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Abstract

In a multiprocessor system on chip private caches introduce the cache coherence problem;
because processors can have an incoherent view on the shared memory because of stale data
in their caches. Cache coherence protocols have been designed to ensure a coherent view on
the background memory. Both hardware as well as software solutions have been introduced
in the past, and hardware solutions can be roughly divided in two approaches. The first is
a snooping-based approach, which relies on global visibility of writes and write atomicity,
and is therefore difficult to apply efficiently in combination with a network-on-chip. The
second is a directory-based approach, which has as a major drawback the increased memory
access latency. This increase is a result of consulting the directory upon memory accesses.

Software cache coherence protocols have the potential to ensure cache coherence with-
out requiring global visibility of writes and without increasing the memory access latency.
Therefore software cache coherence protocols can be a candidate to be used in combination
with a network-on-chip.

We propose a software cache coherence protocol that can be applied in a heterogeneous
MPSoC with a network-on-chip. This cache coherence protocol ensures that caches are
coherent on synchronization points, which is sufficient to support Release Consistency, on
top of which standard communication libraries, f.i., Pthreads can be implemented. Our
software cache coherence protocol can be applied to heterogeneous systems without mod-
ifying the caches, as long as processors are able to control their cache through clean and
invalidate instructions.

Our software cache coherence protocol is implemented on an MPSoC with two ARM9
processors, which has been mapped on a Xilinx Virtex 4 FPGA. Several Splash2 applica-
tions are used for the experimental performance evaluation; therefore we have implemented
Pthreads calls. We demonstrate that putting shared data in a separate address range,
and coupling data structures and synchronization points, can significantly improve the per-
formance. From experiments we conclude that for standard problem sizes in the Splash2
benchmark set the protocol overhead is small compared to the computation time. The
speedup observed, for the applications on a two processor MPSoC, is between 1.89 and
2.01.
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1
Introduction

1.1 Problem description

For many years processor performance has been improved successfully by higher clock fre-
quencies, exploitation of instruction level parallelism, and better memory hierarchies. How-
ever, because of a limited amount of instruction level parallelism in applications, it becomes
important to exploit task level parallelism as well.

Exploitation of task level parallelism creates some challenges; first of all it is difficult for
human beings to reason about parallel processing. Secondly, people still tend to apply suc-
cessful techniques from the uniprocessor domain in the multiprocessor domain. However
it is not always possible to, without modifications, successfully apply techniques from the
single processor domain in multiprocessor systems. A well known example is that caches
introduce cache coherence issues in the multiprocessor domain. A related issue in multipro-
cessor system on chip (MPSoC) architectures is memory consistency, and it is important
to understand both memory consistency and cache coherence.

Shared Memory

P3

$$

P2

$ $

Network-on-Chip

P1 Pn

Figure 1.1: Example shared memory MPSoC

First, let’s consider an example of a shared memory MPSoC, shown in Figure 1.1. Each
processor is connected to the shared memory through caches and communication between
processors is through shared memory. In a cached shared memory MPSoC it is possible to
have multiple copies of a single location of the shared memory in different caches. Clearly,
a value of a location is stored in the shared memory, but a copy of this value may exist
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in each cache. If a processor modifies the value at the memory location, the write, if no
measures are taken, will not become visible to other caches. Those caches may still contain
stale data. This is called the cache coherence problem. This problem can be avoided by
using a cache coherence protocol which guarantees that writes will eventually become visible
to all processors.

Cache coherence protocols can be divided in two classes, hardware based and software based.
Hardware based cache coherence protocols are subject to research since the 1980’s and we
distinguish between two different approaches. The first is the snooping based approach and
the second is the directory based approach.

A snooping-based cache-coherence protocol relies on all caches to “snoop” the interconnect
and take appropriate actions based on transactions on the interconnect [10]. For instance, all
caches having the value of a memory location X, invalidate their copy if another processor
writes a value to location X. However, for popular snooping protocols such as MSI, and
MESI [10], to function correctly the MPSoC needs to support two properties [10]. First of
all, all memory accesses should be visible to all processors. Second, all memory accesses
should appear in the same order. These properties are easily supported in an MPSoC with a
bus, because of the nature of the bus. However, in an MPSoC with a network-on-chip (NoC)
it is difficult to support these properties. A NoC handles memory accesses as transactions in
parallel, consequently, memory accesses are not observed by other processors. In addition,
processors can observe different latencies to memories, which makes it difficult to guarantee
one single order of writes being observed by all processors.

A second hardware approach is the directory-based cache-coherence protocol [10], which
is based on a centralized directory that stores information about the status of caches for
each location in the shared memory. The idea is as follows; a centralized directory is
consulted before writing to a shared location X, and the directory stores information about
all processors having the shared location X cached. On a write of a processor P to X, the
directory will respond with sufficient information to ensure that all other caches invalidate
their copy of X, i.e., ensuring that the next time any processor reads X, the latest value
will be read. This type of hardware cache coherence protocols is believed to be a scalable
solution for MPSoCs with a NoC. However, according to [24] the memory overhead of the
directory can reach up to 20% of the total memory. Additionally there will be an increase in
traffic due to consulting the directory. This can also lead to contention, because all memory
accesses to a memory location X require consulting the same directory, even if the directory
is physically distributed. Additionally, the time spent in sending and receiving transactions
to and from the directory is added to the memory access latency.

Both hardware cache coherence protocols require support from all caches in the MPSoC.
The design complexity of integrating heterogeneous processors on MPSoCs is not trivial
since it introduces several problems in both design and validation due to different bus in-
terface specifications and incompatible cache coherence protocols [36]. An example of a
hardware/software methodology to ensure cache coherence in heterogeneous MPSoC is pro-
posed in [36] but, it can only be applied when all caches support hardware cache coherence.

Software cache coherence protocols rely on processor instructions to clean and invalidate
cache lines. As a consequence different processors can be supported, as long as instructions
to clean and invalidate the cache are provided. Software cache coherence protocols have the
potential to be a scalable cache coherence protocol that can be applied to MPSoCs with a
NoC, because software cache coherence protocols do not require global visibility of writes or
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require one single order of memory accesses being observed by all processors. Furthermore,
software cache coherence protocols do not increase the memory access latency, because a
directory is not consulted on memory accesses.

Most software cache coherence protocols rely, to the best of our knowledge, on explicit
synchronization. In particular, the caches are guaranteed to be coherent on synchroniza-
tion points. This poses the restriction that our MPSoC is limited to executing software
with explicit synchronization, but we expect that this does not significantly restrict the
applicability of the software cache coherence protocol, as most parallel programs rely on
synchronization to guarantee correct behavior.

The hardware implementation cost of a software cache coherence protocol can be signifi-
cantly less than the implementation cost of a hardware protocol. Additionally we expect
that verification of our software cache coherence protocol is easier than the verification
of existing hardware cache coherence protocols, which has been subject of many research
projects [6, 30, 26, 35].

Cache coherence is important if data is being shared between multiple processors in an
MPSoC, because it ensures that writes to a location will eventually become visible to other
processors. However, in parallel programs it is usually expected that a read returns the value
of a particular write, in other words, an order between memory accesses to different locations
exists. This order is not implied by cache coherence, and as a result there is a need for a
memory consistency model, which poses constraints on the order in which memory accesses
have to be completed and have to become visible to other processors. This includes order
between accesses to the same or to different locations, where the accesses may be performed
by different processors. As a consequence, memory consistency subsumes cache coherence
[10].

1.2 Contribution

This thesis presents a tuneable software cache coherence protocol that is highly suitable for
heterogeneous MPSoCs with a NoC and with off-the-shelf processors. The software cache
coherence protocol ensures that caches are coherent on synchronizations, which is sufficient
to support Release Consistency (see Section 2.2.4), on top of which standard communication
libraries, e.g., Pthreads and OpenMP can be implemented. More specifically, we have
embedded the protocol in several Pthreads calls.

The software cache coherence protocol is evaluated in an ARM926EJ-S MPSoC which is
mapped on an FPGA. Several applications from the SPLASH2 benchmark set [41] are
executed in parallel on the MPSoC. The overhead of the protocol can be surprisingly low,
because the speedup for most SPLASH2 applications is between 1.89 and 2.01 on a two
processor MPSoC.

In addition to the software cache coherence protocol we have identified several optimizations
to increase the performance of the protocol. Firstly, it is important to provide separate
address ranges for private and shared data. As a consequence, private data and shared
data can be cached more efficiently, and cache coherence operations can be limited to the
shared address range. Secondly, for some applications it may be beneficial to provide a
specific programming model which can further improve the efficiency of the software cache
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coherence protocol. A suitable programming model would be restricting interprocessor
communication to sharing data through First-In-First-Out (FIFO) buffers.

Furthermore, the software cache coherence protocol is designed to be applicable in a pre-
dictable and composable MPSoC. Predictability discusses to what extent performance guar-
antees of threads can be given at design time. Composability is a property that ensures that
a thread can not impact the execution of any other thread. Both predictability and compos-
ability require the cache coherence operations to be interruptible; therefore task switches
can not be postponed indefinitely by cache coherence operations. In addition, cache co-
herence operations are local, consequently cache coherence operations on one processor do
not impact the execution of threads on other processors, whereas invalidation request mes-
sages in hardware cache coherence protocols can impact the execution of threads on other
processors.

1.3 Organization

The rest of this report is organized as follows. Chapter 2 discusses cache coherence and
memory consistency in more detail. Following this, Chapter 3 gives an overview of related
work in cache coherence protocols; hardware protocols will be briefly discussed, and several
related software approaches will be discussed. Chapter 4 provides a description of the
hardware and software platform on which the protocol is implemented; this platform is used
as experimental setup. Chapter 5 presents the software cache coherence protocol to ensure a
Release Consistent MPSoC. Chapter 6 discusses issues in predictability and composability,
related to our MPSoC. Chapter 7 explains the experiments to assess the performance of
the protocol. Chapter 8 discusses suggestions to improve the cache controller. Lastly,
concluding remarks will be given in Chapter 9 and Chapter 10 discusses directions for
future work.



2
Cache coherence and memory consistency

Cache coherence and memory consistency are challenging issues in shared memory multi-
processor systems. In the first part of this section we will discuss cache coherence issues,
followed by explaining its relation to memory consistency. This report proposes a software
cache coherence protocol, which ensures cache coherence, but as we will illustrate, memory
consistency is related and it is important for reasoning about outcome of a program. Mem-
ory consistency will be discussed by describing several memory consistency models; each
model has its constraints on the software, hardware, and optimization options.

2.1 Cache coherence

This section discusses cache coherence in MPSoCs. Caches have been introduced in unipro-
cessor systems to reduce average memory access latency. Intuitively a memory with a cache
hierarchy holds values, and on a read, a memory returns the last value written to it. We
would like to apply this intuitive model also to a shared memory in an MPSoC. Unfortu-
nately if in an MPSoC processors have a private cache, without taking precautions, danger
exists that one may see stale values in its cache. This is called the cache coherence problem,
which is discussed in [10, 19]. The cache coherence problem is illustrated in Example 2.1,
which is related to Figure 2.1. However, before discussing the cache coherence problem we
will provide background information on caches and cache maintenance operations.

A cache is used to temporarily store copies of memory locations. These copies are stored in
lines of a certain number of bytes in the cache, and these lines can be read and modified. A
write-through cache has the property that if a processor modifies the line, the write will also
be propagated to the memory. If only one word is modified, then only the modified word
will be updated in the memory. This type of cache can cause a lot of write traffic because
all writes are sent to the memory. A write-back cache stores copies of memory locations,
and upon a write only this copy will be updated. The write is not sent to the memory, but
will become visible to the memory if a clean operation is called, or if the line is replaced.

Cache maintenance operations, such as invalidate and clean a cache line, are used to ensure
cache coherence. Assume a processor P1 executes an invalidate of line X ; this operation
ensures that the next read of X by P1 is a cache miss, and consequently the read will
return the value of X which is stored in the shared memory. The second cache maintenance
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operation, clean a cache line, is slightly different. Let’s assume P1’s write-back cache holds
a location X and P1 writes to location X. This would result in a write to the cache, but
the shared memory would not be updated. A clean operation of the line holding X would
cause the contents of the line to be copied to the shared memory, i.e., updating the shared
memory.

Shared Memory

Interconnect

P1 P2

$$

1. Read X
=> 3

2. Read X
=> 3

3. Write X
=> 10

4. Read X
=> 3

Figure 2.1: Example cache coherence problem

Example 2.1. See Figure 2.1. Two processors with write-through caches are connected
through, e.g., a bus or NoC to shared memory. First (1), processor P2 reads a value
from shared memory at memory location X, i.e., copying the value to its cache. Then (2),
processor P1 reads memory location X. Then (3), processor P1 changes the value from 3 to
10. Because P1’s cache is a write-through cache the write will also update shared memory.
However, when P2 reads X again (4) its cache will return 3 instead of the correct value
10, which is only valid in P1’s cache and the shared memory. This is a cache coherence
problem. With write-back caches the situation is slightly different. Because then only the
cache of P1 would contain the correct value for X, and the shared memory will only be
updated when P1’s cache replaces the line holding X, or the line holding X is cleaned. Until
the shared memory is updated all processors reading from the shared memory would read old
invalid data.

Example 2.1 showed a situation where processors could read stale data and we need to find
a method to guarantee cache coherence. Let’s first define the conditions that have to be
satisfied to obtain cache coherence.

• A read made by a processor P to a location X, that follows a write by the same
processor P to X, with no writes to X by another processor occurring between the
write and the read instructions made by P, must always return the value written by P.
This condition is related with program order preservation, and this must be achieved
even in uniprocessor architectures.

• A read made by a processor P1 to location X that follows a write by another processor
P2 to X must return the written value made by P2 if no other writes to X made by
any processor occur between the two accesses. This condition defines the concept of
coherent view of memory.

• Writes to the same location must be sequenced. In other words, if location X received
two different values A and B, in this order, by any two processors, the processors can
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never read location X as B and then read it as A. The location X must be seen with
values A and B in that order.

These conditions result in two properties in cache coherence: write propagation and write
serialization. Write propagation means that writes become visible to other processors.
Write serialization means that all writes to a location (from one or multiple processors) are
seen in the same order by all processors. It is important to note that write serialization is
concerned about the order of subsequent writes to one single location.

2.2 Memory consistency

Cache coherence is essential if information is to be transferred between two processors,
where one processor writes to a location and the other processor reads. Eventually, the
value written to the location should become visible to the reader. However, coherence
says nothing about when the write will become visible. Often in parallel programs, the
programmer expects that a read returns the value of a particular write; as a result, there
should be a known order between a write and a read. Consider the example in Algorithm 1
where the program synchronizes through flags. Clearly the programmer intends process P2
to spin idly on flag as long as process P1 hasn’t set flag to 1. To get the expected result
from P2, we assume that the write to A becomes visible to P2 before the write to flag.
However, order between accesses to different locations is not implied by coherence.

Algorithm 1 Example synchronization through flags
Require: A and flag are initially 0

P1
A ← 1
flag ← 1

P2
while flag == 0 do

skip
end while
print A

Clearly, we need more than coherence to give a shared address space clear semantics. We
need an ordering model that programmers can use to reason about possible outcome and
correctness of their programs.

A memory consistency model specifies constraints on the order in which memory operations
must appear to be performed (i.e., to become visible to processors) with respect to one
another. This includes operations to the same locations or to different locations and by the
same processor or different processors. As a consequence, memory consistency subsumes
cache coherence [10]. Note that cache coherence is only concerned about reads and writes
to a single memory location, and that it requires that a write should eventually become
visible to other processors.

So far we have discussed cache coherence and memory consistency in general. In the next
sections several different memory consistency models will be discussed. Each memory con-
sistency model poses different constraints on the order between memory accesses, and, i.e.,
differ in the amount of reordering that is allowed. A memory consistency model is relaxed
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or weaker compared to another model if it allows more reordering, and as a result it en-
ables more pipelining of shared memory accesses. These models are briefly described in an
attempt to visualize the spectrum of memory consistency models.

2.2.1 Sequential Consistency

Let’s define program order as the ordering of memory accesses within a process. Lamport
formalized an intuitive model, called Sequential Consistency (SC) [21], which is defined as
in Definition 2.1.

Definition 2.1. A multiprocessor is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some sequential order,
and the operations of each individual processor occur in this sequence in the order specified
by its program (program order).

Figure 2.2 shows the abstraction of memory provided to programmers when the system is
sequentially consistent. Each processor executes all memory operations in program order
and the memory is servicing one processor at the time. As a consequence, all processes
observe writes in one single order (write atomicity). Write atomicity implies that all reads
and writes that a processor issues after a write W do not become visible to other processor
before they too have observed the write W. As a consequence, write atomicity guaran-
tees that all processors observe writes from other processors in one single order. Memory
operations appear atomic in this memory consistency model; and the operations appear
globally, which means that all processes observe a memory access before a new access will
be executed.

Definition 2.2. A write is considered completed if the location of the write is updated in
the shared memory. Consequently, subsequent reads will return the updated value. A read
is considered completed if it returns the value from the location that is read.

As with coherence, it is not important in what order memory operations actually have been
issued or even complete. What matters for Sequential Consistency is that they appear to
complete in a manner that satisfies the constraints just described. Please refer to Algo-
rithm 1; this code executes correctly under sequential consistency, because the write to A
becomes visible to P2 before the write to flag is issued.

Definition 2.3. A read by Pi is considered performed with respect to Pj when the issuing
of a write to the same address by Pj cannot affect the value returned by the read.

Definition 2.4. A write by Pi is considered performed with respect to Pj when the issuing
of a read to the same address by Pj returns the value defined by this write (or a subsequent
write to the same location).

Definition 2.5. An access is performed when it is performed with respect to all processors.

A set of sufficient conditions that guarantees Sequential Consistency is as follows. These
constraints are adapted from [32, 33].

• Every process issues memory operations in program order
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Figure 2.2: Programmer’s abstraction model for Sequential Consistency

• After a write is issued, the issuing process waits for the write to complete before
issuing its next operation

• After a read operation is issued, the issuing process waits for the read to complete,
and for the write whose value is being returned by the read to complete before issuing
its next operation. That is, if the write whose value is being returned has performed
with respect to this processor (as it must have if its value is being returned), then the
processor should wait until the write has performed with respect to all processors.

2.2.2 Processor Consistency

Restrictions on hardware to ensure Sequential Consistency may be too expensive, which
makes it interesting to support a more relaxed model, which poses less restrictions. A more
relaxed model, Processor Consistency (PC), is discussed in [15, 3, 17].

Definition 2.6. A multiprocessor is said to be processor consistent if the result of any
execution is the same as if the operations of each individual processor appear in the sequential
order specified by its program.

Processor Consistency requires that writes issued by a processor are observed at another
processor in the order they are issued. However, writes issued by different processors do
not appear in the same order to all processors and therefore processor consistency does not
satisfy write atomicity.

Processor Consistency is weaker than Sequential Consistency, thus it allows more reorder-
ing. However, Processor Consistency may not yield correct execution if the programmer
assumes Sequential Consistency. The example in Algorithm 2 executes correctly under Se-
quential Consistency, but it can fail under Processor Consistency. P2 reads A, which is
written by P1, and then writes B which in turn is read by P3. Without write atomicity
there is no guarantee that the write to A by P1 becomes visible to P3 before the write
of P2 to B becomes visible to P3. Some programs written with Sequential Consistency
in mind may execute correctly under Processor Consistency, an example is Algorithm 1.
Algorithm 1 executes correctly under Processor Consistency because writes from a single
processor appear to be performed in order.
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Algorithm 2 Importance of write atomicity for SC
Require: A and B are initially 0

P1
A ← 1

P2
while A == 0 do

skip
end while
B ← 1

P3
while B == 0 do

skip
end while
print A

A set of sufficient conditions to guarantee Processor Consistency is as follows (slightly
different from [15]).

• Before a read is allowed to perform with respect to any other processor, all previous
reads must be performed

• Before a write is allowed to perform with respect to any other processor, all previous
accesses (reads and writes) must be performed

Processor Consistency relaxes the program order of a write followed by a read. The model
allows reads following a write to a different address on the same processor to be reordered.
This is achieved in hardware by using write buffers and allowing reads to bypass the writes
stored in the buffer. Processor Consistency allows a processor to read the value of its own
write before the write completes in memory. If the read and write are to the same location
then the read operation returns the value of the write from the write buffer. If the read
is from a different memory location then it simply bypasses the write, which could still be
stored in the write buffer.

The major advantage of Processor Consistency over Sequential Consistency is the ability
to hide write latency by allowing reads to complete out of program order with respect to
previous writes.

An interesting fact is memory ordering in Intel architectures throughout different genera-
tions of architectures. Intel Architecture Software Developer’s Manual [2] discusses several
memory-ordering models1, which are related to different generations of Intel architectures.
For example, the Intel386 processor enforces program ordering, where reads and writes
are issued on the system bus in the order they occur in the instruction stream under all
circumstances, i.e., enforcing Sequential Consistency.

To allow performance optimization of instruction execution (taken from [2]), the IA-32
architecture allows departures from Sequential Consistency to processor ordering in Pen-
tium 4, Intel Xeon, and P6 family processors. These processor-ordering variations allow
performance enhancing operations such as allowing reads to go ahead of buffered writes;
apparently processor ordering in Intel architectures is similar to Processor Consistency. In-
tel states that the goal of any of these departures from Sequential Consistency to weaker
memory consistency models is to increase instruction execution speeds.

Intel also briefly discusses memory consistency models that could be guaranteed in the fu-
ture. Intel recommends that software written to run on Intel Core 2 Duo, Intel Atom, Intel

1Intel discusses memory-ordering models, which are in fact memory consistency models
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Core Duo, Pentium 4, Intel Xeon, and P6 family processors assume Processor Consistency
or a weaker memory consistency model. Intel also states that despite the fact that Pen-
tium 4, Intel Xeon, and P6 family processors support Processor Consistency, Intel does not
guarantee that future processors will support this model. To make software portable to
future processors, it is recommended that operating systems provide, e.g., critical regions
and APIs based on locking to synchronize access to shared memory in multiprocessor sys-
tems. Because of these statements, we think that supporting a weaker consistency model,
like Release Consistency [15], is acceptable in a general purpose system.

2.2.3 Weak Consistency

A weaker consistency model can be derived by relating memory request ordering to syn-
chronization points in the program. The Weak Consistency (WC), also known under the
name Weak Ordering, model [12] is an example of such memory consistency model.

The benefit is that multiple read requests can also be issued, but not yet completed, at the
same time. Reads can be bypassed by later writes in program order, and can themselves
complete out or order, thus allowing us to hide read latency. The motivation behind weak
consistency is that most parallel programs use synchronization operations to coordinate
accesses to data when this is necessary. Between synchronization points, programs do not
rely on the order of accesses being preserved [12].

In the Weak Consistency model there is distinction between ordinary shared accesses and
synchronization accesses. The first type of shared accesses considers accesses to shared vari-
ables that do not impact the concurrent execution of the program. Usually these variables
store the shared information between two or more processes. The second type of accesses
are the accesses to variables that control the concurrent execution of the program. These
synchronization variables are used to protect access to writable shared memory locations.
It is the programmer’s responsibility to ensure mutual exclusion for each access to a shared
memory location.

Conditions to ensure Weak Consistency are as follows (slightly different from [12, 15]).

• before a read or write is allowed to perform with respect to any other processor, all
previous synchronization accesses must be performed, and

• before a synchronization access is allowed to perform with respect to any other pro-
cessor, all previous ordinary read and write accesses must be performed, and

• synchronization accesses are sequentially consistent with respect to one another

2.2.4 Release Consistency

Release Consistency [15] is an even more relaxed model than Weak Consistency. It extends
Weak Consistency by distinguishing among types of synchronization accesses. Furthermore,
different ordering requirements can apply to different types of shared memory accesses.

First, let’s define conflicting accesses in Definition 2.7 and competing accesses in Defini-
tion 2.8.
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Definition 2.7. Two accesses are conflicting if they are to the same memory location, and
at least one of the accesses is a write.

Definition 2.8. A conflicting access is competing if two conflicting accesses are not ordered,
they may execute simultaneously and thus causing a race condition.

All shared accesses that are not included in the set of competing accesses are called non-
competing accesses. A conflicting access can be made non-competing by using synchro-
nization. All accesses that are used to enforce an ordering among processes are called
synchronization accesses. The categories of shared accesses and their relations are shown
in Figure 2.3.

shared access

non-competingcompeting

synchronization non-synchronization

releaseacquire

Figure 2.3: Categories of shared memory accesses in Release Consistency [15]

A synchronization access can be either an acquire or release operation. An acquire operation
is performed to gain access to a set of shared locations, and is, e.g., a lock operation or
a process spinning on a flag to be set. A release operation gives tasks waiting on an
acquire operation the opportunity to perform the acquire operation. Related to the acquire
operation, the release may be implemented as an unlock operation or a process setting a
flag.

The purpose of a release is to inform other processes that accesses that appear before the
release in program order have completed. On the other hand, the purpose of an acquire is
to delay future access to shared data until no process is accessing the shared data, that is
protected by this acquire.

A set of sufficient conditions for Release Consistency is as follows [40].

• before a non-competing access is allowed to perform with respect to another processor,
all previous acquire accesses must be performed, and

• before a release access is allowed to perform with respect to another processor, all
previous non-competing accesses must be performed, and

• competing accesses (e.g. acquire and release accesses) are processor consistent with
respect to one another

2.2.5 Streaming Consistency

J.W. van den Brand et al. propose a relaxed memory consistency model, called Streaming
Consistency [40]. This memory consistency model is targeted at the streaming domain and
is weaker than Release Consistency.
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In Streaming Consistency is interprocessor communication limited to sharing units of data
through circular buffers (FIFO) that are located in shared memory. These buffers can have
multiple producers and consumers, although, for predictability, the number of producers
will be limited to one producer for each buffer. Figure 2.4 shows the abstraction model for
streaming consistency.

T1 T2

FIFO

Figure 2.4: Streaming Consistency abstraction model

Different from Release Consistency are, in Streaming Consistency, synchronization oper-
ations explicitly related to circular buffers. Moreover, shared accesses to a certain buffer
B are only allowed in a critical section that is entered by acquire(B) and exited by re-
lease(B). This relation enables more reordering opportunities. A set of sufficient conditions
for Streaming Consistency is as follows [40].

• before an access to a circular buffer b is allowed to be performed with respect to any
other processor, the associated acquire access, acquire(b), must be performed, and

• before a release(b) access is allowed to perform with respect to any other processor,
the access to the circular buffer b to which the release is associated must be performed,
and

• acquire and release accesses for a certain circular buffer are processor consistent with
respect to one another, and

• circular buffers are only allowed to be accessed within critical sections

Streaming Consistency allows reordering of critical sections that are associated to different
buffers, i.e., such critical sections are allowed to overtake each other. This is different in
Release Consistency, where critical sections are allowed to overlap, as long as all accesses
within the synchronization section are performed before the following release and after the
preceding acquire, but never overtake each other.

Streaming Consistency enables more pipelining possibilities, but interprocessor communi-
cation is limited to sharing data through circular buffers. This makes it difficult to apply
programs sharing a dynamic data structure, e.g., a tree. Fortunately, a program, writ-
ten with Streaming Consistency in mind, runs correctly on a Release Consistent (or even
stronger) MPSoC because a program written for a weaker model executes correctly on a
system supporting a stronger model [40].

In order to exploit the additional pipelining possibilities, the programming model is adapted.
A programmer has to explicitly program shared memory communication through circu-
lar buffers in critical sections. Streaming Consistency won’t complicate programming for
streaming applications because those applications already expose explicit communication.

However, this restricted programming model can cause problems if one wishes to execute
third-party software. It may be that this software is not written with explicit interprocessor
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Figure 2.5: Comparison of ordering constraints of accesses in a single processor in different
consistency models

communication through FIFO buffers. As a consequence, this software can (i) either not
be executed if shared data is stored in caches, or (ii) the program has to be rewritten such
that all interprocessor communication is through FIFO buffers.

For general purpose applications, we expect it is better to support Release Consistency,
as it still enables many performance gains over the stronger memory consistency models.
In addition to this, it is possible to implement Pthreads on top of a Release Consistent
MPSoC. A variant of FIFO communication, as proposed in Streaming Consistency, can be
seen as an optimization for our software cache coherence protocol.

Release Consistency is attractive to support, because it allows us to provide an efficient
software cache coherence protocol, while it does not significantly restrict the hardware. It is
allowed to exploit write buffers to hide write latency, and consequently reads can overtake
writes, thus not enforcing execution in program order. Write atomicity and global visibility
of writes is not required, consequently, a network-on-chip can be used without taking specific
precautions for (hardware) cache coherence.

2.2.6 Comparison of consistency models

Figure 2.5 shows the ordering constraints for the given memory consistency models as seen
on one processor. It can be concluded that indeed ordering constraints are omitted if a
weaker consistency model is compared with a stronger, or stricter model. Each ordering
constraint that is removed can be seen as a potential performance gain.

Figure 2.6 shows relations between cache coherence protocols and memory consistency mod-
els. The cache coherence protocols, in general, will be discussed in Section 3. From Fig-
ure 2.6 it can be concluded that, to the best of our knowledge, most hardware protocols
target at supporting memory consistency models closer to the strict memory consistency
models, and software cache coherence protocols target at weaker memory consistency mod-
els. A cache coherence protocol together with the hardware always have to be related to
a memory consistency model, otherwise a programmer is not able to reason about possible
outcome of software.
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Figure 2.6: Memory consistency models and cache coherence protocols

2.3 Sequential Consistency with a NoC

Memory consistency models pose different requirements to the hardware. This section will
discuss issues with Sequential Consistency, in combination with a NoC.

A sufficient condition for Sequential Consistency is write atomicity, and write atomicity
is enforced by the third condition as given in Section 2.2.1. Write atomicity implies that
reads and writes that a processor issues after a write W do not become visible to other
processors before they too have observed the write W. Write atomicity can be an expensive
requirement for the hardware, and we will show that it is undesirable in combination with
a NoC. Figure 2.7 illustrates the order between reads and writes that is enforced by write
atomicity. Each processor issues reads and writes, and a write operates as a barrier, i.e.,
enforcing a single order between all writes for all processors.

P1

P2

P3

W

W

W

R

R

R R

R

R

R

Figure 2.7: Write atomicity

Ensuring that writes appear in one single order to all processors is difficult and undesirable
in a NoC. Example 2.2 which is related to Figure 2.8 illustrates this issue.

Example 2.2. Three processors, P1, P2, and P3 are connected to shared memory through
a NoC. Each processor observes a different latency to the memory, L1, L2, and L3. Assume
P1 and P3 both issue a write to a location simultaneously. Write atomicity requires that all
processors observe writes in one single order, how can we ensure that all processors observe
all writes in one single order? Apparently a central directory, called D in Figure 2.8, is
required, and this central directory is responsible for serializing all writes. However, this
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Figure 2.8: Write atomicity in a NoC

example shows exactly why a directory is undesirable in combination with a NoC. A NoC
tries to handle as many memory accesses as possible in a given time span, by handling them
in parallel. Unfortunately, a central directory will limit the parallelism that is achievable.

The SGI Origin System [10, 23] relies on a directory and cache controllers to serialize
memory accesses. SGI Origin’s cache coherence protocol ensures that all memory operations
complete in program order and it guarantees write atomicity. Write atomicity is ensured
by providing the appearance of atomicity by not allowing access to updated values until
invalidation acknowledgements from all processors have been received. As a consequence,
no processor can see the new value until it is visible to all processors. This is difficult
to achieve efficiently, as a high number of acknowledgements are required, consequently
generating a lot of traffic in the NoC.

Ensuring Sequential Consistency at the granularity of individual memory accesses is difficult.
BulkSC [9] provides a Sequentially Consistent MPSoC based on a directory, an arbiter and
it enforces Sequential Consistency on the granularity of groups of memory accesses. BulkSC
groups sets of consecutive memory accesses in chunks, and these chunks appear to execute
atomically and in isolation. If Sequential Consistency is enforced at chunk granularity, then
it appears that Sequential Consistency is provided at the granularity of individual memory
accesses [9].

Chunks have to be committed after execution, which means that the writes performed in a
chunk become visible to all other processors. An arbiter is responsible for allowing chunks
to commit. This arbiter checks, whether accesses from chunks do not overlap with reads or
writes from other chunks executing simultaneously. For instance, a chunk reading or writing
location X and another chunk writing location X are not allowed to execute concurrently. If
a chunk C1 commits, it sends a commit request to the arbiter. This arbiter checks whether
chunk C1 has read or modified locations that have been modified by other chunks; if there
is no overlap of accesses to memory locations, then the chunk is allowed to commit and
the modified locations are submitted to the directory in order to ensure cache coherence.
If there is overlap the chunk is forced to restart execution, and because of the directory it
fetches the most recent values.

The hardware required by BulkSC is expensive to implement. Furthermore, it is difficult
to guarantee performance, because speculative execution of chunks makes it hard to derive
performance bounds. Ensuring Sequential Consistency efficiently in a NoC is difficult, and
maybe even unnecessary. Release Consistency is expected to be easier to implement effi-
ciently in a NoC, and requiring explicit synchronization in software does not pose significant
limitations.
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Existing cache coherence protocols

This section discusses several cache coherence protocols and their classification. A brief
explanation of these protocols can help understanding why the protocols are not suitable
to be applied in a heterogeneous MPSoC with a NoC.

This section is organized as follows. Section 3.1 proposes a classification for hardware cache
coherence protocols and software cache coherence protocols. Followed by Section 3.2 which
discusses protocols that belong to the first class, hardware cache coherence protocols. Lastly,
Section 3.3 discusses several protocols and approaches that belong to the class of software
cache coherence protocols.

3.1 Classifying cache coherence protocols

In the introduction we have already mentioned hardware cache coherence protocols and
software cache coherence protocols. However, we have not defined what exactly the differ-
ence is between a hardware and a software cache coherence protocol. This section attempts
to provide a clear classification.

In [39] hardware protocols are loosely classified as: hardware approaches make the mainte-
nance of coherence fully transparent to all levels of software. Whereas software protocols
are loosely classified as: software approaches lift the transparency of the problem above
the operating system or compiler, so hardware support is less complex, generally these
approaches restrict the programming model more than hardware approaches.

The classification from [39] results in the issue that, for protocols such as DASH directory
[24], it is not entirely clear whether it belongs to the class of hardware protocols, or to
the class of software protocols. A directory-based cache coherence protocol is expected to
belong to the class of hardware protocols because it relies on the directory in hardware, but,
the DASH protocol relies on both the directory in hardware and explicit synchronization
operations in software. As a consequence the DASH directory protocol is not completely
transparent to the programmer, and thus, according to [39] DASH is not a hardware pro-
tocol.

We attempt to provide a clear classification and this classification is based on whether
hardware or software initiates actions to ensure cache coherence. For example, initiating
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cache coherence actions by hardware corresponds to really performing these cache coher-
ence operations in hardware. As a result, if a protocol, through software calls, requests
hardware controllers to perform cache coherence operations, then the protocol fits in the
class of hardware cache coherence protocols, because the cache coherence operations itself
are handled by hardware controllers. It is important to note that the minimum hardware
requirement for all software protocols, cache maintenance operations executed on the pro-
cessor, in fact is part of the software. For example the cache maintenance operations, clean
and invalidate, are part of the standard instruction set of ARM9 processors.

Cache coherence protocols can be roughly divided into two classes, hardware cache co-
herence protocols and software cache coherence protocols. Protocols are classified based
on whether hardware or software initiates cache coherence actions. Some protocols, e.g.,
DASH directory, should belong to the class of hardware cache coherence protocols but also
require specific features in the software. As a consequence there is a third class, which we
call hybrid cache coherence protocols. All protocols that are mainly hardware protocols,
but also require features similar to software protocols, and vice versa, belong to this class
of hybrid cache coherence protocols.

The DASH directory protocol is a hybrid cache coherence protocol according to the new
classification. The cache coherence operations are handled by the directory, which is im-
plemented in hardware. All caches in the MPSoC require protocol support in the cache
controller and these controllers and the directory also react to network transactions to
maintain cache coherence, which is transparent to the software. However, because DASH
supports Release Consistency it requires the software to contain explicit synchronization,
because it only guarantees completion of memory accesses before the release of a critical
section. Consequently it is a hardware cache coherence protocol, with some requirements
to the software.

All cache coherence protocols that rely on software to initiate and handle cache coherence
operations belong to the class of software cache coherence protocols. An example is our
cache coherence protocol, which calls cache coherence operations on each synchronization,
without requiring administration in either hardware or software. In addition, these cache
coherence operations are local to a processor, whereas in a hardware protocol a processor
can initiate cache coherence operations on other processors. Other examples are given in
Section 3.3 which discusses for instance Conditional invalidation [37] and Shared regions
[4], which both initiate cache coherence operations by software calls, after consulting a
software-based administration.

3.2 Hardware cache coherence

This section discusses concepts from the class of hardware cache coherence protocols, namely
snooping-based protocols and directory-based protocols. However, a specific implementa-
tion of a directory-based cache coherence protocol could belong to the class of hybrid cache
coherence protocols, e.g., DASH directory.
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3.2.1 Snooping protocols

A hardware solution for the cache coherence problem discussed in [10, 19] is a snooping
based cache coherence protocol. This protocol targets, but is not limited to, multiprocessor
systems as shown in Figure 2.1, in which the interconnect is a bus. Because of the nature
of a bus, each processor can observe every bus transaction and all actions are serialized
because only one processor can have access to the bus at a point in time. When a processor
issues a request to its cache, the cache controller examines the contents of the cache and
takes an appropriate action, which may include generating bus transactions, e.g., requesting
data from the shared memory. Coherence is maintained by having all processors “snoop”
the bus and monitor all transactions, and taking appropriate actions based on relevant bus
transactions. Figure 3.1 [10, 16] illustrates this situation.

P1 Pn

$ $

Shared Memory

...

Bus snoop

Cache to
Memory
transaction

Figure 3.1: A bus-snooping cache coherent multiprocessor

The key properties of a bus that supports cache coherence are the following. Firstly, all
transactions that appear on the bus must be visible to all cache controllers. Secondly, the
transactions are visible to all controllers in the same order.

The simplest illustration of the snooping protocol, given in [10] and shown in Figure 3.1, is
a system that has single-level write-through caches. Every write operation causes a write
transaction to appear on the bus, which causes write propagation. As a result of these
transactions every processor observes every write. If a processor’s cache, say of processor
P1, observes a write to a memory location X which is stored in its cache, it either invalidates
its copy of X (in an invalidation-based protocol), or the copy of X is updated in the cache
(in an update-based protocol). In either case, on the next read of X by processor P1 the
most recent value will be returned, either because of a read miss or because of the updated
value in its cache. With write-through caches the shared memory will always have the most
recent data, so the cache does not need to take cache coherence actions on a read.

The main problem with this simple write-through system is that every write goes to memory,
potentially requiring a high memory bandwidth, which is why most modern processors use
write-back caches. All writes that are unnecessarily put on the bus consume precious
bandwidth, which leads to poor scalability. This led to the design of several snooping based
protocols that targeted at MPSoCs with write-back caches. Examples are, invalidation-
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based protocols, e.g., MSI and MESI, and update-based protocols, e.g., Dragon. These
protocols will not be discussed here as a snooping-based approach is not suitable to be
applied in an MPSoC with a NoC; explanation of these protocols can be found in [10].

We are aiming at a scalable software cache coherence protocol for heterogeneous MPSoCs
with a NoC. This makes it undesirable to use a snooping based protocol, as a snooping
based protocol requires write propagation and write serialization. Although it is possible
to provide global visibility of writes by, e.g., broadcasting each write, it is very costly
and undesirable. Write serialization is only concerning writes to a single location. Write
atomicity enforces one single order of writes to any location, but this is very hard to achieve
in a NoC, which is already discussed in Section 2.3.

3.2.2 Directory protocols

This section discusses an example directory based cache coherence protocol [10, 19]. A brief
overview of the operation of a directory based cache coherence protocol will be given by
taking a very simple directory organization as an example, see Figure 3.2. All processor’s
caches are in write-back mode.

When a processor P1 incurs a cache miss, a request for information is sent to the directory.
For instance on a write miss, the directory identifies which processors have a copy of the
written location and invalidate or update messages (depending on the policy) may be sent to
these processors. Because these messages can be sent through disjoint paths in the network,
and thus are potentially reordered, each receiver needs to acknowledge the messages, and
the sender has to wait for all acknowledges to be performed, before performing the read
or write. The basic operation of the simple directory based protocol will be illustrated in
Example 3.1 and Example 3.2.

P1 Pn

$ $

Shared Memory

...

Interconnect

Directory

Figure 3.2: A directory-based cache coherent multiprocessor

Example 3.1. See Figure 3.3(a). Let processor P2 hold a block X. Processor P1 tries to
read X, but incurs a read miss. The proper action is that P1 sends a read request (1) to the
directory. The directory responds (2) with the identities of all sharers of the block. A sharer
is a processor that has a valid copy of the block in its cache. If there are no sharers, then
the directory responds with the data that is requested. In this example only P2 is sharer of
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P1
requestor

P2
sharer

1. Read request

3. Read request

2. Response
with sharer id

4. Send data

Directory

(a) Read miss to a block in modified state
in a cache

P1
requestor

P2
sharer

1. Write request

3. Invalidation request

2. Response
with sharer id

4. Acknowledge

Directory

(b) Write miss to a block that is stored in
another cache

Figure 3.3: Basic operation of a simple directory

X. Processor P1 sends a read request (3) to sharer P2, and P2 sends the requested data in
a response message (4).

Example 3.2. See Figure 3.3(b). Let processor P2 hold a block X, and processor P1 wants
to modify X. If P1 concludes from the state of its cache that other processors have a copy
of X, or P1 doesn’t have a copy of X, a write miss will occur. P1 sends a write request to
the directory, and the directory replies with the identities of all sharers. In this case only
P2 has a copy of the block, and P1 sends an invalidation request to P2. Because P1 is not
allowed to write before the invalidation has actually been performed, it has to wait for an
acknowledgement of each sharer. The copy of X will be updated in P1’s cache upon the
write, and the directory sets the state of P1 to sharer of X.

Although this example showed an extremely simple directory based protocol and many
improvements have been made, we think this example illustrates the notion of directory
based protocols. The idea stems from the introduction of directories in [8] and it has been
experimented with in the DASH project [24]. According to the latter research project
the directory can be quite costly, because it implements a logically centralized directory.
The overhead in size could reach 20% of total memory according to [24]. Additionally
the directory has to receive all requests initiated by read and write misses. Although the
directory can be physically distributed, when the same memory location is being accessed
extensively, the directory still forms a bottleneck, that could easily cause contention in the
NoC. Additionally, as we need to consult the directory for reads and writes the memory
access latency will be increased significantly.

3.3 Software cache coherence

The idea behind software cache coherence protocols is to invalidate, by software, a cache line
when accessing shared data that is known to have changed by a different process. Several
different approaches in the class of software cache coherence protocols have been developed.
A survey of software solutions is given in [38], which proposes a classification of software
cache coherence protocols.
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The classification is made based on several criteria, of which we only discuss two criteria, the
first is dynamism, which denotes whether decisions about cache coherence operations can
be made at compile time (statically), or at run-time (dynamically). At compile time could
either be, during design time, where the cache coherence operations are inserted by the
programmer, or during the compilation process, where the cache coherence operations are
inserted by the compiler. A second criterium is selectivity, which describes whether cache
maintenance operations are done on the entire cache, or on regions of the cache (selectively).

In this short overview of related work in software cache coherence protocols we only consider
software protocols that do not rely on a special compilation process that, e.g., determines
shared accesses and inserts cache coherence operations. In our software cache coherence
protocol decisions about cache maintenance operations are made statically; the programmer
is responsible for inserting synchronization operations in the program, and cache coherence
operations are performed on each synchronization operation.

To the best of our knowledge very few papers have discussed a software cache coherence
protocol since the survey in [38], still most research focuses on a hardware approach. In this
report two related projects will also be discussed, namely [29] which proposes a software
oriented solution to avoid cache coherence issues and [40] which presents an efficient software
cache coherence protocol for a novel memory consistency model (Streaming Consistency, see
Section 2.2.5). The proposed software cache coherence protocol for Streaming Consistency
is similar to one of the optimizations of our software cache coherence protocol, which will
be discussed in Section 5.

3.3.1 Conditional invalidation

Tartalja et al. [37] propose a class of software protocols for cache coherence in multipro-
cessors with shared memory. Three cache coherence protocols are introduced and each
protocol gradually performs better in terms of lowering the number of invalidations, by
omitting invalidation in case the shared data hasn’t been modified since the last access by
a processor. We are only interested in their best protocol, which is Version Verification.

Shared data is stored in segments, i.e., a segment is the unit of data sharing, and access to
a segment is protected by a critical region. Shared segments are only accessed in critical
regions. More specifically, a shared segment is explicitly linked to a critical region. Decisions
about invalidation of the shared segment are made upon the entry of a critical region.

The pseudocode in Algorithm 3 (taken from [37]) represents the idea of the Version Verifi-
cation scheme. The shared memory stores the version number of each shared segment in the
shared memory, on entry of a critical region this version number is fetched from the memory
and compared with the version number local to the process (which denotes the version of
the shared segment when it was accessed last). Example 3.3 and Figure 3.4 together show
an example of accessing a shared segment S in this protocol.

Example 3.3. This example is related to Figure 3.4. Assume an MPSoC with private write-
back caches. A processor tries to access a shared segment S for both reading and writing. No
process is currently accessing segment S, thus Enter Region is allowed to perform. The last
time when segment S was accessed by this processor its version was 3, but the current version
in the memory is 5. As a result, Enter Region decides to invalidate all lines belonging to
shared segment S. Because this processor is requesting write access, the segment version will
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Algorithm 3 Entry and exit procedure of a critical region

Enter region(processor, access mode)

Entering activities (e.g. synchronization);
if (current version of the shared segment
is different of the last version of the same
segment used by the processor) then

Invalidate cache lines belonging to the
shared segment;
if (access mode = Read Only) then

Update private evidence of the shared
segment version;

end if
end if
if (access mode = Read Write) then

Increment segment version;
Update private evidence of the shared
segment version;

end if

Exit region
/* in case of a write-back cache */
Copy cache lines belonging to the shared
segment into the shared memory

Enter_Region
read_write

Exit_Region

access
shared

segment(S)

Private 

segment version

Version(S) = 3
Version(S) = 6

Segment version

Version(S) = 5
Version(S) = 6

Explicitly linked

Explicitly linked

Shared segment 

only accessed 

within critical region

Invalidate(S)

Clean(S)

Figure 3.4: Accessing a shared segment under Version Control
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also be incremented. After completing Enter Region the shared segment will be accessed, and
following these accesses Exit Region will be executed, i.e., cleaning the cache and copying
back the written data to the shared memory.

Major differences compared to our software cache coherence protocol are that we don’t
need to explicitly link specific shared accesses to a specific critical region, except for FIFO
communication. Additionally, we don’t need an administration about shared segments in
the memory. More importantly, if an MPSoC relies on a specific programming model for
cache coherence, then it is impossible to correctly execute software written without using
this programming model.

3.3.2 Shared regions approach

A second software cache coherence protocol is called Shared regions [4] that is based on
shared regions, which are loosely defined as a set of memory locations that are accessed
together (e.g. within the same task) and in the same mode (reading or writing). Shared
regions are assumed to be cache line aligned, since cache maintenance operations usually
operate at cache line granularity.

In [4] two algorithms for cache coherence are presented. Only the second algorithm, cache-
validate, will be discussed here as it tries to minimize the number of invalidations by ex-
ploiting administration in the shared memory.

For generality it is assumed that a write-back cache is used, but of course a write-through
cache is also supported. Four synchronization primitives are presented:

• ReadAccess requests read-only access to a shared region

• ReadDone signals that the process has finished accessing (only reading) the shared
region

• WriteAccess requests exclusive writing access to a shared region S (waits on all
current ReadAccess to S to complete)

• WriteDone signals that the process has finished accessing (reading and writing) the
shared region

In the cache-validate algorithm a primitive only performs invalidations if it is required
(according to the administration). The administration is put in shared memory and is
uncached. The administration contains the status of shared regions for every cache in the
MPSoC. The status is either HI, which means the cache has an invalid (or no) copy of the
shared region, or HV which means that this processor has a valid copy in the background
memory. Invalidations are performed on entry of a critical region; shared segments are only
accessed during critical regions, and the accessing mode (reading and/or writing) is known.
Pseudocode of the algorithm is given in Algorithm 4.

The algorithm is based on the fact that shared regions are explicitly linked to critical regions.
Upon entry of a critical region it is known whether the region will be read from or written
to. The decision about invalidation is based on the administration in the memory, and the
administration is only updated on entry of a critical region (processor only updates its own



3.3. Software cache coherence 25

Algorithm 4 ReadAccess and WriteAccess, WriteDone primitives in Cache-Validate. Re-
gion R is accessed by processor P

ReadAccess and WriteAccess

if (status[P] == HI) then
invalidate(R)

end if
status[P] = HV

WriteDone
clean(R)
for ((each cache 6= P) and (status[cache]
== HV)) do

status[cache] = HI
end for

administration), or on exit if the region has been modified (processor updates status of all
caches; WriteAccess is mutually exclusive). For an example of the cache-validate algorithm
see Example 3.4 which is related to Figure 3.5.

read
shared

region(R)

Explicitly linked

Explicitly linked

Shared region 

only accessed 

within critical region

ReadAccess

P1

read+write
shared

region(R)

Explicitly linked

Explicitly linked

Shared region 

only accessed 

within critical region

Invalidate(R)

WriteAccess

P2Administration for R

Status P1 P2

HV HI

HV HV

HI HV

ReadDone WriteAccess waits on ReadDone

Clean(R)

WriteDone

1

2
3

12

4

Figure 3.5: Example of cache-validate algorithm. Two processors access the same region
R, P1 for reading, P2 for writing.

Example 3.4. This example is related to Figure 3.5. Assume shared region R is put in
write-back cacheable memory. Two processors access the same region R. First, R is accessed
for reading only by P1. P1 checks the status of its cache in the administration, it reads HV
which means that invalidation is not needed. ReadAccess returns and the critical region is
entered. Then, while P1 is in its critical region, processor P2 tries to get WriteAccess, but
has to wait on P1 to finish reading. P1 signals P2 that it has finished reading (1), and the
administration does not have to be updated.

P2 checks the adminstration (2), and takes the appropriate action to invalidate region R
(3), updates the administration as it has obtained a valid copy of R (4), and enters the
critical region in which region R is modified. Then, in WriteDone region R is cleaned (1),
and afterwards the administration for all caches is updated (set to HI, as the other caches
contain an invalid copy of R) (2).

Although this algorithm performs only necessary invalidations, it may only be useful if
(more than) two threads are alternatively reading a shared region R in a critical region
when it hasn’t been modified in between two reads of one process. A major problem with
this approach is that, as for conditional invalidation, this algorithm can not be applied to
software written without this specific programming model. If there is no coupling between
shared data being accessed and a critical region, and, more specifically, if the access mode
is not explicit then the cache-validate algorithm can not be applied. Again, similar to
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conditional invalidation (see Section 3.3.1) our software cache coherence protocol does not
use an administration in shared memory.

3.3.3 Software cache coherence in a NoC based MPSoC

A recent paper [29] discussed cache coherence and memory consistency issues in NoC based
shared memory MPSoCs, which makes it relevant to our work. In their work they propose
a software oriented solution, in which the cache coherence problem essentially disappears.
Their approach is based on the fact that the system integrator knows what data in the
software is being shared among processes and what data is private to a process. Based
on this knowledge the data has to be separated into shared and private regions, for which
shared regions are mapped to noncacheable regions of the memory, whereas the private
regions can be mapped to cacheable regions. The idea behind leaving shared data uncached
and local non-shared data cached has already been discussed in [44].

Their idea is to support Pthreads [1] and the following conditions have to be met:

• Usual automatic variables are allocated by the compiler on the thread stack, so they
are strictly local

• Dynamically allocated local variables should be allocated using local malloc(), which
allocates memory in a private region

• Dynamically allocated shared variables should be allocated using shared malloc(),
which allocates memory in a shared region

• Thread global variables, known as the thread specific data area in the POSIX standard
[1], must be allocated using local malloc().

• By definition, the C global and static variables are shared. This implies that the .data
and .bss sections of the executable must be loaded in shared space.

We agree with the approach of introducing several mallocs and several heaps, one will be
used for private data, the other heap will be used for shared data. The responsibility for
the programmer or integrator to separate shared and private data is not expected to be a
problem. However, leaving shared data uncached can lead to a severe performance penalty.
We see separating shared and private data as an attractive optimization for our software
cache coherence protocol.
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Experimental hardware and software platform

This section describes the hardware platform on which we have implemented our software
cache coherence protocol. Knowledge about the hardware and software platform is impor-
tant, as this is a prerequisite to understand the implementations and its constraints.

This section is organized as follows. First we will briefly discuss the MPSoC, followed by a
description of the ARM9 processors that are used. Then, the Celoxica RC340 with a Xilinx
Virtex 4 FPGA will be described. Lastly, we will discuss the software platform, and we will
focus on, the operating system, task daemon, load balancing, and the cache maintenance
operations.
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Figure 4.1: Multiprocessor system-on-chip architecture

4.1 Multiprocessor system on chip

Figure 4.1 shows an overview of the MPSoC architecture that is used throughout this
project. This system consists of two ARM926EJ-S processors that are directly connected
to the Time Division Multiplexing (TDM) arbiter on the shared memory. We have imple-
mented variants of this MPSoC, e.g., in which the interconnect is a NoC instead of directly
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connected, or where an SDRAM is used as an additional shared memory, thus essentially
constructing an MPSoC with a distributed memory. If any of the variants is used in an
experiment it will be explicitly mentioned.

Our MPSoC has in total 16 MB of shared memory, which consists of two 8 MB SRAMs.
Both processors are directly connected to the memory controller which gives each processor
access to the memory according to a TDM arbitration scheme. Each processor is given an
equal share of the total budget, in our case 50% of the replenishment interval is given to
each processor. If a processor does not consume its slice it is wasted.

In the memory hierarchy there will be no reordering of memory accesses. All memory
requests are put in a buffer, and the requests will be serviced in order. Each memory
request, a read or a write, will be completed in memory before a new read or write is
fetched from the buffer.

Memory accesses issued by a processor will not be reordered in the interconnect, not even in
the Æthereal NoC. All accesses will be serviced in the order they have been issued by a pro-
cessor. This is an important property of our MPSoC, as we can omit the acknowledgement
of write completion.

The Æthereal NoC that is used in variants of the MPSoC is briefly discussed here. The
MPSoC is shown in Figure 4.2, each processor is connected to the NoC and to a private
8 MB instruction memory. All peripherals, two 8MB SRAMs, and a 256MB SDRAM are
connected to the NoC, and can be connected to each processor as soon as the network
connections are set up. The connections in the network are currently set up during initial-
ization by processor PE1, which essentially creates FIFO paths from, e.g., a processor to
a memory. As a consequence all transactions from the processor to the memory will take
the same physical path through the network, and no reordering will take place. Although
the network can be reconfigured during execution, and transactions can be pipelined, this
is not implemented and/or exploited in our current MPSoC.
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Figure 4.2: Multiprocessor system-on-chip architecture with Æthereal NoC
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Processor mode Description
User Normal program execution mode
FIQ Supports a high-speed data transfer or channel process

Used for task switching
IRQ Used for general-purpose interrupt handling
Supervisor A protected mode for the operating system

(entered upon software interrupt)
Abort Implements virtual memory and/or memory protection
Undefined Supports software emulation of hardware coprocessors
System Runs privileged operating system tasks

Table 4.1: ARM processor modes

4.2 ARM9 processor

We have embedded two ARM926EJ-S processors in our MPSoC. The ARM9 processors
have a ARMv5TEJ architecture, and have a Harvard architecture. ARM is a 32 bit RISC
processor architecture, and ARM926EJ-S has a 5 stage pipeline, which consists of fetch,
decode, execute, data, and write-back.

The standard instruction set can be extended by adding so-called coprocessors. For example
the system control coprocessor (CP15) manages the memory management unit (MMU),
caches, translation lookaside buffer (TLB), and the write buffer. The only defined system
control coprocessor instructions are:

• MCR instructions to write an ARM register to a CP15 register.

• MRC instructions to read the value of a CP15 register into an ARM register.

In ARMv5 architecture these instructions can only be executed in privileged mode. The
ARM processor can execute in 7 different modes, which are shown in Table 4.1. All modes
other than user mode are known as privileged modes. They have full access to system
resources and can change mode freely.

Our ARM926EJ-S implementation is equipped with on-chip L1 cache which is connected to
external SRAM. The processor has a 16kB instruction cache and a 16kB data cache, which
consists of four ways with each 128 cache lines of 32 bytes. The instruction cache is read-only,
whereas the data cache is read/write with write-through or write-back policy. The policy
can be set differently for regions of the addressing space; in our implementation we split
the addressing space in sections of 1MB, for which we can set the policy to noncacheable,
write-through, or write-back. Additionally ARM926EJ-S supports lock-down instructions to
lock critical sections of code and data in cache.

Caches and write buffers are used to improve average system performance by hiding access
latency to the background memory. The basic unit of storage in a cache is the cache line
which contains 32 bytes of data. Cache operations operate on the granularity of cache
lines. Cacheable regions, and whether these are write-through or write-back cacheable, are
specified through settings in the MMU.

Let’s define what happens when there is a read miss in a cacheable region. Typically ARM
allocates a line in the cache and fetches the words to put in the cache line from the shared
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memory. The critical word is fetched first which enables to start computation with the
critical word, while the rest of the cache line is still being transferred. In case of a write
miss, in ARMv5, the data is written to the write buffer without allocating a cache line; in
ARMv6 it is possible to instruct the processor to allocate a cache line upon a write miss.

When the processor reads data that is valid in the cache a cache hit occurs, and the data
is fetched from the cache. In case of a write hit, the actions taken depend on the cache
policy. If the cache is set as write-through; the data is written to the background memory
(typically through a write buffer). If, on the other hand, the cache is set as a write-back
cache; only the contents in the cache are modified and the line is marked as dirty. This
means that it contains data that is more recent than the data in the background memory.
When the cache line is replaced by a different memory address, or when a clean operation
is called, the data is copied back to the background memory.

4.3 Celoxica RC340

The Celoxica RC340 [7] is used for prototyping and development of high-performance, high-
throughput FPGA and soft-core microprocessor-based applications. The RC340 includes
a 16M Gate Xilinx Virtex 4 FPGA, direct access to 32 MB of pipelined SRAM, a DIMM
socket for DRAM and is supported with a wide range of video I/O and peripherals.

We have mainly used 8 user-programmable LEDs for debugging purposes. Through an API,
provided by Celoxica, we were able to download the memory contents, which has been quite
useful during debugging. During the project we have extended our hardware platform to
use more functionalities provided by Celoxica, e.g., sending debug messages from the board
to the computer through RS232.

4.4 Software platform

This section discusses the software platform. Each part of the software is able to access the
entire addressing space, and there is no memory protection. The GCC compiler is used to
compile C code for ARM processors, and in our setup we will build three binaries, the first
is put into the instruction memory of PE1, the second is put into the instruction memory
of PE2, and the third is put into the shared memory.

The software consists of roughly two phases, the configuration, and the execution phase.
The configuration will set up the processor, e.g., initializing the TLB, MMU, caches, stack,
and heap, before calling the main function that is implemented in C. The main function
belongs to the execution phase, and the processor is initialized during configuration in order
to execute software written in C. Additional initializations, e.g., initializing FIFO buffers,
shared heap, and the operating system, will be called from the main function.

4.5 Operating system

The operating system, or kernel, has already been used in previous projects and is slightly
adapted to make it applicable to our ARM9 MPSoC. Tasks, or threads, are created and
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activated in the kernel; at least one task needs to be started and executing forever before the
kernel is started. The scheduler in the operating system is a TDM scheduler, which gives
each task a slice of a specified length. During run-time it is allowed to dynamically create,
start, and stop tasks, as long as always at least one task is executing. Originally the TDM
scheduler gives a slice to a task, which is allowed to completely consume its slice, wasting
the slice if nothing useful is to be done, e.g., spinning idly on a lock or flag. Therefore we
have added a yield signal to the kernel, which is sent by the active task (which is the task
currently consuming its slice) and instructs the scheduler to perform a task switch. The
yield signal is added to the software at places where the task would spin idly otherwise,
e.g., when blocking on a lock.

The kernel is responsible for servicing task switches. During a task switch the values in the
processor’s registers are put on the active task stack, and that task stack is written back
to the memory. Then, following a round-robin fashion, the next task is chosen, whose task
stack is loaded from the memory, and the registers are restored to the values that were put
on its task stack and the newly scheduled task can continue execution. The task switch itself
is triggered by a fast interrupt request (FIQ), which is triggered by an external counter.

4.5.1 Task daemon

We have mentioned that, whenever the kernel is running, there has to be at least one task
that can be scheduled. Additionally we would like to have the property to arbitrarily start,
stop, and replace tasks. In order to do this we have introduced a task deamon. Two daemons
are executing in our MPSoC, one on each processor. Communication with a task daemon
is through a FIFO buffer.
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Figure 4.3: Task daemon

Figure 4.3 shows a processor, with n + 1 tasks. The first task is the task daemon, the other
tasks are T1 through Tn. The daemon receives commands, e.g., create/start/stop/remove
a task, through a FIFO buffer. The daemon is responsible for putting tasks into the gray
circles, which represent task slots, in which a task can be executed.

A second processor also has an active daemon, which is able to manage tasks on its own
processor. As our FIFO buffers only allow one writer, there has to be only one thread
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that can write into the FIFO buffer, this is for our applications not yet a problem. As for
example in the SPLASH2 applications there is only one process that creates threads. In the
future this should be changed, as there can be a higher need for load balancing; or when
multiple applications will be executed simultaneously.

4.5.2 Load balancing

In future projects, where the focus is likely to be more on performance, the need for load
balancing can arise. The current operating system, including the cache coherence oper-
ations, can be easily extended to support load balancing. First, it has to be possible to
migrate tasks from one processor to another processor. In our software framework it is
explicit where the stack of the active task, or another task, is put in the shared memory.
The actions that have to be taken to migrate tasks is given in Example 4.1.

Example 4.1. Suppose we want to migrate task T1 PE1 from processor PE1 to proces-
sor PE2. PE2 is already executing two tasks, and therefore T1 PE1 will be migrated to
T3 PE2 on PE2. The actions needed for migration are as follows. First, stop execution of
T1 PE1 and clean the range belonging to T1 PE1’s stack (assumed that stack is in write-
back region). Then, task daemon of PE1 will signal task daemon of PE2 that it wishes
to migrate T1 PE1. Task daemon of PE2 will create a new dummy task in task slot T3,
and the data from T1 PE1 will be copied to that slot, i.e., overwriting dummy data. Then
T3 PE2 can be started and the task has successfully been migrated.

The most challenging part of load balancing appears to be how to decide which processor
has the lowest load, and whether it is beneficial to migrate a task. A simple feasible solution
may be using a single work pool that contains tasks to be executed, and have a processor
fetching a task from the pool as soon as a slot becomes available. But with a work pool
there is not yet a need for migration.

4.6 Cache maintenance operations

The cache maintenance operations, clean and invalidate, are implemented through system
control coprocessor register instructions. These instructions can only be executed in a
privileged mode, therefore we will execute these instructions during a software interrupt
routine.

We use the following instructions for cache maintenance operations, taken from the ARM
Technical Reference Manual [25]. < Rd > contains the data which is required by the
instruction, e.g., modified virtual address (MVA), or set/way.

MCR p15,0,<Rd>,c7,c6,1 @ invalidate data cache line (MVA)
MCR p15,0,<Rd>,c7,c6,2 @ invalidate data cache line (set/way)
MCR p15,0,<Rd>,c7,c10,1 @ clean data cache line (MVA)
MCR p15,0,<Rd>,c7,c10,2 @ clean data cache line (set/way)
MCR p15,0,<Rd>,c7,c14,1 @ clean + invalidate line (MVA)
MCR p15,0,<Rd>,c7,c14,2 @ clean + invalidate line (set/way)
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The ARM9 cache consists of in total 512 cache lines and these lines are distributed over 4
ways having 128 sets/lines each. A line in the cache can be identified using a combination
of set and way, or by an MVA. This MVA corresponds to the contents of a cache line, and
if an invalidate MVA operation is called the cache controller first checks whether any of the
4 lines (each way) that can store the line corresponding to this MVA holds a copy of the
location that should be invalidated.

ARM also provides instructions to test and clean/invalidate the entire cache, and instruc-
tions to clean/invalidate the entire cache, but these instructions can not be used because
of predictability and composability issues, which will be discussed in Section 6.

Additional system control coprocessor instructions that are used in our system are:

MCR p15,0,0,c7,c10,4 @ DSB: ensure completion of memory accesses
@ flush write buffer

MCR p15,0,0,c7,c10,5 @ DMB: maintain order between memory access

Algorithm 5 illustrates the loop which is used to clean and invalidate an entire way. Im-
portant to note is that this loop is interruptible and that memory barriers are only needed
after the entire loop has finished. These memory barriers ensure that cache coherence op-
erations have been performed on all cache lines, before the barriers complete, which allows
the software interrupt routine to return.

Algorithm 5 Clean and invalidate entire way
Require: r2 = 128, r1 contains set/way, r0 = 0

while r2 > 0 do
MCR p15,0,r1,c7,c14,2 {clean + invalidate line (set/way)}
ADD r1,r1,0x20 {increment set}
SUB r2,r2,0x1

end while
MCR p15,0,r0,c7,c10,5 {DMB}
MCR p15,0,r0,c7,c10,4 {DSB}





5
A software cache-coherent Release-Consistent MPSoC

In previous sections we have discussed cache coherence, memory consistency and several
protocols and approaches to maintain cache coherence. This section proposes our tuneable
software cache coherence protocol. Our software cache coherence protocol is designed to
support Release Consistency, which is a weak memory consistency model that relies on ex-
plicit synchronization. This explicit synchronization enables the use of software instructions
to ensure cache coherence, as it is not required to ensure cache coherence on the granularity
of individual memory access, but on the granularity of synchronizations. Furthermore, it
is possible to implement standard communication libraries, such as Pthreads, on a Release
Consistent MPSoC.

First, we’ll start by explaining the basic software cache coherence protocol which poses
almost no restrictions to the software and hardware. This basic protocol will be gradually
altered by exploiting more information from the programming model, and these changes will
significantly increase the efficiency of the software cache coherence protocol. These variants
will show in what way the protocol performance can be tuned, e.g., by restricting the range
on which cache maintenance operations are performed, or by changing the programming
model.

Although we have implemented the cache coherence protocol on ARM9 processors and
some design decisions may be dependent on the ARM9 implementation, this protocol can
be implemented on any processor, as long as the processor can control its cache through
cache maintenance operations. Examples of processors that provide cache maintenance
operations are ARM processors, TriMedia VLIW mediaprocessors, and Xilinx MicroBlaze
soft core processors. Specific information about ARM9 processors and our MPSoC is given
in Section 4.

The rest of this section is organized as follows. Section 5.1 discusses the basic software
cache coherence protocol, followed by Section 5.2 which discusses the separation of shared
and private data, and its importance. Section 5.3 discusses the actions that are taken,
initiated by a synchronization operation. Section 5.4 discusses how the software cache
coherence protocol can be embedded in several programming models. Section 5.5 discusses
an optimization which lowers the impact of cache coherence operations on private data.
Lastly, Section 5.6 provides a brief summary of the proposed software cache coherence
protocol, and in addition to this it identifies tradeoffs in the software cache coherence
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Primitive Description
acquire Used to enter critical section, in which (shared) data is exclusively accessed;

entire cache will be cleaned and invalidated
release If a write-back cache for shared data is used: cache will be cleaned;

the lock for exclusive access will be released

Table 5.1: Primitives for Release Consistency and the basic software cache coherence pro-
tocol

protocol.

5.1 Basic software cache coherence protocol

It is important to note that key properties of our software cache coherence protocol are:

• Caches are only coherent on synchronization points

• Off-the-shelf processors and caches can be used, as long as the processor can control
the caches through cache maintenance operations, e.g., clean or invalidate

The protocol requires explicit synchronization in the software, this should not be a problem,
because most parallel programs use synchronization operations to coordinate accesses to
data when this is necessary. Between synchronization points, programs do not rely on the
order of accesses being preserved. This reasoning has been part of the motivation for Weak
Consistency [12], and is adopted by other weak memory consistency models.

It is the programmer’s responsibility to add synchronization operations, thereby ensuring
that shared data can not be simultaneously accessed by multiple threads while at least one
of the threads is modifying the data. These synchronization operations can be divided in
acquire and release operations, which are similar to the terminology of Release Consistency.

An acquire is performed before shared (competing) data can be accessed, and a release
is performed after the thread has completed accessing shared (competing) data. These
calls can be used to make competing accesses non-competing (see [15] or Section 2.2.4).
Therefore, the acquire operation has to be a blocking lock operation for obtaining mutual
exclusive access, and the release has to be a non-blocking unlock operation.

After performing an acquire, it is expected to read the latest values, therefore the acquire
consists of a lock, followed by a clean and invalidate operation. The latter operation ensures
that, if regions of the memory are put in a write-back cache, all modified data is copied to
the memory first, and then, all (shared) data is invalidated, ensuring that subsequent reads
will fetch the latest value from shared memory.

The release is used to make writes visible to other processors, which is done by a clean
operation, followed by a release of the lock, enabling processors waiting on an acquire to
enter their critical section. Independent of a write-through or write-back cache being used,
the shared memory is up-to-date when no thread is currently executing a critical region.
Therefore it is sufficient to perform invalidations on the entry or a critical region. The
synchronization operations have semantics as given in Table 5.1.
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Figure 5.1: An overview of the software cache coherence protocol

An overview of the protocol is shown in Figure 5.1. In this figure we mention cache main-
tenance operations on shared data, however, in the basic software cache coherence protocol
shared data is not explicit. Shared data may be scattered throughout the entire addressing
space, and as a consequence, it may be mixed with private data. It is not known which
memory locations will be accessed during the critical section, and consequently, on an ac-
quire the entire cache needs to be cleaned and invalidated, if regions of the memory are put
in a write-back cache.

The granularity of cache maintenance operations is very important for software cache coher-
ence protocols. False sharing, causing unnecessary evictions in protocols like MSI and MESI
is non-existent in software cache coherence protocols. However, software cache coherence
protocols can have a sharing problem, which can lead to incorrect results. This problem is
illustrated in Example 5.1.

P1 P2

1

Shared memory

2

3 4

Cache Cache

Figure 5.2: Sharing problem in software cache coherence protocols

Example 5.1. See Figure 5.2. Imagine two processors P1 and P2, both having a write-
back cache. P1 reads and modifies location X1, and P2 reads and modifies X2. X1 and
X2 are mapped on the same cache line, which is in this example the granularity of cache
maintenance operations. Assume both P1 and P2 hold a valid copy of the cache line in
their cache. If first P1 modifies its copy in the cache (1), and then P2 modifies its copy in
the cache (2), both cache lines are partially up-to-date. Let’s assume an eviction (or clean
operation) is performed on P1, then the cache line will be copied back to shared memory
(3). However, an eviction or clean operation on P2 (4) will overwrite the values written by
P1, which leads to incorrect behavior.
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The sharing problem illustrated in Example 5.1 can be avoided by changing the granularity
of cache maintenance operations, or ensuring that no two variables share a cache line.
The first would be possible if a cache maintenance operation would operate on, e.g., bytes
instead of cache lines and only modified bytes would be replaced in the background memory.
A second alternative would be forcing data structures to be cache line aligned. If data
structures are cache line aligned the maximum number of data structures that can be
mapped to a line is one, which can lead to inefficient memory usage.

Fortunately there is a third option to avoid the sharing problem. And this option is the most
promising, because the sharing problem is only an issue if write-back caches are used. An
easy way to avoid the sharing problem would be using write-through caches. Unfortunately,
a write-through cache requires more memory bandwidth than a write-back cache because
every write goes to shared memory. A major drawback of the basic cache coherence protocol
is the lack of information about shared data, forcing us to put the entire memory in write-
through caches to avoid the sharing problem, consequently requiring a lot of bandwidth.

5.2 Separation of shared and private data

The performance of the basic software cache coherence protocol can be increased signifi-
cantly by separating shared and private data in the address range. In the basic protocol it
was not possible to use write-back caches due to the sharing problem. It is preferable to
keep the stack in a write-back cache, because a lot of writes will be issued to this memory
region and these writes do never need to become visible to other processes as we assume
the stack to be private. The first optimization is separating shared and private data, which
enables us to put private data in a write-back cache (please note that there is no sharing
problem for private data), and put shared data in a write-through cache (which avoids the
sharing problem).

We assume that global variables are shared data and we propose that dynamic shared data
is allocated on a shared heap. Therefore, we provide two heaps, a private heap and a
shared heap. The first is mapped to a write-back cacheable memory region, and the latter
is mapped to a write-through cacheable region. This separation will decrease the memory
bandwidth requirements significantly compared to using a write-through cache only. Shared
data should still be accessed in a critical region, and upon entry only shared data has to be
cleaned and invalidated.

5.3 Entry and exit of a critical region in detail

Section 4 already described different instructions that can be used to clean and invalidate
the entire cache or parts of the cache. These instructions are used to provide three options
for cache maintenance operations on entry of a critical region. One metric to decide which
option to use is the number of false invalidations. A false invalidation is defined as an
invalidation of a cache line that may contain invalid data, but in fact it contains valid,
potentially dirty, data. Another metric is the cost in terms of cycles, which is given in
Figure 5.3 for three options, entire cache, entire way, and line based on modified virtual
address (MVA).
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The first option is invalidating lines based on MVA. An advantage of this operation is that
no false invalidations will occur, because the cache controller checks the contents of a cache
line before invalidating that specific cache line. The drawback is that the software has to
loop through all MVAs, which could consume a lot of cycles (see figure 5.3) if the range
of memory addresses to be (cleaned and) invalidated is large. For instance, invalidating a
shared heap of 3 MB requires invalidation of 98.304 MVAs.

The second option is invalidating the entire cache on entry of a critical region, which is
acceptable if the memory range to be (cleaned and) invalidated is large, or if no information
about the range to invalidate is known, e.g., in the basic software cache coherence protocol.
A drawback of invalidating the entire cache is the eviction of private data, e.g., stack and
private heap, which is likely to cause a large number of false invalidations.

A third option is invalidating a certain way entirely. From Figure 5.3 it can be concluded
that it takes less cycles to invalidate one way than invalidating the entire cache. ARM9
cache has 4 ways, and our invalidate entire cache operation is implemented as invalidating
4 ways. The motivation for this implementation is predictability and this will be discussed
in Section 6.

From a cycle count perspective it is preferable to invalidate only one way, and this also
ensures that the other 3 ways, potentially caching private data, will not be invalidated.
However, this cache maintenance operation can only be applied to guarantee cache coher-
ence, when shared data is forced into a certain way; this will be discussed in Section 5.5.
Although this ensures correct behavior, performance of some applications may degrade as
this effectively decreases the cache size and associativity for shared data. This decrease in
size and associativity results in a higher number of collisions and cache misses. Additionally,
false invalidations can still occur, although, compared to invalidating the entire cache is the
number of false invalidations limited to only one way, instead of the entire cache.
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Figure 5.4: Overview of ordering constraints of the software cache coherence protocol for
different programming models

5.4 Programming models and the software cache coherence
protocol

The programming model has an impact on the efficiency of the software cache coherence
protocol. We state that exploiting information about the programming model and the
memory map can increase the protocol’s performance. This section discusses the general
model in which our software protocol provides primitives for Release Consistency, POSIX
threads, and FIFO communication.

5.4.1 Release Consistency

First, remember the primitives, acquire and release, that have been proposed in Section 5.1.
These primitives can be used as an API for a programmer, who uses these to write a parallel
program for a Release Consistent MPSoC.

Figure 5.4(a) shows the order between non-competing accesses, synchronization operations,
e.g., acquire and release, and exclusive accesses to shared and/or private data. The lines
represent the ordering constraints, which correspond to the ordering constraints defined by
Release Consistency. There is no specific order required between accesses within each block,
although of course the compiler should take care of data dependencies.

The order of memory accesses in our implementation is slightly stronger than requested by
Release Consistency. This results from lacking expressiveness in, e.g., the C programming
language. Our assumption is that volatiles will not be reordered with respect to each other,
although in some compilers there may be issues with volatiles [13]. Locks are implemented
by functions that read/modify volatile variables, and all accesses to shared data are pro-
grammed as accesses to volatile variables. This will ensure the order, shown in Figure 5.5(a),
among a lock/unlock and a shared access, but it will unfortunately also enforce program
order between shared accesses within a critical section, which is not required by Release
Consistency. Additionally, it is not completely clear whether normal non-volatile accesses
may be reordered with respect to volatile accesses. Let’s assume this is allowed, then as a
consequence there is no order ensured between normal accesses and lock/unlock operations.
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Figure 5.5: Overview of compiler ordering constraints in implementations

A different option treats lock and unlock calls as opaque function calls, which is a function
potentially reading/modifying any variable. The compiler can not reorder any reads/writes
with respect to this function call, see Figure 5.5(b). This enables us to program shared
accesses as normal accesses (omitting the volatile keyword). Consequently, in this imple-
mentation the compiler is allowed to reorder among shared accesses within a critical section,
but it is not anymore possible to reorder ordinary accesses with respect to an acquire or
release, which is allowed by Release Consistency.

Clearly, both implementations result in a stronger implementation than required by release
consistency, thus potentially losing performance. In both implementations the processor is
still able to reorder accesses, and memory barriers are used to enforce order between locks
and accesses.

5.4.2 POSIX threads

POSIX threads, also known as Pthreads, [1] provides a standard for an API for creat-
ing, manipulating, and managing threads. Because of two reasons our MPSoC supports
Pthreads, firstly, the Pthreads programming model is widely used and accepted for writing
general purpose multi-threaded programs, and secondly, we use the SPLASH2 benchmark
applications [41] for our experiments and these applications rely on Pthread calls.

Pthreads intentionally avoids stating a memory consistency model. Instead of a formal
description the standard states [5, 1]:

Formal definitions of the memory model were rejected as unreadable by the vast
majority of programmers. In addition, most of the formal work in the literature
has concentrated on the memory as provided by the hardware as opposed to
the application programmer through the compiler and runtime system. It was
believed that a simple statement intuitive to most programmers would be most
effective.

And in an attempt to give a clear and concise description [5, 1]:
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Applications shall ensure that access to any memory location by more than
one thread of control (threads or processes) is restricted such that no thread of
control can read or modify a memory location while another thread of control
may be modifying it. Such access is restricted using functions that synchronize
thread execution and also synchronize memory with respect to other threads.
The following functions synchronize memory with respect to other threads: e.g.,
pthread mutex lock(), pthread mutex unlock(), ...

Clearly, following from these informal descriptions, the programmer is responsible for ensur-
ing exclusive write access to a shared variable. Pthreads provides several functions that can
be used to synchronize memory, e.g., pthread mutex lock() and pthread mutex unlock().
We have implemented these calls in our MPSoC, and ordering constraints between these
calls and Pthread functions are given as lines in Figure 5.4(b). These ordering constraints
resemble the constraints for Release Consistency (Figure 5.4(a), where pthread mutex lock
is replaced by an acquire, and pthread mutex unlock is replaced by a release).

Parallel programs can be synchronized in different ways, previously we have shown that
Pthreads provides mutexes that can be used for synchronization. Another primitive, that
is used often in the SPLASH2 applications, is synchronization based on a barrier. A barrier
has the semantics that each thread that is going to be synchronized stops execution when
it reaches the barrier, and it waits until all threads have reached the same barrier, before
proceeding execution. We have implemented the barrier in software, which will be discussed
in Section 6.2.2. The ordering constraints are given as lines in Figure 5.4(c). Remember
that the programmer is responsible for guaranteeing that no two threads can access the
same memory location while at least one of the threads is modifying it. As a result it is
not allowed to reorder accesses from any block with respect to a barrier. All reads/writes
should be safe (locations are only read by threads, or exclusively written), and the barrier
is used as synchronization.

The implementation of ordering constraints of barrier synchronization resembles Figure 5.4(c);
the barrier call is opaque, which ensures that reordering with respect to the barrier is not
allowed. All reads/writes can be normal accesses (not volatile) which would allow for re-
ordering by the compiler. The insertion of a memory barrier before a barrier ensures that,
in hardware, all reads/writes are transferred to the memory before the barrier is performed.
Opaque functions and the memory barrier also ensure that the compiler does not optimize
subsequent writes to the same memory location to writes to a register, as a consequence,
these writes can become visible to other processors.

The primitives provided to the programmer have semantics as given in Table 5.2.

5.4.3 FIFO communication

In addition to Streaming Consistency [40], J.W. van den Brand et al. proposed an efficient
software cache coherence protocol. We propose FIFO communication as an optimization of
our software cache coherence protocol. This optimization restricts interprocessor commu-
nication to sharing units of data through FIFO buffers. Figure 5.6 shows a model of FIFO
communication, in which a FIFO buffer is shared between two processes. One process T1
writes data into the buffer, while the second process T2 reads from the buffer.
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Primitive Description
pthread mutex lock Used to enter critical section, in which shared data

is exclusively accessed;
entire cache will be cleaned and invalidated

pthread mutex unlock If a write-back cache is used: cache will be cleaned;
the lock for exclusive access will be released

barrier Used to synchronize threads; entire cache will be
cleaned and invalidated

Table 5.2: Primitives for Pthreads

T1 T2

writeFifo

- Write into buffer
- Clean range

readFifo

- Invalidate range
- Read from buffer

Figure 5.6: FIFO communication

A FIFO buffer is stored in a consecutive address range and administration for the buffer is
stored in an uncacheable memory region. The producer consults the administration before
it writes into the buffer (checks for space), and the consumer consults the administration
before it reads from the buffer (checks for data).

The FIFO buffer consists of a number of buffer places (tokens) of a certain size (in bytes).
The function writeFifo consists of obtaining exclusive access to a buffer place in the FIFO
buffer, writing to the buffer place, cleaning only the memory locations that have been writ-
ten to, and releasing exclusive access. The function readFifo consists of obtaining exclusive
access to a buffer place of the circular buffer, invalidating only the memory locations be-
longing to the buffer place that will be read, reading the data from the shared memory, and
releasing exclusive access.

This protocol is different from the previous proposed protocols, in the sense that it requires
a specific programming model. Accesses to shared data is restricted to accessing data in
FIFO buffers, and these accesses are only allowed during critical sections. In addition to
this, a critical section is explicitly related to a FIFO buffer. Moreover, it is explicit whether
during a critical section the thread accesses the FIFO buffer for writing, or reading. This
enables a more efficient software cache coherence protocol, because a thread writing to the
buffer only needs to clean the part of the buffer that it has accessed, analogously, a thread
reading the buffer only needs to invalidate the part of the buffer that it will access.

In Release Consistency and Pthreads such relation between critical sections and shared
data does not exists. Every thread is always allowed to access shared data, as long as no
two threads can access the same memory location simultaneously, while at least one of the
threads is modifying the location. As a consequence it is required to clean and/or invalidate
the entire shared address range on a synchronization.
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5.5 Optimization by forcing cache way

Each programming model in this section has its own primitives. In the first two, Release
Consistency and Pthreads, we make no assumptions about specific shared data being ac-
cessed in specific critical regions. Consequently, the only option is to perform the cache
maintenance operations on the entire shared address range, which could be done easily by
operating on the entire cache. Unfortunately, this operation is likely to have a high number
of false invalidations, which makes it an expensive operation. What we would like to have is
an invalidate range operation that efficiently invalidates a range of memory locations, but
unfortunately our ARM9 does not provide such an instruction.

In our MPSoC we can only choose between invalidate entire cache, invalidate entire way,
and invalidate line based on MVA, as already discussed in Section 4. Figure 5.3 shows the
number of cycles needed to perform the cache maintenance operations for a certain number
of cache lines. Using these operations we attempt to implement an efficient software cache
coherence protocol. The goal is to minimize the overhead, which would be minimizing the
number of cycles needed to ensure cache coherence, and secondly, minimizing the number
of false invalidations.

An idea is to use at most one of the four ways in the cache for caching shared data; then
cache maintenance operations only have to be performed on this way, which is expected to
lower the number of false invalidations. We have implemented this idea by changing the
ARM9 cache controller; the cache controller is instructed to put cacheable memory locations
above 7MB into way 1. Software is written such that private data is stored in the address
range at locations below 7MB, and shared data is put in the range above 7MB. On entry
and exit of a critical region the way-based cache maintenance operations are called.

The way-based cache maintenance operations are implemented in a software interrupt. No
inputs are needed as we have to loop through the entire way. The ARM9 has a 4-way cache,
and each way consists of 128 lines. To clean or invalidate the entire way it is sufficient to
loop through all 128 lines for way 1. As a result, this clean/invalidate operation takes
approximately as many cycles as cleaning or invalidating 128 lines using MVA.

The way-based approach successfully decreases the number of cycles involved in cache main-
tenance operations if the memory range to perform these operations on is more than 128
lines, compared to operating on the entire cache or looping through all MVAs. Addition-
ally the number of false invalidations is expected to be lower than performing the cache
maintenance operation on the entire cache.

Unfortunately the performance of the application with way-based cache maintenance oper-
ations is highly dependent on the application, as the size and associativity of the cache for
shared data has decreased by 75%. If this is too small for the application, the application
will suffer from a lot of cache misses, either caused by a small cache, or by a high number
of collisions.

5.6 Summary

This section has discussed several variants of our software cache coherence protocol, and
these protocols will be summarized here. The software cache coherence protocol relies on
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the fact that the programmer uses synchronization operations to ensure mutually exclusive
access to shared variables. More specifically, the programmer is responsible for ensuring
that no two threads can access a shared variable simultaneously while at least one of them
is modifying that variable.

Caches are only coherent on synchronization points, and when no process is in a critical
section the shared memory holds the latest values. Cache maintenance operations are
embedded in synchronization operations; acquire has to perform a clean and invalidate,
and release has to perform a clean operation.

The costs of cache maintenance, or cache coherence, operations are twofold. The first
cost is the number of cycles that it takes to perform the cache maintenance operation. In a
predictable ARM9 MPSoC we have three different options; clean and invalidate entire cache,
entire way, and line based on MVA. A graph of the number of cycles required for invalidating
a certain number of cache lines is given in Figure 5.3. The ratio between the total number
of cycles needed for cache coherence operations and the total number of cycles needed for
computation determines, to some extent, the impact of the cache coherence protocol on the
performance.

The second cost is in the number of false invalidations, a false invalidation is the eviction of
a cache line while the invalidation of that line is not required. This can happen when shared
data is invalidated while it hasn’t been changed, i.e., the cache already has the most recent
value. Or, more likely, false invalidations take place because lines that store private data are
evicted, e.g., invalidating the stack or private heap. Clearly the operation invalidate entire
cache is likely to cause more false invalidations than invalidate entire way, and definitely
more false invalidations than invalidate line based on MVA.

One of the most important optimization is the separation of shared and private data, which
enables us to keep private data write-back cached, and shared data write-through cached.
It also enables us to perform the cache maintenance operations on only the shared address
range, either by looping through all MVAs in the shared range, or by using the way-based
cache maintenance operations and forcing shared data in a certain way.

Another optimization is a specific programming model, which restricts interprocessor com-
munication to sharing data through FIFO buffers. In this programming model all shared
data accesses are explicitly linked to a critical section. It is also known whether the buffer
will be accessed for writing, or for reading. Consequently, it is sufficient for a processor
P to only clean the written locations if P is writing to the buffer. If a processor P is
reading the buffer, then it is sufficient to only invalidate the locations that will be read in
the critical section. These operations can be performed efficiently by cache maintenance
operations using MVA, because only a small number of locations is expected to be accessed
in a critical section.





6
Predictability and composability

MPSoCs grow in complexity with an increasing number of independent applications inte-
grated on a single chip. This complexity makes it difficult to give guarantees about perfor-
mance. Additionally if applications perform differently in isolation than when mapped on an
MPSoC, it will be extremely difficult and time consuming to integrate multiple applications
into one system.

A template for Composable and Predictable Multi-Processor System on Chips (CoMPSoC)
is introduced in [18]. This template limits the interference between tasks executing on
an MPSoC. As composability and predictability become more important we would like to
design and implement our software cache coherence protocol such that these properties are
not violated. We show that this is feasible with our software cache coherence protocol. It is
expected to be difficult, maybe even infeasible, to construct a composable hardware cache
coherence protocol, because many hardware protocols rely on the update or invalidation
of the contents of other caches. Clearly, if threads on one processor cause invalidations on
other processors the composability requirement can easily be violated.

Definition 6.1. A job is a set of tasks that provides a certain functionality, e.g., DRM
radio decoder job.

Definition 6.2. A system is predictable if bounds on the temporal behavior of one job can
be derived at design time.

Definition 6.3. A system is composable if the temporal behavior of one job is not affected
by other tasks.

For predictability it is important that performance guarantees can be given at design time.
This property poses several restrictions on the hardware as well as the software. Impact of
software on predictability and composability, e.g., task switches, cache maintenance opera-
tions, and locks, will be discussed here.

6.1 Interruptible cache maintenance operations

For predictability we need to derive useful bounds on the temporal behavior of jobs. There-
fore it is desirable that task switches are not postponed significantly. As a result we require
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the cache maintenance operations to be interruptible.

ARM9 [25] provides several instructions for cache maintenance operations. The cache can
be controlled by system control coprocessor register 7. The reference manual states:

The system control coprocessor register 7 provides operations for invalidating
and/or cleaning the entire cache. If these operations are interrupted, then the
R14 value that is captured on the interrupt is the address of the instruction that
launched the cache operation + 4. This allows the standard return mechanism
to restart the operation.

This makes these instructions not suitable for our predictable MPSoC, as it is not possible
to derive useful bounds because this instruction can take a variable number of cycles to
complete, depending on the schedule. Imagine a situation in which the task switch time
is smaller than the time needed to complete the operation; this causes the operation to be
restarted on each task switch.

An alternative cleaning (and cleaning with invalidation) scheme is optional in ARMv5. It
provides an efficient way to clean, or clean and invalidate, a complete cache by executing an
MRC instruction (taken from [25]). A global cache dirty status bit is used to loop through
the cache.

To clean and invalidate an entire data cache, the following code loop can be used:

tci_loop MRC p15, 0, r15, c7, c14, 3 ; test, clean and invalidate
BNE tci_loop

This code loop is not suitable for our MPSoC, as it is not sure what will happen to this
instruction if it is interrupted. If the task becomes active again after it has been interrupted
in this loop it might restart, or continue with an arbitrary cache line. In either case it may
result in incorrect, or unpredictable, behavior.

Additionally we need to be able to derive bounds on the time needed to actually perform
the cache operations. Figure 5.3 shows the number cycles required for invalidating a certain
number of cache lines, a similar graph can be given for performing the clean operation,
which of course depends on the number of dirty lines.

Concluding, the only interruptible cache maintenance operation for an entire cache will be
by looping through all cache lines; an example loop for operating on an entire way has
been explained in Section 4. The loop is completely implemented in software by cleaning
and invalidating all sets in all four ways. The loop is interruptible because it is entirely
implemented in software. The loop can be successfully continued when the task is scheduled
again, because the values in the registers and the stack are saved on each task switch.

6.2 Synchronization

6.2.1 Locks for mutual exclusion

Synchronization is important in our software cache coherence protocol. In our MPSoC
threads will synchronize using locks (mutexes), barriers, and the C-HEAP protocol for
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FIFO communication. The overhead of the implementation of the locks is not considered
to be part of the software cache coherence protocol, as any implementation of locks, either
software or hardware, can be used, as long as predictability requirements are met. As a
result we can still state the software cache coherence protocol being scalable, even if the
implementation of the locks does not scale well.

Our MPSoC is designed to be predictable, and this property has an impact on the imple-
mentation of the locks. Currently the hardware does not support hardware locking. For
instance, test-and-set, compare-and-swap, and load-linked-store-conditional are not sup-
ported. Fortunately our MPSoC has the following important properties: (i) writes to a
location are atomic (ii) reads and writes appear to have completed in the order they have
been issued by the processor, technically speaking, both the interconnect and the memory
controller do not reorder memory accesses.

Because of the lack of hardware locks we resorted to implementing locks in software. Several
synchronization algorithms have been discussed in the literature, e.g., by Dijkstra [11],
Peterson [28], and Lamport [22]. We have chosen to implement the bakery algorithm [22]
that was proposed by Leslie Lamport. A proof of correctness is given in [22] and we will
briefly discuss the algorithm here.

Informally the algorithm is analogous to a ticketing machine at the entrance of a bakery
which gives each customer incrementally an unique number. Customers will be served in
order, based on the unique given number. After a customer has been served, the customer
who is next in line will be served. In software, these customers will be threads, and each
thread will receive an unique number when it tries to obtain a lock. The pseudocode for
the bakery algorithm is given in Algorithm 6 and Algorithm 7.

Definition 6.4. ((number[j], j) < (number[i], i)) means
( (number[j] < number[i]) or ((number[j] == number[i]) and (j < i)) )

The algorithm works as follows; a process i tries to enter its critical section, e.g., trying to
obtain mutually exclusive access to shared data. First the process sets its private index in
the choosing array to 1, to ensure that other processes, potentially spinning on the lock,
will observe that i tries to retrieve a number, which could be the same or even a lower
number. The next instruction computes the maximum ticket number in the queue, and
this is incremented by one. Then the choosing array index is set to 0 and the while loop
is entered. In this while loop process i will check for all other processes whether they are
in a critical section, or trying to enter the critical section. Imagine a process j being in a
critical section, then number[j] will be unequal to zero, and number[j] may be smaller than
number[i], in other words, process j acquired a lower ticket number, or if j and i have the
same ticket number, then the process with the smallest id gets access to the critical section.

The shared variables for the locks have to be put in a noncacheable region of the shared
memory to ensure that all writes will become visible to other processors. This has the
disadvantage that processes blocking on a lock will spin on a variable in the background
memory. However, the impact of spinning is limited in our MPSoC, because of a yield
signal in the operating system and a TDM arbiter on the memory. Processes spinning
will minimally impact the execution of other processes because of the TDM arbiter, which
guarantees budget to each processor, and if a processor does not consume its slice then the
memory controller is idle.



50 Chapter 6. Predictability and composability

Algorithm 6 Bakery algorithm: process i tries to enter its critical section
Require: integer array choosing[1:N], number[1:N], N equals the number of processes

choosing[i] ← 1
number[i] ← 1 + (max i; 1 ≤ i ≤ N ; number[i])
choosing[i] ← 0
for j = 1 to N do

while choosing[j] 6= 0 do
yield();

end while
while (number[j] 6= 0) and ((number[j], j) < (number[i], i)) do

yield();
end while

end for

Algorithm 7 Bakery algorithm: process i exits its critical section
Require: integer array number[1:N], N equals the number of processes

number[i] ← 0

6.2.2 Barrier synchronization

Many applications from the SPLASH2 benchmark set rely on barrier synchronization. A
barrier has the semantics that each process that reaches the barrier stops execution until all
processes that are synchronized on this barrier reach it. We have implemented the barrier
entirely in software, based on locks for mutual exclusion. Pseudocode for the software
barrier [10] is given in Algorithm 8, and this algorithm relies on processes spinning on a
flag in the shared memory.

Algorithm 8 Barrier implementation in software
Require: local sense[id] is private to thread id, myCount is a local variable

local sense[MyNum] + +
LOCK(entrylock)
myCount = + + counter
UNLOCK(entrylock)
if myCount == P then

counter ← 0
flag ← local sense[MyNum]

else
while flag 6= local sense[MyNum] do

yield();
end while

end if

The barrier is based on an unique identifier, MyNum, of each process, a private variable
local sense[MyNum], a global variable flag, a global variable counter, and a local variable
MyCount. First, local sense[MyNum] will be incremented, and then a lock for exclusive
access is obtained. During exclusive access myCount is determined, and the global counter
is incremented. Following, the lock is released and the private counter myCount is compared
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to the number of processors P. If myCount is smaller than P, then the process will start
spinning on flag, which is continuously compared to local sense[MyNum]. The variable flag
is set by the last process to arrive (when myCount == P), following resetting the global
counter to 0.

6.3 Composability

An additional preferable property is composability. Composability, as in Definition 6.3,
is interesting because it enables the guarantee that a job’s execution is not affected by
any other job. Informally we could say, if a thread has functional and temporal properties,
adding additional threads to the MPSoC does not change the guarantees for the first thread.

This property is difficult, maybe even impossible to achieve with a hardware cache coherence
protocol. Contention on the directory causes threads to influence each others execution.
A second, but more important, example is false sharing. False sharing does not exist in
a software cache coherence protocol, but it can clearly violate composability requirements.
False sharing causes evictions of cache lines, as the protocol forces processors to invalidate
cache lines, if another processor has written to these cache lines, even while the data on
the lines is not necessarily shared. If thread T1 is the only thread in an MPSoC, then false
sharing is nonexisting, but as soon as threads are added these threads could suddenly cause
evictions, and thus influencing the temporal behavior of the thread T1.

Our software cache coherence protocol is suited to satisfy the requirements for composability.
All decisions about cache coherence operations are local, and these operations do not impact
the execution of other threads. Even when cache lines are shared, (false) sharing is avoided
by putting the shared data in a write-through cacheable region. Because all invalidations
are local, a thread on a processor P1 will never influence the execution of a thread on a
processor P2.

Threads on a single processor can influence each other, by flushing the cache, or fetching
data in to the cache and consequently evicting another thread’s data from the cache. This
inter-task influence can easily be avoided by flushing the entire cache on each task switch
[14]. Actually, because composability is defined at the level of jobs, caches only have to be
flushed when switching between jobs. More complex ways to ensure composability include
cache set-partitioning [27] and cache way-locking, but discussing these aspects is beyond
the scope of this report. In addition to this, composability requirements are not taken into
account in the experiments.
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Experimental performance evaluation

This section discusses the experimental performance on our MPSoC that has been mapped
on the Celoxica RC340 board. The experiments are executed on the basic MPSoC with two
ARM9 processors, which are directly connected to the shared memory (see Figure 4.1). If a
variant of this MPSoC is used, e.g., Figure 4.2, it is explicitly mentioned in the description
of the experiment.

7.1 SPLASH2 benchmark applications

Several applications from the SPLASH2 benchmark suite [41] are used in the experimental
performance evaluation. The SPLASH2 applications rely on a number of Pthreads calls;
which we have ported to our MPSoC. In this section we will briefly discuss what applications
have been executed on our MPSoC, and what the problem instances are. The applications,
the standard problem sizes, the number of locks, and the uniprocessor execution time T1 are
given in Table 7.1. The uniprocessor execution time is the time that it takes to complete
the application in two threads, on one processor without cache coherence operations. The
descriptions about the programs are taken from [41].

Cholesky: it performs a blocked Cholesky Factorization on a sparse matrix; a sparse matrix
is factored into the product of a lower triangular matrix and its transpose. It is similar in
structure and partitioning to LU, but two major differences are; (i) it operates on sparse
matrices, which have a larger communication to computation ratio for comparable problem
sizes, and (ii) it is not globally synchronized between steps. See [31] for more information.

FFT: it performs a complex 1-D version of the radix-
√

n six-step FFT algorithm, which
is optimized to minimize interprocessor communication. The data set consists of the n
complex data points to be transformed, and another n complex data points referred to as
the roots of unity. Every process is assigned a contiguous set of rows. Communication
occurs in three matrix transpose steps, which require all-to-all communication. In our
experiments we execute FFT and its inverse FFT, in order to have a longer execution time
and additionally we can immediately check the outcome. See [43] for more information.

LU: it factors a dense matrix into the product of a lower triangular and upper triangular
matrix. The dense n×n matrix A is divided into an N×N array of B×B blocks (n = NB)
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Application Problem Locks T1

size (M cycles)
Cholesky lshp 305 467.99
FFT 64K points 13 1242.32
LU contiguous 512×512 matrix 66 8850.97

16×16 blocks
LU non-contiguous 512×512 matrix 66 9355.27

16×16 blocks
Radix 256K integers 12 1656.75

radix 1024
Raytrace teapot 12237 1446.55

64x64

Table 7.1: SPLASH2 applications

to exploit temporal locality on submatrix elements. According to [41] the block size should
be fairly small (B = 8 or B = 16). Two versions of LU factorization are given, contiguous,
which is optimized for minimizing cache misses, and non-contiguous, which suffers from
more cache misses. See [43] for more information.

Radix: it performs a iterative integer radix sort. The algorithm performs one iteration
for each radix r digit of the keys. In each iteration, a process passes over its assigned keys
and generates a local histogram. The local histogram are then accumulated into a global
histogram. Finally, each processor uses the global histogram to permute its keys into a new
array for the next iteration. This permutation step requires all-to-all communication. See
[20, 42] for more information.

Raytrace: it renders a three-dimensional scene using ray tracing. A ray is traced through
each pixel in the image plane, and reflects in unpredictable ways off the object it strikes.
Each contact generates multiple rays, and the recursion results in a ray tree per pixel. The
image plane is partitioned in contiguous blocks of pixel groups. The data access patterns
are highly unpredictable in this application. See [34] for more information.

7.2 Separation of shared and private data

This experiment determines the impact on the number of memory accesses of separating
shared and private data, and additionally putting shared and private data in different types
of caches. The separation of shared and private data appears to be one of the most important
optimizations, and it is likely to be easily achievable. We call private data all data that is
local to a thread, this means that no other thread should require access to this data, neither
for writing nor for reading. Examples of private data are; dynamic data allocated on the
private heap, and the thread’s stack. We call shared data all data that is potentially read
or modified by other threads. Examples of shared data are; the data that is communicated
between threads, dynamic data allocated on the shared heap, and global variables.

In this experiment we’ll show, by using two applications, what the main advantage of
separating shared and private data is. We execute two experiments, firstly we execute
FFT, and secondly, LU contiguous on one processor, with both executing in two threads.
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Figure 7.1: Impact of separation shared and private data

Because the applications are mapped on one processor the cache coherence operations can
and will be disabled.

Both applications will be executed in three configurations, in the first we assume no in-
formation about the memory map (WT+WT), and because of sharing we must keep the
entire memory in write-through caches (and on a synchronization the entire cache should
be cleaned and invalidated, but this effect will not be considered in this experiment). The
second configuration shows the situation which was proposed in [29], where private data is
(write-back) cached, but shared data is left uncached (WB+NC). The third configuration
shows our proposal, where we keep private data in write-back cache, and shared data in
write-through cache (WB+WT).

Figure 7.1(a) shows the execution times for FFT for the three configurations, and Fig-
ure 7.1(c) shows the three execution times for LU contiguous. We observe the highest
execution times for the FFT and LU contiguous when these are executed in configuration
(WB+NC), in which the shared data is left uncached. Clearly, caching shared data can
have a major impact on the performance, and this will even become more important if the
ratio shared-to-private memory accesses becomes larger, or if the memory access latency is
increased.

Surprisingly, the impact of caching private data in a write-through cache, or in a write-back
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cache does not have a significant impact on the execution time for these example applica-
tions. The execution times for (WT+WT) and (WB+WT ) are almost identical. The main
difference between these two configurations is that in (WT+WT) all writes to cacheable
private locations are propagated to the memory through a write buffer. Apparently this
write buffer succeeds well in its task to hide write latency.

Figure 7.1(b) shows the number of memory accesses for FFT, and Figure 7.1(d) shows
the number of memory accesses for LU contiguous. A column in this figure represents the
total number of memory accesses, the top part of a column represents the number of reads,
the bottom part represents the number of writes. The configuration, (WT+WT) has the
highest number of memory accesses, which are mainly writes, and we expect that these
are mostly writes to the private stack. The number of reads in (WT+WT) is comparable
to the number of reads in (WB+WT), and is significantly less than in (WB+NC). From
this we may conclude that, as expected, caching shared data lowers the number of memory
accesses. Apparently shared data is mainly read, as the number of reads shows the largest
difference between (WB+NC) and (WB+WT).

The number of writes is comparable in (WB+WT) and (WB+NC), and it is significantly
less than in (WT+WT). Clearly, the high number of writes in (WT+WT) is caused by
writes to private data, and because of memory bandwidth requirements it is preferable to
keep the private data in a write-back region.

7.3 Speedup SPLASH2 applications

In this experiment we will discuss the speedup of the SPLASH2 applications on our MPSoC.
The speedup is relative, as it is calculated using Equation 7.1, in which S is the speedup,
T1 is the execution time of the parallel algorithm in 2 threads on one processor without
cache coherence operations, and Tp is the execution time on one processor if the algorithm
is executed in parallel on p processors, each executing one thread.

S =
T1

Tp
(7.1)

The applications are partitioned and executed in two threads. In the single processor
instance both threads are mapped on one single processor, and cache coherence operations
are disabled. Private data is put in a write-back cache, and shared data is put in a write-
through cache.

In the parallel instance, the two threads are mapped on two different processors, private
data is put in a write-back cache, and shared data is put in a write-through cache. In
addition, the cache coherence operations are enabled, and the selectivity of the operations
will be varied in three instances. In entire, the entire cache will be cleaned and invalidated
on each synchronization; in way only way 1 will be cleaned and invalidated; and in MVA
the cache coherence operation will loop through the entire shared region. The size of the
shared region is 4 MB for all applications.

Figure 7.2 shows the relative speedup for the SPLASH2 applications with standard problem
sizes. For each application three columns are shown; these are, from left to right, the
speedup for cache maintenance operations entire, way, and MVA. It is important to note
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that only for the instance where way 1 will be cleaned and invalidated (way), a certain way
for shared data is forced. In the other instances shared data can be put in any of the four
cache ways.
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Figure 7.2: Relative speedup of SPLASH2 applications

For most applications the speedup is close to 2. For Cholesky we see a super linear speedup,
this is most likely because of the increase in total cache size. Surprisingly is the speedup for
the clean and invalidation of the entire cache on each synchronization in most applications
better than for the other instances. We expect that this is mainly a result from the low
number of synchronizations in one execution, technically speaking, the application has a
low synchronization-to-computation ratio.

For most applications the second to best instance is by forcing shared data into way 1 and
performing cache coherence operations only on this way. Performance drops if shared data
is forced into a way, because the cache size for shared data is effectively smaller and the
associativity is 1, which is likely to cause a high number of collisions. However, the time
spent in cache maintenance operations is smaller for way-based cache maintenance compared
to entire cache. Additionally less false invalidations occur, in comparison to entire cache.

The lowest speedup is observed when the cache is cleaned and invalidated by looping through
all MVAs in the shared region of the memory. This is the direct result from the large number
of cycles needed to actually perform the looping. If an efficient clean and invalidate range
instruction would be implemented then the performance of this instance is expected to
increase significantly.

The speedup of Cholesky is good, except for MVA. The execution time of the parallel
implementation with cache coherence operations based on MVA is extremely large. We
assumed a shared heap of 4 MB large for all applications, using MVA to loop through 4
MB takes a high number of cycles, this overhead is too much in case of Cholesky.

The difference between LU contiguous and LU non-contiguous is interesting. The perfor-
mance of entire cache and MVA in LU contiguous and LU non-contiguous are comparable,
but there is a huge difference when way-based cache-maintenance operations are used. As
previously mentioned, the main difference between LU contiguous and LU non-contiguous
is that the first is optimized for caches, and the second is not, the access pattern for LU
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Application Accesses/cycle
Cholesky 0.0141
FFT 0.0137
LU contiguous 0.0122
LU non-contiguous 0.0249
Radix 0.0023
Raytrace 0.0072

Table 7.2: Memory bandwidth requirements for SPLASH2 applications on a uniprocessor

contiguous is such that less cache misses occur than for LU non-contiguous. The increase
in cache misses in the latter application has a large impact on the performance, because the
smaller cache size and associativity results in a significant increase in the number of cache
misses, mainly because of collisions.

Raytrace is interesting because in one execution, compared to the other applications, rela-
tively a high number of locks are passed, which results in a high number of cache coherence
operations. The execution of Raytrace with cache coherence operations using MVA takes
too much time to yield any useful results. The instance that cleans and invalidates entire
cache suffers from many false invalidations and additionally the time spent in cache coher-
ence operations is larger than for the instance that uses way-based clean and invalidate.
This results in the interesting outcome that, for Raytrace, forcing a way is better compared
to clean and invalidate entire cache, for Raytrace, in terms of execution time.

The overhead of the software cache coherence protocol appears to be low for these appli-
cations. This can have several reasons, which are important to draw conclusions for other
applications from these results. First of all, the SPLASH2 benchmark set is optimized to
minimize communication (and thus synchronization), and we only perform cache coherence
operations on synchronization points. Secondly, we use software floating point computa-
tions, which takes about a factor of four longer to complete, and this results in an even
lower synchronization-to-computation ratio.

7.4 SPLASH2 memory bandwidth requirements

Speedup is not the only important metric, this section discusses the memory bandwidth
requirements for the applications. This metric is important for scalability, as it gives in-
formation about the service that the application requests from the interconnect and the
memory.

The standard applications are mapped to two processors, and the number of memory ac-
cesses observed on the interconnect is counted. Accesses to shared memory by a processor
that is spinning on a lock are excluded. Each application is executed with three different
cache maintenance operations; cleaning and invalidating entire cache, way, and using MVA.
We have also determined the memory bandwidth requirements for the parallel applications
mapped on one processor, without cache maintenance operations. The memory bandwidth
requirement is calculated by dividing the total number of memory accesses by the total
number of cycles. These memory bandwidth requirements are given in Table 7.2.

Figure 7.3 shows the memory bandwidth requirements for the three configurations of each
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Figure 7.3: Memory bandwidth requirement for SPLASH2 applications

application. The columns represent, from left to right, the memory bandwidth requirements
of the applications with cache maintenance operations entire, way, and MVA. The total
number of memory accesses is determined for each application, and these applications are
mapped on two processors, therefore we have determined the number of memory accesses
on both processors.

Most applications pose only a small bandwidth requirement, which varies around 2%. It
must be noted that increasing the execution speed, by for instance hardware floating point
operations instead of software floating point operations, is expected to increase the band-
width requirements.

The memory bandwidth requirements for SPLASH2 applications is approximately doubled
when the applications is mapped to two processors, compared to the uniprocessor. This
results from a speedup of almost factor 2, while the total number of memory accesses stays
approximately the same as compared to the uniprocessor.

Forcing a way for shared data increases the memory bandwidth requirements, because a lot
of cache misses, due to collisions, take place. However, Radix and Raytrace do not suffer
significantly from these additional misses. The first is expected not to suffer from forcing a
way, and invalidating the entire cache, as Radix has a fairly small problem size, consequently
the number of accesses to shared data is low. The second, Raytrace, has a lower memory
bandwidth requirement for forcing a way than invalidating the entire cache. This is most
likely because of the high number of synchronizations, in other words, if the application
cleans and invalidates the entire cache on each synchronization it suffers from more cache
misses than compared to forcing a way as a result from false invalidations. Additionally, the
time needed for performing a clean and invalidate entire cache takes many cycles, because
of predictability and composability requirements.

Figure 7.3 shows the memory bandwidth requirements for the parallel implementations, but
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Figure 7.4: Relative increase in number of memory accesses for SPLASH2 applications

we would like to know how these values relate to the single processor execution. That is
what we try to get insight in by calculating the increase in memory accesses for a parallel
instance with cache coherence operations compared to the single processor instance.

The SPLASH2 applications are mapped on two processors, and on each processor the num-
ber of memory accesses is determined. The total number of memory accesses of each
processor is summed to a total for the application, and this number is compared to the to-
tal number of memory accesses when the application is executed on one processor without
cache maintenance operations. The difference between these two illustrates partially the
overhead of the cache coherence operations. Figure 7.4 shows the increase, or decrease, in
the number of memory accesses, relative to the number of memory accesses in the single
processor execution, which is set to 1. The columns in Figure 7.4 represent, from left to
right, the increase of memory accesses for cache maintenance operations entire, way, and
MVA.

The shape of Figure 7.4 resembles the shape of Figure 7.3. Clearly forcing a way for shared
data causes significantly more memory accesses, except for Radix, which shows a decrease
in the total number of memory accesses in all three instances. The execution of Radix
on two processors benefits from the increase in cache size. If then a way is forced, Radix
still does not suffer from misses or collisions significantly. As a result, the total number of
memory accesses for Radix decreases if the application is mapped to two processors. In the
other applications is way a less attractive alternative, and in particular LU non-contiguous
appears to suffer significantly from cache misses.

For several applications is the increase in cache size positive in terms of the number of mem-
ory accesses. Compared to the uniprocessor is the total number of memory accesses lower
for several applications executed in parallel, even when cache maintenance operations on
the entire cache are used. This is probably a result from the low number of synchronizations
in combination with an increase in cache size. Surprisingly requires the parallel application
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with cache maintenance operations using MVA at least as many memory accesses as the
uniprocessor implementation. We expect that this is caused by the large software loop, that
is used to iterate through all MVAs in the shared region, which causes many stack accesses,
that pollute the cache.

From Figure 7.4 it may be concluded that in cases where the number of synchronization
is low, the preferable cache maintenance operation is on entire cache. If the number of
synchronization becomes high, e.g., in Raytrace, then the need arises to restrict the cache
operations. This can be done by either, forcing shared data into a way, but this has the
drawback of a higher number of collisions, or, which is more promising, by adapting the
programming model, e.g., FIFO communication, which enables an efficient software cache
coherence protocol.

7.5 Impact on other threads

Apparently the cache coherence operations have a small impact on the performance of
SPLASH2 applications itself, but of course this depends on the synchronization-to-computation
ratio. In this experiment we try to estimate the impact of cache coherence operations by
one thread on other threads.

FFT is executed in one thread, consequently without cache coherence operations, and a
second thread is mapped to the same processor. This second thread performs one cache
coherence operation on each preemption. The type of cache coherence operation (entire
cache, entire way, MVA (which operates on lines that are not used by FFT)) is varied. The
switch times are also varied, i.e., varying the synchronization-to-computation ratio.
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Figure 7.5: Impact of cache coherence operations on other threads

Figure 7.5 shows the number of reads of a thread executing FFT if it is interleaved with a
different thread that is performing cache coherence operations on each preemption for a task
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Instance Interconnect Stack Shared data T1 (s)
(1) Bus SRAM SRAM 24.56
(2) NoC SRAM SRAM 28.52
(3) NoC SDRAM SDRAM 30.36

Table 7.3: Execution time of FFT on different architectures

switch time in milliseconds. The columns correspond, from left to right, to a task switch
time of 1000, 100, 10, or 1 milliseconds. If the switch times are large enough, the overhead of
cache coherence operations is insignificant. Even in the case of invalidating entire cache the
number of reads does not increase significantly with large switch times. Forcing shared data
into a way has a higher impact than often invalidating the cache, as the cache coherence
operations cause additional reads only for a small switch time. Invalidations based on MVA
do not have a significant impact on the thread, because this cache coherence operation only
invalidates lines specified by MVA that are not used by FFT. It is important to note that if
FIFO communication, with the adapted programming model, would be used, then a thread
should observe no overhead from other threads, like in MVA in this experiment.

For composability requirements the entire cache should be cleaned and invalidated upon
each preemption. We have discarded this operation during the experiments, as it degrades
the performance of the applications (especially if the switch times are small) and it prevents
us from showing the impact of the synchronization-to-computation ratio in this experiment.

7.6 Impact of Æthereal NoC and SDRAM

In this experiment we will map the FFT application with the standard problem size to
two different MPSoCs. In the first MPSoC are the processors directly connected to shared
memory (SRAM), similar to the standard experimental setup (see Figure 4.1. In the second
MPSoC are the processors connected through Æthereal NoC, and is the shared memory
physically distributed as a SRAM, and a SDRAM (see Figure 4.2). Please note that because
of ordering constraints the semaphores need to be put in the same physical memory as the
shared data, otherwise these accesses can be reordered because of different latencies to the
memories.

In this experiment we will only consider performance, and the impact of the architecture
on this performance. The FFT application is executing in two threads mapped on one
processor, and the cache maintenance operations are disabled. This enables us to illustrate
the impact of the architecture, without the effect of cache coherence operations.

We compare three instances, see Table 7.3. The NoC increases the latency significantly,
which is to a large extent because the current implementation of the NoC does not support
pipelined reads. Fetching a cache lines therefore takes the same number of cycles as fetching
8 individual words. As a consequence the execution time of instance (2) is significantly
higher than instance (1).

The differences between instances (2) and (3) are (i) the type of shared memory, in (2) a
SRAM, and in (3) a SDRAM, and (ii) the arbiter on the memory. The arbiter for access
to the SRAM is a TDM1 arbiter, which wastes budget if a processor does not consume its

1Time Division Multiplexing: guarantees specific service to all processors, but wastes slice if a processor
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slice, but the arbiter for the SDRAM is following a round-robin2 scheme. This is expected
to have a positive influence on the execution time, but the SDRAM will cause an increase
in the execution time as well. From Table 7.3 is can be concluded that instance (3), with
the NoC and SDRAM, indeed increases the execution time.

This experiment is used, together with the experiment in Section 7.8, as an example to show
that the protocol is indeed suitable to be applied to an MPSoC with a NoC, but future work
should focus on performance. As a result the MPSoC with a NoC and SDRAM will not be
used in the experimental performance evaluation. The increase in the execution time, due
to the increase in memory access latency, can have an impact on the protocol’s performance
and on the scalability. This is because a higher latency can increase the penalty for false
invalidations.

7.7 Scalability

This section discusses the scalability of the software cache coherence protocol. Because the
MPSoC only consists of two processors we will not perform an experiment to demonstrate
the scalability, but we will discuss previous experiments that are relevant to scalability.

First of all, we will discuss scalability relative to the hardware protocols. In most of the
hardware protocols threads can impact the execution of threads on other processors, and
this is in particular in the case of false sharing. In this situation the scalability of an
application with our software cache coherence protocol is expected to be better, because
threads do not impact the execution of threads on other processors.

From experiments we can conclude that the speedup for the SPLASH2 applications on a two
processor MPSoC is good, and in addition to this the memory bandwidth requirements are
low. Another experiment demonstrated that the cache coherence operations do not have a
significant impact on the number of memory accesses, if the synchronization-to-computation
ratio is low. As a consequence, it is expected that the software cache coherence protocol
does not have a negative impact on the scalability.

It is important to note that if the cache is cleaned and invalidated using MVA, which is used
in FIFO communication, the scalability is expected to be good. Experiments demonstrated
that, even if the synchronization-to-computation ratio is high, cleaning and invalidating
based on MVA does not impact the number of memory accesses. As a consequence, we
expect that FIFO communication can be used in a large MPSoC, with only small overhead.
It is important to keep in mind that the efficiency of FIFO communication relies, to a large
extent, on the size of the data that is being shared through the FIFO. If the size of shared
data is large, then cleaning and invalidating using MVA is not anymore attractive. As a
consequence we are forced to use either cache operations on the entire cache, or on an entire
way, which can result in a high number of false invalidations.

False invalidations can impact the scalability. If our MPSoC is scaled, the latency to the
shared memory also increases. This increased latency exposes a large penalty to cache
misses, and these cache misses are, to some extent, caused by cache coherence operations.

does not consume its slice
2Round-robin: guarantees specific service to all processors, but if a processor does not consume its slice,

then the next processor will be served
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If an application suffers from a lot of false invalidation, and consequently a lot of cache
misses it will not scale that well if the latency increases.

7.8 FIFO case study: MP3 decoder

In this experiment an MP3 decoder is mapped to one processor, and the decoded samples are
sent to a second processor through a FIFO. The second processor executes the playout tasks,
which sends the samples to the digital-to-analog converter. An overview of the mapping
on the multiprocessor system is shown in Figure 7.6. The MPSoC, in which processors
are connected through the Æthereal NoC to an SDRAM (see Figure 4.2), is used in this
experiment.

Shared Memory

P2
Playout

FIFO

P1
MP3

Figure 7.6: A multiprocessor MP3 decoder

The MP3 decoder produces samples, that are sent to the other processor through a FIFO.
The FIFO communicates 576 words of data, which are written by the producer, and read by
the consumer. As a consequence, the producer has to write and clean 72 cache lines on each
iteration (if the FIFO is in a write-back cache), and the consumer has to invalidate and read
72 cache lines on each iteration. The invalidate operation using MVA takes approximately
1300 cycles for 72 cache lines. If the entire cache or an entire way had to be invalidated on
each synchronization, i.e., after producing 576 samples, it would respectively take around
8000 and 2200 cycles.

This illustrates that FIFO communication can be used in our software cache coherence pro-
tocol, and that for some applications it may be beneficial to exploit FIFO communication.
Additionally cleaning and invalidating using MVA has only impact on the shared data and
no private data is cleaned or invalidated, which should improve the performance, compared
to operating on the entire cache, or on a way.

However, it is very important to keep in mind that the tradeoff is between the number of
cycles used to perform the action, and the number of false invalidations. Although cache
coherence operations on entire cache, and on a way, can cause a high number of false
invalidations, it can still be an attractive solution if the shared range is large, as looping
through a lot of MVAs takes a high number of cycles. Fortunately, we expect that for
many applications, and streaming applications in particular, the shared data can be put
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in separate FIFO buffers, which can improve the efficiency of the software cache coherence
protocol [40].





8
Suggestions to improve the cache controller

In Section 7 we have shown that the software cache coherence protocol performance for
the SPLASH2 applications can be good. However, during the project we have discovered
some interesting properties that our MPSoC currently does not have. This section discusses
those properties, which we would like to add to our MPSoC, and to the cache controller in
particular.

In Section 6 we have discussed predictability, and it appeared that the standard cache
maintenance operations on the entire cache in the ARM9 are not interruptible, which is a
problem for predictability. To avoid this problem we had to use software loops to perform
cache maintenance operations on lines, until the entire cache was cleaned/invalidated, which
required quite some cycles. This large number of cycles can pose a large overhead on
the application, especially if the synchronization-to-computation ratio is large. Ideally the
ARM9 should provide an interruptible instruction to clean and invalidate the entire cache.
We gradually propose several feasible solutions to provide a more efficient instruction to
maintain cache coherence.

Currently we have implemented clean and invalidate entire cache by a software loop to
clean and invalidate all lines in each way. This loop needs about 3 to 4 times more cycles
than cleaning and invalidating one entire way. A first improvement could be to add (or
change) an operation to clean and invalidate a line in each way in parallel which can be
done in hardware (the test clean and invalidate already performs the cache operations in
parallel according to the technical reference manual [25]). Invalidation can be performed
in parallel without major difficulties, whereas cleaning in parallel may cause difficulties.
Cleaning requires writing data into the write buffer, and this may be problematic to execute
in parallel. An option would be performing the test to clean a line in parallel, and then
performing the cleaning of the lines sequentially. Consequently cleaning and invalidating
entire cache would take the same time as cleaning and invalidating one way.

ARM9 provides (clean and) invalidate entire cache as a single instruction. We expect this in-
struction to perform line based clean and invalidate operations by looping in hardware. The
issue with this instruction is that when the instruction is interrupted it is unknown where
the instruction will continue. ARM9 stores the address of the instruction that launched
the cache operation + 4 in R14, which allows the software to restart the operation. This
potentially repeatedly restarts the operation. We propose extending the instruction with a
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register, which represents a line (i.e., a set number for all four ways) where the instruction
should (re)start. This register should be read/write, and thus can be saved and restored on
a task switch, if the instruction is interrupted. It is expected that the hardware loop will
significantly lower the required number of cycles.

For some applications and MPSoC architectures it might be a drawback to put shared
regions in write-through caches. If there is no information about where shared and private
data is put, then the entire memory needs to be in write-through caches. This problem can
be avoided by clean and invalidate operations on a different granularity than cache lines,
which could be for instance on words or even bytes. This improvement requires changes
in the cache controller and the memory hierarchy, and we believe that in many cases this
improvement will not have a significant impact on performance. Separation of shared and
private data can already have a large positive impact on performance, and this separation
is easy to achieve.

The last optimization is also included in ARMv6, but not in ARMv5, and it could have
a significant impact on the performance. This optimization is by exploiting the prefetch
operation. The prefetch operation fetches data from the shared memory and puts it in the
cache parallel with the processor performing computations, and thus does not stall. This
operation can be used to successfully lower the number of cycles required due to stalling
because of cache misses. However, prefetching can only be exploited when it is explicit in
the software which data is to be accessed soon. This is hard to achieve in the Pthreads
standard, but can be quite easily done in case of FIFO communication. On an acquire of
a place in the FIFO buffer the range for that place can be prefetched, which is expected
to lower the number of cycles due to stalling on the first read. Prefetching could also
be beneficial to Pthreads if the programming model is extended by relating accesses to
synchronization points.
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Conclusions

This thesis presented a tuneable software cache coherence protocol that is highly suitable
for heterogeneous multiprocessor system-on-chip (MPSoC) architectures with a network-
on-chip (NoC). The main advantage of this software cache coherence protocol is that it can
be applied in a broad range of MPSoCs with only little effort. The software cache coherence
protocol ensures that caches are coherent on synchronization points, which is sufficient to
support Release Consistency, on top of which we have implemented a part of the standard
Pthreads communication library. The protocol is applicable to an MPSoC with many off-
the-shelf embedded processors and caches, and it is irrelevant whether those caches support
hardware cache coherence.

The software cache coherence protocol requires software to contain explicit synchroniza-
tion. In particular, the caches are guaranteed to be coherent on synchronization points.
This poses the restriction that our MPSoC is limited to executing software with explicit
synchronization, but we expect that this does not significantly restrict the applicability of
the software cache coherence protocol, as most parallel programs rely on synchronization
to guarantee correct behavior.

The software cache coherence protocol also poses some constraints on the hardware. Pro-
cessors with caches need to be able to control the contents of their cache through clean and
invalidate instructions. Currently we exploit software locks, and both the Æthereal NoC
and memory ensure that the order between memory accesses and memory accesses to the
software locks are not reordered. This last constraint can be relaxed, but then all writes
have to be acknowledged to ensure that the semaphores are updated in the shared memory
before (shared) reads and writes are issued, and vice versa.

The software cache coherence protocol is designed to be applicable in a predictable and
composable MPSoC. This requires that cache coherence operations are interruptible, and
that cache coherence operations are local to a thread, in other words, cache coherence
operations in a thread do not impact the execution of threads on other processors.

In addition to the software cache coherence protocol we have identified several optimizations
to increase the performance of the protocol. It is important to provide separate address
ranges for private and shared data, which enables efficient cache utilization. Furthermore,
cache coherence operations can be limited to the shared address range by, e.g., performing
cache coherence operations on a specific cache way, or using modified virtual addresses
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(MVA) to loop through the entire shared address space. Furthermore, for some applications
it may be beneficial to require a specific programming model which improves the efficiency
of the software cache coherence protocol. A suitable adapted programming model restricts
interprocessor communication to sharing data through First-In-First-Out (FIFO) buffers.

The software cache coherence protocol is evaluated in an ARM9 MPSoC which is mapped
on a Xilinx Virtex 4 FPGA. Several applications from the SPLASH2 benchmark set [41]
are executed in parallel on the MPSoC. From experiments we have concluded that it is
important to provide a separate address range for shared data. As a consequence private
data can be efficiently cached, namely private data can be put in a write-back cache, because
writes to private data do not have to become visible to other processors. Shared data can be
put in a write-through cache, which avoids the sharing problem in software cache coherence
protocols, while caching of shared data can lead to a performance gain.

SPLASH2 applications have been used for the experimental performance evaluation. In
this evaluation we have tried to estimate the overhead of the cache coherence protocol,
in terms of execution time, and the number of memory accesses. Furthermore, we have
estimated the impact of the software cache coherence protocol on scalability, and we have
identified several optimizations to tune the protocol. In most experiments we have compared
the performance of cache coherence operations on (i) entire cache, (ii) a specific way, (iii)
shared address range using MVA.

The overhead of the protocol for the SPLASH2 applications is surprisingly low, because
the speedup for most SPLASH2 applications is between 1.89 and 2.01 on a two processor
MPSoC. The cache coherence operation on the entire cache had the best performance, in
terms of speedup, in most cases. This is most likely a result from the low synchronization-
to-computation ratio and the disappointing performance of the other alternatives: clean
and invalidate way, and looping through the entire shared address space using MVA.

The memory bandwidth requirements for the SPLASH2 applications were low, around
2% when the applications were executed in parallel on two processors. In addition, we
have compared the total number of memory accesses of the application executed on one
processor, to the total number of memory accesses of the multiprocessor implementation.
The total number of accesses of the multiprocessor implementation was comparable to
the uniprocessor execution, except when a way was forced for shared data, or when the
application had a high synchronization-to-computation ratio (Raytrace). In the latter two
cases the number of memory accesses showed a significant increase.

In experiments we have shown that, if no measures for maintaining composability are
taken, the cache coherence operations can impact the execution of other threads on the
same processor. The impact of the cache coherence operation is highly dependent on the
synchronization-to-computation ratio. It was shown that cache coherence operations on
the entire cache had a small impact on the number of memory accesses if there was only
a small synchronization-to-computation ratio, as this ratio became larger, the impact also
increased, i.e., causing more reads due to cache misses. It is important to note that cache
coherence operations using MVA, that is likely to be used in FIFO communication, has
almost no impact on the execution of other threads, as long as the lines that are to be
invalidated are not used by the other threads.

We have also discussed the scalability of the software cache coherence protocol. The protocol
is expected to be scalable, because cache coherence operations are local to a thread, and
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do never impact the execution of threads on other processors. The impact of a thread on
threads on the same processor can be eliminated by taking measures for composability, e.g.,
clean and invalidate entire cache on each task switch. Another metric that is important
for scalability is the memory bandwidth requirement, for the SPLASH2 applications this
requirement was low, which can result in good scalability. In addition to this, we have
demonstrated that the memory bandwidth requirement does not significantly increase, as
long as the synchronization-to-computation ratio is low. In cases where the synchronization-
to-computation ratio is high, it may be beneficial to exploit FIFO communication.

FIFO communication was presented as an optimization of our software cache coherence
protocol, and illustrated using a multiprocessor MP3 decoder. In FIFO communication, it
is known which memory locations are going to be read in a critical section, and the cache
coherence operations can be limited to this range. As a result, there are only few false
invalidations. In addition, in FIFO communication it is sufficient to only clean the range if
the thread writes to the buffer, and only invalidate the range if the thread is reading from
the buffer.





10
Future work

The different variants of our software cache coherence protocol have been implemented
on the ARM9 MPSoC. This section will discuss directions for future work, some of these
directions will consider improvements of the cache coherence protocol, and others will be
in the direction of extending the MPSoC.

The experimental performance evaluation can be improved to draw more solid conclusions
from the evaluation. Currently we have only evaluated the performance using Splash2
applications, that apparently have a low synchronization-to-computation ratio. It could
be desirable to use applications from, e.g., the ALPBench benchmark suite to improve the
performance evaluation.

The FPGA implementation of the ARM9 also requires some additional work. The current
implementation was significantly extended and improved during this project, but only little
attention has been paid to performance. In future work this may become important, e.g.,
the implementation of Æthereal network can be improved by supporting pipelined memory
accesses, and maybe the ARM9 could be extended with hardware floating point support.

The current implementation of the MPSoC does not support hardware locks. As a conse-
quence, a software lock algorithm for mutual exclusion is used for synchronization. Further-
more, the administration of FIFO buffers is maintained in software. The variables needed
for the software locks and the FIFO administration are located in an noncacheable range of
the shared memory. As a consequence, threads spinning on a lock cause many memory ac-
cesses. This can significantly increase the memory bandwidth requirements, and can be an
issue for scalability. Future work should look into methods for predictable and composable
locking, without significantly increasing the memory bandwidth requirements.

In future work it may be interesting to evaluate the scalability by applying the protocol in a
large scale MPSoC. Unfortunately, only two ARM9 processors can be mapped to the Xilinx
Virtex 4 FPGA. It can be an option to map a large number of MicroBlaze soft core processors
on the FPGA. Evaluating scalability can be related to load balancing; in this thesis we have
briefly discussed load balancing, and we have illustrated that the current software platform
and software cache coherence protocol can support load balancing. However, it is not yet
clear how to decide whether tasks need to be migrated.

The software cache coherence protocol is suitable for composable MPSoCS. However, to
eliminate the impact of one thread on other threads executing on the same processor, it is
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required to clean and invalidate the entire cache on each task switch. Unfortunately, this
can significantly degrade the performance, and performance becomes dependent of the task
switch time. Future work should focus on more efficient ways to ensure composability.
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