a bit in a special control
register (e.g., interrupt mask register). Non-maskable interrupts (NMI)
cannot be ignored. An example of an NMI device is a watchdog timer
that is used to detect and recover from system failures. The watchdog
timer restarts the computer when its counter reaches zero.

According to Brandenburg (BRANDENBURG, 2011), interrupts
are categorized into four classes: device interrupts (DI), timer inter-
rupts (TI), cycle-stealing interrupts (CSI), and inter-processor inter-
rupts (IPI). DIs are triggered by hardware devices, as discussed above.
TIs are controlled by the OS to schedule actions that need timed re-
action. For instance, TIs are used to put a task to sleep for a certain
period of time and to trigger the OS scheduler periodically. CIs are
neither controlled by hardware or software and are used to “steal” pro-
cessing time for execution of some hardware component. CIs are usu-
ally non-maskable and the OS is unaware when they occur. They are
implemented as a combination of hardware and software (“firmware”).
As a concrete example, consider the system management mode (SMM)
in the Intel architecture (Intel Corporation, 2011). When a system ma-
nagement interrupt (SMI) occurs, the processor executes a low-level
ISR to handle the interrupt. SMIs are used to provide legacy hardware
emulation, such as the emulation of a floppy disk drive. Finally, IPIs
are specific to multiprocessor systems. IPIs are used to send messages
among processors. These messages are usually related to OS synchro-
nization states and consequently are initiated by the OS. For example,
an IPI can inform a remote processor to execute a reschedule operation.

Interrupts in Intel processors. Figure 12 shows how in-
terrupts are handled by Intel processors. The evaluation of the OS
mechanisms proposed in this thesis uses an Intel processor (see Chap-
ters 5, 6, 7, and 8). Each processor has a Local Advanced Program-
mable Interrupt Controller (APIC) to manage interrupts. Local APICs
are responsible for sending and receiving IPIs to/from other processors,
to deliver DIs sent by the I/O APIC, and to handle local processor
interrupt sources, such as timer, performance counters, and thermal
sensors. I/O APIC handles external device interrupts and the distribu-
tion of such interrupts for one of the processors. I/O APIC and Local
APICs are connected by a system bus. Thus, each interrupt can be
routed by a specific processor through the use of a logical destination
ID, which is unique for each core.

66 2 BACKGROUND

Figure 12: Illustration of Local APIC and I/O APIC in the pro-
cessor underlying the experiments in Chapters 5, 6, 7, and 8. The
Local APICs handle per-processor interrupts, such as timer and
PMU interrupts, and IPIs. External devices generate interrupts
through the I/O APIC.

The Local APIC implements a priority scheme for interrupts.
There are in total 15 interrupt priorities. If a higher priority interrupt
is received while a lower priority interrupt is executing, the higher pri-
ority interrupt is immediately delivered, preempting the lower priority
interrupt. The OS can suspend local interrupt delivery and re-enable
local interrupts by calling the cli and sti instructions, respectively.

2.1.7 Timers and Clocks

Time management is crucial for the correct functioning of an
RTOS. In this section, we describe two commonly used time devices:
timer and clock.

Clock is a device that keeps track of the current time. It basically
measures the progress of physical time. Clocks count the occurrence of
a periodic event, such as the oscillation of a clock crystal. The clock
“ticks” at a given frequency and counts the number of these ticks,
since the processor startup (BRANDENBURG, 2011). Clocks are used
to determine the execution time of an operation (a task execution for

2.1 Processor and Memory Architectures 67

instance) by measuring the difference in terms of clock ticks before and
after the completion of the operation.

Timer is a configurable device that generates interrupts at every
time interval. Computer platforms have at least one hardware timer. A
timer can either increment or decrement a counter in a fixed and con-
figurable frequency. When the counter reaches a pre-configured value
(stored in a comparison register) or zero, the timer fires an interrupt
to indicate the elapsed time. Thus, a timer can also work as a clock,
counting the number of ticks. Valid hardware periods are given by
Equation 1:

D

C
≤ P ≤ D× (2r−1)

C
(1)

where D is the clock prescaler (a frequency relative to the processor
clock), C is the system’s clock frequency, P is the timer’s period, and
r is the timer’s resolution. Thus, when the desired event interval is
larger than the timer’s hardware resolution, the OS must count ticks
in software (FRÖHLICH et al., 2011). Whenever the OS programs the
timer, it should convert the desired time interval to timer ticks. Let T
be number of ticks, I the desired interval, and F the timer frequency,
then T = I

F denotes the conversion from time interval to ticks.
There are two possible timer operation modes: single-shot and

periodic. The periodic approach generates an interrupt at the hardware
timer period rate, while single-shot timers only generate one interrupt
and remain inactive until reprogrammed. The single-shot approach can
also fall back to tick counting when the desired time interval is grea-
ter than the maximum hardware period (see Equation 1). In general,
single-shot tends to cause less interference on the system (FRÖHLICH et
al., 2011).

The accuracy of a timer or clock refers to how close the repor-
ted time is to the actual physical time (BRANDENBURG, 2011). The
accuracy of a timer or clock is affected by the clock drift. Clock drift
refers to several related phenomenons where a clock does not run at
the same speed when compared to another clock. Clock drift may be a
huge problem when two different platforms with two different hardware
timers have to keep a synchronous communication. In this thesis, we
assume that the clock drift is negligible across short time intervals.

Timers and clocks in Intel processors. Figure 13 shows a
simplified version of the timers organization in the platform used in our

68 2 BACKGROUND

experiments. Each core’s local APIC has a timer that is driven by the
same bus clock signal. The APIC timer has a counter that decrements
on every 2x bus clock cycles, where x∈ {0, ...,7} (Intel Corporation, 2011;
BRANDENBURG, 2011). The OS configures x by writing into a presca-
ler register (clock divider register). Since the APIC timer is integra-
ted into the processor chip, there is a very low programming overhead
and propagation latency. The APIC timer supports both periodic and
single-shot operation modes.

Figure 13: Illustration of APIC Timers and TSCs in the processor
underlying the evaluations in Chapters 5, 6, 7, and 8.

Each processor also has a TimeStamp Counter (TSC), which
is a 64-bit register (Intel Corporation, 2011). The TSC is incremented
at each processor clock. Thus, TSC is the highest resolution clock in
the platform. For example, considering a 2 GHz processor, the TSC’s
resolution is only 0.5 ns. Since the TSC is inside the processor, the
overhead when accessing it is negligible. However, TSC can be affec-
ted by processor frequency scaling changes and TSC values may not
be comparable across processors (BRANDENBURG, 2011). In our ex-
periments, we used the TSC to count the execution time of tasks in a
scenario in which frequency scaling was disabled and the RTOS uses
the local APIC timer to deal with the notion of time.

2.2 OPERATING SYSTEMS

This section briefly discusses the main concepts involved in the
design and implementation of Operating System (OS). OS fundamen-
tals is an extensive topic. It is not our objective, however, to describe

2.2 Operating Systems 69

all topics and concepts in this section. For a complete review of all
concepts and fundamentals, please refer to specific text books (TANEN-
BAUM, 2007; SILBERSCHATZ et al., 2008).

The objective of an OS is to manage hardware resources and to
provide a simple, easy, and efficient interface to access theses resources.
In other words, the OS extends and abstracts the usage of hardware
devices. Examples of hardware resources are the processor, memory,
and input and output (I/O) devices. The next subsections describe
basic concepts regarding the management of the processor, memory,
and I/O resources by the OS.

2.2.1 Process Management

A basic concept for every OS is the process (also referred as
task). A task is basically an abstraction of a running program (TA-
NENBAUM, 2007; SILBERSCHATZ et al., 2008). For instance, a task can
be responsible for browsing a website, while another task can print a
set of files. A task contains the program code and data. In a mul-
tiprogrammed system, the CPU is switched from task to task. Each
task executes for a certain period of time, usually a couple of micro-
seconds, giving to users the notion of parallelism. This is known as
multitasking. In a multitasking OS, tasks or processes share common
processing resources, such as CPU and main memory.

In a uniprocessor system, only one task is said to be running at
any point of time. This means that the processor is actively execu-
ting the instructions of that task. The OS process scheduler chooses
which task should execute and for how long it can execute. The al-
gorithm used by the scheduler is called scheduling algorithm. The
main objectives of a scheduling algorithm are to keep the CPU busy
at all times and to delivery acceptable response times for all programs,
specially those that interact with users. The scheduler meets these
objectives by using different scheduling strategies, depending on the
application domain. For example, the round-robin scheduler gives each
task a slot or quantum (its allowance of CPU time), and interrupts a
task if it is not completed by the quantum interval. The task is resu-
med in the next time a quantum is assigned to it. Thus, round-robin
shares the CPU with all tasks fairly. A priority scheduler, in contrast,
always chooses the task with the highest priority to execute. Thus, a

70 2 BACKGROUND

task that needs quick response time can have the highest priority in the
system (TANENBAUM, 2007; SILBERSCHATZ et al., 2008). Round-robin
and priority scheduling strategies can be combined. In this case, tasks
that have the same priority are scheduled in a round-robin fashion,
sharing the CPU fairly. Scheduling is the basis to provide real-time
guarantees. We review real-time scheduling strategies in Section 2.4.

Each task has its own context, which is composed by a set of
processor registers, such as the program counter, general-purpose re-
gisters, floating-point registers, and I/O registers. When the CPU swit-
ches from a running task to another, the context of the old task must
be saved and the context of the new task must be loaded. This activity
is called context switch and it is the reason why the illusion of paral-
lelism is achieved. The context of a task/process is kept in a process
table in memory.

The address space of a task is the set of addresses that a task
can use to access the memory. Each task has its own address space.
Address spaces are managed by the OS and are used to create a pro-
tection layer among tasks (one task cannot access another’s address
space). The code and data of each task is placed on its address space.
The memory available for data is divided in data section (memory space
for global and static variables), stack (a space in memory reserved for
local variables and function return values), and heap (space in memory
reserved for dynamic memory allocation). The address space can be
formed by a collection of logical pages that are mapped into physical
memory addresses (see Section 2.1.3).

Although each task has its own program counter and set of regis-
ters (its internal context), tasks eventually need to communicate with
each other. For example, a task can generate an output that serves
as input to another task. In this case, the second task that is waiting
for the input cannot execute until the first task generates the output.
Consequently, the second task waits until its input is available. A task
is waiting, because it cannot proceed. Also, a task can be ready to
execute but the scheduler has decided to give the CPU to another task.
Figure 14 illustrates the states of a task and the transitions among the
states. A task can be in any of the three states:

• Running: a task is executing on the CPU.

• Ready: a task is ready to be executed but the CPU is busy exe-
cuting another task or even OS routines.

2.2 Operating Systems 71

• Waiting: the task is waiting for an event, probably waiting for an
I/O operation to be finished.

Figure 14: States of a task/process in an OS (TANENBAUM, 2007).

There are four transitions among the three states. The transition
one occurs when the task cannot proceed. The transition two occurs
when the scheduler decides to give the CPU to another task. This
action is called a preemption. The transition three is a scheduling
decision performed by the scheduling algorithm, because there are more
tasks ready than available processors. The fourth transition occurs
when the input of a waiting task becomes available. The OS then
changes the state of this waiting task to ready and the scheduler can
choose it to execute.

In a traditional OS, each task has a single control flow and an
address space (TANENBAUM, 2007; SILBERSCHATZ et al., 2008). Howe-
ver, there are situations in which it is desirable to have more than one
control flow within the same address space, executing “in parallel” as
they were separated processes. A thread (also referred as lightweight
process) is the definition of a control flow inside a task. It is a basic
unit of CPU utilization, consisting of a program counter, a stack, a set
of registers, current state, and a unique thread ID. Traditional tasks
have a single thread of control, which means that there is one program
counter and one sequence of instructions that can be executed. Multi-
threaded tasks, instead, have multiple threads within a single task, each
having its own program counter, stack, and set of registers, but sharing
common code, data (including the heap), and certain structures such
as open files, as illustrated by Figure 15. Consequently, the context
switch between two threads is faster than the context switch between
two tasks, because the thread context is smaller than the process con-
text.

In an OS that supports multithreading, each thread is treated
as an individual execution entity, scheduled according to the scheduling

72 2 BACKGROUND

(a)

(b)

Figure 15: (a) single-threaded and (b) multi-threaded proces-
ses (SILBERSCHATZ et al., 2008).

algorithm and its state (executing, ready, or waiting). Threads are very
useful in modern programming models, because they provide develo-
pers with a useful abstraction of concurrent execution. The advantage
of multithreading is clearer in a multiprocessor system, where several

2.2 Operating Systems 73

threads can truly execute in parallel, which makes the program to exe-
cute faster. Another advantage of multithreading, also applicable for
uniprocessor systems, is the increased responsiveness to input requests.
In a single-threaded program, for instance, if the main execution th-
read is blocked due to some reason, the entire application appears to
be frozen. By assigning different operations to different threads, it is
possible to avoid the aforementioned problem and to remain responsive
to user input while executing long-running operations or waiting for an
external event.

When more than one thread or task access a shared resource
(e.g., a variable or a hardware device), the access for a such resource
must be protected to avoid race condition. The thread code that
accesses a shared resource is called critical region. The OS must
provide means to guarantee the mutual exclusion of threads/processes
when accessing a critical region. Mutual exclusion is satisfied by the
use of semaphores, mutexes, condition variables, or monitors (TANEN-
BAUM, 2007; SILBERSCHATZ et al., 2008).

The memory required by a task or a thread is defined as working
set, and is formed by code and data (DENNING, 1968). The Working
Set Size (WSS) of a task or thread is the size of its code and data
(i.e., the set of all memory pages accessed by it).

2.2.2 Memory Management

The part of an OS that manages the memory hierarchy of a
computer is called memory manager. It is the job of the OS to
abstract the memory hierarchy into a useful model and then manage
the abstraction (TANENBAUM, 2007). The memory manager function
is to efficiently manage memory: keep track of which parts of memory
are in use, allocate memory to processes/threads when they request it,
and deallocate it when they are done (TANENBAUM, 2007). Below, we
provide a summary of the tasks of a traditional OS memory manager.

• Management of free memory: when dynamic memory allo-
cation is allowed, the OS must manage which memory blocks are
free and which are in use. The management of the available me-
mory can be performed either by a bit map technique or by a
linked list (TANENBAUM, 2007). Usually, these techniques are
implemented in a memory allocator.

74 2 BACKGROUND

• Address translation and memory protection: we reviewed
address translation in Section 2.1.3. We have seen that virtual
memory is available on computers that feature an MMU and can
have different page modes. In order to enable the translation
of logical addresses to physical addresses, the OS must configure
the MMU to work according to the desired paging mode. Also,
the OS provides memory protection by controlling the page tables
allocated to each process and their access rights. This isolates the
address spaces of each process. The main objective of memory
protection is to prevent a process from accessing memory that has
not been allocated to it. This prevents a bug in a process from
affecting another process or even the OS. When a process tries
to access another’s address space, the OS receives an exception
(i.e., bound error or segmentation fault in UNIX-like systems)
from the MMU and then it can take an action, such as killing the
process that caused the exception.

• Memory allocation/deallocation: the OS must provide me-
ans to allocate memory when threads/processes need and to de-
allocate when they do not need anymore or when they finish exe-
cuting. Usually, memory allocation/deallocation is requested via
system calls2 through specific programming language functions.
For example, the C language provides dynamic memory alloca-
tion/deallocation via a group of functions in the C standard li-
brary (malloc, realloc, calloc, and free) while dynamic memory
allocation/deallocation in C++ is performed by the new and de-
lete operators. Both malloc function and new operator may use
system calls to request memory. For instance, two system calls
responsible for managing memory in UNIX-like OSs are the the
sbrk and mmap.

2.2.3 Input and Output Management

Besides managing processes and memory hierarchy, the OS also
controls I/O devices. It aims at providing a portable and abstract
interface for the communication between running programs and I/O

2A system call is an interface between processes/threads and the OS. The system
call interface provides OS services to programs.

2.2 Operating Systems 75

devices. The part of the OS that deals with I/O devices is usually
called Hardware Abstraction Layer (HAL). HAL can be seen as
a software layer between the physical hardware and programs and it
is composed by a set of device drivers. Each device driver controls a
particular type of hardware device. Processes/threads use system calls
to communicate with hardware through the appropriate device driver.

Considering the software perspective, there are three different
ways to perform I/O operations (TANENBAUM, 2007; SILBERSCHATZ et
al., 2008):

• Programmed I/O (PIO): PIO is the simplest form of perfor-
ming I/O operations. PIO refers to data transfers initiated by the
CPU, which executes a piece of software that controls the access
to registers or memory on a device. The CPU issues a command
and waits for I/O operations to be complete. The CPU, while
waiting, must repeatedly check the status of the I/O device (also
known as polling or busy waiting). Thus, there is a degrada-
tion of the system performance, because the CPU is just waiting
for an I/O operation, instead of executing program’s code.
Figure 16 shows an example of a writing operation to an Uni-
versal Asynchronous Receiver/Transmitter (UART) device using
PIO. Usually, an UART device has a status control register which
informs whether the device is transmitting or not. This status
control register is referred as tx reg done in Figure 16. The sta-
tus control register is repeatedly check until it returns a non-zero
value (line 2). When this happens, it means that the UART de-
vice is ready to transmit another character. Then, a character
(c) is written to an output register (line 3).

1 void put(char c) {
2 while(tx reg done == 0) ;
3 //write the character c to the output register
4 }

Figure 16: Writing a character to an UART device using PIO.

• Interrupt-driven I/O: it is possible to use interrupts to over-
come the busy waiting problem in the PIO. In an interrupt-driven
I/O scheme, the CPU sends commands to the I/O device and
then proceeds its normal execution until interrupted by the I/O

76 2 BACKGROUND

device when it finishes its work. For input, the device interrupts
the CPU when new data has arrived and is ready to be retrie-
ved by the processor. The actions to retrieve the data depend
on whether the device uses independent I/O ports or memory-
mapped I/O registers. For output, hardware devices issue inter-
rupts to inform when they are ready to accept new data or to
acknowledge a successful data transfer.
Interrupt-driven I/O is more efficient than PIO, because the CPU
does not need to wait until the I/O operation is done. However,
interrupt-driven I/O is still inefficient, mainly when transferring
large amount of data, because the CPU must transfer data word
by word between the I/O device and main memory. Thus, fre-
quent interrupts must be handled, which waste CPU time. A
solution is to use a different I/O scheme: Direct Memory Ac-
cess (DMA).

• Direct Memory Access (DMA): the main idea of DMA is
to allow hardware devices to access main memory independently
of the CPU. Thus, the CPU is not responsible for handling in-
terrupts or performing PIO as in interrupt-driven I/O and PIO
mechanisms, respectively. This results in increased system per-
formance. CPU is only involved at the beginning and end of the
transfer and interrupted only after entire data has been transfer-
red to/from the hardware device.
DMA needs a special hardware called DMA controller that mana-
ges data transfers and arbitrates access to the system bus. DMA
controllers are configured by the OS with source and destination
buffer pointers (where to read/write data) and a count of the
numbers of words to transfer. Then, the CPU sends commands
to initiate transfer of data. The DMA controller increments a
counter on every word transferred from the main memory to the
device (or vice-versa) until the entire data is transferred.
DMA allows a higher degree of concurrency when compared to
the previous two I/O methods, because it leaves the CPU free to
execute other processes. However, DMA may lead to cache cohe-
rence problems (see Section 2.1.4) and concurrent accesses to the
shared bus (CPU and DMA controllers accessing main memory
at the same time). These problems complicate the hardware de-
sign. For a complete review on the I/O management, please refer

2.3 Real-Time Task Models and Constraints 77

to specific text books (TANENBAUM, 2007; SILBERSCHATZ et al.,
2008). In the following we review the activities performed by the
OS when handling an interrupt.

Interrupt handling. When a hardware device finishes its work,
it sends an interrupt to the processor through a bus (see Section 2.1.6).
This interrupt is handled by the OS. Figure 17 shows the activities per-
formed by the OS when handling an interrupt. The processor stops the
current instruction and jumps to a pre-defined OS function (step one
in Figure 17). This function (dispatch) recovers the interrupt ID, infor-
ming which hardware device has generated the interrupt. By using the
appropriate interrupt ID, the dispatcher accesses an interrupt vector ta-
ble and calls the handler function for that interrupt (step three). Right
next the conclusion of the interrupt handler execution, the processor
returns to the next instruction (step four). Note that the interrupt
handling is specific to the processor architecture and OS and may be
different from the example depicted in Figure 17.

Figure 17: The handling of an interrupt by the OS (TANENBAUM,
2007).

2.3 REAL-TIME TASK MODELS AND CONSTRAINTS

A real-time system is a system that is subject to timing cons-
traints. The behavior of the system depends not only on its logical

78 2 BACKGROUND

correctness, but also on the time in which it is performed. In a real-
time system, the unit of work that is scheduled and executed by the
system is called a job and the set of related jobs which provides some
system function is called a real-time task (LIU, 2000). Real-time tasks
are recurrent, which allows the validation of the timing constraints du-
ring the system design phase through the use of a specific real-time
task model.

Three task models are the most used in the real-time system
literature: periodic (LIU; LAYLAND, 1973), sporadic (MOK, 1983), and
aperiodic. Under the periodic task model, a task set τ is composed
of n tasks, {T1,T2, . . . ,Tn}. The n tasks are scheduled on m identical
processors or cores {P1,P2, . . . ,Pm}. A task Ti releases a job at every
pi time units. ri,j denotes the release time of the jth job of Ti, named
Ji,j . The release of a task can be performed by external events, such
as device interrupts, or by expiring timers.

Mok introduced the sporadic task model as a generalization of
the periodic task model (MOK, 1983). The period of a task (pi) in
the sporadic task model represents a lower bound on job separation,
instead of an exact time interval between jobs as in the periodic task
model. If one considers the minimum time interval between jobs as the
task’s period, the sporadic task model can be analyzed as the periodic
task model.

In the aperiodic task model, tasks do not have a period or a
minimum period interval, they can be released at any time. An ape-
riodic task has either soft deadlines (see Section 2.3.1 for an overview
of soft and hard constraints) or no deadlines (LIU, 2000). In this work
we consider the periodic task model, because it is well-studied, sim-
ple, and flexible to be implemented in any RTOS (LIU, 2000). In the
following paragraphs, we present a complete definition of the periodic
task model.

Tasks. Each task Ti has three parameters (ei, pi, di). ei re-
presents the worst-case execution time (WCET) of Ti, where ei > 0; pi
defines the period of Ti; and di defines the relative deadline of di. We
can interpret the parameters as follows: each task Ti releases a job at
pi time units, each job executes for at most ei time units and should
finish no more than di time units after its release. The parameter ei
naturally depends on the hardware platform speed. In contrast, both
pi and di are machine-independent, that is, these parameters do not
depend on the hardware platform speed (BRANDENBURG, 2011).

2.3 Real-Time Task Models and Constraints 79

Jobs. A job Ji,j is ready to be executed at its release time
ri,j , where ri,j > 0. The rate of job releases respects the task period:
ri,j+1 ≥ ri,j +pi. Each job Ji,j executes for at most ei time units and
completes at time fi,j (fi,j ≥ ri,j). Ri,j defines the Ji,j ’s response time:
Ri,j = fi,j − ri,j . Considering all jobs, Ti’s maximum response time is
Ri =maxj{ri,j}.

Deadlines. The relative deadline di of Ti defines the range
of acceptable response times. The absolute deadline di,j = ri,j + di
indicates the time a job Ji,j should complete its execution. A job is
tardy if it completes later than the absolute deadline: fi,j > di,j . If a
job is tardy, it means that it has missed a deadline.

Tasks can be categorized by their relative deadlines:

• Implicit deadlines: a set of tasks τ has implicit deadlines if
di = pi for every task Ti ∈ τ .

• Constrained deadlines: a set of tasks τ has constrained dea-
dlines if di ≤ pi for each Ti ∈ τ .

• Arbitrary deadlines: if a task set has neither implicit or cons-
trained deadlines, it is said to have arbitrary deadlines.

The type of deadline category has large impact on the schedu-
lability analysis, as will be demonstrated in Section 2.3.2. From the
RTOS implementation point of view, implicit, constrained, and arbi-
trary deadlines are equivalent (BRANDENBURG, 2011).

Utilization. The relation ei
pi

defines the utilization of a task Ti,
called ui. ui is equal to the fraction of time a periodic task with period
pi and WCET ei keeps a processor busy (LIU, 2000). Constrained-
deadline tasks have a different rate constraint. Since di < pi, if Ji,j
is to meet its deadline, the Ji,j ’s rate of execution is defined by its
density δi, which is the task Ti’s utilization normalized by its relative
deadline. If di ≥ pi, the Ti’s rate of execution is less constrained by its
relative deadline than its period. Thus, density is formally define as
δi = ei

min(di,pi) , which ensures that δi is always greater or equal than ui.
System utilization and density. The concepts of task uti-

lization and density are useful in the schedulability analysis and are
applied to the whole task set. The total utilization and density of a
task set τ are defined as:

80 2 BACKGROUND

usum(τ) ,
∑
Ti∈τ

ui and
δsum(τ) ,

∑
Ti∈τ

δi.

We also let

umax(τ) , max
Ti∈τ
{ui} and umin(τ) , min

Ti∈τ
{ui}

denote the maximum and the minimum utilizations of tasks in τ , res-
pectively. We also define δmax(τ) and δmin(τ) as the maximum and
minimum density in τ and emax(τ) and emin(τ) as the maximum and
minimum WCET in τ , respectively.

Table 4 summarizes the notation and constraints for the perio-
dic and sporadic task models defined in this section and used in the
following chapters of this thesis.
Table 4: Summary of notation and constraints in the periodic and
sporadic task models (BRANDENBURG, 2011).

Notation Description Def/Constraint
τ A task set. τ = {T1, . . . ,Tn}
Ti The ith task. 1≤ i≤ n
Ji,j The jth job of a task Ti j > 1
ei Execution time of a task Ti ei > 0
pi The period of Ti. pi ≥ ei

Minimum interval between jobs.
di Relative deadline of a task Ti di ≥ ei
ui Utilization of a task Ti ui = ei/pi
δi Density of Ti δi = ei/min(di,pi)
ri,j J ′i,j release time ri,j ≥ ri,j−1 +pi
di,j J ′i,j absolute deadline di,j = ri,j +di
fi,j J ′i,j completion time fi,j ≥ ri,j
Ri,j J ′i,j response time Ri,j = fi,j− ri,j
Ri Maximum response time of Ti Ri =maxj{Ri,j}
m Number of processors

2.3 Real-Time Task Models and Constraints 81

2.3.1 Hard and Soft Timing Constraints

As stated before, a real-time system should respect timing cons-
traints to have a correct behavior. More specifically, each job should
complete by its absolute deadline. We consider two types of temporal
correctness: soft real-time (SRT) deadlines and hard real-time (HRT)
deadlines.

A HRT system is considered correct if and only if no job misses its
absolute deadlines. This is equivalent to affirm that the Ti’s maximum
response time is less than or equal to its deadline: Ri≤ di. The response
time of a job depends on the RTOS scheduling algorithm, the use of
shared resources, and the release sequence of higher priority jobs. Thus,
we define a HRT system with respect to a given scheduling algorithm
as follows (BRANDENBURG, 2011).

Definition 2.3.1 A task set τ is HRT schedulable under a scheduling
algorithm A if and only if, for each Ti ∈ τ , Ti’s maximum response time
respects Ri ≤ di (when scheduled by A in a given hardware platform).

The loss of a deadline in HRT systems is intolerable and may
cause uncountable or catastrophic damage (i.e., loss of human lives and
money). System designers use schedulability tests (see Section 2.4) to
prove that a given task set is HRT schedulable under a specific real-time
scheduling algorithm.

However, for different types of real-time systems, the loss of
“some” deadlines is tolerable. The consequence of a deadline miss is the
degradation of the QoS provided by the real-time system. In this con-
text, a task can miss a maximum number of deadlines. In other words,
the tardiness of a job is bounded (SRINIVASAN et al., 2003; LEONTYEV;
ANDERSON, 2008; CALANDRINO; ANDERSON, 2008).

Definition 2.3.2 A task set τ is SRT schedulable under a scheduling
algorithm A if and only if, there is a constant B such that Ri ≤ di+B
for each Ti ∈ τ (when scheduled by A in a given hardware platform).

Note that Definition 2.3.2 generalizes the HRT definition. If a
system is HRT schedulable, the constant B is zero. Moreover, the
term SRT tends to be applied to any system that is not classified as
HRT (BRANDENBURG, 2011) and has a vast literature, as the utility
function definition below.

82 2 BACKGROUND

Utility function. As tasks in a SRT system have bounded-
tardiness, we need to identify the magnitude of the tardiness of a job
into the quality of the service. Jensen et al. propose the use of time
utility functions to map the response time of a job to a utility va-
lue (JENSEN et al., 1985). The utility value means the contribution
of an event has to the system’s objectives (BURNS, 1991). Figure 18
shows two examples of utility functions. Figure 18(a) presents the uti-
lity value for a HRT system. The computational event is zero before
the start time and returns to zero after the deadline. The mapping
of time to utility value is application-dependent and is constant in the
Figure (BURNS, 1991). Figure 18(b) shows the utility function for a
SRT system. The utility function decreases as the task’s response time
increases.

2.3.2 Schedulability, Feasibility, and Sustainability

Before presenting real-time scheduling policies, we next define
the main concepts related to temporal correctness, such as feasibility,
schedulability tests, sustainability, and common assumptions to subse-
quent scheduling policies.

The criterion used to evaluate the performance of a HRT or SRT
scheduling algorithm is its ability to find feasible schedules of a given
task set whenever such schedules exists (LIU, 2000). Feasibility and
optimality are two definition used in terms of schedulability of a task
set.

Definition 2.3.3 A task set τ is SRT or HRT feasible if there exists
a scheduling algorithm A such that τ is SRT or HRT schedulable under
A.

Definition 2.3.4 A scheduling algorithm A is SRT or HRT optimal
if using A always produces a feasible schedule if the given task set τ has
feasible schedules.

Feasibility and optimality are considered according to some class
of schedulers or platforms, such as “an optimal uniprocessor scheduler”
or “feasible on a two-processor platform” (BRANDENBURG, 2011). A
simple and straightforward feasibility test is the total utilization of
a task set. The total utilization of a task set cannot exceed the total

2.3 Real-Time Task Models and Constraints 83

(a)

(b)

Figure 18: Illustration of HRT and SRT utility functions (BURNS,
1991). (a) HRT utility function. (b) SRT utility function. There is
no value in a late HRT job, whereas for a late SRT job, the value
decreases with increasing tardiness.

number of processors (usum≤m, where m is the number of processors).
If a task set demands more processor than the target platform provides,
obviously it cannot be schedulable.

Schedulability and sustainability. The objective of a sche-
dulability test for a scheduling algorithm A is to validate that a given
task set is HRT or SRT schedulable under A during the design phase.
The schedulability test must be safe, which means that it may not
wrongly claim task sets schedulable, but it may be pessimistic, which

84 2 BACKGROUND

means that it may state that a task set is not schedulable when the
task set is in fact schedulable (BRANDENBURG, 2011).

A schedulability test can be classified into one of three different
classes, as demonstrated by Figure 19. A sufficient test checks sufficient
conditions for schedule. A sufficient test may state that a given task set
is not schedule even though it is. A necessary test checks the necessary
conditions for schedule. A necessary test is usually used to show no
schedule exists. There may be cases in which no schedule exists and
we cannot prove it (MARWEDEL, 2006). An exact schedulability test
is both necessary and sufficient, which means that an exact test never
returns a wrong answer. Exact tests are difficult to obtain and are
NP-hard in many situations (MARWEDEL, 2006).

Figure 19: Overview of the three schedulability test classes.

Another concept related to schedulability is sustainability (BA-
RUAH; BURNS, 2006):

Definition 2.3.5 A schedulability test for a scheduling algorithm A is
sustainable if any system deemed schedulable by the schedulability test
of A remains schedulable when the parameters of one or more job(s)
change in any, some, or all of the following ways: (i) reduced execution
time ei; (ii) larger period pi; and (iii) larger relative deadline di.

The definition of sustainability requires that the schedulability
of a task set under a scheduling algorithm A be preserved in situations
in which it should be “easier” to ensure schedulability, that is, the utili-
zation or density of any task is temporarily reduced (BARUAH; BURNS,
2006). If we consider the run-time perspective, this definition is very

2.4 Real-time Scheduling 85

important, because tasks usually do not always execute by its WCET
ei, for instance. A schedulability test is self-sustainable if every task
in a task set τ that passed in the schedulability test still passes in the
same schedulability test after a reduction in density or utilization of
any task in τ (BAKER; BARUAH, 2009).

Common assumptions. The next section presents some sche-
duling algorithms and their schedulability tests. These scheduling al-
gorithms use a number of common assumptions. To avoid repeating all
these assumptions for each schedulability tests, we define the common
assumptions below (BRANDENBURG, 2011).

• Task are independent: tasks do not share any kind of resources
besides the processor(s).

• Jobs do not self-suspend: jobs are always ready to execute
when allocated to a processor by the scheduler.

• Jobs are preemptive: at any time, the scheduler may replace
the executing job by a higher priority job.

• Jobs respects their periods: jobs release are separated by
their period pi.

• Run-time overhead is negligible: the RTOS run-time
overhead, such as the time to switch the context among jobs and
scheduling decisions (see Section 2.5), is negligible.

These assumptions somehow simplify the scheduling problem.
The run-time overhead, for instance, always exists in practice. As will
be detailed in Section 2.5, there are techniques used to incorporate the
run-time overhead into the schedulability analysis. We first describe
the scheduling algorithms and their respective schedulability tests using
these ideal assumptions in the next section.

2.4 REAL-TIME SCHEDULING

We review in this section the main uniprocessor and multipro-
cessor real-time scheduling algorithms. This review is important to
provide a concise background for the presentation of our real-time im-
plementation in EPOS in Chapter 4 and the proposed real-time sche-
dulers in Chapters 7 and 8. We focus our discussion on presenting the

86 2 BACKGROUND

algorithms, examples, and their schedulability tests, and omit proofs
which can be found in the cited works.

A real-time scheduler can be either static or dynamic. Static
schedulers, also known as off-line, table-driven, or cyclic executive sche-
dulers, make use of a pre-computed schedule of all jobs (LIU, 2000).
This schedule is computed off-line, during the system design phase, and
is based on the knowledge of the release and execution times of all jobs
for all times. Static schedulers are easy to implement and validate, as it
provides a deterministic behavior, because the pre-computed schedule
table. This makes static schedulers an ideal choice for safety-critical
systems (BRANDENBURG, 2011). A disadvantage of off-line scheduler is
inflexibility, mainly when release and execution times of tasks vary (LIU,
2000). Dynamic or on-line schedulers, in contrast, make each schedu-
ling decision at run-time, without any knowledge about the jobs that
will be released in the future. The parameters of each job become
available when jobs are released. Then, the scheduler uses these para-
meters to perform a scheduling decision. On-line scheduling is the only
option in a system whose the future workload is unpredictable (LIU,
2000). With an on-line scheduler, it is possible to deal with dynamic
variations in resources availability. The main drawback, however, is the
reduced possibility to achieve optimal scheduling decisions (LIU, 2000).

Scheduling algorithms can also be classified into two catego-
ries: time-driven and priority-driven. In time-driven (also called clock-
driven or quantum-driven) schedulers, scheduling decisions are perfor-
med at specific time instants. These instants are chosen a priori before
the system starts execution (LIU, 2000). The cyclic executive real-time
scheduler is an example of a time-driven scheduler.

Priority-driven scheduling algorithms never leave the processor
idle intentionally (LIU, 2000). Scheduling decisions are made when
events, such as job releases and completions, occur. Thus, priority-
driven scheduling can also be called as event-driven (LIU, 2000). Whe-
never a job is released, it is placed in one or more scheduling queues
ordered by the priorities of the jobs. At a scheduling decision, the jobs
with highest priorities are chosen to be scheduled on the available pro-
cessors. If a higher priority job preempts a lower priority job, we say
that the scheduler has performed a reschedule operation. In this thesis,
we consider priority-driven dynamic schedulers.

A scheduling policy is responsible for assigning priorities to jobs.
As defined by Brandenburg (BRANDENBURG, 2011), we let Y (Ji, t) de-

2.4 Real-time Scheduling 87

note the priority of Ji at time t. Priorities are unique and there exists
a total order such that Y (Jx, t)<Y (Jy, t) if and only if Jx has a higher
priority than Jy at time t. Based on the prioritization function Y ,
the real-time literature defines three classes of priority-based schedu-
lers (BRANDENBURG, 2011):

• Fixed-priority (FP): in a fixed-priority (FP) scheduler, all jobs
of a task have a constant and common priority. Priorities are
assigned to tasks and all jobs are scheduled according to their
tasks’ priorities. Formally, Y (Ji,x, tx) = Y (Ji,y, ty) for any two
jobs Ji,x and Ji,y and any two times tx ∈ [ri,x,fi,x] and ty ∈
[ri,y,fi,y] (BRANDENBURG, 2011).

• Job-Level Fixed-Priority (JLFP): in a job-level fixed-priority
(JLFP) scheduler, fixed priorities are assigned to jobs, instead of
tasks. Thus, jobs of a same task can have different priorities. For-
mally, Y (Ji,x, t1) = Y (Ji,y, t2) for any two times t1, t2 ∈ [ri,x,fi,x].

• Job-Level Dynamic-Priority (JLDP): the most general class
of priority-based schedulers is the job-level dynamic-priority
(JLDP). In JLDP schedulers, a job’s priority may change at any
time.

The next subsection presents the main uniprocessor real-time
scheduling algorithms for each priority class, showing examples and
schedulability tests whenever possible to ease readability.

2.4.1 Uniprocessor Real-time Scheduling

The first work on uniprocessor real-time scheduling was propo-
sed by Liu and Layland (LIU; LAYLAND, 1973). The authors have in-
troduced optimal FP and JLFP scheduling policies, as well as their
schedulability tests, for periodic task model.

2.4.1.1 Fixed-Priority Scheduling

In FP scheduling, priorities have a decreasing order: the highest
priority task has the lowest priority number. Moreover, as tasks pri-
orities are fixed, the priority function can then simply defined as

88 2 BACKGROUND

Y (Ji, t) = i (BRANDENBURG, 2011). Liu and Layland proposed the
rate monotonic (RM) priority assignment policy (LIU; LAYLAND, 1973).
RM assigns priorities to tasks according to their periods: the shorter
the period, the higher the priority (LIU, 2000). The rate of job releases
is inverse of its period. Thus, the higher a job’s rate, the higher its
priority.

Figure 20 shows an example of the RM scheduling with three
tasks. T1 has e1 of 2 time units and p1 of 10 time units. T2 has e2
of 5 time units and p2 of 15 time units. T3 has e3 of 10 time units
and p3 of 25 time units. Tasks have implicit-deadlines (di = pi). The
total utilization is 0.93 and the system has one processor. Using the
RM policy, T1 is the higher priority task, because it has the shortest
period. All tasks are released at the time 0. T1 start executing until
it finishes its execution time at the time 2. The same happens with
T2 from time 2 to 7 and with T3 from time 7 to 10. At the time 10, a
new T1’s job arrives, which preempts T3. T3 is resumed at the time 12,
after T1 execution, and executes for more 3 time units. At time 15, a
new T2’s job arrives and preempts T3. The same happens at the time
20. At the time 22, T3 resumes and executes for more 3 time units. At
this point, there is no enough time left for T3 and it misses a deadline
(see the arrow in Figure).

Figure 20: An example of RM scheduling with two tasks.

Liu and Layland proved that the RM scheduling is optimal with
respect to FP schedulers, which means that if a task set is schedulable
under some FP scheduler, this same task set will be also schedulable
under RM scheduling (LIU; LAYLAND, 1973). The authors also proposed
the following schedulability test.

Theorem 2.4.1 (LIU; LAYLAND, 1973). A task set τ composed of n

2.4 Real-time Scheduling 89

tasks with implicit deadlines is schedulable under RM scheduling policy
if usum ≤ n(21/n−1).

Note that when n tends to a large number (n→∞), the upper
bound n(21/n− 1) converges to ln 2 ≈ 0.69. Thus, up to 30% of the
processor capacity remains unused to ensure HRT schedulability under
a FP scheduling. However, the RM schedulability bound improves
when all pairs of periods in a task set are in harmonic relation. When
this happens, the maximum utilization of the RM is 100% (BUTTAZZO,
2005).

Another well-known fixed-priority scheduling algorithm is the
deadline monotonic (DM) algorithm (LEUNG; WHITEHEAD, 1982; LIU,
2000). DM assigns priorities to tasks according to their relative dea-
dlines: the shorter the relative deadline, the higher the priority. The
RM priority assignment policy is not optimal for non-implicit deadlines.
Instead, Leung and Whitehead proved that DM priority assignment is
optimal for constrained-deadline task sets (LEUNG; WHITEHEAD, 1982).
DM can be seen as a generalization of the RM scheduling. A simple
schedulability test for DM is obtained by replacing the usum by δsum
in Theorem 2.4.1 (BRANDENBURG, 2011).

The schedulability test presented by Theorem 2.4.1 is a suffi-
cient test. An exact schedulability test for constrained-deadline task
sets under FP scheduling was proposed by Joseph and Pandya (JO-
SEPH; PANDYA, 1986). The exact schedulability test calculates the ma-
ximum response time Rmaxi for each task Ti explicitly. Giving the ma-
ximum response time, HRT schedulability is guaranteed by checking
Ri ≤ Rmaxi ≤ di. This method is also called Response Time Analy-
sis (RTA) and is defined below.

Theorem 2.4.2 (JOSEPH; PANDYA, 1986). Given a task set τ , with
n tasks ordered by decreasing priority. The task set is schedulable by a
fixed-priority scheduling algorithm if and only if the maximum response
time Rmaxi of each task Ti is less than or equal to its relative deadline
(Rmaxi ≤ di). Let hp(i) be the set of tasks with higher priority than the
task Ti. The Rmaxi is calculated iteratively using the following formula:

R
max(0)
i = ei

R
max(k)
i = ei+

∑
j∈hp(i)

⌈
R
max(k−1)
i

dj

⌉
×ej

90 2 BACKGROUND

The maximum response time Rmaxi of a task Ti is the smallest
value of Rmax(k)

i such that Rmax(k)
i = R

max(k−1)
i . For the RM sche-

duling policy, the RTA test is performed by replacing the term dj by
pj , since the deadline model is implicit.

RTA example. As an example of the RTA test, consider the
task set with three tasks used in the early RM example (Figure 20).
The higher priority task is T1. Hence, T1 maximum response time is
equal to its WCET: Rmax1 = 2. To calculate the maximum response
time for the task T2, we need the following iterations:

R
max(0)
2 = e2 = 5

R
max(1)
2 = e2 +

⌈
R

max(0)
2
p1

⌉
×e1 = 5 +

⌈ 5
10
⌉
×2 = 7

R
max(2)
2 = 5 +

⌈ 7
10
⌉
×2 = 7

The convergence is met in the third iteration, when R
max(2)
2 =

R
max(1)
2 . For the task T3, we need to perform the following iterations:

R
max(0)
3 = e3 = 10

R
max(1)
3 = e3 +

⌈
R

max(0)
3
p1

⌉
×e1 +

⌈
R

max(0)
3
p2

⌉
×e2 =

10 +
⌈10

10
⌉
×2 +

⌈10
15
⌉
×5 = 17

R
max(2)
3 = 10 +

⌈17
10
⌉
×2 +

⌈17
15
⌉
×5 = 24

R
max(3)
3 = 10 +

⌈24
10
⌉
×2 +

⌈24
15
⌉
×5 = 26

R
max(4)
3 = 10 +

⌈26
10
⌉
×2 +

⌈26
15
⌉
×5 = 26

As the maximum response time of T3 (26) is greater than its dea-
dline (25), T3 and consequently the task set is not schedulable. Baruah
and Burns showed that RTA is sustainable and well-suited to determi-
ning schedulability of practical systems (BARUAH; BURNS, 2006). Two

2.4 Real-time Scheduling 91

similar tests that may converge more quickly were later proposed by
Lehoczky et al. (LEHOCZKY et al., 1989) and Audsley et al. (AUDSLEY
et al., 1991).

2.4.1.2 Job-Level Fixed-Priority Scheduling

The most important JLFP scheduling algorithm is the Earliest-
Deadline First (EDF) (LIU; LAYLAND, 1973). In EDF, jobs are or-
dered by their absolute deadlines: the earliest the absolute deadline,
the higher the priority. Formally, a job Ji,j ’s priority can be denoted
as Y (Ji,j , t) = (di,j , i), where (di,j,i) < (dx,y,x)⇔ di,j < dx,y ∨ (di,j =
dx,y ∧ i < x) (BRANDENBURG, 2011). Note that this definition consi-
ders several jobs with the same absolute deadline. In practice, multiple
jobs can have their absolute deadlines at the same point in time. Thus,
the definition prioritizes the job with the lowest index to tie-break the
priority.

Figure 21 shows an example of the EDF scheduling with the same
three tasks used in the previous examples. The total utilization of the
task set is 0.93. In comparison with the RM scheduling in Figure 20,
at the time 15, the job of the task T3 is not preempted by the new
releasing job of T2, because T3 has an earliest absolute deadline. Thus,
T3 is able to complete its execution before its deadline at the time 25,
and no job misses any deadline.

Figure 21: An example of EDF scheduling with two tasks.

Liu and Layland proved that EDF is an optimal scheduler for
uniprocessor systems. Any feasible arbitrary-deadline task set is HRT
schedulable under EDF (LIU; LAYLAND, 1973).

92 2 BACKGROUND

Theorem 2.4.3 (LIU; LAYLAND, 1973). A task set with periodic and
implicit-deadline tasks is HRT schedulable under EDF on a uniproces-
sor system if and only if usum ≤ 1.

For task sets with arbitrary-deadlines, EDF HRT schedulabi-
lity test becomes more complex. A simple, but inexact HRT test for
arbitrary-deadlines is replace usum by δsum in Theorem 2.4.3: δsum≤ 1.
This test is very pessimistic for constrained-deadline task sets (BRAN-
DENBURG, 2011). For constrained-deadline task sets, other tests were
proposed (BARUAH et al., 1990; ALBERS; SLOMKA, 2005). However,
these tests are pseudo-polynomial and expensive in terms of computa-
tion (BRANDENBURG, 2011). Other inexact tests which yield slightly
more pessimistic results, but are more efficient in terms of computation,
were also proposed (DEVI, 2003; MASRUR et al., 2008).

2.4.1.3 Job-Level Dynamic-Priority Scheduling

The most important JLDP scheduling algorithm is the Least-
Laxity First (LLF). LLF assigns jobs priorities according to the slack
time of each job. The smallest the slack time, the higher the priority.
The slack time (si) of a job Ji,j is the difference between the relative
deadline (di), the current time (t), and the remaining computation time
(ei’) (LIU, 2000):

si = (di− t)−e′i

The LLF algorithm has two version: strict and non-strict. In
the strict version, the slacks of jobs are continuously monitored by the
scheduler and priorities are reassigned to jobs whenever their slacks
relations change. Hence, the strict version has a heavy overhead due
to the recalculation of slacks at any time by the scheduler. Because of
that, the strict version is unattractive and not used in practice. In the
non-strict version, the computation of the slacks is performed only at
release and completion times of jobs. Thus, the non-strict version acts
as a JLFP scheduling, changing the job’s priority dynamically but not
reassigning the job’s priority later. The HRT schedulability test for
implicit-deadline and periodic task sets in the non-strict LLF version
is the same as in EDF: usum ≤ 1.

2.4 Real-time Scheduling 93

2.4.2 Multiprocessor Real-time Scheduling

This section summarizes the main real-time scheduling algo-
rithms for shared-memory multiprocessors. Basically, there are two
alternatives to perform scheduling in a multiprocessor: (i) tasks are
assigned to available processors using a single, shared ready queue; and
(ii) the available processors are subdivided into smaller set of proces-
sors. The former approach is called global scheduling and the latter
approach is called partitioned or clustered scheduling. We begin the
discussion of multiprocessor real-time scheduling presenting the parti-
tioned scheduling in Section 2.4.2.1. Then, we discuss global scheduling
in Section 2.4.2.2 and clustered scheduling in Section 2.4.2.3.

2.4.2.1 Partitioned Scheduling

Dhall and Liu were the first authors to study partitioned sche-
duling in the context of a real-time system (DHALL; LIU, 1978). Parti-
tioned scheduling is the most preferable scheduling approach for multi-
processor real-time systems due to that each partition (or processor) is
scheduled and analyzed using well-known uniprocessor scheduling algo-
rithms and schedulability tests (BRANDENBURG, 2011). Hence, all the
FP, JLFP, and JFDP scheduling algorithms reviewed in the previously
section can be used in a partitioned multiprocessor approach.

In practice, each partition or processor could use a different sche-
duler. For instance, in a multiprocessor systems with four processor,
two of them could use the EDF policy while the other two could use the
RM policy. However, in this thesis, we only consider a unique schedu-
ling policy for all processors. We consider the Partitioned-FP (P-FP)
(e.g., P-RM or P-DM), Partitioned-EDF (P-EDF), and Partitioned-
LLF (P-LLF). Moreover, we are not aware of any research work that
uses different scheduling policies on different processors.

Given a multiprocessor platform with m processor or cores, the
problem is to reduce the multiprocessor scheduling into a set of m
simpler uniprocessor schedulers. This problem is known as task par-
titioning, that is, each task must be statically assigned to a specific
partition or processor and task migrations are not allowed. The parti-
tioning problem is equivalent to the bin-packing problem.

Bin-packing problem. The bin packing problem is a NP-hard

94 2 BACKGROUND

problem in the strong sense (GAREY; JOHNSON, 1990), and so is task
partitioning. This means that partitioning/bin packing heuristics can
produce a solution that is not optimal. The bin packing problem is
formally defined as follows. Given a set of n objects, o1,o2, . . . ,on, with
different sizes, s1,s2, . . . ,sn, and a finite number of bins B, each of
capacity V . The goal is to assign each object to a bin in a way that
minimizes the number of bins, without exceeding the capacity of any
bin. A solution is optimal if it has a minimal B.

Considering the partitioned scheduling, the objects are tasks and
their respective sizes are their utilizations. Processors correspond to
bins and their capacity depends on the scheduling policy and the type
of deadline constraint. For instance, if a task set has implicit-deadlines
and is scheduled by the EDF policy, each processor has a capacity of 1.0
(100% of utilization as shown by Theorem 2.4.3). Consequently, a task
set is deemed feasible on m processors under partitioned scheduling if
and only if there is a “packing” of all tasks into m “bins” (BRANDEN-
BURG, 2011).

The literature of bin packing heuristics is extensive and beyond
the scope of this thesis. Instead of reviewing all existing heuristics,
we present below the most relevant heuristics used by the real-time
community.

• First-fit: this heuristic considers each bin in index order. It pla-
ces an object in the first bin that has capacity to fit the object.
If no bin exists, the object is placed in a new empty bin that is
appended to the packing. The first-fit heuristic achieves an appro-
ximation factor of 2 – the required numbers of bins is not more
than twice the optimal number of bins (JOHNSON, 1973). The
time complexity of the first-fit heuristic is O(n log n) (JOHNSON,
1973).

Figure 22 shows an example of the first-fit heuristic with four
bins, each of size 1.0, and seven tasks (their utilizations are also
shown in the right side of the Figure). The heuristic assigns T1
and T5 to processor or bin 0, T2, T6, and T7 to processor 1, T3 to
processor 2, and T4 to processor 3.

• Best-fit: the best-fit heuristic considers all bins and places an
object into the bin that will have minimal remaining capacity
after placing the object. If no bin can accommodate an object,

2.4 Real-time Scheduling 95

Figure 22: Example of the first-fit bin-packing heuristic.

a new bin is created for the object. The time complexity of the
best-fit heuristic is also O(n log n) (BASU, 2005).
Figure 23 shows an example of the best-fit heuristic, also with four
bins, each of size 1.0, and the same seven tasks as in the early
first-fit example. Tasks T1 and T5 are assigned to processor 0.
Task T2 is assigned to processor 1. Tasks T3 and T7 are assigned
to processor 2 and tasks T4 and T6 are assigned to processor 3.

Figure 23: Example of the best-fit bin-packing heuristic.

• Worst-fit: the worst-fit heuristic is the opposite of the best-fit
heuristic. The worst-fit places an object into the bin that will
leave the most space left after placing the object. If the object
does not fit in any bin, a new bin is created. In other words, the
worst-fit places an object into the most empty bin. This heuristic
is interesting, because it tends to spread the empty space over
the used bins. If one wants to pack the bins with approximately
the same size, this heuristic is the most suitable.
Moreover, in a practical point of view, spreading the tasks into
the available processors makes each processor more resilient to
transient overloads and makes each processor to have some re-
maining “idle” capacity, which is required to deal with the RTOS
run-time overhead (see Section 2.5) (BRANDENBURG, 2011).
Figure 24 shows an example of the worst-fit heuristic using the
same bins and tasks as in the early best-fit and first-fit examples.

96 2 BACKGROUND

Task T1 is assigned to processor 0. Tasks T2, T5, and T7 are
assigned to processor 1. T3 is assigned to processor 2, and T4 and
T6 are assigned to processor 3.

Figure 24: Example of the worst-fit bin-packing heuristic.

Generally, it is more difficult to pack large objects, as smaller ob-
jects are more likely to fit into the remaining capacity of partially used
bins (GAREY; JOHNSON, 1990; BASU, 2005; BRANDENBURG, 2011).
Thus, sorting the objects in a decreasing order by sizes improves the
performance of the first-fit, best-fit, and worst-fit heuristics. The sorted
version of the three heuristics are called First-Fit Decreasing (FFD),
Best-Fit Decreasing (BFD), and Worst-Fit Decreasing (WFD), respec-
tively. For a large number of bins, FFD and BFD require at most
1.22 times the number of bins used by an optimal solution, and for a
number of bin smaller than four, it requires no more than 1.5 times
the number of bins used by an optimal solution (JOHNSON, 1973). The
WFD heuristic uses at most 1.25 times the number of bins used by an
optimal solution (JOHNSON, 1973). In the experiments carried out in
this thesis, we consider the three heuristics: FFD, BFD, and WFD.

As an example, Figure 25 shows the same task set, used in the
previously examples, partitioned by the WFD heuristic. The tasks
are first ordered by decreasing order of utilizations. Then, each task is
partitioned using the worst-fit heuristic. As a result, task T1 is assigned
to processor 0, tasks T3 and T7 are assigned to processor 1, tasks T4
and T5 are assigned to processor 2, and tasks T2 and T6 are assigned
to processor 3. Note that all processors have similar total utilizations
(usum ≈ 0.8).

As we stated before, in task partitioning, the number of bins
is equivalent to the number of processors. Hence, the number of bins
is fixed. If a partitioning heuristic attempts to create a new bin, we
assume that the heuristic fails to partition the task set. In other words,
the task set is not feasible for that number of processors and scheduling
policy.

2.4 Real-time Scheduling 97

Figure 25: Example of the worst-fit decreasing bin-packing heuris-
tic.

Limitations. While finding an optimal task assignment is in-
tractable in the general case, the discussed bin packing heuristics find
near-optimal solutions and are used in several real-time works due to its
simplicity and relative good performance (BRANDENBURG et al., 2008;
BASTONI et al., 2010b; GRACIOLI et al., 2013; GRACIOLI; FRÖHLICH,
2013; BARUAH, 2013). Theoretically, a task set that has total uti-
lization smaller than the number of processors could be partitioned.
However, there are cases (task sets with heavy tasks3) that a task set
cannot be partitioned, even though the task set utilization does not
exceed the number of processor. For example, consider the scheduling
of five tasks with the same utilization of 0.51 on four processors. There
is no partitioning algorithm able to allocate these five tasks into four
processors.

2.4.2.2 Global Scheduling

In a global priority-driven scheduling, the m (or less than m)
highest priority jobs are scheduled at any time on the m processors.
When a job Ji is released at the time t, it preempts the mth highest
priority job Jm if Y (Ji, t) < Y (Jm, t) (BRANDENBURG, 2011). Conse-
quently, a job can be preempted due to the release of a higher priority
job and can be later resumed on another processor, resulting in a job
migration. Migrations and preemptions cause delay with relation to the
cache affinity, since a preempting job may evict the preempted task’s
cached data. In a global scheduling, there is only a single, shared re-
ady queue (or another data structure, as heap or tree for instance),
from which the scheduler chooses ready jobs to be scheduled based on
available processors, scheduling policy, and jobs’ priorities. The global

3A task that has an utilization higher than 0.5 is considered a heavy task.

98 2 BACKGROUND

scheduling does not require to solve a task partitioning problem, which
is the source of capacity loss under partitioned scheduling (BRANDEN-
BURG, 2011). Thus, there exist optimal SRT and HRT global schedulers
for implicit-deadline task sets, but no optimal global scheduler exists
for constrained- and arbitrary-deadline task sets (FISHER et al., 2010).
For example, the Global-EDF (G-EDF) algorithm is optimal for SRT
systems and the PF (BARUAH et al., 1996) is optimal with regard to
HRT constraints. In this section we discuss global fixed-priority (G-FP),
global job-level fixed-priority (G-JLFP), and global job-level dynamic-
priority (G-JLDP) scheduling.

Global FP scheduling. The G-FP scheduling uses a FP sche-
duling policy, such as RM and DM, to schedule tasks on the available m
processors. Examples of G-FP schedulers are the Global-RM (G-RM)
and Global-DM (G-DM). Dhall and Liu demonstrated that the RM
policy is not optimal for G-FP scheduling (DHALL; LIU, 1978). This
demonstration was called the Dhall effect. The Dhall effect shows that
a task set τ with n tasks, n >m, is not HRT schedulable even though
usum(τ)→ 1. Devi showed that the RM priority assignment policy does
not necessarily ensure tardiness bounded under G-FP scheduling (DEVI,
2006). Davis and Burns stated that no provably optimal priority as-
signment or exact feasibility test is known for the G-FP scheduling
of sporadic tasks (DAVIS; BURNS, 2011). However, there are response-
time tests that give an upper bound on response times of tasks (DAVIS;
BURNS, 2011).

We do not use G-FP in this thesis. Global scheduling is more
adequate for SRT systems. In this context, G-EDF received more atten-
tion in the recent years, because it can ensure tardiness bound (DEVI;
ANDERSON, 2005; DEVI, 2006). Thus, we focus on the G-EDF schedu-
ling instead of G-FP scheduling.

Global JLFP scheduling. In the context of HRT systems,
G-JLFP scheduling is not better than G-FP scheduling, because the
Dhall effect also applies to the G-EDF scheduler (DHALL; LIU, 1978).
Moreover, there is no optimal G-JLFP scheduler and no exact HRT
feasibility test for G-JLFP. As in the uniprocessor JLFP scheduling,
G-EDF is also the most studied G-JLFP scheduler. There are several
HRT schedulability tests for the G-EDF scheduling which provide HRT
bounds:

• Density tests: density tests use the total density (δsum) to
derive the HRT bounds (GOOSSENS et al., 2003; BERTOGNA et al.,

2.4 Real-time Scheduling 99

2005; BAKER; BARUAH, 2007):

δsum(τ)≤m− (m−1)× δmax(τ).

• Baker’s test: the Baker’s test (BAKER, 2003) is consider the
seminal work on HRT schedulability analysis, serving as basis for
several published schedulability tests (DAVIS; BURNS, 2011).

• Multiprocessor RTA: using the Baker’s test approach, seve-
ral works proposed multiprocessor RTAs (BERTOGNA et al., 2005;
BERTOGNA; CIRINEI, 2007). These multiprocessor RTAs are less
pessimistic than the original Baker’s test.

• Baruah’s test: Baruah proposed a schedulability test based
on the Baker’s test for constrained- and implicit-deadline task
sets (BARUAH, 2007; BARUAH et al., 2009). Baruah’s test extends
the concept of problem window proposed by Baker and improves
the multiprocessor RTA tests.

• Load-based tests: these tests consider the maximum-load of a
task set to derive a safe HRT bound (BAKER; BARUAH, 2009).
Load-based tests provide a more-accurate notion of the processor
demand for constrained-deadline task sets and reduces the density
test for implicit-deadline task sets.

For a comprehensive review on G-EDF schedulability tests see
Davis and Burns and Bertogna and Baruah’s recent surveys (DAVIS;
BURNS, 2011; BERTOGNA; BARUAH, 2011) and Baker’s analysis on EDF
schedulability on multiprocessors (BAKER, 2005a).

Global JLDP scheduling. Changing a job’s priority dynami-
cally is a requirement to achieve optimality in global scheduling (BA-
RUAH et al., 1996). In this context, Baruah proposed proportionate
fairness or simply pfair scheduling and designed the first optimal
HRT global multiprocessor scheduler for implicit-deadline task sets,
named (PF) (BARUAH et al., 1996). PF is optimal, because it ensures
that all deadlines are met, since the total task set utilization does not
exceed the number of processors. PF is different from the traditio-
nal scheduling algorithm, because it explicitly requires that tasks make
progress in a constant rate. In the classic periodic task model, each

100 2 BACKGROUND

task has a progress rate given by relation of its WCET and period.
Due to this progress rate notion, in PF each task executes in a uniform
rate. Each task is divided in a set of sub-tasks, with the same execution
time in each sub-task. The main idea is to break the task in smaller
and uniform scheduling units, making the assigning of tasks to multiple
processors easier than in the traditional periodic task model.

Other G-JLDP scheduling algorithm, although not optimal, is
the G-LLF. As in the uniprocessor LLF, there are the strict and non-
strict versions of the LLF. In this thesis, whenever we use G-LLF we
refer to the strict version of the LLF.

2.4.2.3 Clustered Scheduling

A clustered priority-driven scheduler splits the m processors into
dmc e disjoint sets or clusters of c processors each (CALANDRINO et al.,
2007; BAKER; BARUAH, 2007). For example, a cluster can be compo-
sed of a group of processors that share a specific level of cache. For
convenience, we assume that m is an integer multiple of c. As in the
partitioned scheduling, tasks are assigned to available clusters using a
partitioning heuristic and globally scheduled within each cluster (al-
lowing migrations among the cores of the same cluster). Partitioned
and global schedulers are special cases of clustered schedulers: when
clusters have size one, they are equivalent to a partitioned scheduler,
while when they have size m, they are equivalent to a global scheduler.
The clustered version of EDF and RM are the Clustered-EDF (C-EDF)
and Clustered-RM (C-RM), respectively. In this thesis, we consider the
C-EDF, although the RTOS infrastructure proposed in Chapter 4 sup-
ports any clustered scheduler variation.

There is no specific schedulability tests for clustered schedulers.
The schedulability test for clustered schedulers involves the partitio-
ned and global tests. A task set under clustered scheduling is deemed
schedulable if and only if it could be partitioned by a task partitioning
algorithm and each partition passed in a global schedulability test.

2.5 Run-time Overhead Analysis 101

2.5 RUN-TIME OVERHEAD ANALYSIS

In this section we summarize the main sources of run-time
overhead and provide an overview of main RTOS implementation
strategies.

There are two basic ways to implement a scheduler in an OS:
using event-driven scheduling or quantum-based scheduling (LIU, 2000).
In the former, the OS performs every scheduling decision after an event,
such as a job release or job completion. In the latter, the OS performs
every scheduling decision at a timer interrupt. The hardware timer
period (a tick) defines the interval of two successive timer interrupts.
However, the quantum-driven scheduling can have precision problems.
For instance, in a system that generates a timer interrupt every 10 ms, a
15 ms task period interval may have to wait for 20 ms to be released. On
the other hand, a periodic timer can be very precise if every interrupt
coincides with a job releasing (FRÖHLICH et al., 2011).

In addition, the data structure responsible for ordering the tasks
in the scheduler also plays an important role on the performance. The
use of a list or heap as ready queue affects the time to insert and remove
tasks, and consequently impacts the real-time scheduling performance.

The design of timer interrupts in the system is also relevant. In a
multicore processor, a single core can handle timer interrupts or timer
interrupts can be distributed across all cores (each core handles its own
timer interrupts). Moreover, each timer interrupt can be periodic, ba-
sed on tick counting, or single-shot, incurring in different interferences
on the system.

Additionally, the processor architecture is also a source of
overhead for real-time applications. For example, the way that the
DRAM controller handles concurrent accesses, the implementation of
bus arbiters, and different cache replacement algorithms significantly
impact the execution time of an application. Although important,
processor architecture overhead is difficult to be controlled by the OS
and will not be discussed in this thesis.

In summary, the main sources of overhead in an RTOS are:

• Context switching: the process of storing and restoring CPU
context of the running task and the next schedulable task. Its
time is largely dependent on the CPU (e.g., registers, stack, etc)
and OS.

102 2 BACKGROUND

• Tick counting: it is the delay spent to handle a timer interrupt
and count a tick, in case of periodic timer, or to reprogram the
timer, in case of single-shot timer.

• Task releasing: it is the delay required to release a task after a
timer interrupt.

• Scheduling: it is the delay taken to choose a new task to be
ran. Scheduling overhead includes operations such as inserting
and removing tasks from the run queue and changing the state of
a task, from ready to waiting for example.

• Inter-process interrupt latency: an inter-process interrupt
(IPI) is necessary when a job is released on one core and must
be executed on another core, because it has the lowest priority
running task. An IPI is issued to call a reschedule operation on
another core. In our platform (Intel i7 processor, see Table 12)
for example, the WCET of an IPI is 0.3 µs (see Section 5.4).

• Preemption and migration delay: the Cache-related Pre-
emption and Migration Delay (CPMD) is the delay caused by
a preemption that incurs a loss of cache affinity after resuming
the preempted job (BASTONI et al., 2010a). Predicting CPMD
on processors with complex shared caches hierarchy is a difficult
problem. Related works commonly use empirical approximations
and/or static analyses (WILHELM et al., 2008; YAN; ZHANG, 2008;
HARDY; PUAUT, 2009; BASTONI et al., 2010a). This delay is highly
dependent on the WSS of a task.

Each job incurs a scheduling and context switch overhead twice,
a releasing overhead once, and a preemption/migration delay at most
once (LIU, 2000; BRANDENBURG; ANDERSON, 2009). Figure 26 shows
an example of the main sources of overhead in an RTOS. The OS
releases task 1 (T1) during the execution of task 2 (T2) in the processor
1 (P1). Task 3 (T3) has a lower priority than T2, which implies in an
IPI to schedule T1 in P2. P1 resumes T3 after the execution of T2.
Note that there is no releasing overhead, because is the same job of T3.
The figure does not show the tick counting overhead, which occurs at
every timer interrupt handler.

The overhead introduced by interrupts (e.g., tick and IPI) must
also be considered in schedulability analyses. There are at least four

2.5 Run-time Overhead Analysis 103

Figure 26: An example of the sources of overhead in an
RTOS (BRANDENBURG; ANDERSON, 2009).

techniques to incorporate this overhead into schedulability analyses:
quantum-centric accounting, task-centric accounting, preemption-
centric accounting, and processor-centric-accounting (BRANDENBURG
et al., 2011; BRANDENBURG, 2011). In the quantum-centric method,
each task’s WCET is inflated to ensure the completion given a lower
bound on the effective quantum length. In the task-centric method,
interrupts extend each job’s actual execution time and its WCET is
inflated accordingly. In the processor-centric accounting, task parame-
ters remain unchanged and interrupts reduce the processing capacity
available to tasks. The preemption-centric approach modifies the
task-centric interrupt accounting to be less pessimistic regarding the
number of preemptions. The processor-centric method is difficult to
integrate in EDF analyses and pessimistic with heavy tasks (BRAN-
DENBURG, 2011). Usually, IPI latency is treated as self-suspension
(i.e., jitter since it happens at the beginning of the job’s period).
However, G-EDF HRT schedulability tests cannot take self-suspension
into account (BRANDENBURG, 2011). Thus, IPI latency is accounted
for in G-EDF as an extra computation time by inflating the WCET.
Hence, we use the preemption-centric interrupt accounting method in
this thesis.

The preemption-centric interrupt accounting for EDF-based
schedulers transforms each Ti parameters to account for all sources of
run-time overhead, including interrupts (see Table 5) (BRANDENBURG,
2011). Let Q be the period of a timer interrupt, each ei is inflated as

104 2 BACKGROUND

Table 5: Summary of sources of overhead and our notation (BRAN-
DENBURG, 2011).

Notation Overhead Description
∆cxs Time interval to switch the context between two threads
∆scd Time interval to choose a thread to run
∆rel Time interval to release all threads that have reached

their release time
∆tck Time interval to count a tick in a periodic timer inter-

rupt
∆ipi Delay until IPI is received (IPI latency)
∆cpd Delay caused by the loss of cache affinity (CPMD)

follows4:

e
′
i = ei+ 2× (∆scd+ ∆cxs) + ∆cpd

1−utck0
+ 2× cpre+ ∆ipi (2)

Where utck0 = ∆tck+∆rel

Q and cpre as defined by the following
Equation:

cpre = ∆tck+ ∆rel

1−utck0
(3)

We assume that on every timer interrupt (Q time units), there
is the overhead of counting a tick and releasing all threads that have
reached their release time at the same interrupt.

4We consider the original parameters ∆ev (delay until an interrupt service rou-
tine starts) and ∆cid (loss of cache affinity due to an interrupt service routine) as
negligible.

105

3 RELATED WORK

This chapter presents previous work on the fields related to this
thesis. We organize the related work in four main topics: (i) memory
management; (ii) real-time operating systems; (iii) run-time perfor-
mance monitoring; and (iv) multicore real-time scheduling. For each of
these topics, we provide a classification of the published research works.

The chapter is organized as follows: Section 3.1 presents the rela-
ted work on memory management mechanisms for (multicore) real-time
systems. Section 3.2 presents the main real-time operating systems
that offer support for multicore processors. Section 3.3 summarizes the
works that use HPCs to improve the predictability and performance of
a multicore system. Finally, Section 3.4 presents the recent advances
on the real-time multicore scheduling area.

3.1 MEMORY MANAGEMENT

The current cache memory hierarchy is one of the main factors
of unpredictability in a multicore processor1. The execution time of a
real-time task in a multicore processor can be affected by a number of
different types of interference, depending on the behavior of the cache
hierarchy:

• Intra-task interference: intra-task interference occurs when
tasks have working set sizes larger than a specific cache level,
or, in general, when two memory entries in the working set are
mapped in the same cache set. The consequence in this case is
that a task evicts its own cache lines. Intra-task interference also
happens in single-core systems.

• Intra-core interference: intra-core interference happens lo-
cally in a core. Specifically, when a running task evicts a pre-
empted task’s cached data. As a result, the preempted task will
experience an increase in its memory access time (and thus a de-

1The contents of this section appear in a preliminary version in the following
submitted paper:
G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni, A Survey
on Cache Management Mechanisms for Predictable (hard) Real-Time Embedded
Systems, to be submitted to the ACM Computing Surveys, 2014.

106 3 RELATED WORK

lay) as soon as it is rescheduled. The severity of the experienced
delay depends on the particular cache line replacement policy im-
plemented by the cache, as well as the length of the preemption
and the memory access pattern of the preempting task (REINEKE
et al., 2007; GRUND; REINEKE, 2010; KIM et al., 2013).

• Inter-core interference: inter-core interference is present when
tasks running on different cores concurrently access a shared level
of cache (KIM et al., 2013). The memory bandwidth and bus are
also sources of performance bottleneck in the inter-core interfe-
rence. Moreover, two or more tasks may access the same cache
line due to true or false sharing. Consequently, the cache cohe-
rence protocol will act to keep the data coherent in all private
caches that have the shared cache line(s).
Inter-core interference can also occur due to Symmetric Multi-
Threading (SMT), when two or more hardware threads share the
same private cache levels (L1 and/or L2). Since this type of
interference is suffered by tasks that can run in parallel, an exact
analysis would depend on all the possible interleaving of their
executions. This combinatorial problem is clearly intractable,
thus, inter-core interference is extremely difficult to integrate into
a WCET static analysis framework (GUAN et al., 2009).

Furthermore, memory accesses originating from a core can be
classified as either demand accesses, if required by instructions exe-
cuted on the core, or prefetch accesses, if speculatively issued by a
hardware prefetcher unit. This leads to a further classification of cache
interference under three different categories:

• Demand-demand interference: similarly to the discussion
above, demand (load/store) requests from one core can interfere
with requests from a different core.

• Prefetch-prefetch interference: prefetches from one core can
delay or displace prefetches from another core, causing conten-
tion (EBRAHIMI et al., 2009).

Although important for the average performance of the system, it
is common practice in real-time systems to disable hardware prefetchers
to eliminate the latter two categories of interference, thus making the
processor more predictable.

3.1 Memory Management 107

WCET derivation. The main objective of cache management
schemes for real-time embedded systems is to deal with the cited pro-
blems, simplifying the estimation of the tasks’ WCET.

WCET estimation typically follows one of two main approaches:
static analysis or empirical measurement (WILHELM et al., 2008). In the
former, a tool attempts to provide WCET by analyzing the application
binary code without executing it directly on the hardware. Generally,
WCET estimation tools are available only for simple processors, due to
sophisticated hardware features, such as caches, branch predictors and
pipelines, which make the static analysis extremely difficult or overly
pessimistic (WILHELM et al., 2008; LIANG; MITRA, 2008). In the latter
approach, the application binary code is executed on the hardware plat-
form for multiple times, and an estimation of the WCET is extracted
from these executions. Moreover, in measurement-based approaches,
the resulting value of WCET is inflated further with an error mar-
gin in order to account for unobserved conditions that can delay the
execution (SEHLBERG et al., 2006). Consequently, measurement-based
approaches can also lead to final values of WCET that represent an
overestimation of the real WCET.

The use of caches makes both static and measurement-based
WCET estimation more complex, because the execution time of an ins-
truction may vary depending on: (i) the data/instruction location in
the memory hierarchy; (ii) if a memory access results in a miss or a hit
in any of the cache levels; (iii) which cache coherence protocol is being
used in case of true or false sharing; and (iv) which cache replacement
policy is implemented in the cache controller (WILHELM et al., 2008;
ZHURAVLEV et al., 2012). Note that while several real-time cache analy-
sis frameworks have been provided for single-core systems (WILHELM
et al., 2008), current static analysis methodologies provide highly pessi-
mistic bounds on cache misses for shared caches. Furthermore, to the
best of our knowledge no existing static analysis technique is able to
account for the effects of the coherence protocol.

Note that, even if WCET estimation is possible, the presence of
inter-core interference greatly complicates validation and certification
of multicore real-time systems. In domains such as avionics (Aeronau-
tical Radio, Inc, 2013), separate applications are deployed as a collec-
tion of real-time software partitions, also known as Integrated Modu-
lar Avionics (IMA) partitions. The ARINC-653 (Aeronautical Radio, Inc,
2013) standard defines a hierarchy of certification levels for applicati-

108 3 RELATED WORK

ons, ranging from level-A (highest certification level) to level-F (level
with lowest criticality, or best-effort). The standard requires that ap-
plications certified at level-A for safety-critical operations run in par-
titions, that are isolated from any other partition from both a spatial
and a temporal point of view. This implies that any module running in
a different IMA partition should not be able to affect the behavior of
any given level-A task. It also implies that it must be possible to define
level-A IMAs independently from each other, so that the conformity of
their parameters at production time is guaranteed regardless the final
workload of the system. Unfortunately, due to inter-core interference,
allowing the hardware components of commodity multicore platforms
to operate in an unrestricted manner makes it significantly harder to
provide said guarantees. In fact, if no predictable arbitration mecha-
nism for shared resources is in place, the pessimism on task WCET can
easily result to be unacceptable.

Existing solutions. Several works have been proposed to cope
with the described cache memory hierarchy problems in the context
of real-time embedded systems and to tighten the WCET estimation.
In general, such works rely on enforcing timing isolation between sub-
components in the system: the execution time of one sub-component
should not depend on the behavior of other sub-components. Such
isolation can be implemented (i) at the level of a single task, where
sub-components are functions or basic blocks in the task’s code; (ii)
at the level of a core, where sub-components are tasks; or (iii) at the
multicore system level, where sub-components are individual cores or
software partitions running on each core.

Cache partitioning. Two are the approaches that are mostly
used to enforce a more deterministic behavior on CPU caches. The
first approach is cache partitioning, which divides the cache in parti-
tions and assigns specific partitions to tasks or cores (WOLFE, 1994;
LIEDTKE et al., 1997; CHOUSEIN; MAHAPATRA, 2005; GUAN et al., 2009;
MANCUSO et al., 2013; KENNA et al., 2013; KIM et al., 2013; GRACIOLI;
FRÖHLICH, 2013). The objective is to reduce inter-core interference,
which increases predictability and facilitates WCET estimation. There
are two ways to perform cache partitioning: index-based or way-based
partitioning. In the former, partitions are formed as an aggregation
of associative sets in the cache. In the latter, partitions are formed as
an aggregation of individual cache ways. Figure 27 shows an example
of the two cache partitioning approaches in an n-way set-associative

3.1 Memory Management 109

cache. In Figure 27(a), each set is considered a different and isolated
partition (horizontal slicing). One or more sets are individually assig-
ned to a task or core and all memory allocations performed by this
task or core are mapped to the assigned set(s). In Figure 27(b), each
way is considered an individual partition and one or more ways can be
assigned to a task or core (vertical slicing). Cache partitioning can be
further divided in hardware- or software-based approaches. Moreover,
software-based approaches may need compiler or OS support.

(a)

(b)

Figure 27: Classification of cache partitioning approaches: (a)
overview of the index-based partitioning. (b) overview of the way-
based partitioning.

Cache locking. The second cache management mechanism for
real-time embedded systems is cache locking. The central idea behind
cache locking is to lock a portion of the cache in order to exclude the

110 3 RELATED WORK

contained lines from being evicted by the cache replacement policy and
by intra-task, intra-core, or inter-core interferences. Cache locking is
a hardware-specific feature, which is typically done at a granularity of
a single way or line. Figure 28 presents two cache locking variations.
Figure 28(a) shows the locking of an entire way. The lock of a whole
way means that the contents within that way across all sets cannot be
evicted. Locking a whole way has not been explored deeply, because the
number of ways is usually limited (in the range from 4 to 32) (MANCUSO
et al., 2013). Figure 28(b) shows the locking of an individual way or
cache line. The cache line locking strategies provided by most of the
current commercial embedded platforms are non-atomic. This makes it
difficult to predict what is cached and what is not. Moreover, multicore
shared caches are usually physically indexed and tagged. Thereby, if no
manipulation is enforced on the physical addresses of the locked entries
(usually by the OS), in the worst-case scenario no more than n locked
lines can be kept at the same time (MANCUSO et al., 2013).

Memory allocator. Both cache locking and partitioning can
be made available to applications through the memory allocator. A
memory allocator is responsible for managing free blocks of memory
in a large pool of memory (usually called heap), thus serving the ap-
plication requests for memory spaces. The malloc libc function is an
example of a user memory allocator. Two main concerns are common
to memory allocators: performance and fragmentation. Performance
with respect to how free blocks of memory are organized such that a
search for a block is performed efficiently. Fragmentation with respect
to how to avoid gaps between allocated memory blocks (BORG et al.,
2006). Besides performance and fragmentation, a memory allocator for
real-time embedded systems must also be predictable, i.e., the time to
allocate a memory block, despite its size, must be known. Furthermore,
a memory allocator can also provide means for applications to use a
cache partitioning or locking mechanism in a transparent and simple
way. In this thesis, we provide an overview of memory allocators that
are either predictable or cache-aware.

The common denominator for all the aforementioned techniques
is to improve the predictability of real-time systems deployed on top of
cache-based architectures, in order to provide better isolation for real-
time embedded applications. In the following sections, we present the
main memory management mechanisms for real-time systems, from the
first studies of the field in 1990 up to the latest research published in

3.1 Memory Management 111

(a)

(b)

Figure 28: Examples of cache locking variations: (a) overview of
the way locking. (b) overview of the cache line locking.

2013. The objective is to categorize each approach and to provide a de-
tailed comparison in terms of similarities and differences. In summary,
in this section we provide:

• A classification of each related work into one of the following
categories: index-based cache partitioning, way-based cache par-
titioning, cache locking, or OS memory allocator. Moreover, we
discuss related works that deal with the CPMD.

• A discussion of the main characteristics of the most relevant works
for each category. In particular, we detail: (i) whether the ap-
proach is implemented in hardware or software, and in the latter
case, whether it requires compiler or OS support; (ii) what type

112 3 RELATED WORK

of isolation it provides, i.e., whether it addresses intra-task, intra-
core, or inter-core interference; (iii) the level of isolation, i.e., how
effective the approach is at preventing the addressed source of in-
terference; and (iv) any further limitation or key assumptions in
the work that might limit its applicability, in particular in an
industrial context.

3.1.1 Index-based Cache Partitioning Methods

There are two index-based cache partitioning categories:
hardware- (KIRK; STROSNIDER, 1990; LIU et al., 2004; IYER, 2004;
RAFIQUE et al., 2006; SUHENDRA; MITRA, 2008; SRIKANTAIAH et
al., 2008) and software-based (WOLFE, 1994; LIEDTKE et al., 1997;
CHOUSEIN; MAHAPATRA, 2005; GUAN et al., 2009; LU et al., 2009;
MURALIDHARA et al., 2010; KIM et al., 2013) techniques. The former
requires special hardware support, such as specialized implementations
that are not available in most of the current commercial processors.
The latter has the advantage of being fully transparent to applica-
tions without demanding special hardware support. Software-based
partitioning is further divided in those that require OS or compiler
support.

Hardware index-based partitioning. Several hardware
index-based cache partitioning have been proposed to improve the
QoS of general-purpose applications. The Shared Processor-Based
Split L2 cache organization assigns cache sets according to the CPU
ID (LIU et al., 2004). The L2 cache controller (configurable by the OS)
keeps a table that maps the CPU ID to its sets. Every CPU memory
access looks first at its available sets, but can subsequently look at
other CPU sets before going to the main memory. Upon a miss, the
requested memory block is allocated only into the available CPU sets.
Set pinning is a similar approach, where cache sets are associated
with owner processors (SRIKANTAIAH et al., 2008). However, in set
pinning, memory accesses that would lead to inter-core interference
are redirected to a small processor owned private (POP) cache. Each
processor has its POP cache, storing memory blocks that would cause
inter-core cache misses. The objective is to reduce these cache misses
and improve the average system performance.

CQoS classifies applications memory accesses in priorities and

3.1 Memory Management 113

then assigns more set partitions to higher priority applications (IYER,
2004). The CQoS framework also implements a selective cache alloca-
tion in which it counts the number of lines occupied in the cache at a
given priority level and probabilistically allocates or rejects cache line
allocation requests.

Rafique et al. proposed a hardware implementation of a quota
enforcement mechanism (RAFIQUE et al., 2006). The quota is enforced
at a set-level for different tasks/applications that access the shared ca-
che. The mechanism requires the maintenance of an ownership informa-
tion for each cache block, which is performed by adding a Tag-owner-ID
along with each tag in the cache address bits.

Strategic Memory Allocation for Real-Time (SMART) was the
first hardware-based implementation of a cache mechanism designed
to provide predictability for (uniprocessor) real-time systems (KIRK;
STROSNIDER, 1990). SMART divides the cache into M segments. These
segments are allocated to N tasks (N ≥MorN ≤M). One specific par-
tition referred as shared partition, which is formed by a set of segments,
services tasks that do not require private partitions and provides cohe-
rent caching of shared data structures. Performance critical tasks have
private partitions. Private partitions are protected and all tasks can
access the shared partition. A cache location address is divided in a seg-
ment and cache ID fields that identify how many segments a task owns
and which they are. A hardware flag is used to determine whether the
shared partition or the private partition is active. During the memory
access, the set address for the cache is combined with the cache ID and
hardware flags. The cache ID, segment count field, and hardware flags
are part of each task context and are loaded on every context switch
performed by the OS. The authors presented a SMART designed for
the MIPS R3000 processor.

Chousein and Mahpatra proposed a hardware-based cache par-
titioning for fully associative cache architectures (CHOUSEIN; MAHA-
PATRA, 2005). As reviewed in Section 2.1.2, a fully-associative cache
places a memory block in any cache line. This means that the cache
partitioning mechanism should provide a mean to search and isolate
a cache line efficiently. To this end, multiple memory entries are ag-
gregated together to associate them with a single tag entry to create a
partition segment in the cache. Each tag entry has been built using con-
tent addressable memory (CAM) cells in conjunction with a few bits of
ternary content addressable memory (TCAM) cells. The use of CAM

114 3 RELATED WORK

and TCAM reduces miss ratio as demonstrated by Kohonen (KOHO-
NEN, 1987).

Suhendra and Mitra proposed a cache partitioning mechanism
able to perform three different partitioning strategies: (i) no partition,
where a cache block may be occupied by any task, scheduled on any
core; (ii) task-based partitioning, where each task is assigned a portion
of the cache; or (ii) core-based partition, where each core is assigned a
portion of the cache, and each task scheduled on that core may occupy
the whole portion while it is executing (SUHENDRA; MITRA, 2008). Ca-
che partitioning is then combined with a static cache locking mechanism
(cache content remains unchanged throughout execution) or a dynamic
scheme (cache content can be reloaded at run-time). The experimental
evaluation performed in a dual-core processor (simulated) with 2-way
set-associative L1 and L2 caches resulted in a set of guiding design
principles for real-time systems: (i) if one wants to use a static ca-
che locking, the best cache partitioning method is core-based partition;
(ii) core-based partitioning emerges as overall winner independent of
locking strategy; and (iii) dynamic cache locking is better than static
cache locking only for tasks with a large number of hot regions and for
smaller shared cache size.

Software index-based partitioning. The most common
software-based cache partitioning technique is page coloring (TAYLOR
et al., 1990; LIEDTKE et al., 1997; TAM et al., 2007; GUAN et al., 2009).
Page coloring explores the logical to physical page address translations
presented in current MMUs at OS-level, when caches are physically-
indexed. Page addresses are mapped to pre-defined cache regions,
avoiding the overlap of cache regions. Figure 29 illustrates the physical
addresses from the cache and OS point of views for the hardware
platform used in our experiments (Intel i7-2600, see Table 12). By
controlling the colored bits of the set-associative cache number, the
OS can change the mapping of 4 KB pages in the physical memory
and thus the cache location. Our platform has an 8 MB 16-way set-
associative shared L3-cache with 64-bytes per line. Each of the 16 ways
can store a cache line. There are 213 sets in the cache (8 MB/16ways
× 1way/64 B). Thus, the first 6 bits in the cache address access a
cache line, the next 13 bits access a set, and the next 13 bits define a
line from one of the 16 ways (Tag in Figure 29).

The idea of page coloring is to assign color 0 to page 0, color
1 to page 1, and so on, starting again from color 0 after reaching the

3.1 Memory Management 115

Figure 29: Physical address view from the cache (on top) and from
the OS (bottom)

maximum color number. Figure 30 shows the mapping of physical
pages to cache locations in our platform. There are 64 cache lines in
each 4 KB page. Each of these lines has a different cache set index.
Since 7 bits are available to page coloring (cache size / number of ways
/ page size), page 128 maps to the same color as page 0. Therefore, it
is possible to partition the cache by assigning different colors to tasks.

Figure 30: Mapping physical pages to cache locations.

For practical reasons, the cache mapping algorithms implemen-
ted in real multicore processors produce synonyms (i.e., they are not
fully associative), so different memory addresses can be mapped to the

116 3 RELATED WORK

same cache line. This leads to false sharing, which is a source of in-
terference indistinguishable from true sharing from the perspective of
page coloring.

Page coloring was first implemented in the MIPS OS to improve
performance stability (TAYLOR et al., 1990). Then, page coloring was
used to evenly distribute cache accesses across the whole cache and
subsequently reduce cache misses within a single application (KESSLER;
HILL, 1992; ROMER et al., 1994; SHERWOOD et al., 1999). More recently,
several shared cache partitioning mechanisms based on page coloring
for general-purpose systems have been proposed (TAM et al., 2007; LIN
et al., 2008; ZHANG et al., 2009; GUAN et al., 2009).

Tam et al. used information collected from HPCs at run-time to
estimate the size of each shared L2 cache partition (TAM et al., 2007).
Experimental results have shown that cache partitioning can recover up
to 70% of degraded instruction per cycles due to cache contention (TAM
et al., 2007). Lin et al. implemented a page coloring mechanism in the
Linux kernel for IA-32 processors (LIN et al., 2008). The authors chan-
ged the Linux memory management to support multiple lists, each one
linking free pages with the same color. When a page fault occurs, the
kernel searches for free pages in the free colored lists in a round-robin
fashion. Two cache partitioning policies were supported: static and
dynamic. A static cache partitioning policy predetermines the amount
of cache blocks allocated to each program at the beginning of its exe-
cution. In the dynamic policy, a page recoloring is enforced whenever a
process increases its WSS. The kernel performs page recoloring by re-
arranging the virtual-physical memory mapping of the process. This
approach involves allocating physical pages of the new color, copying
the memory contents, and freeing the old pages. Although page reco-
loring achieved good QoS for general-purpose applications, the cost of
copying pages in a real-time application may result in deadline misses.
Zhang et al. proposed a hot-page coloring approach which enforces co-
loring on only a small set of frequently accessed (or hot) pages for each
process (ZHANG et al., 2009). Hot pages are identified by checking the
page table entry access bit. Whenever a page is accessed, its access bit
is automatically changed by the processor. By periodically checking
and clearing the access bit, it is possible to estimate each page’s access
frequency. This approach also supports page recoloring for dynamic
execution environments.

Several works proposed software-based cache partitioning to in-

3.1 Memory Management 117

crease predictability of (multicore) real-time systems (WOLFE, 1994;
MUELLER, 1995; LIEDTKE et al., 1997; BUI et al., 2008; GUAN et al.,
2009; KIM et al., 2013; KENNA et al., 2013; GRACIOLI; FRÖHLICH, 2013).
We classify these works in two categories: those that are implemented
at the OS-level and those that are implemented at the compiler-level.
We discuss both categories below.

Real-time OS index-based partitioning. OS-controlled
cache partitioning for real-time systems was first proposed by
Wolfe (WOLFE, 1994). Wolfe proposed a mechanism similar to
page coloring to provide predictable execution times for low-priority
tasks in a preemptive uniprocessor system. In fact, his approach
alters the address decomposition into tag, index, and offset as in the
page coloring partitioning. The technique requires the task set to be
static and all programs to be compiled by the same compiler prior
to the system start. Code and data of a task are logically restricted
to memory portions that map into cache lines assigned to the task.
Liedtke et al. extended the Wolfe’s work and used page coloring to
provide predictability for uniprocessor real-time systems (LIEDTKE et
al., 1997). Bui et al. considered the cache partitioning problem as an
optimization problem whose objective is to minimize the worst-case
system utilization under the constraint that the sum of all cache parti-
tions cannot exceed the total cache size (BUI et al., 2008). The authors
proposed a genetic algorithm to solve the optimization problem. The
cache partitioning mechanism is based on page coloring. Experimen-
tal evaluation has shown an improvement on the schedulability of
single-core systems.

Kim et al. stated that cache partitioning based on page coloring
suffers from two problems: (i) the memory co-partitioning and (ii) the
limited number of partitions (KIM et al., 2013). Then, the authors pro-
posed a cache management scheme in which they assign to each core
a set of private partitions to avoid inter-core cache space interference.
However, tasks within each core can share cache partitions. Although
this can result in intra-core interference, it solves the aforementioned
problems. In other words, each task can now have a larger number of
partitions which could improve its execution performance. In addition,
memory partitions can be utilized by all tasks. They bound the pe-
nalties due to the sharing of cache partitions by accounting for them
as cache-related preemption delays when performing the schedulability
analysis.

118 3 RELATED WORK

MC2 treats the management of cache lines as synchronization
and scheduling problems (KENNA et al., 2013). The proposed appro-
ach uses page coloring and real-time multiprocessor locking protocol
together. The OS associates a set of colors to each task. With locking
mechanism, a job must acquire a lock for each color it needs before exe-
cution, and it releases this lock when it finishes execution. Hence, the
entire job execution is treated as a critical section. This non-preemptive
execution of critical sections can create a long priority inversion bloc-
king. To mitigate this problem, the authors proposed period splitting
and job splitting as two ways to reduce the detrimental effect of lengthy
critical sections. However, this may cause jobs to reload their working
sets. Unlike the locking mechanism described above, the cache colors
can be treated as preemptive resources in which the concurrent accesses
can be mediated by scheduling. Instead of dealing with a scheduling
problem over two preemptive resources – the processor and the cache
– the authors reduce the problem into uniprocessor scheduling. They
define a logical cache processor to whom they assign tasks that share
either cache colors or processor. They evaluated the schedulability of
each cache processor as a uniprocessor, and apply known schedulabi-
lity tests. The authors compared both techniques in terms of sche-
dulability of the P-RM algorithm and concluded that cache locking
approach is better than the scheduling approach. In our work, we ex-
tended the page coloring performance analysis to P-EDF, C-EDF and
G-EDF algorithms and considered also the impact of the OS overhead
on the WCET. Furthermore, unlike MC2, which is implemented using
a real-time patch for Linux, we evaluated the cache partitioning and
the real-time algorithms on an RTOS designed from scratch, with less
interference (GRACIOLI; FRÖHLICH, 2013).

Real-time compiler index-based partitioning. Mueller was
the first to introduce compiler support for cache partitioning in the con-
text of real-time systems (MUELLER, 1995). The compiler receives the
cache size and the partition size of a task as additional input. The
output is separate object files for each code partition and each data
partition. Then, the object files of all tasks are combined into an exe-
cutable by the linker. To deal with code partitions larger than the
partition size, the compiler inserts an unconditional jump to the next
code partition at the end of each code partition. Each partition is sto-
red in a separate object file, which may be padded with no-ops at the
end to extend it to the exact size given by the cache partition size. Glo-

3.1 Memory Management 119

bal data is split into memory partitions of the data cache partition size.
The compiler ensures that no data structure spans multiple partitions.
If the size of a data structure exceeds the cache partition size, it is split
over multiple partitions and the compiler needs to transform the access
to the data structure. Local data on the stack is split into partitions
by manipulating the stack pointer whenever necessary. Dynamic al-
location on the heap is supported as long as memory requests do not
exceed the cache partition size. OS and libraries are also treated as
separated partitions. The used cache partition mechanism is based on
page coloring and the approach targets uniprocessor real-time systems.

Bugnion et al. extended the Mueller’s approach and implemen-
ted page coloring support in the SUIF parallelizing compiler (BUG-
NION et al., 1996). The objective was to improve performance of
general-purpose multiprocessor systems. The proposed technique, na-
med compiler-directed page coloring (CDPC), uses information avai-
lable within the compiler to predict the access patterns of a compiler-
parallelized application, such as array access patterns. This information
is then used to customize the application’s page mapping strategy by
the OS, i.e., it is used to perform cache partitioning through a page co-
loring mechanism. Basically, the OS generates preferred color for each
virtual page. Additionally to the compiler information, the OS also re-
ceives machine-specific parameters, such as the number of processors,
cache configuration, and page size. Then, the OS tries to honor all
received information as much as possible.

Vera et al. used compiler techniques together with cache partiti-
oning and locking to improve the predictability in preemptive multitas-
king uniprocessor systems in the presence of data caches (VERA et al.,
2003b). The proposed predictable framework works with both hard-
ware or software cache partitioning schemes. The compiler technique
uses loop tiling, and padding to reduce capacity and conflict misses,
that is, it reduces intra-task interference. Loop tiling reorders accesses
in such a way that reuse distance is shortened and padding modifies
the data layout of arrays and data structures. Cache locking is used to
lock cache lines that are accessed by more than one task. The authors
compared the proposed framework with static cache locking in which
all tasks share the whole cache in terms of worst-case performance of
a multitasking system. The results indicated that the framework was
able to schedule tasks that need a high throughput.

120 3 RELATED WORK

3.1.2 Way-based Cache Partitioning Methods

Way-based partitioning has two main advantages. First, it re-
quires limited changes to the set-associative cache organization which
do not have a dramatic impact on the overall structure. Second, this
partitioning scheme keeps requests for the different compartments iso-
lated from each other. Thus, there is no contention for the cache ways
at the cores. However, the main drawback with this approach is that
the number of partitions, as well as the granularity of the allocations,
is limited by the associativity of the cache. Increasing the associativity
of a cache is not always feasible or efficient since a higher-order associ-
ativity determines an increase in the cache access time and tag storage
space.

Ranganathan et al. proposed a cache architecture that allows dy-
namic reconfiguration of partitions (RANGANATHAN et al., 2000). Spe-
cifically, the traditional structure of a set-associative cache is adapted
to allow dynamic definition of partitions which can be assigned to given
address ranges. The dynamic reconfiguration can be performed at run-
time by software. In the proposed architecture, each cache partition
can be the result of the aggregation of one or more cache ways. Addi-
tional cache logic is required to differentiate between address spaces or
partitions; to multiplex the tag comparators; and to generate different
miss/hit signals for each addressed partition. However, the additio-
nal logic and wiring has been proven to minimally affect the cache
access time, with a variable overhead that is proportional to the ratio
of partitions
cache size . Although the described scheme has not been designed

for real-time systems, a straightforward extension could be designed for
multi-core systems, allowing to bind the address space of a task run-
ning on a given core to a given cache partition. This would eliminate
the inter-core interference in an exclusively owned partition. However,
intra-task interference (self-evictions) is still possible.

Chen et al. proposed a cache management scheme that partitions
each cache set into shared and private ways (CHEN et al., 2009). Assume
that the associativity of the shared cache is A, and that all cache lines
are classified into shared and private. Given a quota Q for shared cache
lines, the cache controller partitions each cache set such that shared
cache lines take Q ways in each set while private lines take A-Q. The
main idea is to assign different partitions to shared and private data
and thus reduce the LLC miss rate and increase QoS and fairness.

3.1 Memory Management 121

Similarly to Chen, Sundararajan et al. proposed RECAP: an
architecture for a set-associative cache that can be partitioned across
cores at the granularity of a single cache way (SUNDARARAJAN et al.,
2013). Different cache ways are assigned to shared and private data ba-
sed on the observation that the majority of memory accesses (around
80%) for parallel applications is performed in shared memory, while
above 90% of cache data belong to private memory regions. Moreover,
RECAP performs an automatic arrangement of the partitioned ways,
so that private data assigned to specific cores are allocated on ways
that are positioned on the left side of the cache, while shared data
are allocated on ways starting from the right end of the cache. The
enforced data-alignment keeps the unused ways in the center of the ca-
che and thus allowing dynamic power-saving by powering down unused
ways. Partition arrangement for each core is performed in order to
maximize utilization of the cache ways: a heuristic algorithm monitors
the number of misses for each core and determines how many cache
blocks need to be assigned in order to capture a given fraction of cache
misses. Finally, the computed ways-to-cores assignment is enforced on
the proposed cache architecture by programming a series of configu-
ration registers. The results have shown a 15% average performance
increase for large applications, with a reduction of power consumption
which is above 80% (for both dynamic and static energy). However,
even though this approach is effective to limit inter-core interference, its
scope is beyond predictability, making it suitable for SRT rather than
HRT applications. First because intra-core/intra-task interference is
not addressed; second due to the heuristic approach that is being used
to perform ways-to-cores assignment at run-time.

Varadarajan et al. proposed the idea of “molecular caches”:
CPU caches that are organized as a series of molecules (VARADARAJAN
et al., 2006). In this architecture, molecules are small in size (8-32KB)
and reflect the structure of a direct-mapped cache. Molecules are grou-
ped into tiles that can be assigned statically or dynamically to cores.
Thus, by definition, per-core partitions are defined at the granularity
of tiles, that in turn represent an aggregation of cache ways. Moreover,
in order to address intra-core interference, individual regions can be
defined internally to each tile and assigned to a specific application. In
order to do this, each molecule of the same region inside a given parti-
tion exposes a configuration register which can be programmed with a
unique identifier of a running application. In this way, all the molecules

122 3 RELATED WORK

of a given region will be exclusively used by the matching application.
The proposed scheme results effective in isolating cache misses from
different running applications on the same or different cores, but the
complexity of the resulting structure may not scale well with cache size.

Since molecules (and thus regions) can be dynamically assigned
to applications (or unassigned), a high degree of run-time reconfigura-
tion is possible. As such, assignment decision need to be made by a
software module that runs periodically or in an adaptive manner. The
metric used in the assignment controller is keeping the experienced
number of caches misses as close as possible to a threshold that is sta-
tically defined for each application. Even though inter-task interference
is not addressed by such a partitioning scheme, molecular cache repre-
sent an effective solution to prevent inter/intra-core interference, while
providing the cache with a fine-grained partitioning mechanism. Mo-
reover, the particular choice of associativity and size for the molecules
leads to a circuit design that enables a reduction in energy dissipa-
tion. However, due to its complexity, a hardware implementation of
molecular caches is not available to date. The applicability of such an
architecture to real-time applications would be broad, assuming that
the assignment controller employs a predictable allocation strategy.

Qureshi et al. proposed a utility-based approach to dynamically
partition the cache (QURESHI; PATT, 2006). The main insight is that
differences in the working set size as well as memory addressing pat-
tern of applications affect the way they benefit from cache assignment.
Applications that exhibit low spatial and temporal locality in their
memory access patterns, combined with a large memory size (in com-
parison with the size of the cache), benefit less from cache resources
than applications with opposite characteristics. Thus, the former can
be classified as a low-utility application, while the latter can be con-
sidered as a high-utility application from the cache assignment point
of view. To account for cache utility, the authors modified the cache
controller by adding a low-overhead circuit. The new circuit consists
of a number of utility monitors (one per each core accessing the shared
cache) and a single circuit that runs the partitioning algorithm relying
on data collected at the utility monitors. The partitioning algorithm
reads all the hit counters from the different utility monitors and compu-
tes a cache partitioning at the granularity of a way that minimizes the
overall number of misses suffered by all the applications. Evaluation
results have shown that such partitioning approach is able to provide

3.1 Memory Management 123

fairness and performance speedup if compared to using LRU and sta-
tic partitioning (e.g., an even split of the cache in two halves for two
cores). The hardware overhead is relatively low when applied to LRU
caches, but can significantly increase for different cache replacement
policies. However, the inherently heuristic approach employed in the
partitioning algorithm is not directly suitable for HRT purposes, since
the amount of assigned cache strictly depends on the workload on other
cores. This problem could be mitigated allowing a minimal assignment
of cache per each core or application.

3.1.3 Cache Locking Methods

Cache locking prevents the eviction of cache lines by marking
them as locked until an unlock operation is performed. Cache locking
is a hardware-specific feature that it is not present in all of the modern
multicore processors. There are two ways to lock a cache content: (i)
through an atomic instruction to fetch and lock a given cache line into
the cache, or (ii) defining, for each single CPU in the system, the lock
status of every cache way. The last mechanism is called lockdown by
master in multicore systems (MANCUSO et al., 2013). Some embedded
multicore platforms feature only an atomic instruction, such as Fre-
escale P4040 and P4080 platforms, while other platforms, such as TI
OMAP4460 and OMAP4430, Nvidia Tegra 2 and 3, Xilinx Zynq-7000,
and Samsung Exynos 4412, implement a lockdown by master mecha-
nism.

To exemplify the applicability of a cache locking mechanism,
consider a dual-core platform with a 2-way set-associative cache and
a cache controller that implements a lockdown by master mechanism.
We could set up the hardware so that way 1 is unlocked for core 1 and
locked for core 2, while way 2 is locked for core 1 and unlocked for core
2 (MANCUSO et al., 2013). This means that a task running on core 1
would deterministically allocate blocks on way 1 and blocks allocated
on way 1 could never be evicted by a task running on core 2. The same
situation occurs on way 2 referring to core 2. This assignment can be
easily changed at run-time by manipulating a set of registers provided
by the cache controller interface (MANCUSO et al., 2013). If the plat-
form provides an atomic instruction to fetch and lock a cache line, a
software procedure that realizes a mechanism functionally equivalent

124 3 RELATED WORK

to the lockdown by master can be easily built (MANCUSO et al., 2013).
Hence, cache locking provides a more predictable and controllable ac-
cess to shared caches, easing the WCET estimation and improving the
performance of real-time applications. Cache locking avoids/reduces
intra-task, intra-core, and inter-core interferences.

We classify the works that use cache locking as hardware-only,
when a specific hardware design is proposed, or hardware-software ap-
proaches, when the hardware available on current multicore processors
is used by a software layer (e.g., RTOS, compiler, or specific algo-
rithms). We further state if the work provides a cache locking only for
instruction caches, data caches, or both caches.

Hardware-only approaches. Asaduzzaman et al. introduced
a miss table (MT) based cache locking scheme at L2-cache to improve
timing predictability for real-time applications (ASADUZZAMAN et al.,
2010). The MT holds information of block addresses of the current ap-
plication that cause most cache misses if not locked. The cache miss for
each block address is obtained by the Heptane simulation tool (AVILA;
PUAUT, 2014). Then, the MT sorts the block addresses in descending
order of the miss numbers. The proposed MT-based scheme was evalu-
ated by simulating an 8-core processor with 2 levels of cache using the
MPEG4 and H.264 decoding and FFT algorithms. The results have
shown a predictability improvement in all algorithms.

Sarkar et al. used cache locking to provide a predictable task mi-
gration scheme applicable to the PFair scheduling algorithm (SARKAR
et al., 2011). The authors proposed several cache migration models in
the presence of a cache locking mechanism to deterministically bound
the migration delay of tasks. The work uses the push model hardware
feature, where every cache controller has a push logic block and each
cache line has a PID associated with it. When a task migrates, the new
core is initialized to start pushing the cache lines with a push request.
Then, the push block identifies locked lines pertaining to the migrated
task through hardware enhancements and uses the cache line PID to
correctly manage locked cache lines. Simulation results have shown a
reduction of the migration cost of up to 56%.

Hardware-software approaches. Campoy et al. were the
first authors to use cache locking in the context of uniprocessor real-
time systems (CAMPOY et al., 2001). The authors proposed a genetic
algorithm that selects which instruction blocks are loaded and locked in
the cache in a preemptive, multitasking system. In such a system, the

3.1 Memory Management 125

locking of a cache line from one task affects the other tasks. The gene-
tic algorithm provides the set of blocks, an estimation of the WCET of
each task executing in a locked cache with the set of blocks loaded and
locked, and the response time of all tasks considering the WCET esti-
mated using the locking cache. Experimental results indicated that the
proposed algorithm allows the calculation of the response time of tasks
in a preemptive scheduler with negligible overestimation and without
performance loss (CAMPOY et al., 2001).

As in (CAMPOY et al., 2001), Puaut and Decotigny also explo-
red the use of static cache locking of instruction caches in uniprocessor
multitasking systems, addressing intra-task and intra-core interferen-
ces (PUAUT; DECOTIGNY, 2002). The authors proposed two algorithms
to select the instruction cache blocks that should be locked. In contrast
to (CAMPOY et al., 2001), the proposed algorithms select the contents
of the locked cache in a non blind manner, by using the tasks memory
access patterns of the instruction flow. The first algorithm aims at
minimizing the CPU utilization of the task set, while the second aims
at reducing the intra-core interference using a fixed-priority scheduler.
A worst-case performance analysis of the proposed algorithms on two
task sets has shown that they perform better than static cache analysis
for large instruction caches and caches with a large degree of associati-
vity (PUAUT; DECOTIGNY, 2002).

Vera et al. combined compile time cache analysis with data
cache locking to improve the WCET estimation and performance of
uniprocessor real-time systems (VERA et al., 2003a). A compile time
algorithm identifies those regions of code where a static analysis does
not precisely predict their behavior. The algorithm uses a reuse vector
to perform cache locality analysis and to select data to be loaded and
locked in the cache. Static analysis is used in the other code regions.
Also, the compile time algorithm inserts beyond the lock instructions,
unlock and load instructions and compute the WCET in presence of
k-way set-associative data caches. The authors implemented the algo-
rithm in the SUIF2 compiler and obtained a more predictable cache
behavior with minimal performance loss.

Falk et al. proposed a technique that also explored static locking
of instruction caches at compile time to minimize the WCET in unipro-
cessor real-time systems (FALK et al., 2007). Differently from the previ-
ous works, the technique explicitly takes the worst-case execution path
into account in order to apply cache locking. An optimization algo-

126 3 RELATED WORK

rithm takes a compiled and linked binary executable for the ARM920T
processor as input. Then, the algorithm calls a static WCET analysis
tool (aiT), which extracts WCET-relevant data of the binary’s func-
tion. From this data, the optimization algorithm selects those functions
to be locked in the instruction cache. Experimental results reported a
reduction between 54% and 73% in the WCET of some benchmarks
running on the ARM920T processor.

Liang and Mitra proposed two cache locking algorithms to im-
prove the average-case instruction cache performance for uniprocessor
systems (LIANG; MITRA, 2010). Both algorithms rely on two phases:
(i) a profiling phase creates the temporal reuse profile (TRP) for each
memory block by simulating or executing the application on the tar-
get platform; and (ii) a locking phase determines the cache sets to be
block to maximize the number of cache hits. An optimal algorithm se-
arches a binary decision tree, which represents the entire search space.
Each level in the binary search tree corresponds to locking decision
for one memory block in the set. A heuristic algorithm maximizes the
number of cache hits by individually analyzing each cache set and com-
puting the number of hits in that cache set. The authors performed an
experimental evaluation using the SimpleScaler simulation framework
with different cache sizes and associativities. The obtained results have
shown an improvement of up to 24% in the instruction cache miss rate.
Although not proposed for real-time systems, the profiling technique
could be integrated into a WCET analysis framework to indicate each
cache lines are evicted or not during the application execution.

Aparicio et al. proposed a method to select the best cache lines
to be loaded and locked (i.e., dynamic cache locking) into the instruc-
tion cache at each context switch, taking into account both intra-task
and intra-core interferences (APARICIO et al., 2011). The method is ba-
sed on an integer Linear Programming (ILP) method, named Lock-MS
(Maximize Schedulability), and targets uniprocessor real-time systems.
The ILP-method obtains the cache lines to be loaded and locked ba-
sed on the requirements of a single task and the effects of interferences
between tasks. At run-time, a dynamic cache locking method preloads
the cache contents at every context switch, providing a solution that
minimizes the worst overall cost of a preemption. The authors compa-
red Lock-MU with a static locking mechanism (PUAUT; DECOTIGNY,
2002) and obtained better performance results.

Mancuso et al. proposes a memory framework that uses profiling

3.1 Memory Management 127

techniques to analyze the memory access pattern of tasks and obtain the
most frequently accessed memory pages (MANCUSO et al., 2013). Then,
cache locking and page coloring are used to provide isolation among
tasks and increase predictability. The framework was implemented and
evaluated in the Linux kernel.

3.1.4 OS Memory Allocators

Programmers usually allocate data with little or any concern
for cache memory hierarchy. Hence, the resulting data allocation in
the cache memory hierarchy may interact poorly with the program’s
memory access pattern (CHILIMBI et al., 2000), incurring in intra-task,
intra-core, and inter-core interferences. In a multicore real-time system,
this bad memory allocation may cause the loss of deadlines and it is
not tolerable. Thus, OS memory allocators for real-time systems must
be predictable (despite the memory size being allocated) and cache-
conscious in order to allocate memory efficiently. Basically, we can
divide OS memory allocators for real-time systems in three categories:
(i) those that are cache-aware, i.e., provide a cache partitioning or
cache locking mechanism to ensure predictability; (ii) those that are
predictable, i.e., the time to allocate memory blocks is bounded; (iii)
those that are predictable and cache-aware. In this section we review
OS memory allocators that are designed to be predictable and/or cache-
aware.

Cache-aware allocators. Chilimbi et al. proposed a memory
allocator (named ccmaloc – cache-conscious malloc) that receives the
requested bytes and a pointer to an existing object that the program
is likely to access contemporaneously with the element to be alloca-
ted (CHILIMBI et al., 2000). The allocator attempts to allocate the
requested data in the same cache block as the existing item, thus im-
proving data locality, cache hit rate, and the average execution time.
The authors also integrated the memory allocator with a data structure
reorganizer. The reorganizer basically transforms a pointer structure
layout into a linear memory layout and maps its elements to reduce ca-
che conflicts using page coloring. The main drawback of this approach
is the need for copying data to a new linear memory region and the
absence of a predictable memory allocation time.

Cache-Index Friendly (CIF) also tries to improve the average

128 3 RELATED WORK

execution time, instead of improving the predictability, by explicitly
controlling the cache-index position of allocated memory blocks (AFEK
et al., 2011). The central idea in CIF is to insert small spacer regi-
ons into the array of blocks within the allocator to better distribute
block indices, thus disrupting the regular ordering of block addresses,
returned by the allocator. The authors performed a set of experiments
to show that CIF reduces intra-task and inter-core interferences. CIF,
however, is not designed for real-time systems.

Time-predictable allocators. The Half-fit algorithm was the
first dynamic memory allocator to perform allocation/deallocation in
a constant and predictable time (OGASAWARA, 1995). In Half-fit, free
blocks of size in the range [2i, 2i+1) are grouped into a free list indexed
by i. When a block is deallocated, it is immediately merged with
neighboring free blocks. After merging, the index of the new free block
of size r in a free list bit vector can be found using i= blog2 rc. The bit
vector is a word-length variable used to keep track of which free lists
are empty and which are not. The logarithm operation in a bit vector
can be executed in one cycle in several 32-bit CPUs. Half-fit eliminates
the search on free lists for allocation by calculating the index i and
taking a free block of memory from the list i. If the list i is empty, the
allocation algorithm takes a block from the subsequent non-empty list
whose index is closest to i. If allocated blocks are larger than requested
sizes, the allocated block is split in two parts: one is returned to the
requester and another one is relinked on the free list. Both allocation
and deallocation have time complexity of O(1) (OGASAWARA, 1995).

Two-Level Segregated Fit memory allocator (TLSF) uses a se-
gregated fit mechanism to implement a good-fit policy, which returns
the smallest chunk of memory big enough to hold the requested me-
mory block (MASMANO et al., 2004). TLSF limits the size of memory to
be allocated in 16 bytes, to store inside the free blocks, all information
needed to manage them, including the pointers to free blocks. The
segregated fit mechanism uses an array of free lists, in which each list
(accessed by a specific array position) holds free blocks within a size
class. The array of lists is organized in two-levels to speed up the access
to free blocks and to reduce fragmentation. The first-level divides free
blocks in classes that are power of two (16, 32, 64, 128, etc) and the
second-level sub-divides each first-level class linearly, where the number
of divisions is a user configurable parameter. As in Half-fit, a bitmap
marks which lists are empty and which ones contain free blocks. TLSF

3.1 Memory Management 129

uses the boundary tag technique (KNUTH, 1997) to easily coalesce free
blocks. The boundary tag adds a pointer to the beginning of the same
block to each free or used block. Thus, when a block is released, the
pointer of the previous block (which is located one word before the rele-
ased block) is used to access the head of the previous physical block to
check whether it is free or not and merge both accordingly (MASMANO
et al., 2004). Hence, each free block is linked in the segregated list and
in a list ordered by physical address. Both allocation and deallocation
have time complexity of O(1) (MASMANO et al., 2004).

Sun et al. proposed the TLSF-I, an improved version of the
TLSF algorithm (SUN et al., 2007). TLSF-I aims at improving the
efficient in allocating small blocks and reduce fragmentation of the ori-
ginal TLSF algorithm. The authors used different strategies to allocate
blocks of memory depending on their sizes. When the size of a block
is small, TLSF-I uses exact-fit polity, instead of good-fit. To maintain
an exact fit table, TLSF-I uses a two-level occupancy bitmap. When a
memory block to be allocated is small, the first task is to get the map
index of that size in order to verify if that block fits in a free list. If it
does not, the algorithm searches in the bitmap tree to find an available
block. In general, the TLSF-I performs better than TLSF algorithm
and leads to a low fragmentation (SUN et al., 2007).

Compact-FIT (CF) is a memory allocation/deallocation system
that provides predictable memory fragmentation and response times
that are constant or linear in the size of the memory request (CRACIU-
NAS et al., 2008). Available memory in CF is partitioned in 16 KB pages.
Each page is an instance of a size-class, which partitions a page further
into same-sized page-blocks. Data is always allocated in a page of the
smallest-size size class whose page-blocks still fit the data. The alloca-
tion of data larger than 16 KB is not supported. The main idea of CF is
to keep the memory size-class compact at all times. At most one page
of each size-class may be not-full at a given time while all other pages
of the size-class are always kept full. When a memory is released, the
data in the not-full page is moved to take its place and thus maintain
the invariant (CRACIUNAS et al., 2008). There are two implementations
of CF, named moving and non-moving. In the moving CF implementa-
tion, page-blocks are mapped directly to physically contiguous pieces of
memory, which requires moving data memory for compaction. In this
implementation, allocation takes constant time and deallocation takes
linear time if compaction occurs. In the non-moving implementation,

130 3 RELATED WORK

a block table is used to map page-blocks into physical block-frames
that can be located anywhere in memory. Compaction in this case
is performed by re-programming the block table rather than moving
data. Both allocation and deallocation in the non-moving implemen-
tation take liner time. The authors compared CF with TLSF in terms
of fragmentation. CF has presented a more controlled and predictable
fragmentation than TLSF. In terms of allocation/deallocation time,
Half-fit and TSLF are faster than CF due to compaction activities.

A completely different approach for time analysis of dynamic me-
mory allocation is proposed by Herter and Reineke (HERTER; REINEKE,
2009). The authors propose algorithms to compute static allocation for
programs that use dynamic memory allocation. The algorithms strive
to produce static allocations that lead to minimal WCET times in a
subsequent WCET analyses (HERTER; REINEKE, 2009). The approach
of transforming dynamic allocation to static allocation relies on further
assumptions. For instance, all loop bounds and block sizes that are
requested must be statically known (HERTER et al., 2011). Good per-
formance can only be achieved by this approach when the program’s
allocation behavior can be statically derived.

Puaut presented a performance analysis of several general
purpose memory allocators (first-fit, best-fit, btree-best-fit, fast-fit,
quick-fit, buddy-bin, and buddy-fibo) with respect to real-time requi-
rements (PUAUT, 2002). The author compared the worst-case behavior
obtained analytically with the worst timing behavior observed by
executing real and synthetic workloads, considering the allocation
and deallocation of memory blocks. The study has concluded that
for applications with low allocation rates, the analytically worst-case
allocation/deallocation times do not have an excessive impact on the
application execution times for the most predictable allocators (buddy
systems and quick-fit).

More recently, Masmano et al. compared the first-fit, best-fit,
binary-buddy (KNUTH, 1997), DLmalloc (Lea, D., 1996), Half-fit, and
TLSF memory allocators for real-time applications (MASMANO et al.,
2006). The results indicated that TLSF and Half-fit have a stable and
bounded response time, which make them suitable for real-time appli-
cations. In contrast, algorithms designed to optimize average execution
times, such as DLmalloc and binary-buddy, are not suitable for real-
time applications. Moreover, Half-fit achieves bounded response times
wasting more memory than TLSF (MASMANO et al., 2006).

3.1 Memory Management 131

Cache-aware and time-predictable allocators. Cache-
Aware Memory Allocator (CAMA) is the first memory allocator that
combines constant time (predictability) with cache-awareness (HER-
TER et al., 2011). Predictability is obtained by managing free blocks
in segregated free lists, which allows for constant look-up times and
hence constant response times. Internal fragmentation is reduced using
a multi-layered segregated-list similar to TLSF’s approach. Cache-
awareness is obtained by adding an additional parameter to allocation
requests: the first parameter is the original requested block size and
the second and new parameter is the cache set that the block’s memory
address shall map to. Single segregated list contains all memory blocks
within the same size and whose memory addresses map to the same
cache set. CAMA uses cache-aware splitting and coalescing techniques
to keep external fragmentation low. A bit vector for each cache set is
responsible for signalizing that a block is empty or not. To provide
guarantees about which cache sets may be accessed during allocation
requests, CAMA stores descriptor blocks in the segregated lists, instead
of free blocks directly. Each allocated block then stores a pointer to its
descriptor block instead of a pointer to its appropriate free list. The
free lists contain the descriptor blocks of free memory blocks instead
of the free blocks themselves (HERTER et al., 2011).

In this thesis we propose a memory allocation mechanism that
overloads the C++ new and delete operators, enabling colored memory
allocation/deallocation. This mechanism has the advantage of being
non-intrusive (there is no need to create a new function as in CAMA)
and to support user- and OS-centric approaches. We do not provide a
worst-case timing behavior analysis of our memory allocator. However,
in our experiments, we always allocate memory before the execution of
the application. Hence, worst-case bounded time is not an issue. We
detail our memory allocator in Chapter 4.

3.1.5 Cache-related Preemption and Migration Delay

Cache-related Preemption and Migration Delay (CPMD) is the
delay caused by the loss of cache affinity after a preemption/migration.
Basically, there are two ways of estimating CPMD: through offline sta-
tic analyses and through online empirical experiments. Static analysis
techniques estimate CPMD by analyzing the program code/data of the

132 3 RELATED WORK

preempted and preempting tasks. Then, the analysis determines which
data or instructions are reused after a preemption (NEGI et al., 2003;
STäRNER; ASPLUND, 2004; STASCHULAT; ERNST, 2005; YAN; ZHANG,
2008; HARDY; PUAUT, 2009; ALTMEYER et al., 2012).

Schedule-Sensitive and Synthetic are two methods to measure
CPMD through experimentation (BASTONI et al., 2010a). In the first
method, the system records the delays online by executing tests and
collecting the measured data through the use of a TSC. The drawback
of this method is the impossibility of controlling when a preemption
or migration happens, which causes many useless data to be collec-
ted (BASTONI et al., 2010a). The second method tries to overcome this
problem by explicitly controlling preemptions and migration of a task,
and thus measuring the delays. The evaluation shows that the CPMD
in a system under load is only predictable for working set sizes that
do not trash the L2 cache (BASTONI et al., 2010a). It is possible to use
a CPMD estimation approach together with a cache partitioning or
locking mechanism (reviewed in the previously subsections). Thus, the
estimation of the CPMD becomes easier, because of the isolation provi-
ded by those cache management strategies, which decrease intra-task,
intra-core, and inter-core interferences.

In our work, we measure the CPMD by using hardware perfor-
mance counters online through an RTOS in an 8-core modern proces-
sor. We use the obtained CPMD values to compare P-EDF, C-EDF,
and G-EDF through the weighted schedulability metric (BASTONI et al.,
2010a). For high CPMD, P-EDF, C-EDF, and G-EDF tend to have
the same performance. It is important to highlight that our objective
in this work is not to propose a new method to measure the CPMD.
We believe that CPMD is a complicated topic and still an open pro-
blem. Analyzing still-cached data after a short preemption and data
cached in the several cache levels, including the effects of the cohe-
rence protocol on migrated data, is especially complex. On the one
hand, specific methods relying on offline static analysis add a lot of
constraints and/or requirements that may not be satisfied by all ben-
chmarks, architectures, or applications used by industry. On the other
hand, empirical experiments rely on a lot of assumptions, such as spe-
cific scheduling algorithms or the knowledge about the task sets, to
perform the evaluation.

3.1 Memory Management 133

3.1.6 Summary

We now summarize the memory management mechanisms re-
viewed during this section. We present a comparative table for each
of the following categories: index-based cache partitioning, way-based
cache partitioning, cache locking, and memory allocators.

Index-based cache partitioning. Table 6 summarizes the
discussed index-based cache partitioning works that rely on hardware-
specific implementations. The works proposed by (LIU et al., 2004),
(SRIKANTAIAH et al., 2008), (IYER, 2004), and (RAFIQUE et al., 2006)
although focused on multicore systems, were not proposed for real-
time systems and, consequently, predictability is not the main concern.
Instead, they aim at improving the QoS and the average execution
time. SMART was the first hardware-based implementation of a cache
mechanism designed to provide predictability for uniprocessors (KIRK;
STROSNIDER, 1990). The SMART approach consists of dividing the
cache into M segments and assigning these segments individually to
tasks. A cache location address is divided in a segment and cache ID
fields that identify how many segments a task owns and which they are.
Chousein and Mahpatra were the first authors to propose a hardware-
based implementation of a cache partitioning mechanism to improve the
predictability of multicore systems (CHOUSEIN; MAHAPATRA, 2005).
Their approach focused on physical changes, using different technolo-
gies (CAM and TCAM cells) to implement cache memories. Suhendra
and Mitra were the first authors to combine a cache partitioning me-
chanism, that can be implemented in hardware or software, with cache
locking (SUHENDRA; MITRA, 2008). In their work, the cache partitio-
ning mechanism performs task-based and core-based partitioning.

Table 7 summarizes the discussed index-based cache partitioning
works that use a software approach, either implemented in the OS or
in the compiler. The first works to use cache partitioning implemented
in the OS did not focus on multicore real-time systems (TAYLOR et al.,
1990; KESSLER; HILL, 1992; ROMER et al., 1994; SHERWOOD et al., 1999).
Instead, their objectives were to improve the average performance in
uniprocessors. Also, several works improved the average performance in
multicore systems (TAM et al., 2007; LIN et al., 2008; ZHANG et al., 2009).
Wolfe was the first author to use a cache partitioning mechanism to
improve the predictability in uniprocessors (WOLFE, 1994). The work
proposed by Liedtke et al. was the first to use page coloring, also in the

134 3 RELATED WORK

T
able

6:
C

om
parative

table
of

the
review

ed
state-of-the-art

m
echanism

s
of

index-based
cache

partiti-
oning

w
ith

hardw
are-sp

ecific
im

plem
entations.

C
ach

e
p

ar-
tition

in
g

Featu
res

P
rop

osed
to

R
T

S
?

In
st.

or
d

ata
cach

es
H

W
orS

W
?

T
ech

n
iqu

e
U

se
cach

e
lockin

g?
M

u
lticore

or
sin

glecore?

(L
IU

et
al.,2004)

no
both

H
W

cache
con-

troller
table

no
m

ulticore

(SR
IK

A
N

T
A

IA
H

et
al.,2008)

no
both

H
W

P
O

P
cache

no
m

ulticore

C
Q

oS
(IY

E
R

,
2004)

no
both

H
W

selective
ca-

che
alloc.

no
m

ulticore

(R
A

F
IQ

U
E

et
al.,

2006)
no

both
H

W
quota

enfor-
cem

ent
no

m
ulticore

SM
A

R
T

(K
IR

K
;

ST
R

O
SN

ID
E

R
,

1990)

yes
data

H
W

M
segm

ents
no

singlecore

(C
H

O
U

SE
IN

;
M

A
H

A
PA

T
R

A
,

2005)

yes
data

H
W

C
A

M
and

T
C

A
M

cells
no

m
ulticore

(SU
H

E
N

D
R

A
;

M
IT

R
A

,2008)
yes

data
H

W
H

W
or

SW
partitioning

yes
m

ulticore

3.1 Memory Management 135

context of uniprocessor real-time systems (LIEDTKE et al., 1997). Bui
et al. proposed a genetic algorithm to optimize the worst-case system
utilization by finding the best cache partitioning assignment for a task
set (BUI et al., 2008). Kim et al. used page coloring to propose a cache
management scheme that assigns to each core a set of partitions (KIM
et al., 2013). Kenna et al. proposed the cache management strategy
called MC2, which treats the management of cache lines as scheduling
and synchronization problems (KENNA et al., 2013). All the discussed
works so far used an OS implementation of a cache partitioning me-
chanism based on page coloring. Other works proposed changes in the
compiler to support cache partitioning at the compile time. Mueller
was the first author to introduce a compiler support for cache partitio-
ning in the context of uniprocessor real-time systems (MUELLER, 1995).
Bugnion et al. extended the Mueller’s approach and implemented page
coloring support in the SUIF parallelizing compiler targeting multicore
processors (BUGNION et al., 1996). Both Bugnion et al and Mueller’s
approaches used page coloring to partition the cache. Finally, Vera
et al. used compiler techniques together with cache partitioning and
locking to improve the predictability in preemptive multitasking uni-
processor systems in the presence of data caches (VERA et al., 2003b).
The mechanism relies on a hardware or software cache partitioning and
was the first compiler-based mechanism to combine cache partitioning
with cache locking.

In this work we design and implement a cache partitioning me-
chanism based on page coloring in EPOS, which allows the assignment
of individual cache partitions to the internal OS data structures. We
use this mechanism to evaluate how the RTOS affects the execution
of real-time tasks and how different scheduling algorithms benefit from
cache partitioning.

Way-based cache partitioning. All the reviewed way-based
cache partitioning mechanisms use a hardware-specific implementation.
They are summarized in Table 8. None of the way-based cache parti-
tioning works were originally proposed to improve the predictability of
real-time systems, although some of the proposed techniques could be
adapted in the context of SRT systems.

Cache locking. Table 9 summarizes the discussed cache loc-
king mechanisms. In (ASADUZZAMAN et al., 2010) and (SARKAR et al.,
2011), two hardware-only cache locking mechanism are proposed. The
first targets both multicore and single-core systems, while the second

136 3 RELATED WORK
T

able
7:

C
om

parative
table

of
the

review
ed

state-of-the-art
m

echanism
s

of
index-based

cache
partiti-

oning
im

plem
ented

in
softw

are.

C
ach

e
p

artion
i-

n
in

g
Featu

res
P

rop
osed

to
R

T
S

In
st.

or
d

ata
cach

es
H

W
or

S
W

T
ech

n
iqu

e
U

se
cach

e
lock.

M
u

lticore
or

sin
glecore

(T
A

Y
L

O
R

et
al.,

1990;
K

E
SSL

E
R

;
H

IL
L,

1992;
R

O
-

M
E

R
et

al.,
1994;

SH
E

R
W

O
O

D
et

al.,
1999)

no
data

SW
-O

S
page

coloring
no

singlecore

(T
A

M
et

al.,
2007;

L
IN

et
al.,

2008;
Z

H
A

N
G

et
al.,2009)

no
data

SW
-O

S
page

coloring
no

m
ulticore

(W
O

L
F

E,1994)
yes

data
SW

-O
S

sim
ilar

to
page

coloring
no

singlecore

(L
IE

D
T

K
E

et
al.,

1997)
yes

data
SW

-O
S

page
coloring

no
singlecore

(B
U

I
et

al.,2008)
yes

data
SW

-O
S

genetic
alg.

w
ith

page
col.

no
singlecore

(K
IM

et
al.,2013)

yes
data

SW
-O

S
page

coloring
no

m
ulticore

(K
E

N
N

A
et

al.,
2013)

yes
data

SW
-O

S
page

coloring
no

m
ulticore

(M
U

E
L

L
E

R
,1995)

yes
both

SW
-

com
piler

com
piler

w
ith

page
col.

no
singlecore

(B
U

G
N

IO
N

et
al.,

1996)
no

both
SW

-
com

piler
C

D
P

G
no

m
ulticore

(V
E

R
A

et
al.,

2003b)
yes

data
SW

-
com

piler
H

W
or

SW
cache

partiti-
oning

yes
singlecore

3.1 Memory Management 137

Table 8: Comparative table of the reviewed state-of-the-art way-
based cache partitioning mechanisms.

Cache partitio-
ning

Features
Proposed
to RTS

Inst.
or
data
ca-
ches

HW
or
SW

Techn. Use
ca-
che
lock.

Multi-
core or
single-
core

(RANGANATHAN
et al., 2000)

no both both dynamic
reconfi-
guration

no singlecore

(CHEN et al.,
2009)

no data HW quota
enforce-
ment

no multicore

RECAP (SUN-
DARARAJAN et
al., 2013)

no data HW specific
mem.
arch.

no multicore

(VARADARAJAN
et al., 2006)

no data? both molecular
cache

no multicore

(QURESHI;
PATT, 2006)

no data HW utility-
based
appro-
ach

no multicore

is proposed only for multicore systems. The rest of the works does
not propose a hardware-specific mechanism to lock the cache. Instead,
they use the cache locking mechanisms available on current processors.
Campoy et al. were the first to study the effects of locking lines in
instruction caches of uniprocessor real-time systems (CAMPOY et al.,
2001). The authors proposed a genetic algorithm to select the best
lines to be locked. Following the same research line, in (PUAUT, 2002)
the authors proposed two algorithms to also select best lines to be loc-
ked in an instruction cache. In (VERA et al., 2003a) and (FALK et al.,
2007), the authors proposed changes in the compiler to extract infor-
mation regarding the data/instruction access pattern by tasks. Then,
this information is used to lock cache lines. Liang and Mitra propo-
sed a profiling technique to extract the instruction access pattern of
an application (LIANG; MITRA, 2010). Then, a cache locking algorithm
analyzes the pattern and chooses which cache lines should be locked.
Although not proposed for real-time systems, similar profiling techni-
ques are used by WCET estimation tools. Suhendra and Mitra (this
work was discussed in Section 3.1.1) were the first authors to evaluate
the combination of cache partitioning and cache locking in the context

138 3 RELATED WORK

of multicore real-systems (SUHENDRA; MITRA, 2008). Specifically to
cache locking, the authors used the algorithms proposed in (PUAUT,
2002) to select the cache lines to be locked. Unlike this work, Mancuso
et al. were the first authors to evaluate the combination of cache par-
titioning and locking using a real hardware and OS in the context of
multicore real-time systems.

In this work we use cache partitioning to reduce inter-core in-
terference. A cache locking mechanism is a complementary approach
to cache partitioning, but it requires a hardware support that ist not
present in many of the modern multicore processors.

OS memory allocators. Table 10 summarizes the OS me-
mory allocators that are time-predictable or/and cache-aware. ccmalloc
and CIF do not have real-time systems as the main concern, although
support page coloring and index-based cache management techniques,
respectively. The dynamic to static allocation translation has the di-
sadvantage of requiring additional assumptions about the program’s
allocation behavior, such as the size of memory allocation requests and
loop bounds. Half-fit, TLSF, and TLSF-I provide a bounded time for
allocation and deallocation activities. TLSF has lower fragmentation
than Half-fit. TLSF-I improves the TLSF allocation for small me-
mory blocks and reduces its fragmentation. CF was designed to have a
low fragmentation rate due to an implemented compaction mechanism.
Thus, CF has lower fragmentation than TLSF and Half-fit. However,
CF is slower than TLSF and Half-fit for allocation/deallocation tasks.
Finally, CAMA is the only memory allocator that provides a cache
memory technique together with bounded allocation/deallocation time
behavior. Our approach, the C++ new operator overload technique,
does not provide a worst-case timing behavior analysis, but is the first
work to provide page coloring allocation for internal OS memory pages.
We detail our memory allocator in Chapter 4.

3.2 REAL-TIME OPERATING SYSTEMS

Currently, a huge variety of RTOSes is being developed and used
in the embedded system area. For instance, the (incomplete) Wikipe-
dia’s list of RTOSes has about one hundred active projects (WIKIPEDIA,
2014a). The main reason for this diversity is the minimal set of features
required by some embedded systems. Because of that, small run-time

3.2 Real-Time Operating Systems 139

T
ab

le
9:

C
om

pa
ra

ti
ve

ta
bl

e
of

ca
ch

e
lo

ck
in

g
st

at
e-

of
-t

he
-a

rt
m

ec
ha

ni
sm

s.

C
ac

h
e

lo
ck

in
g

Fe
at

u
re

s
P

ro
p

os
ed

to
R

T
S

In
st

.
or

d
at

a
ca

ch
es

H
W

-
on

ly
H

W
-

S
W

S
W

ap
p

ro
ac

h
M

u
lt

ic
or

e
or

si
n

gl
ec

or
e

(A
SA

D
U

Z
Z

A
M

A
N

et
al

.,
20

10
)

ye
s

bo
th

ye
s

no
-

bo
th

(S
A

R
K

A
R

et
al

.,
20

11
)

ye
s

bo
th

ye
s

no
-

m
ul

ti
co

re

(C
A

M
P

O
Y

et
al

.,
20

01
)

ye
s

in
st

ru
ct

io
n

no
ye

s
ge

ne
ti

c
al

go
ri

th
m

si
ng

le
co

re

(P
U

A
U

T
,2

00
2)

ye
s

in
st

ru
ct

io
n

no
ye

s
tw

o
al

g.
to

se
le

ct
lo

ck
ed

ca
ch

e
lin

es
si

ng
le

co
re

(V
E

R
A

et
al

.,
20

03
a)

ye
s

da
ta

no
ye

s
co

m
pi

le
ti

m
e

al
g.

si
ng

le
co

re

(F
A

L
K

et
al

.,
20

07
)

ye
s

in
st

ru
ct

io
n

no
ye

s
co

m
pi

le
ti

m
e

al
g.

si
ng

le
co

re

(L
IA

N
G

;
M

IT
R

A
,

20
10

)
no

in
st

ru
ct

io
n

no
ye

s
pr

ofi
le

an
d

lo
ck

in
g

al
g.

si
ng

le
co

re

(A
PA

R
IC

IO
et

al
.,

20
11

)
ye

s
in

st
ru

ct
io

n
no

ye
s

IL
P

m
et

ho
d

si
ng

le
co

re

(S
U

H
E

N
D

R
A

;
M

I-
T

R
A

,2
00

8)
ye

s
bo

th
no

ye
s

ca
ch

e
pa

rt
it

io
ni

ng
an

d
lo

ck
in

g
m

ul
ti

co
re

(M
A

N
C

U
SO

et
al

.,
20

13
)

ye
s

bo
th

no
ye

s
pr

ofi
lin

g,
ca

ch
e

pa
rt

it
io

ni
ng

an
d

lo
ck

in
g

m
ul

ti
co

re

140 3 RELATED WORK

Table 10: Comparative table of OS memory allocators.

Memory
Allocator

Features
Proposed
to RTS

Time-
predictable

Cache-
aware

Cache mana-
gement tech-
nique

ccmaloc (CHI-
LIMBI et al.,
2000)

no no yes clustering and
page coloring

CIF (AFEK et
al., 2011)

no no yes index-based

Dynamic
translation
(HERTER;
REINEKE,
2009)

yes yes no -

Half-fit (OGA-
SAWARA,
1995)

yes yes no -

TLSF (MAS-
MANO et al.,
2004)

yes yes no -

TLSF-I (SUN
et al., 2007)

yes yes no -

CF (CRACIU-
NAS et al.,
2008)

yes yes no -

CAMA (HER-
TER et al.,
2011)

yes yes yes index-based

Overload of
the C++
new and
delete opera-
tors

yes no yes page coloring

environments are designed and implemented for specific embedded sys-
tems, and are called as “RTOS”. In fact, a 2013 embedded market study
has pointed out interesting facts about the development and usage of
RTOSes (UBM, 2013):

• 68% of the current embedded system projects use an OS, RTOS,
kernel, software executive, or scheduler of any kind. The majority
of the other 32% does not use an RTOS or kernel just because
the project does not need it;

• 68% of the current embedded system projects have real-time ca-

3.2 Real-Time Operating Systems 141

pabilities;

• 12% of the current embedded system projects use a new or diffe-
rent OS/RTOS;

• Considering only those projects that use an RTOS, 35% use a
commercial version, 34% use an open-source version, 19% use an
internally developed or in-house version, and 12% use a commer-
cial distribution of an open-source version. Real-time capability is
the most important feature that influences developers in choosing
a commercial RTOS;

• 24% of the current embedded system projects use an in-house
or custom RTOS version, that is, real-time embedded developers
prefer to design and implement their on RTOSes. The FreeRTOS,
for instance, is used by 13% of the projects and is in the fourth
place of the list.

The embedded system market study ensures that there is a proli-
feration of embedded RTOSes, some of them with the same characteris-
tics and design choices. However, the majority of RTOSes of this kind
do not support multicore processors and thus are not relevant for this
thesis. Nevertheless, even if we consider those RTOSes with any type
of shared-memory multiprocessor support, a large number of RTOSes
still remains.

Interrupt latency. Interrupt latency is an important characte-
ristic or metric commonly used to discuss and compare RTOSes. The
interrupt latency describes how quickly the RTOS reacts to interrupts.
If an OS disables interrupts or suppresses calls to the scheduler for
long periods, it tends to have high interrupt latency (BRANDENBURG,
2011). From the schedulability point of view, the interrupt latency is a
blocking time for a job, because the job that should be scheduled is de-
layed until the interrupt is handled. The release overhead described in
Section 2.5 includes the interrupt latency in the schedulability analysis.

In the following subsections we present an overview of current
multiprocessor-capable RTOSes. We group similar RTOSes into cate-
gories and for each category we present a description of the main RTO-
Ses. A survey of RTOSes for uniprocessors and distributed-memory
multiprocessors can be found in (STANKOVIC; RAJKUMAR, 2004).

142 3 RELATED WORK

3.2.1 Embedded Real-Time Operating Systems

The main objective of an embedded RTOS is to minimize re-
source usage to fit the system in a resource-constrained platform, which
is usually used by embedded systems. In this category, the OS kernel
and tasks execute in the same address space. Thus, a task can access
a device without any restriction, maximizing the performance.

Multiprocessor support is rare in this category, but does exists,
often in the form of message passing (each processor sends and recei-
ves messages to/from another processor) (BRANDENBURG, 2011). The
scheduling approach used in this case is the partitioned scheduling. Glo-
bal access to resources is usually not supported. Typical RTOS support
for this category includes FP scheduling, mutex, and semaphores with
optional priority inheritance (BRANDENBURG, 2011).

Commercial embedded RTOSes with multiprocessor support in-
clude RTXC/mp (message passing, preemptive round-robin schedu-
ling, fixed and dynamic priorities, and priority inheritance) (QUA-
DROS, 2005), ThreadX (preemptive FP scheduling with 32 priorities
and priority inheritance) (EXPRESS, 2013), Nucleus RTOS (preemptive
FP partitioned scheduler with 1024 priority levels and priority inhe-
ritance) (MENTOR, 2013), and OSE (FP partitioned scheduler with
message passing) (ENEA, 2013).

RTEMS (Real-Time Executive for Multiprocessor Systems) is
the most representative open-source embedded RTOS that supports
multiprocessors (RTEMS, 2013). RTEMS provides a FP scheduling with
256 priority levels and do not support the EDF dynamic policy. The
RTEMS kernel and the user applications are compiled together into
one binary image for each processor. Thus, RTEMS is also able to run
in a distributed system. In each processor, there is a multiprocessing
server, which is responsible for handling requests from all remote tasks
(tasks that run in other processors). The RTOS also supports priority
inheritance protocols, such as the Stack Resource Policy (SRP).

Other embedded RTOSes focus on fulfilling safety and security
requirements for specific areas, such as automotive and avionics sys-
tems. These RTOSes are designed to isolate software components to
avoid that an error in one component be propagate to other compo-
nents. Hence, it is possible to certify the RTOS in terms of safety and
security features. Due to the certification process, this type of em-
bedded RTOS generally has low complexity and implements few kernel

3.2 Real-Time Operating Systems 143

services, such as the ciclic executive scheduler. Multicore support on
this type of RTOS is usually absent, so we do not review this class in
details. An example of a kernel used in the Airbus A380, Boeing 777,
and Boeing 787 aircrafts is the Green Hill’s INTEGRITY kernel (Green
Hills Software, 2011).

Research embedded RTOSes have also been proposed in the last
years, although most of these academic projects focused on unipro-
cessors and distributed systems. One of the first research RTOS to
provide multicore support was the Spring OS (STANKOVIC; RAMAM-
RITHAM, 1991). The Spring kernel was the first to use a dedicated pro-
cessor to handle interrupts. In a dedicated interrupt handling scheme,
one processor (named system processor) is responsible for handling in-
terrupts, while the remaining processors execute the user processes.
The system processor is also responsible for releasing tasks and ma-
king scheduling decisions. This technique is called interrupt shielding,
which prevents real-time tasks to be disturbed by interrupts and OS
overheads (BRANDENBURG, 2011). The result is a more predictable OS.
Another research RTOS is the Fiasco microkernel (HÄRTIG; ROITZSCH,
2006). Recent Fiasco versions support FP partitioned scheduling. Also,
interrupts are not processed in the kernel space. Instead, they are sent
to user space processes through IPC messages, which handle the inter-
rupts accordingly. This technique is known as split interrupt handling
and allows interrupt to be safely deferred by assigning low priorities to
the “driver” processes (BRANDENBURG, 2011).

The OS used in this thesis, EPOS, can be classified as an em-
bedded RTOS. EPOS originally did not supported real-time multicore
scheduling algorithms. In Chapter 4, we present the design and imple-
mentation of the real-time multicore support for EPOS, which enabled
it to be the first open-source RTOS to provide FP and dynamic parti-
tioned, clustered, and global schedulers in a shared-memory multipro-
cessor.

3.2.2 POSIX-Like Real-Time Operating Systems

This category encompasses RTOSes that implement the com-
plete or parts of the POSIX-API and match the expectations of the PO-
SIX real-time profiles. The Portable Operating System Interface (PO-
SIX) is a set of standards created to maintain the compatibility of

144 3 RELATED WORK

OSes. POSIX also defines a set of real-time extensions, which includes
periodic timers, FP scheduling, semaphores, and thread interface (IEEE,
2003). Like a General-Purpose OS (GPOS), a POSIX-like RTOS provi-
des high-level functionalities, such as process and threads, dynamic pro-
cess creation, filesystems, full TCP/IP communication protocol stack,
and so on. The most important RTOSes of this category are the Rese-
arch in Motion’s QNX Neutrino and WindRiver’s VxWorks. We briefly
discuss both RTOSes below.

QNX Neutrino is the first POSIX-like RTOS to support multi-
processors (since 1997) (QNX, 2013). QNX Neutrino is a microkernel
fully compliance with the POSIX standard and requires an MMU to
work properly and to have address space separation between applicati-
ons and kernel. As every POSIX-like OS, QNX Neutrino has 256 prio-
rity levels, FP scheduling (if priorities are equals, two tasks are queued
in FIFO order or round-robin – SCHED FIFO and SCHED RR in the
POSIX nomenclature). The RTOS provides multiprocessor support
through processor affinity masks. Tasks have an affinity mask, which
indicates in which processor they may execute. Thus, QNX Neutrino
implements a FP scheduling with processor affinity: when a real-time
task is ready to execute, all processors on which it may execute (given
by its affinity) are checked sequentially, and if there is an idle processor
or a lower priority task, the task is resumed on that processor. If there
is no lower priority task, the newly task is enqueued in the ready queue
until one of the processors becomes available. The processor affinity
scheme can be used to implement clustered scheduling, and hence also
global and partitioned scheduling (depending on the cluster configura-
tion, see Section 2.4.2.3) (BRANDENBURG, 2011). QNX Neutrino does
not support any dynamic scheduling policy, such as EDF and LLF.

VxWorks is another well-known POSIX-like RTOS that supports
SMP systems (Wind River, 2013). The real-time multicore scheduling in
VxWorks is similar to the QNX Neutrino. Tasks have affinity masks
and are scheduled only on those processors that are in the affinity mask.
The scheduler uses FP and is preemptive. Also, the RTOS supports
mutual exclusion for tasks running on different processors. VxWorks is
able to assign and configure specific processor to handle interrupts.

Both QNX Neutrino and VxWorks are popular in the real-time
embedded system domain and are not used in systems that face severe
resource limitations (i.e., deeply embedded systems) or requires par-
ticular certification requirements. The 2013 embedded system market

3.2 Real-Time Operating Systems 145

states that VxWorks is used in 7% of all embedded system projects,
while QNX is the choice in 2% of the projects (UBM, 2013).

3.2.3 General-Purpose Operating Systems with Real-
Time Extensions

There is a trend in the academic real-time community nowadays
to, instead of building an RTOS from scratch, use a GPOS as base and
to add real-time features to it (e.g., real-time schedulers, memory par-
tition, or lowered interrupt latency) (BRANDENBURG, 2011). The most
advantages of this technique are the reduced development time and the
wide support for different multicore architectures. The disadvantages
are the inherent non real-time behavior of such GPOSes, which impact
the real-time tasks that are executed, and the “fixed” design choices,
which affect the range of applicable real-time extensions. Also, there
is the requirement of minimal resources; some embedded systems may
not have them and thus may not be able to execute the GPOS.

The most common base GPOS with real-time extensions is Li-
nux. Dozens of commercial and academic “real-time Linux” exist. They
can be divided into two groups: native kernels and para-virtualized
kernels (BRANDENBURG, 2011). In a native kernel, the Linux kernel
is the only present and it is responsible for providing real-time featu-
res. In this group, real-time tasks are treat as regular Linux processes.
In a para-virtualized Linux kernel, there is a real-time microkernel or
hypervisor between the hardware and the original Linux kernel. The
real-time microkernel has a higher priority than the original kernel (i.e.,
it is always executed before the original kernel), and is responsible for
scheduling real-time tasks (not Linux processes) and to handle inter-
rupts. Traditional Linux processes are executed in the original kernel.
In the following, we classify the related work in either native or para-
virtualized real-time Linux extensions and discuss the main projects in
each category.

Para-Virtualized Real-Time Linux Extensions. All stable
Linux versions prior to 2.4 executed every system call and interrupt
with interrupts disabled, that is, as a long non-preemptive section. In
the context of real-time systems, long non-preemptive sections insert
unacceptable blocking time. Thus, real-time extensions applied to early
Linux versions have chosen to design a work around to this problem and

146 3 RELATED WORK

to place a microkernel or a hypervisor between the hardware and the
Linux kernel. The Linux kernel is executed as a task of the real-time
microkernel or hypervisor and does not have full control of the hard-
ware and can be preempted at any time. The advantages of this design
are the low interrupt latency and the relative small changes required in
the Linux kernel (BRANDENBURG, 2011). The limitation is that real-
time tasks cannot access Linux services nor directly interact with Linux
processes. However, some para-virtualized kernels, such as the RTLi-
nux (BARABANOV, 1997), enable the communication between real-time
tasks and Linux processes by using non-blocking queues and buffers. In
summary, para-virtualized approaches try to co-exist with the original
Linux kernel, without modifying it. The provided real-time support en-
compasses P-FP scheduling with priority inheritance protocols. Besides
the RTLinux, two other well-known para-virtualized real-time Linux
extension are the Real-Time Application Interface (RTAI) (CLOUTIER
et al., 2000), which focuses on industrial applications, and Xenomai,
which is also used by industrial applications but has a compatibility
layer for legacy applications (GERUM, 2008).

Native Real-Time Linux Extensions. A native real-time
Linux extension directly modifies the Linux kernel to enhance its real-
time capabilities. Usually, the modifications are applied to the kernel
through a patch or the modified source code is made available to down-
load. Kansas University Real-Time Linux (KURT Linux) was one of the
first projects to introduce real-time capabilities to Linux kernel (SRINI-
VASAN et al., 1998). KURT Linux introduced the concept of high reso-
lution software timers, which is implemented in current Linux versions
as hrtimers (GLEIXNER; NIEHAUS, 2006). KURT Linux also supported
cyclic executive HRT schedulers, the load of static scheduler as modules
at run-time, and the ability to only schedule real-time tasks (no back-
ground Linux processes). The last KURT Linux patch was released in
2002 for the Linux version 2.4.18.

Advanced Real-Time Linux (ART Linux) is a real-time Linux for
robotics applications (ISHIWATA; MATSUI, 1998). ART Linux has been
used in the Open Humanoid Robotics Platform and humanoid robot
HRP-4C (KANEKO et al., 2009). According to Brandenburg (BRANDEN-
BURG, 2011), ART Linux is not well-documented nor well-known by
the real-time community. The Real-Time and Embedded Linux (RED
Linux) is a pioneer real-time patch for Linux to provide a flexible in-
frastructure to design and implement uniprocessor real-time schedu-

3.2 Real-Time Operating Systems 147

lers (WANG; LIN, 1998). The RED project did not target multiproces-
sors and it seems to be closed.

Oikawa and Rajkumar proposed the Linux/Resource Kernel (Li-
nux/RK), which is an implementation of the Portable RK in the Li-
nux kernel (OIKAWA; RAJKUMAR, 1999). Portable RK is a framework
that abstracts the resource management (e.g., CPU, network, and disk
bandwidth reservation) from a specific OS. Moreover, Portable RK pro-
vides an API to users, thus a developer when porting the framework
for a different OS, only needs to deal with the differences in the OS
APIs (OIKAWA; RAJKUMAR, 1999). However, for implementing the
Portable RK in the Linux kernel, the authors inserted a number of
callback hooks to send relevant scheduling events to the Portable RK
framework. The authors measured several run-time overhead sources
in the framework, but did not provide a comparison with other Linux-
based real-time implementations. Recent research topics in Linux/RK
include multicore processors, integration with real-time java, and re-
source reservation strategies. The last Linux/RK version was released
in early 2007.

Other real-time patches focused on improving the QoS and provi-
ding SRT support in the Linux kernel. QLinux (SUNDARAM et al., 2000),
Linux-SRT (CHILDS; INGRAM, 2001), and Adaptive Quality of Service
Architecture (AQuoSA) are examples of this type of patch. QLinux
provides a resource reservation scheme for the processor, and network
and disk bandwidth. Linux-SRT provides several resource reservati-
ons schemes similarly to QLinux. AQuoSA is a patch for Linux that
allows the interception of scheduling events and consequently, the im-
plementation of external schedulers (PALOPOLI et al., 2009). A resource
reservation module implements different algorithms, such as (CBS),
IRIS and GRUB. The module also implements an EDF scheduler to
manage the internal queues.

Several real-time patches for Linux have been proposed recen-
tly (for Linux 2.6 or superior). PREEMPT RT modifies Linux to
make it more deterministic and reduce the average of scheduling la-
tency (FU; SCHWEBEL, 2014). SCHED DEADLINE is an implemen-
tation of a real-time scheduling class using the Linux scheduling class
mechanism (FAGGIOLI et al., 2009). The scheduling class supports EDF
(P-EDF, C-EDF, and G-EDF) and CBS (ABENI; BUTTAZZO, 2004)
algorithms to provide temporal isolation among tasks. Furthermore,
SCHED DEADLINE uses the control groups (cgroups) API to natively

148 3 RELATED WORK

support multicore platforms and hierarchical scheduling.
ExSched is a scheduler framework that enables the implemen-

tation of different (real-time) schedulers as external plugins without
modifying the OS (ÅSBERG et al., 2012). ExSched hides all OS de-
pendencies, which allows different OSes to reuse the same plugin im-
plementation. An API is responsible for all communication between
user applications and the target OS, incurring in more execution time
overhead. The authors implemented some multicore real-time sche-
duling algorithms, such as partitioned and global FP schedulers, and
compared the run-time performance of ExSched multicore implemen-
tations to the SCHED FIFO Linux scheduler in terms of schedulability
ratio of generated task sets. For some cases, FP schedulers in ExSched
had worse performance than the Linux SCHED FIFO scheduler.

Advanced Interactive Real-time Scheduler (AIRS) is another
real-time extension for Linux designed on top of SCHED DEADLINE
scheduling class (KATO, 2012). AIRS increases the system performance
when multiple interactive real-time applications, like multimedia appli-
cations, run on a multicore processor. AIRS proposes two new con-
cepts: Flexible CBS (F-CBS) that improves the CPU bandwidth reser-
vation and the Window-constrained Migration and Reservation (EDF-
WMR) scheduler that improves the absolute CPU bandwidth available
for multicore real-time applications (KATO, 2012). In a comparison
carried out by the authors, AIRS delivered higher quality to simultane-
ous multiple videos than the existing real-time Linux extensions (e.g.,
SCHED DEADLINE, Linux/RK, and LITMUSRT) (KATO, 2012).

3.2.4 LITMUSRT

LInux Testbed for MUltiprocessor Scheduling in Real-Time
systems (LITMUSRT) is a native real-time extension to Linux. Due
to its importance for this work (it is used in the comparative experi-
ments2), LITMUSRT is described in more detail in a separated section.
LITMUSRT is implemented as a plugin (i.e., a patch) and allows diffe-
rent multiprocessor scheduling algorithms to be implemented as plugin
components using the available Linux infrastructure (CALANDRINO et
al., 2006). The current LITMUSRT version (2013.1) is based on Linux

2We choose LIT MUSRT to compare our work, because it has been used in
several research work recently and has an activity community.

3.2 Real-Time Operating Systems 149

3.10.5 and supports G-EDF, P-EDF, C-EDF, P-FP, and PFair schedu-
ling algorithms.

Figure 31 shows an overview of the LITMUSRT architecture. It
has four main parts: core infrastructure, scheduler plugins, userspace
interface, and userspace library and tools. The core infrastructure adds
a new and highest priority scheduling class to the traditional Linux
scheduler. As a consequence, LITMUSRT always executes the highest
priority jobs in advance of the Linux original scheduler (BRANDENBURG
et al., 2008). The core infrastructure also changes the Linux scheduler
to invoke the plugin initialization functions, scheduling and tick han-
dlers at run-time. At each timer interrupt interval (1 ms), the processor
invokes the tick handler. Linux invokes the scheduler handler at every
scheduling decision to select the next task to be executed (BRANDEN-
BURG; ANDERSON, 2009). The original Linux scheduler is not modified
and it is called when the LITMUSRT plugin is disabled.

Figure 31: Digram of the LITMUSRT main components. Adapta-
tion from (BRANDENBURG, 2011).

To ease the development of new scheduling policies, LITMUSRT

implement a scheduler plugin interface, which allows the implementa-
tion of new scheduling policies without the need to know the complete
Linux scheduling infrastructure. The developer chooses a scheduler plu-
gin before running real-time tasks. This scheduler plugin becomes the
active plugin, which will receive the forwarded kernel messages. The

150 3 RELATED WORK

interface has 13 functions, such as schedule to select the next process
to be scheduled, and tick to trigger the scheduler.

The userspace interface adds system calls and several virtual
character devices. Among the system calls, there are calls to get and
set task parameters and processor assignments, job control for real-time
processes, and measurement of system calls overhead (BRANDENBURG,
2011).

The liblitmus, a userspace library, provides an API to create and
control real-time tasks. Initially, tasks are created as non real-time and
specific liblitmus functions are called to initialize real-time settings and
per-task data structures and put a task in real-time mode. Additio-
nally, LITMUSRT also provides a tool, named Feather-Trace (BRAN-
DENBURG; ANDERSON, 2007), to collect and store events at run-time,
such as scheduling and release overheads. Feather-Trace adds the smal-
lest possible interference to the system. The tracing tool implements
a wait-free (no locks) FIFO-buffer to store events, which are collected
by the TSC, and is multiprocessor safe (i.e., allows multiple writers).
There is an addition of only one instruction to check if a traced event
is enabled or not. If an event is disabled, then only one instruction is
added compared to the case when there is no tracing code. The total
code size for obtaining and storing a timestamp in Feather-Trace is 61
instructions (for instance, about 0.017 µs in the platform used in our
experiments – Intel i7-2600 – assuming 1 cycle per instruction) (BRAN-
DENBURG; ANDERSON, 2007).

3.2.5 Summary

Generally, all the RTOSes reviewed in this sections that support
multicore processors are either POSIX-like or GPOS with real-time ex-
tensions. Few embedded RTOSes are designed for multicore processors.
Among those that have multicore support, the majority is proprietary
and difficult to get more details about their design and implementation.

The real-time community tends to use a GPOS with real-time
extensions. All of “real-time Linux” projects suffer from the inherent
non real-time aspect of Linux, higher run-time overhead (mainly the
OS-independent frameworks), and are tightly coupled to the Linux in-
frastructure. Global JLFP or JLDP schedulers are supported only by
SCHED DEADLINE and LITMUSRT patches. The support for me-

3.3 Run-Time Performance Monitoring 151

mory management mechanisms, such as cache partitioning, on those
works are limited by the Linux API (i.e., brk system call) and diffi-
cult to use. Differently, our work shows how an RTOS designed from
scratch allows better code reuse, smaller run-time overhead, and easier
memory management mechanisms than Linux-based approaches. With
the real-time support introduced by this work, EPOS is the first RTOS
designed from scratch to support partitioned and global FP, JLFP, and
JLDP multicore schedulers.

3.3 RUN-TIME PERFORMANCE MONITORING

Run-time performance monitoring through the use of HPCs has
received much more attention in recent years, mainly because PMUs are
offering a vast number of events that can be monitored and are useful
while performing online optimizations. Next, we review performance
monitoring APIs and tools in Section 3.3.1, and the main works that
use HPCs to improve OS decisions at run-time in Section 3.3.2.

3.3.1 Performance Monitoring APIs and Tools

The Performance API (PAPI) is the most used open source
cross-platform interface for HPCs (MUCCI et al., 1999; DONGARRA et
al., 2003). PAPI consists of a machine-dependent layer, a high-level
interface that provides access to read, start, and stop counters, and
a low-level interface that provides additional features. In this work,
we design and implement an API to manipulate HPCs. It is not our
target, however, to make a comparison between PAPI and our imple-
mentation. PAPI supports a wide range of platforms, was designed for
general-purpose computing systems, and has been under development
for more than 10 years. Instead, our interface is designed for embedded
applications, which usually have their requirements known at design
time. Thus, it is possible to generate only the needed code for the
application and nothing else.

Linux abstracts the usage of HPCs through a performance coun-
ter subsystem. A performance monitoring tool (perf) uses this subsys-
tem and allows developers to obtain and analyze the performance
of their applications. The tool also supports a command to record

152 3 RELATED WORK

data into files which can be later analyzed using a report command.
Other tools such as Intel Vtune (MALLADI, 2010) and AMD CodeA-
nalyst (DRONGOWSKI, 2008) offer a friendly interface to monitor perfor-
mance of processors and applications through the use of HPCs. Howe-
ver, embedded systems usually do not have such a control interface.

3.3.2 Run-Time OS Decisions

Several works use HPCs as an alternative to easily detect sharing
pattern among threads and help scheduling decisions in multicore pro-
cessors. Bellosa and Steckermeier were the first to suggest using HPCs
to dynamically co-locate threads onto the same processor (BELLOSA;
STECKERMEIER, 1996). Weissman uses HPCs to guide thread schedu-
ling in SMPs (WEISSMAN, 1998). His method is based on a model of
the shared cache state that takes as input the number of cache misses,
measured by HPCs during a scheduling quantum, and a graph repre-
senting the current shared state dependencies among threads. This
graph is induced by users annotations in the source code. The objec-
tive is to compute the effects of all threads’ working sets in the cache of
a processor. Based on the model, two scheduling policies are proposed.
Nevertheless, they do not consider the invalidation effects of data sha-
ring between threads running in different processors and do not provide
real-time guarantees.

Tam et al. use HPCs to monitor the addresses of cache lines
that are invalidated due to cache coherence activities and to construct
a summary data structure for each thread, which contains the addresses
of each thread that are fetching from the cache, for ccNUMA archite-
cutres (TAM et al., 2007). The scheduling mechanism is divided in four
phases. First, there is an association between the processor stall time
with the reasons that caused the processor to stall. The average num-
ber of cycles per instructions of an application is split in completed
cycles (i.e., at least one instruction was completed) and cycles that
cause the processor to stall (i.e., cycles that none instruction is com-
pleted). The cycles that cause the processor to stall are subdivided
according to a specific reason, such as misses in the Translation Lo-
okaside Buffer (TLB) and data cache misses. The data cache misses
are divided in their sources: local, representing the access to the cache
carried out by a core within the same chip, and remote, when there is a

3.3 Run-Time Performance Monitoring 153

cache access in another chip. In the second phase, when the number of
remote accesses reaches 20% of one billion of cycles, the scheduling me-
chanism detects data sharing among threads. The cache lines that are
invalidated due to the cache coherence protocol are monitored and the
summary data structure for each thread is built. The detection of sha-
red cache lines was implemented in the IMB Power5 processor, which
allows the collection of the last address that caused a L1 data cache
miss. Based on the information from this data structure, the scheduler
builds a cluster composed of a set of threads, and allocates a cluster to
a specific core. The last phase is ordering the groups according to the
amount of data. Thus, the group that has more data is allocated in the
core that has less threads. The main drawback of this method is the
dependency of a specific hardware event to detect the last address that
generated a L1 data cache miss, which is not available in most of the
current processors. Moreover, this approach does not provide real-time
guarantees.

Tam et al. extended the described work to support cache par-
titioning and detection of cache regions with bad performance (AZIMI
et al., 2009). The used cache partitioning method was page coloring.
HPCs determine the size of each partition at run-time by using the
RapidMRC technique, which uses the cache miss rate to estimate the
memory consumption of threads (TAM et al., 2009). The cache miss and
hit rates are used to build a map showing the access pattern to pages.
Based on this map, pages that are less accessed are mapped to other
cache regions (using page coloring).

West et al. (WEST et al., 2010) proposed an online technique ba-
sed on a statistical model to estimate per-thread cache occupation on-
line through the use of HPCs. The main contribution of this work is the
monitoring of cache hit numbers that represent the access frequency to
cache lines. Thus, the authors achieved a more precise estimation using
associative caches that implement the LRU cache line replacement po-
licy. However, data sharing among cores and real-time guarantees are
not considered by the authors.

Muralidhara et al. proposed a dynamic software-based partitio-
ning technique that distributes the shared cache space among threads
of a given application (MURALIDHARA et al., 2010). At the end of each
15 ms interval, the dynamic cache partitioning scheme uses hardware
performance counters, such as cache hit/misses, cycle, and instruction
counts for each thread, to allocate different cache regions based on in-

154 3 RELATED WORK

dividual thread performance. The objective is to speed up the critical
path, that is, the thread that has the slowest performance and, con-
sequently, improve the overall performance of the application. Cache
partitioning is performed either by using reconfigurable caches, where
the cache hardware structures are modified at run-time, or by modifying
the cache replacement algorithm used by the shared cache, where there
is no sudden reconfiguration but a gradual move towards the intended
partition. In this case, when a thread suffers a cache miss and the
number of cache ways that belong to it is less than the thread’s assig-
ned cache partition ways, a cache line belonging to some other thread
is chosen for replacement. If the number of cache ways belonging to
the thread is greater than or equal to the assigned number of ways, a
cache line belonging to the same thread is chosen for replacement. This
way, the cache is incrementally partitioned via the replacement policy.
Experimental results have shown a performance gain of up to 23% over
a statically partitioned cache (MURALIDHARA et al., 2010). The work
does not provide real-time guarantees.

Another work to address shared resource contention via sche-
duling was proposed by Zhuravlev et al. (ZHURAVLEV et al., 2010).
Their approach identifies the main problems that can cause conten-
tion in shared multicore processors (e.g., memory controller conten-
tion, memory bus contention, hardware prefetching, and cache space
contention). The authors propose two scheduling algorithms (Distri-
buted Intensity - DI, and Distributed Intensity Online - DIO). DI uses
a threads’ memory pattern classification as input and distributes th-
reads across caches such that the miss rates are distributed as evenly
as possible. DIO uses the same idea, but it reads the cache misses on-
line, through HPCs. DIO performed better than the Linux Completely
Fair Scheduler (CFS) both in terms of average performance as well as
execution time stability from different executions (ZHURAVLEV et al.,
2010). Zhuravlev et al. also provided a survey of scheduling techniques
that address shared resources in multicore processors to improve the
average execution time of general-purpose applications (ZHURAVLEV et
al., 2012).

Calandrino and Anderson use HPCs to count the number of ca-
che misses and estimate the WSS of each thread (CALANDRINO; AN-
DERSON, 2009). Based on the WSSs, a cache-aware real-time scheduler
selects threads to be scheduled in such a way that co-runner threads
do not thrash the shared cache memory.

3.4 Multicore Real-Time Scheduling 155

3.3.3 Summary

In general, the above related works that propose a performance
monitoring API or tool neither use nor design an efficient API to han-
dle the complexity of HPCs in embedded systems. In this thesis, we
propose a simple and lightweight API for a common PMU family avai-
lable in today’s multicore processors (the Intel family of PMUs). We
describe our API in Chapter 4.

Considering the related works that use HPCs to improve OS de-
cisions at run-time, only the work proposed by Tam et al. (TAM et al.,
2007) considers a scenario where threads/tasks share data (true or false
sharing), but does not provide real-time guarantees. The contention for
shared cache lines influences the application’s execution time and lead
to performance degradation and deadline losses. In Chapter 7, we pro-
pose a task partitioning algorithm that considers true and false sharing
of tasks to improve the schedulability of hard real-time applications. In
Chapter 8, we propose an online scheduling algorithm that uses HPCs
to dynamically detect the access to shared cache lines among real-time
and non real-time tasks and to discard non real-time tasks when they
interfere with real-time tasks.

3.4 MULTICORE REAL-TIME SCHEDULING

In this section we review the recent multicore real-time sche-
duling works. Section 3.4.1 presents multicore real-time scheduling
algorithms that extend global or partitioned approaches, which were
reviewed in Section 2.4.2. Section 3.4.2 presents recent works that in-
vestigated how the OS run-time overhead impacts the schedulability of
hard and/or soft real-time applications.

3.4.1 Scheduling Algorithms

Several scheduling algorithms have been proposed to provide
real-time guarantees for multicore applications. They are usually either
global or partitioned approaches. Considering the P-EDF algorithm,
some works propose new task partitioning, splitting, or admission con-
trol techniques (KATO; YAMASAKI, 2007; MASRUR et al., 2010; BURNS et

156 3 RELATED WORK

al., 2012). Additionally, semi-partitioning algorithms combine characte-
ristics from partitioning and global scheduling: they allow few tasks to
migrate between the processors to improve the system utilization (AN-
DERSON et al., 2005; KATO; YAMASAKI, 2008; BLETSAS; ANDERSSON,
2009). Other works compare different real-time schedulability tests for
G-EDF (GOOSSENS et al., 2003; BAKER, 2005a; BAKER, 2003; BARUAH,
2007; BAKER; BARUAH, 2009; BERTOGNA et al., 2005; BERTOGNA; CIRI-
NEI, 2007; BARUAH et al., 2009). In general, the performance evaluation
in these works considers the ratio of schedulable task sets. For exam-
ple, Bertogna and Baruah compared the main G-EDF schedulability
tests for HRT scenarios up to eight processors (BERTOGNA; BARUAH,
2011). Baker compared three G-EDF schedulability tests with P-EDF
approaches also in terms of the ratio of schedulable task sets (BAKER,
2005b).

In this work, we extended the G-EDF versus P-EDF comparison
made by previous related works. We compare eight G-EDF schedu-
lability tests with three P-EDF partitioning techniques (FFD, BFD,
and WFD) using synthetic task sets composed of different periods and
utilizations in a scenario with 100 processors.

Global schedulers based on different concepts have also been pro-
posed. Cho et al. proposed a new abstraction for task execution on
multiprocessors, named the time and local remaining execution-time
plane (T-L plane) (CHO et al., 2006). The entire scheduling over time
is the repetition of T-L planes of various sizes. Other global scheduling
algorithms are based on the proportional fairness, such as PFair (BA-
RUAH et al., 1996) and its variants, ER-Fair (ANDERSON; BLOCK, 2000),
QRfair (ANDERSON et al., 2003), PD2 Pfair (SRINIVASAN, 2003), e
DP-Wrap (LEVIN et al., 2010). PFair-based schedulers are optimal,
since they correctly schedule any feasible intra-sporadic task system on
m processors. However, PFair-based algorithms incur more run-time
overhead, because of more complex scheduling decisions and migration
rates. Their task models consider only periodic or sporadic tasks and
do not deal with shared data among tasks (SRINIVASAN et al., 2003).

Other real-time schedulers focus on different processor architec-
tural aspects, such as memory hierarchy. Calandrino and Anderson
proposed several heuristics to improve the performance on the cache
usage for SRT systems (CALANDRINO; ANDERSON, 2008). In their ap-
proach, tasks as organized as tasks with multiple threads (MTT). Each
MTT consists in periodic and sequential tasks with different execution

3.4 Multicore Real-Time Scheduling 157

times, but with the same period. Each MTT has a WSS that is shared
among all threads within that MTT. All cores are symmetric, share a
chip-wide L2 cache, and each core supports one hardware thread. The
main idea is to encourage the co-scheduling of jobs that do not thrash
the L2-cache, i.e., the sum of the WSS of each MTT must be less than
the shared cache size. To achieve this for the G-EDF scheduler, the
deadline of a job is promoted to allow it to execute before another job
with a largest WSS that would cause cache thrashing. The proposed
heuristics determine which job should be promoted and thresholds in-
form when a job should be promoted during a scheduling quantum. The
heuristics and thresholds are the following (CALANDRINO; ANDERSON,
2008):

• Cache-aware: this heuristic is used when cache utilization reaches
the cache utilization threshold. The scheduler chooses an MTT to
promote based on the remaining “un-utilized” cache C and “free”
cores N.

• Lost-cause: this heuristic is used when cache utilization reaches
the lost-cause threshold. Once this threshold is reached, it is
assumed that poor cache performance is inevitable during the
current quantum. Then, three different policies are used: (i)
revert to G-EDF; (ii) promote a MTT with the largest WSS; and
(iii) promote a MTT with the largest ratio between the WSS and
the number of threads in the MTT.

• Phantom tasks: if the system is not fully utilized, then it may be
possible to idle one or more cores to prevent thrashing. Thus, the
scheduler can choose to idle cores by promoting jobs of phantom
tasks, which are single-threaded tasks that have a period equal
to the hyperperiod of the real-time workload, an execution cost
of one, and a WSS of zero.

An experimental evaluation concluded that the best perfor-
mance, when comparing the heuristics with the original G-EDF
scheduler, was achieved by using an utilization threshold of 0%, the
cache-aware heuristic that promotes the job with smaller WSS, the
lost-cause heuristic that uses G-EDF and phantom tasks. However,
there are some limitations in the proposed approach. First, the WSS
of each task must be known as well as the shared cache size. Second,
the scheduler tries to schedule tasks within the same MTT that share

158 3 RELATED WORK

the same memory region. Consequently, when two threads from the
same MTT access the same data, the cache coherence protocol will
delay the MTT’s execution time. This delay is not considered by the
authors.

Later, Calandrino and Anderson extended the proposed work by
implementing the best heuristic (as described above) in the Linux ker-
nel and using HPCs to estimate the WSS of each MTT (CALANDRINO;
ANDERSON, 2009). A cache profiler measures the total cache miss num-
ber during a scheduling quantum, divides the cache miss number by the
number of jobs scheduled in that quantum, and multiplies the obtained
value by the cache line size. Thus, the profiler obtains an estimative
of the WSS for one MTT. However, two assumptions are made: (i)
the ith job of a task T and the jth job of a task U , from the same
MTT, do not share data; and (ii) the monitored jobs do not thrash the
shared cache. The implemented algorithm was compared with G-EDF
and obtained an improvement of up to 7% in the WCET of a multime-
dia application. The two assumptions limit the usage of the proposed
approach, because applications may consume more memory than the
shared cache size and tasks may share data.

FPCA is another cache-aware scheduling algorithm that divides
the shared cache space into partitions (GUAN et al., 2009). The used
cache partitioning mechanism is page coloring. Tasks are scheduled in
a way that, at any time, any two running tasks’ cache spaces (e.g., a
set of partitions) are non-overlapping. A task can execute only if it
gets an idle core and enough cache partitions. The authors proposed
two schedulability tests, one based on a linear program (LP) problem
and another one as an over-approximation of the LP test. Tasks are
not preemptive and the algorithm is blocking, i.e., it does not schedule
lower priority ready jobs to execute in advance of higher priority even
though there are enough available resources.

A well-known metric to evaluate partitioning algorithms is the
approximation ratio, which compares the number of bins needed by
a bin packing heuristic A to pack a set of items, with the number
of bins needed by an optimal algorithm. Coffman et al. presents a
survey of bounds on approximation ratios of many bin packing heuris-
tics (COFFMAN JR. et al., 1997). Hochbaum and Shmoys have designed
a polynomial-time approximation scheme (PTAS) that partitions any
task system that can be partitioned upon a given platform by an opti-
onal algorithm by augmenting resources (in terms of faster processors)

3.4 Multicore Real-Time Scheduling 159

as compared to the resources available to the optimal algorithm (HO-
CHBAUM; SHMOYS, 1987). However, this algorithm has very poor im-
plementation efficiency (BARUAH, 2013). Chattopadhyay and Baruah
adapted the PTAS algorithm to obtain a better implementation effi-
ciency (CHATTOPADHYAY; BARUAH, 2011). Baruah proposed the use
of the speed up factor in conjunction with utilization bounds to better
characterize the performance of different partitioning algorithms (BA-
RUAH, 2013). The speedup factor of an algorithm A is the smallest
number f such that any task system that can be partitioned by an
optimal algorithm upon a particular platform can be partitioned by
A in a platform in which each processor is f times as fast (BARUAH,
2013). The results indicated that the best algorithms are any of the
reasonable allocation algorithms that first sort the tasks according to
non-increasing order of utilization.

Starke and Oliveira proposed a cache-aware partitioning algo-
rithm that assigns tasks to processors according to their WCET and
CPMD (STARKE; OLIVEIRA, 2013). The utilization of a task takes the
CPMD into consideration: U∗i = ei+∆cpd

i
pi

. Tasks are sorted by non-
increasing U∗i and assigned to processors according to the BFD heuris-
tic and using the DM scheduling policy. The authors added the CPMD
to the RTA test and used the test as the capacity bound of a processor.
The CPMD (∆cpd

i) as well as the other task parameters were randomly
generated. The evaluation considering these generated parameters has
shown a better schedulability ratio than the original BFD heuristic.

Lindsay proposed a partitioning algorithm for SRT systems that
evenly distributes the WSS of the tasks on all cores in order to re-
duce cache conflicts and capacity-related cache misses (LINDSAY, 2012).
The algorithm is named the Largest Working set size First, Grou-
ping (LWFG). LWFG is based on the next fit decreasing bin packing
heuristic, ordering the tasks by their decreasing WSS. The author relies
on the notion of cache distance of NUMA architectures to further op-
timize the partitioning. This is only used for tasks that share common
memory area(s) and are gathered into groups. However, it is unclear
how the common memory area defines a group. If the next-fit heuristic
fails to find a core with sufficient capacity to partition the group, the
task that shares the least memory with the first task is removed from
the group, and partitioning is retried with the smaller group. The eva-
luation using a real-time patch in the Linux kernel (ChronOS Linux)
has shown that in some cases, LWFG has an improvement of instruc-

160 3 RELATED WORK

tions per cycles of up to 15% and decreases the maximum tardiness by
up to 60% when compared to common bin packing partitioning heu-
ristics (WFD, FFD, and BF). LWFG fails to provide HRT guarantees,
because it divides tasks of a group that shares memory and partitions
these tasks in different cores. Consequently, the cache coherence proto-
col may invalidate shared cache lines, thus delaying the tasks’ execution
time.

Nemati et al. also proposed a partitioning algorithm that groups
tasks with shared resources and assigns the entire group to a same
core (NEMATI et al., 2009). Resource sharing among tasks is identified
by a matrix. By analyzing this matrix, the algorithm calculates a task
weight through a cost function. Then, tasks are ordered according to
their weight and inserted into a task group if it satisfies a schedulability
test. The proposed approach was not evaluated, neither simulated nor
in a real hardware.

Suzuki et al. proposed two algorithms, one based on solving
a mixed-integer linear problem and another one based on solving a
variant of the knapsack problem, for assigning tasks to processor to
decrease conflicts at the cache and DRAM bank levels (SUZUKI et al.,
2013). The proposed algorithms use cache and bank coloring together.
The objective is to optimize the assignment of cache colors to tasks and
bank colors to processors and avoid cache and bank interference among
tasks. The authors have shown by experimentation that cache and
bank coloring together increases the system performance. However,
the allocation algorithms were not evaluated in a real hardware nor
in terms of real-time guarantees. Moreover, transitive color sharing
seems not to be treated by the proposed memory interference model.
Our page coloring mechanism could be easily extended to also support
bank coloring.

In this work, we use HPCs to detect when non real-time tasks
(BE tasks) interfere with real-time ones. Then, we prevent BE tasks
from running to decrease the contention for shared cache lines and
to allow real-time tasks to meet their HRT and SRT deadlines. We
also propose a color-aware task partitioning algorithm, which groups
tasks that use the same color and partitions each group into available
cores to provide HRT guarantees. Chapter 7 describes the partitioning
algorithm and Chapter 8 describes the dynamic scheduler.

3.4 Multicore Real-Time Scheduling 161

3.4.2 Run-time Overhead and Implementation Tradeoffs

Several multicore real-time schedulers were evaluated conside-
ring run-time overhead using LITMUSRT (see Section 3.2.4 for an
overview). Calandrino et al. measured run-time overheads of G-EDF,
P-EDF, and two variants of the PFair algorithm (CALANDRINO et al.,
2006). Brandenburg et al. investigated the scalability in terms of
number of processors in partitioned and global schedulers (BRANDEN-
BURG et al., 2008). Brandenburg and Anderson discussed how the im-
plementation of the ready queue, quantum-driven versus event-driven
scheduling, and interrupt handling strategies affect a global real-time
scheduler, considering the different run-time overhead sources in each
implementation (BRANDENBURG; ANDERSON, 2009). The results in-
dicated that implementation issues can impact schedulability as much
as scheduling-theoretic tradeoffs. Furthermore, in their case study, the
system achieved the best performance by using a fine-grained heap,
event-driven scheduling, and dedicated interrupt handling. An empiri-
cal comparison of G-EDF, P-EDF, and C-EDF on a 24-core Intel plat-
form, assuming run-time overhead (e.g., release, context switch, and
scheduling) and CPMD, has concluded that P-EDF outperforms the
other evaluated algorithms in HRT scenarios (BASTONI et al., 2010a).
Moreover, the same study suggests the use of “less global” approaches
(P-EDF and C-EDF-L2, which cluster at the cache level 2) in con-
trast of “more global” approaches (G-EDF and C-EDF-L3) for HRT
applications. Bastoni et al. investigated implementation tradeoffs in
semi-partitioned schedulers (BASTONI et al., 2011). Mollison and Ander-
son proposed a userspace scheduler implemented on top of Linux that
supports C-EDF (MOLLISON; ANDERSON, 2012). The authors measu-
red OS overhead, including releasing, scheduling and context switching,
and compared the obtained values with LITMUSRT. They concluded
that the overheads of both implementations are roughly comparable.

Following the same research line, Lelli et al. compared the per-
formance of partitioned, clustered, and global RM and EDF scheduling
algorithms on top of Linux, focusing on SRT applications (LELLI et al.,
2012). The authors concluded that the migration overhead is not more
costly than a context switch, in an AMD Opteron NUMA platform
with 48 cores. In addition, the clustered variants were more efficient
than the global approaches mainly due to reduced run-time overhead,
as was also noted by (BASTONI et al., 2010b). Other studies created

162 3 RELATED WORK

micro-benchmarks to quantify context switch overhead on specific pro-
cessors and/or situations, e.g., hardware interrupts, program data size,
and cache performance (MOGUL; BORG, 1991; DAVID et al., 2007; LI et
al., 2007; TSAFRIR, 2007).

In general, the related works that measured run-time overhead
in multicore real-time schedulers used Linux as base OS. We extended
these works by comparing LITMUSRT (that uses Linux) with EPOS
RTOS in terms of run-time overhead and schedulability ratio. We
choose LITMUSRT, because several works that measure the run-time
overhead were implemented on top of LITMUSRT and it has an active
community. To the best of our knowledge, EPOS is the first open-source
research RTOS that supports global, partitioned, and clustered schedu-
lers in the context of multicore real-time systems. We believe that this
OS can be extensively and easily used to conduct research in the area,
due to higher predictability and smaller overhead, obtaining more pre-
cise results for HRT scenarios. Chapter 5 shows the run-time overhead
comparison between EPOS and LITMUSRT. In the next section we
present a summary of the analyzed multicore (real-time) scheduling
algorithms.

3.4.3 Summary

Table 11 summarizes the main characteristics of the analyzed
multicore (real-time) scheduling algorithms. The works based on pro-
portional fairness, although optimal, are difficult to implement in prac-
tice and have a larger run-time overhead due to higher scheduling de-
cision and migration rates (SRINIVASAN et al., 2003). The FPCA al-
gorithm provides HRT guarantees, but the used task model is simples
and difficult to be found in real systems.

Considering the usage of HPCs, in general, the related works
use the shared cache miss number to help the OS to estimate the cache
space when performing cache partitioning at run-time. Furthermore,
the most used cache partitioning method is page coloring. The work
proposed by Tam el al. is the only that deals with the delay caused by
the cache coherence protocol. However, it does not provide real-time
guarantees. Only the scheduler proposed by Calandrino and Ander-
son (CALANDRINO; ANDERSON, 2008) uses the possibility of stopping
a core (“idle”) to execute real-time tasks for a while to avoid cache th-

3.4 Multicore Real-Time Scheduling 163

rashing. Among the real-time schedulers, none of them explicitly deals
with shared data among real-time tasks.

In this work, we use HPCs to detect when non real-time tasks in-
terfere with real-time tasks. Then, the scheduler avoids to co-schedule
real-time tasks with non real-time tasks that interfere with each other.
The objective is to guarantee the execution of real-time tasks within
their deadlines. We also propose a task partitioning algorithm for task
sets composed only of HRT tasks. Our task partitioning approach is
similar to the LWFG algorithm. However, our partitioning algorithm
assumes that a cache partitioning mechanism based on page coloring is
available and each task uses a set of colors. Thus, it is possible to deter-
mine which tasks share cache lines by inspecting the colors of each task.
In contrast, in the LWFG approach, it is not clear how the algorithm
is aware of data sharing among tasks. Moreover, LWFG is proposed
for SRT system, since whenever the next fit heuristic fails to partition
a task group, the task that shares the least memory with the first task
is removed from the group, and partitioning is retried with the smaller
group. Thus, inter-core interference is not avoided, which may incur in
deadline losses. Our partitioning algorithm limits the utilization of a
task group in the processor capacity given by the scheduling algorithm
to avoid inter-core interference. Furthermore, the performance evalu-
ation of LWFG was carried out using a real-time patch for the Linux
kernel, which may limit the observed gains, because the inherent non
real-time behavior of Linux, as will be shown in Chapter 5. Instead, we
evaluate our algorithm using an RTOS designed from scratch, without
the excessive run-time overhead introduced by a GPOS. Chapter 7
presents our partitioning algorithm and its evaluation, while Chapter 8
presents the design, implementation, and evaluation of the dynamic
scheduler.

164 3 RELATED WORK
T

able
11:

C
om

parative
table

of
the

features
of

the
analyzed

m
ulticore

(real-tim
e)

scheduling
algo-

rithm
s.

A
lgorith

m
Featu

res
D

eal
w

ith
shared

m
e-

m
ory

M
em

ory
parti-

tioning
H

P
C

s
U

sage
R

eal-tim
e

guarantees
Idle
core

Tam
et

al.
(T

A
M

et
al.,

2007)
Y

es
N

o
L1

data
cache

m
is-

ses
and

num
ber

of
rem

ote
accesses

N
o

N
o

A
zim

i
et

al.
(A

Z
IM

I
et

al.,
2009)

Y
es

Y
es

M
iss

rate
(RapidMRC)

N
o

N
o

Zhuravlev
et

al.
(Z

H
U

R
A

-
V

L
E

V
et

al.,2010)
N

o
N

o
C

ache
m

iss
rate

N
o

N
o

W
est

et
al.

(W
E

ST
et

al.,
2010)

N
o

N
o

C
ache

m
isses

and
hits

N
o

N
o

Pfair
(B

A
R

U
A

H
et

al.,
1996)

and
variations

(A
N

-
D

E
R

SO
N

;
B

L
O

C
K

,
2000;

A
N

D
E

R
SO

N
et

al.,
2003;

SR
IN

IV
A

SA
N

,
2003;

L
E

-
V

IN
et

al.,2010)

N
o.

Tasks
are

indepen-
dent

N
o

N
o

H
ard

N
o

C
ache-aw

are
schedu-

ler
(C

A
L

A
N

D
R

IN
O

;
A

N
D

E
R

SO
N

,2008)

N
o

Try
to

schedule
tasks

that
share

data
at

the
sam

e
tim

e

U
se

inform
a-

tion
from

the
W

SS

N
o

Soft
Y

es

C
ache-aw

are
scheduler

w
ith

H
P

C
(C

A
L

A
N

-
D

R
IN

O
;

A
N

D
E

R
SO

N
,

2009)

N
o

Schedule
jobs

that
do

not
thrash

the
cache

C
ache

m
isses

Soft
Y

es

F
P

C
A

(G
U

A
N

et
al.,2009)

N
o

Tasks
are

indepen-
dent

P
age

coloring
N

o
H

ard
N

o

165

4 REAL-TIME SUPPORT ON EPOS

In this chapter1, we present our extensions to the Embed-
ded Parallel Operating System (EPOS) to support and improve
the predictability of multicore real-time applications. EPOS is a
multi-platform, object-oriented, component-based, embedded system
framework designed following the Application-Driven Embedded Sys-
tem Design (ADESD) methodology (FRÖHLICH, 2001; EPOS, 2014).
EPOS has been used in several academic and industrial research
and development projects in the last years, such as software-defined
radio (MÜCK; FRÖHLICH, 2011), wireless sensor networks (WANNER;
FRÖHLICH, 2008), digital TV (LUDWICH; FRÖHLICH, 2011), uniproces-
sor real-time schedulers implemented in hardware (MARCONDES et al.,
2009), and energy-efficient applications (FRÖHLICH, 2011).

The main contributions of this chapter are:

• We propose a HPC API for monitoring hardware events specifi-
cally designed for multicore (real-time) embedded systems. The
API is designed following the ADESD concepts (FRÖHLICH, 2001)
and it is able to provide to OSes a simple and lightweight inter-
face for handling the communication between applications and
PMUs. Through an API usage example, in which a hardware
event is used by the OS while making scheduling decisions, we
were able to identify the main drawbacks of the current PMUs.
As a consequence, we propose a set of guidelines, such as features
for monitoring address space intervals and OS trap generation,
that can help hardware designers to improve the PMU capabili-
ties in the future, considering the embedded operating system’s
point of view.

• We show how a well-designed object-oriented component-based
1Contents of this chapter appear in the following published papers:

G. Gracioli, A. A. Fröhlich, R. Pellizzoni, and S. Fischmeister, Implementation and
evaluation of global and partitioned scheduling in a real-time OS, Real-Time Sys-
tems, v. 49, p. 1-48, 2013.
G. Gracioli and A. A. Fröhlich, An Experimental Evaluation of the Cache Par-
titioning Impact on Multicore Real-Time Schedulers, In Proceedings of the 19th
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2013.
G. Gracioli and A. A. Fröhlich, An embedded operating system API for monito-
ring hardware events in multicore processors, Workshop on Hardware-support for
parallel program correctness, 2011.

166 4 REAL-TIME SUPPORT ON EPOS

RTOS (EPOS) allows code reuse of system components (e.g.,
scheduler, thread, semaphore, etc) and easy global, clustered, and
partitioned real-time scheduling extensions. To the best of our
knowledge, EPOS is the first open-source RTOS that supports
global and clustered schedulers. We believe that EPOS can be
used to conduct research in multicore HRT due to higher predic-
tability and smaller overhead compared to real-time patches for
Linux (this comparison is done in Chapter 5).

• We design and implement an original cache partitioning mecha-
nism in EPOS. The mechanism is able to assign partitions to
the OS internal data structures and does not rely on any specific
hardware support. Additionally, two different memory allocation
approaches are supported that define from which partition data
should be allocated: the user-centric approach, in which the de-
veloper inserts code annotations to define the partition, and the
OS-centric approach, in which EPOS chooses the partition based
on a task ID.

The rest of this chapter is organized as follows. Section 4.1 shows
the hardware mediator concept and examples, as well as the design and
implementation of an API of a PMU. Section 4.2 presents the design
and implementation of the real-time multicore support on EPOS. Fi-
nally, Section 4.3 presents the design and implementation of a memory
management (i.e., page coloring) mechanism in EPOS that provides
shared cache partitioning for real-time applications.

4.1 HARDWARE MEDIATORS

In EPOS, platform-independent system components implement
traditional OS services, such as threads and semaphores. Hardware
mediators implement platform-specific support (POLPETA; FRÖHLICH,
2004). Hardware mediators are functionally equivalent to device dri-
vers in Unix, but do not build a traditional HAL. Instead, hardware
mediators sustain the interface contract between software and hardware
by means of static metaprogramming techniques and inlining code that
“dilute” mediator code into components at compile time (no calls, no
layers, no messages; mostly embedded assembly). Figure 32 illustrates
the process of “diluting” the mediators code at compile time. It is im-

4.1 Hardware Mediators 167

portant to note that the final system image only contains the code of
the used mediators (POLPETA; FRÖHLICH, 2004).

(a)

(b)

Figure 32: During the system compilation, hardware mediators are
diluted into components. (a) hardware mediators before compila-
tion and (b) hardware mediators after compilation.

Figure 33 shows part of the CPU hardware mediator family. The
IA32 mediator declares the cas (compare and swap) method as inline.

168 4 REAL-TIME SUPPORT ON EPOS

1 class CPU Common
2 {
3 ...
4 static int cas(volatile int & value, int compare, int

replacement) {
5 int old = value;
6 if (value == compare) {
7 value = replacement;
8 }
9 return old;

10 }
11 ...
12 }
13
14 class IA32: public CPU Common
15 {
16 ...
17 static int cas(volatile int & value, int compare, int

replacement) {
18 ASMV(”lock cmpxchgl %2, %3\n”
19 : ”=a”(compare)
20 : ”a”(compare), ”r”(replacement), ”m”(value)
21 : ”memory”);
22 return compare;
23 }
24 ...
25 };

Figure 33: A part of the IA32 CPU hardware mediator. The cas
method is declared as inline.

The compiler inserts the cas code into the components that use the
method at compile time, as exemplified by Figure 32, without any calls
or layers. Note that if the target processor does not support bus locking
(e.g., the lock instruction at line 18), the CPU Common class provides
a generic implementation that can be reused in uniprocessor systems.

4.1.1 Performance Monitoring Unit

HCPs are special registers available in most of the modern micro-
processors through a hardware PMU, which provides access to counting
and/or sampling hardware events at run-time. These registers can be

4.1 Hardware Mediators 169

used together with OS techniques, such as scheduling and memory ma-
nagement, to monitor and identify performance bottlenecks and thus
carry on dynamic optimizations (see Section 3.3.2 for a comprehensive
review on recent works that have used HPCs to this purpose).

As the utilization of multicore processors in the embedded (real-
time) system domain is increasing, an API for handling the complexity
of HPCs specifically designed to this domain is desirable. The current
HPCs APIs, initially proposed to general purpose computing, such as
PAPI (DONGARRA et al., 2003) and Intel perf (MALLADI, 2010), are not
the most suitable for embedded systems, because they can use a subs-
tantial amount of resources, which makes the communication between
software and hardware PMUs slower, or require the initialization and
creation of lists or event sets that decrease the performance. Moreover,
those APIs provide several functionalities that are not interesting for
an embedded application, such as user-defined events or performance
modeling metrics. Hence, an API specifically tailored for the applica-
tion’s needs delivers the meaningful functionality with a lower run-time
overhead.

In this section, we propose a HPC API for monitoring hardware
events specifically designed for embedded multicore systems. The
proposed performance monitoring API was designed following the
ADESD methodology. ADESD is a methodology to guide the develop-
ment of application-oriented operating system from domain analysis
to implementation (FRÖHLICH, 2001). ADESD is based on the well-
known domain decomposition strategies found in Family-Based De-
sign (FBD) (PARNAS, 1976), Object-Oriented Design (OOD) (BOOCH,
2004), Aspect-Oriented Programming (AOP) (KICZALES et al., 1997),
and Component-Based Design (CBD) (SANGIOVANNI-VINCENTELLI;
MARTIN, 2001) in order to define components that represent significant
domain entities.

Figure 34 shows an overview of the ADESD methodology. The
problem domain is analyzed and decomposed into independent com-
ponents or abstractions2 that are organized as members of families,
as defined by FBD. To reduce environment dependences and to in-
crease abstractions re-usability, ADESD aggregates aspect separation
from AOP to the decomposition process. Hence, it is possible to iden-
tify scenario variations and non-functional properties to model them as

2In EPOS, a component is a C++ class with a well-defined interface and beha-
vior. Abstractions are user-visible components.

170 4 REAL-TIME SUPPORT ON EPOS

scenario aspects that crosscut the entire system. The scenario adap-
ter wraps a component and applies a corresponding set of aspects to
it (FRÖHLICH; SCHRÖDER-PREIKSCHAT, 2000).

Domain
Problem

Family

Infl. Inter.

MemberMember Member

Member

aspect
feature
config.

adapter

adapter

adapter

Scenario

aspect

aspect

Abstractions
Families of

Frameworks

Figure 34: ADESD methodology overview.

Families of components are visible to application developers th-
rough Inflated Interfaces that export their members as an unique “su-
per component”. These inflated interfaces allow developers to postpone
the decision about which component should be used until enough con-
figuration knowledge is acquired. An automatic configuration tool is
responsible for binding an inflated interface to one of the family mem-
bers, choosing the appropriate member that realizes the required in-
terface, independently of whether they are implemented in software or
hardware.

The proposed monitoring infrastructure is composed by a PMU

4.1 Hardware Mediators 171

hardware mediator family and a platform-independent component. The
interface of this component is used by application developers. Moreo-
ver, the component uses the hardware mediators in order to configure
and read the HPCs. In the next subsections we present the hardware
mediator family, the OS component, an example of how to use the API,
and a practical use on OS scheduling.

4.1.2 PMU Hardware Mediator Family

We have designed a hardware mediator interface for the Intel
PMU family. Figure 353 shows the UML class diagram of the interface.
Intel processors, depending on the microarchitecture (e.g., Nehalem,
Core, Atom, etc), have different PMU versions. Each version provides
different features and a variable number of HPCs. For example, the
PMU version 2 has two performance counters that can be configured
with general events and three fixed performance counters that count
specific events, while the PMU version 3 provides additional support
for simultaneous multi-threading, up to 8 general-purpose performance
counters, and precise event based sampling (Intel Corporation, 2011). Yet,
pre-defined architectural events, such as unhalted core cycles, last-level
cache misses, and branch instruction retired, are shared by all the three
versions.

Configuring an event involves programming performance event
selection registers (IA32 PERFEVTSELx) corresponding to a speci-
fic physical performance counter (IA32 PMCx). In order to select an
event, the PERFEVTSELx register must be written with the selected
event, unit, and several control flags (also called as masks). The unit
mask qualifies the condition that the selected event is detected. For
example, to configure the PMC0 to count the number of snoop respon-
ses to bus transactions, the PERFEVTSEL0 must be written with the
EXT SNOOP event mask (0x77) and two unit masks that define the
conditions when the event should be counted.

The designed PMU hardware mediator family represents the des-
cribed Intel PMU organization. A base class IA32 PMU implements
the Intel PMU version 1 and common services for both versions 2 and

3An underline in a UML class diagram defines a static attribute or method. A
plus (+) signal defines a public attribute or method and a minus (-) signal a private
attribute or method.

172 4 REAL-TIME SUPPORT ON EPOS

<<enumeration>>

PMC

PMC0
PMC1

.....
PMC7

PMC_BASE_ADDr=0xC1

MM REGS

.....

EVTSEL0=0x186

FIXED_CTR0=0x309

PMU_Common

− _num_counters : uint

− _max_events : int

− _cpu_info : cpuinfo_x86

− _num_fixed_counters : uint

− _intel_cap : perf_capabilities

+ cpuid(op : uint, *eax : uint,...)

+ config(reg : uint, flags : uint)

+ rdmsr(reg : uint, out : ulong

+ wrmsr(reg : uint, value : uint)

+()

− _version : int

IA32_PMU

<<enumeration>>

Event Masks
<<enumeration>>

Events

+ config(reg : uint, flags : uint)

+ enable(reg : uint)

+()

IA32_PMU_Version3

Intel_Core_Duo_PMU

IA32_PMU_Version2

Intel_Core_Micro_PMU

Intel_Nehalem_PMU

Figure 35: UML class diagram for the proposed PMU hardware
mediator API.

3, including the pre-defined architectural events. Also, this class de-
clares memory mapped registers and PMCs. The IA32 PMU Version2
and IA32 PMU Version3 extends the base class and implement specific

4.1 Hardware Mediators 173

services only available on those versions. Finally, available hardware
events are listed by specific microarchitecture classes. For instance, In-
tel Core Micro PMU and Intel Nehalem PMU list all available events
masks for the Intel Core and Intel Nehalem microarchitectures, respec-
tively.

The hardware mediator interface can be used by platform-
independent components. Those components are responsible for
implementing “intelligent” logic by using the mediators. For instance,
event ratios such as Cycles per Retired Instruction (CPI), paralleli-
zation ratio, modified data sharing ratio, and bus utilization ratio,
combine two or more hardware events in order to provide useful insight
into the application performance issues (MALLADI, 2010). Moreover,
a platform-independent component could also multiplex the hardware
counters in order to overcome the limitation on the number of hardware
counters. Multiplexing techniques divide the usage of counters over
the time, providing to users a view that there exists more hardware
counters than processors really support (DONGARRA et al., 2003). We
also propose a performance monitor abstraction, which is described
below.

4.1.3 Performance Monitor

Figure 36 shows the performance monitor (Perf Mon). It pro-
vides a set of methods to configure and read several event ratios and
specific hardware events, such as last-level cache misses and L1 data
cache snooped. The component hides from the users all the complexity
of configuring, writing, and reading the hardware counters. Moreover,
it also provides means for handling possible overflow in the counters.

The performance monitoring component uses the previously
presented hardware mediator family. However, due to function
inlining, the code of the mediators is dissolved into the compo-
nent. For example, consider the code in Figure 37. There is a
method for configuring the event CPU CLK UNHALTED BUS4

and another method for reading the event. The code of the

4This event counts the number of bus cycles while the core is not in the halt
state. This event gives a measurement of the elapsed time while the core was not
in the halt state, by dividing the event count by the bus frequency. The core enters
the halt state when it is running the HLT instruction (Intel Corporation, 2011).

174 4 REAL-TIME SUPPORT ON EPOS

− _overflow_control : ulong long

+ Perf_Mon

− reset_pmc0()

− reset_pmc1()

− read_pmc0() : Reg64

− read_pmc1() : Reg64

+ llc_misses()

+ get_llc_misses() : Reg64

+ l1_data_cache_snooped()

+ get_l1_data_cache_snooped() : Reg64

Perf_Mon

+()

PMU

Figure 36: Performance monitoring OS component.

mediator Intel Core Micro PMU::config() is diluted into the
enable cpu clk unhalted bus() method, thus there is no overhead
associated to method calls.

At the same way, the code for reading the performance coun-
ter 0 is diluted into the get cpu clk unhalted bus() and no method
calling or argument passing is generated in the final system image.
Consequently, the generated image only aggregates the code needed by
the application and nothing else. In the future, we plan to add into
the component and the hardware mediator family a support for other
PMU families, as those found in the ARM and PowerPC processors.
To this end, we plan to make a complete domain analysis and extracted
the common events of each PMU family. Thus, it will be possible to
add a platform-independent layer for all PMUs. Moreover, we want to
improve the PMU infrastructure, adding support for multiplexing and
interrupt generation.

4.1.4 API Usage

In order to exemplify the API usage, we have designed a ben-
chmark to generate shared cache memory invalidations in a multicore
processor (Intel Core 2 Q9550). The benchmark is composed of two
versions of an application: one sequential and another parallel. Both
applications execute the same code (2 functions), but the parallel runs

4.1 Hardware Mediators 175

1 ...
2 class Perf Mon
3 {
4 public:
5 ...
6 void enable cpu clk unhalted bus() {
7 //configure PMC0 to monitor the

CPU CLK UNHALTED BUS event
8 Intel Core Micro PMU::config(PMU::EVTSEL0, (

Intel Core Micro PMU::CPU CLK UNHALTED BUS |
PMU::USR | PMU::OS | PMU::ENABLE));

9 }
10
11 Reg64 cpu clk unhalted bus() {
12 return read pmc0();
13 }
14 ...

Figure 37: Perf Mon using the hardware mediator. The hardware
mediator code is “dissolved” into the component at compile time.

the two functions (in two different threads) in different cores at the
same time and share two arrays of data. We also implemented a third
version (best-case), in which both functions execute in parallel but do
not share data. The objective is to demonstrate the utility of the pro-
posed API in a multicore processor.

Figure 38 shows how the API is used by the parallel and best-case
applications. At the beginning of a thread (func0), the performance
monitoring component is created and the method for monitoring the
number of snoops in the L1 data cache is started. At the end of the
function, the hardware event is read and printed in the screen. For the
sequential version, the performance monitoring component is created in
the main function, since the two functions are executed in a sequential
order in the same core. We choose this event because it represents
memory coherence activities between the cores.

The benchmark, as well as the monitoring infrastructure, was
implemented on top of EPOS. Each application was executed 10 times
in the Intel Core 2 Q9550 processor, then we extracted the average num-
ber of snoops for each of them. The arrays’ size was set to 8 MB (4 MB
each). Each function has a loop with 10000 repetitions in which math
operations are executed using the data in the arrays. Figure 39 shows

176 4 REAL-TIME SUPPORT ON EPOS

1 ...
2 Semaphore s;
3 ...
4 int func0(void)
5 {
6 #ifndef SEQUENTIAL
7 Perf Mon perf0;
8 perf0.l1 data cache snooped();
9 #endif

10 register unsigned int sum0;
11
12
13 #ifndef SEQUENTIAL
14 s .p();
15 cout << ”\nL1 data cache snooped func0 = ” << perf0.

get l1 data cache snooped() << ”\n”;
16 s .v() ;
17 #endif
18 }
19 ...

Figure 38: An example of how to use the proposed API.

the measured values. We can clearly see the difference among the three
applications. The sequential and best-case applications have obtained
a similar number of events. The parallel one obtained about 3 orders of
magnitude more events and was slower than the sequential one. This
confirms the software behavior – each function in the parallel appli-
cation frequently reads/writes the same cache lines, generating snoops
in the bus and cache line invalidations. The explanation for snoops
in the sequential and best-case applications is the natural implementa-
tion of a multicore OS, where shared variables are used to guarantee
mutual exclusion in some data structures. The hardware event correc-
tly measures the bus activities and can be used by the OS to improve
performance. The standard deviation for the sequential, parallel, and
best-case application was 4.83%, 0.13%, and 5.05% respectively.

In order to compare the obtained values in terms of correctness,
we ran the same three benchmark applications in the Linux 2.6.32 and
used the perf Linux tool to read the number of snoops. We also ran
each application for 10 times and extracted the average value. The
evaluation was executed in the same Intel Q9550 processor. Figure 40
shows the obtained values. Linux has obtained in average 30% more

4.1 Hardware Mediators 177

Best−case Sequential Parallel

L1 data cache snooped −− EPOS

N
um

be
r

of
 S

no
op

s

0
10

00
00

00
25

00
00

00

60639 107604

30534726

Figure 39: API usage example: number of snoops in the L1 data
cache for the three benchmark applications.

snoops than EPOS and the standard deviation was also higher. The
standard deviation for the sequential, parallel, and best-case applica-
tion are 8.27%, 2.85%, and 9.96% respectively. As EPOS generates a
system image composed of only the needed code, the influence of other
OS parts in the execution of an application decreases. Consequently,
the measured hardware events in EPOS are more precise than those
obtained in Linux.

In order to demonstrate the performance of the proposed API, we
have measured the memory overhead introduced by the API methods.
The method for configuring the hardware counter (the same number of
snoops hardware event as used above) occupied 32 bytes and 11 ins-
tructions and the method for reading the counter occupied 100 bytes
and 40 instructions with no method calls, only inlined assembly code
(Section 4.1.4 provides a code example of how these methods were im-
plemented). Other APIs designed to general-purpose computing, such
as PAPI (MUCCI et al., 1999), require the initialization and creation
of lists or event sets which decrease the performance. Polpeta and
Fröhlich have compared EPOS hardware mediators to HALs imple-
mented on eCos and µClinux in terms of performance and memory
consumption (POLPETA; FRÖHLICH, 2005). The authors have shown

178 4 REAL-TIME SUPPORT ON EPOS

Best−case Sequential Parallel

L1 data cache snooped −− Linux

N
um

be
r

of
 S

no
op

s

0
20

00
00

00
40

00
00

00

809714 798652

41325387

Figure 40: Number of snoops in the L1 data cache for the three
benchmark applications running in Linux.

that hardware mediators have better results in both metrics.
The proposed interface could also be easily implemented to re-

present other PMU families, such those from the PowerPC and ARM
processors. The API was implemented in C++ using the ADESD con-
cepts in the EPOS operating system. EPOS is a component-based
operating system, thus the same proposed PMU infrastructure could
be used by other component-based operating systems without much
implementation effort.

4.1.5 Applicability for Scheduling

As an example to demonstrate the usage of HPCs in OS imple-
mentation, we have used the L1 data cache snooped event to monitor
the number of snoops at run-time and help the OS scheduling decisi-
ons. We have added to the EPOS reschedule method (see Section 4.2)
a call to read the hardware event during a scheduling quantum (10 ms).
By running the sequential and best-case applications, we observed that
during a quantum, both applications obtained up to 100 events. By
setting a threshold value (1000 in this case) we can detect when there

4.1 Hardware Mediators 179

is frequent snoops for cache lines and thus take a decision. Figure 41
shows the code exemplifying the changes. When the threshold value
is reached, it is possible to move a thread to a core closer to the data
(in case of a ccNUMA processor) and thus improving the application
performance as demonstrated by Tam et al. (TAM et al., 2007).

1 void Thread::reschedule(bool preempt)
2 {
3 ...
4 Thread ∗ prev = running();
5 Thread ∗ next = scheduler.choose();
6
7 unsigned long long n l1 data snooped = perf.

l1 data cache snooped();
8
9 if (n l1 data snooped > 1000) {

10 // move a thread to another core
11 ...
12 }
13
14 dispatch(prev, next);
15 ...
16 }

Figure 41: Modifying the OS scheduling.

4.1.6 Guidelines for future PMU designs

Initially, hardware designers have added PMU capabilities into
processors to collect information for their own use (TAM et al., 2007).
However, PMUs features have become useful for other performance
measurements, such as energy consumption, memory partitioning, and
scheduling. In consequence, hardware designers are now adding more
functionality to PMUs, which can certainly help software developers
even more. Below we provide a discussion about desired features that
could help hardware designers to improve PMU features in multicore
processors:

• Data address registers: storing data addresses that genera-
ted an event could certainly provide to the OS a powerful mean
to perform optimizations. The IBM Power5 processor has a si-

180 4 REAL-TIME SUPPORT ON EPOS

milar feature, but it could be improved. In this processor, the
last data address accessed is stored into a special register. Thus,
the last monitored event can be associated to the last address
accessed. The work proposed by Tam et al. used this feature to
estimate the memory consumption of the system threads and to
help a cache memory partition mechanism, improving the system
performance (TAM et al., 2009). It would be interesting if data ad-
dress registers were associated to events that are representative
to an OS, such as last-level cache misses, bus snoops, and bus
transactions.
Recent Intel processors have added support for precise event-
based sampling (PEBS) that identifies instructions that cause
key performance events and allows the developers to allocate a
PEBS buffer in memory to hold the samples (e.g., program coun-
ter and general-purpose registers values) collected during the pro-
gram execution, which is extremely important for debugging me-
chanisms, such as tracing and replay (GRACIOLI; FISCHMEISTER,
2009).

• Monitoring address space intervals: in a multicore processor,
several threads run in different cores and share the same address
space. From the OS point of view, monitoring only the address
spaces that are used by specific threads would allow a more precise
view of the software behavior and consequently a more correct
action could be taken by the OS.

• Processing cycles spent in specific events: especially for
HRT applications, where deadlines must be always met, bus cy-
cles spent in specific events are extremely important for estima-
ting the execution time of tasks. In Intel processors, for example,
there are events for measuring the bus cycles spent accessing the
shared cache, bus cycles when data is sent on the front-side bus,
bus cycles when the HIT and HITM pins are asserted in the bus,
and so on. However, it is difficult to get the cycles for a specific
event, as a cache miss or a bus snoop. Improving the PMU ca-
pabilities for providing the precise number of cycles in an event
could ease the OS task of guaranteeing deadline constraints for
real-time applications running in multicore processors.

• OS trap generation: PMUs could generate traps for the OS

4.2 Scheduling 181

according to pre-defined numbers associated to events. This fea-
ture would allow the OS to be interrupted only when the number
of hardware events is reached. Therefore, the OS could handle
the exception and take a decision based on the the event that
generated the trap.

4.1.7 Summary of the PMU support

In this section we proposed a PMU API specifically designed for
embedded (real-time) multicore systems. The main focus of the API
is on performance – to be fast and accurate. The results in Figures 39
and 40 have shown that our API is about 30% more accurate and has
a smaller standard deviation than the perf Linux tool. We also briefly
discussed a set of guidelines for future PMU designs to help software
developers to have access to precise hardware event monitoring. The
designed API is used by our dynamic scheduler in Chapter 8.

4.2 SCHEDULING

Figures 42 and 43 show the three main components responsible
for the real-time scheduling support in EPOS. The Thread class re-
presents an aperiodic task and defines its execution flow, with its own
context and stack. The class implements traditional thread functio-
nality, such as suspend, resume, sleep, and wake up operations. The
Periodic Thread5 class extends the Thread class to provide support
for periodic tasks by aggregating mechanisms related to the periodic
task re-execution. The wait next method performs a p operation on
a semaphore that forces the thread to sleep during its defined pe-
riod. The implementation of the Semaphore follows the traditional
semaphore concept (DIJKSTRA, 1968). When a timer interrupt ar-
rives, the timer handler (an Alarm) performs a v operation on the
semaphore to release and wake up the task. The periodic thread cons-
tructor creates this alarm. We added two different handlers to the
periodic thread: one static and another dynamic. At compile time, the

5An EPOS periodic thread is conceptually implemented as a real-time periodic
task.

182 4 REAL-TIME SUPPORT ON EPOS

developer defines the scheduling criterion in the thread’s Trait6 class
(for example, typedef Scheduling Criteria::GEDF Criterion defi-
nes the scheduling criterion as G-EDF). If the criterion is dynamic, as
EDF and LLF, the Periodic Thread uses the dynamic handler. If the
criterion is static, as RM and DM, the Periodic Thread uses the sta-
tic handler. The dynamic handler calls the update method from the
defined scheduling criterion to update the task’s priority. As we use
C++ static metaprogramming (typedef IF<Criterion::dynamic,
Dynamic Handler, Static Handler>::Result Handler), all depen-
dencies are solved at compile time, without any run-time overhead.
Section 4.2.1 shows more details about the activities performed on each
periodic thread operation (sleep and wake up).

1
Thread

+ wait_next()

− _alarm : Alarm
− _handler : Handler

− _semaphore : Semaphore
Periodic_Thread

Semaphore_Handler

+ operator int()

Static_Handler

+ operator()

− _thread :
Dynamic_Handler

Periodic_Thread

+ operator int()

Criterion

T: Component,
T::Criterion

Scheduling_List

T: Component

+ insert(obj: List_Link<T>)
+ remove(obj: List_Link<T>) : T
+ resume(obj: List_Link<T>)
+ suspend(obj: List_Link<T>)
+ chosen() : T
+ choose() : T
+ choose_another(): T

T: Component,
T::Criterion

Scheduling_Queue

Multihead_Scheduling_List

T: Component,
T::Criterion
T::Criterion::HEADS

Criterion = GEDF
<<bind>>

T::Criterion::QUEUES,
T: Component, T::Criterion

L = list_type

Scheduling_Multilist
Criterion = PEDF

<<bind>>

Multihead_Scheduling_Multilist
Criterion = CEDF

<<bind>>

Ordered_List

List

1...*

Criterion::dynamic = false
<<bind>>

Criterion::dynamic = true
<<bind>>

Scheduler

Figure 42: UML class diagram of the real-time scheduling compo-
nents on EPOS: Thread, Criterion, Scheduler, and Scheduling list
classes.

The Scheduler class in Figure 42, and Criterion sub classes,

6A trait is a metaprogramming artifact that renders a component characteriza-
tion at compile time, so other components and metaprograms can reason on it.

4.2 Scheduling 183

which are shown in Figure 43, define the structure that realizes task
scheduling. Usually, object-oriented OS scheduler implementations use
a hierarchy of specialized classes of an abstract scheduler class. Sub
classes specialize the abstract class to provide different scheduling poli-
cies (MARCONDES et al., 2009). EPOS reduces the complexity of main-
taining such hierarchy and promotes code reuse by detaching the sche-
duling policy (here represented by the Criterion sub classes) from its
mechanism (e.g., data structure implementations as lists and heaps).
The data structure in the scheduler class uses the defined scheduling
criterion to order the tasks accordingly. Each criterion class basically
defines the priority of a task, which is later used by the scheduler to cho-
ose a task (operator ()), and other criterion features, as preemption
and timing, for instance.

The Scheduler consults the information provided by the crite-
rion class to define the appropriate use of lists and operations. Fi-
gure 43 shows the G-EDF, P-EDF, and C-EDF criterion classes that
inherit from the RT Common class, which defines the deadline, pe-
riod, and WCET of a task. Each criterion defines two static variables
that are later used by the Scheduling Queue: QUEUES and HEADS.
QUEUES defines the number of lists and HEADS defines the number
of heads in each scheduling list. A head in a scheduling list represents
a running task. For example, the G-EDF criterion has only one sche-
duling list (QUEUS is one) and HEADS is equal to the number CPUs
in the current processor. P-EDF has QUEUES equal to the number of
CPUs and HEADS equal to one. C-EDF combines features from the
G-EDF and P-EDF criteria: QUEUES is equal to the number of clus-
ters and HEADS is equal to the number of CPUs in each cluster. The
Variable Queue class defines the current queue of a task. The method
queue is used by the appropriate Scheduling List to get the current
queue and perform a scheduling decision correctly. For G-EDF, the
current queue is the current CPU in which the task is executing. For
P-EDF and C-EDF, the current queue is the partition or the cluster
in which the task was assigned, respectively. Figure 43 only shows the
EDF-based criteria, however, the same principle is used for other sche-
dulers, such as LLF, RM, SJF, and DM. Note that the Priority class
overloads the operator parenthesis, which returns the current priority
of a task (an integer).

Figure 44 shows an example of the interaction among Criterion,
Trait, and Scheduler classes. The Scheduler receives a component as

184 4 REAL-TIME SUPPORT ON EPOS

Criterion

+ operator int()

_priority : volatile int
+ timed : bool = false

+ dynamic : bool = false

+ preemptive : bool = true

+ Priority(int p)
+ operator int() : volatile int
+ queue() : uint
+ update() : void

Priority

RT_Common(int p)

+ _capacity : Microsecond
+ _period : Microsecond
+ _deadline : Microsecond

RT_Common(int p, Microsecond d,
 Microsecond period, Microsecond c)

RT_Common

_queue : volatile uint

Variable_Queue

Variable_Queue(uint q)
+ queue() : volatile uint

+ HEADS : uint = MAX_CPUS

+ GEDF(int p)
+ GEDF(Microsecond d,

Microsecond period,
Microsecond c, int cpu)

+ queue() : uint
+ current_head() : uint

GEDF

+ PEDF(int p)

+ QUEUES : uint = MAX_CPUS

+ PEDF(Microsecond d,
Microsecond period,
Microsecond c, int cpu)

+ current_head() : uint

PEDF

+ current_head() : uint
+ queue() : uint

+ CEDF(int p)
+ CEDF(Microsecond d,

Microsecond period,
Microsecond c, int cpu)

MAX_CPUS/HEADS

CEDF

+ QUEUES : uint =
CPUS_PER_CLUSTER

+ HEADS : uint =

+ update() : void

+ dynamic : bool = true

 period, Microsecond c, int cpu)
+ EDF(int p, Microsecond d, Microsecond

EDF

Figure 43: UML class diagram of the real-time scheduling compo-
nents on EPOS: criterion sub classes.

parameter (Thread in our case). This component defines a Criterion,
which has specific features for each scheduling policy (e.g., number of
queues, preemption, timing, etc). A global criterion, such as G-EDF,
uses a single scheduling list with multiple heads. A partitioned crite-
rion, such as P-EDF, uses a scheduling list per processor, and a cluste-
red criterion, such as C-EDF, uses a single scheduling list with multiple
heads in each cluster. The Scheduler uses a Scheduling Queue to spe-
cialize a specific implementation of a scheduling list, according to the
selected criterion. Each scheduling list implements the functionalities
used by the Scheduler, such as the insertion (insert) and removal
(remove) of threads.

This new EPOS scheduling design makes the addition of any mul-
ticore scheduling policy straightforward and totally independent from
other OS parts. For instance, a new scheduling policy must define the
number of heads, the number of queues, add a new Scheduling Queue
specialization, and if it is dynamic, must implement the update

4.2 Scheduling 185

1 template <typename T, typename R = typename T::Criterion>
//Base Scheduling Queue class

2 class Scheduling Queue: public Scheduling List<T> {};
3
4 template <typename T> //Specialization for G−EDF
5 class Scheduling Queue<T, Scheduling Criteria::GEDF>: public

Multihead Scheduling List<T> {};
6
7 template <typename T> //Specialization for P−EDF
8 class Scheduling Queue<T, Scheduling Criteria::PEDF>: public

Scheduling Multilist<T> {};
9

10 template <typename T> //Specialization for C−EDF
11 class Scheduling Queue<T, Scheduling Criteria::CEDF>: public

Multihead Scheduling Multilist<T>{};
12
13
14 template <typename T>
15 class Scheduler: public Scheduling Queue<T>
16 {
17 typedef Scheduling Queue<T> Base;
18 typedef typename T::Criterion Criterion;
19 ...
20 void insert(T ∗ obj) { Base:: insert (obj−>link()); }
21 T ∗ remove(T ∗ obj) { return Base::remove(obj−>link()) ? obj :

0; }
22 ...
23 };
24
25 class Thread
26 {
27 ...
28 static Scheduler<Thread> scheduler;
29 ...
30 };

Figure 44: An example about the interaction among the Criterion,
Trait, and Scheduler classes.

method. We use static metaprogramming techniques (CZARNECKI;
EISENECKER, 2000), which does not incur in any run-time overhead.

186 4 REAL-TIME SUPPORT ON EPOS

4.2.1 Periodic Thread Operations

As stated before, the Periodic Thread implementation uses an
Alarm and a Semaphore to guarantee the re-execution of a thread.
In this case, the Semaphore performs the sleep and wake up opera-
tions, instead of preventing concurrent accesses. After executing a
code, the periodic thread calls the wait next method to wait until
the next period. Figure 45 shows an example of a periodic thread. The
Periodic Thread t is created in the main function, passing the func
address as parameter to the constructor (line 5). Then, after each ite-
ration, the periodic thread calls the wait next method to wait until
the next period (lines 12 to 14).

1 void func();
2
3 int main()
4 {
5 Periodic Thread ∗t = new Periodic Thread(&func);
6 t−>join();
7 delete t;
8 }
9

10 void func()
11 {
12 while (...) {
13 do work();
14 Periodic Thread::wait next();
15 }
16 }

Figure 45: Periodic thread code example.

The wait next method is a call to the p method of the peri-
odic thread’s Semaphore. Figure 46 depicts the UML sequence dia-
gram of the sequence of calls starting from the wait next method.
The begin atomic method prevents concurrent accesses by accessing a
spinlock and disabling interrupts. The thread dispatch method relea-
ses the spinlock and enables the interrupts later. The Semaphore pas-
ses a Queue as an argument to the thread Sleep method. This method
suspends the running thread, inserts this thread into the semaphore
queue, chooses another thread to be ran by calling the Scheduler

4.2 Scheduling 187

chosen method, and switch the context between them by calling the
dispatch method. The scheduler suspend method removes and upda-
tes the head from the scheduling ordered list and the chosen method
gets the new head. Note that the semaphore is private and is imple-
mented as a common semaphore without priority inversion handling.
EPOS originally has a semaphore that implements the immediate pri-
ority ceiling protocol, named IPC Semaphore.

Periodic_Thread ThreadSemaphore QueueScheduler
_scheduler:

Application

p()

Thread *thr = running()

thr−>state = WAITING

thr−>waiting = _queue

suspend(thr)

next = chosen()

dispatch(thr, next)

wait_next()

_queue−>insert(&thr−>link)

begin_atomic()

sleep(&_queue)

Figure 46: UML sequence diagram of thread sleep method.

The Alarm class is responsible for counting the time until a pe-
riodic thread can be released. To release a thread, the Alarm calls
the v method of the Semaphore class, through the static or dynamic
semaphore handler (see Figure 42). Figure 47 depicts the UML se-
quence diagram of the wake up operation. If a static criterion used,
the update method is not called and the call from the Alarm goes di-

188 4 REAL-TIME SUPPORT ON EPOS

rectly to the Semaphore. Again, the begin atomic method protects
shared data by locking a spinlock and disabling interrupts. The alt
label means an if/else condition and the opt label means an if clause.
The thread dispatch method, called by the reschedule method, rele-
ases the spinlock and enables the interrupts. The Semaphore calls the
wakeup method, which removes the Thread blocked on the semaphore’s
Queue and calls the scheduler to reinsert the thread into the schedu-
ler list (resume method) according to the defined scheduling criterion
(Criterion sub classes in Figure 43). Moreover, if the criterion is dy-
namic, the semaphore handler (Dynamic Handler) calls the criterion
update method to update the thread’s priority before calling the th-
read’s wakeup method. In the end, the wakeup method calls the thread
reschedule to choose the highest priority task to be ran.

_scheduler:
Queue SchedulerCriterionHandler Semaphore ThreadAlarm

*q:

end_atomic()

bool empty = empty()

Thread *t = remove()−>object()

v()

[else]

opt

alt

begin_atomic()

v = finc(_value)

wakeup(&_queue)

[empty == false]

t−>_state = READY

t−>_waiting = 0

resume(t)

reschedule()

[v < 0]

handler() update()

Figure 47: UML sequence diagram of thread wake up method.

4.2 Scheduling 189

Figure 48 shows the thread reschedule UML sequence diagram.
We inserted a condition to test if an IPI is necessary in case of using a
global scheduler. The system fires an IPI when the CPU that is execu-
ting the reschedule is not the CPU that is executing the lowest priority
thread on the system. Then, the Interrupt Controller (IC) hardware
mediator sends an IPI through the ipi send method to switch the
context on that CPU. A method in the Scheduler informs the lowest
priority CPU. The CPU that receives the IPI message performs a th-
read rescheduling by calling the choose method of the Scheduler and
then switching the context between the old and new thread. Moreover,
we do not send an IPI when the running thread in the current CPU is
an idle thread, because the scheduler may return another CPU that is
also running another idle thread. It is important to highlight that the
idle thread only calls the locking mechanism (e.g., spinlock and disable
interrupts) when there is a thread to be scheduled. Consequently, there
is no influence in the system. If an IPI is not needed, the reschedule
method just calls the choose method from the Scheduler to choose the
next thread and switch the context between the running thread and the
chosen thread. Note that the scheduling criterion statically sets a flag
informing whether it is a global scheduler or not. As a consequence,
the compiler processes the if condition in the reschedule method at
compile time and thus does not incur in run-time overhead.

4.2.2 Context Switching

The thread dispatch method is responsible for switching context
between the previously running and the chosen threads. The method
verifies if a context switch needs to be performed by checking if the
chosen thread is not the same as the running thread. If both threads
are different, the method changes the state of the running thread to “re-
ady”, the chosen thread state to “running”, and calls the CPU hardware
mediator switch context method to perform the context switch. Fi-
gure 49 presents the UML class diagram of the CPU hardware mediator.
The mediator handles the most dependencies of process management.
The inner class CPU::Context defines the execution context for each
process architecture. The method CPU::switch context is responsi-
ble for the switching context, receiving the old and new contexts. The
CPU mediators also implement several functionalities as enabling and

190 4 REAL-TIME SUPPORT ON EPOS

Thread ICScheduler
_scheduler:

unlock()

Thread *next = choose()

dispatch(prev, next)

alt

alt

unlock()

alt

reschedule(preempt)

Thread *prev = running()

[preempt == true]

[else]

[global_scheduler == true]

[IPI is needed]

ipi_send(cpu_lowest, IC::INT_RESCHEDULE)

[else]

Figure 48: UML sequence diagram of thread reschedule method.

disabling interrupts and test and set lock operations. Each process ar-
chitecture defines a set of registers and specific addresses, but the same
interface remains. Thus, it is possible to keep the same operations for
platform-independent components, such as threads, synchronizers, and
alarms.

4.2 Scheduling 191

+ save() : void

<<interface>>

+ switch_context(old : **Context, new : *Context) : void
+ init_stack(...) : Context
+ ts(value : bool): void
+ enable_int() : void
+ disable_int() : void

+ ...()
+ halt() : void

IA32 ARM7 AVR8

execute 11 CPU::context

+ load() : void

CPU

Figure 49: CPU hardware mediator UML class digram.

4.2.3 Alarm and Timer Interrupt Handler

The Alarm component handles timed-based events. The compo-
nent uses a Timer hardware mediator class that abstracts the hardware
timer. In a periodic event model, EPOS sets the hardware timer with
a constant (configurable) frequency. When a new alarm event is regis-
tered, its interval is converted to timer ticks, with T = I / F, where
T is the number of ticks, I is the desired interval, and F is the timer
frequency (FRÖHLICH et al., 2011). The Timer hardware mediator confi-
gures the hardware timer (i.e., the Local-APIC timer configured in pe-
riodic mode on the IA32 architecture) during the system initialization.
The mediator also supports the instantiation of several timers on top of
the same physical timer (a multiplexing layer). The Local-APIC timer
has a precision of microseconds (Intel Corporation, 2011). The Alarm ins-
tantiates a Timer during the system initialization. The alarm inserts
all created events in an ordered and relative request queue. Thus, ope-
rations on the queue only affect its head, because all queue elements
are relative to the first element. The Alarm component registers an in-
terrupt handler that increments the tick counter, thus promoting every
alarm in the event queue by a tick, at every hardware timer interrupt.
The Alarm interrupt handler releases the head queue’s event handler
if there are no more ticks to count to that event. The event handler,
when using a Periodic Thread, releases the thread by calling the v
semaphore method.

We changed the described alarm handler in two ways. First, we
distributed the handler across all CPUs. Thereby, when the application
creates a Periodic Thread, the alarm constructor assigns the event

192 4 REAL-TIME SUPPORT ON EPOS

handler of that Periodic Thread to a specific CPU (the same CPU
that schedules the periodic thread in case of a partitioned scheduler).
Each different handler manages its own event list separately. Second,
we changed the handler to release all events that reach 0 ticks in the
same alarm interrupt handler. In this way, we guarantee that all events
are released without any tick delay (i.e., wait one or more ticks to
be released) and that the OS always executes the m highest priority
threads.

4.2.4 Summary of Real-Time Extensions and Overhead
Sources

Figure 50 summarizes the sources of run-time overhead in EPOS.
In Figure 50(b), message 1 and the Alarm handler method form the
tick counting and thread release overheads. The Thread dispatch
and CPU::switch context methods constitute the context switching
overhead. Finally, message 2 and the Thread sleep method in Fi-
gure 50(a) and messages 2 and 3 and Thread wakeup/reschedule
methods in Figure 50(b) form the scheduling overhead.

In summary, we carried out the following extensions into the
original EPOS real-time support:

• Support for multicore real-time schedulers: we designed
and implemented a set of classes to support partitioned, cluste-
red, and global schedulers. For each scheduler variant, a spe-
cialized scheduling list is chosen at compile time, depending on
the scheduling criterion. For example, a partitioned scheduler
uses individual scheduling lists for each processor, while global
schedulers have only one global scheduling list. Clustered sche-
dulers are a combination of partitioned and global approaches:
each cluster is a partition and each partition has a global schedu-
ling list. This design allows the addition of a scheduler variant of
practically any scheduling policy;

• Distributed alarm handler: we have performed two modifica-
tions in the original EPOS alarm handler. First, we distributed
the handler in all available CPUs. Each handler has its own pri-
vate relative and ordered list. Second, we changed the handler
to release all periodic threads that reached 0 ticks at the same

4.2 Scheduling 193

5: switch_context()

4: dispatch():Thread

1: wait_next()

:Application

2: p()

:Periodic_Thread :Semaphore

3: sleep()

:CPU

(a)

6: switch_context()

4: reschedule()
5: dispatch()

3: wakeup()

:Thread:CPU

Interrupt
:HW Timer

1: handler()

:Alarm

2: v()

:Semaphore

(b)

Figure 50: UML communication diagram summarizing the sources
of run-time overhead in EPOS. (a) Operations initiated by the
periodic thread sleep operation. (b) Operations initiated by the
hardware timer.

interrupt. In this way, we are sure that the OS always executes
the m highest priority periodic threads;

• IPI in global and clustered schedulers: we have extended
the IC hardware mediator to support IPI messages and added the
IPI call into the thread reschedule method. The IPI message
allows the implementation of virtually any global or clustered
scheduler;

• Semaphore dynamic handler: we created a new semaphore
handler for the Periodic Thread class. The dynamic handler is
responsible for updating the priority of a task when it is released,
totally transparent to the rest of the system;

• Separation of scheduling policy and mechanism: we de-
tached the scheduling policy from its mechanism by using static
metaprogramming and creating several Scheduling Queue spe-
cialization depending on the defined scheduling criterion (see

194 4 REAL-TIME SUPPORT ON EPOS

Figure 44). This design makes the creation of new schedulers
straightforward;

• New scheduling policies: we implemented beyond the EDF,
RM, and DM scheduling policies, the LLF and SJF scheduling
policies. EPOS now supports global, partitioned, and clustered
variants of EDF, RM, DM, LLF, and SJF. EPOS is the first RTOS
designed from scratch that supports all of these policies with an
original and elegant OOD.

In Chapter 5, we compare the run-time overhead of the EPOS
multicore real-time infrastructure with LITMUSRT. We also present a
series of experiments demonstrating the schedulability ratio of several
generated task sets inflated by the run-time overhead of EPOS and
LITMUSRT.

4.3 MEMORY MANAGEMENT

This and the next subsections present the memory management
support in EPOS and the page coloring design and implementation.

Portable OSes face a challenge in terms of memory manage-
ment: some computing platforms feature sophisticated MMUs, while
other platforms do not provide any support to map and protect ad-
dress spaces. EPOS careful design encapsulates details pertaining to
address space protection, translation, and physical memory allocation
into the MMU hardware mediators, which allows memory management
components to be highly portable across virtually any platform, from
simple microcontrollers to complex multicore processors (POLPETA;
FRÖHLICH, 2004).

4.3.1 Original Memory Management in EPOS

Figure 51 shows part of the MMU mediators family. The
MMU Common parameterized class provides basic functions common to
all architectures. Different classes specialize the base class implemen-
ting architecture-dependent functions. The IA32 MMU class implements
the support for the 32-bit paging mode available on x86 processors,
including the manipulation of page and directory tables. A grouping

4.3 Memory Management 195

list implementing the buddy memory allocation strategy keeps track
of the available physical memory. Each list element represents a free
physical memory region. The MMU initialization method initializes
the grouping list according to the available memory.

IA32_MMU

− _pd : Page_Directory
− _free : bool

+ attach(Chunk c,Log_Addr addr) :
+ attach(Chunk c) : Log_Addr

 Log_Addr
+ detach(Chunk c) : Log_Addr
+ detach(Chunk c,Log_Addr addr) :
+ physical(Log_Addr addr) : Phy_Addr

 void

......

Directory

− _from,_to,_pts : uint
− _flags : IA32_Flags
− *_pt : Page_Table

......
 uint color=0)

+ Chunk(uint bytes,Flags flags

Chunk

Page_Table

PT_Entry
− _entry[PD_ENTRIES] :

+ map(...)
+ map_colored(...)
+ map_contiguous(...)
+ remap(...)
+ unmap(...)

IA32_Flags

MMU_Common<10,10,12>

+ pages(uint bytes) : uint

+ page(Log_Addr addr) : uint
+ directory(Log_Addr addr) : uint
+ offset(Log_Addr addr) : uint
......

uint: DIRECTORY_BITS
uint: PAGE_BITS
uint: OFFSET_BITS

− _master : Page_Directory

− _free[colors] : Grouping_List

+ alloc(uint color,uint frames=1) : Phy_Addr

+ free(Phy_Addr addr,uint n=1)

+ current() : Page_Directory

+ physical(Log_Addr addr) : Phy_Addr
.....

MMU_Common

Figure 51: IA32 MMU hardware mediator.

Figure 52 depicts the system components that deliver the main
available memory to applications. A Segment is a chunk of memory
that stores arbitrary code and data. When a system component cre-
ates a Segment, the MMU::Chunk inner class allocates the requested
memory from the MMU grouping list and maps the allocated pages
to corresponding page table entries. The Address Space component
is a container for memory chunks (e.g., Segments), that manages the
physical memory corresponding to a memory segment, thus keeping
the Segment independent of a memory management policy. When a
Segment is attached to an Address Space, the Address Space maps
all previously allocated page tables to corresponding page directories
through the MMU::Directory inner class.

Applications do not allocate memory directly from the

196 4 REAL-TIME SUPPORT ON EPOS

 Log_Addr

+ Address_Space(Self s)

+ detach(Segment & s) : Log_Addr

+ attach(Segment & s,Log_Addr addr) :
+ attach(Segment & s) : Log_Addr

+ physical(Log_Addr addr) : Phy_Addr
+ activate() : void

Address_Space

MMU::Directory
MMU::Chunk

 Flags F = MMU::Flags::APP)
+ Segment(uint bytes,uint color = 0,

+ size() : uint
+ phy_address() : Phy_Addr

+ resize(int amount) : int

Segment

Figure 52: UML class diagram for address space and segment com-
ponents.

Address Space and Segment components. Instead, two different
heap class instances, which use the described memory management
components, provide free memory for the OS and applications. Dyna-
mic memory allocations from the OS, such as creation of thread stacks
and system objects, go to the system heap, while requests from the
application go to the application heap. During initialization, each heap
frees its pre-defined (configurable) size by using the Address Space
and Segment components, as demonstrated in the next subsection.

4.3.2 Page Coloring Support

To support page coloring in EPOS, we changed the memory ma-
nagement system components, the MMU hardware mediator, and heap
initialization. Figure 53 shows the new MMU trait class that enables
page coloring in the system.

1 template <> struct Traits<IA32 MMU>: public Traits<void>
2 {
3 static const bool page coloring = true;
4 static const bool user centric = true; //false = OS centric
5 static const unsigned int colors = 4;
6 };

Figure 53: IA32 MMU trait class responsible for enabling page
coloring.

When the developer enables page coloring, the MMU grouping

4.3 Memory Management 197

list becomes an array of colors grouping lists and the application
heap becomes an array of colors heaps, where colors is the number
of colors defined in the trait class (line 5 in Figure 53). If the defined
number of colors is less than the maximum number of colors, then the
colors are grouped, forming a super color7 (LIN et al., 2008).

The MMU mediator fills each grouping list with pages associated
with the corresponding color during the initialization phase. In the
same way, the Segment component provides, in its interface, a way to
specify from which color (i.e., from which MMU grouping list) a heap
should allocate memory. Since each MMU grouping list has a set of
physically mapped pages, with the same color, we make sure that each
heap has a chunk of logical addresses that map to physical pages with
the same color.

Figure 54 exemplifies the application heap initialization. The
init process creates, for each color, a Segment with the heap size and
attaches this Segment to an Address Space. The free method receives
the logical address returned by the attach method, and then initializes
the heap free space. Moreover, the color method sets the heap color.
To properly release a memory region, we use the defined color to find
from which heap a memory address was allocated, as will be explained
in the next subsection. We initialize the system heap in the same
way, but we always allocate the memory for the system heap from
the same MMU grouping list (only one super color). It is possible to
include several system heaps with different colors as well, but this would
require changes in the source code of the system components to define
the appropriate color. Below, we propose two different approaches to
specify the heap for a dynamic allocation: user-centric and OS-centric.

4.3.3 User-Centric Page Coloring

The C++ new and delete operators perform the dynamic me-
mory allocation operations. We overload the EPOS new operator to in-
clude annotations (i.e., colors) that define from which heap data should
be allocated. Figure 55 shows how the new and delete operators use
these annotations. An enumeration defines the available colors. We
changed the new operator to receive, in addition to the requested num-

7Super color = page color % max. number of colors. We use color to refer to
super color hereafter.

198 4 REAL-TIME SUPPORT ON EPOS

HeapSegmentInit Address_Space

Address_Space *as = new Address_Space(SELF)

free(addr,size)

loop

color(color)

Log_Addr *addr = as−>attach(*seg)

[for each color]

Segment *seg = new Segment(size,color,flags)

Figure 54: UML sequence diagram of the colored application heap
initialization.

ber of bytes, the color number. If the application does not specify a
color, the new operator uses the color 0. Additionally, the new opera-
tor does not allocate memory if the requested color is greater than the
maximum color, defined in the trait class (see Figure 53).

The heap allocates eight bytes (two integers) more than the re-
quested size: the first integer contains the data size (the bytes argu-
ment) and the second integer contains the color number. Thus, the
delete operator releases the allocated memory using the correct heap
and size by reading the two integers. The overload of the new operator
is part of the ISO C++ standard and is supported by any standard
C++ compiler. Figure 53 shows the MMU trait class that defines the
use of the user-centric approach.

4.3 Memory Management 199

1 typedef enum { //colors definitions
2 COLOR 0,
3 ...
4 COLOR 128,
5 } colored alloc ;
6 //overload of the new operator
7 void ∗ operator new(size t bytes, colored alloc c = COLOR 0) {
8 //perform memory allocation from the heap defined by c
9 }

10 //examples of dynamic memory allocation from the application
11 int ∗data = new (COLOR 1) int[50];
12 delete[] data;

Figure 55: Overload of the EPOS new operator.

4.3.4 OS-Centric Page Coloring

When the developer enables the OS-centric approach, the new
operator ignores the annotated color (there is no need to pass a
color). EPOS transparently chooses from which heap data should
be allocated by using a thread ID to access a colored heap: ID %
Traits<MMU>::colors. It is important to highlight that the choice
of either user-centric or OS-centric is made at compile time, without
any run-time overhead. The thread constructor assigns a unique ID to
each thread; however, in this approach, the user should properly define
the number of colors to avoid allocations from the same heap, giving
consideration to the number of threads in the target application. The
choice of the best number of colors for an application is not straight-
forward, because it depends on the WSS of each task and how each
task uses its own WSS. It is important to highlight that our objective
is not optimize the number of colors, but to provide an efficient mean
to partition the shared cache. In Chapter 6, we empirically evaluate
the impact of cache partitioning on multicore real-time schedulers.

4.3.5 Summary of Memory Management Extensions

In summary, we proposed the following extensions to the original
EPOS memory management structure:

• Different grouping list in the MMU class: we created dif-

200 4 REAL-TIME SUPPORT ON EPOS

ferent MMU grouping lists, each of them composed of free pages
with the same color. At the initialization phase, the MMU hard-
ware mediator inserts all pages mapped to the same color into the
appropriate grouping list, respecting the available memory size;

• Colored application heaps: we created N different application
heaps, where N is the defined number of colors. The logical
address for each application heap is mapped to a set of pages
with the same colors. In practice, each application heap requests
free memory from a unique MMU grouping list.

• Colored system heap: the system heap also requests memory
from a specific grouping list. Thus, memory allocation requests
from EPOS do not interfere with application data;

• User- and OS-centric memory allocation: we provide two
mechanisms for applications to allocate memory. The user-centric
approach overloads the C++ new and delete operators to allocate
memory from a specific colored heap. The new operator receives
the color from which memory should be allocated. The OS-centric
approach automatically allocates memory from a colored appli-
cation heap using the thread ID as color index.

In Chapter 6, we present an evaluation of the cache partitioning
impact on partitioned, clustered, and global real-time schedulers using
the proposed page coloring mechanism. We also analyze whether the
RTOS interferes with real-time tasks by assigning isolated partitions to
the internal OS data structures. We also use the proposed page coloring
mechanism to evaluate our color-aware task partitioning algorithm in
Chapter 7.

201

5 RUN-TIME OVERHEAD EVALUATION

In the previous chapter we designed and implemented an origi-
nal multicore real-time infrastructure in the EPOS component-based
RTOS. In this chapter1, we compare EPOS to LITMUSRT in terms of
run-time overhead and the impact of both OSes on the schedulability
ratio of generated task sets for G-EDF, C-EDF, and P-EDF schedu-
lers. We measure the run-time overhead of EPOS and LITMUSRT

using a modern 8-core processor. In addition, we provide a comparison
between the ideal (i.e., no overhead) G-EDF and P-EDF using eight
state-of-the-art G-EDF schedulability tests and three P-EDF partitio-
ning heuristics for up to 100 processors for HRT systems.

In summary, the main contributions of this chapter are:

• We show that the EPOS run-time overhead, when incorporated
into G-EDF, C-EDF, and P-EDF schedulability tests, can provide
HRT guarantees close to the theoretical schedulability tests. Mo-
reover, in some cases, the performance of G-EDF considering the
overhead in EPOS is superior to P-EDF considering the overhead
in LITMUSRT, which proves that the run-time overhead plays an
important role on the G-EDF, C-EDF, and P-EDF schedulability
analyses;

• A comparison in terms of task set schedulability ratio for HRT
tasks between P-EDF, C-EDF and G-EDF, also considering the
OS overhead. P-EDF has obtained the same or better perfor-
mance than G-EDF and C-EDF for all analyzed scenarios. In our
experiments, P-EDF, C-EDF, and G-EDF had the same beha-
vior for task sets composed only of heavy tasks, mainly due to
G-EDF’s schedulability test bounds. We observed a slight im-
provement in G-EDF for this heavy tasks scenario compared to
related work (CALANDRINO et al., 2006), due to the use of up
to date G-EDF schedulability tests (BERTOGNA; CIRINEI, 2007;
BARUAH et al., 2009).

1Contents of this chapter appear in a preliminary version in the following pu-
blished paper:
G. Gracioli, A. A. Fröhlich, R. Pellizzoni, and S. Fischmeister, Implementation
and evaluation of global and partitioned scheduling in a real-time OS, Real-Time
Systems, v. 49, p. 1-48, 2013.

202 5 RUN-TIME OVERHEAD EVALUATION

• We measure the CPMD on a modern 8-core processor, with sha-
red L3 cache, using HPCs. We use the obtained values to compare
P-EDF, C-EDF, and G-EDF through the weighted schedulability
metric (BASTONI et al., 2010b).

The rest of this chapter is organized as follows. Section 5.1 pre-
sents the experiments description. Section 5.2 to Section 5.8 show the
results of the measured IPI latency, context switch, scheduling, tick
counting, and thread releasing overheads of EPOS and LITMUSRT.
Section 5.9 presents the schedulability ratio of P-EDF, C-EDF, and
G-EDF considering the run-time overhead in both OSes. Finally, Sec-
tion 5.10 discusses the main results.

5.1 EXPERIMENTS DESCRIPTION

To measure the OS overhead and the schedulability ratio of G-
EDF, C-EDF and P-EDF, we randomly generated task sets with diffe-
rent distributions similar to (BAKER, 2003; BAKER, 2005a) and (BRAN-
DENBURG; ANDERSON, 2009). For generating tasks periods (all values
are in ms), we used a uniform distribution between [3, 33] (short), [10,
100] (moderate), and [50, 250] (long). For generating tasks utilizati-
ons, we used a uniform distribution between [0.001, 0.1] (light), [0.1,
0.4] (medium), and [0.5, 0.9] (heavy), and a bimodal distribution (com-
bining two uniform distribution) between [0.001, 0.1] and [0.5 ,0.9], with
probabilities 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and
5/9 (heavy), respectively. There are in total 18 combinations of periods
and utilizations. Based on the generated task’s period and utilization,
we defined the task’s WCET (before adding the OS overhead).

For measuring the overhead associated with OS activities, we
fixed the number of tasks to 5, 15, 25, 50, 75, 100, and 125, and used
the light uniform utilization with short periods to generate the tasks.
Each task sums a local variable in a loop of 50 repetitions. The same
task function code is used in EPOS and LITMUSRT. The objective
is to stress the OS. We used these numbers of tasks to measure the
run-time overhead, because they represent the range of tasks in our
generated synthetic task sets. We also added a warm-up code (i.e.,
a loop performing a nop operation) to make sure that the scheduling
and alarm data structures are in the same state before the beginning of
the application. Then, we applied three G-EDF sufficient schedulability

5.1 Experiments Description 203

tests (GOOSSENS et al., 2003; BAKER, 2005a; BERTOGNA et al., 2005). A
task set was considered feasible if it had passed in at least one test. We
then used the generated task sets to measure the overhead of EPOS and
LITMUSRT. We executed each task set for 100 times on the Intel i7-
2600 processor (see Table 12) for LITMUSRT and EPOS, and extracted
the sampled WCET for each overhead from these executions.
Table 12: Intel i7-2600 processor features and LITMUSRT version.

Clock speed 3.4 Ghz
Cores 4

Hyper-threading (SMT) 2 per core (8 logical cores)
L1 cache 4 x 64 KB 8-way set associative (32 KB

separate data and instructions caches)
L2 cache (non-inclusive) 4 x 256 KB 8-way

set-associative (unified)
L3 cache (inclusive) 8 MB 16-way

set-associative (unified)
LITMUSRT version 2012.1 kernel 3.0

To determine the schedulability of a task set that considers OS
overhead, we first inflated the WCET of each task by adding the me-
asured overheads, using the preemption-centric interrupt accounting
method (BRANDENBURG, 2011) as described in Section 2.5, and then
we verified if a task set is schedulable or not for the three schedulers
(G-EDF, P-EDF, and C-EDF). The additional overhead for a task is
dependent on the number of tasks in the task set. We verified the
number of tasks and associated it with the measured overhead interval.
For example, the additional overhead for a task set with 20 tasks is the
measured overhead for 15 tasks, since the task number is between 15
and 25. Moreover, we used a step function to account for the overhead
in the schedulability analysis. For instance, when accounting for the
overhead of 50 tasks, and the overhead for 50 tasks is lower than the
overhead for 25 tasks, we considered the overhead of 25 tasks.

A task set is considered to be schedulable in the G-EDF if it pas-

204 5 RUN-TIME OVERHEAD EVALUATION

ses for at least one of the eight sufficient schedulability tests2 (GOOS-
SENS et al., 2003; BAKER, 2005a; BAKER, 2003; BARUAH, 2007; BAKER;
BARUAH, 2009; BERTOGNA et al., 2005; BERTOGNA; CIRINEI, 2007; BA-
RUAH et al., 2009). As in (BRANDENBURG; ANDERSON, 2009), we did
not use the Baruah’s test (BARUAH, 2007) for light uniform utilization
due to high processing time caused by its pseudo-polynomial behavior.
We created tasks until reaching a fixed utilization cap (from 2 to 8,
in steps of 0.1). For each utilization, we defined a slack related to the
utilization cap. For example, a slack of 0.05 specifies that a utilization
cap U of a task set τ is always between the interval U - 0.05 and U .
Thus, we make sure that the utilization values are always between two
consecutive caps. The slacks used were 0.07, 0.07, and 0.1 for light, me-
dium, and heavy utilization distributions, respectively. We generated
1000 task sets for each utilization cap.

For the P-EDF algorithm, we first partitioned the task set using
three partitioning algorithms (FFD, BFD, and WFD) and then applied
the EDF test (LIU; LAYLAND, 1973) for each partition (eight in total).
A task set is schedulable if all the eight partitions pass the test and at
least one partitioning algorithm correctly partitions the task set. For
C-EDF, we first partitioned the task set using the same partitioning
algorithms as in P-EDF, and then applied the same eight sufficient
schedulability tests of G-EDF to each cluster. We defined four cluster
with two processors in each cluster (sharing the L2 cache). A task set
is schedulable if the four partitions pass in at least one of eight G-
EDF sufficient tests and at least one partitioning algorithm correctly
partitions the task set into the four clusters.

5.2 TRACING OVERHEAD

We measured the context switch, release, tick, and scheduling
overheads and IPI latency for EPOS and LITMUSRT on the Intel i7-
2600 processor. To record the overheads, in EPOS, we use the processor
TSC and in LITMUSRT, the tracing support accomplished by Feather-
Trace (see Section 3.2.4) (BRANDENBURG; ANDERSON, 2007). First of

2We used the open-source implementation of the eight G-EDF schedulability
tests available at http://www.cs.unc.edu/˜bbb/diss/. We changed the code to
allow the tests to be executed in parallel in a cluster and extended it to support
also P-EDF and C-EDF partitioning heuristics and EDF uniprocessor test. The
new code is also available online at http://epos.lisha.ufsc.br.

http://www.cs.unc.edu/~bbb/diss/
http://epos.lisha.ufsc.br

5.3 Context Switch Overhead Evaluation 205

all, we designed two experiments to inspect whether the Feather-Trace
introduces a considerable overhead to LITMUSRT or not and to verify
the overhead to read and store the TSC in EPOS. We measured the
time to complete all threads (we call the total application execution
time) and the individual execution time of each thread (varying the
number of threads from 5 to 125 as explained in the previous section)
in LITMUSRT and EPOS with and without the tracing support. We
used the TSC to measure the execution time both in LITMUSRT and
EPOS. We executed each task set for 100 times in LITMUSRT and
EPOS and extracted the average execution time from these executions.
Figure 56(a) shows the average total application execution time. The
total application execution time is similar for all number of threads.
The variation observed among the number of threads comes from the
different period lengths in each task set. Figure 56(b) shows the average
execution time of each thread. We can note that the tracing support
does not introduce a considerable overhead to the threads’ execution
time. We removed some outliers from LITMUSRT. We considered
outliers those values that increased the average by more than 1000%.
It is important to highlight that our CPU-bound workload, described
in the previous Section, may not induce all relevant overhead in Linux.
Although it is not the focus of this work, impacts on the memory system
when I/O buffers are full, such as disk and network buffers, can increase
the WCET of a task.

5.3 CONTEXT SWITCH OVERHEAD EVALUATION

For measuring the context switch overhead in EPOS, we con-
figured a test case composed of two threads a and b. Thread a sets
the TSC before switching the context (Thread dispatch method, as
described in Section 4.2.2) and thread b reads the TSC and calculates
the difference, which represents the total context switch time for th-
read a. The context switch is performed on the same CPU. Thus, we
can isolate the exact time that a context switch takes. Tick, releasing,
and scheduling overheads are measured using the previously described
methodology (i.e., synthetic task sets generated using the light uniform
distribution). These overheads account for all the overhead associated
with the variation on the number of tasks in EPOS. We measured in

206 5 RUN-TIME OVERHEAD EVALUATION

5 15 25 50 75 100 125

Total Application Execution Time

Number of Threads

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
0

5
10

15
20

25
AVG wo trace (LITMUS)
AVG w trace (LITMUS)

AVG wo trace (EPOS)
AVG w trace (EPOS)

(a)

5 15 25 50 75 100 125

Individual Thread Execution Time

Number of Threads

E
xe

cu
tio

n
T

im
e

(u
s)

0.
00

0
0.

01
0

0.
02

0
0.

03
0

AVG wo trace (LITMUS)
AVG w trace (LITMUS)

AVG wo trace (EPOS)
AVG w trace (EPOS)

(b)

Figure 56: Tracing overhead in LITMUSRT and EPOS. (a) To-
tal application execution time and (b) individual thread execution
time.

total 5,000,000 context switches and extracted the worst-case3 and ave-
rage times from these executions. For LITMUSRT, we measured the
worst-case and average times by using Feather-Trace and running the
task sets with fixed number of tasks, as presented previously. The to-

3From now on, whenever we refer to worst-case we mean the observed worst-case
from the experiments.

5.4 IPI Latency Evaluation 207

tal execution time is about 16 seconds, since the greatest period of all
periodic tasks is 33 ms and each periodic thread is repeated 500 times.

Figure 57 shows the average and worst-case context switch
overhead. The x-axis shows the number of threads and the y-axis the
measured execution time in µs. The error bars represent the observed
standard deviation. The average context switch overhead for EPOS
is 0.03 µs and the worst-case is 0.3 µs. For LITMUSRT, the average
context switch overhead is about 1.2 µs both for P-EDF and G-EDF
and about 0.85 µs for C-EDF. The standard deviation ensures that
the average context switch overhead is mostly the same for the three
schedulers. For the worst-case context switch overhead, there is a high
variation of the observed execution times, from 9.4 µs to 29.56 µs in
G-EDF, from 2 µs to 26.95 µs for P-EDF, and from 12.19 µs to 36.63 µs
for C-EDF.

EPOS performs a context switch up to 76.3 times faster than the
LITMUSRT. For algorithms with a high rate of preemptions and con-
text switches, such as fairness-based schedulers (BARUAH et al., 1996;
ANDERSON; BLOCK, 2000; ANDERSON et al., 2003; SRINIVASAN et al.,
2003; LEVIN et al., 2010), the use of an RTOS with low context switch
overhead certainly improves the task set schedulability ratio, as will be
shown in Section 5.9. However, it is important to highlight that we
removed a few (from two to eight) outliers from LITMUSRT measu-
rements. For example, we once obtained a worst-case context switch
time of up to 2.000 µs. As stated by (BRANDENBURG et al., 2008), this
outlier may be due to a set of factors, such as warm-up effects in the
instrumentation code and non-deterministic aspects of Linux (BRAN-
DENBURG et al., 2008). This result corroborates the hypothesis that
Linux causes interference for applications parts, harming the predicta-
bility needed in HRT systems (BRANDENBURG et al., 2008), as will be
observable in the next measurements.

5.4 IPI LATENCY EVALUATION

An Inter-Process-Interrupt (IPI) is issued to send reschedule re-
quests from a core that is releasing a task to another core that must
schedule that task. IPI rescheduling messages are common in global
schedulers, such as G-EDF and C-EDF. In partitioned schedulers, such
as P-EDF, if each core serves all release interrupts of those tasks that

208 5 RUN-TIME OVERHEAD EVALUATION

●
● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Number of threads

A
ve

ra
ge

 (
us

)

Average context switch overhead

● G−EDF LITMUS
EPOS (constant)
P−EDF LITMUS
C−EDF LITMUS

5 15 25 50 75 100 125

(a)

●

●

●
● ●

● ●

0
10

20
30

40

Number of threads

W
or

st
−

ca
se

 (
us

)

Wost−case context switch overhead

● G−EDF LITMUS
EPOS (constant)

P−EDF LITMUS
C−EDF LITMUS

5 15 25 50 75 100 125

(b)

Figure 57: Average (a) and worst-case (b) context switch overhead.

have been assigned to it, there is no need to send IPI messages. We
consider only the IPI latency for the G-EDF scheduler. Since the C-
EDF scheduler uses IPI within each cluster, we use the IPI latency

5.5 Scheduling Overhead Evaluation 209

observed in G-EDF when accounting for IPI latency in the schedu-
lability of C-EDF. Low IPI latency is important, because it delivers
the interrupt message faster, which affects the preemption delay in the
core that is receiving the interrupt message. The presence of memory
transfers and other IPIs messages on the shared bus or on the on-chip
point-to-point network can delay an IPI message. Furthermore, if the
core that is receiving an IPI has disabled interrupts, the IPI is also
delayed (IPI-fly-time) (BRANDENBURG, 2011).

We measured the IPI latency in EPOS and LITMUSRT using the
methodology described in Section 5.1 (varying the number of tasks).
Figure 58 shows the obtained average and worst-case IPI latency for
EPOS and LITMUSRT. The x-axis shows the number of threads and
the y-axis the measured IPI latency in µs. The error bars represent
the observed standard deviation. We removed a few outliers from the
obtained values for LITMUSRT (from two to seven). The worst-case
IPI latency in EPOS is up to 15 times smaller than in LITMUSRT (for
15 tasks). This difference between EPOS and LITMUSRT is mainly
caused by the IC hardware mediator and EPOS’ design. The ipi send
method is “diluted” into the application code at compile time. There
are no software layers between the application and OS, only embedded
assembly code. Moreover, we used the EPOS library mode, in which the
system is linked with the application, avoiding the overhead of system
calls. EPOS also supports a kernel mode, which creates a system call
layer between the application and OS. The system designer can choose
the best configuration that fits the application requirements. Our focus
is on embedded systems, which mostly are single application. That is
the reason we chose the library mode. Another aspect that contribu-
tes to the smaller IPI latency is the smaller scheduling overhead (see
Figure 59), in which interrupts are disabled. We can also note a slight
decreasing in the average values for EPOS. However, the greater the
number of tasks, the higher the standard deviation. In LITMUSRT, we
observed a standard deviation comparable to the average case values.

5.5 SCHEDULING OVERHEAD EVALUATION

We measured the G-EDF, C-EDF, and P-EDF scheduling
overheads in EPOS and LITMUSRT. The sleep, wakeup, and
reschedule thread methods, including the list operations and thread

210 5 RUN-TIME OVERHEAD EVALUATION

●
● ● ● ● ● ●

0
1

2
3

4

Number of threads

A
ve

ra
ge

 (
us

)

Average IPI latency

5 15 25 50 75 100 125

● LITMUS
EPOS

(a)

●
● ● ● ●

● ●

0
5

10
15

20
25

Number of threads

W
or

st
−

ca
se

 (
us

)

Worst−case IPI latency

5 15 25 50 75 100 125

● LITMUS
EPOS

(b)

Figure 58: Average (a) and worst-case (b) IPI latency.

state changes, as demonstrated in the UML sequence diagrams of
Section 4.2.1, are accounted for the scheduling overhead in EPOS. In
EPOS, we measured the scheduling overhead using the processor’s

5.6 Tick Counting Overhead Evaluation 211

TSC and in LITMUSRT, using the Feather-Trace.
Figure 59 shows the average and worst-case scheduling overhead

for both P-EDF, C-EDF, and G-EDF in EPOS and LITMUSRT. The
x-axis shows the number of threads and the y-axis the measured exe-
cution time in µs. The error bars represent the observed standard
deviation. For instance, the average scheduling overhead of EPOS and
G-EDF scheduler for 100 tasks is about 0.5 µs with a standard devia-
tion of about 0.2 µs. In Figure 59(b), the observed worst-case schedu-
ling overhead for EPOS increases after 75 threads, mainly in G-EDF
scheduler. This is due to the scheduling list: insertion and removal
operations take more time, because there are more threads in the list
(time complexity in the worst-case of O(n)). For P-EDF, on the other
hand, as the threads are evenly distributed across the cores and each
core has its own ready scheduling list, we did not observe a conside-
rable variation in the overhead. C-EDF had a performance between
P-EDF and G-EDF, as expected, because it uses global lists within
each cluster. For LITMUSRT, as the number of threads increases, the
unpredictability of Linux increases as well. C-EDF in LITMUSRT had
a similar behavior of C-EDF in EPOS. For G-EDF, EPOS was up to
11.10 times faster than LITMUSRT, for P-EDF it was up to 21.05 times
faster, and for C-EDF it was up to 7.21 times faster. We again removed
few outliers in the LITMUSRT measurements, as explained before.

5.6 TICK COUNTING OVERHEAD EVALUATION

We measured the tick counting overhead in EPOS and
LITMUSRT using the methodology described in Section 5.1. The
tick counting overhead in EPOS is formed by the call to the Alarm
handler method performed by the Timer hardware mediator and
by the increment of a variable and the access of register to get the
appropriate CPU ID performed by the Alarm handler. Thus, the tick
counting overhead in EPOS does not depend on the number of threads.
Figure 60 shows the obtained values for EPOS and LITMUSRT. The
x-axis shows the number of threads and the y-axis the measured
execution time in µs. The error bars represent the observed standard
deviation. The tick counting overhead in LITMUSRT increases consi-
derably after 75 threads. For C-EDF, the tick overhead surprisingly
decreased. This corroborates the unpredictability of the Linux-based

212 5 RUN-TIME OVERHEAD EVALUATION

●
● ● ● ● ● ●

0
1

2
3

4

Number of threads

A
ve

ra
ge

 (
us

)

Average scheduler overhead

5 15 25 50 75 100 125

● G−EDF LITMUS
G−EDF EPOS
P−EDF LITMUS

P−EDF EPOS
C−EDF LITMUS
C−EDF EPOS

(a)

● ● ● ●
●

●

●

0
20

40
60

80
10

0
12

0
14

0

Number of threads

W
or

st
−

ca
se

 (
us

)

Worst−case scheduler overhead

5 15 25 50 75 100 125

● G−EDF LITMUS
G−EDF EPOS
P−EDF LITMUS
P−EDF EPOS
C−EDF LITMUS
C−EDF EPOS

(b)

Figure 59: Average (a) and worst-case (b) scheduling overhead.

real-time patches, as stated by Brandenburg (BRANDENBURG et al.,
2008). Also, the standard deviation in LITMUSRT is much higher
than in EPOS. The worst-case overhead in EPOS is 0.248 µs and the

5.6 Tick Counting Overhead Evaluation 213

average overhead is 0.051 µs with a standard deviation of 0.027 µs.
The tick counting overhead in EPOS is up to 84 times faster than in
LITMUSRT.

●
● ● ●

● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Number of threads

A
ve

ra
ge

 (
us

)
Average tick overhead

5 15 25 50 75 100 125

● G−EDF LITMUS
EPOS (constant)
P−EDF LITMUS
C−EDF LITMUS

(a)

● ● ● ● ●

● ●

0
2

4
6

8

Number of threads

W
or

st
−

ca
se

 (
us

)

Worst−case tick overhead

5 15 25 50 75 100 125

● G−EDF LITMUS
EPOS (constant)
P−EDF LITMUS
C−EDF LITMUS

(b)

Figure 60: Average (a) and worst-case (b) tick counting overhead.

214 5 RUN-TIME OVERHEAD EVALUATION

5.7 THREAD RELEASE OVERHEAD EVALUATION

We measured the thread release overhead in EPOS and
LITMUSRT using the methodology described in Section 5.1 (varying
the number of tasks). In EPOS we used the TSC and in LITMUSRT

the tracing support (feather-trace). The Alarm handler method
performs all the operations related to the thread release overhead in
EPOS (see Section 4.2.3). We did not measure separate overheads for
the P-EDF, C-EDF, and G-EDF schedulers in EPOS, because thread
releasing operations are the same for the three schedulers.

Figure 61 shows the average and worst-case release overhead.
The x-axis shows the number of threads and the y-axis the measured
execution time in µs. The error bars represent the observed standard
deviation. For example, the average overhead for 125 threads in EPOS
is about 0.34 µs with a standard deviation of about 0.6 µs. Considering
the worst-case release overhead, in Figure 61(b), the observed worst-
case times increase according to the number of threads in the system:
the alarm handler releases more threads in the same handler, affecting
the overhead. The G-EDF scheduler in LITMUSRT had a similar beha-
vior, increasing the overhead as the number of threads also increases.
The P-EDF scheduler did not present a considerable variation after 50
threads. The C-EDF scheduler in LITMUSRT had a similar behavior
to G-EDF for the worst-case scenario, and a similar behavior to P-EDF
for the average-case scenario.

Furthermore, the use of a slower data structure in EPOS (list)
against the LITMUSRT heap implementation is not critical, because
EPOS performs less operations before and after inserting or removing
elements to/from the data structure. As the number of threads increa-
ses, the standard deviation of EPOS increases as well. This is because
the greater time difference between an interrupt that only releases one
thread and an interrupt that releases several threads.

5.8 PREEMPTION/MIGRATION DELAY EVALUATION

We measured the CPMD using the EPOS hardware performance
counter API, described in Section 4.1.1. We configured HPCs to count
hardware events that together form three metrics, represented in Equa-
tions 1, 2, and 3. The metrics calculate the impact of L1, L2, and

5.8 Preemption/Migration Delay Evaluation 215

●
● ●

● ● ● ●
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

Number of threads

A
ve

ra
ge

 (
us

)

Average release overhead

5 15 25 50 75 100 125

● G−EDF LITMUS
EPOS

P−EDF LITMUS
C−EDF LITMUS

(a)

●
●

●
●

●
●

●

0
5

10
15

20
25

Number of threads

W
or

st
−

ca
se

 (
us

)

Worst−case release overhead

5 15 25 50 75 100 125

● G−EDF LITMUS
EPOS

P−EDF LITMUS
C−EDF LITMUS

(b)

Figure 61: Average (a) and worst-case (b) thread release overhead.

L3-cache misses in terms of cycles spent serving them (Intel Corpora-
tion, 2011; Intel Corporation, 2012). The Last-Level Cache Miss Impact
(LLC MI) is the number of all memory accesses that missed the LLC

216 5 RUN-TIME OVERHEAD EVALUATION

multiplied by the number of cycles spent to serve one LLC miss (200):

LLC MI = 200×mem load uops retired that miss LLC (1)

The Last-Level Cache Hit Impact (LLC HI) is the sum of all
memory accesses that hit the LLC with no bus snoop needed, all me-
mory accesses that hit the LLC and required a cross-core snoop hit, and
all memory accesses that hit the LLC and had a hit modified response
from another core multiplied by the processor cycles spent to serve each
hardware event (31, 43, and 60 respectively):

LLC HI = 31×mem load uops retired that hit LLC +
43×mem load uops with LLC hit and snoop hit +

60×mem load uops with LLC hit and hitm response (2)

The L2-cache Hit Impact (L2 HI) multiplies the number of all
memory accesses that hit the L2-cache by the processor cycles spent in
one hit (12 cycles):

L2 HI = 12×mem load uops that hit L2 (3)

The sum of the three equations gives us the total impact of all
accesses that missed in the L1-cache. However, the platform presents a
hardware limitation to perform this calculation. Intel i7-2600 processor
offers only four programmable and three-fixed hardware counters per
each core-thread, while the metrics need five counters. We eliminated
the event that counts the LLC hit and had a cross-core snoop hit mo-
dified response from Equation 2, because there is no data sharing in
our test application (see Figure 62) and this event only captures cache
coherence activities.

Figure 62 shows part of the application code used to measure the
CPMD. We vary the WSS from 4 KB to 10 MB (WSS variable in line
4), which provides a reasonable relation to the size of the three cache
memory levels (see Table 12). The Perf Mon component configures the
hardware counters (line 9) and then reads them into a buffer (line 14).
At every iteration, a periodic thread calls the wbinvd instruction to
write back all modified cache lines to main memory and to invalidate
the internal caches (line 8). Thus, we emulate a worst-case scenario (for

5.8 Preemption/Migration Delay Evaluation 217

HRT applications) where a thread entirely loses its cache affinity after
a preemption/migration. The application creates 16 periodic threads.
Each thread iterates for 1000 times and the maximum period is 20 ms
(total execution time of 20 seconds). To control a CPU migration,
we used the CPU Affinity scheduler and at every thread period we
changed the thread’s affinity to force a CPU migration.

1 int func(int factor , int id)
2 {
3 Perf Mon perf;
4 int array[WSS];
5 int sum = 0;
6 for(int i = 0; i < ITERATIONS; i++) {
7 Periodic Thread::wait next();
8 asm(”wbinvd”);
9 perf .cpmd();

10 for(int k = 0; k < factor; k++) {
11 for(int j = 0; j < WSS; j++)
12 sum += array[j];
13 if (k == 0)
14 perf .get cpmd(threads[id]−> buffer);
15 }
16 }
17 }

Figure 62: CPMD application code.

We executed the test application for ten times and extracted the
worst-case values and the average cases for each WSS from these exe-
cutions. We also considered a theoretical worst-case bound: the cache
line size (64) divides the WSS, and the processor cycles to treat an
LLC (200) multiplies the division resulting value. Figure 63 shows the
calculated worst-case bound, the sampled worst-case, and the average
CPMD for our test application. On the x-axis, we vary the WSS and
on the y-axis, we present the CPMD in µs and in logarithm scale. Com-
paring the sampled worst-case with the calculated worst-case bound,
the hardware pre-fetcher considerably improves the CPMD: it brings
data to the LLC that is later accessed, which does not cause an LLC
miss. For WSS of 10 MB, it is possible to observe a smaller difference
between the sampled and calculated worst-case bound values, because
the application thrashes the cache. Additionally, the CPMD difference
between the average and sampled worst-case is not high, and the ave-

218 5 RUN-TIME OVERHEAD EVALUATION

rage cases have a low standard deviation (error bars that represent
standard deviation are almost imperceptible). This shows that hard-
ware performance counters can provide a correct view of the application
behavior.

4KB 128KB 512KB 1MB 2MB 10MB

Cache−related preemption and migration delays

WSS

O
ve

rh
ea

d
(u

s)

0.
1

10
.0

10
00

.0

Worst−case
Sampled Worst−case
Average

Figure 63: Cache-related preemption and migration delay varying
the WSS in microseconds. Note that the y-axis uses a logarithm
scale.

5.9 SCHEDULABILITY TESTS ANALYSIS

We present below the empirical comparison between G-EDF, C-
EDF, and P-EDF. We first show the comparison considering the run-
time overhead measured in eight processors and then we present the
results of a comparison between P-EDF and G-EDF for 100 proces-
sors, considering only the ideal tests in both schedulers (i.e., without
overhead)4.

4Recall that the experiments presented in this section were simulated. Specifi-
cally, in the experiments of Subsection 5.9.1, we inflated the WCET of each task
with the OS overhead measured in the previous section and applied the schedula-
bility tests accordingly, as described in Section 5.1.

5.9 Schedulability Tests Analysis 219

5.9.1 Run-Time Overhead

Figure 64 shows the task set schedulability ratio for short periods
and the six combinations of uniform and bimodal utilization distribu-
tions. In the x-axis, we vary the utilization cap and in the y-axis, we
present the ratio of schedulable task sets. A ratio of 0.6, for instance,
means that 60% of the total generated task sets are schedulable.

In Figure 64(a), which shows the results for the light uniform
utilization, P-EDF is able to partition and schedule all task sets. The
partitioning heuristics performed well, because tasks utilizations are
very low. For the bimodal light utilization, P-EDF did not have the
same behavior due to few heavy tasks: for instance, in Figure 64(b),
the P-EDF schedulability ratio starts to decrease around the utilization
cap of 7.0.

For all analyzed distributions but the uniform heavy utilization,
G-EDF is worse than P-EDF and C-EDF. When all tasks in a task set
have utilizations between 0.5 and 0.9 (in the uniform heavy utilization),
the partitioning heuristics can only partition a task set with a total
number of tasks equal to the processor number (eight). Figure 64(f)
exemplifies this situation, where around the utilization cap of 5.1, task
sets have more than eight tasks. Consequently, the schedulability ratio
starts to drop. For G-EDF, instead, the HRT bounds in the sufficient
schedulability tests limit the schedulability ratio. In fact, the G-EDF
schedulability tests are over pessimistic.

In the light uniform utilization, when the number of tasks in a
task set is greater than in the medium and heavy utilization distribu-
tions, the run-time overhead impact is more significant. For example,
in the uniform light utilization (Figure 64(a)), P-EDF considering the
overhead in LITMUSRT is worse than G-EDF and G-EDF considering
the overhead in EPOS. Also, P-EDF with the overhead in EPOS is si-
milar to C-EDF without overhead. C-EDF with the overhead in EPOS
is better than G-EDF without overhead. For the same light uniform
utilization, we can observe an interesting fact in LITMUSRT: C-EDF
is better than P-EDF due to the smaller scheduler overhead for 125
threads (see Figure 59).

In general, P-EDF and C-EDF in EPOS had almost the same
schedulability ratio as P-EDF and C-EDF without OS overhead, which
demonstrates that a lightweight RTOS can provide HRT bounds close
to the theoretical ones.

220 5 RUN-TIME OVERHEAD EVALUATION

●●

●●●●●●●0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. uniform [0.001,0.1];period uniform [3,33]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]

[2]

[3] [4]

[5]

[6]
[7]

[8][9]

●●●●●●●●●●●●●●●●●●
●
●
●
●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. bimodal [0.001,0.5) (8/9) and [0.5, 0.9] (1/9);period uniform [3,33]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]
[3]

[4]

[5][6]

[7]
[8]

[9]

(a) (b)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. uniform [0.01,0.4];period uniform [3,33]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

●●●●●●●●●●●●●●●●●●●●●
●
●
●
●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. bimodal [0.001,0.5) (6/9) and [0.5, 0.9] (3/9);period uniform [3,33]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]

[3]
[4]

[5]

[6]

[7]
[8]

[9]

(c) (d)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. uniform [0.5,0.9];period uniform [3,33]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. bimodal [0.001,0.5) (4/9) and [0.5, 0.9] (5/9);period uniform [3,33]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1][2]
[3]

[4]
[5]

[6]

[7]
[8]
[9]

(e) (f)

Figure 64: Comparison between G-EDF and P-EDF with short
periods (a) Uniform light (c) Uniform medium (e) Uniform heavy
(b) Bimodal light (d) Bimodal medium (f) Bimodal heavy.

Figure 65 shows the task set schedulability ratio for moderate
periods and the six combinations of uniform and bimodal utilization
distributions. We observe a reduction in the overhead impact for all
distributions compared to shorter periods: as the periods become lar-

5.9 Schedulability Tests Analysis 221

ger, the proportion between periods and overheads becomes smaller.
Figure 65(a) exemplifies this situation, where the lines for G-EDF with
EPOS and LITMUSRToverheads are closer to the theoretical G-EDF
than the previous graph with short periods (Figure 64(a)).

●●

●●●●●●●0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. uniform [0.001,0.1];period uniform [10,100]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

s

●●●●●●●●●●●●●●●●●
●
●
●
●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)
R

a
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. bimodal [0.001,0.5) (8/9) and [0.5, 0.9] (1/9);period uniform [10,100]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]
[3]

[4]

[5]
[6]

[7]
[8]
[9]

(a) (b)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. uniform [0.01,0.4];period uniform [10,100]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. bimodal [0.001,0.5) (6/9) and [0.5, 0.9] (3/9);period uniform [10,100]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]
[3] [4]

[5]

[6]

[7]
[8]

[9]

(c) (d)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●
●
●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. uniform [0.5,0.9];period uniform [10,100]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●

●
●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. bimodal [0.001,0.5) (4/9) and [0.5, 0.9] (5/9);period uniform [10,100]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]
[3]

[4]
[5]

[6]

[7]
[8]
[9]

(e) (f)

Figure 65: Comparison between G-EDF and P-EDF with moderate
periods (a) Uniform light (c) Uniform medium (e) Uniform heavy
(b) Bimodal light (d) Bimodal medium (f) Bimodal heavy.

222 5 RUN-TIME OVERHEAD EVALUATION

Moreover, for the same light uniform distribution, P-EDF with
EPOS and LITMUSRT overheads also improved the schedulability ra-
tio compared to the short period. For instance, the schedulability ratio
of P-EDF with EPOS and LITMUSRT overheads in moderate periods
start to decrease from 1 in the utilization caps of 7.9 and 6.6, respecti-
vely. For short periods, in contrast, the schedulability ratio of P-EDF
inflated by the overhead in EPOS starts to drop in the utilization cap
of 7.8 and the schedulability ratio of P-EDF considering the overhead
in LITMUSRT in the utilization cap of 4.6. In the uniform light utiliza-
tion (Figure 65(a)), P-EDF considering the overhead in LITMUSRT is
still worse than G-EDF and G-EDF considering the overhead in EPOS.
Also, the C-EDF with the overhead in LITMUSRT is now worse than
the P-EDF with the overhead in LITMUSRT. With short periods, the
C-EDF in LITMUSRT had better performance than the P-EDF.

C-EDF with the overhead in EPOS is still close to the schedu-
lability ratio of the C-EDF without overhead and better than G-EDF
with and without overhead, although the difference between the sche-
dulability ratio of C-EDF and G-EDF had a significant reduction.

Figure 66 shows the task set schedulability ratio for long periods
and the six combinations of uniform and bimodal utilization distributi-
ons. Following the same trend, long period lengths reduce the overhead
impact on the schedulability ratio: the proportion among periods and
overheads becomes even smaller.

Furthermore, for the light uniform utilization (Figure 66(a)),
P-EDF inflated by the overhead in LITMUSRT was better than the
ideal G-EDF for the first time. C-EDF considering the overhead in
LITMUSRT is still worse than the ideal G-EDF and G-EDF inflated by
the overhead in EPOS. All scheduler variants improved the schedula-
bility ratio. For example, the schedulability ratio in the light uniform
utilization of the P-EDF inflated by the overhead in EPOS reaches 0%
at utilization cap of 8, while for short periods it reaches 0% at utili-
zation cap of 7.8. For P-EDF inflated by the overhead in LITMUSRT,
the schedulability ratio in the light uniform utilization reaches 0% at
utilization cap of 7.6, while for short periods it reaches 0% at utilization
cap of 6.2.

Summary. Table 13 summarizes the schedulability ratio re-
sults of P-EDF, C-EDF and G-EDF, considering the three utilization
variants (light, medium, and heavy), and the uniform and bimodal dis-
tributions. G-EDF, C-EDF, and P-EDF have the same performance

5.9 Schedulability Tests Analysis 223

●●

●●●●●●●0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. uniform [0.001,0.1];period uniform [50,250]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

●●●●●●●●●●●●●●●●●
●
●
●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. bimodal [0.001,0.5) (8/9) and [0.5, 0.9] (1/9);period uniform [50,250]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]
[3]

[4]

[5][6]

[7]
[8]

[9]

(a) (b)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. uniform [0.01,0.4];period uniform [50,250]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

●●●●●●●●●●●●●●●●●●●●
●●

●
●
●
●

●
●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. bimodal [0.001,0.5) (6/9) and [0.5, 0.9] (3/9);period uniform [50,250]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1]
[2]

[3]

[4]
[5][6]

[7]
[8]

[9]

(c) (d)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. uniform [0.5,0.9];period uniform [50,250]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●

●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Task set utilization cap (before adding OS overhead)

R
a

ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
H

R
T

)

uti. bimodal [0.001,0.5) (4/9) and [0.5, 0.9] (5/9);period uniform [50,250]

2 3 4 5 6 7 8

● [1] G−EDF
[2] G−EDF EPOS
[3] G−EDF LITMUS
[4] P−EDF
[5] P−EDF EPOS
[6] P−EDF LITMUS
[7] C−EDF
[8] C−EDF EPOS
[9] C−EDF LITMUS

[1][2]
[3] [4]

[5][6]

[7]
[8]

[9]

(e) (f)

Figure 66: Comparison between G-EDF and P-EDF with long pe-
riods (a) Uniform light (c) Uniform medium (e) Uniform heavy (b)
Bimodal light (d) Bimodal medium (f) Bimodal heavy.

for heavy uniform utilizations. Considering the different periods (short,
moderate, and long), the biggest difference in terms of schedulability
ratio between G-EDF, C-EDF, and P-EDF is in the bimodal light uti-
lization. The presence of few heavy tasks profoundly affects the bound

224 5 RUN-TIME OVERHEAD EVALUATION

in the G-EDF schedulability tests.
Moreover, in the light uniform utilization and short periods sce-

nario, the impact of the run-time overhead on the schedulability ratio is
more significant, because the proportion between period and overhead
is smaller. Furthermore, for the light uniform and short and moderate
periods, G-EDF inflated by the overhead in EPOS is better than P-EDF
inflated by the overhead in LITMUSRT, differently of the theoretical
tests, in which P-EDF is always better than G-EDF (except for heavy
uniform utilizations). Yet, in the light uniform utilization and short
periods, C-EDF inflated by the overhead in LITMUSRT is better than
P-EDF also inflated by overhead in LITMUSRT, differently from the
theoretical C-EDF and P-EDF as well, in which P-EDF is always better
than C-EDF. In the bimodal heavy utilization, the run-time overhead
only changes the schedulability ratio for P-EDF and short periods. For
C-EDF, the schedulability ratio is almost the same for short, moderate,
and long periods, and for G-EDF the schedulability ratio is the same.

5.9.2 Weighted Schedulability

We used the weighted schedulability to account for CPMD (BAS-
TONI et al., 2010a). As the schedulability ratio depends on two variables
(i.e., utilization cap and CPMD), the weighted schedulability reduces
the results to a two-dimensional ploting without the use of the utiliza-
tion cap.

Let Dc be a maximum CPMD incurred by any job and U be a
utilization cap. S(U,Dc) denotes the schedulability ratio for a given U
and Dc, which is in the interval [0, 1]. Let Q be a set of utilization
caps (Q = {2.0, 2.1, . . . , m}). Then, Equation 4 defines the weighted
schedulability for a Dc, W (Dc) (BASTONI et al., 2010a).

W (Dc) =
∑
U∈QU ×S(U,Dc)∑

U∈QU
(4)

We used the calculated worst-case bound CPMD values shown
in Figure 63 as input to Dc. We assume that each task suffers the
CPMD once — a single job is potentially preempted multiple times,
but each job in the system can only cause one CPMD on one other job.
We inflated the WCET ei of each task Ti according to the preemption-
centric interrupt accounting method, described in Section 2.5. Then,

5.9 Schedulability Tests Analysis 225

T
ab

le
13

:
Su

m
m

ar
y

of
th

e
sc

he
du

la
bi

lit
y

ra
ti

o
co

m
pa

ri
so

n
b

et
w

ee
n

P
-E

D
F

,
C

-E
D

F
an

d
G

-E
D

F
,

co
ns

id
er

in
g

al
so

th
e

ru
n-

ti
m

e
ov

er
he

ad
in

E
P

O
S

an
d

L
IT

M
U

SR
T

.

P
-E

D
F

C
-E

D
F

G
-E

D
F

L
ig

ht
U

ti
liz

at
io

n

U
ni

fo
rm

P
-E

D
F

an
d

P
-E

D
F

in
E

P
O

S
ha

ve
th

e
be

st
pe

rf
or

m
an

ce
am

on
g

al
l

an
al

yz
ed

sc
en

ar
io

s.

C
-E

D
F

in
E

P
O

S
is

be
tt

er
th

an
G

-E
D

F
w

it
ho

ut
ov

er
he

ad
.

C
-

E
D

F
is

be
tt

er
th

an
P

-E
D

F
in

L
IT

M
U

SR
T

(s
ho

rt
pe

ri
od

s)
.

G
-E

D
F

w
it

h
E

P
O

S
ov

er
he

ad
is

be
tt

er
th

an
P

-E
D

F
w

it
h

L
IT

M
U

SR
T

ov
er

he
ad

(m
od

er
at

e
an

d
sh

or
t

pe
ri

od
s)

.

B
im

od
al

A
ll

th
e

th
re

e
P

-E
D

F
va

ri
an

ts
ar

e
be

tt
er

th
an

G
-E

D
F

.
C

-E
D

F
in

E
P

O
S

is
si

m
ila

r
to

C
-

E
D

F
w

it
ho

ut
ov

er
he

ad
an

d
be

t-
te

r
th

an
in

L
IT

M
U

SR
T

.

P
-E

D
F

is
be

tt
er

th
an

G
-E

D
F

.
T

he
bi

gg
es

t
di

ffe
re

nc
e

in
th

e
sc

he
du

la
bi

lit
y

ra
ti

o
be

tw
ee

n
P

-
E

D
F

an
d

G
-E

D
F

.

M
ed

iu
m

U
ti

liz
at

io
n

U
ni

fo
rm

T
he

ru
n-

ti
m

e
ov

er
he

ad
is

sm
al

-
le

r
in

lig
ht

ut
ili

za
ti

on
du

e
to

th
e

lo
w

er
nu

m
be

r
of

ta
sk

s
in

th
e

ta
sk

se
ts

.

C
-E

D
F

in
L

IT
M

U
SR

T
is

w
or

se
th

an
P

-E
D

F
in

L
IT

M
U

SR
T

.
C

-

E
D

F
in

E
P

O
S

is
st

ill
be

tt
er

th
an

G
-E

D
F

w
it

ho
ut

ov
er

he
ad

.

A
ll

G
-E

D
F

sc
en

ar
io

s
ar

e
w

or
se

th
an

P
-E

D
F

.
M

or
eo

ve
r,

G
-E

D
F

w
it

h
th

e
O

S
ru

n-
ti

m
e

ov
er

he
ad

is
eq

ua
l

or
cl

os
e

to
th

e
id

ea
l

G
-

E
D

F
.

B
im

od
al

P
-E

D
F

in
E

P
O

S
an

d
in

L
IT

M
U

SR
T

is
cl

os
e

to
th

e
id

ea
l

P
-E

D
F

.

T
he

sa
m

e
be

ha
vi

or
as

in
lig

ht
ut

ili
za

ti
on

.

H
ea

vy
U

ti
liz

at
io

n

U
ni

fo
rm

G
-E

D
F

,
C

-E
D

F
,

an
d

P
-E

D
F

ha
ve

th
e

sa
m

e
pe

rf
or

m
an

ce
.

B
im

od
al

T
he

ru
n-

ti
m

e
ov

er
he

ad
ch

an
ge

s
th

e
sc

he
du

la
bi

lit
y

ra
ti

o
on

ly
fo

r
sh

or
t

pe
ri

od
s.

P
-E

D
F

is
be

tt
er

th
an

C
-E

D
F

an
d

G
-E

D
F

.

T
he

sc
he

du
la

bi
lit

y
ra

ti
o

is
al

-
m

os
t

th
e

sa
m

e
fo

r
sh

or
t,

m
od

e-
ra

te
,

an
d

lo
ng

pe
ri

od
s.

T
he

ru
n-

ti
m

e
ov

er
he

ad
do

es
no

t
ch

an
ge

th
e

sc
he

du
la

bi
lit

y
ra

ti
o.

226 5 RUN-TIME OVERHEAD EVALUATION

we computed the S(U,Dc) varying the Dc and U . The result is the
schedulability ratio considering the CPMD.

We used the same previously generated task sets, varying the
utilizations and periods. A task set is considerable schedulable in the
G-EDF if it passes in at least one of eight sufficient schedulability
tests (GOOSSENS et al., 2003; BAKER, 2005a; BAKER, 2003; BARUAH,
2007; BAKER; BARUAH, 2009; BERTOGNA et al., 2005; BERTOGNA; CI-
RINEI, 2007; BARUAH et al., 2009). For the P-EDF algorithm, we first
partitioned the task set using three partitioning algorithms (FFD, BFD,
and WFD) and then applied the EDF test (LIU; LAYLAND, 1973) for
each partition (eight in total). A task set is schedulable if all the eight
partitions pass in the test and at least one partitioning algorithm cor-
rectly partitions the task set. For C-EDF, we first partitioned the task
set using the same partitioning algorithms as in P-EDF, and then ap-
plied the same eight sufficient schedulability tests of G-EDF in each
cluster. We defined four cluster with two processors in each cluster
(sharing the L2 cache). A task set is schedulable if the four partitions
pass in at least one of eight G-EDF sufficient tests and at least one
partitioning algorithm correctly partitions the task set into the four
clusters.

Figure 67 shows the obtained results for task sets with short peri-
ods. The x-axis defines the CPMD, while the y-axis presents the weigh-
ted schedulability metric. For instance, the weighted schedulability for
a CPMD of 128 KB and P-EDF inflated by the overhead in EPOS is
0.82, which means that 82% of all generated task sets are schedulable.
G-EDF, C-EDF and P-EDF lines serve as a reference for analyzing the
results, since they have no overhead. For the uniform heavy utilizations
distribution (Figure 67(e)), we observe the same trend as before: the
three schedulers have the same performance for all CPMD values.

For small WSSs (4 KB and 128 KB), P-EDF is superior to C-
EDF and G-EDF. As the WSS increases, the difference between P-
EDF, C-EDF, and G-EDF decreases, which can be clearly seen in
Figure 67(c). For WSSs greater than 512 KB, P-EDF, C-EDF, and
G-EDF tend to be equal mainly due to the high CPMD values. Figu-
res 67(a), (b), and (c) show the cases where the difference between the
weighted schedulability of EPOS and LITMUSRT is more significant:
there are more tasks in a task set, which favors EPOS due to the smal-
ler run-time overhead. For light uniform utilization and short periods
(Figure 67(a)), G-EDF, C-EDF, and P-EDF inflated by the overhead

5.9 Schedulability Tests Analysis 227

● ● ● ● ● ●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CPMD

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

uti. uniform [0.001,0.1];period uniform [3,33]

4KB 128KB 512KB 1MB 2MB 10MB

● G−EDF
 G−EDF EPOS
G−EDF LITMUS
P−EDF
P−EDF EPOS

P−EDF LITMUS
C−EDF
C−EDF EPOS
C−EDF LITMUS

● ● ● ● ● ●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CPMD

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

uti. bimodal [0.001,0.5) (8/9) and [0.5, 0.9] (1/9);period uniform [3,33]

4KB 128KB 512KB 1MB 2MB 10MB

● G−EDF
 G−EDF EPOS
G−EDF LITMUS

P−EDF
P−EDF EPOS
P−EDF LITMUS

C−EDF
C−EDF EPOS
C−EDF LITMUS

(a) (b)

● ● ● ● ● ●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

CPMD

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

uti. uniform [0.01,0.4];period uniform [3,33]

4KB 128KB 512KB 1MB 2MB 10MB

● G−EDF
 G−EDF EPOS
G−EDF LITMUS

P−EDF
P−EDF EPOS
P−EDF LITMUS

C−EDF
C−EDF EPOS
C−EDF LITMUS

● ● ● ● ● ●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CPMD

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

uti. bimodal [0.001,0.5) (6/9) and [0.5, 0.9] (3/9);period uniform [3,33]

4KB 128KB 512KB 1MB 2MB 10MB

● G−EDF
 G−EDF EPOS
G−EDF LITMUS

P−EDF
P−EDF EPOS
P−EDF LITMUS

C−EDF
C−EDF EPOS
C−EDF LITMUS

(c) (d)

● ● ● ● ● ●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CPMD

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

uti. uniform [0.5,0.9];period uniform [3,33]

4KB 128KB 512KB 1MB 2MB 10MB

● G−EDF
 G−EDF EPOS
G−EDF LITMUS

P−EDF
P−EDF EPOS
P−EDF LITMUS

C−EDF
C−EDF EPOS
C−EDF LITMUS

● ● ● ● ● ●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CPMD

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

uti. bimodal [0.001,0.5) (4/9) and [0.5, 0.9] (5/9);period uniform [3,33]

4KB 128KB 512KB 1MB 2MB 10MB

● G−EDF
 G−EDF EPOS
G−EDF LITMUS

P−EDF
P−EDF EPOS
P−EDF LITMUS

C−EDF
C−EDF EPOS
C−EDF LITMUS

(e) (f)

Figure 67: Weighted schedulability for short periods.

in EPOS have similar performance and they provide a considerable
higher schedulability ratio than when they are inflated by the overhead
in LITMUSRT. G-EDF inflated by the overhead in EPOS is better
than the three schedulers inflated by the overhead in LITMUSRT (4,
128, and 512 KB).

For moderate and long periods the graphs are similar to the pre-

228 5 RUN-TIME OVERHEAD EVALUATION

viously ones: as the periods become larger, the proportion between
CPMD and the period becomes smaller. As a consequence, the weigh-
ted schedulability ratio starts to drop only for higher CPMD values.
For example, Figure 68 shows the weighted schedulability results for
light uniform utilization and long periods. Compared to the light uni-
form utilization and short periods, the weighted schedulability reaches
0 only for WSS of 10 MB, instead of 1 MB as for short periods. Also,
G-EDF inflated by the overhead in EPOS is worse than P-EDF inflated
by the overhead in LITMUSRT for WSSs of 4 and 128 KB. For grea-
ter WSSs, G-EDF inflated by the overhead in EPOS provides a better
weighted schedulability ratio.

● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CPMD

W
ei

gh
te

d
S

ch
ed

ul
ab

ili
ty

uti. uniform [0.001,0.1];period uniform [50,250]

4KB 128KB 512KB 1MB 2MB 10MB

● G−EDF
 G−EDF EPOS
G−EDF LITMUS
P−EDF
P−EDF EPOS

P−EDF LITMUS
C−EDF
C−EDF EPOS
C−EDF LITMUS

Figure 68: Weighted schedulability for light uniform distribution
and long periods.

5.9.3 Schedulability Evaluation for 100 Processors

We present below the empirical comparison between the ideal
(i.e., without considering the run-time overhead) G-EDF and P-EDF
for 100 processor. We did not compare C-EDF, because it is formed
by a combination between G-EDF and P-EDF and, consequently, its
behavior for HRT systems is always between both schedulers, as de-
monstrated by our previous results. We used the same period and

5.9 Schedulability Tests Analysis 229

utilization distributions as described early to generate the task sets.
However, we used different utilization slacks: 0.5, 0.5, and 1 for light,
medium, and heavy utilization distributions, respectively. Then, we
executed the eight G-EDF sufficient schedulability tests and the three
P-EDF partitioning techniques in the SHARCNET cluster (SHARCNET,
2012), varying the utilization cap from 2, 3, 4,. . ., to 100. The total
computation time for all tests and task sets generation was more than
1.1 year.

Figure 69 shows the obtained task set schedulability ratio for
uniform utilization distributions. Figures 69(a), (b), and (c) show the
schedulability ratio for light uniform distribution. Figures 69(d), (e),
and (f) for medium uniform distribution, and Figures 69(g), (h), and (i)
for heavy uniform distribution. The x-axis defines the utilization cap
and the y-axis the ratio of schedulable task sets. A ratio of 0 means that
none of the task sets is schedulable, while a ratio of 1 means that all
task sets are schedulable. P-EDF is always better than G-EDF, except
for the heavy distribution. For the heavy distribution (Figures 69(g),
(h), and (i)) G-EDF had the same results as P-EDF, for the same
reason as explained early: the number of tasks in a task set affects the
partitioning heuristics and the HRT bounds in the G-EDF sufficient
tests limit the schedulability.

Figure 70 shows the obtained task set schedulability ratio for the
bimodal distributions. The x-axis defines the utilization cap and the
y-axis the ratio of schedulable task sets. P-EDF is again always better
than G-EDF for HRT tasks. Moreover, for light bimodal utilization
(Figures 70(a), (b), and (c)), the schedulability ratio of G-EDF reaches
0 when the utilization cap is 45. This clearly states the need for less
pessimistic G-EDF sufficient schedulability tests, since 55% of the avai-
lable processors are “wasted” due to HRT guarantees. For medium and
heavy bimodal distribution, we can observe a decrease in the schedu-
lability ratio for P-EDF due to that heavy tasks affect the partitioning
algorithms. For G-EDF, we can note a slight increase in the schedu-
lability ratio, because the sufficient schedulability tests provide better
HRT bounds when there are more heavy tasks. In fact, few heavy tasks
have a greater impact on the schedulability ratio of G-EDF.

230 5 RUN-TIME OVERHEAD EVALUATION

●●●

●●●●●●●●●●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. uniform [0.001,0.1];period uniform [3,33]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

●●●

●●●●●●●●●●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. uniform [0.001,0.1];period uniform [10,100]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(a) (b)
●●●

●●●●●●●●●●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. uniform [0.001,0.1];period uniform [50,250]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

●●●

●●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. uniform [0.01,0.4];period uniform [3,33]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(c) (d)
●●●

●●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. uniform [0.01,0.4];period uniform [10,100]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

●●●

●●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. uniform [0.01,0.4];period uniform [50,250]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(e) (f)
●●●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. uniform [0.5,0.9];period uniform [3,33]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

●●●
●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. uniform [0.5,0.9];period uniform [10,100]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(g) (h)
●●●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. uniform [0.5,0.9];period uniform [50,250]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(i)

Figure 69: Comparison between G-EDF and P-EDF using uniform
utilizations: (a), (b), and (c) light uniform. (d), (e), and (f) me-
dium uniform, and (g), (h), and (i) heavy uniform.

5.10 Discussion 231

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●
●
●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. bimodal [0.001,0.5) (8/9) and [0.5, 0.9] (1/9);
period uniform [3,33]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●
●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. bimodal [0.001,0.5) (8/9) and [0.5, 0.9] (1/9);
period uniform [10,100]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(a) (b)
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●
●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. bimodal [0.001,0.5) (8/9) and [0.5, 0.9] (1/9);
period uniform [50,250]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

●●●
●

●

●

●

●
●

●●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. bimodal [0.001,0.5) (6/9) and [0.5, 0.9] (3/9);
period uniform [3,33]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(c) (d)
●●

●
●
●

●

●

●
●
●
●●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. bimodal [0.001,0.5) (6/9) and [0.5, 0.9] (3/9);
period uniform [50,250]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

●●●
●

●

●

●

●

●
●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. bimodal [0.001,0.5) (6/9) and [0.5, 0.9] (3/9);
period uniform [10,100]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(e) (f)
●●

●

●

●

●

●
●
●●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. bimodal [0.001,0.5) (4/9) and [0.5,0.9] (5/9);
period uniform [3,33]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

●●●
●
●

●

●

●

●

●
●●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. bimodal [0.001,0.5) (4/9) and [0.5,0.9] (5/9);
period uniform [10,100]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(g) (h)
●●●

●
●

●

●

●

●

●
●●●0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Task set utilization cap (before adding OS overhead)

R
at

io
 o

f s
ch

ed
. t

as
k

se
ts

 (H
RT

) uti. bimodal [0.001,0.5) (4/9) and [0.5,0.9] (5/9);
period uniform [50,250]

2 9 17 26 35 44 53 62 71 80 89 98

● G−EDF
P−EDF

(i)

Figure 70: Comparison between G-EDF and P-EDF using bimo-
dal utilizations: (a), (b), and (c) light bimodal, (d), (e), and (f)
medium bimodal, and (g), (h), and (i) heavy bimodal.

5.10 DISCUSSION

During our evaluation, we observed a set of interesting facts
regarding aspects of the RTOS, processor architecture, and real-time

232 5 RUN-TIME OVERHEAD EVALUATION

scheduling:

• OS design versus data structures: we noticed that the OS
design is as important as the internal data structures of the sche-
duling and task release functions. In comparison to LITMUSRT,
EPOS performs less operations before and after a scheduling de-
cision and a task release, resulting in less overhead. Further-
more, we believe that changing the current EPOS lists to a data
structure with better performance, such as heaps, can reduce the
run-time overhead and consequently, reduce the impact on the
schedulability ratio, as demonstrated by Brandenburg and An-
derson (BRANDENBURG; ANDERSON, 2009).

• RTOS versus general-purpose OS: our results show that an
RTOS designed from scratch considerably reduces the run-time
overhead in comparison to general-purpose OSes with real-time
patches. In scenarios composed of several light utilization tasks,
we could note an improvement of about 46% in the task set sche-
dulability ratio of G-EDF considering the overhead in EPOS in
contrast to the G-EDF inflated by the overhead in LITMUSRT

(Figure 64(a)). Considering P-EDF, each ready scheduling list
has less tasks than the global scheduling list of the G-EDF, which
reduces the scheduling run-time overhead. Nevertheless, for the
same light uniform utilization scenario, P-EDF considering the
overhead in EPOS was about 26% better than P-EDF considering
the overhead in LITMUSRT. For example, while P-EDF inflated
by the overhead in LITMUSRT reaches 0% of schedulability ratio
at the utilization cap of 6.2, P-EDF considering the overhead in
EPOS reaches 0% at the utilization cap of 8. C-EDF inflated
by the overhead in EPOS is also about 26% better than C-EDF
inflated by the overhead in LITMUSRT. For task sets composed
of only heavy tasks, the influence of the run-time overhead on
the schedulability ratio is less significant, because there are few
tasks in the system. Thus, the scheduling and alarm lists (see
Section 4.2) manage less elements, reducing the overhead.

• Run-time overhead versus schedulability tests: in our me-
asurements, EPOS has presented a lower run-time overhead than
LITMUSRT, as demonstrated in Section 5.9.1. However, despite
the higher run-time overhead, LITMUSRT achieved a schedula-

5.10 Discussion 233

bility ratio comparable with EPOS in all but non-uniform wor-
kloads. The main reason for this behavior is the pessimism of
the available schedulability tests. Non-uniform task sets have
few tasks with higher utilizations (between 0.5 and 0.9), which
strongly affects the HRT guarantees provided by the G-EDF sche-
dulability tests and the bin packing partitioning heuristics. For
light uniform utilization and short periods, C-EDF was better
than P-EDF with LITMUSRT overhead due to smaller scheduling
overhead (see Figure 59). Also, our results corroborate previous
studies (BASTONI et al., 2010b) in the sense that more partitioned
approaches are preferable for HRT systems.

• P-EDF is always equal or better than G-EDF and C-EDF
for HRT: for all distributions, except the heavy utilization, P-
EDF was superior to C-EDF and G-EDF. For task sets consisting
of only heavy utilization tasks, P-EDF, C-EDF, and G-EDF had
the same schedulability ratio. This is due to the bin packing
problem limitation, in which the partitioning heuristics can only
partition task sets with a task number equal to the number of
processors, and due to the G-EDF schedulability bounds, which
usually have a relation between the number of processor and the
largest utilization or density (BERTOGNA; BARUAH, 2011). For
task sets with few heavy tasks, as in the case of light bimodal
utilization distribution, G-EDF presented the biggest difference
in terms of task set schedulability ratio in comparison to P-EDF.
This reinforces the need for better G-EDF schedulability tests
for HRT systems with heavy utilization tasks (BRANDENBURG;
ANDERSON, 2009).

• Differences in task period length: varying period lengths
(short, moderate, and long) in our empirical evaluations did not
affect the schedulability tests for the theoretical (i.e., without
overhead) G-EDF, C-EDF, and P-EDF schedulers. On the other
hand, it has a significant impact on the run-time overhead. In
short period distributions, the proportion between the period
length and the overhead is higher than in long period distributions
(see Figure 64(a), Figure 65(a), and Figure 66(a)). For example,
for short periods and light uniform utilization, the schedulability
ratio for G-EDF inflated by the overhead in LITMUSRT starts
to drop at the utilization cap of 3.8, while for long periods and

234 5 RUN-TIME OVERHEAD EVALUATION

the same utilization distribution, the schedulability ratio starts
to drop at the utilization cap of 6.9.

• Outliers removal: one difference between our approach and the
related work (BRANDENBURG et al., 2008) is about removing the
outliers in the measured values for LITMUSRT. In their appro-
ach, the authors discarded 1% of the greatest obtained values. By
analyzing the collected tracing values, we noticed that discarding
1% of the values would not be fair for HRT applications. For
example, in the context switch overhead for 125 tasks, the total
number of collected events is 1188679. Discarding 1% of data
(11886 values), would significantly decrease the observed worst-
case value. By plotting a “boxplot”, analyzing the outliers, and
the standard deviation, we noticed that discarding a few outliers
is sufficient. For instance, for the context switch overhead and
125 tasks, if we did not discard any outliers, the obtained stan-
dard deviation is 2.12 µs. Discarding the outliers (7 in this case),
we obtained a standard deviation of 0.47 µs, which is similar to
the standard deviation of the other cases (5, 15, 25, 50, 75, and
100 tasks). The same applies for the scheduling overhead and IPI
latency.

• Hardware performance counters: hardware performance
counters are useful for scheduling and memory management in
RTOSs. Although each processor architecture supports different
hardware events, different names for the same events, and pre-
sents different hardware limitations (e.g., number of registers and
features), well-designed OS APIs can abstract these differences
for the rest of the system. Usually, hardware event names change
but their meaning remain.

Moreover, we believe that PMUs will support even more events
and features in the near future. Examples of features that could
be added by hardware designers into future PMUs are discussed
in Section 4.1.6: (i) data address registers to store addresses that
generated an event; (ii) monitoring address space intervals to pro-
vide more precise view of specific application address ranges; (iii)
processing cycles spent in specific events, such as bus activities
and memory coherence protocols; and (iv) OS trap generation
according to pre-defined event numbers.

5.10 Discussion 235

These features can improve scheduling decisions at run-time, pro-
viding a correct and precise view of the running applications.
Also, such features improve shared memory partitioning algo-
rithms, which are useful to avoid the overlap of shared cache
spaces by tasks executing on different processors. Thus, cache
partitioning reduces the contention for the shared cache and in-
creases the system predictability (LIN et al., 2008; SUHENDRA;
MITRA, 2008; SRIKANTAIAH et al., 2008; MURALIDHARA et al.,
2010).

• Cache-related preemption and migration delay: we measu-
red the CPMD using HPCs and used the weighted schedulability
to account for CPMD in the task set schedulability ratio. In our
evaluations, P-EDF is better than G-EDF and C-EDF for WSSs
of 4 KB and 128 KB. As the WSS increases, P-EDF, C-EDF,
and G-EDF tend to be equal due to higher CPMD. For uniform
and bimodal light and uniform moderate utilizations distributi-
ons, which have more tasks than the other generated task sets,
the difference between EPOS and LITMUSRT is higher. Moreo-
ver, P-EDF, C-EDF, and G-EDF had the same performance for
task sets composed of only heavy tasks.

A possible way to decrease the CPMD is the use of cache loc-
king mechanisms (VERA et al., 2003b; SUHENDRA; MITRA, 2008;
APARICIO et al., 2011; MANCUSO et al., 2013). Cache locking pre-
vents cache lines or ways to be evicted by the cache replacement
policy during the program execution. The combination of cache
partitioning and cache locking improves the system predictabi-
lity (SUHENDRA; MITRA, 2008; MANCUSO et al., 2013). Howe-
ver, most of the current processors do not support cache locking.
Hardware designers should consider this feature for future pro-
cessors.

• Linux development support and HRT applications: Li-
nux has a complete infrastructure of libraries, benchmarks, and
graphical interfaces to develop and test applications of any kind.
Our focus, however, is on deeply real-time embedded systems,
which usually do not even feature a graphical user interface. Con-
sequently, an RTOS tailored for such applications can certainly
improve their performance. Our main objective is to provide an

236 5 RUN-TIME OVERHEAD EVALUATION

environment for HRT research without the known interference of
general-purpose OSes.

• UMA x ccNUMA architectures: we used a cache-coherent
Non-Uniform Memory Access (ccNUMA)5 architecture in our
experiments. Previous studies on CPMD analysis (BASTONI
et al., 2010a) used a Uniform Memory Access (UMA) architec-
ture. There are important differences between these two memory
organizations. Usually, UMA processors implement the MESI
cache-coherence protocol (HENNESSY; PATTERSON, 2006), while
ccNUMA processors use MESIF (Intel Corporation, 2009) or MO-
ESI (AMD, 2010) protocols. Also, the processor interconnect pre-
sents considerable differences. For example, the newer Intel pro-
cessors, such as the Intel i7-2600, use the Intel’s Quickpath Inter-
connect (QPI), while older Intel processors, such as the Intel Xeon
5030, use the Front-Side Bus (FSB). Compared to the FSB, QPI
provides higher bandwidth and lower latency for NUMA-based ar-
chitectures. Each processor has an integrated memory controller
and features a point-to-point link (all processors are connected),
allowing parallel data transfer and shortest snoop request com-
pletion (Intel Corporation, 2009). In consequence, ccNUMA-based
processors have a faster communication among the cores, which
decreases the CPMD.

5Remember here that the non-uniform memory refers to cache instead of the
main memory as in the computer architecture point of view.

237

6 CACHE PARTITIONING EVALUATION

In Chapter 4, we proposed a page coloring mechanism for a
component-based RTOS (EPOS) that is able to assign individual ca-
che partitions to internal OS data structures and real-time tasks. In
this chapter1, we evaluate the performance of the cache partitioning
mechanism using the G-EDF, C-EDF, and P-EDF schedulers on top of
EPOS.

In summary, the main contributions of this chapter are:

• We evaluate the performance of the proposed cache partitioning
mechanism using P-EDF, C-EDF, and G-EDF schedulers when
they have total utilization close to the theoretical HRT bounds.
Our evaluation is carried out on a modern 8-core processor, with
shared L3 cache. Our results indicate that cache partitioning has
different behavior depending on the scheduler and task’s WSS.
We also show an experimental upper-bound in terms of HRT
guarantees provided by cache partitioning in each scheduler.

• By allocating a different cache partition to the internal EPOS
data structures, we evaluate the cache interference caused by the
RTOS. We show that a lightweight RTOS, such as EPOS, does
not impact HRT tasks with separated partitions.

The rest of this chapter is organized as follow. Section 6.1 des-
cribes the experiment methodology. Sections 6.2, 6.3, and 6.4 show
three cache partitioning evaluations. All experimental evaluations in
this chapter use the Intel i7-2600 processor (see Table 12). Finally,
Section 6.5 discusses the main results.

6.1 EXPERIMENT DESCRIPTION

We randomly generated task sets similar to (KENNA et al., 2013).
We selected the periods (all values are in ms) uniformly from {25, 50,

1Contents of this chapter appear in a preliminary version in the following pu-
blished paper:
G. Gracioli and A. A. Fröhlich, An Experimental Evaluation of the Cache Par-
titioning Impact on Multicore Real-Time Schedulers, In Proceedings of the 19th
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2013.

238 6 CACHE PARTITIONING EVALUATION

100, 200} and utilizations uniformly between [0.1, 0.7]. The WCET of
a task is defined according to the generated period and utilization. For
G-EDF, we generated tasks in a task set until the GFB schedulability
test fails (GOOSSENS et al., 2003). For P-EDF, we generated tasks in
a task set until the WFD partitioning heuristic fails. For C-EDF, we
first partitioned the tasks in each cluster using the WFD heuristic and
then applied the GFB test in each cluster. P-EDF usually has a better
system utilization for HRT than C-EDF and G-EDF, and thus will
have a few more tasks in the task sets (proved in the previous chapter).
The objective is to evaluate the performance of G-EDF, C-EDF, and
P-EDF when the schedulers are close to theoretical HRT bounds and
when tasks use a cache partitioning mechanism. We generated ten task
sets for each scheduler.

Each task executes a function that allocates its WSS, reading and
writing from/to the WSS (an array), in a loop, randomly. Figure 71
shows part of the function source code. We considered scenarios with
different WSS similar to (CALANDRINO et al., 2006): 32 KB, 64 KB,
128 KB, and 256 KB. We defined a write ratio of 20% (one write in
a cache line after four readings – line 29). The number of reads and
writes of a task varies depending on the WCET. We ran a task in an
unloaded system and associated the obtained WCET to the WCET of
the other tasks (the repetitions parameter in Figure 71, line 7). We
executed some experiments following this methodology, and ensured
that the WCET of each task was never greater than the generated
WCET by passing a smaller value as the repetition parameter. With
this approach, time is made available for OS overhead (scheduling,
context switching, release, IPI latency, and tick counting) (GRACIOLI
et al., 2013) and preemptions. Thus, the total utilization of the task
sets remains close to the generated utilization. We did not use a tool
to automatically extract the WCET, because there is no tool for our
processor due to its complexity. Tasks do not interfere on the L3-
cache level using cache partitioning, but there might be loads from the
main memory in case of L3 cache misses, which can inflate the WCET.
However, in our experiments, the sum of the WSSs of each task in all
task sets fits on the L3-cache, which reduces the impact of L3 cache
misses on the WCET.

A task with the greatest period in a task set executes a function
that reads from and writes to an array of 512 KB in a loop, emulating
a periodic server that executes best-effort tasks. We choose a WSS

6.1 Experiment Description 239

1 #define ITERATIONS 200
2 #define MEMORY ACCESS 16384
3 #define WRITE RATIO 4
4
5 static bool same color = false;
6
7 int job(unsigned int repetitions, int id)
8 {
9 int sum = 0;

10 Pseudo Random ∗ rand;
11 int ∗array;
12
13 if (same color) {
14 rand = new (COLOR 2) Pseudo Random();
15 array = new (COLOR 2) int[ARRAY SIZE];
16 } else {
17 rand = new (id+2) Pseudo Random();
18 array = new (id+2) int[ARRAY SIZE];
19 }
20
21 rand−>seed(clock.now() + id);
22
23 for(int i = 0; i < ITERATIONS; i++) {
24 Periodic Thread::wait next();
25 for(int j = 0; j < repetitions ; j++) {
26 for(int k = 0; k < MEMORY ACCESS; k++) {
27 int pos = rand−>random() % (ARRAY SIZE − 1);
28 sum += array[pos];
29 if ((i % WRITE RATIO) == 0) array[pos] = k + j;
30 }
31 }
32 }
33 }

Figure 71: Part of the task function source code.

of 512 KB, because when allocating the memory sequentially in this
size, the task reads and writes using all cache lines (128 pages). We
randomly choose the array position of the first read at the beginning of
each period, and increment each reading and writing by 64 (cache line
size) per loop iteration. All tasks repeat for 200 periods, which results
in a total execution time of about 40 s.

240 6 CACHE PARTITIONING EVALUATION

6.2 INDIVIDUAL TASK EXECUTION TIME

To evaluate the different page coloring allocation mechanisms
and the influence of the OS on the WCET of tasks, we considered
three different memory allocation scenarios:

• S1: EPOS and each task allocate data from a different super
color. Thus, we reduce the inter-core interference caused by tasks
and RTOS running on different cores.

• S2: Each task allocates data from a different super color. EPOS
allocates data from a non-colored, sequential heap. This creates
interference between data allocated by EPOS and the data of
each task, because EPOS can access a cache line of any color.

• S3: Each task allocates data from the same super color. EPOS
allocates data from a different super color.

All tasks in the third scenario designedly allocate memory from
the same super color, possibly sharing the same cache lines, reflecting a
worst-case scenario. As explained in (KENNA et al., 2013), safety-critical
applications have security requirements in which the prevention of ma-
licious tasks that evict cache lines from other tasks is desirable. The
second scenario evaluates the interference of EPOS with the periodic
tasks. Figure 71 shows part of the task’s source code for the scenarios
S1 and S3 (lines 13 to 19). The same color boolean variable defines
whether data is allocated from the colored heap or not. For the second
scenario, we changed the MMU initialization (see Section 4.3) to cons-
truct a grouping list without any color (i.e., sequential addresses) and
then, the system heap allocates memory from this grouping list.

We executed the ten different task sets of G-EDF, P-EDF, and C-
EDF in each scenario for 50 times, varying the WSS as described in the
previous Section (more than 200 hours of tests using a real hardware
and an RTOS). Then, we extracted the WCET and AVG execution
time of each task for each scenario and WSS from these executions.
We calculate the WCET scaling factor, xji / (WCET ji in S1), where i
is a task in the task set j, and x is the obtained WCET of Ti. Thus, xji
represents the WCET of Ti executing in either S2 or S3, divided by the
obtained WCET for the same task Ti executing in S1. We do the same
for the AVG scaling factor: yji / (AV Gji of S1), where yji represents

6.3 Deadline Misses 241

the obtained AVG execution time of Ti executing in either S2 or S3
and AV Gji represents the AVG execution time of Ti in S1. The AVG
scaling factor is interesting for providing SRT guarantees.

We then calculate the average WCET and AVG scaling factors
of each task set, varying the WSS. Figure 72(a) presents the obtained
WCET scaling factors and Figure 72(b) shows the results for the AVG
scaling factors. On the x-axis, we vary the WSS and, on the y-axis, we
show the obtained scaling factors. Note that the scaling factors for S2
are equal to one, meaning that when EPOS uses an uncolored heap,
it does not affect the tasks’ execution time. EPOS interrupt service
routines (ISRs) have a small fingerprint and use few bytes, generating
very small interference on cache lines.

Additionally, for 32 and 64 KB, the WCET scaling factor for the
G-EDF is greater than for P-EDF. As two logical cores share the same
L2-cache with 128 KB, the contention for cache lines is more frequent
and there are more inter-core communication (bus snooping caused by
the cache coherence protocol). When setting a WSS to 32 KB, all
data is possibly loaded to the L2-cache. When the WSS is 64 KB, the
scaling factor increases due to higher number of misses on the L1-cache
in S3 and the similar obtained WCET in S1 due to tasks isolation. We
note a similar behavior for C-EDF. C-EDF had a better performance
for 64 KB, possible because tasks executing in the same cluster can
migrate and still access the same L2-cache, decreasing the number of
misses when compared to G-EDF. When the WSS is 128 and 256 KB,
the delay caused by the intra-task cache misses increases the AVG and
WCET of tasks, thus decreasing the scaling factors. For 128 KB, all the
three schedulers are alike: C-EDF had a slightly higher WCET scaling
factor, taking advantage of migrations within the same cluster. For
256 KB, P-EDF has a greater WCET scaling factor than G-EDF and
C-EDF due to the contention caused by two tasks running on the same
logical core in S3, sharing the L1 and L2-caches. In the next section,
we correlate the obtained scaling factors with deadline misses.

6.3 DEADLINE MISSES

Figure 73 presents the percentage of tasks that missed their de-
adlines in all task sets and varying the WSS. The x-axis presents the
WSS and the y-axis the percentage of tasks that missed their deadli-

242 6 CACHE PARTITIONING EVALUATION

32KB 64KB 128KB 256KB

WCET scaling factor (HRT)

Working Set Size (WSS)

S
ca

lin
g

Fa
ct

or
 (

X
 /

S
1)

0
5

10
15

P−EDF S3/S1
P−EDF S2/S1
G−EDF S3/S1
G−EDF S2/S1
C−EDF S3/S1
C−EDF S2/S1

(a)

32KB 64KB 128KB 256KB

AVG scaling factor (SRT)

Working Set Size (WSS)

S
ca

lin
g

Fa
ct

or
 (

Y
 /

S
1)

0
2

4
6

8
10

12
14 P−EDF S3/S1

P−EDF S2/S1
G−EDF S3/S1
G−EDF S2/S1

C−EDF S3/S1
C−EDF S2/S1

(b)

Figure 72: (a) Obtained worst-case scaling factors (hard real-time).
(b) Obtained average scaling factors (soft real-time).

nes. We do not show S2, because it has the same behavior of S1. Our
focus here is on HRT systems, consequently we show the percentage of

6.4 Total Execution Time 243

all tasks that missed at least one deadline and not the total number
of missed deadlines per task. Note that the utilization is close to the
limit.

For WSS of 32 and 64 KB, the three schedulers in S1 do not
miss any deadline. About 18% of tasks in G-EDF executing in S1 with
128 KB missed deadlines. This is mainly due to the cache contention
caused by the MESIF cache coherence protocol. When a task is pre-
empted and migrates to another core, it reloads the data that was on
the original core. Thus, the cache controller causes invalidation on the
cache lines used by the preempted task. The cost of an invalidation is
comparable to access the main memory (Intel Corporation, 2012).

For P-EDF in S3, the percentage of tasks that missed deadline
was 57.75%, 70.42%, 74.65%, and 93.02%, for 32, 64, 128, and 256 KB,
respectively. For C-EDF in S3, the percentage was 80.56%, 83.33%,
88.89%, and 91.67%, and for G-EDF in S3, the percentage was 93%,
93.02%, 93.92%, and 97.67%. For 256 KB in S1, 54.93%, 72.22%, and
92% of tasks missed their deadline in P-EDF, C-EDF, and G-EDF,
respectively. We can conclude that cache partitioning provides safe
HRT bounds for WSSs of 32 and 64 KB for the three schedulers, and
for WSS of 128 KB for P-EDF and C-EDF. The next section correlates
the missed deadlines with the application execution time.

6.4 TOTAL EXECUTION TIME

Figure 74 shows the total application execution time obtained
for S1 and S3 (i.e., the total time to finish all tasks in a task set).
Again, we do not show S2, because it has the same performance of S1.
The x-axis shows the WSS and the y-axis the total execution time in
seconds. As described early, each task iterates for 200 times, and the
greatest possible period for a task is 200 ms, which gives us an expected
execution time of 40 s (all task sets have at least one task with a period
of 200 ms).

Figure 74 can be correlated to Figure 73 in terms of the frequency
of deadline misses. For example, for WSS of 32 KB and S3 and G-
EDF scheduler, 93% of tasks lost at least one deadline; however, we
can see that total execution time is still 40 s. This shows that the
occurrence of deadline misses is infrequent. As the WSS increases,
the total application time also increases; tasks miss their deadlines

244 6 CACHE PARTITIONING EVALUATION

32KB 64KB 128KB 256KB

Percentage of tasks that missed their deadlines

Working Set Size (WSS)

M
is

se
d

D
ea

dl
in

es
 (

%
)

0
20

40
60

80
10

0

P−EDF S1
P−EDF S3

G−EDF S1
G−EDF S3

C−EDF S1
C−EDF S3

0% 0% 0% 0% 0% 0% 0% 0%

Figure 73: Percentage of tasks that missed their deadline when
varying the data size and using the P-EDF and G-EDF schedulers
in S1 and S3.

more frequently, and constantly overrun their periods. There is no
handling mechanism for tasks that overrun their periods. As described
in Chapter 4, the EPOS Alarm component releases a task with a v
operation on a semaphore and the task waits for the next period by
calling the p semaphore operation. When a task overrun its periods,
the p operation found the semaphore with a value greater than one,
and does not put the task to sleep. Instead, the v operation returns
immediately and the task keeps executing.

For WSS of 128 KB in S1 with G-EDF, 18% of tasks lost their
deadlines; however, the total application time is 40 s. When the system
is overloaded (256 KB), global approaches (G-EDF and C-EDF) are
able to handle the tasks more efficiently: a waiting task can execute
as soon as a core is available (within the same cluster in case of C-
EDF). The next section discusses the main observations found in the
experimental evaluation.

6.5 Discussion 245

32KB 64KB 128KB 256KB

Total application execution time (in seconds)

Working Set Size (WSS)

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
20

40
60

80
10

0

Expected exec time

P−EDF S1
P−EDF S3

G−EDF S1
G−EDF S3

C−EDF S1
C−EDF S3

Figure 74: Total application execution time when varying the data
size and P-EDF and G-EDF with and without page coloring.

6.5 DISCUSSION

Below, we summarize our main findings:

• Cache hierarchy effects: cache partitioning isolates task wor-
kloads and provide predictability for multicore real-time systems
in terms of cache hierarchy. For P-EDF and C-EDF, page co-
loring supported up to 128 KB, and for G-EDF up to 64 KB.
To support larger WSSs, cache partitioning could be used to-
gether with hardware techniques, such as cache locking. Even
when tasks miss their deadlines with cache partitioning (128 KB
for G-EDF, and 256 KB for the three schedulers), the advantage
is predictability of cache accesses. It is possible to apply a data
reuse method (JIANG et al., 2010) and provide HRT guarantees
during the theoretical schedulability analyses.

• P-EDF, C-EDF, and G-EDF behaviors: cache partitioning
was more efficient in global approaches (G-EDF and C-EDF) for
WSSs up to 64 KB, by helping to prevent inter-core communi-
cation through the cache coherence protocol. All data is able to
fit in L2-cache and the invalidations in the L3-cache are reduced

246 6 CACHE PARTITIONING EVALUATION

when compared to S3, mainly for G-EDF. For 128 KB, page co-
loring was more efficient in C-EDF, because tasks can migrate
inside the cluster and still access the same cache lines in L2, re-
ducing the number of misses. For 256 KB page coloring was more
efficient in P-EDF, because cache partitioning reduces contention
for cache spaces when tasks are running on two logical cores at
the same time.
Moreover, in an underloaded system, global approaches handle
the tasks more efficiently than P-EDF, because tasks can migrate
as soon as a core becomes available. As the WSS increases, there
is more intra-task interference (cache misses in the same cache
partitions), which increases the task execution time in S1 and
reduces the scaling factor. Inter-core communication, caused by
task migrations, has a considerable impact on HRT tasks (18%
of missed deadlines), as shown in G-EDF with WSS of 128 KB.

• Shared data among tasks: when tasks execute in parallel on
different cores and share data, they will access the same cache
lines, causing invalidations handled by a bus snooping protocol.
Cache partitioning does not solve the problem, but it helps to
keep all data organized in memory. Providing a separate set of
colors to shared data may improve the overall performance (CHEN
et al., 2009). Moreover, a shared-data-aware real-time scheduler
can reduce the access serialization to the same cache line and
saturation in the inter-core interconnection by avoiding the sche-
duling of tasks with shared data at the same time. We explore
this possibility in the next two chapters.

• Exclusive color for the RTOS: EPOS is a lightweight RTOS.
ISRs and scheduling operations in EPOS have a small footprint
and use few bytes. Consequently, using an exclusive color for
EPOS did not make any difference. However, ISRs of network
and disk devices usually have large buffers and may benefit from
having an exclusive color. Our page coloring mechanism is able
to provide exclusive colors for different ISRs.

• Pessimistic iterations: we consider that threads always exe-
cute for the WCET. This may not be true for all applications.
An extension is to incorporate a distribution method to define
the number of repetitions during a period.

6.5 Discussion 247

• RTOS and general-purpose OS: related work on cache par-
titioning and real-time systems usually use real-time patches ap-
plied to a general-purpose OS, such as Linux (MANCUSO et al.,
2013; KENNA et al., 2013). Our evaluation was entirely carried
out using an RTOS and real hardware. We believe that with the
page coloring support and the new scheduling design proposed in
this work, EPOS has improved its real-time support and tempo-
ral isolation among real-time tasks, providing a better multicore
real-time open source research platform.

• Cache coherence protocols and memory architectures: we
used a processor with ccNUMA memory architecture in our ex-
periments. Usually, ccNUMA processors use MESIF or MOESI
cache-coherence protocols, while UMA architectures use MESI
protocol. The processor interconnect between these two archi-
tectures presents considerable differences. For example, the In-
tel’s Quickpath Interconnect (QPI) provides higher bandwidth
and lower latency for NUMA-based architectures than the Front-
Side Bus (FSB), typically used in UMA architectures. Each pro-
cessor has an integrated memory controller and features a point-
to-point link, allowing parallel data transfer and shortest snoop
request completion. In consequence, ccNUMA-based processors
have a faster communication among cores. Thus, cache partitio-
ning on UMA-based processors should theoretically be even more
efficient.

248 6 CACHE PARTITIONING EVALUATION

249

7 STATIC COLOR-AWARE TASK PARTITIONING

In the previous chapter we have presented an evaluation of the
cache partitioning impact on global, clustered, and partitioned real-
time schedulers. The results have indicated that when real-time tasks
share cache partitions, they may experience deadline losses mainly due
to inter-core interferences: the observed WCET increased up to 15
times. The consequent variations on the execution time of real-time
tasks made them miss up to 97% of their deadlines. Furthermore, the
partitioned scheduler has missed less deadline compared to the global
and clustered schedulers. Hence, it is desirable to avoid that two or
more tasks that share same partition(s) (i.e., same color(s) in case of
a page coloring cache partitioning mechanism) access data at the same
time. In practice this means that two or more tasks that use a same
color should not be scheduled on different cores at the same time. By
analyzing the results and behavior of the three schedulers in the last
chapter, we propose a strategy to avoid inter-core interference when
tasks share cache partitions.

In this chapter1 we introduce a color-aware task partitioning
algorithm that assigns tasks to cores according to the usage of cache
memory partitions. Specifically, tasks that share one or more partitions
are grouped together and the whole group is assigned to the same core
using a bin packing heuristic, avoiding inter-core interference caused by
the access to the same cache lines. We compare our partitioning stra-
tegy with the WFD heuristic in a real processor and using EPOS. The
results indicate that our task partitioning mechanism is able to provide
HRT guarantees that are not achieved by traditional task partitioning
algorithms.

In summary the main contributions of this chapter are:

• We propose a Color-Aware task Partitioning (CAP) algorithm
that partitions tasks to cores respecting the usage of shared cache
memory partitions. Shared cache partitioning is performed by a
page coloring mechanism. We assume that each task uses a set of
colors that serve as input to our CAP algorithm. Then, tasks that

1Contents of this chapter appear in the following published paper:
G. Gracioli, A. A. Fröhlich, CAP: Color-Aware Task Partitioning for Multicore
Real-Time Applications, In Proceedings of 19th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2014.

250 7 STATIC COLOR-AWARE TASK PARTITIONING

use the same colors are grouped together and the entire group is
assigned to the same core using a bin packing heuristic.

• We compare the CAP approach with the WFD bin packing heu-
ristic in terms of deadline misses of several generated task sets
using the P-EDF scheduler. Our results indicate that it is possi-
ble to avoid inter-core interference and deadline misses by simply
assigning tasks that access shared cache lines to the same core.

• We evaluate the partitioned task sets by running them on a mo-
dern 8-core processor, with shared L3 cache using a real RTOS
(EPOS). The experimental evaluation on a real machine and
RTOS demonstrates the effectiveness of our task partitioning me-
chanism.

The rest of this chapter is organized as follows. Section 7.1 pre-
sents the assumptions and notations used by the partitioning algorithm.
Section 7.2 describes in details the proposed partitioning algorithm.
Section 7.3 evaluates the proposed partitioning algorithm by comparing
it to the WFD partitioning heuristic. Finally, Section 7.4 discusses the
main findings.

7.1 ASSUMPTIONS AND NOTATIONS

We consider a system with a multicore processor. The proces-
sor has m identical processors or cores running at a fixed clock speed.
Mtotal denotes the total size of the main memory available to the sys-
tem. The processor has a unified last-level cache shared by all the m
cores. We adopted page coloring to partition the cache at software-level
(there is no need for a special hardware support) —the cache is divided
in Nc (number of colors) partitions. The size of each partition depends
on the available memory: Sp = Mtotal

Nc
.

We assume a task set τ composed of n periodic tasks. The n
tasks are scheduled using the EDF scheduling policy. We also assume
that tasks share data by allocating memory from a same color set. All
data that is not shared is allocated from a unique color set individually
assigned to each task.

Definition 7.1.1 A task Ti is represented as follows:

7.1 Assumptions and Notations 251

Ti =
{
eNCi
i ,pi,di,NCi,M

i
req

}
• NCi is the set of colors assigned to Ti;

• eNCi
i is the WCET of Ti, when it runs with |NCi| colors and

when it is also inflated by the sources of overhead (see Equation 2
in Section 2.5);

• pi is the period of Ti;

• di is the relative deadline of Ti (di = pi);

• M i
req is the size of the memory region allocated to Ti.

The minimum number of partitions |NCi| that minimizes the
WCET eNCi

i depends on how partitions/colors are assigned to tasks.
We assume that the values of the set NCi are known at design time.
For instance, a WCET analysis tool could estimate the value of eNCi

i
by varying the number of colors and returning the ideal NCi for each
task Ti. It is important to mention that our focus is not to optimize
the assignment of colors, but to provide a safe upper bound when tasks
share colors. Furthermore, eNCi

i is non-increasing with NCi, which
means that it can begin to converge when the number of partitions
reaches a point in which adding more partitions does not reduce the
eNCi
i (KIM et al., 2013).

The sum of the required memory from all tasks must be less than
the available memory:

n∑
i=1

M i
req ≤Mtotal (1)

Definition 7.1.2 Let Ntotal be the set of all colors used in a task set
τ . |Ntotal| must be less than the defined number of colors:

|Ntotal| ≤Nc (2)

Definition 7.1.3 Let SCi be a set of tasks that share colors (i.e., the
set of tasks that allocate memory from a same color) with the task Ti:

∀ Ti,Tj ,Tk ∈ τ. (((NCi∩NCj) 6= φ)∧ ((NCj ∩NCk) 6= φ))→ i,k,j ∈
SCi

252 7 STATIC COLOR-AWARE TASK PARTITIONING

We assume that the sum of the utilizations (ui = e
NCi
i
pi

) of all
tasks that share color(s) is not greater than 100% (we call this restric-
tion of utilizations). Formally defining:

∀ Ti ∈ τ
∑
j∈SCi

uj ≤ 1 (3)

Equation 3 restricts the utilization of one or more tasks that
share the same colors to 100%. Note that the task Ti is in the set SCi
(Definition 7.1.3), which implies that its utilization is also accounted.
Thus, two or more tasks that share colors can be assigned to the same
core, preventing them from running in parallel on different cores, and
consequently, preventing the access to the same cache lines, indepen-
dently of whether the sharing was true or false. Since two or more tasks
will be running on the same core, they suffer from the CPMD caused
by the lost of cache affinity after preemptions. However, the WCET
eNCi
i already considers the run-time overhead, including the CPMD.

When tasks share a partition, the sum of the memory required
by those tasks from the shared partition must not exceeded the size of a
partition. Otherwise, some data would have to be allocated from other
colors, incurring in cache interference. Equation 4 presents a sufficient
and necessary condition for the restriction on the shared partition size
to be met. For each partition ρ, the sum of per-partition usage of
tasks that share a partition does not exceed the size of one memory
partition (KIM et al., 2013).

∑
∀Ti: ρ∈NCi

M i
req

|NCi|
≤ Sp (4)

7.2 COLOR-AWARE TASK PARTITIONING

We now describe a color-aware task partitioning able to provide
HRT guarantees for the system model presented in the previous section,
when tasks share data or colors. A partitioning algorithm is used to
assign tasks in a task set to available cores (Section 2.4.2.1 has reviewed
some partitioning heuristics, such as FFD, BFD, and WFD).

Figure 75 presents an overview of the CAP mechanism. A task
set is composed of n tasks. Each task Ti has its own parameters eNCi

i ,

7.2 Color-Aware Task Partitioning 253

pi, di, NCi, and M i
req. The parameters of each task serve as input

to the partitioning algorithm. The partitioning algorithm finds which
tasks share colors by analyzing the set NCi of each task and uses the
Equation 4 to ensure that these tasks meet the restriction of the shared
partition size. The algorithm also checks whether the utilization cons-
traints is met or not by using the Equation 3. Finally, the output of
the partitioning algorithm is the assignment of those tasks that share
partitions to the same core. Cache partitioning is performed at run-
time by the page coloring mechanism described in Section 4.3.2. The
run-time colored memory allocation should be either performed before
the periodic task iteration or accounted for in the WCET. Thus, it is
possible to perform run-time memory allocation without incurring in
more run-time overhead. The next paragraphs describe in details each
phase of the proposed partitioning approach.

Figure 75: Overview of the proposed color-aware task partitioning
mechanism.

We describe our partitioning algorithm in a top-bottom way.
The Color-Aware Partitioning (CAP) algorithm is a variation of the
BBF, FFD, NFD, or WFD. We use the WFD bin packing heuristic
as an example to demonstrate the algorithm. Algorithm 1 shows the

254 7 STATIC COLOR-AWARE TASK PARTITIONING

pseudo code for the CAP WFD variation. The algorithm receives a task
set τ , the number of available colors Nc, the total available memory
Mtotal, and the number of cores m as input. The output is a boolean
(partitioned) informing whether the task set was partitioned or not
and a task set assigned to each core. The algorithm begins initializing
all task sets as empty and setting partitioned to true (lines 1 and 2).
Then, the task set τ is partitioned into groups by calling the function
FindTasksWithSharedColors, which returns the groups of tasks that
share colors in the array taskGroups (line 3). The algorithm tests if
each group of tasks satisfies the Equation 3 and 4 and returns false if
a group does not satisfy them (lines 4 to 9). After guaranteeing both
restrictions, the groups are sorted by decreasing order of utilizations2

(line 10) and partitioned using the WFD heuristic (line 11). Finally, it
creates and returns a task set for each partition by using the assigned
groups. Note that it is possible to use any partitioning heuristic in line
11. The difference is that we are partitioning groups of tasks and not
individual tasks.
Algorithm 1 CAP WorstFitDecreasing(τ , Nc, Mtotal, m)
Input: τ : a task set of “n” tasks as described in Definition 7.1.1, Nc:
available number of colors/partitions, Mtotal: available memory in the
system, m: number of cores in the processor
Output: partitioned: a boolean if the WFD heuristic is able to par-
tition the task set, task set[m]: a task set per core

1: task set←∅ . Initializes all task sets as empty
2: partitioned← true
3: taskGroups← FindTasksWithSharedColors(τ)
4: for each group of tasks in taskGroups do
5: if group does not satisfy Eq. 3 and Eq. 4 then
6: partitioned← false
7: return {partitioned,task set}
8: end if
9: end for

10: Sort groups by decreasing order of utilization
11: Apply the WFD heuristic by groups
12: task set← Create task set per core
13: return {partitioned,task set}

2A group utilization is the sum of the utilizations of all tasks in that group.

7.2 Color-Aware Task Partitioning 255

Algorithm 2 shows the pseudo code for the function Find-
TasksWithSharedColors. It receives a task set as input and returns
a multi map data structure (taskGroups) representing the groups of
tasks that share colors3. For example, taskGroups[0] contains all tasks
that share at least one color in the group 0, taskGroups[1] contains all
tasks that share at least one color in the group 1, and so on. Tasks in
different groups do not share any color. The function first initializes
all array positions with zero (line 1). Then, it compares the set of
colors for each task and fills a specific array position whenever two
tasks use at least one common color (lines 2 to 12). For instance, if
Aτ [0][1] is equal to one, it means that task T1 shares color with task
T0. If it is zero, T0 and T1 do not share color. The functions ends
calling another function MapTasksToGroups to create the groups of
tasks and returns the groups (lines 13 and 14).

Algorithm 2 FindTasksWithSharedColors(τ)
Input: τ : a task set of “n” tasks
Output: taskGroups: a multi map data structure representing groups
of tasks that share colors

1: Aτ [n][n]← [0,0] . An array representing the colors usage pattern
among tasks. Initializes all positions with 0

2: for i← 0 to n do
3: for j← 0 to n do
4: if i 6= j then
5: has shared data← τ [i].NCi∩ τ [j].NCj . NC is the set

of colors
6: if has shared data== true then
7: Aτ [i][j]← 1
8: Aτ [j][i]← 1
9: end if

10: end if
11: end for
12: end for
13: taskGroups← MapTasksToGroups(τ , Aτ)
14: return taskGroups

3It is important to keep in mind that, although the placement new operator
in C++ is used at run-time to dynamically allocate memory, its specialization to
implement the page coloring mechanism in EPOS relies on constant color aliases
that are know at compile-time.

256 7 STATIC COLOR-AWARE TASK PARTITIONING

The function MapTasksToGroups is depicted in Algorithm 3.
It receives a task set and an array representing the colors usage pat-
tern among tasks as input. The output is a multi map data structure
taskGroups representing groups of tasks that share colors. For each
task Ti in the task set τ , the function verifies if the current task Ti is
in a group and if it is not, a new group is created and Ti is inserted
in this group (lines 4 to 7). Then, for each task Tj in τ , if Ti and Tj
share a color (Aτ [i][j] = 1) the function calls SolveShareColorsChain,
passing the multi map taskGroups, the current Tj index (j), the
task set τ , the current group, and the array Aτ (lines 8 to 14).
SolveShareColorsChain adds all tasks that share colors with Tj re-
cursively. Note that if Ti does not share colors with another task, it is
assigned to a new group without any other task. Finally, taskGroups is
returned to FindTasksWithSharedColors, containing tasks mapped
to specific groups and respecting the colors usage pattern among them.
Algorithm 3 MapTasksToGroups(τ , Aτ)
Input: τ : a task set of “n” tasks, Aτ : an array representing the colors
usage pattern among tasks
Output: taskGroups: a multi map data structure representing groups
of tasks that share colors

1: taskGroups←∅ . Initializes all groups as empty
2: group←−1
3: for each task Ti in τ do
4: if Ti is not in taskGroups then
5: group= group+ 1 . Create a new group of tasks
6: map Ti into taskGroup[group]
7: end if
8: for each task Tj in τ do
9: if Aτ [i][j] == 1 then . Ti shares data with Tj

10: if Tj is not in taskGroups then
11: SolveSharedColorsChain(taskGroups,j,τ,group,Aτ)

. Insert all tasks that share colors into the same group
12: end if
13: end if
14: end for
15: end for
16: return taskGroups

7.2 Color-Aware Task Partitioning 257

The last function, SolveShareColorsChain, is described in the
pseudo code of Algorithm 4. It receives a multi map data struc-
ture with the task groups, the index of the current task being analy-
zed in the MapTasksToGroups function, a task set τ , the current
group id, and the array Aτ with the colors usage pattern among
all tasks in the task set τ . There is no output. The objective of
SolveShareColorsChain is to add all tasks that share at least one
color into the same group recursively. For each task Ti in τ , if Ti sha-
res a color with Tindex (Aτ [index][i] = 1), the function performs two
tests. First, it tests if Tindex already is in the current group, and inserts
Tindex into taskGroups[group] when Tindex is not in the group. This
test is necessary, because Tindex may have been inserted before (lines 3
to 5). The second test verifies if Ti is in the taskGroups[group]. When
the test fails, it means that Ti has not been analyzed yet. Then, Ti
is added to taskGroups[group] and SolveShareColorsChain is called
again, with i as the new index. Thus, all tasks that share a color with
Ti are added to the same group. The process is repeated until finishing
to add all tasks that share at least one color to the same task group.
Algorithm 4 SolveShareColorsChain(taskGroups, index, τ , group,
Aτ)
Input: τ : a task set of “n” tasks, index: index of the task being analy-
zed, group: current group with tasks that share colors with Tindex, Aτ :
an array representing the colors usage pattern among tasks
Output:

1: for each task Ti in τ do
2: if Aτ [index][i] == 1 then
3: if Tindex is not in taskGroups then
4: map Tindex into taskGroup[group]
5: end if
6: if Ti is not in taskGroups then
7: map Ti into taskGroup[group]
8: SolveShareColorsChain(taskGroups, i,τ,group,Aτ)
9: end if

10: end if
11: end for

258 7 STATIC COLOR-AWARE TASK PARTITIONING

7.2.1 Example: partitioning a task set with CAP WFD

In this section, we present an example to demonstrate the CAP
algorithm. Table 14 defines a task set with eight tasks and their para-
meters. e is the WCET when tasks run with NC colors, p is the period,
the deadline is implicit (d= p), u is the utilization, and memreq is the
required memory in KB. Suppose that the target processor has three
cores and the available memory Mtotal is greater than the sum of the
tasks’ memreq. The objective is to compare the partitioning carried
out by the CAP WFD with the original WFD.
Table 14: Parameters of a task set used to exemplify the CAP
WFD algorithm.

Task e p u memreq (KB) NC
T0 900 10000 0.09 1024 {1,3}
T1 6000 15000 0.4 64 {1,4}
T2 1500 5000 0.3 4 {0,3}
T3 500 5000 0.1 128 {1,5}
T4 1900 20000 0.095 32 {5}
T5 2600 5000 0.52 16 {6}
T6 2700 5000 0.54 512 {7,8,9}
T7 10000 50000 0.2 256 {7,10}

Figure 76 shows the phases of the CAP WFD algorithm, corre-
lating them with the previously defined functions. The task set is the
input for the FindTasksWithSharedColors function, which mounts
an array representing the colors usage pattern among tasks. For exam-
ple, consider the tasks T0 and T1. Task T0 uses the colors 1 and 3,
while task T1 uses colors 1 and 4. Consequently, the array positi-
ons [0][1] and [1][0] have the value of 1. The array is filled with “1s”
whenever tasks share a color with each other and then it is passed to
the MapTasksToGroups function. MapTasksToGroups creates task
groups with all tasks that use the same color (set). For instance, T0,
T1, T2, T3, and T4 are placed in the group 0, because T0, T1, and T3
use color 1, T1, and T2 use color 3, and T3 and T4 use color 5. T5 is
placed in the group 1, because it does not share any color with other
tasks. T6 and T7 share the color 7, forming the group 2.

The next step in the algorithm is to order the groups by decrea-

7.2 Color-Aware Task Partitioning 259

Figure 76: Example of the CAP WFD algorithm with eight tasks
and three cores.

sing order of utilizations and to verify if the groups satisfy Equations 3
and 4. Group 0 has utilization of 0.985, group 1 has utilization of
0.52, and group 2 of 0.74. Hence, all groups satisfy both equations and
the groups order is defined as 0, 2, and 1. The last step is to assign
the groups to “packs” (or cores in our case) using the WFD heuristic.
Group 0 is assigned to core 0, group 2 is assigned to core 1, and group
1 is assigned to core 2. In summary, the CAP algorithm creates groups
of tasks that share the same colors and assign each group to a specific
core using a bin packing heuristic (FFD, BFD, NFD, or WFD).

The original WFD, in contrast, does not create groups of tasks.
The algorithm simply order the task set in decreasing order of utiliza-
tion and assigns each task to a core using the WFD heuristic. Figure 77
shows the task set of Table 14 partitioned by the original WFD. We
can note that tasks that share colors are placed in different cores. For
instance, T6 and T7 are in cores 0 and 1, respectively. Consequently,
they would execute in parallel, causing additional overhead due to the
contention for the same cache lines. This extra overhead could eventu-
ally lead to deadline losses. The next section compares the CAP WFD

260 7 STATIC COLOR-AWARE TASK PARTITIONING

approach with the original WFD bin packing heuristic and shows its
impact on preventing deadline misses using a real processor and RTOS.

Figure 77: The partition of the same task set as in Figure 76 with
the original WFD heuristic.

7.3 EVALUATION

This section describes the experimental evaluation of the CAP
algorithm. The objective is to compare its performance in terms of
HRT guarantees with that for traditional bin packing partitioning al-
gorithms. We start describing the experiment methodology in Sec-
tion 7.3.1. Then, we present the results of the evaluation in Sec-
tion 7.3.2. We leave the discussion of the main findings for Section 7.4.
All experiments in this section use the Intel i7-2600 processor (see Ta-
ble 12) and EPOS RTOS.

7.3.1 Experiment Description

We randomly generated task sets similar to our previous experi-
ment described in Section 6.1, adding a color number for each task. We
selected the periods (all values are in ms) uniformly from {25, 50, 75,
100, 150, 200} and utilizations uniformly from the [0.1, 0.7] interval.
The WCET of a task was defined according to the generated period
and utilization. As our processor (Intel i7-2600) has eight cores, we
fixed the number of task groups to eight and the number of colors to
eight (one for each task group). For each task, we randomly selected
a color between [1, 8]. In order to respect the utilization constraints
in the CAP algorithm, we generated tasks of the same color until the
accumulated utilization reached the [0.9, 1.0] interval. We used the
P-EDF scheduling algorithm with implicit-deadlines. We also used the

7.3 Evaluation 261

CAP WFD variation, because with the WFD bin packing heuristic each
core tends to have similar utilization. The CAP algorithm mounts task
groups respecting their colors and assigns each task group to a core.
The WFD heuristic assigns each task to a core despite its color. It it
important to highlight that the generated task sets have total utiliza-
tion close to HRT bounds. The objective was to run the same task sets
using both partitioning approaches and then analyze whether deadlines
were met or not.

Each task executes a function that allocates its WSS, reading and
writing from/to the WSS (an array), in a loop, randomly. Figure 78
shows part of the function source code. Each task iterates for 200 times
(ITERATIONS variable). We considered scenarios with different WSS
(ARRAY SIZE variable) similar to (CALANDRINO et al., 2006): 32 KB,
64 KB, 128 KB, and 256 KB. We defined a write ratio of 20% (one write
for each four readings) and 33% (one write for each two readings). By
increasing the write ratio, we stimulate the cache coherence protocol
to invalidate shared cache lines more often.

The number of reads and writes of a task varies depending on the
WCET. To adjust the number of repetitions of each task, we used the
same methodology as described in Section 6.1. Moreover, we always use
the same value for the “repetitions” function argument in CAP WFD
and WFD experiments. We also adjusted the repetitions parameter
according to the WSS to account for the intra-task (self-evictions) and
intra-core (preemption delay) cache interferences. When a task evicts
its own cache lines, it increases its execution time and eventually mis-
ses a deadline as shown in Section 6.3. Each task receives a color as
parameter and allocates memory for the array using that color.

7.3.2 Percentage of Missed Deadlines

To evaluate the ratio of missed deadlines of the CAP WFD and
the original WFD heuristics, we generated ten task sets. The number
of tasks in a task set varies from 23 to 30 tasks. The number of tasks
in a task group varies from two to six. We then partitioned each task
set using the CAP WFD and WFD algorithms. We executed the ten
different partitioned task sets for 50 times, varying the WSS and write
ratio as described in the previous section. We extracted the number
of missed deadlines for each partitioned task set from these executions

262 7 STATIC COLOR-AWARE TASK PARTITIONING

1 #define ARRAY SIZE KB 32 // or 64, 128, 256KB
2 #define ITERATIONS 200
3 #define MEMORY ACCESS 16384
4 #define WRITE RATIO 2 // or 4
5 int job(unsigned int repetitions, int id , int color)
6 {
7 int sum = 0;
8 Pseudo Random ∗ rand;
9 int ∗array;

10 rand = new (color) Pseudo Random();
11 array = new (color) int[ARRAY SIZE];
12 rand−>seed(clock.now() + id);
13 for(int i = 0; i < ITERATIONS; i++) {
14 Periodic Thread::wait next();
15 for(int j = 0; j < repetitions ; j++) {
16 for(int k = 0; k < MEMORY ACCESS; k++) {
17 int pos = rand−>random() % (ARRAY SIZE − 1);
18 sum += array[pos];
19 if ((i % WRITE RATIO) == 0) array[pos] = k + j;
20 }
21 }
22 }
23 }

Figure 78: Part of the task function source code.

(over 88 hours of tests using a real hardware and an RTOS).
In EPOS, the Alarm component is responsible for releasing a

task by calling a v operation of its Semaphore (see Section 4.2.3). Since
we assume implicit-deadlines (di = pi), we counted a missed deadline
whenever the v operation was issued for the semaphore while its value
was greater or equal to zero. In practice this means that a new task’s
job was released before the previous job had finished.

Figure 79 shows the percentage of missed deadlines for a WSS of
32 KB and write ratio of 33% (Figure 79(a)) and 20% (Figure 79(b)).
On the x-axis, we vary the task set. On the y-axis, we present the
percentage of missed deadlines for each task set. The Figures show
missed deadlines only for the WFD heuristic, because all tasks in all
task sets partitioned by the CAP WFD algorithm were able to meet their
deadlines.

Note that Figure 79(a) and 79(b) have different scales for the
y-axis, because decreasing the write ratio causes the cache coherence

7.3 Evaluation 263

protocol to invalidate less cache lines, improving the system perfor-
mance. However, for both write ratios, all task sets partitioned by the
WFD algorithm lose deadlines: from 2.10% (task set 1) to 9.22% (task
set 8) for write ratio of 33% and from 1.09% (task set 1) to 3.16% (task
set 8) for write ratio of 20%.

In general, the task sets have similar performance for WSS of
32 KB. The task set 8, in special, have two task groups with five tasks
in each group. When the task set is partitioned by the WFD algo-
rithm, the tasks in each group are assigned to different cores, causing
contention on the arrays and increasing their execution times. The
CAP WFD, in contrast, avoids the contention and meets the applica-
tion HRT constraints.

Figure 80 shows the percentage of missed deadlines for a WSS of
64 KB and write ratio of 33% (Figure 80(a)) and 20% (Figure 80(b)).
On the x-axis, we vary the task set and on the y-axis, we present the
percentage of missed deadlines for each task set. For write ratio of 33%,
the deadline miss ratio varies from 5.70% to 34.27% and for write ratio
of 20% it varies from 4.53% to 29.42%, both for the task sets 4 and 8,
respectively.

Comparing the results in Figures 79 and 80, the percentage of
missed deadlines increases due to the array size. Our processor has four
L2-caches with 256 KB and 8-ways each, an 8 MB shared L3-cache with
16-ways, 64 bytes per cache line, and 8192 sets. Each set has 16-ways
and each way can store a cache line. With a WSS of 32 KB, each
task demands eight pages of the same color. With a WSS of 64 KB,
each task demands 16 pages of the same color. Consequently, there
is more contention for the cache ways both in L2- and L3-cache. The
CAP WFD is able to decrease this contention by preventing tasks that
share a color from running in parallel on different cores at the same
time. Thus, the cache coherence protocol does not delay the tasks
by invalidating cache lines due to the false sharing. The only delay
a task may experience is the preemption delay, caused by the lost of
cache affinity after a preemption, and intra-task cache misses in the
L2-cache, caused by the task’s own data accesses.

Figure 81 shows the percentage of missed deadlines for a WSS of
128 KB and write ratio of 33% (Figure 81(a)) and 20% (Figure 81(b)).
On the x-axis, we vary the task set and on the y-axis, we present the
percentage of missed deadlines for each task set. For write ratio of 33%,
the deadline miss ratio varies from 48.17% (task set 5) to 78.84% (task

264 7 STATIC COLOR-AWARE TASK PARTITIONING

1 2 3 4 5 6 7 8 9 10

Missed deadlines − WSS 32KB − Write Ratio 33%

Task Sets

M
is

se
d

D
ea

dl
in

es
 (

%
)

0
2

4
6

8
10

(a)

1 2 3 4 5 6 7 8 9 10

Missed deadlines − WSS 32KB − Write Ratio 20%

Task Sets

M
is

se
d

D
ea

dl
in

es
 (

%
)

0
1

2
3

4

(b)

Figure 79: Percentage of missed deadlines of the WFD heuristic.
(a) WSS of 32KB and write ratio of 33%; (b) WSS of 32KB and
write ratio of 20%.

set 10) and for write ratio of 20% it varies from 43.39% (task set 5) to
72.60% (task set 10).

Comparing this behavior with the previous two experiments, the

7.3 Evaluation 265

1 2 3 4 5 6 7 8 9 10

Missed deadlines − WSS 64KB − Write Ratio 33%

Task Sets

M
is

se
d

D
ea

dl
in

es
 (

%
)

0
10

20
30

40

(a)

1 2 3 4 5 6 7 8 9 10

Missed deadlines − WSS 64KB − Write Ratio 20%

Task Sets

M
is

se
d

D
ea

dl
in

es
 (

%
)

0
10

20
30

40

(b)

Figure 80: Percentage of missed deadlines of the WFD heuristic.
(a) WSS of 64KB and write ratio of 33%; (b) WSS of 64KB and
write ratio of 20%.

percentage of missed deadlines has increased even more. This is due
to the same reasons as for the increase from 32 to 64 KB observed in
Figure 80. With WSS of 128 KB, each task demands 32 pages from
the same color, causing more cache contention and more preemption

266 7 STATIC COLOR-AWARE TASK PARTITIONING

delay due to cache lines that were evicted after preemptions. It is
worth mentioning again that we adjusted the repetitions parameter
(see Figure 78) of each task as we increased the array size in order
to decrease the application execution time and account for the intra-
task cache misses. Moreover, with 128 KB, and two tasks running on
different hyperthreads, the L2-cache was more full and more L2-cache
misses occurred.

Finally, Figure 82 shows the percentage of missed deadlines for
a WSS of 256 KB and write ratio of 33% (Figure 82(a)) and 20%
(Figure 82(b)). On the x-axis, we vary the task set. On the y-axis, we
present the percentage of missed deadlines for each task set. For write
ratio of 33%, the deadline miss ratio varies from 8.96% (task set 4) to
24.94% (task set 8) and for write ratio of 20% it varies from 5.19% (task
set 4) to 24.73% (task set 8). In comparison with the previous results
(Figure 81), the percentage of missed deadline has decreased. With
WSS of 256 KB, the preemption delay is greater, which means that
we had to reduce the repetitions parameter of each task. Thus, there
is less contention for the cache lines within the same color. However,
the deadline miss ratio is similar to the Figure 80 when tasks ran with
64 KB.

7.4 DISCUSSION

During our work, we observed a number of interesting facts. Here
we discuss our main observations on the experiments:

• Color-Aware task Partitioning: our Color-Aware task Parti-
tioning (CAP) assigns tasks to processors respecting the colors
(e.g., memory partitions) usage by tasks. We generated 10 dif-
ferent task sets that were partitioned using the CAP WDF and
the original WFD heuristics. We ran each partitioned task set
for 50 times varying the WSS of each task from 32 to 256 KB.
From these executions, we extracted the percentage of missed de-
adlines. By simply assigning tasks to processors, CAP prevented
tasks from accessing shared cache lines and thus met the HRT
application requirements without missing any deadline.

• Working set size: we analyzed the behavior of the multicore
platform by varying the WSS (32, 64, 128, and 256 KB). With

7.4 Discussion 267

1 2 3 4 5 6 7 8 9 10

Missed deadlines − WSS 128KB − Write Ratio 33%

Task Sets

M
is

se
d

D
ea

dl
in

es
 (

%
)

0
20

40
60

80
10

0

(a)

1 2 3 4 5 6 7 8 9 10

Missed deadlines − WSS 128KB − Write Ratio 20%

Task Sets

M
is

se
d

D
ea

dl
in

es
 (

%
)

0
20

40
60

80
10

0

(b)

Figure 81: Percentage of missed deadlines of the WFD heuristic.
(a) WSS of 128KB and write ratio of 33%; (b) WSS of 128KB and
write ratio of 20%.

128 KB, the tasks have the greatest deadline miss ratio due to
the more contention for shared cache lines and preemption delay.
With 256 KB, the preemption delay is higher due to L2-cache
misses. For 32 KB, mostly of the tasks data fits into the L2-

268 7 STATIC COLOR-AWARE TASK PARTITIONING

1 2 3 4 5 6 7 8 9 10

Missed deadlines − WSS 256KB − Write Ratio 33%

Task Sets

M
is

se
d

D
ea

dl
in

es
 (

%
)

0
5

10
15

20
25

30

(a)

1 2 3 4 5 6 7 8 9 10

Missed deadlines − WSS 256KB − Write Ratio 20%

Task Sets

M
is

se
d

D
ea

dl
in

es
 (

%
)

0
5

10
15

20
25

30

(b)

Figure 82: Percentage of missed deadlines of the WFD heuristic.
(a) WSS of 256KB and write ratio of 33%; (b) WSS of 256KB and
write ratio of 20%.

cache and the deadline miss ratio is smaller than in the other
WSSs.

• Write ratio: we ran the partitioned task sets using two diffe-
rent write ratios (20 and 33%). By changing the write ratio, we

7.4 Discussion 269

stimulate the cache coherence protocol to invalidate more or less
cache lines. For all WSS variation, the execution with the write
ratio of 20% has missed less deadlines as expected.

• True and false sharing: the application used in our experi-
ments did not explicitly share data (see Figure 78). Tasks allo-
cate memory using a color received as argument. Some tasks al-
locate memory from the same color, as described in Section7.3.1,
causing concurrent accesses to shared cache lines (false sharing).
In an application with shared data, a mutual exclusion protocol,
such as the multiprocessor priority ceiling protocol (MPCP) (RAJ-
KUMAR et al., 1988) and flexible multiprocessor locking protocol
(FMLP) (BLOCK et al.,), must be used to ensure correctness. In
such applications, the blocking times caused by priority inversion
and the implicit delay caused by the cache coherence protocol
must also be taken into account while estimating the WCET.
Such protocols can be easily accommodated under EPOS page
coloring mechanism, which provides a straightforward API to al-
locate specific memory partitions to shared data.

• Colors assignment: in our task model (see Section 7.1), we
assume that tasks have a set of colors that represents memory
partitions. The process of assigning colors to tasks is a complex
optimization problem. To assign the optimal combination of co-
lors, one must analyze the data usage for each task and thus select
the best combination of colors that minimizes the cache delays for
a specific processor. However, once an heuristic is chosen, EPOS
can easily incorporate it under its memory management abstracti-
ons, encapsulating the specificities of the underlying architecture
in well-defined micro components. Memory partitioning is not
restricted to applications. It can also be used for internal OS
data structures, thus enabling a fine-grain color assignment.

• Other scheduling policies: we ran our experiment using the
P-EDF scheduling policy. It is also possible to apply the CAP
to any other scheduling policy, such as RM and DM. The diffe-
rence would be restricted to the processor capacity given by each
scheduling algorithm.

• Other partitioning heuristics: we executed our experiments
using the WFD heuristic. However, as stated before, it is possible

270 7 STATIC COLOR-AWARE TASK PARTITIONING

to apply any partitioning heuristic in CAP algorithm. The stra-
tegy would be forming groups of tasks that share colors and then
applying a partitioning heuristic using the entire group instead
of single tasks.

• Run-time overhead: since task partitioning is performed of-
fline (i.e., before the execution of the application), it does not
add any overhead to the associated run-time overhead partitio-
ned scheduler. Chapter 5 has shown that a partitioned scheduler
(P-EDF) has a smaller run-time overhead than clustered (C-EDF)
and global (G-EDF) approaches, which improves the schedulabi-
lity ratio of HRT applications (BASTONI et al., 2010b; GRACIOLI
et al., 2013).

• Comparison with related work: LWFG is the most similar
partitioning algorithm (LINDSAY, 2012). However, our partiti-
oning algorithm assumes that a cache partitioning mechanism
based on page coloring is available and each task uses a set of
colors. Thus, it is possible to determine which tasks share cache
lines by inspecting the colors of each task. In contrast, in the
LWFG approach, it is not clear how the algorithm is aware of
data sharing among tasks. Moreover, LWFG is proposed for SRT
system, since whenever the next fit heuristic fails to partition a
task group, the task that shares the least memory with the first
task is removed from the group, and partitioning is retried with
the smaller group. Thus, inter-core interference is not avoided,
which may incur in deadline losses. CAP limits the utilization
of a task group in 100% in order to avoid inter-core interference.
Furthermore, it is straightforward to incorporate the idea of task
group splitting in the CAP algorithm, and thus provide similar
performance for SRT systems as LWFG. Also, CAP is designed
to be integrated to any bin packing heuristic, including the next
fit decreasing, used by LWFG. The performance evaluation of
LWFG was carried out using a real-time patch for the Linux ker-
nel, which may limit the observed gains, because the inherent
non real-time behavior of Linux, as shown in Chapter 5. Instead,
we evaluated the CAP algorithm using an RTOS, without the
excessive run-time overhead introduced by a GPOS.
Nemati et al. also proposed a partitioning algorithm that groups
tasks with shared resources and assigns the entire group to a

7.4 Discussion 271

same core (NEMATI et al., 2009). Resource sharing among tasks
is identified by a matrix. Although similar to our algorithm, the
proposed approach was not evaluated, neither simulated nor in
a real hardware, and it is not clear how one could construct the
resource sharing matrix.
Suzuki et al. proposed two algorithms to decrease conflicts at the
cache and DRAM bank levels (SUZUKI et al., 2013). However, the
allocation algorithms were not evaluated in a real hardware nor in
terms of real-time guarantees. Moreover, transitive color sharing
seems not to be treated by the proposed memory interference
model. Our page coloring mechanism could be easily extended to
also support bank coloring.
Other cache-aware real-time scheduler was proposed by Calan-
drino et al. (CALANDRINO; ANDERSON, 2008; CALANDRINO; AN-
DERSON, 2009). In their approach, the objective is to provide SRT
guarantees. At run-time, HPCs are used to estimate the WSS of
tasks. Then, tasks are scheduled in a way that cache thrashing
is avoided. Two assumptions limit the usage of the proposed ap-
proach: (i) applications must not consume more memory than
the shared cache size; and (ii) tasks do not share data. FPCA is
another cache-aware scheduling algorithm that divides the shared
cache space into partitions (GUAN et al., 2009). Tasks are sche-
duled in a way that at any time, any two running tasks’ cache
spaces (e.g., a set of partitions) are non-overlapped. A task can
execute only if it gets an idle core and enough cache partitions.
Thus, both proposed cache-aware multicore real-time schedulers
use a task model that does not allow data sharing among tasks.
Kim et al. proposed a cache management scheme that assigns to
each core a set of private cache partitions to avoid inter-core in-
terference (KIM et al., 2013). However, tasks within each core can
share cache partitions. They bound the penalties due to the sha-
ring of cache partitions by accounting for them as CPMD when
performing the schedulability analysis. The main drawback of
this approach is the difficulty of estimating the penalties incurred
by the cache coherence protocol. In fact, to the best of our kno-
wledge, no existing static analysis technique is able to account for
the effects of the coherence protocol. Thus, the usage of proposed
cache management scheme is restricted.

272 7 STATIC COLOR-AWARE TASK PARTITIONING

273

8 DYNAMIC COLOR-AWARE SCHEDULING ALGO-
RITHM

In the previous chapter we have proposed the CAP algorithm
to assign tasks to cores respecting their usage of colors (i.e., memory
partitions). However, the system model used in CAP has two main
drawbacks:

• First, all tasks in a task set have HRT constraints. This scenario
may not be true for every real-time application. In fact, emerging
real-time workloads, such as multimedia and entertainment and
some business computing applications, have highly heterogenous
timing requirements and consist of HRT, SRT, and best-effort
(BE) tasks (BRANDENBURG; ANDERSON, 2007). In such applica-
tions, there are few HRT tasks, which represent a small system
utilization, and their deadlines must be guaranteed (RAJKUMAR,
2006). Also, deadline tardiness for SRT tasks and response ti-
mes for BE jobs must be minimized (BRANDENBURG; ANDERSON,
2007).

• Second, the number of colors in a processor may be smaller than
the number of real-time and BE tasks. Consequently, real-time
and BE tasks may eventually share colors or memory partitions
and the utilization of these tasks that share memory partitions
may be greater than 100% (restriction of utilizations in the CAP
system model). We have shown in the previous chapter that when
tasks share colors, the contention for shared cache lines caused by
the cache coherence protocol may lead to deadline misses. Thus,
color sharing and the execution of tasks that use the same color
in parallel on different cores should be avoided whenever possible.

In this chapter we propose a two-phase multicore real-time sche-
duler to deal with these two main drawbacks. The first phase is an
extension to the CAP algorithm. HRT tasks are not allowed to share
colors with any other task. SRT and BE tasks can share colors with
each other. As in CAP, those tasks are also grouped together, but the
group utilization is allowed to be greater than 100% or greater than the
capacity given by the scheduling policy for each core. When a group
utilization is greater than the processor capacity, we perform a group
splitting similar to the LWFG approach (LINDSAY, 2012), removing the

274 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

task with smaller utilization from the group and trying to partition the
group again. The second phase is performed at run-time and consists
of collecting tasks’ information through the use of HPCs to detect when
BE tasks are interfering with real-time ones.

In summary the main contributions of this chapter are:
• We propose a two phases scheduling algorithm able to deal with a

heterogeneous real-time application. The system model considers
a real-time application composed of HRT, SRT, and BE tasks.
HRT tasks do not share colors with other HRT tasks nor with
SRT or BE tasks. SRT tasks can share colors with other SRT
tasks and BE tasks. The scheduling mechanism provides timing
guarantees for HRT tasks, while minimizing deadline tardiness
for SRT tasks and allowing the execution of BE tasks whenever
possible.

• The first phase of the scheduling mechanism is an extension to
the CAP algorithm, named Color-Aware task Partitioning with
Group Splitting (CAP-GS). CAP-GS allows a group of tasks to
have a utilization greater than the capacity of a processor consi-
dering a specific scheduling policy. When this happens, the task
with smaller utilization is removed from the group and the group
partitioning is performed again. This step is repeated until the
group is partitioned or partitioning fails. Thus, we keep tasks
that share colors in the same processor whenever possible, mi-
nimizing the contention for shared cache lines, while maintaing
HRT deadlines.

• The second phase is performed at run-time. HPCs are used to
collect information of cache coherence activities initiated by the
cores. This information is then used by the scheduler to dyna-
mically prevent the execution of BE tasks that share colors with
SRT tasks. By doing so, we reduce the contention for shared
cache lines at run-time and improve deadline tardiness of SRT
tasks.

• We design and implement the dynamic phase of our scheduler in
EPOS. We show how a component-based RTOS allows a straight-
forward integration of HPCs with scheduling algorithms.

• We compare the dynamic scheduler with CAP-GS without dy-
namic optimizations and BFD partitioning heuristic in terms of

8.1 Assumptions and Notations 275

deadline misses and tardiness of several generated task sets using
the P-RM scheduler. Our results indicate that it is possible to
improve deadline tardiness and to provide HRT guarantees by
combining a color-aware task partitioning with dynamic schedu-
ling optimizations.

• We evaluate the dynamic scheduler in a modern 8-core processor,
with shared L3 cache using EPOS. The experimental evaluation
on a real machine and RTOS demonstrates the effectiveness of
our dynamic scheduler.

The rest of this chapter is organized as follows. Section 8.1 pre-
sents the assumption, notation, and task model used by the proposed
multicore real-time scheduler. Section 8.2 describes in details the two
phases of the algorithm. Section 8.3 evaluates the dynamic algorithm
by comparing it to CAP and BFD partitioning approaches. Finally,
Section 8.4 discusses the main findings.

8.1 ASSUMPTIONS AND NOTATIONS

The system model considered in this chapter is similar to that
used by the CAP algorithm, which is described in Section 7.1. In this
section, we describe the system model used by the dynamic scheduler,
presenting its assumptions and notations.

We consider a system with a multicore processor. The proces-
sor has m identical processors or cores running at a fixed clock speed.
Mtotal denotes the total size of the main memory available to the sys-
tem. The processor has a unified last-level cache shared by all the m
cores. We adopted page coloring to partition the cache at software-level
(there is no need for a special hardware support) —the cache is divided
in Nc (number of colors) partitions. The size of each partition depends
on the available memory: Sp = Mtotal

Nc
.

We assume a task set τ composed of n periodic real-time tasks.
The n real-time tasks are scheduled concurrently with independent BE
tasks on the m processors. We assume that a periodic real-time task
is either a HRT task or a SRT task. A HRT task must never miss a
deadline. SRT tasks may experience deadline tardiness and BE tasks
execute whenever a core is not executing a real-time task. HRT tasks
have higher priorities than SRT tasks. To allow this priority difference

276 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

between HRT and SRT tasks, we use the RM scheduling policy, which
is a FP scheduling algorithm (see Section 2.4). Real-time and BE tasks
are assigned to a core and do not migrate to another core.

We define priority ranges for HRT and SRT tasks. HRT tasks
have priorities ranging from 0 (highest) to HRT PRIORITY LIMIT.
SRT tasks have priorities ranging from HRT PRIORITY LIMIT +
1 to SRT PRIORITY LIMIT. BE tasks have priorities greater than
SRT PRIORITY LIMIT.

We also assume that HRT tasks have private colors, i.e., HRT
tasks do not share colors with each other nor with SRT or BE tasks.
SRT, instead, may share colors with each other and with BE tasks.
Thus, we eliminate the restriction of utilizations presented in the CAP
system model.

Definition 8.1.1 A task Ti is represented as follows:

Ti =
{
eNCi
i ,pi,di,Pi,NCi,M

i
req,T ypei

}
• NCi is the set of colors assigned to Ti;

• eNCi
i is the WCET of Ti, when it runs with |NCi| colors and

when it is also inflated by the sources of overhead (see Equation 2
in Section 2.5);

• pi is the period of Ti;

• di is the relative deadline of Ti (di = pi);

• Pi is the priority of Ti.

• M i
req is the size of the memory region allocated to Ti;

• Typei is the type of the real-time task: HRT or SRT or BE.

A BE task is assumed to have a utilization equal to zero. The
priority Pi of a HRT task i is defined according to the RM policy: the
shorter the period, the greater the priority. For a SRT task j, we add
HRT PRIORITY LIMIT + 1 to Pj to ensure that its priority is in the
range [HRT PRIORITY LIMIT + 1, SRT PRIORITY LIMIT]. The
priority of a BE task must be in the range of [SRT PRIORITY LIMIT
+ 1, ∞].

As in the CAP algorithm, we assume that the number of parti-
tions |NCi| that minimizes the WCET eNCi

i is known at design time.

8.1 Assumptions and Notations 277

Moreover, the WCET eNCi
i already considers the run-time overhead.

Also, the sum of the required memory from all tasks must be less than
the available memory:

n∑
i=1

M i
req ≤Mtotal (1)

Definition 8.1.2 Let Ntotal be the set of all colors used in a task set
τ . |Ntotal| must be less than the defined number of colors:

|Ntotal| ≤Nc (2)

When tasks share a partition, the sum of the memory required
by those tasks from the shared partition must not exceeded the size of a
partition. Otherwise, some data would have to be allocated from other
colors, incurring in cache interference. Equation 3 presents a sufficient
and necessary condition for the restriction of the shared partition size
to be met. For each partition ρ, the sum of per-partition usage of
tasks that share a partition does not exceed the size of one memory
partition (KIM et al., 2013).

∑
∀Ti: ρ∈NCi

M i
req

|NCi|
≤ Sp (3)

Definition 8.1.3 Let τhrt be the set of HRT tasks and τsrt be the set of
SRT tasks. uhrt denotes the utilization of HRT tasks and usrt denotes
the utilization of SRT tasks:

uhrt =
∑

Ti∈τhrt

ui and
usrt =

∑
Ti∈τsrt

ui

As we are using the RM scheduling policy, the capacity of a
processor is given by its schedulability test: usum ≤ n(21/n−1), where
n represents the number of tasks in the task set. Note that when n tends
to a large number (n→∞), the upper bound n(21/n−1) converges to
ln 2 ≈ 0.69.

We assume that the utilization of all HRT tasks is not greater
than a constant α (defined at design time) multiplied by 0.69 (the

278 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

processor capacity):

uhrt ≤ 0.69×α (4)

Thus, we know the available utilization for SRT and BE tasks at
design time. Consequently, the utilization of all SRT tasks is defined
as:

usrt = usum−uhrt (5)

8.2 ALGORITHM DESCRIPTION

We now describe the two phases of the proposed dynamic sche-
duler. The first phase, named CAP-GS, is an extension of the CAP
algorithm and it is described in Section 8.2.1. Section 8.2.2 demonstra-
tes how CAP-GS partitions a task set. The second phase is performed
at run-time and it is described in Section 8.2.3.

8.2.1 Color-Aware Task Partitioning with Group Split-
ting

The Color-Aware task Partitioning with Group Splitting (CAP-
GS) extends the CAP algorithm described in the previous chapter.
In CAP-GS, tasks that share colors (SRT and BE) are also grouped
together, but they are allowed to have a utilization greater than the
capacity of a processor given by the scheduling algorithm (i.e., RM
schedulability test). Algorithm 5 shows the pseudo code for the CAP-
GS. The algorithm receives a task set τ , the number of colors Nc, the
total available memory Mtotal, and the number of cores m as input.
The output is a boolean (partitioned) informing whether the task set
was partitioned or not and a task set assigned to each core.

The algorithm calls the function FindTaskWithSharedData to
find all tasks that share at least one color and group them together
forming task groups that share colors (array taskGroups in the line
1). FindTaskWithSharedData is the same function used by CAP
depicted in Algorithm 2. Then, the task groups are sorted by decreasing
order of utilization (line 2). From line 3 to line 13, CAP-GS partitions
only HRT tasks using the FFD heuristic. The idea is to first assign

8.2 Algorithm Description 279

Algorithm 5 CAP-GS(τ , Nc, Mtotal, m)
Input: τ : a task set of “n” tasks as described in Definition 7.1.1, Nc:
available number of colors/partitions, Mtotal: available memory in the
system, m: number of cores in the processor
Output: partitioned: a boolean if the CAP-GS heuristic is able to
partition the task set, task set[m]: a task set per core

1: taskGroups← FindTaskWithSharedData(τ)
2: Sort groups by decreasing order of utilization
3: for each group of tasks in taskGroups do
4: if group does not satisfy Eq. 3 then
5: partitioned← false
6: else if group has 1 HRT task then
7: partitioned← assigns this group to a core using FFD
8: else
9: Error: HRT task shares colors

10: end if
11: if partitioned is false then . could not partitioned HRT tasks
12: return {partitioned,task set}
13: end if
14: end for
15: for each group of tasks in taskGroups do
16: if group has 1 or more SRT or best-effort tasks then
17: if group does not satisfy Eq. 3 then
18: partitioned← false
19: return {partitioned,task set}
20: end if
21: partitioned← assigns this group to a core using BFD
22: if partitioned is false then
23: if group has only 1 task then
24: return {partitioned,task set} . partitioning failed
25: end if
26: taskGroups←RemoveTask(τ, taskGroups,group)
27: group← group−1 . try again with the last group
28: end if
29: end if
30: end for
31: task set← Create task set per core
32: return {partitioned,task set}

280 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

HRT tasks for the first available processors, decreasing the inter-core
interference with HRT tasks caused by the color sharing among SRT
and BE tasks. A task group formed by a HRT task has only one task,
because it does not share any color with other HRT, SRT, or BE tasks.
This condition is tested in the lines 6 to 9. In line 4, the algorithm
verifies whether the HRT task satisfies or not the restriction of the
partition size (Equation 3), aborting the partitioning process if the
task does not satisfy the equation.

The next step in the algorithm is to partition SRT and BE tasks.
BE tasks are executed whenever a processor is not executing any real-
time task. Thus, from the task partitioning point of view, BE tasks
are considered to have a utilization equal to zero and could be assigned
to any processor. For each group formed by SRT and BE tasks, the
algorithm verifies if the group satisfies the Equation 3 (from line 17 to
19) and if the group does, CAP-GS tries to partition the group using
the BFD heuristic (line 21). If it is not possible to partition the whole
group (line 22), the algorithm tests if the group has only one task (line
23), which means that the group possibly has been split before and
the task set is not schedulable, i.e., it is not possible to partition the
task set. If the group has more than one task, the algorithm removes
the task with smaller utilization from the group by calling the function
RemoveTask (line 26), and tries to partition the same group again now
that it has one less task and, consequently, a smaller utilization (line
27). Finally, CAP-GS creates a task set per each core (line 31) and
returns the task set (line 32).

Algorithm 6 shows the pseudo code for the RemoveTask func-
tion. The objective of this function is to remove the task with the
smaller utilization from a group. RemoveTask receives as input the
task set τ , the array with tasks separated in groups formed by all tasks
that share at least one color (taskGroups), and the current group index
which is being partitioned (group). The output is an array with tasks
separated in groups that has a new group composed only by the task
that has been removed from the current group.

In line 1, the function finds the task with smaller utilization
within the task group. Then, this task is removed (line 2) and a new
group is created with the tasks from the taskGroup (line 3) and adding
the removed task to the new group (line 4). In the end, the new task
group is returned (line 5).

8.2 Algorithm Description 281

Algorithm 6 RemoveTask(τ , taskGroups, group)
Input: τ : a task set of “n” tasks as described in Definition 7.1.1,
taskGroups: a multi map with tasks organized in groups that share
one or more colors, group: an integer representing the current group
being partitioned
Output: new taskGroups: a multi map with tasks organized in
groups that will have one more group

1: find task with the smallest utilization within the taskGroups[group]
2: remove this task from the taskGroups[group]
3: new taskGroups← taskGroups + 1 . Creates a new group and

keeps the old groups
4: insert the removed task in the new group new taskGroups[group+

1]
5: return new taskGroups

8.2.2 Example: partitioning a task set with CAP-GS

We present an example to demonstrate how the CAP-GS algo-
rithm partitions a task set. Table 15 shows a task set composed of ten
tasks and their parameters as in Definition 8.1.1: e is the WCET when
the task runs with NC colors, p is the period, P is the priority, the
deadline is implicit (d = p), u is the utilization, memreq is the requi-
red memory in KB, and type is the class of the task (HRT, SRT, or
BE). The target processor has three cores and the available memory
Mtotal is enough to accommodate all memory required by the tasks.
The priorities for HRT tasks are defined according to the RM policy:
the shorter the period, the greater the priority. For SRT we add 10001
(i.e., the HRT PRIORITY LIMIT + 1) to the period and the resulting
value is used as priority, and for BE tasks, their priorities are greater
than 100000, which is greater than the lowest SRT task priority. Thus,
we keep the RM policy proportional within each class. The objective
is to illustrate the task partitioning performed by CAP-GS, CAP, and
BFD (non-cache aware) heuristics. We define the capacity of each core
as 0.75 (i.e., 4 tasks per core – 4× (21/4−1)≈ 0.75).

Let us first present the partitioning with CAP-GS. The tasks
that share at least one common color are grouped together. Tasks T3,
T5, T6, and T8 form a group (with utilization of 0.80), because they
share the color 7, and tasks T4, T7, and T9 form another group (with

282 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

Table 15: Parameters of a task set used to exemplify the CAP-GS
algorithm.

Task e p P u memreq type NC
T0 2000 10000 10000 0.2 16 HRT {1,4}
T1 1500 5000 5000 0.3 12 HRT {2,3}
T2 1000 10000 10000 0.1 8 HRT {0}
T3 10000 50000 60001 0.2 32 SRT {6,7}
T4 1500 5000 15001 0.3 16 SRT {5,8}
T5 4800 12000 22001 0.4 64 SRT {7,9}
T6 1000 10000 20001 0.1 8 SRT {7,11}
T7 2000 20000 30001 0.1 4 SRT {8}
T8 3000 15000 25001 0.1 20 SRT {7,10}
T9 - - 100000 - 64 BE {8,12}

utilization of 0.4), because they share the color 8. Note that the task
T9 is a BE task and its utilization is assumed to be zero. Each of the
other tasks form a group individually. The next step is to order the
groups in decreasing order of utilizations. The groups order is defined
as: T3, T5, T6, and T8 (group of SRT tasks), T4, T7, and T9 (group of
SRT tasks and a BE task), T1 (HRT), T0 (HRT), and T2 (HRT). Then,
CAP-GS partitions HRT tasks using the FFD heuristic and SRT tasks
using the BFD heuristic.

Figure 83 shows the task set partitioned by CAP-GS. The HRT
tasks are assigned to the core 0, respecting the order of decreasing
utilization (T1, T0, and T2). Then, CAP-GS tries to partition the group
of SRT with utilization of 0.80 using the BFD heuristic. As the group
utilization is greater than the processor capacity (0.75), the group is
split and the task T8 is removed forming a new group. The group of
SRT tasks now has a utilization of 0.7 and it is assigned to core 1.
Then, CAP-GS assigns the other group composed of two SRT and one
BE tasks to core 3. Finally, the removed task T8 is assigned to core
3. Note that with CAP-GS, the core 0 concentrates HRT tasks, while
the inter-core communication caused by color sharing is minimized –
only the task T8 that shares the color 8 with tasks T3, T5, and T6 may
generate cache line invalidations, because it was assigned to a different
core.

Partitioning the same task set with CAP is not possible, because
the task group formed by the tasks T3, T5, T6, and T8 has a utilization

8.2 Algorithm Description 283

Figure 83: The partition of the task set in Table 15 with the CAP-
GS algorithm.

of 0.80. As CAP employs a restriction of utilization, in which a group
utilization must not be greater than the processor capacity, the task
set is not partitioned under CAP.

The original BFD heuristic, in contrast, does not create group
of tasks nor differentiate HRT, SRT, and BE tasks. It first order the
tasks in decreasing order of utilizations. The order is T5, T1, T4, T0, T3,
T2, T6, T7, T8, and T9. Then, the BF bin packing heuristic is applied
to partition the task set. Figure 84 shows the task set partitioned by
BFD. Tasks T5, T1, and T9 are assigned to core 0, tasks T4, T0, and
T3 to core 1, and tasks T2, T6, T7, and T8 to core 2. Note that the
color usage by tasks may be a problem in the BFD task assignment.
For instance, the group of tasks that shares the color 7 (T3, T5, T6, and
T8) are assigned to different cores. As shown in the previous chapter,
this may result in deadline losses due to the delay caused by the false
sharing of shared cache lines.

Figure 84: The partition of the same task set as in Figure 83 with
the original BFD heuristic.

The next section describes the dynamic phase of our scheduling
mechanism.

284 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

8.2.3 Dynamic Color-Aware Scheduling

The dynamic phase of the scheduling algorithm consists of mea-
suring hardware events related to cache coherence activities and using
the collected information to perform a scheduling decision. The main
idea is to prevent the execution of BE tasks in order to avoid the delay
caused by the access of data mapped to shared cache lines (true or false
sharing).

We start presenting an analysis of hardware events that can
be used by our scheduler in Section 8.2.3.1, then we show the de-
sign and implementation of the dynamic color-aware scheduling in Sec-
tion 8.2.3.2.

8.2.3.1 Analysis of Hardware Events

The dynamic color-aware scheduler uses HPCs to detect when
a BE task should give the processor to another task. In this section,
we present an analysis of the main HPCs events related to the cache
hierarchy. Table 16 presents a list of selected hardware events related
to data caches, cache line state, and cache snooping.

Experiment description. We used the HPC collection infras-
tructure implemented in EPOS to measure the selected events. We
designed a HPC test application to force shared data access. Figure 85
shows part of the HPC test application. The main function creates
an array in the partition 1 (COLOR 1 - line 5) and two threads that
execute func0 and func1 (lines 11 and 12), respectively. Note that the
threads’ stacks are allocated in an individual or a same color (lines 11
and 12). Consequently, local variables are also allocated in a separated
partition if an individual color is used. Both threads can either access
the array created by the main (line 22) or create their own arrays in
different memory partitions (line 25), depending on the sharing boolean
variable. We set sharing to true when we want the threads to share
the array and to false when we want them to allocate the arrays from
different memory partitions. After creating the arrays, both threads
read and write from/to the array randomly (lines 29 to 37). Moreover,
we also set the size of each array (SIZE variable) to different values
(128 and 512 KB). We set the PMU sampling period to 1 s (i.e., read
current HPCs values at every second) and we monitor the threads for

8.2 Algorithm Description 285

Table 16: Selected hardware events for the Sandy Bridge Intel
microarchitecture (i7-2600 processor).

Event Name Description
HITM Counts demand loads that hit a ca-

che line in the cache of another core
and the cache line has been written
to by that other core

HIT remote Counts demand loads that hit a ca-
che line in a cache of another core
and the cache line has not been mo-
dified

Local HIT and remote MISS Counts demand loads that hit the
LLC and are assumed to be present
also in a cache of another core but
the cache line was already evicted
from there

L2 LINES IN.I Counts the number of L2 cache lines
in the invalid (I) state filling L2

L2 LINES IN.S Counts the number of L2 cache lines
in the shared (S) state filling L2

60 s. After 60 s, the main function sets the boolean variable run to
false (line 3) and both threads stop executing (line 30). We use the
P-RM scheduler, and assign thread 0 to core 1 and thread 1 to core 2.
We configure the PMU to collect the selected events in all of the eight
available processors (Intel i7-2600). We repeat the application for 100
times and extract the average number of measured events from these
executions.

Figure 86 shows the collected average values for the HITM event.
On the x-axis we vary the CPU, and on the y-axis we show the measured
event number in logarithm scale. The bars represent the measured
events for the two application cases: when threads allocate their arrays
from different colors and when they access the same array. Error bars
(almost imperceptible) represent the standard deviation. The CPU 1
is the processor where thread 0 is executed, CPU 2 is the processor
where thread 1 is executed, and the other CPUs (0, 3, 4, 5, 6, and 7)
execute EPOS idle threads. We plot the collected values only for CPU
7, because the other idle CPUs had similar behavior.

286 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

1 #define WRITE RATIO 2
2 volatile bool run;
3 void alarm handler() { run = false; }
4 int main() {
5 unsigned int ∗ array = new (COLOR 1) unsigned int[SIZE];
6 run = true;
7 //an alarm of 60 seconds; when it fires , set run to false
8 Function Handler handler(&alarm handler);
9 Alarm alarm(60000000, &handler, 1);

10 thread0 = new (COLOR 1) Thread(&func0); //when sharing, both
threads are created using the same color

11 thread1 = new (COLOR 2) Thread(&func1);
12 int status0 = thread0−>join();
13 int status1 = thread1−>join();
14 ...
15 }
16 int func0() {
17 volatile unsigned int ∗ array0;
18 Pseudo Random ∗ rand;
19 int sum0 = 0;
20 if (sharing) {
21 array0 = array;
22 rand = new (COLOR 1) Pseudo Random();
23 } else {
24 array0 = new (COLOR 2) unsigned int[SIZE];
25 rand = new (COLOR 2) Pseudo Random();
26 }
27 rand−>seed(clock.now() + 1);
28 while(1) {
29 if (! run) break;
30 for(int i = 0; i < MEMORY ACCESS; i++) {
31 int pos = rand−>random() % (SIZE − 1);
32 sum0 += array0[pos];
33 if ((i % WRITE RATIO) == 0)
34 array0[pos] = i + i;
35 }
36 }
37 return sum0;
38 }
39 int func1() { } //same code of func0, but with a different color

Figure 85: Part of the source code of the HPC test application.

Figure 86(a) shows the values for a WSS of 128 KB and Fi-
gure 86(b) for a WSS of 512 KB. We can clearly note that when data

8.2 Algorithm Description 287

sharing is disabled, the PMU measures few HITM events, from 0 to
99 in a period of 1 s. Also, when the arrays’ size increases, the HITM
event decreases. This behavior is expected, because the probability of
accessing the same cache line is smaller than when the size is 128 KB.
CPU 7, which does not execute any application thread, does not have
any HITM event.

The collected values have shown that the HITM event is a good
candidate to be used to detect when threads running on different cores
at the same time access shared cache lines. If we normalize the collected
events in a period of 10 ms, for instance, we would have less than 0.1
HITM event per period, considering the case of non data sharing. In
this case, for example, a threshold of two could be safely used1 as an
approximation value for the scheduler threshold. The scheduler could
then take an action based on the measured values and threshold.

Figure 87 shows the measured values for the HIT remote event
and the same described scenarios. In Figure 87(a), the arrays’ size is
configured as 128 KB and in Figure 87(b) as 512 KB. The obtained
values show a higher cross-core communication when threads access
the same array. When the WSS increases, CPU 1 had more events and
CPU 2 had less events. However, if we sum the obtained events of both
CPUs and compare the two WSS variation, the obtained values are
similar. CPU 7 had obtained few HIT remote events, mainly due to
cache hits of internal EPOS data structures accessed by the idle thread.

Figure 88(a) shows the obtained values for the local HIT and
remote MISS event and WSS of 128 KB and Figure 88(b) for WSS of
512 KB. The local HIT and remote MISS event shows that both thre-
ads are evicting each other’s cache lines, because whenever a LLC hit
is counted, the same cache line in the other’s core cache was already
evicted. This does not happen when threads have exclusive colors. The
behavior when the threads access the arrays in different partitions/co-
lors is mostly the same for the local HIT and remote MISS and HIT
events. For CPU 7, there are some observed events, also caused by the
access of internal OS data structures.

The obtained values for HITM, HIT remote, and local HIT and
remote MISS events have shown that it is possible to detect when thre-
ads access shared cache lines at run-time easily. The cache partitioning

1We can only use integer here, because the number of events measured in an
interval is obviously always integer. A value of one could also be used, but we set
the value for two in this example to reduce the possibility of an OS intervention.

288 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

CPU 1 CPU 2 CPU 7

Number of HITM events − WSS 128KB

N
um

be
r

of
 E

ve
nt

s

0.
1

10
.0

10
00

.0

Different colors Same array

15

10874

0

6214

0 0

(a)

CPU 1 CPU 2 CPU 7

Number of HITM events − WSS 512KB

N
um

be
r

of
 E

ve
nt

s

0.
1

10
.0

10
00

.0

Different colors Same array

11

2371

99

3900

0 0

(b)

Figure 86: Measured number of HITM events. (a) WSS of 128 KB
(b) WSS of 512 KB.

mechanism isolates task workloads that may interfere with each other,
which prevents the access to shared cache lines and improves the cor-
rectness of measured hardware events. All the plotted values represent
the average number of events in a period of 1 s. We could normalize

8.2 Algorithm Description 289

CPU 1 CPU 2 CPU 7

Number of HIT remote events − WSS 128KB
N

um
be

r
of

 E
ve

nt
s

0.
1

10
.0

10
00

00
.0

Different colors Same array

656

830665

699

439753

304 779

(a)

CPU 1 CPU 2 CPU 7

Number of HIT remote events − WSS 512KB

N
um

be
r

of
 E

ve
nt

s

0.
1

10
.0

10
00

00
.0

Different colors Same array

623

1236725

511

275362

598 324

(b)

Figure 87: Measured number of HIT remote events. (a) WSS of
128 KB (b) WSS of 512 KB.

these values to a specific sampling period and use them as thresholds
for triggering a scheduling decision. We discuss this idea in the next
section.

The next two analyzed events are the number of cache lines in

290 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

CPU 1 CPU 2 CPU 7

Number of Local HIT and remote MISS events − WSS 128KB

N
um

be
r

of
 E

ve
nt

s

0.
1

10
0.

0
10

00
00

00
0.

0

Different colors Same array

1357

8922251

791

9305256

899 1354

(a)

CPU 1 CPU 2 CPU 7

Number of Local HIT and remote MISS events − WSS 512KB

N
um

be
r

of
 E

ve
nt

s

0.
1

10
0.

0
10

00
00

00
0.

0

Different colors Same array

1168

8766337

1177

9129200

1020 906

(b)

Figure 88: Measured number of local HIT and remote MISS
events. (a) WSS of 128 KB (b) WSS of 512 KB.

the invalid (I) and the shared (S) states. A cache line in the I state
indicates that the line does not hold a valid copy of data. The valid
data copy can be located in the main memory or in another processor’s
cache. A cache line in the S state indicates that the cache line is shared

8.2 Algorithm Description 291

by one or more caches and its state is valid. Section 2.1.4 reviews the
main cache coherence protocols and their states.

CPU 1 CPU 2 CPU 7

Number of L2 lines in the I state − WSS 128KB

N
um

be
r

of
 E

ve
nt

s

0.
1

10
.0

10
00

.0

Different colors Same array

31

11631

0

7137

0 0

(a)

CPU 1 CPU 2 CPU 7

Number of L2 lines in the I state − WSS 512KB

N
um

be
r

of
 E

ve
nt

s

0.
1

10
.0

10
00

.0

Different colors Same array

10

2400

99

3903

0 0

(b)

Figure 89: Measured number of L2 cache lines in the I state. (a)
WSS of 128 KB (b) WSS of 512 KB.

Figure 89 shows the number of L2 cache lines in the I state. On
the x-axis we vary the CPU, and on the y-axis we show the number

292 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

of L2 cache lines in logarithm scale. The bars represent the obtained
values for the two application cases: when threads allocate their arrays
from different colors and when they access the same array. Error bars
(almost imperceptible) represent the standard deviation. As in the
previous experiments, CPU 1 executes thread 0, CPU 2 executes thread
1, and CPU 7, as well as the other CPUs, executes an EPOS idle thread.

Considering the case when threads access the same array, we can
note a reduction in the number of L2 cache lines in the I state when
the WSS increases. This is the same behavior observed by the HITM
event, and is caused by the same reason: the probability of accessing
the same cache line with a bigger WSS is less with 512 KB than with
128 KB. CPU 7 had no L2 cache lines in the I state. When threads use
private colors, the observed number of events varies from 0 to 99.

Figure 90(a) shows the number of L2 cache lines in the S state
when the arrays’ size is 128 KB and Figure 90(b) when the arrays’ size
is 512 KB. The number of events is similar to the HIT event. In fact,
whenever a cache access is a hit, a cache line may be in the E, M, or
S states (see Section 2.1.4). As the two threads are accessing the same
array, most of the access find cache lines in the S state. CPU 7 had
found some L2 cache lines in the S state also due to internal EPOS
data structures.

We can conclude that the processor has several viable events
that can be used by our dynamic scheduler. In special, the events that
measure the number of L2 cache lines in I and S states have similar
behavior with HITM and HIT events. In our evaluation presented in
Section 8.3, we use the HITM event, because it had presented few values
when threads have private partitions and no values when a processor
does not execute any application thread.

8.2.3.2 Design and Implementation

This section presents the design and implementation of the dy-
namic phase of the proposed multicore real-time scheduler.

Changes in the EPOS scheduling mechanism. We desig-
ned and implemented the dynamic color-aware scheduling algorithm
to fit in EPOS. Figure 91 shows the UML class diagram of the new
scheduling criterion added to the EPOS scheduling infrastructure (see
Section 4.2) and the changes carried out in the Priority base class.

8.2 Algorithm Description 293

CPU 1 CPU 2 CPU 7

Number of L2 lines in the S state − WSS 128KB
N

um
be

r
of

 E
ve

nt
s

0.
1

10
.0

10
00

00
.0

Different colors Same array

550

848778

749

451266

1107 1346

(a)

CPU 1 CPU 2 CPU 7

Number of L2 lines in the S state − WSS 512KB

N
um

be
r

of
 E

ve
nt

s

0.
1

10
.0

10
00

00
.0

Different colors Same array

453

1238418

484

272681

335 892

(b)

Figure 90: Measured number of L2 cache lines in the S state. (a)
WSS of 128 KB (b) WSS of 512 KB.

The CA P-RM criterion is an extension of the P-RM criterion, which
defines the number of scheduling queues to be equal to the CPUs num-
ber (MAX CPUS). Every CPU has its own scheduling queue, as in the
P-EDF scheduler described in Section 4.2. P-RM extends the RM class

294 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

that defines a static criterion (the dynamic boolean is set to false).
CA PRM class sets the timed static boolean attribute to true, enabling
the generation of a timer interrupt at every QUANTUM period and the
initialization of a timer handler by the Thread component (described
below). Thus, at every QUANTUM interval, the HPCs values are read
and based on these values, a scheduling decision may be taken.

+ evaluate_hpcs() : void

Criterion

+ operator int()

RT_Common(int p)

+ _capacity : Microsecond
+ _period : Microsecond
+ _deadline : Microsecond

RT_Common(int p, Microsecond d,
 Microsecond period, Microsecond c)

RT_Common

_queue : volatile uint

Variable_Queue

Variable_Queue(uint q)
+ queue() : volatile uint

+ QUEUES : uint = MAX_CPUS

Microsecond period,
Microsecond c, int cpu)

PRM

+ PRM(int p)
+ PRM(Microsecond d,

+ current_head() : uint

+ dynamic : bool = false

+ RM(Microsecond d, Microsecond p,
 Microsecond c, int cpu)
+ RM(int p = APERIODIC)

RM

+ init() : void

+ evaluate_hpcs() : void

+ timed : bool = true

CA_PRM

+ CA_PRM(int p)

+ CA_PRM(Microsecond d, Microsecond
period, Microsecond c, int cpu)

_priority : volatile int
+ timed : bool = false

+ dynamic : bool = false

+ preemptive : bool = true

Priority

+ Priority(int p)
+ operator int() : volatile int

+ queue() : uint
+ update() : void

+ init() : void

Figure 91: UML class diagram of the Color-Aware P-RM schedu-
ling policy.

CA PRM also defines two new static and public methods:

• init(): this method initializes all PMU events used by the CA PRM.
The Priority base class has an empty implementation of it;

8.2 Algorithm Description 295

• evaluate hpcs(): this method reads the current HPCs values
and informs whether the CPU should be given to other thread
or not. This is done by comparing the read HPCs values to th-
resholds defined at compile-time (details are given below). The
Priority base class always returns false in this method.

Changes in the Traits classes. The Thread component im-
plements traditional thread functionalities, such as suspend, resume,
sleep, and wake up operations. Section 4.2 has presented a com-
plete overview of the Thread component. When a timed-based sche-
duling criterion is defined, a thread method, time slicer, handles
all interrupts generated by the timer at each scheduling quantum.
The scheduling quantum as well as the scheduling criterion are de-
fined at compile-time in the thread’s trait class, as depicted by Fi-
gure 92. The developer defines the criterion by changing the criterion
name in line 2. Scheduling Criteria is a namespace in which all
scheduling criteria are defined. The developer then chooses the cri-
terion by writing the criterion’s name. For example, typedef Schedu-
ling Criteria::CA PRM Criterion defines the Criterion as CA PRM. The
Thread component later uses the chosen criterion to access its definition
(typedef Traits<Thread>::Criterion Criterion). The developer chooses
the scheduling quantum by setting the appropriate value to QUANTUM
(line 4).

1 template <> struct Traits<Thread> : public Traits<void> {
2 typedef Scheduling Criteria::CA PRM Criterion;
3 static const bool smp = true;
4 static const uint QUANTUM = 10000; //us
5 }

Figure 92: Traits of the Thread class.

We added a new Trait class for enabling the definition of at least
three static values, as demonstrated by Figure 93:

• LOWER PRIO BOUND: an integer that defines a lower pri-
ority bound. The bound is used to compare the priority of a
running task when the measured HPCs detect a cache coherence
activity (details on this are given below);

• UPPER PRIO BOUND: an integer that defines an upper pri-
ority bound that is also used to compare the priority of a running

296 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

task;

• THRESHOLDS: one (or more) unsigned integer that defines
the thresholds for the measured HPCs. There is one threshold
for each HPC or for each metric (formed by two or more HPCs).
When the collected HPC has a value greater than its threshold, a
scheduling decision is performed (details on this are given below).

1 template <> struct Traits< Scheduler<Thread> > : public Traits<
void> {

2 static const int LOWER PRIO BOUND = X; // hypotetical
lower priority bound

3 static const int UPPER PRIO BOUND = Y; // hypotetical
upper priority bound

4 static const uint THRESHOLD1 = Z; // hypotetical threshold
5 //other thresholds can be defined here
6 }

Figure 93: New Traits class of Scheduler<Thread>.

Scheduler timer creation and HPCs initialization. The
scheduler timer used when a criterion is time-based, is created in the
Thread::init method, depicted in Figure 94. When EPOS initializes,
every CPU in the system executes the Thread::init method. The CPU
id, returned by the Machine::cpu id method, is used to identify the
current CPU that is executing the code (line 3). Only one CPU is
responsible for creating the scheduler timer (line 5). The scheduler
timer is only created when the criterion sets the timed static boolean
to true (line 4). When timed is false, the code block between the lines 3
and 5 is not inserted into the final system image. The period (QUANTUM)
passed to the timer constructor is defined in the Thread’s trait class
(see Figure 92).

The Thread::init method also calls the Criterion::init
method (line 8). Every active CPU executes this call to correc-
tly initialize all HPCs used by the chosen criterion. The code of
Criterion::init method is depicted in Figure 95, when CA PRM is the
defined criterion. In this Figure, only one event (HITM) is configured.
After the execution of this method, the PMU counts all HITM events
and stores the counting on the performance counter number 0 (defined
by the EVENTSEL0).

Scheduling decision. The Scheduler Timer calls the

8.2 Algorithm Description 297

1 void Thread:init() {
2
3 if (Machine::cpu id() == 0) { //only CPU 0 creates the timer
4 if (timed)
5 timer = new Scheduler Timer(QUANTUM, &time slicer);
6 }
7 //each CPU calls this method
8 Criterion :: init () ;
9

10 }

Figure 94: Part of the source code of the Thread init method.

1 void CA PRM:init() {
2 PMU::config(PMU::EVENTSEL0, PMU::HITM | PMU::ENABLE);
3 }

Figure 95: Example of the CA PRM criterion init method.

Thread::time slicer at every QUANTUM microseconds. Figure 96
shows a possible implementation of the Thread::time slicer method.
It starts testing if the defined criterion is equal to the CA PRM criterion
(line 2). This test is actually a metaprogram and it is omitted to leave
the Figure clearer. Thus, the code block between the lines 2 and 5 is
only inserted into the final system image when the criterion is defined
as CA PRM. In the next step, Criterion::evaluate hpcs is called and
returns true if the collected HPC values are greater than the defined
thresholds (line 3). Then, Thread::yield is called to give the CPU to
another thread (including the idle thread).

The code of the Criterion::evaluate hpcs method is depic-
ted in Figure 97. The method starts disabling interrupts (line 2) and
reading the hardware event value (line 3). After reading, the hardware
event is reseted (line 4). Then, it compares the read hardware event
value with the threshold value defined in the trait class (line 5). If the
measured event is greater than its threshold, the current running thread
on that CPU is retrieved (line 6) and its priority is stored in the cur prio
variable (line 7). The next step is to compare the running thread’s pri-
ority with the lower and upper priority bounds defined in the trait class
(see Figure 93). This is done in line 8. If the running thread’s priority
is in the range [LOWER PRIO BOUND, UPPER PRIO BOUND], the

298 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

1 void Thread::time slicer() {
2 if (Criterion == CA PRM) {
3 if (Criterion :: evaluate hpcs())
4 yield () ;
5 } else { //performs a tradition reschedule operation based on the

quantum interval
6 lock() ;
7 reschedule(true);
8 }
9 }

Figure 96: Taking a scheduling decision at every PMU sampling
period.

method returns true (line 9). If not, interrupts are enabled again (line
11) and the method returns false (line 12).

1 bool CA PRM::evaluate hpcs() {
2 CPU::int disable() ; //disables interrupts on this CPU
3 PMU::Reg64 count = PMU::rdpmc(PMU::PMC0); //reads

performance counter 0
4 PMU::reset(PMU::PMC0); //resets the performance counter 0
5 if (count > Traits< Scheduler<Thread> >::THRESHOLD1) {
6 Thread ∗ current = running();
7 int cur prio = current−>priority(); //gets current’s priority
8 if (cur prio >= Traits< Scheduler<Thread> >::

LOWER PRIO BOUND && cur prio <= Traits<
Scheduler<Thread> >::UPPER PRIO BOUND)

9 return true;
10 }
11 CPU::int enable(); //enables interrupts on this CPU
12 return false;
13 }

Figure 97: Collecting the HPCs values at every sampling period.

Note that the comparison of HPCs with thresholds can be mo-
dified to virtually any value and hardware event. Also, two or more
hardware events can be combined to form a metric.

Summary. Figure 98 shows an overview of the proposed two-
phase multicore real-time scheduler infrastructure. HRT tasks have
exclusive colors, while SRT and BE tasks may share colors. The OS
also has an exclusive color. HPCs are used to monitor cache coherence

8.2 Algorithm Description 299

activities at run-time and to detect when tasks are interfering with each
other, causing contention for shared cache lines. When this happens,
the scheduler prevents the execution of tasks that are accessing shared
cache lines concurrently.

Figure 98: Overview of the two-phase multicore real-time schedu-
ler.

Different scenarios can be decomposed from the proposed infras-
tructure: (i) HRT tasks may also share data (the same scenario as in
CAP). In this case, HRT tasks are grouped together and the group
utilization must not exceed the processor capacity. Thus, we guarantee
that there is no inter-core interference and the HRT deadlines are met
(see Chapter 7). (ii) malicious tasks may force the OS to often call the
reschedule routine and to switch context, incurring in inter-core interfe-
rence introduced by these OS activities. In this case, HPCs can detect
the contention for the shared cache lines and to prevent the execution
of these malicious tasks. (iii) it is possible to use a clustered-based
scheduler, instead of a partitioned scheduler. Thus, a task group is
assigned to a cluster and HPCs are used to monitor cache coherence

300 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

activities within the cluster and to dynamically trigger task migrations
to prevent cache contention. This approach is interesting mainly for
SRT applications, which can have bounded tardiness, due to the better
schedulability ratio provided by global schedulers for SRT applicati-
ons (BASTONI et al., 2010b).

8.3 EVALUATION

This section describes the experimental evaluation of the two-
phase multicore real-time scheduler. We compare the proposed schedu-
ler to CAP-GS without the dynamic phase (second phase) and BFD bin
packing heuristic. We generate several task sets and collect the percen-
tage of missed deadlines, deadline tardiness, and application execution
time of these task sets running them on the Intel i7-2600 processor (see
Table 12) and varying the scheduling approach (CAP-GS with dynamic
optimization, CAP-GS without the second phase, and BFD heuristic).

We start describing the experiment methodology in Section 8.3.1.
Section 8.3.2 presents the obtained results on the percentage of missed
deadlines. Section 8.3.3 shows the average deadline tardiness, and Sec-
tion 8.3.4 shows the obtained results for the total application execution
time in the three scheduling approaches.

8.3.1 Experiment Description

We randomly generated task sets similar to our previous experi-
ments described in Sections 7.3.1 and 6.1, adding a utilization cap for
HRT tasks. We selected the tasks periods (all values are in ms) uni-
formly from {25, 50, 75, 100, 150, 200}. We generated HRT tasks selec-
ting their utilization uniformly between [0.2, 0.35] until uhrt is between
[2.1, 2.5] (2.1 ≤ uhrt ≤ 2.5). Then, we set the number of SRT task
groups (i.e., groups of tasks that share memory partitions) according to
the current uhrt as follows: number of groups= ((0.69∗8)−uhrt)/0.69.
Note that we define the processor capacity as 0.69, which is the limit
given by the RM scheduling policy. We use the CA PRM scheduler imple-
mented in EPOS, as described in Section 8.2.3.2. Then, we generated
SRT tasks for each group selecting their utilization uniformly between
[0.1, 0.3] until ugroup is between [0.6, 0.7] (0.6 ≤ ugroup ≤ 0.7). Also,

8.3 Evaluation 301

we associated one BE task with each group and uniformly selected the
processor for each BE task between {0, 1, . . ., 7} (the number of avai-
lable cores in our processor). Each HRT task uses an individual color
and each SRT group shares a color with all tasks within that group. We
set the priorities of HRT, SRT, and BE tasks according to the priority
range scheme described in Section 8.2.3.2.

The BE tasks simulate a server for aperiodic tasks, allocating
memory from the same color as the associated SRT group. Figure 99
shows part of the BE task function source code. The function receives
an ID as argument (line 3) and uses this ID to access a random class
(rand variable) and an array (pollute buffer), which were previously
allocated by the main function using the generated color number for
the task group. Then, the function reads from and writes to an array
in a loop (lines 11 to 17), randomly choosing the first position (line
12) and incrementing the position in steps of 64 bytes (the size of a
cache line – line 13). After executing the loop, the function gives the
CPU to another task by calling the Thread::yield method. We set
the array size to 512 KB (POLLUTE BUFFER SIZE) to stimulate BE tasks
to interfere with SRT tasks. When all real-time tasks finish executing,
the main function deletes the BE tasks, which makes them to stop their
executions. We measured the execution time of the best effort task
function loop (lines 11 to 17), when it is executed alone in the system
for 100000 times. We obtained a WCET of 46.94 ms, an AVG execution
time of 46.29 ms with a standard deviation of 0.49 ms.

HRT and SRT tasks execute a function that allocates its WSS,
reading and writing from/to the WSS (an array), in a loop, randomly, as
shown in Figure 78 (previous chapter). Each task iterates for 200 times
(ITERATIONS variable), which give us an expected execution time of
40 s. We considered scenarios with different WSS (ARRAY SIZE variable)
similar to (CALANDRINO et al., 2006): 32 KB, 64 KB, 128 KB, and 256
KB. We defined a write ratio of 20% (one write for each four readings)
and 33% (one write for each two readings). The number of reads and
writes of a real-time task varies depending on the WCET. To adjust the
number of repetitions of each task, we used the same methodology as
described in Sections 7.3.1 and 6.1. Moreover, we always use the same
value for the “repetitions” function argument in the dynamic CAP-
GS, CAP-GS, and BFD experiments. We also adjusted the repetitions
parameter according to the WSS to account for the intra-task (self-
evictions) and intra-core (preemption delay) cache interferences. When

302 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

1 #define POLLUTE BUFFER SIZE KB 512
2
3 int best effort task (int id)
4 {
5 int sum = 0;
6
7 rand[id]−>seed(clock.now() + id);
8
9 while(1) {

10
11 for(int i = 0; i < ITERATIONS; i++) {
12 for(int j = (rand[id]−>random() % (

POLLUTE BUFFER SIZE − 1)) % 1000;
13 j < POLLUTE BUFFER SIZE; j += 64) {
14 pollute buffer [id][j] = i % 64;
15 sum += pollute buffer[id][j];
16 }
17 }
18
19 Thread::yield() ;
20 }
21 return sum;
22 }

Figure 99: Part of the best-effort tasks function source code.

a task evicts its own cache lines, it increases its execution time and
eventually misses a deadline. Each task receives a color as parameter
and allocates memory for the array using that color.

To evaluate the percentage of missed deadlines, deadline tardi-
ness, and total application execution time, we generated ten task sets
using the described methodology. We then partitioned the task sets
using the CAP-GS and BFD heuristics. We used the same partitioned
task sets to evaluated the dynamic CAP-GS and CAP-GS. The diffe-
rence is that the timed boolean (see Section 8.2.3.2) was set to true
for the dynamic CAP-GS. We set the QUANTUM period (i.e., the PMU
sampling rate) to 10 ms, because the WCET of a BE task is about
47 ms. Thus, a BE task may be interrupt by the scheduler timer up to
four times during its execution, considering the case when a BE task
is not interrupted by other real-time tasks. Considering the case when
it is preempted by the release of a real-time task, the number of inter-
ruption caused by the scheduler timer may be greater than four. We

8.3 Evaluation 303

discuss the variation on the quantum period in Section 8.4.
We also set the threshold for the HITM hardware event in the

dynamic CAP-GS to four, because in our HPC experiments a processor
that does not execute threads that share cache lines did not presented
any HITM event in a period of 10 ms. Thus, we make sure that when
the threshold is reached, it is really generated by threads that share
memory partitions and not by the OS. We executed the ten partitioned
task sets with the dynamic CAP-GS, CAP-GS, and BFD for 50 times,
varying the write ratio and array size. We then extracted the result
values for each evaluated metric from these executions (over 133 hours
of tests using a real hardware and an RTOS).

8.3.2 Percentage of Missed Deadlines

This section presents the obtained percentage of missed deadlines
in the three scheduling approaches, varying the experiment parameters
as described in the previous section. In EPOS, the Alarm component is
responsible for releasing a task by calling a v operation of its Semaphore
(see Section 4.2 for a review of the EPOS periodic thread implementa-
tion). Since we assume implicit-deadlines (di = pi), we counted a missed
deadline whenever the v operation was issued for the semaphore while
its value was greater or equal to zero. In practice this means that a
new task’s job was released before the previous job had finished.

Figure 100 shows the percentage of missed deadlines for a WSS
of 32 KB and write ratio of 33% (Figure 100(a)) and write ratio of
20% (Figure 100(b)). On the x-axis we vary the algorithm, and on
the y-axis we show the average percentage of missed deadlines for all
the ten task sets. The bars represent the percentage of HRT (darker
grey) and SRT missed deadlines. All real-time tasks in all task sets
scheduled by the dynamic CAP-GS were able to meet their deadlines.
CAP-GS, instead, provided HRT guarantees and missed about 16% of
SRT deadlines. This is due the interference caused by the BE tasks
with SRT groups, since some BE tasks were assigned to different cores
and may have executed in parallel with SRT tasks on different cores.
Furthermore, some SRT groups were split and the contention for the
shared cache lines from the tasks within the same group and BE tasks
increased as well. This behavior was not observed in the dynamic CAP-
GS, because the information collected by the HPCs at every sampling

304 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

period allowed the scheduler to stop BE tasks before increasing the
contention for the shared cache lines.

The BFD heuristic has lost about 5.3% of HRT and 22% of
SRT deadlines. As BFD does not group tasks that share colors, the
contention for shared cache lines is higher and, consequently, SRT tasks
miss more deadlines. HRT tasks are affected by this contention as well,
because the private L2 cache of the CPU that is currently running
a HRT tasks must respond to snoop requests from other CPUs, thus
affecting the time to access the cache and the main memory by HRT
tasks. The variation on the write ratio has not affected the behavior of
real-time tasks, mainly because the interference caused by the BE tasks
that are constantly accessing data allocated from the same color as in
SRT groups. Thus, the main source of contention is not the writings
of real-time tasks, but the writings performed by BE tasks.

Figure 101(a) shows the percentage of missed deadlines for WSS
of 64 KB and write ratio of 33% and Figure 101(b) for WSS of 64 KB
and write ratio of 20%. On the x-axis we vary the algorithm, and on the
y-axis we show the average percentage of missed deadlines for all the
ten task sets. The bars represent the percentage of HRT (darker grey)
and SRT missed deadlines. Comparing the obtained results with the
previous graphs in Figure 100, we can note that CAP-GS has missed
about 3% more SRT deadlines than before. The main reason for that is
the higher delay caused by preemptions within groups of tasks assigned
to the same cores (intra-core interference). However, CAP-GS still met
all HRT deadlines due to the task grouping that reduces the inter-core
interference caused by the cache coherence protocol.

The dynamic CAP-GS and BFD had practically the same beha-
vior as before: dynamic CAP-GS did not miss any deadline, while BFD
missed about 21% of SRT and 5% of HRT deadlines. Differently from
the CAP-GS, the intra-core interference did not increase the percentage
of missed deadline in BFD, because tasks that share memory partitions
are not grouped together, and thus when a preempted task resumes its
execution, it may find that some data is still in the cache (remembering
that the L2 cache size in our platform is 128 KB). As observed before,
increasing the write ratio did not affect the results (missed SRT deadli-
nes in CAP-GS and BFD and HRT deadlines in BFD are roughly the
same).

Figure 102(a) shows the percentage of missed deadlines for WSS
of 128 KB and write ratio of 33% and Figure 102(b) for WSS of 128 KB

8.3 Evaluation 305

Dynamic CAP−GS CAP−GS BFD

Missed deadlines − WSS 32 KB − Write Ratio 33%

Algorithm

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

0
5

10
15

20
25

30
HRT deadlines SRT deadlines

0% 0% 0%

16.85%

5.34%

21.38%

(a)

Dynamic CAP−GS CAP−GS BFD

Missed deadlines − WSS 32 KB − Write Ratio 20%

Algorithm

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

0
5

10
15

20
25

30

HRT deadlines SRT deadlines

0% 0% 0%

16.58%

5.33%

22.31%

(b)

Figure 100: Percentage of missed deadlines of a WSS of 32 KB.
(a) Write ratio of 33%; (b) Write ratio of 20%.

and write ratio of 20%. Comparing the obtained results with the pre-
vious two experiments, we can note two main differences.

First, we observed a decrease on the missed SRT deadlines in
CAP-GS. This is mainly due to a bigger WSS, which decreases the

306 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

Dynamic CAP−GS CAP−GS BFD

Missed deadlines − WSS 64 KB − Write Ratio 33%

Algorithm

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

0
5

10
15

20
25

30

HRT deadlines SRT deadlines

0% 0% 0%

19.76%

5.36%

21.95%

(a)

Dynamic CAP−GS CAP−GS BFD

Missed deadlines − WSS 64 KB − Write Ratio 20%

Algorithm

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

0
5

10
15

20
25

30

HRT deadlines SRT deadlines

0% 0% 0%

19.08%

5.13%

21.06%

(b)

Figure 101: Percentage of missed deadlines of a WSS of 64 KB.
(a) Write ratio of 33%; (b) Write ratio of 20%.

probability of accessing the same cache lines and, consequently, decre-
ases the contention for shared cache lines within SRT task groups and
BE tasks caused by the cache coherence protocol.

Second, we observed an increase on the missed SRT deadlines in

8.3 Evaluation 307

Dynamic CAP−GS CAP−GS BFD

Missed deadlines − WSS 128 KB − Write Ratio 33%

Algorithm

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

0
10

20
30

40
HRT deadlines SRT deadlines

0% 0% 0%

11.41%

5.31%

35.05%

(a)

Dynamic CAP−GS CAP−GS BFD

Missed deadlines − WSS 128 KB − Write Ratio 20%

Algorithm

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

0
10

20
30

40

HRT deadlines SRT deadlines

0% 0% 0%

10.51%

5.33%

34.22%

(b)

Figure 102: Percentage of missed deadlines of a WSS of 128 KB.
(a) Write ratio of 33%; (b) Write ratio of 20%.

BFD. This is also due to the WSS, but a bigger WSS in BFD causes
a different behavior. As BFD does not assign the tasks that share
colors to the same core, the contention for shared cache lines (inter-
core interference) and the preemption delay (intra-core interference)

308 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

are greater than that with WSS of 32 and 64 KB. Once more, varying
the write ratio did not affect the performance, for the same reasons as
stated before. Also, the dynamic CAP-GS did not miss any deadline.

It is important to mention again that we adjusted the repetitions
parameter of each task and executed the task sets with the same para-
meters using the three scheduling approaches. Thus, we make sure that
the differences on the observed percentage of missed deadline comes
from the task assignment performed by the task partitioning heuristics
and the avoidance of cache contention by the CAP-GS task partitioning
and by the dynamic phase of the proposed two-phase scheduler.

Finally, Figure 103(a) shows the percentage of missed deadlines
for WSS of 256 KB and write ratio of 33% and Figure 103(b) for WSS
of 256 KB and write ratio of 20%. The observed percentage of mis-
sed SRT deadlines in CAP-GS, if compared with the previous graphs,
has decreased even more. The reason is the same: the likelihood of
accessing the same cache lines in parallel during the task execution is
smaller with a bigger WSS.

In BFD, we also observed a decrease on missed SRT deadlines
due to the same reason as in CAP-GS. However, we can note an increase
of about 2% on the missed HRT deadlines. Although the contention for
shared cache lines has decreased, the intra-core interference increases.
Consequently, the traffic between the cache levels and main memory
is higher than before, which affect the execution of tasks assigned to
two hyperthreads of the same core (each core has two logical hardware
threads).

8.3.3 Deadline Tardiness

The tardiness of a real-time task is the difference between its
completion time and deadline. If a real-time task misses its deadline,
its tardiness is positive. A negative deadline tardiness means that the
task completes its execution before the deadline, which is the expec-
ted behavior for every real-time task, specially those that have HRT
constraints.

In this section we present the deadline tardiness obtained by the
execution of the ten generated task sets using the three scheduling ap-
proaches. We measure the WCET of each task in each task set and
calculate the tardiness as follows: tardiness = observed WCET - dea-

8.3 Evaluation 309

Dynamic CAP−GS CAP−GS BFD

Missed deadlines − WSS 256 KB − Write Ratio 33%

Algorithm

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

0
5

10
15

20
HRT deadlines SRT deadlines

0% 0% 0%

3.19%

7.59%

12.23%

(a)

Dynamic CAP−GS CAP−GS BFD

Missed deadlines − WSS 256 KB − Write Ratio 20%

Algorithm

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

0
5

10
15

20

HRT deadlines SRT deadlines

0% 0% 0%

2.71%

7.28%

11.66%

(b)

Figure 103: Percentage of missed deadlines of a WSS of 256 KB.
(a) Write ratio of 33%; (b) Write ratio of 20%.

dline. We sum the tardiness of each task, resulting in the tardiness for
the whole task set. Then, we calculate the average tardiness using the
tardiness obtained in each task set, varying the scheduling approach,
write ratio, and WSS.

310 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

Figure 104 shows the obtained average deadline tardiness for
each scheduling approach. On the x-axis we vary the WSS. On the
y-axis we show the obtained tardiness in ms. The bars represent the
scheduling approach. Figure 104(a) shows the results for a write ratio
of 33% and Figure 104(b) for a write ratio of 20%. The dynamic CAP-
GS has presented a negative average tardiness, which was the expected
behavior since the previous experiments have shown that it does not
miss any deadline. Varying the WSS for CAP-GS did not result in
a considerable difference of the tardiness. The tardiness observed in
CAP-GS and BFD, instead, varies according to the WSS: as the WSS
increases, the tardiness decreases. The worst-case scenario for BFD is
when the WSS is 128 KB, which was the same scenario that it has
missed the biggest percentage of missed deadlines (see Figure 102).

Comparing the tardiness results with the percentage of missed
deadlines for CAP-GS, we can note that although the average deadline
tardiness has reduced as the WSS increases, the percentage of missed
deadline has not presented a great variation. We can conclude that the
tasks are still executing above their deadlines, but with smaller WCETs.
This is also proved by the results of the next subsection, which show
the total application execution time.

Furthermore, the variation on the write ratio has shown a diffe-
rent behavior mainly for the CAP-GS and the dynamic CAP-GS: the
observed tardiness has decreased. This is due to the reduction of the
inter-core interference caused by the smaller ratio of writes to the sha-
red cache lines. Specifically for the CAP-GS, this reduction did not
improve the percentage of missed deadlines though.

8.3.4 Total Execution Time

The total application execution time is the time to finish all real-
time tasks in a task set. We measured the total execution time for all
task sets using the three scheduling approaches. Then, we extracted the
average value from from these measurements. As the greatest period
in a task set is 200 ms and the real-time tasks iterates for 200 times,
the expected execution time is 40 s.

Figure 105(a) shows the total application execution time with a
write ratio of 33% and Figure 105(b) with a write ratio of 20%. The
application execution time for the dynamic CAP-GS is always 40 s,

8.3 Evaluation 311

32KB 64KB 128KB 256KB

AVG deadline tardiness − Write Ratio 33%

Working Set Size (WSS)

Ta
rd

in
es

s
(m

s)

0
50

0
10

00
15

00
Dynamic CAP−GS
CAP−GS

BFD

−46.43

709.73

1063.43

−45.53

846.67

1100.3

−48.35

499.6

1314.23

−43.89

25.59

968.95

(a)

32KB 64KB 128KB 256KB

AVG deadline tardiness − Write Ratio 20%

Working Set Size (WSS)

Ta
rd

in
es

s
(m

s)

0
50

0
10

00
15

00

Dynamic CAP−GS
CAP−GS

BFD

−50.12

490.32

1064.92

−51.32

642.44

1187.09

−49.64

427.29

1307.77

−49.22

5.96

912.62

(b)

Figure 104: Average deadline tardiness. (a) Write ratio of 33%;
(b) Write ratio of 20%.

despite the size of the WSS or the write ratio. As the real-time tasks
never miss deadlines, all task sets finish in the expected time. CAP-
GS, instead, have a total execution time of 44 s when the WSS is
32 and 64 KB, for both write ratios of 33 and 20%. The obtained

312 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

average tardiness in CAP-GS for WSS of 32 and 64 KB was also the
greatest. This explains why for these for scenarios the total execution
time exceeds 40 s. For WSS of 128 and 256 KB, CAP-GS finishes in
the expected time, although it still misses deadlines.

The BFD always executes more than 40 s. The worst scenario is
when the write ratio is 33% and the WSS is 128 KB (185 s), which is
the scenario where we observed the greatest tardiness and percentage
of missed SRT deadlines. Varying the write ratio did not present a
considerable change in the execution time: it decreased about 2 s for
BFD and did not change for CAP-GS.

8.3.5 Run-Time Overhead of the HPC Analysis

The additional run-time overhead introduced by the dynamic
phase of the proposed scheduler is formed by the Thread::time slicer
and Criterion::evaluate hpcs methods, which read the hardware
event and perform a scheduling decision (Figures 96 and 97), and by
the Timer::handler method, which handles a timer interrupt and
calls the Thread::time slicer method. These activities are per-
formed at every QUANTUM period. Thus, they can be modeled as a
higher priority task with period equal to the QUANTUM and execu-
tion time composed of the timer handler, Thread::time slicer, and
Criterion::evaluate hpcs methods code.

As the call to the Thread::yield is only done when the
current running thread is a BE task, the overhead introduced by
this method does not have any influence on the execution time of
real-time tasks. We measured the execution time of the timer in-
terrupt handler and Criterion::evaluate hpcs executing them
for 100000 times. Table 17 shows the obtained WCET, AVG exe-
cution time, and standard deviation for the timer handler and
Criterion::evaluate hpcs methods (Thread::time slicer only
calls Criterion::evaluate hpcs). Hence, in our experiments, the
collection and analysis of HPCs can be modeled as a periodic task
with period of 10 ms and WCET of 3.432 µs, with a utilization of
0.00343. As both methods access very few variable and registers, the
CPMD can be considered as negligible. Thus, the proposed HPC
monitoring infrastructure and the dynamic scheduling decision have a
small impact on the real-time tasks.

8.4 Discussion 313

32KB 64KB 128KB 256KB

Total app execution time − Write Ratio 33%

Working Set Size (WSS)

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
50

10
0

15
0

20
0

Expected exec time

Dynamic CAP−GS
CAP−GS

BFD

(a)

32KB 64KB 128KB 256KB

Total app execution time − Write Ratio 20%

Working Set Size (WSS)

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
50

10
0

15
0

20
0

Expected exec time

Dynamic CAP−GS
CAP−GS

BFD

(b)

Figure 105: Total execution time of the test application. (a) Write
ratio of 33%; (b) Write ratio of 20%.

8.4 DISCUSSION

We now discuss our main observations on the experiments:

314 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

Table 17: WCET, AVG execution time, and standard deviation
(STD) of the timer handler and Thread::collect hpcs methods. All
values are in µs.

Method WCET AVG STD
Timer::handler 0.273 0.065 0.031

Criterion::evaluate hpcs 3.159 1.025 0.652
Total 3.432 1.115 0.708

• HRT constraints: our two-phase dynamic scheduler combines
the CAP-GS task partitioning with run-time scheduling decision
based on the collected information from the HPCs. Thus, it is
possible to decrease the inter-core interference and prevent BE
tasks to interfere with SRT tasks. In our experiments, the two-
phase dynamic scheduler was able to provide HRT and SRT gua-
rantees for all tasks in all task sets. CAP-GS without the dyna-
mic phase also provided HRT guarantees, because it decreases the
inter-core interference that affects HRT tasks, which was obser-
ved in the BFD approach. We can conclude that the assignment
of exclusive colors to HRT tasks works only if followed by the
color-aware task partitioning heuristic.

• Deadline tardiness: the average deadline tardiness observed in
the experiments gave us good hints about the behavior of the th-
ree compared scheduling approaches: (i) the dynamic scheduler
has a negative tardiness, which means that all tasks completes
their execution before the respective deadlines; (ii) although the
tardiness for CAP-GS decreases as the WSS increases, the per-
centage of missed deadlines did not have a considerable change.
This means that the SRT tasks are executing faster, but they are
still completing their executions after the respective deadlines;
and (iii) BFD had an average deadline tardiness of up to 153 ti-
mes worse than the tardiness in CAP-GS (for WSS of 256 KB and
write ratio of 20%). The worse result in terms of missed deadlines
for BFD was with WSS of 128 KB and write ratio of 33%, mainly
due to a bigger WSS which leads to a higher contention rate for
shared cache lines and preemption delays. With 256 KB, the
inter-core interference decreases, so as the percentage of missed
deadlines.

• QUANTUM period: we set the QUANTUM period to 10 ms.

8.4 Discussion 315

We choose this period, because it is within the execution time
of the BE tasks (around 47 ms). Thus, we make sure that a
BE task is interrupted before causing a considerable interference
with SRT tasks. The QUANTUM period is extremely important,
because it dictates when the HPCs are read and, consequently,
when BE tasks are removed from the CPU. Thus, if one wants to
set a PMU sampling period, we suggest to use a period that is
within the execution time of the tasks that may be interrupted.
Some PMUs, however, generate an interrupt whenever an event
reaches a pre-determined number. This feature simplifies the de-
sign of our dynamic scheduler, because a periodic interrupt is
no longer required. Thus, the PMU could be configured to di-
rectly call Thread::time slicer whenever needed, reducing the
interference into the system and improving the responsiveness of
scheduling decisions (i.e., a scheduling decision in this case would
not be limited by a periodic interrupt).

• HPCs overhead: the run-time overhead introduced by
the dynamic phase of the proposed scheduler is formed
by the code in the timer interrupt handler, and by the
Criterion::collect hpcs and Thread::time slicer methods,
which read the hardware event and perform a scheduling de-
cision (Figure 96). We measured the run-time overhead of
these three methods (Thread::time slicer only performs a
call to Criterion::collect hpcs), and the observed WCET
was 3.432 µs. As the call to the Thread::yield method is only
performed when the current running thread is a BE task, the
run-time overhead for the real-time tasks must not take the
method execution time into account.
In a real-time system, the Criterion::evaluate hpcs and
Thread::time slicer methods could be modeled as a periodic
task, with a period of 10 ms and a WCET of 3.432 µs, resulting
in a utilization of 0.00342. This low overhead has two main
factors: (i) the EPOS timer handler function is fast and access
few data; and (ii) the EPOS PMU mediator allows the access
to HPCs to be performed without any software layer, which
also increases the speed. Furthermore, the WCET of this task
must be also inflated by the source of overheads described in
Section 2.5 (Equation 2).

316 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

• HPCs thresholds: in our experiments we use the HITM event
with a threshold of four. With the created PMU sampling and
scheduling infrastructure, it is possible to use any available event
on the processor and any threshold. Also, it is possible to com-
bine two or more events and form a metric to evaluate a specific
application behavior.

• Write ratio: varying the write ratio almost did not change the
percentage of missed deadlines in CAP-GS and BFD. Considering
the tardiness, we could note a reduction on the WCET by SRT
tasks, mainly in CAP-GS, but this reduction did not decrease the
percentage of missed deadlines.

• Working set size: varying the WSS affects mainly the SRT
tasks. We could note an increase in the missed deadlines from
32 KB to 128 KB in the BFD and from 32 KB to 64 KB in the
CAP-GS. For a WSS of 256 KB, the intra-task interference (self-
evictions) is higher than with the other WSS, which decreases the
inter-core interference and the missed deadlines.

• Responsiveness of BE tasks: the BE tasks are the greatest
source of inter-core interference. We choose to prioritize the SRT
guarantees over the BE responsiveness. Allowing BE tasks to
execute more than the sampling period, certainly improves their
response times, but also increases the inter-core interference and
deadline miss of HRT and SRT tasks.

• Limitations: our two-phase scheduling approach needs to be
aware of cache coherence activities. We capture these activities
by the use of hardware events available on modern multicore pro-
cessors. Thus, a limitation of our approach is that the target
multicore platform must offer support for measuring cache cohe-
rence activities at run-time.
Another limitation is regarding the number of colors. HRT tasks
have private colors, consequently, the number of colors available
on the target processor must be enough to accommodate all HRT
tasks as well as the colors to support possible SRT and BE tasks.

• Summary of real-time extensions: to support the collection
of hardware events at run-time and scheduling decisions based

8.4 Discussion 317

on the collected information, we made a series of changes in the
real-time support on EPOS, presented in Chapter 4:
(i) we added a new criterion class (CA PRM – see Figure 91) that
enables the generation of periodic PMU sampling interrupts (th-
rough the timed boolean) and defines two new methods (init and
evaluate hpcs);
(ii) we added a new trait class (Figure 93) that defines the lower
and upper priority bounds and thresholds used to take a schedu-
ling decision;
(iii) we changed the Thread::init method to call the
Criterion::init method which configures the HPCs;
and (iv) we changed the Thread::time slicer method
to support the reading of HPCs at run-time. At every
interrupt (the interrupt period is given by the QUANTUM
definition), the Thread::time slicer method calls the
Criterion::evaluate hpcs which reads the HPC and com-
pares the value with the threshold defined in the trait class. If
the value is greater than the threshold and the current running
thread is within the lower and upper priorities bounds (also
defined in the trait class), Criterion::evaluate hpcs returns
true and Thread::time slicer removes the current thread from
the CPU. In our case, we set the lower and upper bounds to the
BE tasks priorities.

318 8 DYNAMIC COLOR-AWARE SCHEDULING ALGORITHM

319

9 CONCLUSION

The main objectives of this research were: (i) to investigate how
real-time tasks executing on a multicore platform and sharing cache
lines due to true or false sharing could be efficiently supported by an
RTOS; (ii) how an RTOS designed for deeply embedded systems af-
fects cache partitioning mechanisms due to the use of its internal data
structures; (iii) how different real-time scheduling algorithms affect the
performance of cache partitioning mechanisms; and (iv) how the run-
time overhead of an RTOS designed for deeply embedded systems im-
pacts the schedulability of global, partitioned, and clustered real-time
scheduling approaches and to investigate the differences in terms of run-
time overhead between an RTOS and a GPOS patched with real-time
extensions.

To investigate these issues, we have designed and implemented a
multicore real-time infrastructure on top of EPOS. The infrastructure
is composed of partitioned, clustered, and global scheduling variants
of the EDF, RM, DM, and LLF real-time scheduling policies, a cache
partitioning mechanism based on page coloring, a HPC monitoring API
specifically designed for embedded (real-time) systems, a color-aware
task partitioning (CAP) algorithm, and a two-phases color-aware mul-
ticore real-time scheduling algorithm. To the best of our knowledge,
EPOS is the first RTOS designed from scratch to support all multi-
core real-time scheduling variants (partitioned, clustered, and global)
of EDF, RM, DM, and LLF scheduling policies, and to provide a sche-
duling mechanism to deal with the contention for shared cache lines
caused by the cache coherence protocol at run-time, combining task
partitioning with information from the HPCs. In the following, we
summarize our results (Section 9.1), present our closing remarks (Sec-
tion 9.2), and discuss future work (Section 9.3).

9.1 SUMMARY OF CONTRIBUTIONS

Our research makes novel contributions in the following areas:
(i) design and implementation of component-based RTOSes; (ii) cache
partitioning evaluation in an RTOS; (iii) real-time task partitioning;
and (iv) cache-aware multicore real-time scheduling. Here, we briefly
recapitulate the key contributions from Chapter 4 to Chapter 8.

320 9 CONCLUSION

9.1.1 Real-Time Support on EPOS

The design and implementation of the multicore real-time sup-
port on EPOS is described in details in Chapter 4. The infrastructure
of multicore real-time scheduling, HPCs, and page coloring created in
this work closes the existing gap in the real-time system community,
in which scheduling algorithms and cache partitioning strategies were
evaluated using real-time patches applied to GPOSes. We believe that
EPOS can be used to conduct research for multicore real-time related
areas due to higher predictability and smaller overhead compared to
real-time patches for Linux.

In the design of the multicore real-time scheduling of EPOS, we
detached the scheduling policy from its mechanism by using static me-
taprogramming and creating several Scheduling Queue specialization
depending on the defined scheduling criterion (see Figure 44). For each
scheduler variant, a specialized scheduling list is chosen at compile time.
For example, a partitioned scheduler uses individual scheduling lists for
each processor, while global schedulers have only one global scheduling
list. Clustered schedulers are a combination of partitioned and global
approaches: each cluster is a partition and each partition has a global
scheduling list. This design allows the addition of a scheduler variant of
virtually any scheduling policy. This structure of scheduling is unique
and original.

Furthermore, we have performed several modifications on the
EPOS structure: distribution of the alarm handler in all available
processors; extension of the IC hardware mediator to support IPI
messages; creation of the new dynamic semaphore handler for the
Periodic Thread class; and new scheduling policies (LLF and SJF).

Additionally, the page coloring mechanism designed and imple-
mented in EPOS allows the assignment of individual cache partitions to
internal EPOS data structures, which is not possible in GPOSes with
real-time extensions due to their complexity. Thus, it is possible to
achieve higher predictability by isolating the OS from the application.
We also proposed two mechanisms for colored memory allocation: the
user-centric approach in which the developer inserts code annotations
to define the partition from which the data should be allocated, and
the OS-centric approach in which EPOS chooses the partition based on
a task ID.

9.1 Summary of Contributions 321

9.1.2 Run-Time Overhead Evaluation

We measured the run-time overhead of EPOS and compare it
with the run-time overhead in LITMUSRT. The evaluation is described
in details in Chapter 5. The main contribution of the run-time overhead
evaluation was to show that the RTOS run-time overhead, when in-
corporated into G-EDF, C-EDF, and P-EDF schedulability tests, can
provide HRT guarantees close to the theoretical schedulability tests.

We generated several task sets, with different utilization and
period distributions, and used these task sets to perform the run-time
overhead evaluation. The main observations from these experiments
were the following:

• LITMUSRT achieved a schedulability ratio comparable with
EPOS in all but non-uniform workloads. The main reason for
this behavior is the pessimism of the available schedulability
tests. Non-uniform task sets have few tasks with higher utili-
zations (between 0.5 and 0.9), which strongly affects the HRT
guarantees provided by the G-EDF schedulability tests and the
bin packing partitioning heuristics. For light uniform utilization
and short periods, C-EDF with the overhead in EPOS was better
than P-EDF with LITMUSRT overhead due to smaller scheduling
overhead (see Figure 59). Also, our results corroborate previous
studies (BASTONI et al., 2010b) in the sense that more partitioned
approaches are preferable for HRT systems.

• P-EDF is always better than G-EDF and C-EDF for HRT in all
workloads, except in the scenario of heavy utilization tasks. For
task sets consisting of only heavy utilization tasks, P-EDF, C-
EDF, and G-EDF had the same schedulability ratio. This is due
to the bin packing problem limitation, in which the partitioning
heuristics can only partition task sets with a task number equal
to the number of processors, and due to the G-EDF schedulabi-
lity bounds, which usually have a relation between the number
of processor and the largest utilization or density (BERTOGNA;
BARUAH, 2011). For task sets with few heavy tasks, as in the
case of light bimodal utilization distribution, G-EDF presented
the biggest difference in terms of task set schedulability ratio
in comparison to P-EDF. This reinforces the need for better G-
EDF schedulability tests for HRT systems with heavy utilization

322 9 CONCLUSION

tasks (BRANDENBURG; ANDERSON, 2009).

• Differences in task period length did not affect the schedulability
tests for the theoretical G-EDF, C-EDF, and P-EDF schedulers.
On the other hand, it has a significant impact on the run-time
overhead. In short period distributions, the proportion between
the period length and the overhead is higher than in long period
distributions, which decreases the schedulability ratio.

• The CPMD has a considerable impact on the schedulability ratio
due to its high values, specially when the WSS of tasks are greater
than 128 KB. As the WSS increases, P-EDF, C-EDF, and G-
EDF tend to be equal due to higher CPMD. For uniform and
bimodal light and uniform moderate utilizations distributions,
which have more tasks than the other generated task sets, the
difference between EPOS and LITMUSRT is higher, which makes
evident the benefits of having an RTOS designed from scratch.

9.1.3 Cache Partitioning Evaluation

The main objectives of the cache partitioning evaluation, descri-
bed in Chapter 6, were to show how the scheduling algorithm affects the
gains obtained by cache partitioning and to analyze whether the RTOS
impacts the cache partitioning behavior or not. To achieve these ob-
jectives, we evaluated the performance of the page coloring mechanism
in EPOS using P-EDF, C-EDF and G-EDF schedulers in an eight-core
processor, with shared L3 cache. We generated several task sets and
executed the tasks using three cache partitioning strategies: (i) assig-
ning different cache partitions to tasks and OS; (ii) assigning different
cache partitions to tasks and making EPOS to allocate data from a
non-colored heap; and (iii) assigning the same partition to tasks and
giving an individual partition to EPOS. The main observations from
the experiments were:

• For P-EDF and C-EDF, cache partitioning provided HRT bounds
when tasks had WSS of up to 128 KB. For G-EDF, the achieved
HRT bound was when tasks had WSS of up to 64 KB. To sup-
port larger WSSs, cache partitioning could be used together with
hardware techniques, such as cache locking. Even when tasks

9.1 Summary of Contributions 323

miss their deadlines with cache partitioning (128 KB for G-EDF,
and 256 KB for the three schedulers), the advantage is predic-
tability of cache accesses. It is possible to apply a data reuse
method (JIANG et al., 2010) and provide HRT guarantees during
the theoretical schedulability analyses.

• Cache partitioning was more efficient in global approaches (G-
EDF and C-EDF) for WSSs up to 64 KB, by helping to prevent
inter-core communication through the cache coherence protocol:
all data is able to fit in L2-cache and the invalidations in the L3-
cache are reduced, mainly for G-EDF. For 128 KB, page coloring
was more efficient in C-EDF, because tasks can migrate inside the
cluster and still access the same cache lines in L2, reducing the
number of misses. For 256 KB page coloring was more efficient
in P-EDF, because cache partitioning reduces the contention for
cache spaces when tasks are running on two logical cores at the
same time.

• In an underloaded system, global approaches handle the tasks
more efficiently than P-EDF, because tasks can migrate as soon
as a core becomes available. Inter-core communication, caused by
task migrations, has a considerable impact on HRT tasks (18%
of missed deadlines), as shown in G-EDF with WSS of 128 KB.

• When tasks execute in parallel on different cores and share cache
lines (true or false sharing), they will access the same cache lines,
causing invalidations handled by a bus snooping protocol. Cache
partitioning does not solve the problem, but it helps to keep all
data organized in memory. Providing a separate set of colors to
shared data may improve the overall performance (CHEN et al.,
2009).

• Assignment different cache partitions to EPOS did not affect the
performance of the three schedulers, because ISRs and scheduling
operations in EPOS have a small footprint and use few bytes.

9.1.4 Static Color-Aware Task Partitioning

The cache partitioning results have indicated that when real-
time tasks share cache partitions, they may experience deadline losses

324 9 CONCLUSION

mainly due to inter-core interferences: the observed WCET increased
up to 15 times. The consequent variations on the execution time of real-
time tasks made them miss up to 97% of their deadlines. Furthermore,
the partitioned scheduler has achieved the less percentage of missed
deadline compared to the global and clustered schedulers. Hence, it is
desirable to avoid that two or more tasks that share same partition(s)
(i.e., same color(s) in case of a page coloring cache partitioning me-
chanism) access data at the same time. In practice this means that
two or more tasks that use a same color should not be scheduled on
different cores at the same time. By analyzing the results and behavior
of the three schedulers in Chapter 6, we proposed a color-aware task
partitioning algorithm to avoid inter-core interference when tasks share
cache partitions.

The color-aware task partitioning (CAP) is described in details
in Chapter 7. The main idea of CAP is to group tasks that share the
same colors and to assign the group to the same processor. To evaluate
the CAP algorithm, we generated several task sets and partitioned
these task sets using CAP and WFD bin packing heuristic. Then, we
executed the partitioned task sets in a modern eight-core processor
using EPOS, varying the WSS of each task (32, 64, 128, and 256 KB)
and the write ratio (20 and 33%) to the WSS, and extracted the number
of missed deadlines for each task. The main observations from these
experiments were:

• CAP prevented tasks from accessing shared cache lines and pro-
vided HRT guarantees for all tasks in all executed task sets. The
WFD heuristic, in contrast, missed up to 78% of deadlines.

• With WSS of 128 KB, the tasks have the greatest deadline miss
ratio due to the more contention for shared cache lines and pre-
emption delay. With 256 KB, the preemption delay is higher due
to L2-cache misses. For 32 KB, mostly of the tasks data fits into
the L2-cache and the deadline miss ratio is smaller than in the
other WSSs.

• By changing the write ratio, we stimulate the cache coherence
protocol to invalidate more or less cache lines. For all WSS vari-
ation, the execution with the write ratio of 20% has missed less
deadlines, as expected.

9.1 Summary of Contributions 325

9.1.5 Dynamic Color-Aware Scheduling Algorithm

The system model used in CAP has two main drawbacks: (i)
all tasks in a task set have only HRT constraints. This scenario may
not be true for every real-time application. In fact, emerging real-time
workloads, such as multimedia and entertainment and some business
computing applications, have highly heterogenous timing requirements
and consist of HRT, SRT, and best-effort (BE) tasks; and (ii) the num-
ber of colors in a processor may be smaller than the number of real-time
and BE tasks. Consequently, real-time and BE tasks may eventually
share colors or memory partitions and the utilization of these tasks that
share memory partitions may be greater than the processor capacity
(restriction of utilizations in the CAP system model).

We have shown in Chapter 7 that when tasks share colors, the
contention for shared cache lines caused by the cache coherence protocol
may lead to deadline losses. Thus, color sharing and the execution of
tasks that use the same color in parallel on different cores could be
avoided whenever possible.

To deal with the two main drawbacks in the CAP system model,
we proposed a two-phases color-aware multicore real-time scheduler,
which is described in details in Chapter 8. The first phase of the sche-
duler is an extension to the CAP algorithm, named CAP-GS. Tasks
that share colors (SRT and BE) are also grouped together, but the
group utilization is allowed to be greater than the capacity given by
the scheduling policy for each processor. When a group utilization is
greater than the processor capacity, we perform a group splitting, re-
moving the task with smaller utilization from the group and trying to
partition the group again. HRT tasks do not share colors with any
other task. The second phase is performed at run-time and consists of
collecting tasks’ information through the use of HPCs to detect when
BE tasks are interfering with real-time tasks. When the collected hard-
ware events are greater than the respective threshold and the running
task is a BE task, the scheduler removes the CPU from the BE task,
which prevents the access to the same cache lines and improves the
tardiness of SRT tasks and ensures the HRT bounds of HRT tasks.

To evaluate the two-phases color-aware multicore real-time sche-
duler, we generated several task sets. We partitioned these task sets
using the CAP-GS and BFD bin packing heuristic. Then, we executed
the partitioned task sets using the dynamic scheduler, the CAP-GS

326 9 CONCLUSION

without dynamic scheduling decisions, and the BFD using EPOS in
a modern eight-core processor. We varied the WSS (32, 64, 128, and
256 KB) of each task as well as the write ratio (20 and 33%). From the
experiments, we extracted the number of missed deadline and tardiness
of each task. The main observations from the experiments were:
• The two-phases color-aware dynamic scheduler decreased the

inter-core interference by combining a color-aware task partiti-
oning with run-time scheduling decisions based on information
collected by HPCs. In our experiments, the two-phases dynamic
scheduler was able to provide HRT and SRT guarantees for all
tasks in all task sets. CAP-GS without the dynamic phase also
provided HRT guarantees, because it also decreased the inter-
core interference that affects HRT tasks, which was observed
in the BFD approach. We can conclude that the assignment
of exclusive colors to HRT tasks works only if followed by the
color-aware task partitioning heuristic.

• Although the tardiness observed in CAP-GS decreased as the
WSS increased, the percentage of missed deadlines did not have
a considerable change. This means that the SRT tasks were exe-
cuting faster, but they were still completing their executions after
the respective deadlines.

• BFD had an average deadline tardiness of up to 153 times worse
than the tardiness in CAP-GS (for WSS of 256 KB and write ratio
of 20%). The worse result in terms of missed deadlines for BFD
was with WSS of 128 KB and write ratio of 33%, mainly due to
a bigger WSS which leads to a higher contention rate for shared
cache lines and preemption delays. With 256 KB, the inter-core
interference decreased, so as the percentage of missed deadlines.

• The second phase of the dynamic scheduler can be modeled as a
periodic task with a period of 10 ms and a WCET of 3.432 µs,
resulting in a utilization of 0.00342. This low overhead has two
main factors: (i) the EPOS timer handler function is fast and
access few data; and (ii) the EPOS PMU mediator allows the
access to HPCs to be performed without any software layer, which
also increases the speed.

• Varying the write ratio almost did not change the percentage of
missed deadlines in CAP-GS and BFD. Considering the tardiness,

9.2 Closing Remarks 327

we could note a reduction on the WCET by SRT tasks, mainly in
CAP-GS, but this reduction did not decrease the percentage of
missed deadlines. BE tasks were the responsible for the greatest
contention for shared cache lines.

• Varying the WSS affected mainly the SRT tasks. We could note
an increase in the missed deadlines from 32 KB to 128 KB in the
BFD and from 32 KB to 64 KB in the CAP-GS. For a WSS of
256 KB, the intra-task interference (self-evictions) is higher than
with the other WSS, which decreased the inter-core interference
and the missed deadlines.

9.2 CLOSING REMARKS

The use of multicore processors in real-time embedded systems
can simplify the design of the hardware at the same time flexibility
is improved. It can also replace hardware-specific implementations by
software equivalents without compromising performance and real-time
guarantees, as long as a proper run-time support system is available.
Since multicore processors share resources, the predictability of real-
time task execution is not straightforward. In particular, the cache
memory hierarchy is one of the main sources for unpredictability. When
real-time tasks access a same cache line due to true or false sharing,
the delay caused by the cache coherence protocol may lead to deadline
losses.

This research has studied how an RTOS can be designed to this
scenario. Most importantly, by isolating HRT tasks workloads through
the use of page coloring and combining it with partitioned FP sche-
duling, run-time scheduling decisions based on HPC information, and
cache-aware task partitioning, independent HRT tasks do not miss de-
adlines, because task interference at the cache level is reduced. Mo-
reover, SRT tardiness is also reduced even when a SRT task shares
cache partitions with other SRT tasks and/or BE tasks. Thus, one of
most important contributions of this research work is to demonstrate
the viability of providing HRT guarantees in multicore processors at
the RTOS level: deadlines of HRT tasks that share data in parallel
real-time embedded applications are met as long as they are properly
assigned to cores and do not demand more processing power than a
single processor can deliver. Furthermore, the assignment of exclusive

328 9 CONCLUSION

colors to HRT tasks must be performed whenever possible to reduce
the delay caused by cache coherence protocol.

Our system model is mainly based on memory and scheduling
isolation. Although CAP provides HRT bounds when parallel real-time
embedded applications have utilizations smaller than a single proces-
sor’s capacity, we did not deal with parallel real-time embedded ap-
plications that demand more processing power than an individual core
can deliver.

Considering the evaluations performed during this work, a key
advantage over the related work is the use of an RTOS designed for de-
eply embedded systems and the execution of tasks in a real processor.
This allowed us to evaluate the run-time overhead, the cache parti-
tioning impact, the CAP algorithm, and the two-phases color-aware
scheduler in practice. Nevertheless, our evaluation methodology could
be improved as discussed below.

Realistic applications. In our experiments, we used synthetic
workloads to stress implementation issues, hardware features, and sche-
duling approaches. In future work it would be interesting to evaluate
our contributions in realistic workloads. However, there are limitati-
ons in obtaining real-time workloads for multiprocessors, specially with
HRT constraints, mainly due to three reasons (BRANDENBURG, 2011):
(i) HRT applications are usually constructed using specific hardware,
composed of several sensors and actuators that are difficult to repro-
duce in a lab; (ii) real embedded real-time applications are not made
public by companies due to commercial reasons; and (iii) existing wor-
kloads do not yet stress all bottlenecks of a multicore processor, since
the adoption of multicore systems by the embedded system industry
is still at an early stage. There are several benchmarks proposed to
stress all parts of a multicore processor, such as the PARSEC (BIENIA,
2011) and SPEC2000. However, these benchmarks do not have real-
time constraints and thus are not appropriate to evaluate the impacts
of real-time scheduling and cache partitioning techniques in the context
of real-time systems.

CPMD. We measured the CPMD using HPCs and estimated
the worst-case CPMD using information from the processor manual.
An improvement would be use profiling tools to correct estimate the
CPMD of applications and not always use the individual worst-case.
A tradeoff, however, is that profiling tools for complex processor archi-
tectures, such as the one used in our experiments, do not exist or are

9.3 Future Directions 329

very limited.

9.3 FUTURE DIRECTIONS

We now discuss future directions based on the contributions of
this work.

Parallel real-time embedded applications that demand
more processing power than an individual core can deliver.
One limitation of our proposed two-phases color-aware multicore sche-
duling is the independence of HRT tasks, i.e., HRT tasks do not share
data with any other task. Considering a scenario of bringing an al-
gorithm implemented in hardware to software running on a multicore
processor, data sharing among HRT tasks of this algorithm cannot be
avoided. In this case, CAP has provided HRT bounds when the task
group utilization is less than a single processor’s capacity (using a par-
titioned scheduling). However, in this thesis, we did not consider a
scenario where parallel real-time embedded applications, formed by se-
veral HRT tasks that share data, demand more processing power than
an individual core can deliver. This subject is a challenge and will be
investigate in the future. One possible idea is to isolate data sharing
in specific code regions and use HPCs to monitor these regions and
warning the scheduling.

Implementation and analysis of scheduling and locking
algorithms in EPOS. The real-time support on EPOS can certainly
be extended in several ways. Design, implementation, and evaluation
of fairness-based and semi-partitioned schedulers and mutual exclusion
protocols for multiprocessors in EPOS may lead to new results for the
real-time system community.

Moreover, the investigation of how the locking of EPOS inter-
nal data structures and the use of faster data structures in the alarm
and scheduler component may reduce the run-time overhead and, con-
sequently, improve the schedulability of real-time tasks. Also, non-
blocking data structure could be a good approach to decrease the time
in which a processor is blocked until another processor finishes the exe-
cution of an OS mutual exclusion area.

Another interesting feature would be port EPOS to “more” em-
bedded platforms, such as PandaBoard or Zynq, that feature a dual-
core ARM processors and several co-processors, for instance. These

330 9 CONCLUSION

platforms also feature a cache locking mechanism that can be used
together with cache partitioning to improve the system predictability.
Cache locking could be used at the OS-level to evaluate how it helps
to reduce the OS run-time overhead, which has not been done yet.

Specific hardware implementations. Although it was not
the focus of this thesis, the bus, pipeline, and other hardware features
also affect the performance of a real-time application. These features
in the current multicore processors are not designed to be predicta-
ble. Thus, the design of real-time cache coherence protocols, buses
that provide real-time upper bounds, real-time memory controllers and
prefetchers, are certainly a challenge.

Cache partitioning. In the context of cache partitioning, there
is the lack of a color assignment algorithm. This color assignment
algorithm would be responsible for analyzing the WSS of each task and
the data sharing pattern among them, resulting in a set of colors for
each task in a way that the WCET of each task is minimized.

Dynamic scheduler. The infrastructure created by this work,
which is composed of HPCs and scheduling criteria, has opened several
possible future directions. It is possible to investigate how new sche-
duling heuristics, such as sending an IPI message to stop a core when
a specific number of hardware event is reached, help to prevent dea-
dline misses. Also, investigate how other HPCs can collect information
about data sharing and performance bottleneck to make the schedu-
ling decision to be performed early, not only focused on decreasing the
contention for shared lines, but also on improve other metrics, such as
the deadline tardiness for SRT tasks.

Multicore real-time benchmark. There is an important lack
in the real-time system community: there is no common benchmark
available to evaluate works on the multicore real-time system area. A
significant contribution would be to propose a benchmark for multi-
core real-time systems that could be used by researchers that want to
evaluate their works.

331

REFERENCES

ABENI, L.; BUTTAZZO, G. Resource reservation in dynamic real-
time systems. Real-Time Systems, Kluwer Academic Publishers,
Norwell, MA, USA, v. 27, n. 2, p. 123–167, jul. 2004. ISSN 0922-
6443.

Aeronautical Radio, Inc. Avionics Application Software Stan-
dard Interface: ARINC Specification 653 Part 0. June
2013. Available from Internet: <https://www.arinc.com/cf/store-
/catalog detail.cfm?item id=2039>.

AFEK, Y.; DICE, D.; MORRISON, A. Cache index-aware memory
allocation. In: Proceedings of the International Symposium
on Memory Management. New York, NY, USA: ACM, 2011.
(ISMM ’11), p. 55–64. ISBN 978-1-4503-0263-0.

AL-ZOUBI, H.; MILENKOVIC, A.; MILENKOVIC, M. Performance
evaluation of cache replacement policies for the spec cpu2000 ben-
chmark suite. In: Proceedings of the 42nd annual Southeast
regional conference. New York, NY, USA: ACM, 2004. (ACM-SE
42), p. 267–272. ISBN 1-58113-870-9.

ALBERS, K.; SLOMKA, F. Efficient feasibility analysis for real-time
systems with EDF scheduling. In: Proceedings of the Confe-
rence on Design, Automation and Test in Europe. Washing-
ton, DC, USA: IEEE Computer Society, 2005. (DATE ’05), p. 492–
497. ISBN 0-7695-2288-2.

ALTMEYER, S.; DAVIS, R. I.; MAIZA, C. Improved cache related
pre-emption delay aware response time analysis for fixed priority
pre-emptive systems. Real-Time Systems, Springer US, p. 1–28,
2012. ISSN 0922-6443.

AMD. AMD64 Architecture Programmer’s Manual Volume 2:
System Programming. 2010. June Publication # 24593. revision:
3.17.

ANDERSON, J. H.; BLOCK, A. Early-release fair scheduling. In: In
Proceedings of the 12th Euromicro Conference on Real-
Time Systems. [S.l.: s.n.], 2000. (ECRTS ’00), p. 35–43.

332 References

ANDERSON, J. H.; BLOCK, A.; SRINIVASAN, A. Quick-release fair
scheduling. In: Proceedings of the 24th IEEE International
Real-Time Systems Symposium. Washington, DC, USA: IEEE
Computer Society, 2003. (RTSS ’03), p. 130–. ISBN 0-7695-2044-8.

ANDERSON, J. H.; BUD, V.; DEVI, U. C. An EDF-based schedu-
ling algorithm for multiprocessor soft real-time systems. In: Pro-
ceedings of the 17th Euromicro Conference on Real-Time
Systems. Washington, DC, USA: IEEE Computer Society, 2005.
(ECRTS ’05), p. 199–208. ISBN 0-7695-2400-1.

APARICIO, L. C.; SEGARRA, J.; RODŔıGUEZ, C.; VIÑALS, V. Im-
proving the WCET computation in the presence of a lockable ins-
truction cache in multitasking real-time systems. Journal of Sys-
tems Architecture, v. 57, n. 7, p. 695–706, 2011. ISSN 1383-7621.

ARM. CortexTM-A9 MPCore Technical Reference Manual.
[S.l.: s.n.], 2010. Revision: r2p2.

ASADUZZAMAN, A.; SIBAI, F. N.; RANI, M. Improving cache loc-
king performance of modern embedded systems via the addition of
a miss table at the L2 cache level. Journal of Systems Architec-
ture, v. 56, n. 4-6, p. 151–162, 2010. ISSN 1383-7621.

ÅSBERG, M.; NOLTE, T.; KATO, S.; RAJKUMAR, R. Exsched: An
external cpu scheduler framework for real-time systems. In: 18th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’12).
[S.l.: s.n.], 2012.

AUDSLEY, N. C.; BURNS, A.; RICHARDSON, M. F.; WELLINGS,
A. J. Hard Real-Time Scheduling: The Deadline-Monotonic Appro-
ach. In: Proceedings of the 8th IEEE Workshop on Real-
Time Operating Systems. [S.l.: s.n.], 1991.

AVILA, M.; PUAUT, I. Hades Embedded Processor Timing
ANalyzEr. Jul 2014. Available from Internet: <http://raweb.in-
ria.fr/rapportsactivite/RA2004/aces/uid43.html>.

AZIMI, R.; STUMM, M.; WISNIEWSKI, R. Online performance
analysis by statistical sampling of microprocessor performance coun-
ters. In: Proceedings of the 19th annual international con-

http://raweb.inria.fr/rapportsactivite/RA2004/aces/uid43.html
http://raweb.inria.fr/rapportsactivite/RA2004/aces/uid43.html

References 333

ference on Supercomputing. New York, NY, USA: ACM, 2005.
(ICS ’05), p. 101–110. ISBN 1-59593-167-8.

AZIMI, R.; TAM, D.; SOARES, L.; STUMM, M. Enhancing operating
system support for multicore processors by using hardware perfor-
mance monitoring. SIGOPS Operating System Review, ACM,
New York, NY, USA, v. 43, p. 56–65, April 2009. ISSN 0163-5980.

BAKER, T. P. Multiprocessor EDF and deadline monotonic schedula-
bility analysis. In: Proceedings of the 24th IEEE Internati-
onal Real-Time Systems Symposium. Washington, DC, USA:
IEEE Computer Society, 2003. (RTSS ’03), p. 120–. ISBN 0-7695-
2044-8.

BAKER, T. P. An analysis of EDF schedulability on a multiprocessor.
IEEE Transactions on Parallel and Distributed Systems,
IEEE Press, Piscataway, NJ, USA, v. 16, n. 8, p. 760–768, ago.
2005. ISSN 1045-9219.

BAKER, T. P. A comparison of global and partitioned EDF schedu-
lability tests for multiprocessors. In: Proceedings of the 2005
International Conference on Real-Time and Network Sys-
tems. [S.l.: s.n.], 2005. (RTNS ’05).

BAKER, T. P.; BARUAH, S. An analysis of global EDF schedulability
for arbitrary-deadline sporadic task systems. Real-Time Systems,
Kluwer Academic Publishers, Norwell, MA, USA, v. 43, n. 1, p. 3–
24, set. 2009. ISSN 0922-6443.

BAKER, T. P.; BARUAH, S. K. Schedulability analysis of multipro-
cessor sporadic task systems. In: Handbook of Realtime and
Embedded Systems. [S.l.]: CRC Press, 2007.

BARABANOV, M. A Linux-based Real-Time Operating Sys-
tem. [S.l.], 1997. Master’s thesis.

BARUAH, S. Techniques for multiprocessor global schedulability analy-
sis. In: Proceedings of the 28th IEEE International Real-
Time Systems Symposium. Washington, DC, USA: IEEE Com-
puter Society, 2007. (RTSS ’07), p. 119–128. ISBN 0-7695-3062-1.

334 References

BARUAH, S. Partitioned EDF scheduling: a closer look. Real-Time
Systems, Springer US, v. 49, n. 6, p. 715–729, 2013. ISSN 0922-
6443.

BARUAH, S.; BONIFACI, V.; SPACCAMELA, A. M.; Stiller, S. Im-
plementation of a speedup-optimal global EDF schedulability test.
In: Proceedings of the 21st Euromicro Conference on Real-
Time Systems. Washington, DC, USA: IEEE Computer Society,
2009. (ECRTS ’09), p. 259–268. ISBN 978-0-7695-3724-5.

BARUAH, S.; BURNS, A. Sustainable scheduling analysis. In: Proce-
edings of the 27th IEEE International Real-Time Systems
Symposium. [S.l.: s.n.], 2006. (RTSS ’06), p. 159–168. ISSN 1052-
8725.

BARUAH, S.; MOK, A.; ROSIER, L. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In: Proceedings of the
11th Real-Time Systems Symposium. [S.l.: s.n.], 1990. p. 182–
190.

BARUAH, S. K.; COHEN, N. K.; PLAXTON, C. G.; VARVEL, D. A.
Proportionate progress: A notion of fairness in resource allocation.
Algorithmica, v. 15, p. 600–625, 1996.

BASTONI, A.; BRANDENBURG, B. B.; ANDERSON, J. H. Cache-
Related Preemption and Migration Delays: Empirical Approxima-
tion and Impact on Schedulability. In: Proc. Sixth International
Workshop on Operating Systems Platforms for Embedded
Real-Time Applications. Brussels, Belgium: [s.n.], 2010.

BASTONI, A.; BRANDENBURG, B. B.; ANDERSON, J. H. An empi-
rical comparison of global, partitioned, and clustered multiprocessor
EDF schedulers. In: Proceedings of the 31st Real-Time Sys-
tems Symposium. Washington, DC, USA: IEEE, 2010. (RTSS
’10), p. 14–24. ISBN 978-0-7695-4298-0.

BASTONI, A.; BRANDENBURG, B. B.; ANDERSON, J. H. Is
semi-partitioned scheduling practical? In: Proceedings of the
2011 23rd Euromicro Conference on Real-Time Systems.
Washington, DC, USA: IEEE Computer Society, 2011. (ECRTS
’11), p. 125–135. ISBN 978-0-7695-4442-7.

References 335

BASU, S. Design Methods and Analysis of Algorithms. PHI Le-
arning, 2005. ISBN 9788120326378. Available from Internet: <http:-
//books.google.com.br/books?id=SoDB4GI5JOYC>.

BELLOSA, F.; STECKERMEIER, M. The performance implications of
locality information usage in shared-memory multiprocessors. Jour-
nal of Parallel Distributed Computing, Academic Press, Inc.,
Orlando, FL, USA, v. 37, p. 113–121, August 1996. ISSN 0743-7315.

BERTOGNA, M.; BARUAH, S. Tests for global EDF schedulabi-
lity analysis. Journal of Systems Architecture, Elsevier North-
Holland, Inc., New York, NY, USA, v. 57, n. 5, p. 487–497, maio
2011. ISSN 1383-7621.

BERTOGNA, M.; CIRINEI, M. Response-time analysis for globally
scheduled symmetric multiprocessor platforms. In: Proceedings
of the 28th IEEE International Real-Time Systems Sym-
posium. Washington, DC, USA: IEEE Computer Society, 2007.
(RTSS ’07), p. 149–160. ISBN 0-7695-3062-1.

BERTOGNA, M.; CIRINEI, M.; LIPARI, G. Improved schedulabi-
lity analysis of EDF on multiprocessor platforms. In: Proceedings
of the 17th Euromicro Conference on Real-Time Systems.
Washington, DC, USA: IEEE Computer Society, 2005. (ECRTS
’05), p. 209–218. ISBN 0-7695-2400-1.

BERTRAN, R.; GONZELEZ, M.; MARTORELL, X.; NAVARRO, N.;
AYGUADE, E. A systematic methodology to generate decomposa-
ble and responsive power models for CMPs. Computers, IEEE
Trans. on, v. 62, n. 7, p. 1289–1302, 2013. ISSN 0018-9340.

BIENIA, C. Benchmarking Modern Multiprocessors. Thesis
(Ph.D) — Princeton University, January 2011.

BIRCHER, W.; JOHN, L. Complete system power estimation using
processor performance events. IEEE Transactions on Compu-
ters, v. 61, n. 4, p. 563–577, 2012. ISSN 0018-9340.

BLETSAS, K.; ANDERSSON, B. Preemption-light multiprocessor
scheduling of sporadic tasks with high utilisation bound. In: Pro-
ceedings of the 2009 30th IEEE Real-Time Systems Sym-
posium. Washington, DC, USA: IEEE Computer Society, 2009.
(RTSS ’09), p. 447–456. ISBN 978-0-7695-3875-4.

http://books.google.com.br/books?id=SoDB4GI5JOYC
http://books.google.com.br/books?id=SoDB4GI5JOYC

336 References

BLOCK, A.; LEONTYEV, H.; BRANDENBURG, B.; ANDERSON,
J. A flexible real-time locking protocol for multiprocessors. In: Pro-
ceedings of the 13th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applicati-
ons. [S.l.: s.n.]. (RTCSA ’07).

BOOCH, G. Object-Oriented Analysis and Design with Appli-
cations (3rd Edition). Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 2004. ISBN 020189551X.

BORG, A.; WELLINGS, A.; GILL, C.; CYTRON, R. Real-time me-
mory management: life and times. In: Proceedings of the 18th
Euromicro Conference on Real-Time Systems. [S.l.: s.n.],
2006. (ECRTS ’06), p. 11 pp.–250. ISSN 1068-3070.

BOYD-WICKIZER, S.; CLEMENTS, A. T.; MAO, Y.; PESTEREV,
A.; KAASHOEK, M. F.; MORRIS, R.; ZELDOVICH, N. An analy-
sis of linux scalability to many cores. In: Proceedings of the 9th
USENIX conference on Operating systems design and im-
plementation. Berkeley, CA, USA: USENIX Association, 2010.
(OSDI’10), p. 1–8.

BRANDENBURG, B.; ANDERSON, J. Integrating hard/soft real-time
tasks and best-effort jobs on multiprocessors. In: Proceedings of
the 19th Euromicro Conference on Real-Time Systems. [S.l.:
s.n.], 2007. (ECRTS ’07), p. 61–70. ISSN 1068-3070.

BRANDENBURG, B. B. Scheduling and Locking in Multipro-
cessor Real-Time Operating Systems. Thesis (Ph.D) — The
University of North Carolina at Chapel Hill, 2011.

BRANDENBURG, B. B.; ANDERSON, J. H. Feather-trace: A light-
weight event tracing toolkit. In: In Proceedings of the Third
International Workshop on Operating Systems Platforms
for Embedded Real-Time Applications. [S.l.: s.n.], 2007. (OS-
PERT ’07), p. 61–70.

BRANDENBURG, B. B.; ANDERSON, J. H. On the implementation
of global real-time schedulers. In: RTSS ’09: Proceedings of the
2009 30th IEEE Real-Time Systems Symposium. Washing-
ton, DC, USA: IEEE Computer Society, 2009. p. 214–224. ISBN
978-0-7695-3875-4.

References 337

BRANDENBURG, B. B.; CALANDRINO, J. M.; ANDERSON, J. H.
On the scalability of real-time scheduling algorithms on multicore
platforms: A case study. In: Proceedings of the 2008 Real-
Time Systems Symposium. Washington, DC, USA: IEEE Com-
puter Society, 2008. (RTSS ’08), p. 157–169. ISBN 978-0-7695-3477-
0.

BRANDENBURG, B. B.; LEONTYEV, H.; ANDERSON, J. H. An
overview of interrupt accounting techniques for multiprocessor real-
time systems. Journal of Systems Architecture, Elsevier North-
Holland, Inc., New York, NY, USA, v. 57, n. 6, p. 638–654, jun.
2011. ISSN 1383-7621.

BUGNION, E.; ANDERSON, J. M.; MOWRY, T. C.; ROSENBLUM,
M.; LAM, M. S. Compiler-directed page coloring for multiproces-
sors. In: Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA: ACM, 1996. (ASPLOS
VII), p. 244–255. ISBN 0-89791-767-7.

BUI, B.; CACCAMO, M.; SHA, L.; MARTINEZ, J. Impact of ca-
che partitioning on multi-tasking real time embedded systems. In:
Proceedings of the 14th IEEE International Conference on
Embedded and Real-Time Computing Systems and Appli-
cations. [S.l.: s.n.], 2008. (RTCSA ’08), p. 101–110. ISSN 1533-
2306.

BURNS, A. Scheduling hard real-time systems: a review. Software
Engineering Journal, v. 6, n. 3, p. 116–128, 1991. ISSN 0268-
6961.

BURNS, A.; DAVIS, R.; WANG, P.; ZHANG, F. Partitioned EDF
scheduling for multiprocessors using a c=d task splitting scheme.
Real-Time Systems, Kluwer Academic Publishers, Norwell, MA,
USA, v. 48, n. 1, p. 3–33, jan. 2012. ISSN 0922-6443.

BUTTAZZO, G. C. Rate monotonic vs. EDF: Judgment day. Real-
Time Systems, Kluwer Academic Publishers, Norwell, MA, USA,
v. 29, n. 1, p. 5–26, jan. 2005. ISSN 0922-6443.

CALANDRINO, J.; ANDERSON, J.; BAUMBERGER, D. A hybrid
real-time scheduling approach for large-scale multicore platforms.

338 References

In: Proceedings of the 19th Euromicro Conference on Real-
Time Systems. [S.l.: s.n.], 2007. (ECRTS ’07), p. 247–258. ISSN
1068-3070.

CALANDRINO, J. M.; ANDERSON, J. H. Cache-aware real-time sche-
duling on multicore platforms: Heuristics and a case study. In: Pro-
ceedings of the 2008 Euromicro Conference on Real-Time
Systems. Washington, DC, USA: IEEE Computer Society, 2008.
(ECRTS ’08), p. 299–308. ISBN 978-0-7695-3298-1.

CALANDRINO, J. M.; ANDERSON, J. H. On the design and imple-
mentation of a cache-aware multicore real-time scheduler. In: Pro-
ceedings of the 2009 21st Euromicro Conference on Real-
Time Systems. Washington, DC, USA: IEEE Computer Society,
2009. (ECRTS ’09), p. 194–204. ISBN 978-0-7695-3724-5.

CALANDRINO, J. M.; LEONTYEV, H.; BLOCK, A.; DEVI, U. C.;
ANDERSON, J. H. LITMUSRT: A testbed for empirically compa-
ring real-time multiprocessor schedulers. In: Proceedings of the
27th IEEE International Real-Time Systems Symposium.
Washington, DC, USA: IEEE Computer Society, 2006. (RTSS ’06),
p. 111–126. ISBN 0-7695-2761-2.

CAMPOY, M.; IVARS, A. P.; MATAIX, J. V. B. Static use of locking
caches in multitask preemptive real-time systems. In: Proceedings
of IEEE Real-Time Embedded Systems Workshop (Satel-
lite of the IEEE Real-Time Systems Symposium). London,
UK: [s.n.], 2001.

CHATTOPADHYAY, B.; BARUAH, S. A lookup-table driven appro-
ach to partitioned scheduling. In: Proceedingsof the 17th Real-
Time and Embedded Technology and Applications Sympo-
sium. [S.l.: s.n.], 2011. (RTAS ’11), p. 257–265. ISSN 1080-1812.

CHEN, Y.; LI, W.; KIM, C.; TANG, Z. Efficient shared cache ma-
nagement through sharing-aware replacement and streaming-aware
insertion policy. In: Proceedings of the 2009 IEEE Internati-
onal Symposium on Parallel Distributed Processing. [S.l.]:
IEEE, 2009. (IPDPS ’09), p. 1–11. ISBN 978-1-4244-3751-1.

CHILDS, S.; INGRAM, D. The linux-srt integrated multimedia opera-
ting system: bringing qos to the desktop. In: Proceedings of the

References 339

7th Real-Time Technology and Applications Symposium.
[S.l.: s.n.], 2001. (RTAS ’01), p. 135–140. ISSN 1080-1812.

CHILIMBI, T. M.; HILL, M. D.; LARUS, J. R. Making pointer-based
data structures cache conscious. Computer, IEEE, Los Alamitos,
CA, USA, v. 33, n. 12, p. 67–74, dez. 2000. ISSN 0018-9162.

CHO, H.; RAVINDRAN, B.; JENSEN, E. D. An optimal real-time
scheduling algorithm for multiprocessors. In: Proceedings of the
27th IEEE International Real-Time Systems Symposium.
[S.l.]: IEEE, 2006. (RTSS ’06), p. 101–110. ISBN 0-7695-2761-2.

CHOUSEIN, A.; MAHAPATRA, R. N. Fully associative cache parti-
tioning with don’t care bits for real-time applications. SIGBED
Review, ACM, v. 2, n. 2, p. 35–38, Apr 2005. ISSN 1551-3688.

CLOUTIER, P.; MANTEGAZZA, P.; PAPACHARALAMBOUS, S.;
SOANER, I.; HUGHES, S.; YAGHMOUR, K. DIAPM-RTAI posi-
tion paper. In: Real-Time Linux Workshop Vol. 3. [S.l.: s.n.],
2000.

COFFMAN JR., E. G.; GAREY, M. R.; JOHNSON, D. S. Approxi-
mation algorithms for NP-hard problems. In: HOCHBAUM, D. S.
(Ed.). Boston, MA, USA: PWS Publishing Co., 1997. cap. Appro-
ximation Algorithms for Bin Packing: A Survey, p. 46–93. ISBN
0-534-94968-1.

CRACIUNAS, S. S.; KIRSCH, C. M.; PAYER, H.; SOKOLOVA, A.;
STADLER, H.; STAUDINGER, R. A compacting real-time me-
mory management system. In: USENIX 2008 Annual Technical
Conference on Annual Technical Conference. Berkeley, CA,
USA: USENIX Association, 2008. (ATC’08), p. 349–362.

CULLMANN, C.; FERDINAND, C.; GEBHARD, G.; GRUND, D.;
MAIZA, C.; REINEKE, J.; TRIQUET, B.; WEGENER, S.; WI-
LHELM, R. Predictability considerations in the design of multi-core
embedded systems. Ingénieurs de l’Automobile, v. 807, p. 36–
42, September 2010. ISSN 0020-1200.

CZARNECKI, K.; EISENECKER, U. W. Generative program-
ming: methods, tools, and applications. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 2000. ISBN 0-
201-30977-7.

340 References

DAVID, F. M.; CARLYLE, J. C.; CAMPBELL, R. H. Context switch
overheads for linux on arm platforms. In: Proceedings of the
2007 workshop on Experimental computer science. New
York, NY, USA: ACM, 2007. (ExpCS ’07). ISBN 978-1-59593-751-3.

DAVIS, R. I.; BURNS, A. A survey of hard real-time scheduling for
multiprocessor systems. ACM Computing Surveys, ACM, New
York, NY, USA, v. 43, n. 4, p. 35:1–35:44, out. 2011. ISSN 0360-
0300.

DENNING, P. J. Thrashing: Its causes and prevention. In: Procee-
dings of the Fall Joint Computer Conference, Part I. New
York, NY, USA: ACM, 1968. (AFIPS ’68), p. 915–922.

DEVI, U. An improved schedulability test for uniprocessor periodic
task systems. In: Proceedings of the 15th Euromicro Confe-
rence on Real-Time Systems. [S.l.: s.n.], 2003. (ECRTS ’03), p.
23–30.

DEVI, U. Soft Real-Time Scheduling on Multiprocessors. Thesis
(Ph.D) — The University of North Carolina at Chapel Hill, 2006.

DEVI, U.; ANDERSON, J. Tardiness bounds under global EDF sche-
duling on a multiprocessor. In: Proceedings of the 26th IEEE
International Real-Time Systems Symposium. [S.l.: s.n.],
2005. (RTSS ’05), p. 12 pp.–341. ISSN 1052-8725.

DHALL, S. K.; LIU, C. L. On a real-time scheduling problem. Opera-
tions Research, v. 26, n. 1, p. 127–140, 1978.

DIJKSTRA, E. W. Cooperating sequential processes. In: GENUYS,
F. (Ed.). Programming Languages: NATO Advanced Study
Institute. [S.l.]: Academic Press, 1968. p. 43–112.

DONGARRA, J.; LONDON, K.; MOORE, S.; MUCCI, P.; TERPS-
TRA, D.; YOU, H.; ZHOU, M. Experiences and lessons learned with
a portable interface to hardware performance counters. In: Procee-
dings of the 17th International Symposium on Parallel and
Distributed Processing. Washington, DC, USA: IEEE Computer
Society, 2003. (IPDPS ’03), p. 289.2–. ISBN 0-7695-1926-1.

References 341

DRONGOWSKI, P. J. An introduction to analysis and optimiza-
tion with AMD CodeAnalyst Performance Analyzer. [S.l.:
s.n.], 2008.

EBRAHIMI, E.; MUTLU, O.; LEE, C. J.; PATT, Y. N. Coordinated
control of multiple prefetchers in multi-core systems. In: Procee-
dings of the 42Nd Annual IEEE/ACM International Sym-
posium on Microarchitecture. New York, NY, USA: ACM, 2009.
(MICRO 42), p. 316–326. ISBN 978-1-60558-798-1.

ENEA. Enea Operating System Embedded (OSE). 2013. Availa-
ble from Internet: <http://www.enea.com/solutions/rtos/ose/>.

EPOS. EPOS website. Feb 2014. Available from Internet: <http:/-
/epos.lisha.ufsc.br>.

EXPRESS, L. ThreadX. Dec 2013. Available from Internet: <http:/-
/rtos.com/products/threadx/>.

FAGGIOLI, D.; CHECCONI, F.; TRIMARCHI, M.; SCORDINO, C.
An EDF scheduling class for the Linux kernel. In: Proceedings of
the Eleventh Real-Time Linux Workshop. Dresden, Germany:
[s.n.], 2009.

FALK, H.; PLAZAR, S.; THEILING, H. Compile-time decided instruc-
tion cache locking using worst-case execution paths. In: Procee-
dings of the 5th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis. New
York, NY, USA: ACM, 2007. (CODES+ISSS ’07), p. 143–148. ISBN
978-1-59593-824-4.

FISHER, N.; GOOSSENS, J.; BARUAH, S. Optimal online multipro-
cessor scheduling of sporadic real-time tasks is impossible. Real-
Time Systems, Springer US, v. 45, n. 1-2, p. 26–71, 2010. ISSN
0922-6443.

FOTHERINGHAM, J. Dynamic storage allocation in the atlas com-
puter, including an automatic use of a backing store. Communi-
cations of the ACM, ACM, New York, NY, USA, v. 4, n. 10, p.
435–436, out. 1961. ISSN 0001-0782.

http://www.enea.com/solutions/rtos/ose/
http://epos.lisha.ufsc.br
http://epos.lisha.ufsc.br
http://rtos.com/products/threadx/
http://rtos.com/products/threadx/

342 References

FRÖHLICH, A. A. Application-Oriented Operating Systems.
Sankt Augustin: GMD - Forschungszentrum Informationstechnik,
2001. (GMD Research Series, 17).

FRÖHLICH, A. A. A Comprehensive Approach to Power Management
in Embedded Systems. International Journal of Distributed
Sensor Networks, v. 2011, n. 1, p. 19, 2011. ISSN 1550-1477.

FRÖHLICH, A. A.; GRACIOLI, G.; SANTOS, J. F. Periodic timers
revisited: The real-time embedded system perspective. Computers
& Electrical Engineering, Pergamon Press, Inc., Tarrytown, NY,
USA, v. 37, n. 3, p. 365–375, maio 2011. ISSN 0045-7906.

FRÖHLICH, A. A.; SCHRÖDER-PREIKSCHAT, W. Scenario Adap-
ters: Efficiently Adapting Components. In: 4th World Multicon-
ference on Systemics, Cybernetics and Informatics. Orlando,
USA: [s.n.], 2000.

FU, L.; SCHWEBEL, R. Real-time linux wiki. RT PREEMPT
HOWTO. Jul 2014. Available from Internet: <https://rt.wiki.ker-
nel.org/index.php/RT PREEMPT HOWTO>.

GAREY, M. R.; JOHNSON, D. S. Computers and Intractability;
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1990. ISBN 0716710455.

GERUM, P. The Xenomai real-time system. 2nd. ed. [S.l.]:
O’Reilly Media, 2008. 365–385 p. Chapter 13.

GLEIXNER, T.; NIEHAUS, D. Hrtimers and Beyond: Transforming
the Linux Time Subsystems. In: Proceedings of the Linux Sym-
posium. Ottawa, Ontario, Canada: [s.n.], 2006. v. 1, p. 333–346.

GOOSSENS, J.; FUNK, S.; BARUAH, S. Priority-driven scheduling
of periodic task systems on multiprocessors. Real-Time Systems,
Kluwer Academic Publishers, Norwell, MA, USA, v. 25, n. 2-3, p.
187–205, sep 2003. ISSN 0922-6443.

GRACIOLI, G.; FISCHMEISTER, S. Tracing interrupts in embedded
software. In: Proceedings of the 2009 ACM SIGPLAN/SIG-
BED conference on Languages, compilers, and tools for
embedded systems. New York, NY, USA: ACM, 2009. (LCTES
’09), p. 137–146. ISBN 978-1-60558-356-3.

References 343

GRACIOLI, G.; FRÖHLICH, A. A. An embedded operating system
API for monitoring hardware events in multicore processors. In:
Workshop on Hardware-support for parallel program cor-
rectness - IEEE Micro 2011. Porto Alegre, Brazil: [s.n.], 2011.
ISBN 978-1-4503-1053-6.

GRACIOLI, G.; FRÖHLICH, A. A. An experimental evaluation of
the cache partitioning impact on multicore real-time schedulers. In:
Proceedings of the 19th IEEE International Conference on
Embedded and Real-Time Computing Systems and Appli-
cations. [S.l.]: IEEE Computer Society, 2013. (RTCSA ’13), p.
72–81. ISSN 1533-2306.

GRACIOLI, G.; FRÖHLICH, A. A.; PELLIZZONI, R.; FISCHMEIS-
TER, S. Implementation and evaluation of global and partitioned
scheduling in a real-time OS. Real-Time Systems, Springer US,
v. 49, n. 6, 2013. ISSN 1573-1383.

Green Hills Software. Everything you need to develop embedded
software for aerospace & defense. 2011. Marketing material.
Available from Internet: <http://www.ghs.com/AerospaceDefense-
.html>.

GRUND, D.; REINEKE, J. Precise and efficient FIFO-replacement
analysis based on static phase detection. In: Proceedings of the
22nd Euromicro Conference on Real-Time Systems. [S.l.:
s.n.], 2010. (ECRTS ’10), p. 155–164. ISBN 978-1-4244-7546-9. ISSN
1068-3070.

GUAN, N.; STIGGE, M.; YI, W.; YU, G. Cache-aware scheduling and
analysis for multicores. In: Proceedings of the 7th ACM In-
ternational Conference on Embedded Software. [S.l.]: ACM,
2009. (EMSOFT ’09), p. 245–254. ISBN 978-1-60558-627-4.

HARDY, D.; PUAUT, I. Estimation of Cache Related Migration De-
lays for Multi-Core Processors with Shared Instruction Caches. In:
17th International Conference on Real-Time and Network
Systems. Paris, France: [s.n.], 2009. p. 45–54.

HÄRTIG, H.; ROITZSCH, M. Ten years of research on l4-based real-
time systems. In: 8th Real-Time Linux Workshop. [S.l.: s.n.],
2006.

http://www.ghs.com/AerospaceDefense.html
http://www.ghs.com/AerospaceDefense.html

344 References

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture:
A Quantitative Approach. [S.l.]: Morgan Kaufmann, Fourth
Edition, 2006. Paperback. ISBN 0123704901.

HERTER, J.; BACKES, P.; HAUPENTHAL, F.; REINEKE, J.
CAMA: A predictable cache-aware memory allocator. In: Proce-
edings of 23rd Euromicro Conference on Real-Time Sys-
tems. [S.l.: s.n.], 2011. (ECRTS ’11), p. 23–32. ISSN 1068-3070.

HERTER, J.; REINEKE, J. Making dynamic memory allocation static
to support WCET analyses. In: Proceedings of 9th Internatio-
nal Workshop on WCET Analysis. [S.l.: s.n.], 2009.

HOCHBAUM, D. S.; SHMOYS, D. B. Using dual approximation al-
gorithms for scheduling problems theoretical and practical results.
Journal of the ACM, ACM, New York, NY, USA, v. 34, n. 1, p.
144–162, jan. 1987. ISSN 0004-5411.

HUM, H.; GOODMAN, J. Forward state for use in cache
coherency in a multiprocessor system. jul. 2005. US Patent
6,922,756. Available from Internet: <http://www.google.com/pa-
tents/US6922756>.

IEEE. IEEE Standard for Information Technology - Standar-
dized Application Environment Profile (AEP). [S.l.]: IEEE
Computer Society, 2003. Number Std 1003.13-2003.

Intel Corporation. An introduction to the Intel QuickPath In-
terconnect. 2009. January Document Number: 320412-001US.

Intel Corporation. Intel R© 64 and IA-32 Architectures Software
Developer’s Manual. [S.l.: s.n.], 2011.

Intel Corporation. Intel R© 64 and IA-32 Architectures Optimiza-
tion Reference Manual. [S.l.: s.n.], 2012.

ISHIWATA, Y.; MATSUI, T. Development of Linux which has advan-
ced real-time processing function. In: Proceedings of the 16th
Annual Conference of Robotics Society of Japan. [S.l.: s.n.],
1998. p. 355–356.

IYER, R. CQoS: A framework for enabling qos in shared caches of CMP
platforms. In: Proceedings of the 18th Annual International

http://www.google.com/patents/US6922756
http://www.google.com/patents/US6922756

References 345

Conference on Supercomputing. New York, NY, USA: ACM,
2004. (ICS ’04), p. 257–266. ISBN 1-58113-839-3.

JENSEN, E. D.; LOCKE, C. D.; TOKUDA, H. A time-driven schedu-
ling model for real-time operating systems. In: Proceedings of the
1985 Real-Time Systems Symposium. [S.l.]: IEEE Computer
Society, 1985. (RTSS ’85), p. 112–122. ISBN 0-8186-0675-4.

JIANG, Y.; ZHANG, E. Z.; TIAN, K.; SHEN, X. Is reuse distance
applicable to data locality analysis on chip multiprocessors? In:
Proceedings of the 19th Joint European Conference on
Theory and Practice of Software, International Conference
on Compiler Construction. Berlin, Heidelberg: Springer-Verlag,
2010. (CC’10/ETAPS’10), p. 264–282. ISBN 3-642-11969-7, 978-3-
642-11969-9.

JOHNSON, D. Near-optimal Bin Packing Algorithms. Thesis
(Ph.D), 1973.

JOSEPH, M.; PANDYA, P. K. Finding response times in a real-time
system. The Computer Journal, v. 29, n. 5, p. 390–395, 1986.

KANEKO, K.; KANEHIRO, F.; MORISAWA, M.; MIURA, K.; NA-
KAOKA, S.; KAJITA, S. Cybernetic human hrp-4c. In: Proce-
edings of the 9th IEEE-RAS International Conference on
Humanoid Robots. [S.l.: s.n.], 2009. p. 7–14.

KATO, S. AIRS website. Oct 2012. Available from Internet: <http:-
//www.ertl.jp/˜shinpei/airs/>.

KATO, S.; YAMASAKI, N. Real-time scheduling with task splitting on
multiprocessors. In: Proceedings of the 13th IEEE Internati-
onal Conference on Embedded and Real-Time Computing
Systems and Applications. Washington, DC, USA: IEEE Com-
puter Society, 2007. (RTCSA ’07), p. 441–450. ISBN 0-7695-2975-5.

KATO, S.; YAMASAKI, N. Portioned EDF-based scheduling on mul-
tiprocessors. In: Proceedings of the 8th ACM international
conference on Embedded software. New York, NY, USA: ACM,
2008. (EMSOFT ’08), p. 139–148. ISBN 978-1-60558-468-3.

http://www.ertl.jp/~shinpei/airs/
http://www.ertl.jp/~shinpei/airs/

346 References

KENNA, C.; HERMAN, J.; WARD, B.; ANDERSON, J. H. Making
shared caches more predictable on multicore platforms. In: Pro-
ceedings of the 25th Euromicro Conference on Real-Time
Systems. [S.l.: s.n.], 2013. (ECRTS ’13), p. 157–167.

KESSLER, R. E.; HILL, M. D. Page placement algorithms for large
real-indexed caches. ACM Transactions on Computer Sys-
tems, ACM, New York, NY, USA, v. 10, n. 4, p. 338–359, Nov
1992. ISSN 0734-2071.

KICZALES, G.; LAMPING, J.; MENDHEKAR, A.; MAEDA, C.; LO-
PES, C. V.; LOINGTIER, J.-M.; IRWIN, J. Aspect-oriented pro-
gramming. In: ECOOP’97. [S.l.]: SpringerVerlag, 1997. p. 220–
242.

KIM, H.; KANDHALU, A.; RAJKUMAR, R. A coordinated approach
for practical OS-level cache management in multi-core real-time sys-
tems. In: Proceedings of the 25th Euromicro Conference on
Real-Time Systems. [S.l.: s.n.], 2013. (ECRTS ’13), p. 80–89.

KIRK, D.; STROSNIDER, J. Smart (strategic memory allocation for
real-time) cache design using the mips r3000. In: Proceedings of
the 11th Real-Time Systems Symposium. [S.l.: s.n.], 1990.
(RTSS ’90), p. 322–330.

KNUTH, D. E. The Art of Computer Programming, Volume
1 (3rd Ed.): Fundamental Algorithms. Redwood City, CA,
USA: Addison Wesley Longman Publishing Co., Inc., 1997. ISBN
0-201-89683-4.

KOHONEN, T. Content-Addressable Memories. Second. [S.l.]:
Springer-Verlag, 1987.

Lea, D. A Memory Allocator. 1996. Unix/Mail, 6/96.

LEHOCZKY, J.; SHA, L.; DING, Y. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In:
Proceedings of 10th the Real Time Systems Symposium.
[S.l.: s.n.], 1989. p. 166–171.

LELLI, J.; FAGGIOLI, D.; CUCINOTTA, T.; LIPARI, G. An expe-
rimental comparison of different real-time schedulers on multicore

References 347

systems. Journal of Systems and Software, Elsevier Science
Inc., New York, NY, USA, v. 85, n. 10, p. 2405–2416, out. 2012.
ISSN 0164-1212.

LEONTYEV, H.; ANDERSON, J. H. A hierarchical multiprocessor
bandwidth reservation scheme with timing guarantees. In: ECRTS
’08: Proceedings of the 2008 Euromicro Conference on
Real-Time Systems. Washington, DC, USA: IEEE Computer So-
ciety, 2008. p. 191–200. ISBN 978-0-7695-3298-1.

LEUNG, J. Y.-T.; WHITEHEAD, J. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance Eva-
luation, v. 2, n. 4, p. 237 – 250, 1982. ISSN 0166-5316.

LEVIN, G.; FUNK, S.; SADOWSKI, C.; PYE, I.; BRANDT, S. DP-
FAIR: A simple model for understanding optimal multiprocessor
scheduling. In: Proceedings of the 2010 22nd Euromicro Con-
ference on Real-Time Systems. Washington, DC, USA: IEEE
Computer Society, 2010. (ECRTS ’10), p. 3–13. ISBN 978-0-7695-
4111-2.

LI, C.; DING, C.; SHEN, K. Quantifying the cost of context switch. In:
Proceedings of the 2007 workshop on Experimental com-
puter science. New York, NY, USA: ACM, 2007. (ExpCS ’07).
ISBN 978-1-59593-751-3.

LIANG, Y.; MITRA, T. Cache modeling in probabilistic execution time
analysis. In: Proceedings of the 45th ACM/IEEE Design
Automation Conference. [S.l.: s.n.], 2008. (DAC ’08), p. 319–
324. ISSN 0738-100X.

LIANG, Y.; MITRA, T. Instruction cache locking using temporal reuse
profile. In: Proceedings of the 47th ACM/IEEE Design Au-
tomation Conference. [S.l.: s.n.], 2010. (DAC ’10), p. 344–349.
ISSN 0738-100X.

LIEDTKE, J.; HAERTIG, H.; HOHMUTH, M. OS-controlled cache
predictability for real-time systems. In: Proceedings of the 3rd
IEEE Real-Time Technology and Applications Symposium.
[S.l.]: IEEE, 1997. (RTAS ’97), p. 213–223. ISBN 0-8186-8016-4.

348 References

LIN, J.; LU, Q.; DING, X.; ZHANG, Z.; ZHANG, X.; SADAYAPPAN,
P. Gaining insights into multicore cache partitioning: Bridging the
gap between simulation and real systems. In: Proceedings of the
14th International Symposium on High Performance Com-
puter Architecture. [S.l.]: IEEE, 2008. (HPCA’08), p. 367–378.

LINDSAY, C. LWFG: A Cache-Aware Multi-core Real-Time
Scheduling Algorithm. Dissertation (Masters) — Virginia Poly-
technic Institute and State University, 2012.

LIU, C.; SIVASUBRAMANIAM, A.; KANDEMIR, M. Organizing the
last line of defense before hitting the memory wall for CMPs. In:
Proceedings of the 10th International Symposium on High
Performance Computer Architecture. Washington, DC, USA:
IEEE Computer Society, 2004. (HPCA ’04), p. 176–. ISBN 0-7695-
2053-7.

LIU, C. L.; LAYLAND, J. W. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, ACM, New York,
NY, USA, v. 20, n. 1, p. 46–61, jan. 1973. ISSN 0004-5411.

LIU, J. Real-Time Systems. 1st. ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2000. ISBN 0130996513.

LU, Q.; LIN, J.; DING, X.; ZHANG, Z.; ZHANG, X.; SADAYAP-
PAN, P. Soft-OLP: Improving hardware cache performance through
software-controlled object-level partitioning. In: Proceedings of
the 18th International Conference on Parallel Architectu-
res and Compilation Techniques. [S.l.: s.n.], 2009. (PACT ’09),
p. 246–257. ISSN 1089-795X.

LUDWICH, M. K.; FRÖHLICH, A. A. Abstracting hardware devices
to embedded Java applications. In: IADIS Applied Computing
2011. Rio de Janeiro, Brazil: [s.n.], 2011. p. 371–378. ISBN 978-
989-8533-06-7.

MALLADI, R. K. Using Intel R© VTuneTM Performance Analy-
zer Events/Ratios Optimizing Applications. [S.l.: s.n.], 2010.

MANCUSO, R.; DUDKO, R.; BETTI, E.; CESATI, M.; CACCAMO,
M.; PELLIZZONI, R. Real-time cache management framework for
multi-core architectures. In: Proceedings of the 19th IEEE

References 349

Real-Time and Embedded Technology and Applications
Symposium. [S.l.: s.n.], 2013. (RTAS ’13), p. 45–54. ISSN 1080-
1812.

MARCONDES, H.; CANCIAN, R.; STEMMER, M.; FRÖHLICH,
A. A. On the design of flexible real-time schedulers for embedded
systems. In: Proceedings of the 2009 International Confe-
rence on Computational Science and Engineering. Washing-
ton, DC, USA: IEEE Computer Society, 2009. (CSE ’09), p. 382–
387. ISBN 978-0-7695-3823-5.

MARWEDEL, P. Embedded System Design. 2nd edition. Berlin:
Springer, 2006. ISBN 978-0-387-29237-3.

MASMANO, M.; RIPOLL, I.; CRESPO, A. A comparison of memory
allocators for real-time applications. In: Proceedings of the 4th
International Workshop on Java Technologies for Real-time
and Embedded Systems. New York, NY, USA: ACM, 2006.
(JTRES ’06), p. 68–76. ISBN 1-59593-544-4.

MASMANO, M.; RIPOLL, I.; CRESPO, A.; REAL, J. TLSF: a new
dynamic memory allocator for real-time systems. In: Proceedings
of the 16th Euromicro Conference on Real-Time Systems.
[S.l.: s.n.], 2004. (ECRTS ’04), p. 79–88. ISSN 1068-3070.

MASRUR, A.; CHAKRABORTY, S.; FÄRBER, G. Constant-time
admission control for partitioned EDF. In: Proceedings of the
2010 22nd Euromicro Conference on Real-Time Systems.
Washington, DC, USA: IEEE Computer Society, 2010. (ECRTS
’10), p. 34–43. ISBN 978-0-7695-4111-2.

MASRUR, A.; DROSSIER, S.; FARBER, G. Improvements in
polynomial-time feasibility testing for EDF. In: Design, Auto-
mation and Test in Europe. [S.l.: s.n.], 2008. (DATE ’08), p.
1033–1038.

MAY, J. Mpx: Software for multiplexing hardware performance coun-
ters in multithreaded programs. In: Proceedings of the 15th
International Parallel and Distributed Processing Sympo-
sium. [S.l.: s.n.], 2001. p. 8 pp.

350 References

MENTOR, G. Nucleos Real-Time Operating System. 2013.
Available from Internet: <http://www.mentor.com/embedded-
software/nucleus/>.

MOGUL, J. C.; BORG, A. The effect of context switches on cache
performance. SIGOPS Operating System Review, ACM, New
York, NY, USA, v. 25, n. Special Issue, p. 75–84, abr. 1991. ISSN
0163-5980.

MOHAN, S.; CACCAMO, M.; SHA, L.; PELLIZZONI, R.; ARUN-
DALE, G.; KEGLEY, R.; NIZ, D. de. Using multicore architectures
in cyber-physical systems. In: Workshop on Developing De-
pendable and Secure Automotive Cyber-Physical Systems
from Components. Michigan, USA: [s.n.], 2011.

MOK, A. K.-L. Fundamental Design Problems of Distribu-
ted Systems for the Hard–Real–Time Environment. Thesis
(Ph.D), 1983.

MOLLISON, M.; ANDERSON, J. H. Utilization-controlled task conso-
lidation for power optimization in multi-core real-time systems (to
appear). In: 18th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications
(RTCSA). [S.l.: s.n.], 2012. v. 1. ISSN 1533-2306.

MUCCI, P. J.; BROWNE, S.; DEANE, C.; HO, G. PAPI: a portable
interface to hardware performance counters. In: In Proceedings
of the Department of Defense HPCMP Users Group Con-
ference. [S.l.: s.n.], 1999. p. 7–10.

MÜCK, T. R.; FRÖHLICH, A. A. HyRA: A Software-defined Radio
Architecture for Wireless Embedded Systems. In: 10th Interna-
tional Conference on Networks. St. Maarten, The Netherlands
Antilles: [s.n.], 2011. p. 246–251. ISBN 978-1-61208-002-4.

MUELLER, F. Compiler support for software-based cache partitioning.
In: Proceedings of the ACM SIGPLAN 1995 Workshop on
Languages, Compilers, and Tools for Real-time Systems.
New York, NY, USA: ACM, 1995. (LCTES ’95), p. 125–133.

MURALIDHARA, S.; KANDEMIR, M.; RAGHAVAN, P. Intra-
application cache partitioning. In: Proceedings of the 2010

http://www.mentor.com/embedded-software/nucleus/
http://www.mentor.com/embedded-software/nucleus/

References 351

IEEE International Symposium on Parallel Distributed
Processing. [S.l.: s.n.], 2010. (IPDPS’10), p. 1 –12. ISSN 1530-
2075.

NEGI, H. S.; MITRA, T.; ROYCHOUDHURY, A. Accurate estima-
tion of cache-related preemption delay. In: Proceedings of the
1st IEEE/ACM/IFIP international conference on Hardwa-
re/software codesign and system synthesis. New York, NY,
USA: ACM, 2003. (CODES+ISSS ’03), p. 201–206. ISBN 1-58113-
742-7.

NEMATI, F.; BEHNAM, M.; NOLTE, T. Efficiently migrating real-
time systems to multi-cores. In: Proceeding of the 14th IEEE
International Conference on Emerging Techonologies and
Factory Automation. [S.l.: s.n.], 2009. (ETFA ’09), p. 1–8. ISSN
1946-0759.

OGASAWARA, T. An algorithm with constant execution time for dy-
namic storage allocation. In: Proceedings of the 2nd Internati-
onal Workshop on Real-Time Computing Systems and Ap-
plications. Washington, DC, USA: IEEE Computer Society, 1995.
(RTCSA ’95), p. 21–. ISBN 0-8186-7106-8.

OIKAWA, S.; RAJKUMAR, R. Portable rk: A portable resource ker-
nel for guaranteed and enforced timing behavior. In: Proceedings
of the Fifth IEEE Real-Time Technology and Applicati-
ons Symposium. Washington, DC, USA: IEEE Computer Society,
1999. (RTAS ’99), p. 111–120.

PALOPOLI, L.; CUCINOTTA, T.; MARZARIO, L.; LIPARI, G.
AQuoSA - adaptive quality of service architecture. Software Prac-
tice and Experience, John Wiley & Sons, Inc., New York, NY,
USA, v. 39, n. 1, p. 1–31, jan. 2009. ISSN 0038-0644.

PAPAMARCOS, M. S.; PATEL, J. H. A low-overhead coherence so-
lution for multiprocessors with private cache memories. In: Pro-
ceedings of the 11th Annual International Symposium on
Computer Architecture. New York, NY, USA: ACM, 1984.
(ISCA ’84), p. 348–354. ISBN 0-8186-0538-3.

PARNAS, D. On the design and development of program families.
IEEE Transactions on Software Engineering, SE-2, n. 1, p.
1 – 9, march 1976. ISSN 0098-5589.

352 References

POLPETA, F. V.; FRÖHLICH, A. A. Hardware mediators: A porta-
bility artifact for component-based systems. In: Embedded and
Ubiquitous Computing. [S.l.]: Springer Berlin Heidelberg, 2004.
(Lecture Notes in Computer Science), p. 271–280.

POLPETA, F. V.; FRÖHLICH, A. A. On the automatic generation
of soc-based embedded systems. In: In Proceedings of the 10th
IEEE International Conference on Emerging Technologies
and Factory Automation. [S.l.: s.n.], 2005.

PUAUT, I. Real-time performance of dynamic memory allocation al-
gorithms. In: Proceedings of the 14th Euromicro Conference
on Real-Time Systems. [S.l.: s.n.], 2002. (ECRTS ’02), p. 41–49.
ISSN 1068-3070.

PUAUT, I.; DECOTIGNY, D. Low-complexity algorithms for static
cache locking in multitasking hard real-time systems. In: Proce-
edings of the 23rd IEEE Real-Time Systems Symposium.
[S.l.: s.n.], 2002. (RTSS ’02), p. 114–123. ISSN 1052-8725.

QIAN, B. feng; YAN, L. min. The research of the inclusive cache used in
multi-core processor. In: Proceeding of the International Con-
ference on Electronic Packaging Technology High Density
Packaging. [S.l.: s.n.], 2008. (ICEPT-HDP’ 08), p. 1–4.

QNX. QNX R© Neutrino R© RTOS. 2013. Available from Inter-
net: <http://www.qnx.com/products/neutrino-rtos/neutrino-rtos-
.html>.

QUADROS. RTXC Quadros Operating System. 2005. Available
from Internet: <http://www.vas.co.kr/products/datasheet/rtxc-
quadros.pdf>.

QURESHI, M. K.; PATT, Y. N. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches. In: Proceedings of the 39th Annual IEE-
E/ACM International Symposium on Microarchitecture.
[S.l.]: IEEE, 2006. (MICRO 39), p. 423–432. ISBN 0-7695-2732-9.

RAFIQUE, N.; LIM, W.-T.; THOTTETHODI, M. Architectural sup-
port for operating system-driven CMP cache management. In: Pro-
ceedings of the 15th International Conference on Parallel

http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
http://www.vas.co.kr/products/datasheet/rtxc-quadros.pdf
http://www.vas.co.kr/products/datasheet/rtxc-quadros.pdf

References 353

Architectures and Compilation Techniques. New York, NY,
USA: ACM, 2006. (PACT ’06), p. 2–12. ISBN 1-59593-264-X.

RAJKUMAR, R. Resource kernels: Why resource reservation should
be the preferred paradigm of construction of embedded real-time
systems. In: 18th Euromicro Conference on Real-Time Sys-
tems. Dresden, Germany: [s.n.], 2006. Keynote talk. Available from
Internet: <http://ecrts06.tudos.org/docs/RajRajkumar.pdf>.

RAJKUMAR, R.; SHA, L.; LEHOCZKY, J. Real-time synchronization
protocols for multiprocessors. In: Proceedings of the 9th Real-
Time Systems Symposium. [S.l.: s.n.], 1988. (RTSS ’88), p. 259–
269.

RANGANATHAN, P.; ADVE, S.; JOUPPI, N. P. Reconfigurable ca-
ches and their application to media processing. In: Proceedings
of the 27th Annual International Symposium on Compu-
ter Architecture. New York, NY, USA: ACM, 2000. (ISCA ’00),
p. 214–224. ISBN 1-58113-232-8.

REINEKE, J.; GRUND, D.; BERG, C.; WILHELM, R. Timing pre-
dictability of cache replacement policies. Real-Time Systems,
Kluwer Academic Publishers, Norwell, MA, USA, v. 37, n. 2, p.
99–122, nov. 2007. ISSN 0922-6443.

ROMER, T.; LEE, D.; BERSHAD, B. N.; CHEN, J. B. Dynamic page
mapping policies for cache conflict resolution on standard hardware.
In: Proceedings of the 1st USENIX Symposium on Opera-
ting Systems Design and Implementation. [S.l.: s.n.], 1994.
(OSDI ’94), p. 255–266.

RTEMS. RTEMS Real-Time Operating System. 2013. Available
from Internet: <http://www.rtems.org/>.

SANGIOVANNI-VINCENTELLI, A.; MARTIN, G. Platform-based
design and software design methodology for embedded systems.
IEEE Design & Test, IEEE Computer Society Press, Los Ala-
mitos, CA, USA, v. 18, p. 23–33, November 2001. ISSN 0740-7475.

SARKAR, A.; MUELLER, F.; RAMAPRASAD, H. Predictable task
migration for locked caches in multi-core systems. In: Proceedings

http://ecrts06.tudos.org/docs/RajRajkumar.pdf
http://www.rtems.org/

354 References

of the the 2011 SIGPLAN/SIGBED conference on Langua-
ges, compilers and tools for embedded systems. New York:
ACM, 2011. (LCTES’11), p. 131–140. ISBN 978-1-4503-0555-6.

SARKAR, A.; MUELLER, F.; RAMAPRASAD, H. Static task parti-
tioning for locked caches in multi-core real-time systems. In: Pro-
ceedings of the 2012 International Conference on Compi-
lers, Architectures and Synthesis for Embedded Systems.
NY, USA: ACM, 2012. (CASES ’12), p. 161–170. ISBN 978-1-4503-
1424-4.

SEHLBERG, D.; ERMEDAHL, A.; GUSTAFSSON, J.; LISPER, B.;
WIEGRATZ, S. Static WCET analysis of real-time task-oriented
code in vehicle control systems. In: Proceedings of the Second
International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation. Washington,
DC, USA: IEEE Computer Society, 2006. (ISOLA ’06), p. 212–219.
ISBN 978-0-7695-3071-0.

SHARCNET. SHARCNET cluster website. Jul 2012. Available
from Internet: <https://www.sharcnet.ca>.

SHERWOOD, T.; CALDER, B.; EMER, J. Reducing cache misses
using hardware and software page placement. In: Proceedings of
the 13th International Conference on Supercomputing. New
York, NY, USA: ACM, 1999. (ICS ’99), p. 155–164. ISBN 1-58113-
164-X.

SILBERSCHATZ, A.; GALVIN, P. B.; GAGNE, G. Operating Sys-
tem Concepts. 8th. ed. [S.l.]: Wiley Publishing, 2008. ISBN
0470128720.

SINGH, K.; BHADAURIA, M.; MCKEE, S. A. Real time power estima-
tion and thread scheduling via performance counters. SIGARCH
Computer Architecture News, ACM, New York, NY, USA,
v. 37, n. 2, p. 46–55, 2009. ISSN 0163-5964.

SONG, T. Cache Coherence Protocol. Feb 2013. Parallel Architec-
tures and Algorithms Course. Washington University in St. Louis.
Available from Internet: <http://research.engineering.wustl.edu/˜-
songtian/pdf/20130219-CoherenceProtocol.pdf>.

http://research.engineering.wustl.edu/~songtian/pdf/20130219-CoherenceProtocol.pdf
http://research.engineering.wustl.edu/~songtian/pdf/20130219-CoherenceProtocol.pdf

References 355

SORIN, D. J.; HILL, M. D.; WOOD, D. A. A Primer on Memory
Consistency and Cache Coherence. 1st. ed. [S.l.]: Morgan &
Claypool Publishers, 2011. ISBN 1608455645, 9781608455645.

SPRUNT, B. Pentium 4 performance-monitoring features. IEEE Mi-
cro, v. 22, n. 4, p. 72–82, Jul/Aug 2002. ISSN 0272-1732.

SRIKANTAIAH, S.; KANDEMIR, M.; IRWIN, M. J. Adaptive set pin-
ning: managing shared caches in chip multiprocessors. In: Procee-
dings of the 13th international conference on Architectural
support for programming languages and operating systems.
[S.l.]: ACM, 2008. (ASPLOS XIII), p. 135–144. ISBN 978-1-59593-
958-6.

SRINIVASAN, A. Efficient and Flexible Fair Scheduling of Real-
time Tasks on Multiprocessors. 200 p. Thesis (PhD in Compu-
ter Science) — Department of Computer Science – University of
North Carolina at Chapel Hill, 2003.

SRINIVASAN, A.; HOLMAN, P.; ANDERSON, J. H.; BARUAH, S.
The case for fair multiprocessor scheduling. In: IPDPS ’03: Pro-
ceedings of the 17th International Symposium on Parallel
and Distributed Processing. Washington, DC, USA: IEEE Com-
puter Society, 2003. p. 114.1. ISBN 0-7695-1926-1.

SRINIVASAN, B.; PATHER, S.; HILL, R.; ANSARI, F.; NIEHAUS,
D. A firm real-time system implementation using commercial off-
the-shelf hardware and free software. In: Proceedings of the 4th
Real-Time Technology and Applications Symposium. [S.l.:
s.n.], 1998. (RTAS ’98), p. 112–119.

STANKOVIC, J.; RAJKUMAR, R. Real-time operating systems.
Real-Time Systems, Kluwer Academic Publishers, v. 28, n. 2-
3, p. 237–253, 2004. ISSN 0922-6443.

STANKOVIC, J.; RAMAMRITHAM, K. The spring kernel: a new
paradigm for real-time systems. IEEE Software, v. 8, n. 3, p. 62–
72, 1991. ISSN 0740-7459.

STARKE, R. A.; OLIVEIRA, R. S. de. Cache-aware task partitioning
for multicore real-time systems. In: Proceedings of the 3rd Bra-
zilian Symposium on Computing System Engineering. [S.l.:
s.n.], 2013. (SBESC ’13), p. 1–5. ISSN 2324-7886.

356 References

STäRNER, J.; ASPLUND, L. Measuring the cache interference cost
in preemptive real-time systems. In: Proceedings of the 2004
ACM SIGPLAN/SIGBED conference on Languages, com-
pilers, and tools for embedded systems. New York, NY, USA:
ACM, 2004. (LCTES ’04), p. 146–154. ISBN 1-58113-806-7.

STASCHULAT, J.; ERNST, R. Scalable precision cache analysis for
preemptive scheduling. In: Proceedings of the 2005 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and
tools for embedded systems. New York, NY, USA: ACM, 2005.
(LCTES ’05), p. 157–165. ISBN 1-59593-018-3.

SUHENDRA, V.; MITRA, T. Exploring locking & partitioning for pre-
dictable shared caches on multi-cores. In: Proceedings of the
45th annual Design Automation Conference. [S.l.]: ACM,
2008. (DAC’ 08), p. 300–303. ISBN 978-1-60558-115-6.

SUN, X. H.; WANG, J.; CHEN, X. An improvement of TLSF algo-
rithm. In: Proceedings of the 15th IEEE-NPSS Real-Time
Conference. [S.l.: s.n.], 2007. p. 1–5.

SUNDARAM, V.; CHANDRA, A.; GOYAL, P.; SHENOY, P.; SAHNI,
J.; VIN, H. Application performance in the QLinux multimedia ope-
rating system. In: Proceedings of the Eighth ACM Interna-
tional Conference on Multimedia. New York, NY, USA: ACM,
2000. (MULTIMEDIA ’00), p. 127–136. ISBN 1-58113-198-4.

SUNDARARAJAN, K.; JONES, T.; TOPHAM, N. RECAP: Region-
aware cache partitioning. In: Proceedings of the 31st IEEE
International Conference on Computer Design. [S.l.: s.n.],
2013. (ICCD ’13), p. 294–301.

SUZUKI, N.; KIM, H.; NIZ, D. d.; ANDERSSON, B.; WRAGE, L.;
KLEIN, M.; RAJKUMAR, R. R. Coordinated bank and cache colo-
ring for temporal protection of memory accesses. In: Proceedings
of the 2013 IEEE 16th International Conference on Com-
putational Science and Engineering. [S.l.]: IEEE, 2013. (CSE
’13), p. 685–692. ISBN 978-0-7695-5096-1.

TAM, D.; AZIMI, R.; STUMM, M. Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessors. SIGOPS Opera-
ting System Review, ACM, New York, NY, USA, v. 41, p. 47–58,
March 2007. ISSN 0163-5980.

References 357

TAM, D. K.; AZIMI, R.; SOARES, L. B.; STUMM, M. RapidMRC:
approximating l2 miss rate curves on commodity systems for online
optimizations. In: Proceeding of the 14th international confe-
rence on Architectural support for programming languages
and operating systems. New York, NY, USA: ACM, 2009. (AS-
PLOS ’09), p. 121–132. ISBN 978-1-60558-406-5.

TANENBAUM, A. S. Modern Operating Systems. 3rd. ed. Up-
per Saddle River, NJ, USA: Prentice Hall Press, 2007. ISBN
9780136006633.

TAYLOR, G.; DAVIES, P.; FARMWALD, M. The TLB slice - a low-
cost high-speed address translation mechanism. In: Proceedings
of the 17th Annual International Symposium on Computer
Architecture. New York, NY, USA: ACM, 1990. (ISCA ’90), p.
355–363. ISBN 0-89791-366-3.

TSAFRIR, D. The context-switch overhead inflicted by hardware in-
terrupts (and the enigma of do-nothing loops). In: Proceedings of
the 2007 workshop on Experimental computer science. New
York, NY, USA: ACM, 2007. (ExpCS ’07). ISBN 978-1-59593-751-3.

UBM, T. 2013 Embedded Market Study. 2013. Available from
Internet: <http://e.ubmelectronics.com/2013EmbeddedStudy/in-
dex.html>.

VARADARAJAN, K.; NANDY, S. K.; SHARDA, V.; BHARADWAJ,
A.; IYER, R.; MAKINENI, S.; NEWELL, D. Molecular caches: A
caching structure for dynamic creation of application-specific hete-
rogeneous cache regions. In: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitec-
ture. [S.l.: s.n.], 2006. (MICRO-39), p. 433–442. ISSN 1072-4451.

VERA, X.; LISPER, B.; XUE, J. Data cache locking for higher pro-
gram predictability. In: Proceedings of the 2003 ACM SIG-
METRICS International Conference on Measurement and
Modeling of Computer Systems. New York, NY, USA: ACM,
2003. (SIGMETRICS ’03), p. 272–282. ISBN 1-58113-664-1.

VERA, X.; LISPER, B.; XUE, J. Data caches in multitasking hard real-
time systems. In: Proceedings of the 24th Real-Time Systems

http://e.ubmelectronics.com/2013EmbeddedStudy/index.html
http://e.ubmelectronics.com/2013EmbeddedStudy/index.html

358 References

Symposium. [S.l.]: IEEE, 2003. (RTSS ’03), p. 154–165. ISBN 0-
7695-2044-8.

WANG, Y.-C.; LIN, K.-J. Enhancing the real-time capability of the
linux kernel. In: Proceedings of the 5th Real-Time Compu-
ting Systems and Applications. [S.l.: s.n.], 1998. (RTCSA ’98),
p. 11–20.

WANNER, L. F.; FRÖHLICH, A. A. Operating System Support for
Wireless Sensor Networks. Journal of Computer Science, v. 4,
n. 4, p. 272–281, 2008. ISSN 1549-3636.

WEHMEYER, L.; MARWEDEL, P. Influence of memory hierarchies
on predictability for time constrained embedded software. In: Pro-
ceedings of the conference on Design, Automation and Test
in Europe. Washington, DC, USA: IEEE Computer Society, 2005.
(DATE ’05), p. 600–605. ISBN 0-7695-2288-2.

WEISSMAN, B. Performance counters and state sharing annotations: a
unified approach to thread locality. SIGOPS Operating System
Review, ACM, New York, NY, USA, v. 32, p. 127–138, October
1998. ISSN 0163-5980.

WEST, R.; ZAROO, P.; WALDSPURGER, C. A.; ZHANG, X. On-
line cache modeling for commodity multicore processors. SIGOPS
Operating System Review, ACM, New York, NY, USA, v. 44,
p. 19–29, December 2010. ISSN 0163-5980.

WIKIPEDIA. List of real-time operating systems. 2014. Avai-
lable from Internet: <http://en.wikipedia.org/wiki/List of real-
time operating systems>.

WIKIPEDIA. MESI protocol. Feb 2014. Available from Internet:
<http://en.wikipedia.org/wiki/MESI protocol>.

WIKIPEDIA. MESIF protocol. Feb 2014. Available from Internet:
<http://en.wikipedia.org/wiki/MESIF protocol>.

WIKIPEDIA. MOESI protocol. Feb 2014. Available from Internet:
<http://en.wikipedia.org/wiki/MOESI protocol>.

WILHELM, R.; ENGBLOM, J.; ERMEDAHL, A.; HOLSTI, N.;
THESING, S.; WHALLEY, D.; BERNAT, G.; FERDINAND, C.;

http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://en.wikipedia.org/wiki/MESI_protocol
http://en.wikipedia.org/wiki/MESIF_protocol
http://en.wikipedia.org/wiki/MOESI_protocol

References 359

HECKMANN, R.; MITRA, T.; MUELLER, F.; PUAUT, I.; PUS-
CHNER, P.; STASCHULAT, J.; STENSTRöM, P. The worst-case
execution-time problem overview of methods and survey of to-
ols. ACM Transactions on Embedded Computing Systems,
ACM, New York, NY, USA, v. 7, n. 3, p. 36:1–36:53, May 2008.
ISSN 1539-9087.

Wind River. Wind River VcWorks RTOS. 2013. Available from
Internet: <http://www.windriver.com/products/vxworks/>.

WOLFE, A. Software-based cache partitioning for real-time applicati-
ons. Journal of Computing Software Engineering, Ablex Pu-
blishing Corp., Norwood, NJ, USA, v. 2, n. 3, p. 315–327, Mar 1994.
ISSN 1069-5451.

YAN, J.; ZHANG, W. WCET analysis for multi-core processors with
shared L2 instruction caches. In: Proceedings of the 2008 IEEE
Real-Time and Embedded Technology and Applications
Symposium. Washington, DC, USA: IEEE Computer Society,
2008. (RTAS ’08), p. 80–89. ISBN 978-0-7695-3146-5.

ZHANG, X.; DWARKADAS, S.; SHEN, K. Towards practical page
coloring-based multicore cache management. In: Proceedings of
the 4th ACM European Conference on Computer Systems.
[S.l.]: ACM, 2009. (EuroSys ’09), p. 89–102. ISBN 978-1-60558-482-
9.

ZHURAVLEV, S.; BLAGODUROV, S.; FEDOROVA, A. Addressing
shared resource contention in multicore processors via scheduling.
In: Proceedings of the 15th edition of ASPLOS on Archi-
tectural support for programming languages and operating
systems. [S.l.: s.n.], 2010. (ASPLOS ’10), p. 129–142. ISBN 978-1-
60558-839-1.

ZHURAVLEV, S.; SAEZ, J. C.; BLAGODUROV, S.; FEDOROVA, A.;
PRIETO, M. Survey of scheduling techniques for addressing shared
resources in multicore processors. ACM Computing Surveys,
ACM, New York, NY, USA, v. 45, n. 1, p. 4:1–4:28, Dec 2012. ISSN
0360-0300.

http://www.windriver.com/products/vxworks/

	Introduction
	Problem Overview
	Contributions
	Design and Implementation of a Multicore RTOS
	Run-Time Overhead Analysis in an RTOS
	Cache Partitioning Analysis in an RTOS
	Shared Cache-Aware Task Partitioning
	Two Phases Multicore Real-Time Scheduler

	Document Organization

	Background
	Processor and Memory Architectures
	Current Multicore Memory Architectures
	Cache Organization and Cache Line Replacement Algorithms
	Address Translation
	Cache Coherence Protocols
	Hardware Performance Counters
	Interrupts
	Timers and Clocks

	Operating Systems
	Process Management
	Memory Management
	Input and Output Management

	Real-Time Task Models and Constraints
	Hard and Soft Timing Constraints
	Schedulability, Feasibility, and Sustainability

	Real-time Scheduling
	Uniprocessor Real-time Scheduling
	Fixed-Priority Scheduling
	Job-Level Fixed-Priority Scheduling
	Job-Level Dynamic-Priority Scheduling

	Multiprocessor Real-time Scheduling
	Partitioned Scheduling
	Global Scheduling
	Clustered Scheduling

	Run-time Overhead Analysis

	Related Work
	Memory Management
	Index-based Cache Partitioning Methods
	Way-based Cache Partitioning Methods
	Cache Locking Methods
	OS Memory Allocators
	Cache-related Preemption and Migration Delay
	Summary

	Real-Time Operating Systems
	Embedded Real-Time Operating Systems
	POSIX-Like Real-Time Operating Systems
	General-Purpose Operating Systems with Real-Time Extensions
	LITMUSRT
	Summary

	Run-Time Performance Monitoring
	Performance Monitoring APIs and Tools
	Run-Time OS Decisions
	Summary

	Multicore Real-Time Scheduling
	Scheduling Algorithms
	Run-time Overhead and Implementation Tradeoffs
	Summary

	Real-Time Support on EPOS
	Hardware Mediators
	Performance Monitoring Unit
	PMU Hardware Mediator Family
	Performance Monitor
	API Usage
	Applicability for Scheduling
	Guidelines for future PMU designs
	Summary of the PMU support

	Scheduling
	Periodic Thread Operations
	Context Switching
	Alarm and Timer Interrupt Handler
	Summary of Real-Time Extensions and Overhead Sources

	Memory Management
	Original Memory Management in EPOS
	Page Coloring Support
	User-Centric Page Coloring
	OS-Centric Page Coloring
	Summary of Memory Management Extensions

	Run-Time Overhead Evaluation
	Experiments Description
	Tracing Overhead
	Context Switch Overhead Evaluation
	IPI Latency Evaluation
	Scheduling Overhead Evaluation
	Tick Counting Overhead Evaluation
	Thread Release Overhead Evaluation
	Preemption/Migration Delay Evaluation
	Schedulability Tests Analysis
	Run-Time Overhead
	Weighted Schedulability
	Schedulability Evaluation for 100 Processors

	Discussion

	Cache Partitioning Evaluation
	Experiment Description
	Individual Task Execution Time
	Deadline Misses
	Total Execution Time
	Discussion

	Static Color-Aware Task Partitioning
	Assumptions and Notations
	Color-Aware Task Partitioning
	Example: partitioning a task set with CAP WFD

	Evaluation
	Experiment Description
	Percentage of Missed Deadlines

	Discussion

	Dynamic Color-Aware Scheduling Algorithm
	Assumptions and Notations
	Algorithm Description
	Color-Aware Task Partitioning with Group Splitting
	Example: partitioning a task set with CAP-GS
	Dynamic Color-Aware Scheduling
	Analysis of Hardware Events
	Design and Implementation

	Evaluation
	Experiment Description
	Percentage of Missed Deadlines
	Deadline Tardiness
	Total Execution Time
	Run-Time Overhead of the HPC Analysis

	Discussion

	Conclusion
	Summary of Contributions
	Real-Time Support on EPOS
	Run-Time Overhead Evaluation
	Cache Partitioning Evaluation
	Static Color-Aware Task Partitioning
	Dynamic Color-Aware Scheduling Algorithm

	Closing Remarks
	Future Directions

	REFERENCES

