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ABSTRACT

With the increasing gap between the speeds of the processor and memory system, 

memory access has become a major performance bottleneck in modern computer systems. 

Recently, Symmetric Multi-Processor (SMP) systems have emerged as a major class of 

high-performance platforms. On these SMP systems, the efficiency of memory access in 

an application is critical to its overall execution performance.

Optimizing the cache locality of a parallel application is an effective approach 

to reduce the memory bottleneck effect to improve the performance of a parallel compu­

tation. For applications with static memory-access patterns, many effective techniques, 

such as compile-time locality optimizations, have been proposed. However, improving 

the memory performance of applications with dynamic memory-access patterns is still 

a hard problem in the parallel computing area. The solution to this problem is critical 

to the success of parallel computing because dynamic memory-access patterns occur in 

many real-world applications.

This dissertation is aimed at solving the above problem. Based on a rigorous 

analysis of cache-locality optimization, we propose a memory-layout oriented run-time 

technique to exploit the cache locality of parallel loops on SMP systems. The proposed 

technique consists of four components: (1) a method to estimate and abstract memory- 

access patterns of applications, (2) a memory-layout based method to reorganize tasks 

to maximize data reuse in caches, (3) a heuristic task partitioning algorithm to mini­

mize both data-sharing and load imbalance, and (4) an adaptive and locality-preserved 

scheduling algorithm to minimize the parallel execution time of an application. These 

system schemes have been integrated and implemented in a run-time system.

In order to provide an insightful analysis of our run-time system, a detailed SMP 

simulator was built. Using simulation and measurement, we have shown our run-time 

approach can achieve comparable performance with compiler optimizations for those reg­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ular applications, whose load balance and cache locality can be well optimized by tiling 

and other program transformations. However, our approach was shown to improve signif­

icantly the memory performance for applications with dynamic memory-access patterns. 

Such applications are usually hard to optimize with static compiler optimizations.

The major contributions of this dissertation are:

1. We present models for the cache locality optimization problems in uniprocessor 

systems and SMP systems. These models characterize the complexity and present 

a solution framework for optimizing cache locality.

2. We present an effective internal representation for the m e m o ry -a c c e s s  pattern of a 

parallel loop to support efficient locality optimizations and information integration.

3. We present a memory-layout oriented run-time technique for locality optimization.

4. We present efficient scheduling algorithms to trade off locality and load imbalance.

5. We provide a detailed performance evaluation of the run-time optimization tech­

nique at the architecture level and at the execution level.

xvii
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Chapter 1

Introduction

The recent developments in circuit design, fabrication technology and Instruction-Level 

Parallelism (ILP) technology have increased microprocessor speed about 100% every 

year. However, memory-access speed has only improved about 20% every year [19]. 

In a modern computer system, the widening gap between processor performance and 

memory performance has become a major bottleneck to improving overall computer 

performance. Usually, a faster processor has a higher memory-access rate. Since the 

increase in memory-access speed cannot match that of the processor speed, memory- 

access contention is increased, which results in a longer memory-access latency. This 

makes memory-access operations much more expensive than computation operations. In 

multiprocessor systems, the effect of the widening processor-memory speed gap on per­

formance becomes more significant due to the heavier access contention on the network 

and the shared memory and to the cache coherence cost. Recently, Symmetric Multi- 

Processor (SMP) systems have emerged as a major class of parallel computing platforms, 

such as HP/Convex Exemplar S-class [7], Sun SPARCcenter 2000 [14], SGI Challenge 

[24], and DEC AlphaServer [66]. SMPs dominate the server market for commercial ap­

plications and are used as desktops for scientific computing [67]. They are also important

2
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Chapter 1. Introduction 3

building blocks for large-scale systems. The improvement on the memory performance 

of applications is critical to the successful use of SMP systems in the real world.

In order to narrow the processor-memory speed gap, hardware caches have been 

widely used to build a memory hierarchy in all kinds of computers, from supercomputers 

to personal computers. In addition, in a Cache-Coherent Non-Uniform Memory Access 

(CC-NUMA) system, the shared memory is further distributed to reduce its access- 

contention. The effectiveness of the memory hierarchy for improving performance of 

programs comes from the locality property of both instruction executions and data ac­

cesses of programs. In a short period of time, the execution of a program tends to stay 

in a set of instructions close in time or close in the allocation space of a program, called 

the instruction locality. Similarly, the set of instructions executed tend to access data 

that are also close in time or in the allocation space, called the data locality. Using a fast 

and small cache close to a CPU is expected to hold the working set of a program so that 

low-level memory accesses can be avoided or reduced.

Unfortunately, the memory hierarchy is not a panacea for eliminating the processor- 

memory' performance gap. Low-level memory accesses are still substantial for many ap­

plications and are becoming more expensive as the processor-memory performance gap 

continues to widen. The reasons for possible slow memory accesses are:

•  Applications may not be programmed with an awareness of the memory hierarchy.

•  Applications have a wide range of working sets which cannot be held by a hardware 

cache, resulting in capacity misses at the top levels of the memory hierarchy.

•  The irregular data-access patterns of applications result in excessive conflict misses 

at the top levels of the memory hierarchy.

•  In a time-sharing system, the dynamic interaction among concurrent processes and 

the underlying operating system causes a considerable amount of low-level memory
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Chapter 1. Introduction 4

accesses as processes are switched in context. This effect cannot be handled by the 

memory hierarchy on its own.

•  In a cache coherent multiprocessor system, false data sharing and true data sharing 

result in considerable cache coherent misses.

•  In a CC-NUMA system, processes may not be perfectly co-located with their data, 

which results in remote memory accesses to significantly degrade overall perfor­

mance.

Due to the increasing cost of low-level memory accesses, techniques for eliminat­

ing the effect of long memory latency have been intensively investigated by researchers 

from application designers to hardware architects. So far, the proposed techniques fall 

into two categories: latency avoidance and latency tolerance [30]. The latency tolerance 

techniques [19] are aimed at hiding the effect of memory-access latencies by overlapping 

computations with communications or by aggregating communications. Most of these 

techniques, while reducing the impact of contentionless access latencies, do so at the cost 

of increasing a program’s bandwidth requirements [13]. These latency tolerance tech­

niques may increase a processor’s memory bandwidth needs by causing the processor to 

request the same stream of operands in less time, or by causing the processor to request 

more data from memory. In turn, these techniques may cause the processor to stall due 

to queueing in the memory system. In a SMP system, it is hard for a latency tolerance 

technique to reduce cache-coherence overhead.

The latency avoidance techniques, also called locality optimization techniques, 

are aimed at minimizing low-level memory accesses by using softwaxe and hardware ap­

proaches to maximize the reusability of data or instructions at the top levels of the 

memory hierarchy. In a SMP system, reducing the total number of accesses at low levels 

of the memory hierarchy is a substantial solution to reduce cache coherence overhead, 

memory contention and network contention. So, the locality optimization techniques,
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Figure 1.1: SMP shared memory system model.

i.e. the latency avoidance techniques, are more demanding than the latency tolerance 

techniques. In addition, because instruction accesses are more regular than data accesses, 

designing novel data-locality optimization techniques is more challenging and more im­

portant for performance improvement. The objective of this dissertation is to propose 

an efficient technique to optimize the data cache locality of parallel applications on SMP  

systems.

1.1 The Problem

In a SMP system as shown in Figure 1.1, each processor has a hierarchy of local caches 

(such as the on-chip cache and the off-chip cache in the figure) and all the processors share 

a global memory. When a processor accesses its data, it first looks up the cache hierarchy. 

If the data is not found in the caches, an event called as a cache miss, the processor reads 

the memory block that contains the required data from shared memory and brings a copy 

of the memory block in an appropriate cache block in the cache hierarchy. Data is copied 

into the cache hierarchy so that the subsequent accesses to the data can be satisfied from 

the cache and memory accesses can be avoided. The cache locality optimization is aimed 

at optimizing the cache-access pattern of an application so that memory accesses can be
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Chapter 1. Introduction 6

satisfied in the cache as often as possible (or in other words, cache data  can be reused as 

much as possible). To increase the chance of cache data to be reused, we must reduce the 

interference that would kick out or invalidate the cache data. In a SMP system, there are 

two types of interference that would affect the reuse of cache data: the interference from 

the local processor which refills a cache block with new data, and the interference from a 

remote processor which invalidates stale data copies to maintain data consistency. The 

two types of interference in a parallel computation are determined by how the data is 

accessed in the computation, called the data-access pattern, and how the data is mapped 

into a cache, called the cache-mapping pattern. Hence, it is essential for a cache locality 

optimization technique to obtain and use the information on the data-access pattern and 

the cache-mapping pattern of a parallel program.

The data-access pattern of a program is determined by program characteristics. 

Because the compilation time of an application is not a part of its execution time, a 

compiler can use sophisticated techniques to analyze the data-access pattern of a program. 

However, there is a large class of real world applications whose data-access patterns 

cannot be analyzed at compile-time. The data-access patterns of many these functions 

are dependent on run-time data. In addition, many real-world applications have indirect 

data accesses [81], which are difficult for a compiler to analyze. For example, pointers 

may point to different objects during the execution of a program, and the subscripts 

of an array variable may be given by another array variable. The existence of these 

complicated applications recommands run-time techniques for analyzing the data-access 

patterns.

Next, the cache-mapping pattern of a program is determined by architectural 

characteristics of the cache and data layout. In current commercial computer systems, 

caches fall into two types based on their indexing schemes: physically indexed caches, 

called physical caches, and virtually indexed caches, called virtual caches. In virtual 

caches, the mapping of data onto cache blocks is based on the virtual addresses of the
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data, which is not changed by the operating system. For the complicated programs 

whose data-access patterns are determined by run-time data, the virtual addresses of 

the run-time data can only be determined at run-time. In physical caches, the map­

ping of data onto cache blocks is based on the physical addresses of the data in memory 

which are determined by the operating system at run-time. Hence, from the standpoint 

of analyzing cache-mapping patterns of programs, run-time analysis techniques are im­

portant for improving the memory performance of complicated applications on all cache 

architectures.

Along with the run-time analysis on the cache-access patterns of applications, 

efficient run-time locality optimizations must be applied. Because the execution time 

associated with the run-time analysis and optimizations, called the run-time overhead, 

extends the total execution time of an application, the design of run-time techniques 

is strictly constrained by the overhead. In general, the more information a run-time 

technique exploits, the greater number of memory accesses it can reduce, but the more 

run-time overhead it may cause. The challenge is how to trade off between the opti­

mization quality and the run-time overhead. Although a compiler cannot conduct any 

run-time analysis, it has the advantage of being able to perform very complicated static 

analyses. So, an effective run-time technique should have some way to make use of the 

compile-time information.

In addition, because the ultimate goal of optimizing the cache locality of a 

parallel program is to minimize parallel computing time, locality optimizations must 

be carefully traded off with the other performance factors. As we have shown in our 

previous work [93, 94], load imbalance is an important performance factor for parallel 

computing. Optimizing locality and balancing load are two conflicting goals. Load 

balancing tends to split a group of tasks with cache affinity onto different processors, 

while locality optimizing tends to put tasks with cache locality affinity onto a processor. 

How they should be traded off is important.
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The locality optimization has been a hot research topic for several years. Many 

effective techniques have been proposed at different system levels (more comprehensive 

analysis on them will be given in the next chapter). The techniques proposed at the 

user level mainly depend on users’ analysis, which are not acceptable for general usage. 

The compiler-based techniques cannot handle the complicated applications (as mentioned 

above). At the run-time system level, locality optimization has been considered in some 

task scheduling systems. However, current optimizations only exploit a type of weak 

locality information: processor affinity, which has a very restricted application. At the 

operating system level and the hardware level, some locality optimization techniques are 

also proposed. These techniques are for improving system-wide memory performance, 

not a specific computation, because it is hard to get the information on the cache- 

access pattern of an application at the low system levels. Hence, in order to achieve 

efficient parallel computing for a wide range of real-world applications, conducting run­

time locality optimization is essential. Run-time locality optimization can complement 

compiler-based techniques to handle complicated real-world applications.

1.2 Our Approach

1.2.1 E stim ation  o f T he C ache-A ccessing P attern

In order to take use of the static information of an application, we design a set of simple 

run-time functions which are inserted into an application by a compiler or a user to 

produce some application-dependent static information, called hints, into the object code. 

During run-time certain functions are invoked to analyze the memory-access pattern of 

an application based on both static and run-time information.

The memory-access pattern is abstracted in a multi-dimensional space and tasks 

axe abstracted as points in the space. These abstractions provide a fundamental software

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1. Introduction 9

structure for implementation and locality optimization.

1.2.2 Locality O ptim izations

Based on the predicted memory-access pattern and the architecture of the cache, two 

types of space transformations are conducted in the multi-dimensional memory-access 

space: space shrinking and space partitioning. In space shrinking, tasks are grouped 

based on their data affinity with the aim of maximizing cache data reuse in mind. In 

space partitioning, tasks are partitioned with the aim of minimizing both data sharing 

and load imbalance.

1.2.3 Trade-off B etw een  Im balance and Locality

In order to guarantee balanced execution, we propose a run-time task scheduling algo­

rithm to trade off load imbalance and locality. If the partitions generated from locality 

optimization phase are well balanced, the scheduling overhead is insignificant in the exe­

cution phase, and the run-time scheduler can achieve similar efficiency of a static sched­

uler. The more imbalanced the partitions, the more scheduling overhead the algorithm 

may cause.

1.2.4 Integration

In order to minimize the run-time overhead of locality optimization, a multi-dimensional 

hash structure is internally built a t initialization time based on application-dependent 

hints. Meanwhile, a compound hash function is constructed from several transformation 

functions, which maps M  tasks into appropriate affinity groups on appropriate processors 

in 0 ( M ) complexity. This provides an efficient integration of the task grouping and the 

task partitioning.
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1.2.5 Perform ance Evaluation

We evaluated the effectiveness of our run-time technique using simulation and the mea­

surement on commercial SMP systems. We built a detailed simulator for SMP systems 

to study the execution performance of our run-time system and the effect of run-time 

optimizations on the cache-access patterns of applications. Measurements on two SMP 

multiprocessors were conducted to further confirm the simulation results. The perfor­

mance evaluation was conducted using several benchmarks with different program char­

acteristics.

1.3 C ontributions of This D issertation

The primary contributions of this dissertation are as follows:

•  We develop models for cache locality optimization problems in uniprocessor systems 

and SMP systems. These models characterize the complexities of and present a 

solution framework for optimizing cache locality in uniprocessor systems and in 

SMP systems.

•  We present an effective internal representation of memory-access patterns of parallel 

tasks. This representation allows an efficient implementation of comprehensive 

locality optimizations and an efficient integration of both static information and 

run-time information.

•  We present a memory-Iayout oriented run-time technique for locality optimization 

that contains two optimization algorithms: a task reordering algorithm and a task 

partitioning algorithm.

• We present an adaptive scheduling algorithm and several variations for the gen­

eral scheduling problem in shared-memory systems. Then, we present a locality-
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preserved scheduling algorithm to trade off locality and load imbalance.

•  We provide a detailed performance evaluation of the run-time optimization tech­

nique at both the architecture level and the execution level.

1.4 Organization o f T his D issertation

This dissertation contains eight chapters. In the next chapter, we introduce background 

knowledge about locality optimization. Then we provide a comprehensive overview of re­

lated work in order to motivate interested readers to investigate this challenging problem 

further.

In Chapter 3, the programming model and the architectural model are presented. 

Then the cache locality optimization problem and solution framework on uniprocessors 

and multiprocessors are described. In particular, the difficulties and complexities of 

optimizing the cache locality of applications on uniprocessors and multiprocessors are 

analyzed.

Chapter 4 presents the design principles and framework of our run-time system. 

The estimation technique and the internal representation of memory-access patterns are 

described. Furthermore, the functionality of the run-time system is described and is 

motivated by programming examples of several benchmarks that represent different types 

of applications.

Chapter 5 describes a run-time technique for optimizing the cache locality of 

applications. The technique consists of two components: a memory-layout based task 

reordering algorithm and a memory-layout based task partitioning algorithm. Because 

the locality-optimization oriented task partitioning is a complicated problem, this chapter 

describes it in detail and then presents a heuristic solution.

In Chapter 6, a general task scheduling problem is studied. Motivated by the
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limits of existing scheduling techniques, an adaptive scheduling algorithm and its several 

variations are presented. These algorithms were experimentally evaluated and compared 

with existing algorithms. Then, a locality-preserved scheduling algorithm is presented to 

trade off load imbalance and locality in our run-time system.

Chapter 7 describes performance evaluation methods, environments, and per­

formance evaluation results. In Chapter 8, we summarize the work presented in this 

dissertation and point out several future research directions. Some open questions are 

also discussed in this chapter.
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Chapter 2

Background

Locality optimization is a complicated problem because the locality of a program is 

affected by a wide range of factors from the programming style at the user level to the 

cache architecture at the hardware-level. This chapter first gives background knowledge 

on the hardware base, the locality, the cache miss measure and the exploitation space of 

the locality optimization problem. Then, a comprehensive overview of the related work 

is given.

2.1 Hardware Base: The M em ory Hierarchy

Building a memory hierarchy is a hardware approach widely used to bridge the processor- 

memory performance gap in modem computers. Locality exploitation techniques are 

aimed at optimizing the performance of the memory hierarchy.

From the standpoint of one processor, the memory hierarchy in a uniprocessor 

system or in a shared memory system has a pyramid shape in capacities and access 

latencies. The memory modules closer to the CPU have smaller capacity and shorter 

access latency than those further from the CPU. In a uniprocessor system or a Cache

13
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J  CPU Capacity & Access Latency CPU

I On-chip Cache i  On-chip Cache

*

Off-chip Cache |
i

Off-chip Cache J
I

Memory Local Memory

i Remote Memory
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Figure 2.1: Pyramid views of memory hierarchies from one processor in uniprocessor 

systems, CC-UMA systems, and CC-NUMA systems.

Coherent Uniform Memory Access (CC-UMA) system, the memory' hierarchy usually has 

three levels as shown in Figure 2.1 (a): an on-chip cache with a typical size of 8 to 64 

KBytes, an off-chip cache (or secondary cache) with a typical size of 256 KBytes to 1 

MByte, and a main memory that is shared and has the same access latency from multiple 

processors in a CC-UMA system. Some systems have a simpler memory hierarchy of one 

cache level and one memory level. In a CC-NUMA system, the shared main memory 

is distributed, where each processor has a local memory module. This structure could 

reduce memory-access contention and scale to a larger number of processors, resulting 

in a four-level memory hierarchy as illustrated in Figure 2.1(b): an on-chip cache, an 

off-chip cache, a local memory, and a remote memory comprised of all the local memory 

modules of the other processors.

In a modern computer system, hierarchy-access latency ratios are, respectively, 

about 3 between an off-chip cache and an on-chip cache, 15 to 30 between a local memory
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Figure 2.2: Locality classification.

and an off-chip cache, and about 3 between a remote memory module and a local memory 

module. The use of a memory hierarchy is aimed at taking advantage of the locality 

feature of the instruction executions and data accesses of a program, so that the working 

sets of applications will be held closer to the CPU to avoid low-level memory accesses. 

Top-level locality optimizations are more important than low-level locality optimizations 

because they will gain more improvement in overall performance.

2.2 Locality C lassification

Optimizing the memory performance of programs is a major goal of locality exploitation. 

In general, different locality exploitation methods try to fulfill this goal by addressing dif­

ferent types of localities. A complete classification of localities is important for analyzing 

locality optimization techniques.

Programs have two distinguished types of locality properties: temporal locality
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and spatial locality. The temporal locality refers to an observed property of most programs,

i.e., once a data or instruction is referenced, it will tend to be referenced again soon. 

The spatial locality refers to the probability that once an item is referenced, nearby 

items will tend to be referenced soon [30]. In the memory hierarchy described in Figure 

2.1, caches and memory modules are managed to exploit program locality in different 

approaches: the former uses a hardware-based approach, and the latter uses an operating 

system-based approach. Hence, with respect to the memory hierarchy, the goal of locality 

exploitation can be divided into two subgoals: cache locality exploitation and memory 

locality exploitation. (The latter is required only for CC-NUMA systems.)

Memory locality exploitation is aimed at minimizing the number of remote mem­

ory accesses by co-locating processes with their data. This process is constrained by other 

performance factors, such as load balance, and is mainly managed by operating system 

approaches. In contrast, cache-Iocality exploitation is aimed at minimizing the number 

of cache misses, and thus is more complicated than memory locality exploitation. A 

program execution comprises two major and different activities: instruction execution 

and data access. Instruction execution activities have been shown to have better locality 

than data access activities[30]. Most modem computers use an on-chip instruction cache 

and an on-chip data cache separately to exploit instruction locality and data locality. 

The differences between instruction execution and data access result in another sepa­

ration of cache locality exploitation: instruction-locality exploitation and data-locality 

exploitation. A method to optimize both is ideal, but is usually difficult to design.

Regarding the two types of program locality properties, a hardware cache ex­

ploits temporal locality by placing a referenced word into the cache, and exploits spatial 

locality by using a cache block size larger than one word, which brings adjacent words 

into the cache at the same time. Optimizing the spatial locality and temporal local­

ity of programs are two concrete subgoals of the cache-locality optimization. Based on 

the above analysis, locality can be further broken down into different types as shown in
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Figure 2.3: Cache miss classification.

Figure 2.2.

2.3 Classification o f Cache m isses

How well a locality exploitation method achieves its goal of optimizing memory perfor­

mance is often quantitatively measured by the reduction in low-level memory accesses. 

First, memory accesses can be classified into two types: cache misses and remote memory 

accesses (only for CC-NUMA). Furthermore, different cache locality methods eliminate 

different sources that cause cache misses, resulting in different improvements on each type 

of cache misses. The classification of cache misses is important for evaluating locality 

optimization techniques.

Because the systems considered here cover uniprocessor systems and shared 

memory systems, which may be dedicated or time-shared, we classify cache misses into 

the following types:
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1. Compulsory misses, caused by referencing an item that has never been brought into 

the cache before.

2. Interference misses, caused by referencing an item that was brought into the cache 

but evicted at a later time. The interference misses are further divided into the 

following types:

(a) Intra-interference misses, where the item to be referenced was replaced by an 

item of the same program at a later time.

(b) Inter-interference misses, where the item to be referenced was replaced by an 

item of another program at a later time.

(c) Invalidation misses, where the item to be referenced was invalidated at a later 

time.

The inter-interference misses come from the interference among multiple time­

sharing processes. The invalidation misses come from the effect of the cache coherence 

protocol in a cache coherent shared memory system. The intra-interference misses come 

from the interference among different data objects and code segments of a program. 

Based on [31], the intra-interference misses can be further classified into capacity misses, 

which occur in a fully-associative cache with LRU replacement, and conflict misses, which 

occur in an n-way set associative cache, but not in a fully-associative cache. Capacity 

misses are caused by referencing more cache blocks than that a cache can provide. Conflict 

misses are caused by the mapping of multiple memory blocks into the same cache line 

even though empty cache lines are available. Moreover, conflict misses actually can be 

further classified into subtypes, such as self-conflict misses, which happen among the 

elements of an array, and cross-conflict misses, which happen among the elements of 

different arrays [17].
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Based on the above decomposition of cache misses, the classification of miss 

types is shown in Figure 2.3.

2.4 Locality E xploitation  Space

To investigate the exploitation space of locality, we should have a clear picture of the 

effects of different software and hardware components on the program locality during 

its execution. From the standpoint of one processor, the execution of a program on a 

uniprocessor, a CC-UMA, or a CC-NUMA has the same flowchart as illustrated in Figure 

2.4. From an application program point of view, Figure 2.4 only presents the execution 

flowchart of a program on a uniprocessor. For a shared memory system, a program may 

span onto multiple processor nodes to execute. A CC-UMA processor node consists of 

a CPU and a cache hierarchy as described in Figure 2.4, where all processor nodes are 

symmetric to the shared memory. A CC-NUMA processor node comprises a CPU, a 

cache hierarchy, and a memory module as described in Figure 2.4, where each processor 

has a local memory shared by the other processors as a remote module.

Figure 2.4 shows that the lifetime cycle of a program consists of the following

phases:

1. Programming phase: Using a programming language, a user explicitly expresses 

data, computation and execution control of an application in a program. The 

program is constructed in a virtual space. The selections of data structures, the 

data-access method, and execution order of computation have significant effects on 

the program locality. For explicit parallel programming, the partitioning methods 

of data layout and computation sequences are crucial to the memory performance 

of the program.

2. Compilation phase: A program is compiled to produce an object file. Advanced
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compilers try to optimize all aspects of a program, from data layout to program 

structures. In a shared memory system, a compiler may automatically conduct a 

series of transformations to reorganize the data layout and computation sequence. 

A compilation system usually has a good chance to flexibly optimize the locality of 

a program because it can obtain detailed information about the program, and its 

compiling time is not considered significant. However, it is hard for a compiler to 

predict what will happen at run-time, especially with programs that have dynamic 

program structures and dynamic data-access patterns.

3. Link phase: A linker is responsible for linking the object files generated by the 

compiler and the object files in standard libraries and/or run-time libraries. Each 

object file has an independent virtual space. The linker integrates the multiple 

virtual spaces of the object files into a global virtual space to generate an executable 

file. Linking is the last phase to change the virtual space of a program.

4. System execution phase: The executable files generated by the linker are loaded 

into memory by the operating system. The virtual space of an executable file is 

mapped onto the physical space of memory by the paging module of the operating 

system. In the system, the processes of programs are scheduled for execution by 

the scheduler of the operating system. In a multiprocessor system, the scheduler 

manages the execution of a parallel program on multiple processors. Besides the 

operating system, the run-time library functions that were linked into the virtual 

space of a program at link time provide another vehicle for optimizing the locality of 

a program at run-time. For example, the run-time functions of a user-level thread 

library can be used for scheduling the execution of a program at run-time. Com­

pared with the high-level compilation system and the low-level operating system, 

a run-time system has several characteristics:
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• It can carry high-level information into the run-time phase.

•  It can capture run-time information about programs.

•  It resides in the virtual space of a program, so that it can effectively handle 

program operations by taking advantage of application-specific information. 

On the other hand, during execution, architecture-specific and system-wide 

information can also be obtained and used for program performance opti­

mization.

These characteristics make run-time systems very effective on improving the per­

formance of applications, if run-time systems can take advantage of these unique 

features. However, a run-time system must carefully confine its overhead. In ad­

dition, an operating system is responsible for the execution of all the programs 

running in the system, but a run-time system usually focuses on one program.

Due to these differences between the run-time system and the operating system, 

we break up the system execution phase into two separate phases: the run-time 

system phase and the operating system phase.

5. Hardware execution phase: In this phase, a CPU interactively gets instructions and 

related data from the cache to execute. In modern computer systems, caches are 

addressed by two different methods: using the virtual addresses of instructions and 

data in a program, and using the physical addresses of instructions and data in 

memory. In a system with a virtual memory, the processor issues virtual memory 

addresses, which are dynamically translated into physical addresses. For a physi­

cally addressed cache, the processor accesses the cache with the translated physical 

addresses. The mapping of instructions and data  onto the cache is finally deter­

mined by the paging system of the operating system. Although special-purpose 

hardware supports the virtual-to-physical address translation, such as TLB, it in-
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creases cache-access time. An alternative to remove this bottleneck is to access 

the cache directly with virtual addresses. This type of cache is called a virtually 

addressed cache. In a virtually addressed cache, the mapping of instructions and 

data onto the cache is based on their virtual addresses, which can only be changed 

in the virtual space of a program. In Figure 2.4, the link from CPU with the vir­

tual address to TLB represents an implementation of a physically addressed cache, 

while the link from CPU with the virtual address to the cache represents an imple­

mentation of a virtually addressed cache. In a multiprocessor system, shared data 

usually is mapped into multiple coherent caches. This requires that the data layout 

be handled very carefully.

In memory hierarchies, usually an on-chip cache is virtually addressed and an off- 

chip cache is physically addressed. In a cache coherent shared-memory system, 

coherence is maintained among off-chip caches by a hardware-implemented proto­

col. Excepting the addressing method of a cache, the associativity and cache block 

replacement method of a cache are the other two important factors that must be 

considered in cache locality exploitation. The caches used in modern computer sys­

tems are usually n-way set associative caches with a Least-Recently-Used (LRU) 

replacement policy. Direct-mapped (or 1-way set associative) caches dominate the 

market due to their simplicity and low design cost.

The above analyses indicate that those phases affecting the execution of an 

application are the places for locality to be exploited. From the implementation point 

of view, we can classify the locality exploitation approaches into six categories: user- 

level approaches, compiler-based approaches, linker-time approaches, run-time system 

approaches, operating system-based approaches, and hardware approaches. In next sec­

tion, we overview existing work based on this classification and evaluate them from the 

locality types they exploit and the miss types they eliminate.
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2.5 R elated  W ork

2.5.1 U ser-level Approaches

Optimizing the locality of programs at the user level mainly relies on programmers’ 

understanding of the effects of program structures and data structures on the memory 

performance of programs. This optimization focuses on the virtual space of a specific pro­

gram, trying to minimize compulsory misses and intra-interference misses of a program. 

Three kinds of techniques have been developed.

A. Program  Specific Approaches

With respect to a specific program, locality exploitation is based on an insightful analysis 

of the memory-access pattern of a program. A representative work using this approach 

was conducted by Lam, Rothberg, and Wolf [41]. Their work is based on a prediction 

model of capacity misses and compulsory misses. They study the performance of different 

blocked numerical algorithms, trying to find optimal blocking factors for a set of numer­

ical algorithms. This research focused on a square blocking method. Recently, similar 

experiments were reconducted by Coleman and McKinley [17], based on an integrated 

consideration of data layout and cache organization of a matrix multiplication algorithm. 

Four types of misses were considered: compulsory misses, capacity misses, conflict misses 

among the elements of an array (called self-conflict misses), and conflict misses among 

elements of different arrays (called cross-conflict misses). In addition, copying, which 

significantly degraded performance, was shown to be unnecessary. Furthermore, Fricker, 

Temam, and Jalby studied the influence of cross-interferences among different array ele­

ments on blocked loops in [23]. With respect to a matrix-vector multiplication algorithm, 

they presented a more precise prediction model on compulsory misses, capacity misses, 

and conflict misses which is used to derive the optimal block size.
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All the above cited references focus on the optimization of the data cache for 

regular numerical programs on uniprocessors, especially for nested loop structures. For 

irregular numerical programs, parallel programs and the other types of programs, what 

are the formulation of general rules for users to improve the locality of their algorithms 

is still form an open topic for further study.

B. Language Based Approaches

Program specific approaches indeed improve the memory performance for those specific 

programs. But they are program dependent. Language approaches attempt to provide 

explicit language mechanisms for programmers to express affinity relations, and to con­

duct memory layout, or task allocation on processors. High Performance Fortran (HPF) 

is such a language [48]. HPF provides a set of annotations for programmers to lay out 

data in different ways, such as interleaved, round-robin, blocked, cyclic, alignment, and 

dynamic redistribution. The compiler implements the specific data layout, which mainly 

aims at optimizing memory locality. COOL, designed by Chandra, Gupta and Hen- 

nessy [16], is a parallel C ++  language with an emphasis on the optimization of memory 

performance of programs. It provides language mechanisms for users to specify affinity 

relations of task-to-task, task-to-data and task-to-processor, which are used to guide the 

scheduling of tasks at run-time. It aims at exploiting both memory locality and cache 

locality in a CC-NUMA system. These approaches require programmers to explicitly 

express affinity relations, which is more suitable for the programmers who are knowl­

edgeable about the underlying architecture and the memory hierarchy. Existing research 

work focuses on data caches.
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C. Profiling Approaches

For general users, it is useful to provide a tool to help them to identify program structures 

and data structures that cause memory performance bottlenecks. Cache profiling tools 

and memory profiling tools are able to provide such a service. MTOOL, designed by 

Goldberg and Hennessy [26], is a high-level tool to identify procedures or basic blocks that 

incur large memory overheads. MemSpy, designed by Gupta, Martonosi, and Anderson 

[27], uses procedure-level annotations to get two types of misses: compulsory misses 

and intra-interference misses. It also provides insight into the cause of intra-interference 

misses by identifying the data structures competing for space in the cache. A more 

detailed cache profiling tool is the CPROF program designed by Lebeck and Wood [43], 

which provides fine-grain source identification and data structure support. It classifies 

misses into compulsory, capacity, and conflict types. It uses a flexible X-windows interface 

to present the cache profile in such a way that helps the programmer determine cache 

performance bottlenecks. Recently, a tool, named CVT was developed by Deijl, Teman. 

Granston, and Kanbier [21] to visualize the cache content and to show its evolution 

during the execution of a piece of code. These tools only help programmers understand 

the memory performance of a program. The decision of how to use the information to 

exploit cache locality must be made entirely the users. So far, these tools are designed 

for sequential programs.

2.5.2 C om piler Approaches

To relieve programmers of the heavy burden of conducting locality analysis at the user- 

level, compiler approaches provide important solutions. The main idea behind a com­

piler’s exploitation of locality is to transform the data layout and computation order of 

a program based on compilation information. On a uniprocessor, locality optimizations 

focus on eliminating compulsory cache misses and intra-interference cache misses. On a
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multiprocessor, locality exploitation techniques must minimize cache invalidation misses 

and remote accesses, as well as those misses occurring in a uniprocessor system. Compi­

lation approaches are static in the sense that they optimize the locality of applications 

based on statically known information at compile-time. The applications with dynamic 

memory-access patterns challenge compiler techniques. Regarding the locality optimiza­

tion at compile-time, there are two large volumes of work: one focuses on uniprocessor 

systems, and the other focuses on multiprocessor systems.

A . L ocality O ptim izations For U niprocessor System s

The common transformations used for arranging data layout are: array merging, where 

arrays accessed in a loop are merged together to increase spatial locality, structure and 

array packing, where structures and arrays accessed in a loop are packed together to 

increase spatial locality, padding, which changes the relative distances among data struc­

tures or elements of a structures to eliminate conflict misses, and structure aligning, 

which aligns structures with respect to a block mapping so that a structure is spanned 

over a minimal number of cache blocks. Common transformations used for reorganizing 

computations are loop permutation (or loop interchange), which exchanges inner loops 

with outer loops to change data-access patterns, loop fusion, which combines multiple 

loops into one to increase spatial locality, loop distribution, which divides one loop into 

multiple loops to eliminate conflict misses, loop reversal, which legally reverses the order 

in which the iterations of a nested loop execute, and tiling (or blocking), which blocks 

a large iteration space of a nest loop into small parts so that each can fit in the cache. 

Detailed explanation on these transformations can be found in [81]. Compiler based lo­

cality exploitation techniques try to find a sequence of transformations for each program 

structure so that cache misses are minimized.

In relatively early times, references [22] and [25] focused on evaluating data
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locality for a given loop permutation. In order to find the loop permutation which yields 

the best data locality, the proposed techniques may consider up to n! loop permutations. 

Wolf and Lam [82] classified data reuse into four categories: self-temporal reuse, self- 

spatial reuse, group-temporal reuse, and group-spatial reuse. Then a prediction model to 

quantify both reuse and locality was developed to guide the unimodular transformation 

of a loop by interchange, skewing, reversal, and tiling. Along this track, more recent 

work was done by McKinley, Carr, and Tseng [54]. They derived a simple cost model 

to compute temporal and spatial reuse of cache lines. The derived model is simpler 

than Wolf and Lam’s model given in [82], without precise modeling of group references 

and without consideration of the order of outer loops in a nest loop. Based on the cost 

model, they derived the application of compound transformations, which consist of loop 

permutation, loop fusion, loop distribution, and loop reversal. One major contribution 

of this work is that it demonstrated the usefulness of the proposed technique for a large 

collection of scientific programs and kernels. Finally, they questioned if a more precise 

cache model could yield performance improvements in practice for real applications. 

These optimizations target on a data cache, and they put more emphasis on program 

structure transformation than on data layout. It is still an open question how to lay out 

data systematically for improving the cache locality of applications while transferring 

program structures.

B. Locality O ptim izations For M ultiprocessor System s

Compared with the locality optimization on a uniprocessor, the locality optimization on 

a multiprocessor must trade off parallelism and locality while eliminating cache misses. 

The early work in [25] took parallelism into consideration while trying to optimize locality 

of applications. It attempted to insert parallelism at the outermost possible position. But 

it neither considered how the parallelism affects the locality nor if an interchange would
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improve the granularity of parallelism. Kennedy and McKinley [39] proposed an ap­

proach which attempted to combine the benefits of locality optimization and parallelism 

optimization. Guided by a simple locality prediction model, their approach produces 

data locality at the innermost loop and places parallelism at the outmost loop. However, 

their model is a uniprocessor cache model, which does not take into consideration the 

effects of false sharing and true sharing. So, invalidation misses, an important kind of 

cache misses in a multiprocessor system, were not considered. Manjikian and Abdelrah- 

man [50] proposed the some techniques which were used in loop fusion to optimize the 

locality of loops. However, they did not address how their techniques could be used with 

other loop transformations. In order for a compiler to optimize locality and parallelism 

systematically, Li and Pingali [46] proposed a linear transformation technique, called 

access normalization, which restructures loop nests to exploit both locality and block 

transfers. This technique is based on the framework of invertible matrices and integer 

lattice theory, which is a generalization of Banerjee’s framework of unimodular matrices 

[8]. One limitation of this approach is that it only focuses on perfect nests or nests that 

can be made perfect with conditionals.

Because the communication overhead caused by false sharing and true sharing 

is a major performance bottleneck for multiprocessor applications, some techniques have 

been developed to handle this overhead. Agarwal, Kranz and Natarajan [3] addressed this 

issue by proposing a theoretical framework for automatically partitioning parallel loops 

to minimize cache coherency traffic. However, their approach does not exploit locality in 

each partition. It only reduces invalidation misses and remote memory accesses.

The above techniques focus on using program optimizations to improve the lo­

cality of applications. Data layout is another important factor affecting the locality of 

applications. Jeremiassen and Eggers [34] addressed this issue using a compiler approach. 

They used three separate compiler analysis stages to pinpoint susceptible data structures 

that would cause false sharing. Then, some data transformations were applied at appro­
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priate points. However, all the data transformations were done with respect to a given 

program partition. Ideally, data transformations and program transformations should be 

conducted together. Targeting this problem, Torrellas, Lam, and Hennessy [73] proposed 

four data layout techniques to reduce false sharing. However, the application of their 

data transformations was studied independently of the program transformation.

An integration of data decomposition and computation decomposition was con­

ducted by Anderson and Lam [6]. They modeled decomposition as affine functions and 

structured decompositions into three components: partition, which determines which ar­

ray elements and iterations are local to a single processor, orientation, which gives the 

correspondence between the data and computation dimensions and the processor dimen­

sions, and displacement, which specifies the offsets of the array elements and iterations 

with respect to the processors. This approach tries to find a static decomposition that 

exploits the maximum degree of parallelism available in a program such that communi­

cation is minimized. It is aimed at achieving maximal parallelism and minimal commu­

nication overhead (or memory locality in a CC-NUMA). However, their approach neither 

addressed the load balance issue nor exploited the cache locality. In addition, data trans­

formations are actually very helpful for data decomposition as shown in [34, 73]. More 

recently, Anderson, Amarasinghe, and Lam [5] combined the optimizations of parallelism, 

communication, and data layout. Their approach consists of two steps: decomposition 

of computation and data, and restructure of data layout. However, this work does not 

address the load balance issue in the decomposition of computation and data. In ad­

dition, the applicability of data transformations should be evaluated for a wider range 

of applications with different memory-access patterns. Using a compiler approach to 

exploit locality of applications is particularly attractive, because a compiler can conduct 

insightful analyses. Besides the issues pointed out above, which need further investiga­

tion, compiler approaches only focus on the optimization of a program in the virtual 

space. For a physically addressed cache, underlying operating system interferes with
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the cache-access patterns of applications. Recently, reference [12] proposed a compiler- 

directed page coloring method to improve cache locality on a physically addressed cache. 

Because the implementation of this approach finally relies on the underlying operating 

system, we will evaluate it in the category of system approaches. In addition, all compiler 

approaches cited above only focus on the data cache.

2.5 .3  Link-tim e A pproaches

Besides data locality optimization, instruction locality optimization is equally important 

for improving the memory performance of applications. The main idea of exploiting 

instruction locality is to reorganize program code. A static linker is a good place to do 

code reordering because it has a global picture of what static codes are going to be linked. 

To reorder program codes, a linker must get sufficient information on programs from the 

compiler phase. However, the dynamically linked library functions and system calls are 

out of the control of a static linker. Current work focuses on the optimizations in a static 

linker.

Hwu and Chang [33] improved instruction cache performance using inlining, 

basic block reordering, and procedure reordering. Based on a call graph with weights 

produced by profiling, their algorithm maps procedures to the address space by traversing 

the call graph along heavily weighted edges in depth-first order. The depth-first traversal 

may lead to an unimportant path in the control graph, because the traversal is guided by 

local knowledge, the weights of currently available edges, and not the global knowledge 

in the call graph. Similarly, Pettis and Hansen [59] presented a number of techniques 

to improve code layout: basic block reordering, procedure splitting, and procedure re­

ordering. Their algorithm uses a closest-is-best strategy to perform procedure reordering, 

which starts with the heaviest executed call edge in a program call graph. The above 

two approaches improve the locality of an instruction cache. A disadvantage is that both
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methods do not consider the architectural information of an instruction cache, which is 

necessary for a more precise reordering technique.

Some techniques do conduct code reordering by considering the underlying cache 

architecture. McFarling [52] improved instruction-cache performance by not caching 

infrequently used instructions and by reordering codes. Based on a control flow graph 

with basic block, procedure, and loop nodes, the author attempted to partition the 

control graph by focusing on the loop nodes, so that each partition tree has a code size 

smaller than the instruction cache. The limitation of this approach is that a control graph 

may not always be partitioned in this way. For operating system intensive workloads, 

Torrellas, Xia and Daigle [75] proposed an algorithm for code layout by taking into 

consideration both the cache size and the code popularity. The algorithm partitions the 

operating system code into executed and non-executed parts at the basic block level, and 

then creates sequences of basic blocks from the executed code controlled by a decreasing 

threshold value. For a given threshold value, all the basic blocks with larger weights are 

removed and put into a sequence. All the blocks in a sequence are laid out together in the 

address space. The procedure is repeated until all frequently executed basic blocks have 

been put into sequences. The algorithm maps the most frequently executed sequence into 

a special area in the cache and the rest of the sequences to cache areas that avoid the 

special area. The non-executed basic blocks are used to fill the final gaps remaining in the 

cache. Because this approach targets operating system workloads, it does not consider 

the relations between blocks, which may prevent this approach from being applied by 

user programs. Recently, Hashemi, Kaeli, and Calder [29] proposed an algorithm to lay 

out procedures based on more detailed information about the cache. They classified 

procedures as popular procedures and non-popular procedures. First the cache blocks 

of a cache are marked into different colors, and a call graph with call numbers as the 

weights of edges is constructed for popular procedures. Then, their algorithm tries to 

eliminate conflict misses by coloring two adjacent nodes of the call graph in a step-by-
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step method. At each step, the two nodes connected by the heaviest weight edge are 

colored to avoid conflicts in the cache. The two nodes are then merged into a node in 

the call graph. This procedure is repeated until all procedures are colored. In the end, 

the non-popular procedures are used to fill the gaps left by the procedure coloring. This 

approach gets better performance than previous work due to its deep exploitation of cache 

information. However, this approach may be further improved, because it only takes into 

consideration procedure layout. Sometimes block layout is necessary. In addition, the 

optimal code layout problem is an NP-Complete problem which leaves some room for 

improvement. Another interesting issue is to investigate how far existing techniques are 

from the optimal solution.

2.5.4 R un-tim e A pproaches

Although a compiler can do complicated transformations, it performs poorly for programs 

with dynamic structures, and it cannot predict the effect of the underlying system. To 

remedy these drawbacks of compiler, a run-time library is usually a complementary so­

lution. The major advantage of the run-time approach for exploiting locality is that it 

can take advantage of both static information from an application or a compiler and dy­

namic information from the underlying system to predict the cache-access pattern of an 

application. However, the run-time approach is strictly constrainted by the low-overhead 

requirement. So, algorithms in a run-time system must be relatively simple and effective.

In order to achieve balanced partitioning on parallel loops, run-time loop schedul­

ing algorithms have been intensively studied previously. In order to minimize remote 

accesses in a CC-NUMA system, Markatos and Leblanc [51] proposed an affinity loop 

scheduling algorithm. Their approach allocates a local task queue to each processor and 

keeps processors busy with the local tasks as much as possible. This scheduling algorithm 

only exploits processor affinity to increase data reuse when parallel loops are repeatedly
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executed without changes in the memory-access patterns. However, data affinity is very 

important to improve memory locality. Li, Tandri, Stumm, and Sevcik [45] proposed a 

loop scheduling algorithm with consideration of data affinity. Their approach tries to 

allocate loop iterations local to their data  so that remote memory accesses can be min­

imized. The run-time system must get information on data layout from the high-level 

compiler. Their approach does not exploit processor affinity, namely the cache locality.

The integrated exploitation at run-time of cache locality and memory locality 

was studied by Chandra, Gupta and Hennessy [16] in the context of the design of COOL. 

Based on user-specified affinity relations, their run-time system schedules the executions 

of tasks to exploit processor affinity and data affinity. A limitation of this approach is 

that the quality of locality optimization totally depends on the programmer. Recently, 

Philbin, Edler, Anshus, Douglas, and Li [60] proposed a parallel threading approach to 

exploit cache locality of sequential programs on a uniprocessor. With respect to loops 

that can be parallelized, fine threads are created for loop iterations by carrying some 

hints about their access data. Their run-time system uses a cache-size based square 

blocking method to cluster threads so that the threads accessing the same data execute 

consecutively to reuse cache data. This approach does not require programmers to specify 

affinity relations explicitly like the approach presented in [16].

This area has been paid less attention so far. More intelligent run-time exploita­

tion techniques are expected to be designed for those programs with dynamic or irregular 

memory-access patterns.

2.5.5 O perating S ystem  B ased  A pproaches

An operating system is mainly responsible for the management of computations and com­

putation resources. The memory management, task scheduling, and processor scheduling 

(on a multiprocessor) of an operating system are the components that directly affect the
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locality of applications. The memory paging system maps virtual pages of a program 

into physical pages, which determines the mapping of instructions and data to the cache 

on a physically addressed cache. In a CC-NUMA system, page mapping must consider 

how to place virtual pages in order to maximize memory locality as well as cache locality. 

This is correlated with the scheduling of tasks and processors. The task scheduling algo­

rithm and the processor scheduling algorithm determine where and when a task executes, 

which affects the memory locality and cache locality of applications. So, operating sys­

tem based locality optimizations are exploited respectively in the memory management 

system and the scheduling algorithms of tasks and processors. Compared with the lo­

cality exploitation at high levels, the locality exploitation in the operating system kernel 

has a major advantage of being able to perform system-wide locality optimizations for 

all the applications in the system. This feature is important for the performance of a 

time-sharing system.

A . Page M anagem ent

Traditionally, when a program is loaded into memory, the operating system maps the 

virtual pages of the program into memory pages by randomly selecting from a pool of 

available pages. This random page mapping tends to cause two frequently accessed pages 

to be mapped onto the same cache area. This generates either intra-interference cache 

misses, if the two pages belong to one program or inter-interference cache misses, if the 

two pages belong to two different programs. Additionally, on a CC-NUMA system, an 

inappropriate page management could cause a large number of remote memory accesses. 

So, care should be taken for page management. On the optimization of cache locality, 

two classes of page mapping algorithms have been proposed: static algorithms that work 

a t page-in time and never change the mapping of a virtual page to a physical page, and 

dynamic algorithms that dynamically update the mappings between virtual and physical
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pages in order to minimize cache conflicts.

Regarding static page mapping, Kessler and Hill [40] proposed four policies: 

page coloring, bin hopping, best bin, and hierarchical. To manage the mapping of memory 

pages into the cache, the cache is divided by page size and cache pages are distinguished 

with different colors. Similarly, each memory page is colored by the color of the cache 

page into which it will be mapped. All memory pages with the same color are organized 

into a page bin. When virtual pages are paged into memory, different policies are used 

to exploit different types of locality. The page coloring policy maps consecutive virtual 

pages to consecutive colors so that pages close together in the virtual space do not conflict 

in the cache. The bin hopping policy cycles through the available colors sequentially as 

pages are faulted in, so that pages mapped close in time tend to be placed in different 

bins, regardless of whether these pages belong to the same virtual space or to different 

virtual spaces. The advantage of the bin hopping policy over the page coloring policy is 

attributable to the fact that the former uses a global count to remember the most recently 

used color. The best bin policy uses more global knowledge in its decision making. This 

algorithm has linear complexity in the number of bins. The hierarchical policy tries to 

reduce the complexity of the best bin policy by using a binary tree so that the search of 

the best bin can finish in log complexity of the number of bins. The first two policies 

have constant complexity. They are adopted by some modern operating systems (for 

example, the IRIX 5.3 uses page coloring and Digital UNIX uses bin hopping). Recently, 

Bugnion, Anderson, Mowry, Rosenblum and Lam [12] proposed a new approach to further 

reduce intra-interference misses on a multiprocessor. Their approach gets the compiler 

to create a summary of the array-access patterns of a program, the run-time system to 

color the virtual pages of the program based on machine-specific parameters (i.e., the 

number of processors, the cache configuration, and the page size), and the operating 

system to honor the run-time page coloring as much as possible. Because this approach 

carries application information down to the operating system, it can make a more precise
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page mapping than the page coloring and the bin hopping. They demonstrated the 

advantage of their approach only on a dedicated multiprocessor. Whether this approach 

outperforms page coloring and bin hopping on time sharing systems still needs further 

investigation. Trying to honor the best mapping of an application does not guarantee a 

performance improvement for a time sharing system.

Compared with static page mapping policies, a dynamic page mapping policy 

can adjust page mapping based on run-time information. A hardware-assisted dynamic 

page mapping policy was proposed by Bershad, Lee, Romer, and Chen [9]. They proposed 

an inexpensive hardware device, called the Cache Miss Lookaside (CML) buffer, to detect 

conflicts by recording and summarizing the history of cache misses, and a software policy, 

called the sequential-target policy, within the operating system’s virtual memory system 

to remove conflicts by dynamically remapping pages whenever large numbers of conflict 

misses are detected. This approach enables a direct-mapped cache to perform nearly as 

well as a two-way set associative cache of equal size and speed. Meanwhile, they further 

investigated the possibility of using standard hardware to recolor pages in [62]. Their 

approach is aimed at using the TLB and the cache miss counter to locate possible cache 

conflicts. They showed that a dynamic page mapping policy using standard hardware can 

improve upon the performance of a static policy, but is not as effective as special-purpose 

hardware, such as an associative cache or an CML buffer.

All the above research work except [12] focuses on uniprocessor systems. On 

a multiprocessor system, the recoloring of shared pages should consider its effect on 

multiple caches. How these approaches are extended to a time sharing multiprocessor 

system is a current research topic.

On a CC-NUMA system, the page management system must take caxe of mem­

ory locality as well as cache locality. Early research on this problem was done by Chan­

dra, Devine, Verghese, Gupta, and Rosenblum in [15]. The other early work on this 

topic was in the context of non-cache-coherent NUMA machines, such as [11] and [42].
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Their approach migrates data pages based on TLB misses. Recently, Verghese, Devine, 

Gupta, and Rosenblum [80] proposed a more effective algorithm to reduce remote mem­

ory accesses based on page migration and page replication. In their approach, pages 

are classified into three groups based on cache misses or TLB misses, the first group 

consisting of pages primarily accessed by a single process, the second group consisting 

of pages most read by multiple processes, and the third group consisting of pages both 

read and written by multiple processes. Page migration is used for the first group of 

pages. Page replication is used for the second group of pages. The effectiveness of the 

proposed approachs were demonstrated for a wide range of applications in the context 

of the space-sharing scheduling. Cache miss counting was shown to be a more precise 

measure than TLB miss counting to differentiate pages.

B . Scheduling

When a processor holds a part of the working set of a task in its caches (cache affinity) 

or local memory (memory affinity), the processor is said to be in affinity to the task. 

Exploiting processor affinity tends to improve the execution performance of tasks by 

causing less cache misses and/or remote memory accesses. The affinity of a task to a 

processor is generated by three sources: (1) a previous execution of the task on the 

processor that causes the working set to be cached (resulting in cache affinity), (2) page 

allocation and migration, which get the working set of the task to reside in the local 

memory of the processor (resulting in memory affinity), (3) executions of affinity tasks 

that have similar working sets (resulting in cache affinity). The first affinity source can 

be exploited alone by processor and task scheduling algorithms. The exploitation of the 

second affinity source needs to take into consideration the effects of page management 

policies. The third affinity source usually is hard for a pure OS-based approach to exploit 

due to the lack of knowledge on tasks’ working sets. The challenge of exploiting locality in
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the system schedulers comes from the requirement of a set of conflict goals. For example, 

context switching is aimed at achieving fairness among concurrent tasks, which tends to 

weaken cache affinity. This has been shown to have significant effect on cache locality 

[56]. So, schedulers must carefully trade off performance and other goals.

Based on a formal model and measurements, Squillante and Lazowska [65] 

showed th a t even exploiting the simplest forms of processor-cache affinity could poten­

tially provide significant improvements over ignoring this affinity on a time-sharing mul­

tiprocessor. They proposed six scheduling policies to investigate the benefit of taking 

advantage of locality. Regarding the implementation of the algorithms, two approaches 

were suggested: a queue-based approach that considers the organization and use of task 

queues to incorporate processor-cache affinity in scheduling decisions, and a priority-based 

approach that considers augmenting the system’s priority discipline with processor-cache 

affinity information. Including this information in the priority calculation allows the 

scheduler to balance a task’s affinity with other scheduling criteria. Torrellas, Tucker, 

and G upta [74] further investigated the benefits of affinity for a wider mix of workloads in 

more common time-sharing systems. They used a priority-based technique to implement 

a simple affinity scheduler. They showed that affinity scheduling could achieve a signif­

icant reduction in execution time and cache misses. However, these scheduling policies 

are more suitable for a CC-UMA than a CC-NUMA because they do not consider page 

placement policies.

Because context switching is a factor degrading the cache performance of appli­

cations, Black [10] proposed a space partition technique to reduce the interference among 

parallel computations c-n a multiprocessor system. His approach partitions the machine 

into sets of processors, each of which executes a single parallel application. Other ref­

erences [15, 28, 76] showed that the best performance was obtained by partitioning the 

available processors among concurrently executing jobs rather than by rotating the pro­

cessors among them in a time-slicing manner (time-sharing). Vaswani and Zahorjan [78]
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investigated whether cache affinity exploitation could improve system performance in the 

context of space partition. Their evaluation concluded that affinity scheduling provided 

little benefit under current conditions but will have a modest effect on the much faster 

machines of the future. This research had emphasis on a CC-UMA machine. Based on 

current development trend of architectures, Symmetric Multi-Processors (SMPs) with 

2-4 processors will be the only CC-UMA systems [19], which are time sharing systems. 

Space-partition is more likely to be used in a CC-NUMA system, where affinity exploita­

tion must be considered in an integrated manner in both the scheduling policy and the 

page mangement policy. Regarding this, Chandra, Devine, Verghese, Gupta, and Rosen- 

blum [15] showed a significant performance achievement by locality exploitation in the 

operating system kernel.

Although current affinity scheduling algorithms are effective to improve system 

performance, they only exploit simple affinity hints, such as the place a task last ran and 

the last task a processor executed. To further improve the system performance using 

affinity scheduling, more precise affinity hints should be exploited.

2.5.6 Hardware A pproaches

Although many novel cache designs (see e.g., [4], [86] and [30]) have been proposed re­

cently, the caches used in modern computers are direct-mapped caches and set-associative 

caches. Regarding cache coherent multiprocessor systems, the design of cache coherent 

protocols is critical for reducing invalidation cache misses. Recently, the research work 

on this topic has been surveyed in [70] and [72]. Improving cache performance has been 

and remains a very active research area. Hennessy and and Patterson [30] have given an 

overview on existing work. Here, we only focus on those hardware techniques that are 

aimed at reducing the miss rate of a single direct-mapped cache or set-associative cache. 

This restricts our overview to a very narrow area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Background 41

In order to reduce the sensitivity of direct-mapped caches to conflicts, Jouppi 

[37] proposed a small full-associative cache, called the victim cache, between a cache and 

its refill path. A victim cache contains only blocks that are evicted by misses and are 

checked at each miss. This work showed that a four-entry victim cache reduced 20% to 

95% of the conflict misses in a 4-KB direct-mapped data cache. Another novel ideal to 

reduce the cache miss rate is cache bypassing, which determines cache block replacement 

based on dynamic information. McFarling [53] used a small finite state machine to 

recognize the common instruction reference patterns so that those instructions whose 

storing will harm performance are passed through the cache without being stored. This 

technique reduces 33% of the miss rate for a 32 KB direct-mapped instruction cache. 

On a direct-mapped cache, this approach still requires augmenting each set with two 

additional bits. This technique targets instruction caches.

Recently, Johnson and Hwu [36] proposed another adaptive bypassing technique 

for data caches. The physical space of a program is divided into microblocks. A hard­

ware Memory Address Table (MAT) was introduced between caches and memory, which 

records the accesses on a specific microblock. The main idea is to combine LRU and 

MAT-guided bypass. The difference between the bypass buffer and a victim cache is 

that the bypass buffer only holds the bypassing data, not the data block containing the 

bypassing data. The victim cache holds the cache blocks evicted from the cache. Cycle- 

by-cycle simulations showed the MAT scheme outperformed large victim caches, even for 

a finite-size MAT of a similar hardware cost and less associativity. The size of Microblock 

is mainly determined by a detailed analysis of the memory references of an application. 

More applications should be further examined.
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2.5.7 Sum m ary

VVe have overviewed related work on locality exploitation at six different system levels, 

and addressed their merits and limits. The major advantage of the user-level approaches 

is that users can improve the locality of a program by changing the algorithmic structure 

of a program. However, current work is restricted to simple program structures. Compli­

cated program structures, such as programs with irregular computing patterns, dynamic 

data-accesses, or dynamic data  dependence, are very difficult for users to tune by hand. 

These approaches place an unacceptable burden on users. Our run-time technique pro­

vides a simple interface that can be directly used by users. Knowledge of the details of 

the complicated run-time optimizations is not required.

At the compile-level, the overview has shown that a large amount of interesting 

work have been done. The main idea of the current work is to find a sequence of proper 

transformations that will result in an improved memory performance. The major chal­

lenge in compiler-based techniques is dealing with the irregular computational patterns, 

dynamic memory-access patterns and dynamic data-dependence patterns. Dealing with 

this challenge is the goal of our run-time technique.

The linker-level approaches are aimed at optimizing the instruction locality of 

a program. Our run-time technique targets optimizing the data locality of a program. 

The data locality is more difficult to optimize than the instruction locality because in­

struction execution patterns are much more regular than data-access patterns. At the 

run-time system level, most existing work only exploits processor affinity in scheduling 

and partitioning schemes. Some research efforts improve the memory performance of 

an application in uniprocessor systems or in multiprocessor systems using user-provided 

affinity information that is not available in complex applications. Our run-time tech­

nique exploits the data locality on a symmetric multiprocessor, based on the affinity 

information automatically exploited at run-time.
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There is also a large volume of works at the system level and at the hardware 

level. This work is aimed at improving system-wide memory performance, not the mem­

ory performance of a specific program, and are complementary to the program-specific 

optimizations.
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Chapter 3 

Cache-Locality O ptim ization M odels

The dynamic nature of application programs and computer systems makes the cache- 

locality optimization problem complicated. In this chapter, we present the programming 

model, the targeted multiprocessor architecture and a framework of solutions for the 

cache-locality optimization.

3.1 Program m ing M odel

In applications, frequent data accesses usually occur in loop structures [55]. Thus, the 

loop is a major programming structure that would have a significant impact on the 

memory performance of an application. We target the following class of loop structures, 

which are commonly used in scientific applications.

The program structures addressed in this dissertation are nested loops as shown 

in Figure 3.1. All the programs presented in this dissertation are in C-language format 

consistent with the C-language implementation of our run-time system. In Figure 3.1, 

lj and Uj are, respectively, the lower bound and upper bound of loop index variable ij for 

j  = 1 ,2, • • •, k(k > 1 ). These two bound variables are often functions of the outer loop

44
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for (ix =  li; iy < zq; iy +  +) 

for { } 2  =  h'l i-2 < u2 i *2 +  "+■)

for {ik = Iki ik < Wfc! ik + +)

B;

Figure 3.1: Data-independent nested loop.

index variables, iy, i?, • • •, ij-x, and are determined at run-time. The loop body B  is a set 

of statements where the statements can also be loops. An execution instance of loop body 

B can be considered as a fine-grained task to be expressed as B(i/i, v ,̂ • • •, vk), where v} 

is the value of index variable ij for j  =  1,2, • • •, k. The proposed run-time system in this 

dissertation targets the tasks whose memory-access patterns are determined by run-time 

data. The memory-access patterns of this type of applications are difficult to exploit at 

compile-time.

The condition that the above nested loop must satisfy is defined as follows. 

All the execution instances of the loop body B are data-independent, i.e., for any two 

instances, denoted as instance B (u f , • • •, uj )̂ and instance B(u^, . ■ ■ •, v%), the

following condition is valid:

out(B(uf,u^, D o u t ( B ( v Y , v % ,  • • •, v%)) =  0 A

out( B(uf ,u^, • • • D in(B(vY,V2 ,■ ■ ■ ,Vk)) =  ® A

m(B(uf , V 2 ,  ■ ■ ■ ,  v £ )) fl o u t ( B ( v Y  , v % ■ , v % ) )  =  0 (3.1)

where notations out and in represent respectively the output variable set and input 

variable set of an instance [81].

Although a more general class of loop structures carries some data-dependence, 

the proposed techniques in this dissertation can also be applied to the class by combining
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data-dependence analysis techniques. This dissertation proposes a new cache-locality op­

timization technique by focusing on data-independent loop structures. In the conclusion, 

we will discuss how to apply our technique to program structures with data dependence.

3.2 SM P A rchitecture M odel

The targeted shared-memory system in this study has a symmetric memory system 

as shown in Figure 1.1. This symmetric multiprocessor shared-memory system model, 

called SMP, has been widely used in existing commercial multiprocessor systems, such 

as the HP/Convex Exemplar S-class [7], the Sun SPARCcenter 2000 [14] and the Hyper- 

SPARCstation-20, the SGI Challenge [24], and the DEC AlphaServer [6 6 ].

In an SMP, each processor has the same access latency to the shared memory 

and has a hierarchical cache system in each processor, which usually consists of two- 

level caches: an on-chip first-level cache and an off-chip secondary cache. A hardware 

cache coherence protocol is implemented among the secondary caches to guarantee the 

consistency of accesses to shared data. The interconnection network may be a bus, a 

mesh, or a crossbar architecture. A snooping cache coherence protocol is typically used 

in a bus-based shared-memory system [14, 24, 6 6 ], and a home directory based cache 

coherence protocol is used for a mesh- or crossbar-based shared-memory system [7].

The caches implemented in most existing SMPs are k-way set associative caches 

(here a 1-way set associative cache refers to a direct-mapped cache). The associative 

degree, k, tends to be less than 4. The cache block replacement policy of a cache is LRU. 

The principle of addressing a k-way set associative cache is illustrated in Figure 3.2. The 

block address of address a is given by a /b  where b is the block size (which is 2d in the 

example). Then the lower r  bits of the block address gives the set number. When a 

block is being brought into a cache set and there is no empty block, the least recently 

used block in the set is replaced by the LRU replacement policy.
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Because the secondary cache usually is physically addressed, the caching pattern 

of shared data at this cache level cannot be determined at compile time. In this case, a 

run-time approach is the only way to capture the cache reference pattern of an applica­

tion. In an SMP system, exploiting the locality of applications to take good use of caches 

has three performance implications: reducing memory-access latency, cache coherence 

overhead, and decreasing shared-memory access contention.

Besides SMPs, Cache-Coherent Non-Uniform Memory Access (CC-NUMA) sys­

tem, such as the KSR shared memory system [38] and the Stanford DASH system [44], 

is a different type. The major difference between a CC-NUMA and an SMP is that a 

CC-NUMA has a distributed shared memory system, where each processor has a local 

shared memory module. In a CC-NUMA system, the access latency from a processor to 

its local shared memory usually is significantly smaller than that from the processor to 

the local shared memory of another processor, called remote memory. Although the cache 

locality exploitation method proposed in this dissertation can be used in a CC-NUMA 

system, it must be extended by considering the special access patterns in the distributed 

shared-memory. This needs more cooperation between a compiler and the run-time sys­

tem to capture the data layout pattern of an application. In this dissertation, we focus 

on an SMP system. The extension to a CC-NUMA will be discussed in Chapter 8 .

3.3 Cache Locality E xploitation  M odel

The goal of exploiting the cache locality of a parallel application in a shared memory 

system is to maximize data reuse in a single cache and to minimize data sharing among 

multiple caches for the purpose of minimizing cache coherence overhead. For a given 

data memory layout, how many data items can be reused in the cache depends on how 

the data  is referenced. How many data  accesses among multiple caches interfere with 

one another depends on how the application program is partitioned.
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in a block

' Q
2 blocks in a set

Figure 3 .2 : Addressing in an k-way set associative cache where the number of sets is 2r , 

block size is 2d, and k= 2C).

In this section, we formally model the locality optimization problem for a given 

data memory layout on uniprocessors and multiprocessors. Using formal models, we try 

to find an optimal execution which maximizes the data reuse, and we try to give the 

complexity of finding such optimal solutions. This formal model provides a guideline to 

design and to analyze practical cache-locality optimization methods.

3.3.1 L ocality  O ptim ization o f Sequential E xecutions

For a given memory layout, the number of memory accesses in a sequential task is con­

stant. Because locality optimization is aimed at reducing the number of memory accesses 

of an application, we can quantitatively define the reusability of a sequential execution 

ti —)■ i2 —► • • • ~► *n of n. sequential tasks: £l? £2 , • • •, tn, as follows.

D efinition 1 Forn (n>  1) sequential tasks: t\, t2, ■ ■ ■ , tn, the reusability, denotedReuse(t[ 

t2 _» .... —► tn), o f sequential execution ti —* t2 —>• • • • —>• tn is defined as:
n

Reuse(£i —► t2 —̂ ■ ■ • —̂ tn) =  ^  " Meni(t1) — Mem(£i —̂ 12 —► • • • —► tn),
*=1

2 bytes «
c bits r bits d bits

1. — . . *-
address a tag set 0  •

set number
set i :

s e t .
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where Mem/e) gives the number of memory accesses in sequential execution e.

Here, we present a precise method to calculate the reusability so that the locality opti­

mization problem can be rigorously formalized.

Let ti, t2, • • •, tk be k data independent tasks that satisfy the condition described 

in equation (3.1). Let Dset(fj) denote the set of addresses of data accessed by task tr  In 

the following, an address is used to abstract the data at that address, so data caching can 

be abstracted as address caching. Because a majority of cache architectures in commercial 

computers are k-way set associative caches with a LRU replacement policy [30], we only 

focus on this type of cache architecture.

To capture the data reuse in a cache between two different tasks, we define the 

following cache-reusable relation.

Definition 2 Two addresses at(6 Dset(U)) and 0 ,( 6  Dset(tj)) are cache-reusable, (de­

noted by ai@aj), if  both addresses a, and a3 reside in the same memory block.

It is not difficult to verify that relation @ is reflexive, symmetric, and transitive, 

so @ is an equivalence relation. The intuitive meaning of the cache-reusable relation 

is that two cache-reusable addresses reside on the same cache block so that an access 

to either one will bring the other one into the cache. The cache-reusable relation is an 

abstraction of two types of localities: temporal locality and spatial locality.

Based on relation @, the maximal set of addresses of task t3, whose data blocks 

may be reused by a next task £* in the execution sequence, is

{a|a 6  D set(tj) A3 b £ Dset(ti)(a@b)}.

However, it is not guaranteed that all the memory blocks accessed by a task will remain 

in the cache after its execution. Because some of the memory blocks will be mapped onto 

the same cache line, only the last memory block brought into a cache line remains after
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the execution of a task. To analyze the data reuse precisely in a cache, it is essential to 

differentiate clearly the cache interference among the memory access addresses within a 

task. We need to distinguish those special memory addresses of a task which affect data 

reuse in a cache.

Here, we introduce two other concepts: post-distance and pre-distance.

D efinition 3 Let a,i —> ai2 —> • ■ ■ —> a,„ be the address sequence of memory accesses of 

task U where aij G Dset{U) for j  = 1 ,2, • • •, n. The block address sequence is given by 

an/b  -* 0 ,2 / 6  —» • • • —* ain/b, where b is the block size.

1. The post-distance of address a., denoted as po std  ( a ) , is defined as: (1) 0 0  (infinitely 

large), i f  a. has the same block address as another distinct address that occurs after 

the last occurrence of a. in the address sequence; otherwise, (2) the number of distinct 

block addresses that occur after the last occurrence of the block address of a in the 

block address sequence and have the same cache mapping set as a.

2. The pre-distance, denoted as p red (a ), of address a  is defined as: (I)  00  (infinitely 

large), i f  a has the same block address as another distinct address that occurs before 

the first occurrence of a in the address sequence; otherwise, (2) the number of 

distinct block addresses that occur before the first occurrence of the block address of 

a  in the block address sequence and have the same cache mapping set as a.

Figure 3.3 shows an example for the calculation of postd  and pred for a short 

memory access sequence of a task. Figure 3.3(a) shows three memory blocks containing 

memory addresses from 0 to 5. Figure 3.3(b) illustrates a 2-set cache with a block size 

of 2. Figure 3.3(c) shows the memory access sequence, the corresponding block address 

sequence, and cache set mappings of addresses. The sequence execution order is from 

left to right. The calculation results of postd  and p red  are given in Figure 3.3(d).

Based on postd  and pred, we distinguish two classes of memory addresses within 

a task: frontier addresses and back addresses.
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block 0 block 1 block 2

0 1 2 3 4 5

set 0 

set I

(a) Memory layout.

0 2 1 5 2 4 3 sequence of access addresses
|  dhmlol by Mock n c  1

0 I 0 2 I 2 I sequence of block addresses
|  fct ite fcaa MjnfiCTM Nt

0 1 0 0 I 0 I set numbers of cache mapping

(c) Access address sequence, its block address sequence, 
and its set numbers of cache mapping.

(b) A two-set cache with block size of 2.

address postd pred

0 o o 0

1 1 o o

2 o o 0

3 0 o o

4 0 o o

5 o o 1

(d) Results of postd and pred 
for each address.

Figure 3.3: An example for the calculation of postd  and pred for each memory access 

address in an address sequence.

D efin ition  4 For any sequential task t on a k-way set associative cache, its frontier 

address set, denoted as f r o n t i e r ( t ) ,  and back address set, denoted as b a ck (t) , are 

defined as follows:

frontier(t)  =  {a|(a € D set(t)) A (pred(a) < A;)} 

back(t) =  {a|(a E Dset{t)) A (postd(a) < A;)}

(3.2)

(3-3)

With respect to the example shown in Figure 3.3, we assume that the cache is 

an 1-way set associative cache (direct mapped cache). So, the frontier address set is {0 . 

2}, and the back address set is {3, 4}.

Regarding the back address set defined in Definition 4, the following property 

can be derived.

L em m a 1 In a cache with the LRU cache block replacement policy, the block accessed 

by an address of task t  remains in the cache after the execution of t  i f  and only if the
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address is in b ack (t).

P roof: (1 ) Sufficiency: For an k-way set associative cache with the LRU replacement 

policy, a cache block in a set is replaced by an incoming new block if and only if the 

following conditions are valid: (1 ) the set has no empty blocks, (2 ) the new block has 

different block address from the k blocks in the set, and (3) the block to be replaced is 

the least recently used one in the set. The replacing order in the LRU policy exactly 

corresponds to the order of addresses occurring in the address sequence. If the block ad­

dress of an address has the same cache mapping set as at most (k -1 ) other distinct block 

addresses that follow the last occurrence of it, it can be easily verified that conditions 

(1 ), (2) and (3) cannot be valid at the same time. By this and the definition of back, the 

data block of every address in b ack (t)  must remain in the cache after the execution of 

t .

(2)Necessity: Assume that the block accessed by address b b a ck (t))  remains 

in the cache after the execution of t  and the block does not contain any address in 

b a ck (t) . By b ^ back(t) and the definition of back, we know that either (a) postd  (b) 

=  oo or (b) postd(b) > k. Case (a): if postd(b) > k, b has the same cache mapping 

set as other k addresses that have distinct block addresses in the subsequent address 

sequence. By the LRU replacement policy, the block accessed by b must be replaced in 

the subsequent execution. This contradicts the assumption case. Case (b): if postd(b) 

=  oo, by the definition of postd, we can find another address c in the subsequent address 

sequence with the property that p ostd (c ) ±  oo and c accesses the block of b. If postd (c) 

> k, the block of c, i.e., the block of b, cannot be in the cache after the execution of t .  

This contradicts the assumption case. If postd (c) < k, c must be in b a ck (t) . This also 

contradicts the assumption case. So the Lemma 1 is valid.

□
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Figure 3.4: Exemplifying Lemma 1 for a direct-mapped two-set cache 

of 2 .
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In Figure 3.4, the cache-access pattern of the execution sequence in Figure 3.3 

is shown. After execution, the cache contains blocks accessed by addresses in b ack (t)  

=  {3, 4}. The following Corollary follows directly from Lemma 1 and the definition of 

postd .

C o ro lla ry  1  After the execution of a task t ,  the data block accessed by each address a  in 

b a ck (t)  is the (k-postd(a))-fA  least recently used block with respect to the other blocks 

in the same cache set.

For the frontier address set defined in Definition 4, the following property holds.

L em m a 2 Let a  be an address of task t .  I f  the block of a was most recently pre-loaded 

into a cache with respect to the other blocks in the cache set of a before the execution of 

t ,  the preloaded block will stay in the cache to be first accessed by task t  at address a if 

and only if a. is in f r o n t i e r ( t ) .

P roof: Let the cache be a k-way set associative cache. (l)Sufficiency: Because 

a  is most recently pre-loaded into the cache with respect to the other blocks in the cache 

set of a, it will be replaced when and only when the other k distinct new blocks will be 

mapped into the same set (by the LRU replacement policy). If a is in f r o n t ie r  ( t ) , there 

are at most k- 1  distinct new blocks that will be mapped into the cache set of a  before 

the first access of task t  at a. So, the preloaded block of a is still in the cache when t  

first accesses at a. Because pred  (a) ^  oo, there is no other distinct address accessing 

the preloaded block of a before a. So, a is the first address accessing the preloaded block.

(2)Necessity: Assume that a preloaded block stays in the cache to be first 

accessed by address a  f r o n t ie r ( t ) ) .  By a  ^  f r o n t i e r ( t )  and the definition of 

f r o n t ie r ,  either (a) pred (a) =  oo or (b) p red  (a) >  k is true. Case (a): if pred  (a) 

>  k, there are at least k distinct blocks that will be mapped into the cache set of a 

before the first occurrence of accessing to a. By LRU, the preloaded block of a  must be
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block 0 block I block 2
setO

0 1 2 3 4 5 set 1

(a) Memory layout. (b) A direct-mapped cache with
two sets and block size of 2.

0 2 I 5 2 4 3 sequence of access addresses
I 0 2 1 5  2 4 3 sequence

0 I 0 2 I 2 I sequence of block addresses 0 1 5  4 equivalence class I

'  2 2 3 equivalence class 2
0 I 0 0 1 0 I set numbers of cache mapping

(c) Access address sequence, block address sequence. (d) Equivalence class partitioning of the sequence
and set number of cache mapping for a 
task.

Figure 3.5: Exemplifying Lemma 2.

replaced before the first access to a. So, the first access of task t  to a cannot be hit by 

the preloaded block. This contradicts the assumption. Case (b): ifp red (a) =  oo, by the 

definition of pred we know that there is another distinct address b that occurs before the 

first occurrence of a  and accesses the same block as a. So, a cannot be the first access 

to the preloaded block of a  if it stays in the cache. This contradicts the assumption. So, 

Lemma 2 is true.

□
By Lemma 2, we know that only the memory accesses of task t  at addresses 

in f r o n t ie r ( t )  are eliminated due to the reuse of the cache data preloaded before the 

execution of t .  In the example given in Figure 3.3, we assume that the cache is a direct- 

mapped two-set cache with a block size of 2. If we consider accesses with the same 

cache mapping set be in an equivalence class, the original sequence can be classified into 

two subsequences, each in an equivalence class, as shown in Figure 3.5(d). The frontier 

address set of the sequence is {0 , 2 }, in which each address is the first access address in 

an equivalence class. For subsequence 0 <— 1 <— 5 <— 4, only the memory access at 0 can 

be eliminated by reusing preloaded cache data. The access at 1 always hits no matter
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what the cache is preloaded, the access at 5 always misses due to access 0. For another 

subsequence, lemma 2  can also be similarly verified.

Based on Lemma 1 and Lemma 2, we can obtain the following theorem for 

calculating the reusability of a sequential execution.

T h eo re m  1 Given two tasks £t , t2, and an address a G Dset(f2). During the consecutive 

execution of t\ followed by t2 on a k-way set associative cache, the access at address a of 

t2 will reuse the cache data brought in by if  and only if the following is true:

(a G fron tier(t2)) A 3b G back(ti)((a@b) A (postd(b) + pred(a) < k)).

P roof: (a) Necessity: By Lemma 2 a  G fro n tie r(£ 2) can be directly derived. 

Because the access at address a of t2 will reuse the cache data brought in by £t , the block 

accessed by a must be loaded into cache by an access of ti at an address, denoted as b, 

and remains there after the execution of £i. By Lemma 1 and the definition of @, we 

have (b G back(ti) A (a@6)). By Corollary 1 and the LRU replacement policy, the block 

accessed by b remains to be reused by the access of t2 at a only when there are at most 

(k -p o s td (b ) - l)  distinct new blocks that will be mapped into the cache set of b before 

the first occurrence of a. By the definition of pred, pred(a) gives the number of distinct 

blocks that will be mapped into the cache set of a before the first occurrence of a. By 

a@b, we have (k -p o s td (b ) - l)>  p red (a ), namely, postd(b)+pred(a) < k. Moreover, 

sufficiency can be derived similarly to the necessity proof based on Lemma 1 and Lemma 

2 .

□
For a direct-mapped cache, Theorem 1 can be restated as the following Corollary.

C o ro lla ry  2 Given two tasks t\, t2, and an address a G D set(t2). For a consecutive 

execution of t\ followed by t2 on a direct-mapped cache, the access to a  of t2 will reuse 

the cache data brought in by t± if and only if address a is cache-reusable with an address
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in back(ti) and is in f ro n t  ier(£2), namely

3b G back(ti)(a@b) A (a G fro n tier(t2)).

Based on Theorem 1 , for any two sequential tasks 11 and t2, the reusability of 

sequential execution t xt2 on an k-way set associative cache (k >  1 ) is calculated as:

Reuse(fi£2) =  |{a !(a £ fro n tie r(t2))/\3b  G back(ti)((a@b) A (postd(b) + pred(a) < A;))}|.

So, for a sequential execution of n sequential tasks: tx, t2, ■ • •, f„, we have
n — I

Reuse(fi£2 • • • tn) =  ^  Reuse(£,£t+i).
i=i

On an uniprocessor, locality exploitation is aimed at finding an execution order 

of tasks with maximal data  reusability. For data-independent tasks, this problem can be 

transferred into a graph search problem by representing tasks by graph nodes and the 

execution order from node ti to node t} by a directed edge with weight of Reuse (£,£_,). 

We call the derived graph as the Cache Data Reuse graph, denoted CDR graph. Hence, 

the optimal cache locality exploitation problem among k data independent tasks on an 

uniprocessor is equivalent to the problem of finding a simple directed path with maximal 

sum of edge weights in a weighted directed graph. This problem is equivalent to the 

famous traveling salesman problem, which is known to be an NP-complete problem.

The above formulation procedure presents an approach to find optimal locality 

optimization method on an uniprocessor. The question of whether there is a more efficient 

way to derive the optimal solution remains open. Based on our study, the analysis on 

memory access sequences is the foundation, which is only practical for a static compiler, 

not for a run-time system. As we pointed out before, the memory-access patterns of 

some applications are determined by run-time data, which is unpredictable at compile­

time. So, for this type of application, searching an optimal solution is unrealistic even 

for uniprocessors.
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3.3.2 L ocality  O ptim ization  o f  Parallel E xecutions

From a practical point of view, minimizing the execution times of applications is the 

final goal for locality optimizations. On a uniprocessor, maximizing the reusability is 

consistent with this goal for a set of sequential tasks. However, on a multiprocessor, load 

imbalance is a major factor complicating the precise formulation of the locality optimiza­

tion problem. Here, we present an approximate formulation to model the problem on 

multiprocessor systems.

In a cache coherent multiprocessor system with p processors, the cache locality 

problem is complicated by data-access interference among multiple caches, — a mem­

ory block is simultaneously accessed by multiprocessors. Previous research has shown 

that higher interference would cause more memory accesses. Because the interference is 

affected by the cache coherence protocol and the relative execution speeds of the pro­

cessors, it is very difficult or impossible to quantify the degree of interference precisely. 

Here, we use an approximate metric, sharing degree, to quantify the interference. First, 

we define the sharing set as follows.

D efin ition  5 Let Pi and P2 be two sets of tasks respectively executing on two different 

processors. The sharing set, denoted as sh a rin g (P 1. P2), between Pi and P2 is defined as

sh a rin g (P t,P 2) =  {a|(a G Dset(Pi) A 36 6  Dset(P2)(a@b)) (3.4)

V(a G Dset(P2) A 3b G Dset(Pi)(a@b))}.

where Dset(Pi) and Dset(P2) represent the unions of the Dsets of the tasks, respectively, 

in Pi and P2.

Intuitively, sharing(Pi, P2) exactly gives the set of addresses where the corre­

sponding memory blocks are accessed by both processors. In practice, each address in 

s haring (Pi, P2) is either a truly shared address accessible by both processors, or a false
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shared address that is only accessed by one processor but resides on the same memory 

block as some accessed addresses of the other processors. The size of sharing(P\. P2), 

called the sharing degree, is a quantitative measure of the cache coherent overhead in the 

parallel execution of Pj and P2.

As an approximation, an optimal cache-locality exploitation problem of k data 

independent tasks on an SMP with p processors can be abstracted as the following p- 

partition problem:

1 . Partitioning tasks into p parts: Pi, P2, • • •, Pp, so that

(a) Minimizing

\s haring (Pi, P ,)|,

which aims at minimizing interference overhead; and

(b) Minimizing the local imbalance among parts, namely minimizing

I' t i T m a z - T ,),
i=l

where T, is the execution time of part P, (i =  1, • • •, n), and

Tmax =  max{T,|i =  1 , - • •, n}.

2. Scheduling the sequential execution of tasks allocated on a processor, so that 

reusability is maximized. This has been modeled in Section 3.3.1.

Here, both problems 1 and 2 are NP-complete.

3.3.3 Im plications o f M odels

Our locality optimization model indicates that a locality optimization method for parallel 

applications contains two major functions: task partitioning and task reordering.
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The task partitioning function tries to achieve two conflict goals: to minimize 

data sharing and to provide balanced load among processors. Usually, tasks accessing 

larger sets of data tend to have more data sharing among them. Minimizing data sharing 

among partitions tends to put tasks accessing larger sets of data together. Because a 

task accessing a larger set of data usually has a larger computation granularity, the 

minimization of data sharing may result in imbalanced partitions. This would offset the 

benefit of minimizing data sharing. In theory, we may design an iterative method to 

find a convergence point that minimizes both data-sharing and load imbalance. This 

approach could hardly be applied in practice due to the high computational complexity 

of an iterative method. Because load imbalance is an important performance factor 

[5, 34, 73, 49, 47, 51, 61, 35, 83, 93, 94], we give load balance priority than data sharing. 

So, we simplify the task partitioning function as follows: finding the balanced partitioning 

that has minimal data sharing.

This simplification benefits the design of efficient partitioning algorithms. To 

achieve this partitioning goal, having information on task load and data sharing pattern 

among tasks is a necessary condition. Applications whose memory-access patterns are 

determined by run-time data usually have irregular computational patterns. As shown by 

research work in [49, 47, 51, 61, 35, 83, 93, 94], the load balance of a parallel application 

with an irregular computation pattern can only be achieved using run-time load balancing 

techniques. In addition, the minimization of data-sharing also relies on run-time analysis 

on memory-access patterns of applications.

In the task reordering function, the execution order of tasks on each processor 

is determined to maximize the data reuse in the cache. This requires the exploitation of 

cache-access patterns of tasks, which is determined by the data-access pattern and the 

underlying cache architecture. On physically addressed caches, this is further affected 

by the operating system. In complicated applications, these information can only be 

exploited at run-time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3. Cache-Locality Optimization Models 61

Based on the above analysis, the locality optimization methods for applications 

with dynamic memory-access patterns must contain the following four components:

1. A prediction method to provide information on memory-access patterns of applica­

tions.

2. A task partitioning algorithm to dynamically partition parallel tasks of an applica­

tion onto multiprocessors, aiming at minimizing both data sharing and load imbal­

ance.

3. A reordering algorithm to determine the sequential execution order of the parallel 

tasks allocated on a processor, aiming at maximizing data reuse in the cache.

4. A dynamic scheduling algorithm to achieve guaranteed load balance, aiming at 

minimizing the total execution time.

As pointed out in the cache-locality optimization model, the optimal solutions 

for the last three components are NP-complete. Only heuristic solutions are feasible. 

In addition, because the execution overhead of a run-time method contributes directly 

to the execution time of a parallel application, a run-time method must be efficiently 

designed to prevent the benefit of optimizing cache locality from being nullified by run­

time overhead. We use the well-known system design wisdom: Simple is efficient. This 

principle has led to the success of RISC computer systems [30].
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Chapter 4 

System  Framework and Inform ation  

A bstraction

In this chapter, we first present an overview of the functionality of the run-time system. 

Then, we introduce the information estimation technique and the internal representation 

of memory-access patterns. The programming interface is explained and illustrated by 

examples.

4.1 R un-T im e System  Fram ework

Our run-time system is implemented as a set of library functions which are called by a 

sequential application program at run-time. The run-time functions will create a set of 

parallel tasks to be executed in a SMP multiprocessor. Two major advantages of this 

approach are:

1 . It carries compile-time information into the run-time phase to assist run-time anal­

ysis.

62
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2. It uses run-time information on dynamic memory-access patterns to improve per­

formance for a wide range of applications.

Although a run-time system can use all the static information analyzed at compile-time, 

it can not conduct as complicated an analysis as a compiler does because the run-time 

overhead directly affects application performance. Hence, in the design of our run-time 

system, we only carry forward a set of application dependent hints that can be efficiently 

used for locality optimization.

Figure 4.1 presents a framework for our run-time system. A given sequential 

application program is first transformed by a compiler or rewritten by a user to insert 

run-time functions. The generated executable file is encoded with application-dependent 

hints. At run-time, the encoded run-time functions are executed to fulfill the following 

functionalities:

1 . Estimation of the memory-access pattern. Based on application dependent hints, a 

multidimensional memory space is built internally to represent the range of memory 

accesses for an application program. Meanwhile, the parallel tasks in an application 

are mapped onto the memory-access space based on their memory-access patterns. 

This abstract representation provides an important foundation for conducting lo­

cality optimization at run-time.

2. Task grouping (or reordering). Based on the distribution of tasks in the abstracted 

memory-access space, tasks are reorganized into groups using information on the 

underlying cache architecture. The tasks in a group are expected to heavily reuse 

their data in the cache.

3. Task partitioning. Based on the abstracted memory-access space, task groups are 

partitioned onto multiple task queues, each corresponding to a processor. Data 

sharing and load imbalance are minimized here.
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executables with hints

Run-time execution

Figure 4.1: Execution framework of the run-time system.
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4. Task scheduling. For application programs with irregular computation patterns 

or dynamic memory-access patterns, it is hard to achieve a balanced partitioning 

due to the lack of a precise prediction on task load. In addition, the run-time 

interference among multiprocessors is another potential factor causing imbalanced 

execution. To guarantee balanced execution, partitioned tasks are scheduled to 

execute in an adaptive way.

4.2 Inform ation E stim ation

4.2.1 A pplication  D ependent H ints

The data referenced by the loop body of the nested loop described in section 3.1 has 

array structures, where each execution instance of the loop body accesses pieces of data 

separately in several arrays. Thus, estimating the access pattern of a loop on arrays is a 

major task.

Let A\, A 2, • • •, An be n arrays accessed in the loop body of a nested data- 

independent loop. Each array is usually laid out in a contiguous memory region, in­

dependent of the other arrays. In rare cases, an array may be laid out across several 

uncontiguous memory pages. Although our run-time system may not handle these rare 

cases efficiently, the system works well for most memory layout cases in practice. Vi­

sualizing an array in an independent dimension, the memory regions of the n arrays 

can be integratedly abstracted as an n-dimensional memory-access space, expressed as 

(.4i, A2 , • • •, A n). This n-dimensional memory-access space actually contains all the mem­

ory addresses that are accessed by a loop. In order for the run-time system to capture 

this memory space information precisely, the following three hints must be provided by 

the interface:

H in t 1 : The number of arrays, n.
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H in t 2 : The memory size of each array that is accessed by an application program. 

H in t 3: The start physical address of the referenced memory address space of each array.

Here H in t 1 is static information. In H in t 2, the size is the distance between 

the address of the first referenced array element and the memory address right after 

the last referenced array element. This is estimated by the size of the virtual address 

space of an array, i.e. the product of the number of array elements in the reference space 

and the size of each array element in bytes. The array size may be static, where the 

size is known at compile-time, or dynamic, where the size is determined by run-time 

data. The hint should tell how to calculate the size at run-time. The run-time system 

maintains a Referenced Memory Space vector (st , S2 , • • •, s„), denoted the RMS vector, 

where s,(z =  1 , 2 , • • •, n) is the size of the referenced memory address space of array 

.4j. The RMS vector is used as an estimate of the total size of memory address space 

referenced by an application program.

From H in t 3, the underlying run-time system constructs a start address vector 

(&i,&2, • • -,&n), denoted as the SA vector, where 6,(z =  1 , 2 , is the start address

of the referenced memory address space of array A,. The start addresses are dynamic, 

because memory addresses can only be determined at run-time. H in t 3 tells how to 

determine the start addresses at run-time.

When a compiler or a user provides the above two hints, some calculation func­

tions are formed for the run-time system to generate concrete information at run-time. 

The calculation functions are usually very simple. We will exemplify this in next section.

After determining the global memory-access space of a loop, we need to deter­

mine how each parallel iteration accesses the global memory-access space, so that we can 

reorganize them to improve memory performance. Here, we abstract each instance of a 

loop body of a parallel loop as a parallel task. The access region of a task in an array is 

simply represented by the start address of its access region. So, the following hint should 

be provided by interface functions.
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Hint 4: A memory-access vector of task t f

(ttjl, Oj2, ' ‘ ' , Ojn)

where aji is the start address of the referenced region on the i-th array by t3 (i = 

1, 2 ,

In some loop structures, a loop body may not contiguously access an array so 

that the access region may not be precisely abstracted by the start address. In these 

cases, more complicated estimation techniques should be used, such as adding multiple 

start addresses and ending addresses. However, this may result in unacceptable run-time 

overhead by significantly extending execution time for collecting more addresses and by 

making locality-oriented transformations more complex. This topic will be addressed in 

detail in Chapter 8 . Here, we only attem pt to use simple hints to do locality optimization.

Let B(paraJist) be a loop body function with parameter list paraJist. In 

the run-time system, each instance of the loop body is created as a task ti(paraJist, 

an, ai2, ■ ■ -, ain), where is the start address of the instance’s access region on array 

Aj, for j  =  1, • • •, n. In the following discussion, each task is simply represented as

tt^Q-ih Oi2, ' , ®in)-

In addition, the following hint should also be provided to assist task partitioning. 

H in t 5: The number of processors, p.

By providing the above five hints, a compiler or a user does not need to conduct a 

complicated analysis. The locality optimization is handled in the program automatically. 

This eases the user’s programming burden.

4.2.2 A b stract R ep resen tation  o f  M em ory-A ccessing Space

Let Ai, A 2, • ■ ■, An be the arrays accessed by a parallel loop. Let its RMS vector be 

(si, s2, ■ ■ •, s„) and its SA vector be (&i, &2 , • • ■, bn). The memory-access space of the loop
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double A[X], B[Y1, C[M][M];
int Arow[M+lJ, Acol[X], Bcol[M+l], Brow[Yl;

sparse-mmO
{ in ti.j , k ,r. start, end; 

register double d: 
for (i=0: i<M: i++) 

for(j=0:j<M:j++){
d =0;
start = Bcol[j]; end = Bcol[j+l ]; 
for <k=Arow[i]; k<Arow[i+l]; lc++) 

for (restart; r<end; r++) 
if (Acol[k] =  Brow[rl){ 

d += A[k]*B[rI; 
start = r+ l: 
break:

1
C [ i l U l = d : .....................................

— -  t a s k t ( i . j )

' 1...................................
1

SMM: Sparse matrix multiplication.

Figure 4.2: Abstracting loop instances as tasks.

is abstracted as a n-dimensional memory-access space:

(&i : b\ +  Si — 1, b% : &2 +  s 2 — It ’ • ’ -,bn : bn +  sn — 1 ).

The total number of memory addresses contained is £ " =1 st, not n ”=i s,. Because the

memory-access pattern of task ^ is estimated by a memory-access vector (a^, a,2. • • •, ain), 

the task i, actually corresponds to point (a^, a^, ■ • •, % )  in the n-dimensional memory- 

access space. This abstraction represents the memory-access pattern using a geometric 

model, which provides an effective base for the locality optimization at run-time.

We illustrate this idea by an example in Figure 4.2. This is a sparse matrix-

matrix multiplication kernel, where the two outer loops are parallel loops and each in­

stance of the loop body of loop j is abstracted as a task t ( i ,  j ) .  Each task indirectly 

accesses a piece of array A and array B , respectively. The access patterns of each task 

on two arrays are determined by data in Arow and Bcol, which are hard to analyze at 

compile-time. However, the start access addresses of task t ( i , j )  on A and B can be 

obtained at run-time by executing &A[Arow[i]] and &B[Bcol[j]] respectively.
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double B[100], A[2001;

Memory layout of A : size = 200*8; starting at &A[0] = 1000; 

Memory layout of B : size = 100*8; starting at &B[0] = 100;

(a) hints on memory layouts of two accessed arrays.

100 108 116 124 892 900 1000 1008 1016 2592

B[0] B[l] B[2] B[100 A[0] A[l] A[2] A[200]

(b) Physical memory layout

eac3
Co

’35
|  892

Uou
C3

100

t( 1000, 892)

t(1000, 100)

1000 2592
access dimension on A

(c) An 2-dimensional memory-accessing space.

Figure 4.3: An abstract representation.

2600
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Figure 4.3 presents an example of the abstract representation of the memory 

accesses based on the physical memory layout of arrays A and B only. Figure 4.3(a) gives 

the hints on the memory-access space. Figure 4.3(b) illustrates the memory layout of 

two arrays where B and A are laid out at start address 100 and 1000 respectively. Each 

array element has size of 8  bytes. The memory space of arrays A and B is the whole 

memory space accessed by tasks. Then, the memory-access space is represented as a 

2 -dimensional space as shown in Figure 4.3(c), where each point gives a pair of possible 

start memory-access addresses on A and B respectively by a task. For example, t  (1000, 

100) means task t  will access array A at start memory address 1000, and access array 

B at start physical address 100. In the next chapter, we explain how these application- 

dependent hints are used to assist the exploitation of cache locality of applications based 

on the memory-access space.

4.3 Interface and Program m ing Exam ple

4.3 .1  A p p lication  P rogram m ing Interface (A PI)

The interface functions are mainly used to provide application-dependent hints for the 

run-time system. The current system is implemented in C language. The API of the 

system is very simple, and consists of the following three functions:

1 . void cach em in er_ in it(in t c s ize , f l o a t  f , in t  p, in t  n, long s l5 void * 61?

• • •, long sn, void  * bn)

This function provides the following types of hints:

•  Cache size c s iz e  gives the size in KB of the secondary cache on each processor.

•  Task control parameter f  is a number in (0, 1], giving the usage percentage 

of a cache to cluster tasks. (Detailed descriptions will be presented in a later
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chapter.)

•  p is the number of processors.

•  n is the total number of arrays, on which hints are provided.

•  Hints on arrays are given in pairs. Each pair of Sj and bj (j  = 1 ,2, • - •, n), 

give respectively the size and start physical address of a referenced array by 

tasks. All the arrays are arranged in a user-defined order. (There is no specific 

requirement on the array order.)

Based on the information provided by this function, the run-time system builds a 

(n +  l)-dimensional hash structure, (the hash structure will be discussed in the 

next chapters and is transparent to users.)

2 . task _ crea te (v o id  (* f ) , in t  m, in t  t i , --- ,  i n t  tm, void void *am)

This function creates a task with its computing function, denoted as void f  (£j, 

t2 > • • •» tm), and carries hints a t , a2, ..., a m  on the access pattern of the task into 

the run-time system. Here a, (i= l, - - -, m) is the start access address of the task 

on i-th array (arrays are pre-ordered by a user).

If the number of hints, m, is larger than the number of hinted data arrays, n, only 

the first n hints are used. This flexibility would allow a task function to have a 

larger number of parameters than that of the accessed data arrays. However, m 

cannot be smaller than n, which is easily achieved in programming by using dummy 

parameters in a task function. The order of hints here must be the same as that of 

those hints presented in cachem iner_init, i.e., a v  S j ,  and b j  are hints on the same 

array for j  =  1, 2 , • • • ,  n.

3. void  ta sk _ ru n (in t rep e a t)
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Computation

pattern

Memory-access

pattern

Data-dependence

regular static static

regular static dynamic

regular dynamic static

regular dynamic dynamic

irregular static static

irregular static dynamic

irregular dynamic static

irregular dynamic dynamic

Table 4.1: Classification of applications.

This function starts the run-time system to execute the tasks in the hash structure 

in parallel. If the tasks are going to execute at second time, the variable rep ea t 

is set to 1 so that the run-time system can keep the hash structure in order to 

eliminate the overhead of rebuilding it. In this situation, the run-time system 

exploits processor affinity by using old partitions of tasks. Otherwise, the variable 

rep ea t is set to 0 .

4.3.2 C lassification and Program m ing o f A pplications

In order to reflect all types of applications while not getting into exhaustive investiga­

tion, we classify applications based on three factors: computation pattern, memory-access 

pattern, and data-dependence pattern. Computation patterns can be classified as two 

types: regular, where the computation tasks of an application are naturally balanced, 

and irregular, where the computation tasks of an application axe not naturally balanced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4. System Framework and Information Abstraction 73

Furthermore, memory-access patterns and data-dependence patterns can be respectively 

classified into static patterns that are determinable at compile-time and dynamic pat­

terns, which are not determinable at compile-time. Intuitively, based on these patterns, 

applications can be classified into eight types as shown in Table 4.1. However, the com­

putation pattern, the memory-access pattern, and the data-dependence pattern interact 

one another. Usually, when an application has a dynamic memory-access pattern or a 

dynamic data-dependence pattern, it has an irregular computation pattern. In addition, 

the memory-access pattern of an application is affected by its data-dependence pattern. 

When the data-dependence pattern is not determinable at compile-time, the memory- 

access pattern must be not determinable. Considering these effects, applications finally 

fall into the following four types, listed in increasing difficulty degree for locality opti­

mization.

T y p e  1  Applications with regular computation patterns, static memory-access patterns, 

and static data dependence.

T y p e  2 Applications with irregular computation patterns, static memory-access pat­

terns, and static data dependence.

T y p e  3 Applications with irregular computation patterns, dynamic memory-access pat­

terns, and static data dependence.

T y p e  4 Applications with irregular computation patterns, dynamic memory-access pat­

terns, and dynamic data dependence.

Based on the above classification, we choose each benchmark from the first three 

application types that fit into our programming model. For the most difficult applications 

in type 4, our technique can also be used to improve memory performance by combining 

some data-dependence detection techniques. Because data-dependence detection is not
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double C[N] D O  . A O O D H .  B[N] [K] : double con on. Aonon. Bonon;

dense.amO
{ int i, j, k;

dmm.rt (float f, int p)

for (i=0; i<K; i++) 
for (j=0; j<H; j++) 

for (k=0; k<H; k++)
C[i] Cj] +« A[i] [k]«B[j] [k] ;

•{ int i. j. k;
long s - N*N*sizeof(double);
cacheminer_init(Csize, f, p. 2, s, a[0], s, b[0]); 
for (i*0; i<H; i++)

for (j=0; j<H; j++)
task, create (fun, 2. i, j, A[i] , B[j]);

task_run(0);
}
fun(int i, int j)
{ int k;

for (k=0; k<H; kt-O
C[i][j] ♦= A[i] [k]»B[j] Dc] ;

>

Figure 4.4: Dense m atrix multiplication: the sequential program is given on the left and 

the locality optimized version on the run-time system is given on the right.

in the focus of this dissertation, we discuss this in Chapter 8 . Here, based on selected 

applications, we show how to rewrite ordinary C programs through the run-time system 

to exploit different types of cache localities in a SMP system. These applications are 

used to evaluate the run-time system.

A n E xam ple o f T ype 1: D ense M atrix M ultiplication

The sequential program of a dense m atrix multiplication (DMM) is given on the left side 

in Figure 4.4. To increase locality, array B has been transposed so that its access in loop 

k is consistent with the memory layout of B to increase spatial locality. Loop i  and loop 

j  are two parallel loops. To optimize the cache locality of the DMM, the innermost loop,

i.e., loop k, is considered as a task with two input parameters: i  and j ,  denoted as t ( i ,

j ) .
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Array C Array A Array B (transposed)

c m m.a j
■ • __ i X B(j][0 :N-t]A[i][0 :N-l]

J

Figure 4.5: Regular computation pattern in the DMM.

Task t ( i ,  j )  calculates C[i] [ j]  using a row of A that starts at address A[i] 

and a row of B that starts at address B [ j] . The memory-access pattern of task t ( i ,  

j )  is estimated by (A [i] , B[ j ] ) .  The computation pattern is illustrated in Figure 4.5, 

which is highly regular.

With the support of the run-time library functions, the original sequential pro­

gram of the DMM is rewritten and listed on the right side in Figure 4.4. In function 

dmm_rt, the two outer loops create N 2  parallel tasks with the same computation load. 

Function task_run starts the parallel execution of tasks.

A n Exam ple o f T ype 2: Adjoint Convolution

An adjoint convolution (AC) kernel is given on the left side in Figure 4.6. The data- 

dependence is carried by the inner loop. The outer loop i  is a parallel loop. Considering 

each instance of the inner loop j  as a task, the outer loop will create N 2 parallel tasks: 

{t(i, x)| i =  0, • • • ,N 2}. The task t ( i ,  x) accesses (N 2 — i) elements of B and C 

respectively, starting at &B [ i]  and &C [0]. This memory-access pattern is static. But 

these tasks have an irregular computation pattern shown in Figure 4.7. The computation 

size of the tasks decreases as index i  increases. So, the load imbalance in the AC is an
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ac(int z)
•C int i, j;

acCint z, float f, int p)
{ int i;

long s - N«H*sizeof(double);
cacheminer.init(Csize. f, p, 2, s, fcBCO] , s, tC[0]); 
for (i=0; i<K*H; i++)

for (i=0; i<H»K; i++) 
for (j=i; j<H*K; j++) 
A[i] ♦= z*B[j]«C[j-i] ;

> task_create2fnn, 4, i, x.k B[i] , fcCCO]);
task_run(0);

>

fun(int i, int z)
{ int j ;

for (j=i; i<N«H; j++)
A[i] += z*BCj]*C[j-i] ;

>

Figure 4.6: Adjoint Convolution (AC): the sequential program is given on the left and 

the parallelized version on the Cacheminer system is given on the right.

important factor that should be carefully traded off with locality optimization.

In the transformation of the sequential AC program by the run-time system, 

no additional effort needs to be made for a user to take care of the load imbalance. 

The locality optimized version is shown on the right of Figure 4.6, which is similar to 

the optimized DMM. The load imbalance is taken care by the run-time system at the 

scheduling phase. However, it is more difficult for a compiler to exploit this application 

than for DMM.

A n Exam ple o f Type 3: Sparse M atrix M ultiplication

A sequential Sparse Matrix Multiplication (SMM) program is presented on the left side 

in Figure 4.8. In real systems, a sparse matrix usually has only 10% to 30% non-zero 

elements. In order to use the memory space efficiently for a sparse matrix, the matrix 

is generally represented in a dense form. Array elements stored in dense format can be
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N*N-I

X X X

0

2

0 I 2 N*N-I 0 1 2 N*N-1

Array A Array B Array C

Figure 4.7: Irregular computation pattern in the AC.

indirectly accessed through auxiliary indexing arrays. Although this representation is 

memory efficient, it makes compiler analysis very difficult. Analysis is impossible when 

data is input at run-time.

In the SMM, non-zero elements of two M  x M  source sparse matrices are repre­

sented in two dense 1-dimensional arrays: A and B, respectively. The non-zero elements 

in A are stored by rows and the non-zero elements in B are stored by columns. Auxiliary 

array Arow gives the position in A of the first non-zero element of each row for the first 

source matrix. Auxiliary array Acol gives the column number of each non-zero element 

in A. Similarly, array Bcol gives the position in B of the first non-zero element of each 

column for the second source matrix. Array Brow gives the row number of each element 

in B. The sequential sparse matrix multiplication is described on the left side in Figure

The two outer loops are data independent and axe rewritten on the run-time 

system as described by the program presented on the right side in Figure 4.8. At

4.8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4. System Framework and Information Abstraction 78

double A[X] , B[Y] , C[H] [M] ;
int Arow[M+l] , Acol[X] , Bcol[M+l] , BrowCY] ;

double A[X], B[Y] , C[H] [H] ;
int Arow[M+l] > Acol[X], Bcol[H+l] , BrowCY] ;

sparse_mm()
•( int i, j , k , r , start, end;

sparse_mm(float f, int p)
{ int i, j, s = sizeof(double);

for (i*0; i<M; i++) 
for (j=0; j<M; j++H

start “ BcolCj]; end * Bcol[j+l]; 
for (k»Arow[i]; k<Arow[i+l]; k++) 
for (restart; r<end; r++) 

if (AcolCk] =  BrowCr] H  
CCi.j] += A[k]*B[r] ; 
start = r + 1; 
break;

>

>

cacheminer.init(Csize, f, p, 2, X*s, AA[0], Y*s, AB[0]); 
for (i=0; i<M; i++) 

for (j“0; j<M, j++)
taak.create(fun, 2, i, j, AA[Arow[i]], AB[BcolCj]]) ; 

task.run(O);

fun(int i, int j)
{ int k, r, start, end;

start = BcolCj]; end = Bcol[j+l]; 
for (k=Arov[i] ; k<Arow[i+l] ; k++) 

for (r=start; r<end; r++) 
if (AcolCk] —  BrowCr])■[ 
C[i][j] ♦= A[k]«B[r]; 
start = r + 1; 
break;

>

Figure 4.8: Sparse matrix-matrix multiplication: the left side is the sequential program 

version and the right side is the rewritten version on the run-time system.
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Brow

Figure 4.9: The dense representation in the SMM.

compile-time, it is known that all the elements in A and B will be accessed. In addi­

tion, we can know that task t ( i ,  j )  accesses A and B at start addresses &A[Arow[i]] 

and &B[BcolCj]], which can only be obtained at run-time.

The created tasks have irregular computation patterns. The tasks have an im­

balanced workload determined by the input matrices. Figure 4.9 illustrates the dense 

representation whose memory-access patterns can only be determined at run-time, be­

cause the elements of arrays A and B accessed by each task are dependent on the data in 

auxiliary arrays. This application not only has a dynamic memory-access pattern, it also 

has an irregular computation pattern. It is hard for a compiler to exploit cache local­

ity. But at run-time, the run-time system can use both static information and run-time 

information to conduct locality optimization.
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M emory-Layout Oriented 

Optim izations

The central functions of our run-time locality optimization system are task reordering 

and task partitioning in order to maximize data reuse in a partition and to minimize data 

sharing among balanced partitions. Optimal solutions of task reordering and partition­

ing are NP-complete, as shown in Section 3.3. So far, only reference [60] has addressed 

the run-time task reordering problem with the objective of improving the memory per­

formance of sequential programs. In this chapter, we propose a more effective method 

based on the abstract representation given in Section 4.2.2. Run-time task partitioning 

with the objective of minimizing data-sharing and load imbalance is a more challenging 

problem, and has not been addressed before. This chapter proposes a heuristic algorithm 

to solve this problem.

80
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5.1 Goals

At run-time, the estimated memory-access pattern of each task is determined. The goal 

of efficiently executing the tasks for cache locality on a SMP system is accomplished 

by reorganizing the tasks to maximize the cache data reuse in each processor, and by 

partitioning and mapping the reorganized tasks to multiprocessors to minimize the data 

sharing among processors.

From the standpoint of implementation, the basic idea of the task reorganization 

is to use an (n-l-l)-dimensional hash structure to integrate the grouping and partitioning 

of the tasks with n hints. Let (d i,d 2 , - - - ,^n+i) be the (n +  l)-dimensional hash structure 

where di(i = 1,2, • • •, n + 1) is the size of i-th dimension of the hash structure. A task bin 

is associated with each point in the (n-Fl)-dimensional hash structure. Most importantly, 

the (n +  l)-dimensional hash structure can be considered to include dn+1 n-dimensional 

partitions: (0  : di — 1 , 0  : d2 — T * * • 7 0  : — 1 , 0 ), (0  : dx — 1 , 0  : d2 — 1 , - • •, 0  : dn — 1 , 1).

• • •, (0  : d\ — 1 , 0  : <f2 — 1 , • • •, 0  : dn — 1 , dn+\ — 1). The hash structure satisfies the 

following requirements:

1 . Each task can be efficiently mapped into an appropriate task bin in an n-dimensional 

partition by a set of hash functions.

2. All the tasks in a task bin have an opportunity to reuse their data in the cache. (An 

optimal solution is NP-complete.)

3. The data sharing between two different partitions is insignificant. (An optimal 

solution is NP-complete.)

4- All partitions are estimated to contain balanced numbers o f tasks.

In the following, we use memory-access space oriented shrinking and partitioning 

methods to find a hash structure and a set of hash functions so tha t tasks can be organized
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in a way that has the above four characteristics.

5.2 M em ory-access space shrinking

In our run-time system, for any given parallel loop, the memory-access pattern of its 

parallel tasks is captured by a multi-dimensional memory-access space in Section 4.2.2. 

Assume that {£1(0*1, 0 *2 , • • •, Otn)|* =  1,2, • • •, m} is a set of m  parallel tasks in a given 

parallel loop created with n hints on n arrays. The accessed arrays are assumed to be 

organized in some order. This order can be any order based on user interests, but it must 

be consistent with the order used in interface functions. Based on the hints provided in 

interface functions, the run-time system obtains the following information about the 

parallel loop:

•  RMS vector, (si, s2, • • •, sn), where s, (z'=l, ■ ■ ■, n) is the size in bytes of z-th array.

•  RA vector, (&i, 62, • - •, bn), where 6, (z=l,  • • •, n) is starting memory address of z-th 

array.

•  p, the number of processors, C, the capacity of the underlying secondary cache in 

bytes, and n, the number of arrays accessed by parallel tasks.

The memory-access space of the parallel loop is (61 : bi + s\ — 1,62  : £>2 +  s2 — 

1 , • • •, bn : bn + sn — 1 ), where the z-th dimension is the referenced memory address space, 

(&* : bi + Si — 1), of i — th array. Conceptually, task £, (z=l, • • -, n) is mapped onto point 

(a* 1, 0 ,2 , • • •, a.in) in the memory-access space based on the starting memory addresses of 

their memory-access regions. So, the closer the task points are in the memory-access 

space, the more physical data these tasks will share. Hence, grouping nearby task points 

in the memory-access space to execute together has a good chance to enhance temporal 

locality and spatial locality. This is achieved by shrinking the memory-access space based 

on the underlying cache size in the following two steps.
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In the first step, memory-access space (61 : b\ +  s t — 1 , 62 : ^2 +  S2 — 1, • • •, bn : 

bn + sn — 1 ) is shifted into origin point (0 , • •-, 0 ) by subtracting (h ,b 2 , ’ --,bn) from 

the coordinates of all task points. The original n-dimensional memory-access space is 

transformed into the space (0  : si — 1 , 0  : S2 — 1 , • • •, 0  : s„ — 1 ), called the transformed 

memory-access space. The transformation function is

f l  (®tl ■> ®«2) ‘ ' ' ■> ^tn) =  (&il b 1, flj2 2̂ » ' ’ * > ®in bn) (5.1)

We know that nearby tasks in the memory-access space have great potential to 

reuse their data in caches. But, grouping nearby tasks optimally at run-time is a hard 

problem, because we cannot conduct necessary analyses to obtain complete information 

on the memory-access patterns of tasks. In this case, the best we can do is to assume 

that each task accesses each dimension of the memory-access space in the same pattern.

In the second step, we use a uniform blocking technique to evenly partition each 

dimension of the transformed memory-access space into segments. This will partition 

the transformed n-dimensional memory-access space into many polyhedrons with equal 

volume. The size of a partition refers to the volume of its corresponding polyhedron. 

Then, the tasks in a polyhedron are grouped together to execute. In order to minimize 

conflict misses in a group, the number of memory addresses accessed by the tasks in the 

polyhedron must be smaller than the underlying cache size. Based on this, we use fC /n  

as a partitioning size on each dimension, where /  ( < 1) is a weight constant and C  is 

the cache size. This actually results in polyhedrons which have equal size fC J n  in every 

dimension. The total number of addresses covered in a polyhedron is fC ,  which is not 

larger than the cache size.

So, the tasks in a polyhedron, called a task reuse group hereafter, are estimated 

to have a better chance to reuse cache data when they execute consecutively. The internal 

execution order in a task reuse group is not important, because their accessed data is 

estimated to be completely held in a cache. Because each task reuse group has the
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same size, it can be approximately considered to contain the same number of tasks. 

For applications with irregular memory-access patterns, this may not be true. This 

irregularity will be further handled in dynamic scheduling.

Here, /  is an important parameter for controlling the number of tasks in a task 

reuse group. A larger /  tends to allow more tasks to reuse the cache data, but may cause 

more interference. An optimal value of /  may be difficult to predict at run-time, because 

this requires a precise analysis of the interference among the memory-access patterns of 

the tasks. We will evaluate the effect of interference on performance by decreasing /  

exponentially (e.g., using 1/2*, for x  — 0, 1, 2, 3). When /  =  1/2*, the tasks are grouped 

in the way that all the tasks in a group only use approximately 1/ 2* of the cache.

To group the tasks in each task reuse group (or polyhedron), each dimension of 

the transformed n-dimensional memory-access space, (0  : si —1 , 0  : s2 — 1 , • • •, 0 : s „ - l ) ,  is 

shrunk by n f fC .  This results in a new n-dimensional space, (0 : [ j^Tnl ’ ® : I"fcT l̂ ’ ' ' ' 7 ® : 

I"TcTnl), ca^ed the n-dimensional bin space. In the bin space, each point is associated 

with a task bin that holds all the tasks in the corresponding task reuse group in the 

transformed memory-access space. So, the shrinking function for a point (a^, ai2, • • •, ain) 

in the transformed memory-access space to be mapped onto the bin space is

=  ( (5.2)

In Figure 5.1, the shrinking procedure of the memory-access space is exemplified 

by the 2-dimensional memory-access space given in Figure 4.9. Before shrinking, the 

original memory-access space is shifted to origin point (0,0) (see Figure 5.1(b)). The 

shifting function is shown in Figure 5.1(b). Then each dimension of the shifted memory- 

access space is shrunk by C / 2  into a new 2-dimensional bin space in Figure 5.1(c). The 

tasks in the shadow square in Figure 5.1(b) would not access more space than the cache 

size, and are mapped onto one point in the bin space so that they can be grouped together 

to execute.
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on a cache o f  200 bytes.

Figure 5.1: Memory-access space shrinking.
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5.3 B in  Space Based Task Partitioning

5.3.1 P artition  problem

After shrinking an n-dimensional memory-access space, tasks have been grouped based on 

locality affinity information in an n-dimensional bin space. Task partitioning is aimed at 

partitioning the n-dimensional bin space into p partitions (p is the number of processors 

and each partition is an n-dimensional polyhedron) so that

1 . the data sharing among partitions is minimized.

2 . p  partitions are balanced.

For a given n-dimensional bin space, denoted B n(Q:Li, 0:L2, • •-, 0:Ln) where Li (z=l, 

2 , • • •, n) is the size of the z-th dimension, a partitioning method can be represented 

as a partitioning vector k(ki, k2, ■ ■ •, kn) where the z-th dimension of the bin space is 

partitioned into kt parts for i =  1 , 2, • • •, n. A partitioning vector is formally defined as 

follows.

D efin ition  6  With respect to an n-dimensional bin space B n and p processors, an n- 

dimensional vector (fcl5 k2, • • ■, kn) is said to be a partition vector on B n with respect to 

p processors i f  and only if

n k i= p .
ir= 1

So, a partitioning algorithm should consist of two functions:

1 . Determining an optimal partitioning vector k(ki, k2, ■ • •, kn) that satisfies the above 

two conditions.

2. Partitioning a bin space based on a selected partitioning vector.
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To solve the above problems, we first need to specify the two partitioning conditions 

formally.

A good balance refers to a small deviation of execution times of partitions. Be­

cause it is hard at run-time to know task distribution in a bin space and load distribution 

in tasks, the execution times of partitions are unknown at run-time. In this case, we can 

only assume that tasks are uniformly distributed and that tasks have a balanced load. 

Obviously, this assumption is too restrictive for some applications. However, the im­

balance possibly caused by this approximate assumption will be eliminated by run-time 

scheduling in the execution stage (in the next chapter). Based on this, we consider 

partitions balanced when they have equal size, which can be easily achieved by evenly 

partitioning each dimension of a bin space for a given partitioning vector. Hereafter, an 

even partitioning method is always used for a determined partitioning vector.

The major difficulty of designing a partitioning algorithm comes from the min­

imization requirement on data-shaxing. First we need a metric to quantify the data- 

sharing. In Definition 5, sharing metric has been defined to quantify data sharing be­

tween two tasks. However, the calculation of sharing is based on memory-access address 

sequences of tasks, which is too expensive to obtain at run-time. Here, we use a more 

practical metric that may be less precise than the metric sharing, but much cheaper at 

run-time.

In data-independent loop structures, true data sharing comes only from reads, 

which will not cause cache coherence overhead in a shared-memory system. Here, only 

the false sharing will cause cache coherence overhead. When an n-dimensional bin space 

is partitioned, the most likely places for false sharing occur among adjacent boundary 

task bins between two partitions (or two n-dimensional polyhedrons). Heuristically, the 

data-sharing degree between two partitions can be determined by the volume of their 

boundary space (i.e., the intersection space between the two polyhedrons). The larger 

the boundary space between two partitions, the more they tend to have data-sharing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5. Memory-Layout Oriented Optimizations 88

So, an optimal partitioning method should minimize the sum of the volumes of boundary 

spaces among partitions.

If partitions are n-dimensional polyhedrons, the boundary space between any 

two partitions is an (n — l)-dimensional polyhedron, e.g., a cube for n =  4, a plane for 

n =  3, or a line for n =  2 . Let p(Pi ,  Pj)  be the volume of the boundary space between 

two partitions Pi and Pj.  (Here, p ( P u Pj)  = p ( P j ,P i ) . )  For a given partitioning vector k 

and a bin space B n, if r  partitions, Pi, P2, • • •, and Pr, are generated, the data-sharing 

degree, denoted f 3haring(k,Bn), of the partitions is estimated as

/ .* * » ,( £  b") =  Y .  p(Pi,Pj)-
l<i<j<r

So, an optimal partitioning vector (or method) should have a minimal data-sharing de­

gree.

Because a bin space is orthogonal, i.e., all faces of the bin space are mutually 

orthogonal, all partitions obtained from the bin space are also orthogonal. It is easy 

to see that the boundary space of two partitions (if they have one) is an orthogonal 

polyhedron. Based on this, / sharing actually can be calculated by the following theorem.

T heo rem  2 / /  Bn(0 : Ll70 : L2, ■ ■ • ,0 : Ln) is an n-dimensional bin space that is parti­

tioned by a partitioning vector k(ki, k2, ■ • •, kn), then the sharing degree, f shar\ng{k, B n), 

of the resulted partitions is

f sharing{k, B n ) =  £ ( ( A *  -  1 )  f t  L i ) '  ( 5 ‘3 )
i=l

P roof: Let r  be the number of elements in k that do not equal 1. The proof is based on 

the reduction on r  as follows.

1 . When r  =  0: The partitioning vector k is (1 , 1 , • • *, 1 ) which only produces one 

partition. So, the sharing degree among partitions should be 0. From equation 

(5.3), it can be verified that f 3haring(k, B n) =  0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5. Memory-Layout Oriented Optimizations 89

2. When r  <  (n — 1 ): The theorem is assumed to be valid.

3. When r  =  n: Partitioning bin space B n (0  : L i, 0 : L2, • • •, 0 : L n ) using partitioning 

vector k{k\, fc2, • ■ •, A:n) is equivalent to the following two partitioning steps:

S tep  1  : Evenly partitioning bin space B n{0 : Lt , 0 : Z2, •••,0 : Ln) using par­

titioning vector k l (l, 1, • • *, 1, fcn) into kn subspaces B"(0 : L\, 0 : L2, • • • ,  0  : 

Ln_!,0 : Zl), B£(0 : Ll50 : Z2, - - , 0  : Ln_ lt0 : L2), • • •, B g J 0 : L lr0 : 

L2, - - - , 0  : Ln-ijO : £*“)• Let r  =  L„ — x &n- The evenly partitioning 

method has the following properties:

Li =  J +  Twhen i < r; (5.4)Kn

Li  — when i > r; (5.5)
rZn

=  L n . (5.6)
i=i

Based on the assumption, the sharing degree resulted from this step is

fsha„n9 ( k \  B n ) = (kn -  1 ) n  L j .  (5.7)
j=i

S tep  2  : Using partitioning vector k2 (ki, k2, ■ • •, fcn- 1, 1) to partition each subspace

B"(0 : Zq,0 : L2, ••*,0 : L n- 1 ,0  : L l ) for i =  1 , 2 , •••,£„. Based on the

assumption, the sharing degree of the partitions in subspace B" is

f s K a r i n g i k ^ B V ^ t t k i -  1) X JJ  L,) X L‘. (5.8)
1=1 j=l/\j&

Based on equations (5.7) and (5.8), we have

^ kn _ 
f 3haring(kf B”) =  f sharing(kl , B n) +  ^  fsharing{k2, B")

i=l

=  ( * . - i ) f f L J +  i ; l( ( * i - i ) x  f f  y * ! 1 '
J=1 1=1 j=IAj#! i=l
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Figure 5.2: Partitioning patterns of an 2-dimensional bin space on four processors.

= (tn- i ) n L i +£( ( f c , - i ) x  n  Lj)
j  = 1 1=1 j = lAj&

=  B ( A : z - 1 ) x  f [  Lj)
i=i

(5.9)

This shows that the theorem is valid.

□
In Figure 5.2, the 2-dimensional bin space obtained in Figure 5.1 is partitioned 

into 4 partitions in three different ways where a partitioning vector is given in order (X, 

Y). W ith respect to the data-sharing degree, the partitioning method given in Figure 

5.2(a) is the best.

5.3.2 A n  A lgorithm  to  D eterm ine Partition ing V ector

Based on the definition of a partitioning vector given in Definition 6 , each element of a 

partitioning vector must be 1 or a factor of p, the number of processors. Assume that p
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be factored into r prime factors. On an n-dimensional bin space, a partitioning vector 

has n elements. If we consider each prime factor of p as a ball and each element of a 

partitioning vector as a slot, then searching an optimal partitioning vector can be viewed 

as finding an optimal method to throw r  balls into the n slots of a partitioning vector so 

that the resulted vector gives the smallest sharing degree. This is a classic combinational 

problem with NP-complete complexity [63]. Only an efficient approximate algorithm is 

practical.

The design of approximate algorithms for NP-complete problems has been widely 

studied in the area of Artificial Intelligence [58]. Exploiting heuristic information has been 

shown to be helpful for designing a good approximate algorithm. Motivated by the well- 

known “Hill Climbing” algorithm in artificial intelligence [58], we exploit some heuristic 

information to reduce the sharing degree while balls are thrown one-by-one into slots 

of a partitioning vector. This approach makes its best effort to approximate a better 

partitioning vector.

The idea behind our heuristic algorithm is to use an incremental approach to 

find a better partitioning vector. Based on a pre-determined partitioning vector k which 

divides a bin space into d partitions, the algorithm tries to put a prime number q into 

k to form a new partitioning vector which divides the bin space into d x q partitions 

with a smaller sharing degree. The procedure is repeated until all the prime factors of p, 

the number of processors, are put into the partitioning vector. In the following, we first 

present several properties before describing our algorithm.

Because the relative order among dimensions in a bin space does not affect the 

selection of a partitioning vector, we assume that the dimensions of a targeted bin space 

B n(0 : L i ,  0 : L 2, • • •, 0 : Ln_i, 0 : L n) have been sorted in decreasing order from left to 

right, i.e., L i  >  L i+i for i =  1, 2, • • •, n — 1.

Theorem  3 Ordering Rule
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For a given partitioning vector k(ki, £2,• • • ,kn) not in decreasing order, the partitioning 

vector resulting by sorting k in decreasing order is at least as good as k in terms of the 

sharing degree.

Proof: Let k (k i, ki, kr, kr+i, • • A;n) be a partitioning vector which is not in 

decreasing order. If kr < kr+i for an r 6  [l,n], we construct another partitioning vector 

k'(ki, k i, ■ • •, kT+x, kr, • • •, kn) by swapping kT with A:r+i. Based on Theorem 2. the sharing 

degrees of the partitions generated by the two partitioning vectors are:

b " )  =  £  n  L , ) + ( k , - i )  n
i= lA i^ r A i? £ r - t- l  j = l A j ^ i  j  =  lA j ^ r

+  (fcr+1 - i )  n  l j- (5-iq )
j=lAj5£r+l

B") = £  ((*; -1) n L,) + ( k , - \ )  n L,
i = l A i ^ r A t ^ r + l  j = l A j ^ i  j = l A j ^ r + l

+ (kr+i — 1) n Lv  (5-11)
j = l A j ^ r

Based on equations (5.10) and (5.11), we have

frh*rm ,(k ,  B " )  -  B" )

= n v  n *y)
j = lA j> t r  j = l A j ? t r + l

+<*,+. - 1 )< n  l , -  n  Li)
j = l A j ^ r + l  J  =  l A ] j k r

= (kr -  1)(L„, - Lr) lj Li
)  =  l A ] ? i r A ] j t T + l

+  (kr+1 — l ) ( f - r  — T r + 1 ) L j
j = 1 A j '^ r  A j  ̂ r + 1= (Lr — Lr+i)(kT+i — kr) n £j

j = l A j ^ r A j ^ r + l

> 0. (5.12)
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This shows that the sharing degree of k' equals to or is smaller than that of 

partitioning vector k. W ithout increasing the sharing degree, this procedure can be 

repeated until the resulted vector is in decreasing order. So, the theorem is valid.

□
Based on the above ordering rule, we only focus on looking for those partitioning 

vectors whose elements are arranged in decreasing order. This greatly narrows the search 

range and reduces the overhead of the algorithm.

Theorem  4 Increm ent R ule 1

For an n-dimensional bin space B n, and partitioning vectors k(ki ,  k2, ■ ■ ■, kx, kt+l x q, 

I, •••, 1 ) and k '(ki, k2, ■ ■ ki x q, ki+l> 1 , 1 , ■ 1 ), where q > 1 , k is better than k' in

terms of the sharing degree i f  and only if

ki x L i+i >  k i+i x Li-

Proof: Based on Theorem 2, we have

ft £>)+(*.--!) n h
1=1 j= lAj^l

n

+ ( ? x ^ i+ i_  i) n  Lj.
j= l/\j7H+l

fsh a r s n g (k \B n ) =  £ ( (A *  -  1) f [  L j )  +  ( q x k i -  1) f [  L j
1=1 J  =  lAj>£/ j  = lAj^i

+ { b +1 -  1) J J  L j .
j=lAjj!:i+l

Based on the above two equations, we have

fsharing (k, B n) -  fsharing (k‘, B")

=  ( k i -  1) l j  Lj + ( q x k i+l-  1) l j  Lj
j=lhj?i+l
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—(<7 x ki -  1) J I  Lj -  (ki+i -  1) f t  Li
j=zlA.j& j = l/\j^i+l

=  ({ki -  1 )Li+l +  ( ? x  ki+i -  1 )Li - ( f c j X g  -  l)L i+i

— (^t+1 ~ H  Lj
j= lA j^ t A j ^ » + l

=  ( g - l ) ( * i+lLi - f c iLi+l) f t  L J ■ (513)
] = l Aj A J 1

Based on q > 1 and equation (5.13), f Sharing(k, B n) is smaller than f shanng(k', B n) 

if and only if ki+xLi — kiLi+l < 0, i.e., fciLI+l > ki+iLi. So, the theorem is valid.

□
For a given bin space which has been partitioned by k ( k i , k 2 , • ■ • ,ki, kt+l, 1 , • • •, 1 ), 

if the z-th dimension or the (z -I- 1 )-th dimension is further partitioned by q, the increment 

rule tells which dimension should be chosen. Based on the above theorem, the following 

corollary can be directly obtained.

Corollary 3 Increm ent R ule 2

For an n-dimensional bin space B n, and partitioning vectors k ( k i , k 2 , • • • ,kj, kl+i, 1, • • •, 1) 

and k ' (ki ,k 2 , • • ■, fcj x fc,+1, 1 , 1 , • • •, 1), where ki+i > 1 , k is better than k' in terms of the 

sharing degree i f  and only i f

ki x Li+i > x.Li.

Based on the above three rules, we design an efficient heuristic algorithm as

follows.

1 . Factor p, the number of processors, to generate all the prime factors of p in decreas­

ing order. Assume that there are q prime factors: >  T2 >  ••• >  r9. Initially, the

n-dimensional partitioning vector k, stored in fc[l : n], is (1 , 1 , • • •, 1 ) for the bin 

space £ n(0 : L \ ,0 : L2, • • • , 0  : Ln).
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2. Let last index the position in A;[l : n] where A;[z] > 1 for i < last and Ar[z] =  1 for 

i > last. Initially, last = 1 . For each prime factor rj where j  increases from 1 to 

q, do the following:

(a) When (last < n), use the increment rule 2 to determine whether r, should be 

put in A;[/ast]. Based on the ordering rule, the best place to put tj must be in 

k[ 1 : last]. So, we use increment rules to find a better place in fc[l : last]. If 

so, last is increased by 1 and go back; otherwise, use the increment rule 1 to 

put Tj together with k[last — 1] or k[last — 2], then reorder Ar[l : last — 1] in 

decreasing order and go back.

(b) Otherwise: use the increment rule 1 to put Tj together with k[last — 1] or 

k[last — 2 ], then reorder k[ 1 : last — 1] in decreasing order and go back.

The factorization procedure can be finished in 0(y/p).  Putting prime factors 

in decreasing order helps to reduce the overhead of sorting the partitioning vector. In 

the best case where the above algorithm does not conduct sorting, the algorithm has 

computational complexity 0 ( n  + yfp). In the worst case, the algorithm finishes in 0 (n 2 + 

y/p). In practical cases, n, the number of arrays, usually is not larger than 4. In addition, 

the number of processors in a SMP system is often smaller than 16. So, this partitioning 

vector determination algorithm is efficient. Because the above heuristic algorithm does 

not guarantee an optimal solution, it can be further improved by using additional heuristic 

information at the cost of higher overhead. However, whether a more precise algorithm 

would further improve performance is still an open question.

5.3 .3  B in  Space P artition ing Procedure

Let (ki, fc2, • • •, kn) be the partitioning vector determined by the previous section. Here, 

we explain how to use the partitioning vector to partition the n-dimensional bin space,
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: r ^ V ' - i O  : r ^ l ) ,  that is generated in Section 5.2. Based on 

the partitioning, a set of transformation functions and the internal hash structure are 

obtained.

The z-th dimension of the n-dimensional bin region (0 : f jc j^ h  0 : f fc/^1 • ' '  '• 

0 : r j ^ i l )  may not be evenly divided by A:,, for 1 < i < n. Let z*j be the reminder (z = 1. 

2 , ■■■, n), which can be calculated as:

S{ — 1
r« =  ( r -,Vw 1 +  1) mod ki for z =  1,2, • • •, n, f C / n

where mod is the modulus operation.

We calculate Li  as follows:

r*»-n + 1  
Li  =  r --------1, for z =  1,2, - - •, n

Using the even partitioning method, the z-th dimension will be divided into A:, parts, 
where r* of them have length Li and the others have length Li — 1. The concrete par­
titioning method is shown in the following, where the z-th dimension, [0 , TjcT^l]) °f the 
n-dimensional bin region is partitioned into ki mostly even parts ( for z =  1, 2 , • • • , n 
respectively):

0 rj — I r j fcj — I

[0, t j  -  1] • • -[(r< -  l )Li ,r iLi  -  l ] [ r ,I , , ,( r ,  +  l)L, -  2] - • -[(&, -  l)L , -  ki +- n  +  l,k iL , -  ki +  -  1]
' -----------------------   v----------------------------------------------- '

rj parts of length of Li (ki — r,) parts of length of L, — I

In the above, all the parts are relabeled from 0 to ki — 1 (The correctness of the 

above expression can be verified by (A:,Li — A:, +  r, — 1) =  [ 1 )• Based on the numbers

of the parts, each of the 11”= i kj ( =  p) partitions generated can be expressed as an index 

vector (z'x, z2, • • -, z„), where Zj(l < j  < n A 0 < ij < ki — 1) is its part label in the z-th 

dimension.

In Figure 5.3(a), the bin space generated in Section 5.2 is partitioned by the 

partitioning vector (2 , 2 ). The generated 4 partitions are indexed as (0 ,0 ), (0, 1 ), (1 , 0 ), 

and (1 , 1 ).
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The mapping function from a point (xj, x2, • • •, xn) in the bin space to the index 

of its partition is

/ 3 (xl ,x2 , - - - , x ri) =  (h l(x 1> 1), hl (x2, 2), • • •, /il(x„, n)), (5.14)

where the function h \  is defined as follows:

Lf-J if x < riLi or Tj =  0
/il(x, i) =  < (5.15)

ri + L 7 ; otherwise

To reorganize the partitions, each partition is constructed as an independent 

n-dimensional space using its smallest point (that has smallest coordinate in each dimen­

sion) as its origin point (0, 0, • • -, 0). For each point (xi ,x2, • • • , xn) in a partition, its 

new coordinate in the independent space of the partition is given by

/ 4 (xx,x2 , - - - , x n) =  (/i2(xi, 1 ), / i2(x 2, 2), • • •, h2(xn, n)), (5.16)

where function h2  is

x mod Li if x < nL j or r, =  0
(5.17)

(x — riL i) mod (Li — 1) otherwise
/i2 (x, i) =  <

In Figure 5.3(b), each partition is transformed as an independent space by func

tion / 4.

Based on the indices of the partitions, the p partitions are further reorganized 

in a new dimension, the (n -f- l)-th  dimension, by the following hash function, which 

maps a partition with index (it, i2, • • •, i„) into a coordinate on the (n +  l)-th  dimension

[o ,ny=i* i - i ] :
n — 1

f s ( i  1) *2> * ’ ' > *n) =  ^  4“ in- (5.18)
3=1

This will create an (n -I- l)-dimensional space. The coordinate (xi, x2, • • •, x„) of a point 

in the original n-dimensional independent space of a partition with index (it, i2, - - -, in) 

is extended by function F  as follows,
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(a) Indexing of partitions.
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(0.0)(0.0)(0,0) (0,0)
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(b) independent address space of each partition.

Y

Task Control Link list (TCL)
(0. 0)

( i .  D

(c) 3-dimensional internal representation of the 
memory access space.

Figure 5.3: Indexing partitions: the bin space is evenly divided into 4 partitions from X 

and Y dimensions.
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F(x  i,X2 , - - - , x n) = (xu x2, - - - , x n, f 5(iu i2, - - - , i n)). (5.19)

Based on the created (n +  l)-dimensional structure, we can build an (n + 1 )- 

dimensional hash structure, which is (0 : L\ — 1,0 : L2 — 1, • • •, 0 : Ln — 1 ,0 : p — 1). For a

given task £*(0*1, ai2, ■ • •, a,n) with n hints, the position onto which the task is mapped is

given as follows by hash functions f i ,  f 2l / 3, / 4, / 5, and F  that are defined by equations 

(5.1), (5.2), (5.14), (5.16), (5.18), and (5.19) respectively:

• • •, ain))),

where function F  will call functions / 3 and / 5. The above mapping has complexity of 

0(n) ,  which is independent of the total number of tasks. Because n, the number of hints, 

is a small constant, the mapping approximately finishes in a constant time. Although the 

whole transformation procedure seems to be complicated, the derived hash structure and 

hash functions provide a very efficient implementation. When all the tasks are created 

at run-time, they are automatically mapped into the (n +  l)-dimensional hash structure 

to form p partitions: (0 : L\ — 1,0 : L2 — 1, • • •, 0 : Ln — 1 ,0), (0 : L\ -  1,0 : L2 -  1, • ■ •. 0 :

Ln -  1,1), • • -, (0 : Lx — 1 ,0 : L2 — 1 , • • •,0 : Ln — l ,p  — 1 ).

5.4 P u ttin g  T hem  Together in A n Im plem entation

To assist the dynamic scheduling of created tasks, all tasks are organized in groups with 

a fixed size. All task groups in a bin are chained together. Then all the group chains in 

bins are linked together in the creation order of bins. An auxiliary data structure, called 

a Task Control Linked list (TCL list), is constructed. The TCL list is a structure array 

with p elements corresponding to the p partitions, respectively, in the hash structure. 

Each element of the TCL list has a task counter which gives the number of tasks in the 

corresponding partition, and two pointers, head and tail, respectively, pointing to the
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processor 1 processor 2 processor p

f HashingHashing Hashing

Task creating
j

Task creatingTask creating

Multi-dimensional hash structure

Figure 5.4: Flowchart of task reorganization in the run-time system.

head and the tail of the task group chain in the corresponding partition. For example, in 

Figure 5.3(c), a 3-dimensional hash structure is constructed from the partitions produced 

in the partitioning phase. All the task bins in a partition are chained together based on 

their creation order at run-time.

The multi-dimensional hash structure and the related hash functions are built 

based on the hints provided by initialization function cachem iner_init. Tasks are cre­

ated in parallel by multiprocessors and are mapped into an appropriate task bin in an 

appropriate partition by hash functions. The locality optimizations are implicitly con­

ducted in the task mapping procedure with 0(n)  complexity. Because n, the number 

of arrays, is usually smaller than 4, which is independent of the number of tasks, the 

reorganization procedure of N  tasks can be considered to finish in O(N).  The working 

flowchart of the run-time system is illustrated in Figure 5.4.
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Chapter 6 

Task Scheduling at R un-tim e

The dynamic scheduler in the run-time system is aimed at minimizing the parallel com­

puting time of a set of data-independent tasks created in the locality optimization phase 

described in the previous chapter. The partitions generated in the task partitioning step 

are balanced in the sense that all the partitions access almost the same size of memory 

address space for each array, which is locality oriented. However, this may not guaran­

tee that all the partitions have the same execution time, due to the possible effects of 

the following factors: (1) irregular data-access patterns in the tasks, which will result in 

imbalanced numbers of tasks allocated among the partitions; (2) irregular computation 

patterns in the tasks, which will directly result in different execution times for the parti­

tions; (3) the interference of a paging system in the operating system, which also results 

in imbalanced numbers of tasks allocated among the partitions; (4) the quantity differ­

ence of data locality exploited among different partitions, which may execute different 

partitions at different rates.

The run-time scheduling of parallel iterations or tasks (here, “iterations” refers 

to tasks in our abstraction given in Chapter 5) in shared-memory systems has been in­

tensively investigated for ten years. This chapter first analyzes the design principles and

101
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limitations of existing work, which motivate the design of more efficient scheduling algo­

rithms. Then, an adaptive scheduling algorithm and its several variations are presented. 

The proposed algorithm and its variations are experimentally evaluated with respect 

to previous algorithms. Finally, a locality-preserved scheduling algorithm is presented 

to schedule the tasks in the partitions generated from locality-oriented optimizations in 

previous chapter.

6.1 O verview  o f Existing W ork and M otivation

The performance of a task scheduling algorithm is mainly affected by three overhead 

sources: synchronization and loop allocation, load imbalance, and data communication. 

Although it is desirable that an efficient algorithm minimizes the above three sources of 

overhead, this is usually impossible because conflicts can arise among them. Exploiting 

processor affinity (processor affinity refers to certain data access dependency of a task to a 

specific processor, a more precise definition is given in Section 6.4.1) favors the allocation 

of loop iterations close to their data, which tends to cause load imbalance. Load balance 

favors the “fine grain” allocation of loop iterations (where a small number of iterations 

are allocated) in order to minimize the effects of uneven assignment. However, the “fine 

grain” allocation tends to increase synchronization overhead and loop allocation overhead. 

In different applications, each overhead source affects performance differently. Hence, 

an efficient loop scheduling algorithm should optimize its performance by adaptively 

trading off synchronization overhead, loop allocation overhead, load imbalance overhead 

and data-communication overhead. Moreover, a dynamic scheduling algorithm should 

not assume any prior knowledge of the execution times of the loop iterations because the 

execution of the loop usually is unpredictable in practice.

So far, many novel dynamic scheduling algorithms have been proposed , e.g. 

[32, 49, 47, 51, 61, 68, 77, 69]. These algorithms fall into two distinct classes: central
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work queue based and distributed work queue based. In the central work queue-based 

algorithms [32, 61, 77, 69], iterations of a parallel loop are all stored in a shared central 

work queue and each processor exclusively grabs some iterations from the central queue 

to execute. The major advantage of using a central work queue is the possibility of evenly 

balancing the workload. While keeping a good load balance, the central work queue based 

algorithms differ in the way they reduce synchronization and loop allocation overheads. 

However, three limitations are associated with the use of a central work queue: (1) An 

iteration in the central work-queue is likely to be dynamically allocated to execute on 

any processor, which does not facilitate the exploitation of processor affinity; (2) During 

allocation, all the processors but one should remotely access the central work queue, 

and thereby generating heavy network traffic; (3) Because all the processors contend for 

the central work queue, the central work queue tends to be a performance bottleneck, 

resulting in a longer synchronization delay.

In order to exploit the processor affinity inherent in the parallel execution of 

many loops and to eliminate the central bottleneck, the affinity scheduling algorithm 

proposed in [51] distributes the central work queue to be local to each processor, and the 

algorithm partitions iterations of a parallel loop statically into local work queues so that 

each processor is only involved in remote access when load imbalance occurs. Markatos 

and Leblanc [51] show that affinity scheduling almost always achieves the best perfor­

mance in all tested cases when compared with central work queue based algorithms. To 

enhance the affinity scheduling algorithm in the presence of a large, correlated imbalance 

in loop execution time, Subramaniam and Eager [68] propose two loop partition methods: 

dynamic partition and wrapped partition. These two partition methods, however, only 

improve affinity scheduling for some specific applications because both of them execute 

under some specific assumptions about the distribution of loop execution time.

In the design of distributed work queue based algorithms, we have no reason to 

prefer other kinds of loop partition methods to a uniform partition, due to the uneven
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and unpredictable execution time of loop iterations. Hence, it is crucial for a distributed 

work queue based algorithm to be able to schedule tasks dynamically and efficiently at 

run-time to even the load imbalance caused by a static partition. In existing affinity 

scheduling algorithms [51, 68], all the processors schedule loop iterations in their local 

queues using the same allocation scheme where, at each time, I f P  of the remaining 

iterations in the local queue are allocated (P  is the number of processors). This iter­

ation allocation scheme may not be efficient. For example, if the initial loop partition 

is balanced, then all processors will complete the execution of iterations in their local 

queues at the same time, and each processor should grab all the iterations in the local 

queue in an allocation, instead of only 1 /P  of the remaining iterations. On the other 

hand, if the initial loop partition is not balanced, those lightly loaded processors should 

finish execution of the iterations in their local queue as soon as possible so that they can 

immediately turn to help heavily loaded processors. Hence, processors should be able 

to dynamically increase or decrease their allocation granularity based on runtime infor­

mation to reduce synchronization and loop allocation overhead and balance load more 

evenly. This motivates us to design adaptive scheduling algorithms to further improve 

existing affinity scheduling algorithms.

Our main idea is to exploit the potential of dynamic information to reduce loop 

execution time. Regarding the general scheduling problem where the affinities among 

the data accesses of tasks have not been exploited, an adaptive scheduling algorithm 

and its five variations are proposed in this chapter. These algorithms dynamically adjust 

allocation granularity according to a program’s execution history. Based on a set of fairly 

selected applications, the effectiveness of the proposed algorithms are compared with the 

existing affinity scheduling algorithms in [51, 68]. Based on this, a locality-preserved 

scheduling algorithm is designed.
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6.2 A n  A daptive Scheduling A lgorithm

Similar to the affinity scheduling algorithm [51], the adaptive affinity scheduling algorithm

is also constructed to have following three phases:

In itia l  p a r t i t io n  phase: A deterministic assignment policy is used to partition itera­

tions of a parallel loop into local queues of processors, which ensures that an iter­

ation is always assigned to the same processor at the start. W ith this assignment 

scheme, if a parallel loop executes repeatedly, and each parallel iteration accesses 

the same data set in different executions, the first execution of the parallel loop 

will bring data locally to processors so that the subsequent execution of the parallel 

loop only involves local data access.

Local schedu ling  phase: Based on a local scheduling policy, each processor allocates 

a part of the remaining iterations in a local queue to execute until the local queue is 

empty. Local scheduling does not cause remote access overhead. Because each local 

queue is shared by all processors, a critical section is used to protect the allocation 

of the loop iterations in the local queue. The local scheduling overheads mainly 

come from the synchronization overhead and the loop allocation overhead in the 

execution of the critical section. Reducing the number of allocations is crucial to 

improve the performance of the local scheduling phase.

R e m o te  schedu ling  phase: When a processor finishes the execution of all the itera­

tions in the local queue, it remotely allocates for execution a portion of the itera­

tions from the most loaded processor in the system. The remote scheduling phase 

is aimed at dynamically balancing the workload. An iteration is at most reassigned 

once, which avoids processor thrashing. Remote scheduling causes remote data 

access overhead as well as synchronization overhead and loop allocation overhead.
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Instead of relying on pre-computed knowledge about a  loop’s execution, our 

adaptive affinity scheduling algorithm exploits the potential of using dynamic execution 

history to adaptively adjust iteration chunk size to reduce synchronization and loop 

allocation overheads. The algorithms also maintain a better load balance. The main idea 

of our designs is to minimize local scheduling overhead so that the phase of dynamically 

balancing the workload can be speeded up, which reduces loop execution time.

In the initial phase, a loop with N  iterations is partitioned into chunks of uni­

form size \N/P~\ over P  processors, because we have no reason to prefer other partition 

methods in the absence of a precise prediction about the execution distribution of the 

loop’s iterations. Our initial partition is identical to the initial one in [51].

In the local scheduling phase, a processing speed variable s*, termed the P S  vari­

able, is set for each processor, which keeps track of the number of iterations the processor 

has executed so far (i =  1, • • •, F). The variable s* is initially set to 0 and is increased by 

1 each time processor i finishes the execution of an iteration. By comparing the local P S  

variable with other P S  variables, a processor can observe its load distribution. At any 

time, the processors with smaller P S  variable values have executed iterations that have 

a heavier workload than those executed by the processors with larger P S  variable values. 

Because, in most applications, a load distribution state has a certain steady duration, 

it is feasible to speculate about the load distribution in the near future by the current 

observation. Although some applications really expence sudden changes in the load dis­

tribution, the prediction difference can be minimized by dynamic readjustments. In order 

that processors respond spontaneously to the dynamic changes of iteration workload, it 

is necessary to differentiate the workload states of processors. For fairness, we select the 

average number of iterations executed by all processors, i.e. S i / P ,  as the pivot to 

partition the workload states of processors into the following three types:

•  heavily loaded (HL)— the processor’s P S  value is smaller than S i/F  — a:
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•  normally loaded (NL)— the processor’s P S  value is within the range of si /P ~

T,i=i S i/P  + a); and

•  lightly loaded (LL)— the processor’s P S  value is equal to or larger than s«/P+

a ;

where a  is a non-negative, range control variable, which adjusts the distribution of HL 

processors, NL processors and LL processors. Variations of parameter a  would affect 

the algorithmic performance. The dynamic features in the execution of real applications’ 

loops make it impractical or impossible to analytically determine an optimal value of 

a. Here, we will discuss the effect of different values of a  on performance through 

experiments, giving an empirical method for determining a performance-efficient a.

In order to control the chunk size in the allocation of loop iterations, a chunk-size 

control variable ki is set for processor i (i =  1, • • •, P). Each processor always removes 

l /k i  of the remaining iterations in its local work queue for execution. In the beginning 

of the local scheduling phase, all of the chunk-size control variables are initialized to the 

same value, such as P , the total number of processors. Then, each A:, (i =  1, • • •, P ) is 

adaptively and independently adjusted by a chunk-size control function II. The function 

IT uses the load state and the current value of ki of processor i as its two input parameters, 

and adjusts the chunk-size control variable k{ as follows:

•  If processor i is heavily loaded, II increases ki, aiming at reducing chunk size so 

that more iterations remaining in the heavily loaded processor can be executed by 

those lightly loaded processors, therefore balancing workload more efficiently.

•  If processor i is normally loaded or lightly loaded, II decreases ki, aiming at in­

creasing chunk size so that a normally loaded or lightly loaded processor can finish 

all the iterations in its local work queues as soon as possible, and then immediately 

start to help heavily loaded processors.
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When processor i completes execution of the iterations in the local queue, it 

turns to the remote scheduling phase. In the affinity scheduling algorithm of [51], when a 

processor exhausts its local work queue and starts to help other heavily loaded processors, 

it just removes [1/P] of the remaining iterations from the most heavily loaded processor. 

This allocation method may not be efficient when only a few processors can turn to help 

other processors. Here, we determine the chunk size according to the current number of 

lightly loaded or normally loaded processors, because they are able to help those heavily 

loaded processors in the near future. Processor i determines its chunk control variable kt 

as follows:

k{ =  min{P, n + 1}, (6.1)

where n is the total number of lightly loaded processors and normally loaded processors 

(n +  1 means to include the most heavily loaded processor from which processor i will 

allocate the remaining iterations), and P  is the total number of processors. Then, pro­

cessor i allocates [1/A:,] of the remaining iterations in the most heavily loaded processor 

to execute. This procedure will repeat until all local work queues are empty. Initially, 

ki has a smaller value than P  so that a big chunk size is used to reduce the number 

of remote allocations. Our experiments in the next section will show that the selected 

big chunk size does not increase the risk of imbalancing load. Subsequently, when more 

processors become lightly loaded or normally loaded, ki will increase until it reaches the 

maximal value, P.

In the following, a pseudocode description of the adaptive affinity scheduling 

algorithm is given. In implementation, this code can be automatically inserted by a com­

piler into application programs for each processor to dynamically schedule the execution 

of loops without the interference of the operating system. As with other existing work, 

we generate dynamic scheduling programs by hand in our experiments in order to focus 

on the algorithmic study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6. Task Scheduling at Run-time 109

1. Initial partition phase:

initial_partition(iV, P) / / N  iterations are uniformly partitioned over P  processors 

{for (i =  0; i < P; i 4- +)

assignJterations(i); / /  assign iterations to processor i. 

for (i =  0; i < P ;i + +){

Si = 0; =  P;} / /  Initialize PS variables and K[s

}
2. Locally scheduling phase:

loop { / /  processor i gets 1/A:, of the local iterations to execute and adjusts kt. 

Lock(locaLqueue J );

range =  get _iterations(local_queue_z, 1/A:,); j  j  allocate 1/A:, of the iterations. 

unlock(local_queue_2‘);

While (ra n g e  != 0) {

execute.one_iteration(); Sj+-(-;} 

state =  loadjstate((X!,Ci si)/P ,s,-,a); //com pute the load state of processor i. 

ki =  Il(state, ki); //ad ju st the chunk granularity 

} until (localjqueueJ =  0)

3. R em otely scheduling phase:

A * = l ;

loop { if (A;, != P) {

ki =  find_non_heavilyJoaded_processor(); kt =  min{P, ki + 1};} 

j =  find_most_loaded_processor(); 

lock(local_queue_7);

range =  get_iterations(.7 , 1/A:,); / /g e t fl/A:*] of the iterations on processor j .

unlock(local_queue_j);

execute(ran^e);
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} until (all iterations have been finished).

Adaptively changing loop scheduling granularity is the m ajor characteristic 

which distinguishs our adaptive affinity scheduling from the affinity scheduling algorithm 

in [51]. Remotely reading the P S  variables of other processors is the overhead caused 

by our adaptive scheduling algorithm in collecting execution history of other proces­

sors. If the increased overhead nullifies the benefit of adaptively varying loop scheduling 

granularity, the adaptive affinity scheduling algorithm may not exhibit a performance 

improvement over existing affinity scheduling algorithms.

6.3 Variations o f th e  A daptive Scheduling Algorithm

Different variations of the adaptive affinity scheduling algorithm can be constructed by 

designing different chunk-size control protocols for the function II. Here we propose four 

mechanisms for our adaptive algorithm. Let ki be the chunk size control variable of 

processor i in the local scheduling phase.

•  Exponential A daptive (EA ) M echanism

In the EA mechanism, a processor increases or decreases the value of its chunk-size 

control variable by a factor at each time according to the current load state. The 

chunk-size control function II is formally defined as

{ki * base if state=HL 

\ki/base\ if state=NL or LL

where base is an integer constant. Here, we choose 2 for base. Initially, ki is set to 

P  in our adaptive algorithm.

•  Linear A daptive (LA) M echanism

In the LA mechanism, a processor increases or decreases its chunk size control
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variable ki by a constant at each time interval according to the current load state. 

The chunk-size control function fl is formally defined as

where con is a constant specified by the user. We choose 1 in our experiments. 

Because the LA mechanism changes the chunk size at a slower pace than the EA 

algorithm, it has less risk of imbalancing the workload, but larger synchronization 

and loop allocation overhead.

•  C onservation  A daptive  (C A ) M echanism

A careful selection of the chunk size in a loop scheduling algorithm is crucial to find 

a compromise between synchronization overhead and load imbalance. Allocating a 

bigger chunk of the iterations of a loop tends to reduce synchronization and loop 

allocation overhead, but increase the risk of imbalancing load. Previous work in 

[47] shows that in order to have reasonable load imbalance and synchronization 

overhead, it is safe to choose a value in [P, 2P) for the chunk size control variable 

The CA mechanism is constructed by restricting the varying range of the chunk- 

size control variables of the LA mechanism within [P /2 ,2P]. The chunk size control 

function is defined as follows:

the chunk size on non-heavily loaded processors. The GA mechanism records the 

previous load state of the processor. If a processor finds it is in a non-heavily

fl (state, ki) =
ki +  con 

max{  1, 1

ki +  con if state=HL

max{  1, ki — con} if state=NL or LL

min{2P, ki + con} if state=HL 

m a x {P /2, ki — con} if state=NL or LL
n(state, ki) = <

where con is a constant in [0,P]. We will use 1 in our experiments.

•  G reedy  A d ap tiv e  (G A ) M echanism  

The GA mechanism employs a two-phase consensus method to greedily enlarge
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loaded state in two consecutive allocations, it greedily reduces the chunk-size control 

variable to 1, i.e. it grabs all the remaining iterations in the local work queue to 

execute. Otherwise, the processor increases or decreases the chunk size by using 

the conservation method in the CA mechanism with con =  1 experimentally.

Let S^e  record the previous load state of processor i, and let Sc record the current 

load state of processor i. The chunk size control function is

n(5c, ki) =
min{2P, ki + con} if SC=HL

m a x {P /2, ki — con} if Sc ^  HL and 5^.e=  HL

1 if Sc ^HL and S ' ^  ^HL

Keeping and maintaining the P S  variable for each processor allows the above 

four adaptive mechanisms to know exactly the current workload of each processor; 

thereby the P S  variables can be used to adjust the speed for each processor, and as 

a consequence, to adjust the workload among the processors. But it also introduces loop 

allocation overhead.

Here we design a heuristic variation, denoted by HA, which still adopts the 

framework of our adaptive scheduling algorithm. Instead of using P S  variables to deter­

mine workload distribution among processors, we use the number of iterations actually 

executed by each processor to guide the adjustments of scheduling granularities. Ini­

tially, a parallel loop is uniformly distributed to processors. Each processor i repeats 

grabbing 1 /ki  of the remaining iterations in its local queue to execute without doing 

any adjustment to A;,-. If processor i finishes all the iterations in its local work queue, 

and turns to get iterations from the most heavily loaded processor j ,  processor i is said 

to be lightly loaded and processor j  is heavily loaded. Then processor i increases its 

scheduling granularity and processor j  decreases its scheduling granularity. Hence, the 

lightly loaded processors can turn as early as possible to help heavily loaded processors, 

and the heavily loaded processors can release as much workload as possible to even those
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lightly loaded processors. At the end of each execution of the parallel loop, processors 

check whether they have executed approximately the same number of iterations, i.e. a 

balanced workload. If so, processors increase their scheduling granularities to speed up 

subsequent executions of the parallel loop.

Comparing with the four variations of the adaptive algorithm: EA, LA. CA, 

and GA, the HA variation differs in several aspects: (1) Instead of determining the load 

state at each time of local scheduling that is used by the adaptive algorithms, the HA 

variation updates the load states of processors only in the remote scheduling phase and 

at the end of one execution of the parallel loop, so that it causes less scheduling overhead 

than the adaptive algorithm. (2) the HA variation works by requiring that the parallel 

loop be nested in a sequential loop to execute repeatedly. When the parallel loop only 

executes once, the HA variation becomes the affinity algorithm [51].

The pseudocode of the heuristic variation of the adaptive affinity scheduling 

algorithm ( HA variation) is shown as follows.

1. In itial partition phase:

initialq)artition(iV, P) / /  N  iterations are uniformly partitioned over P  processors 

{for (i =  0; i < P; i + +)

assign Jterations(i); / /  assign iterations to processor i. 

for (i =  0; i < P; i + +) 

ki =  P ;

}
2. Locally scheduling phase:

loop { Lock(local_queue_i);

range =  getJterations(z, 1/A:,-); //a llocate  1 /k i  of the remaining iterations

unlock (local jqueueJ);

execute(ran^e);
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} until (local_queue_z=0)

3. R em otely scheduling phase:

loop {j =  find_most_loaded_processor(); 

lock(locaLqueue_j);

range =  get-iterations/), 1 /fc_,);//get \ l / k j \  of the iterations of processor j .  

unlock(local jqueue_j);

if (ki > 1) ki = ki — 1; //increase the chunk size for processor i. 

if (kj < 2 * P) kj =  kj +  1; //decrease the chunk size for processor j. 

execute(ranye); }

4. The program section  at the end of each parallel loop: 

end.paraJoop

{ baxr\er(&cbarrier,&cP);

if (tid = =  0) //o n ly  processor 0 executes the code.

find_maximum _and _minimum jof_chunk_sizes (kmax ,kmin)\ 

if ((kmax — kmin) < P /2  ) / / i f  the workload is balanced, increase chunk size.

for (each processor i with kt > 1) ki =  k i/2; 

barrier (icbarrier ,&tP);

}

6.4 Evaluation M ethods for Scheduling A lgorithm s

Markatos and Leblanc [51] show that the affinity scheduling algorithm (hereafter, sim­

plified as the ML algorithm) outperforms other algorithms that do not exploit processor 

affinity. Hence, we focus on comparing the variations of the adaptive scheduling algo­

rithm with the affinity scheduling algorithm and its two variations in [68]. The scheduling 

algorithms we have evaluated and compared are : (1) the ML affinity scheduling algo­

rithm, (2) the SE dynamic initial partition affinity scheduling algorithm, (3) the adaptive
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affinity algorithm with the exponential adaptive mechanism (EA), (4) the adaptive affin­

ity algorithm with the linear adaptive affinity mechanism (LA), (5) the adaptive affinity 

algorithm with the conservative adaptive mechanism (CA), (6) the adaptive affinity algo­

rithm with the greedy adaptive mechanism (GA), and (7) the heuristic adaptive variation 

(HA).

The experiments were conducted on one CC-NUMA machine and one SMP 

machine: the KSR-1, a hierarchical-ring-based, Cache Coherent Non-Uniform Memory 

Architecture (CC-NUMA), and one node of the HP SP2000 machine, a crossbar and ring- 

based cache coherent symmetric multiprocessor. The detailed description on the KSR-1 

has been presented in our previous research work in [89]. The detailed information on 

a node machine of SP2000 is described in Chapter 7. Here, we address our methods 

of selecting application kernels and of evaluating the scheduling algorithms. Because 

the proposed adaptive algorithm and its variations are intended to be applied for a wide 

range of programming models, the performance evaluation of scheduling algorithms is not 

restricted by the programming model given in Chapter 3.1, which is locality-exploitation 

oriented.

6.4.1 Principles for Selecting A pplication  K ernels

Considering the effects of program features on scheduling algorithms, we characterize 

parallel loops by three factors: the affinity of loop iterations to processors, the distribution 

of loop execution time, and the granularity of loop iterations.

Without exploiting the relations among the data accesses of parallel iterations, 

a scheduling algorithm can only exploit a kind of weak processor affinity that is exhibited 

by parallel iterations when they are going to be repeatedly executed. When a parallel 

iteration is executed many times, its multiple executions are expected to access the same 

set of data. This implies that an iteration should be allocated to execute on a fixed
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processor so that memory accesses can be reduced. Hence, we first classify parallel loops 

into two classes: potential affinity parallel loops that are nested in a sequential loop, and 

non-affinity parallel loops that are only executed once. The strength of the affinity of the 

iterations os a potential affinity loop to a processor is significantly affected by the sizes 

of data sets accessed by iterations and by the data locality of iterations.

Based on our analysis of cache locality in section 3.3, we know that better 

data locality of an iteration means that the data set accessed by the iteration changes 

less significantly in different executions of the iterations. D ata locality determines the 

affinity of iterations to processors. On the other hand, the sizes of data sets accessed by 

iterations determine the benefit of exploiting processor affinity. For those parallel loops 

with better data locality and iterations having very small da ta  sets (e.g., one integer), 

exploiting processor affinity will not improve the execution times of these parallel loops 

more than by balancing load and reducing synchronization overhead.

As indicated in section 3.3, the cache locality is hard to be quantified precisely 

by a simple mathematic formula. Here, we use a simple model to measure approximately 

the locality of an iteration in multiple executions. Let D(i) be the data set of an iteration 

in the z-th execution of a parallel loop, and let \D{i)\ be the size in bytes of data set 

D(i). Then, D =  \D(i)\/N  is the average size of data sets of the iteration over

N  executions of the parallel loop, and 5 =  I-D(z) — D(i — 1) | /N  , ( D(0)=D(1) ) 

is the average size difference of two data sets in two consecutive loop executions of an 

iteration. The value 6  indicates approximately how much data  should be reloaded in 

each execution of an iteration of the parallel loop. So, the data  locality of an iteration 

in multiple executions can be approximately quantified by the following defined locality 

rate:
6

locality .rate =  1 —

where the locality rate is a value in [0,1]. A locality rate of 1 means an iteration always
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accesses the same set of data. A larger locality rate represents a better data locality. 

Then, the strength of the affinity of an iteration to a processor can be quantitatively 

evaluated by | locality .rate x D\, the average number of data  sets that will be accessed 

repeatedly (these data sets may be always stored in a local cache). In the selection of 

potential affinity parallel loops, we use data locality and data size to differentiate the 

affinity of iterations to processors.

The unpredictable variance in the execution times of parallel loops is a ma­

jor obstacle for loop scheduling algorithms to work efficiently. In order to show how 

much parallel loop scheduling algorithms can tolerate different distributions of workload 

among iterations, we selected parallel loops by load distribution to cover three distin­

guished types of loops: (1) balanced loops where each iteration has the same amount 

of computation time, (2) predictable imbalanced loops where the computation times of 

iterations of a parallel loop vary as a predictable function of the loop control variable or 

where the load distribution in a parallel loop is fixed when it executes repeatedly, and (3) 

unpredictable imbalanced loops where the computation times of iterations change ran­

domly, depending on initial input and some runtime variables (e.g., the execution time 

of a branch statement depends on its actual execution path). The ML algorithm only 

handles load imbalance by remote scheduling. The SE algorithm improves the ML algo­

rithm performance only for those predictable imbalanced parallel loops where the load 

distribution of a parallel loop is not changed in multiple executions of the parallel loop, 

and the execution times of the iterations of a loop increase or decrease monotonically 

with the loop control variable. Our adaptive algorithm and its variations dynamically 

adjust the loop scheduling granularity to speed up the load balance procedure based on 

the execution history of processors. In the following experiments, we will show that the 

adaptive algorithm can handle load imbalance more efficiently over a wider range than 

the ML and the SE algorithms.

Besides affinity and load distribution, the iteration granularity of a loop is an­
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other important factor affecting the performance of loop scheduling algorithms. For 

parallel loops with coarse granularity where the execution times of loop iterations are 

significantly larger than the overhead of remote access delay, balancing the workload is 

more crucial than reducing synchronization and loop allocation overheads. For parallel 

loops with fine granularity where the execution times of loop iterations are much smaller 

than the overhead of remote access delay, it is important to minimize scheduling over­

heads. Because the determination of the iteration granularity of a parallel loop depends 

on the interaction between the parallel loop and the underlying system, it is difficult to 

tell whether a parallel loop is coarsely grained or finely grained before execution. Instead 

of classifying parallel loops by granularity, we consider the effect of iteration granularity 

in our experiments.

Based on the above analyses, we classify parallel loops into six types by their 

affinity and load distributions: (I) loops with potential affinity and balanced workload, 

(II) loops with potential affinity and predictable workload, (III) loop with potential 

affinity and unpredictable workload, (IV) loops with non-affinity and balanced workload, 

(V) loops with non-affinity and predictable workload, and (VI) loops with non-affinity 

and unpredictable workload. In order to have a complete understanding of how well 

each scheduling algorithm works in the area of real-world applications, we select one 

application from each type. A loop with non-affinity and unpredictable workload is a 

rare case in practice. Therefore we only evaluate scheduling algorithms for applications 

of the first five types of loops.

6.4 .2  A pplications

The selected application kernels including potential affinity loops are Successive Over- 

Relaxation (SOR) (type I), Jacobi Iteration (JI) (type II) and Transitive Closure (TC) 

(type III). Matrix Multiplication (MM) (type IV), and Adjoint Convolution (AC) (type
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V) are application kernels including non-affinity loops.

T ype I: Balanced affinity loops in SOR.

DO SEQUENTIAL 1 1= 1, L 
DO PARALLEL 2 J= 1, N

DO SEQUENTIAL 3 K= 1, N 
A(J,K) = UPDATE(A,J,K)

3 CONTINUE
2 CONTINUE
1 CONTINUE

All the iterations of the SOR parallel loop take about the same time to execute and 

each iteration always accesses the same set of data. Exploiting processor affinity may 

improve performance more than balancing the workload. In this application, each parallel 

iteration has locality rate of 1 and a data set of N  array elements. The computational 

granularity of each parallel iteration is O(N).

T ype II: Predictable affinity loops in a Jacobi Iteration (JI)

DO SEQUENTIAL 1 1=1,L /* L controls iteration precision. */
DO PARALLEL 2 J=l, N 
XI [J] =0
DO SEQUENTIAL 3 K=l, N

IF (ACJ][K] .NE. 0) .AND. (J .NE. K)
XI [J] =X1 [J] +A [J] [K] *X0 [K]

3 CONTINUE
XI [J] = (B [J] -XI [J] ) /A [J] [J]

2 CONTINUE
DO SEQUENTIAL 4 L=l, N 
X0 [L] =X1 [L]
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4 CONTINUE
1 CONTINUE

In the JI program, the top 20% of rows of elements in the non-singular matrix .4 

are non-zero elements which are generated by a random number generator. The iterations 

of the parallel loop have a different workload which is determined by the distribution 

of non-zero elements in A , so exploiting load imbalance would improve performance. 

However, the workload of each parallel iteration is not changed when it is executed 

repeatedly.

The j- th  iteration of the parallel loop always accesses the j- th  row of the matrices 

.4, B[j] and x0[j]. When the j- th  iteration is fixed to be executed repeatedly on a 

processor, it only needs to reload x0[j] into a cache because x0[j] is updated after each 

execution of the parallel loop. Hence, this application kernel exhibits good processor 

affinity. Each iteration has a data set of the size of N+2 elements, and data locality close 

to 1. The average computational granularity of each iteration is smaller than that in the 

SOR kernel.

Type III: Unpredictable imbalanced affinity loops in the Transitive 

Closure (TC) kernel.

DO SEQUENTIAL 1 1= 1, N 
DO PARALLEL 2 J= 1, N

IF CA[J][I] .EQ. TRUE) THEN 
DO SEQUENTIAL 3 K= 1, N 

IF (A[I] 0Q .EQ. TRUE)
A[J] [K] =TRUE 

3 CONTINUE
2 CONTINUE 
1 CONTINUE
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The TC program may exhibit more serious load imbalance than JI, where each iteration 

of the parallel loop and each execution of a parallel iteration may have computational 

granularity of 0(1) or 0(N ), depending on the input matrix A. The iterations exhibit a 

weaker affinity to processors than SOR and JI. Due to the random computation feature, 

it is difficult to quantify the data locality and affinity of each parallel iteration.

Type IV: Balanced non-affinity loops in M atrix M ultip lication  (M M ).

DO PARALLEL 1 I* 1, I 

DO PARALLEL 2 J= 1, N
DO SEQUENTIAL 3 K= 1, N
CCI] [J] =C[I] [J]+A[I] [K] *B [K] [J]

3 CONTINUE
2 CONTINUE
1 CONTINUE

The MM program does not have affinity to exploit. All the parallel iterations have 

computational granularity of 0(N ). So, reducing synchronization and loop allocation 

overhead is the only way to improve performance. This application is used to investigate 

whether the adaptive algorithm has a lower scheduling overhead than the ML algorithm.

Type V: Predictable im balanced non-affinity loops in A djoint Convo­

lution (AC).

DO PARALLEL 1 1=1, N*N
DO SEQUENTIAL 2 K=I, N*N 

A [I] =A [I] +X*B [K] *C [I-K]
2 CONTINUE
1 CONTINUE

Similar to the matrix multiplication application, the parallel loop in the AC kernel only 

executes once, hence it does not exhibit processor affinity. However, the computational
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Figure 6.1: Performance of SOR on the KSR-1 (left figure) and Exemplar (right figure).

granularity of the i-th parallel iteration is 0 (N 2 — i), changing as a specific function of 

the control variable i to produce a significant imbalanced load distribution (a triangular 

pattern). This kernel is used to examine how efficiently the adaptive algorithms can 

handle the load imbalance caused by a uniform partition.

6.5 E xperim ental R esu lts

The performance metric we use to evaluate algorithms is execution time. Execution time 

measures how differently the scheduling algorithms work for different types of applications 

for given problem size.

6.5.1 C om parisons o f Loop Scheduling A lgorithm s

First we use N / P 2 as the a  value in our four adaptive scheduling variations CA, LA, EA 

and GA. We shall discuss the effect of the a  value on performance in a later section, and 

discuss why a  =  N / P 2 is cost-effective in the next section.

Figure 6.1 presents the execution time (in seconds) of SOR (L=500, N=1024)
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running on 2 to 8 processors on both the KSR-1 and the Convex Exemplar. Since SOR 

is a perfectly balanced application kernel, the dynamic partition of the SE algorithm 

did not improve the performance of the ML affinity algorithm. On the other hand, it 

introduced some overhead into the ML algorithm. As the result, the ML and the SE 

perform the worst among them all, due to the overhead caused by more loop allocation 

and synchronization steps. By adaptively increasing the chunk size each time when a 

processor accesses the local work queue, the adaptive algorithms reduce the times that 

processors need for accessing the local work queues, therefore scheduling and synchro­

nization overhead is reduced. All our five adaptive algorithms outperformed the ML and 

the SE algorithms. The EA and GA performed the best among them all, since they take 

no more than 3 steps to adjust their chunk size to finish the remaining iterations. The 

LA variation needs more allocation steps than the EA and the GA need. The HA and the 

CA variations change the chunk size in a limited range; therefore they could not get the 

best benefit by reducing the synchronization and loop allocation overhead for perfectly 

balanced applications.

Figure 6.2 plots the execution time of the Jacobi Iteration (JI) (L=500, N=1024) 

for the different scheduling algorithms on the KSR-1 and on the Convex Exemplar. JI 

should be an application that fits the SE algorithm best. Since the workload distribution 

illustrates a “rectangular” shape — the leftmost 20% having a very heavy load and the 

remaining 80% having almost zero workload. The SE algorithm can readjust the initial 

partition to balance the workload for each processor to improve the execution time. The 

lower execution time curves of the SE algorithm confirm this.

Instead of readjusting the initial partition, our adaptive algorithms reduced the 

execution time by adjusting the chunk size for each processor. A lightly loaded processor 

took a larger number of iterations to execute. Then it turned to help the heavily loaded 

processor. The heavily loaded processor took a small number of iterations to execute, 

and it might leave some iterations for the other processors to finish.
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Figure 6.2: Performance of JI on the KSR-1 (left figure) and the Exemplar (right figure).

For solving a linear system of size N=1024 by the JI kernel, our LA, GA, EA, 

and HA variations perform as well as the SE. The CA variation performed slightly worse 

than the other adaptive algorithms because, when using the CA variation, the processors 

with zero workload still cannot take more than 2 /P  iterations to execute. Therefore they 

need more time to finish their lightly loaded jobs and turn to help the heavily loaded 

processor. In the meantime, the heavily loaded processor may have already taken a large 

number of jobs to execute and did not leave enough jobs for the idle processors.

Figure 6.3 presents the execution time of the transitive closure kernel with a 

random input graph of 1024 nodes, where about 10% of the edges are uniformly presented. 

In each execution of the parallel loop, the workload is uniformly distributed among 

iterations. However, the total workload increases at the next execution of the parallel 

loop. Figure 6.3 left and Figure 6.3 right show the comparative performance of seven 

tested algorithms respectively on both the KSR-1 machine and the Exemplar. The SE 

algorithm and the ML algorithm perform similarly because, in this case, the SE algorithm 

had little chance to improve the ML algorithm by readjusting the load distribution. 

Algorithms LA, EA, and GA performed the best among them all because they adjusted
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Figure 6.3: Performance of TC with random input on the KSR-1 (left figure) and the 

Exemplar (right figure).

scheduling granularity more aggressively. Combining these results with the experimental 

results of SOR, we conclude that for load balanced applications, aggressively adjusting 

scheduling granularity is an efficient method to reduce scheduling and synchronization 

overhead, thus to improve performance well. These results also show that the overhead 

of collecting state information is not significant compared with the benefit gained from 

adaptively adjusting scheduling granularity.

Again, we tested the scheduling algorithm and its variations for the transitive 

closure kernel with a skewed input graph of 640 nodes containing a clique of 320 nodes, 

and no other edges. In this case, load imbalance is significant in the computation across 

iterations and the total load of the parallel loop increases from one execution to the next. 

The execution times for each scheduling algorithm on the two platforms axe presented 

in Figure 6.4(left) and Figure 6.4(right). Although the authors of the paper [68] claim 

that the SE algorithm assumes that the execution time of any particular iteration does 

not vary widely from one execution of the loop to another, our results show that the SE 

algorithm can still improve the ML algorithm in our case studies. Because our adaptive
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Figure 6.4: Performance of TC with skewed input on the KSR-1 (left figure) and the 

Exemplar (right figure).

algorithm captures the variance in load more precisely than the SE algorithm, LA, EA, 

GA and HA, performed better than the SE algorithm. The CA variation performed 

similarly to the SE algorithm. These experimental results show that adaptively adjusting 

scheduling granularity is an efficient way to handle the load imbalance in unpredictable 

loop applications.

If the parallel loop is not embedded in a sequential loop (we call this a non­

affinity loop), both the SE algorithm and our heuristic variation HA have no chance to 

improve the ML affinity algorithm, because they adjust the initial partition or adjust 

the chunk size near the end of one execution of the parallel loop and hope that the new 

partition or the new chunk size can play a role in the next execution of the parallel 

loop. Now we want to see if other adaptive variations can perform better than the ML 

algorithm for the non-affinity loop.

Figure 6.5 left and Figure 6.5 right present the performance of the scheduling 

algorithms for the m atrix multiplication (MM) with N=512. Algorithms ML, SE and HA 

performed similarly. Algorithms EA, LA, GA dynamically detect the workload distribu-
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Figure 6.5: Performance of MM on the KSR-1 (left figure) and the Exemplar (right 

figure).

tion conditions and rapidly increase the chunk size, so that the processors take all the 

remaining iterations to execute after only a few accesses to the local work queue. The CA 

variation also increases the chunk size to a limit (2 /P  of the remaining iterations); there­

fore it involves less synchronization and loop allocation overhead than ML but presents 

more overhead than GA, LA,and EA. Compared with the experimental results on kernel 

SOR, adaptive variations do not improve the ML algorithm on MM significantly because 

the parallel loop only executes for one time.

Figure 6.6 left and Figure 6.6 right present the performance of the scheduling 

algorithms for kernel Adjoint Convolution with N=128. SE and HA could not improve 

the ML algorithm, since the parallel loop is not embedded within a sequential loop. Load 

imbalance across iterations was significant since the first iteration took time proportional 

to 0 ( N 2), while the last iteration took time proportional to 0(1). As expected, ML, SE 

and HA performed similarly, while EA, LA, and GA performed the best among them all. 

The CA variation’s performance was in between.
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Figure 6.6: Performance of AC on the KSR-1 (left figure) and the Exemplar (right figure).

6.5.2 D eterm ine the C ost-Efficient Value

In the previous section, we used N /P 2 els the value of a  in our adaptive scheduling 

algorithm and its variations, where N  is the number of iterations in the parallel loop 

and P  is the number of processors we used to execute the parallel loop. Here we tested 

several values of a  in, trying to give an optimal value.

We evaluated our adaptive scheduling algorithm and its variations with different 

a  values for the five benchmark applications on both the KSR-1 and the Exemplar. The 

a  values we selected to evaluate are N /P , N / P 2, 32 and 4 respectively. Due to space 

limitation, we only present part of the results here for two of our adaptive scheduling 

variations EA and CA with respect to one kernel application. The remaining results that 

we do not specify in what follows also support the conclusions we are going to present.

Figure 6.7 left presents the performance of the SOR kernel on the KSR-1 using 

the EA adaptive variation with the different a  values. We also present the performance 

of the ML algorithm running the SOR kernel for a comparison. EA with a  =  N /P  

and a  =  N / P 2 showed the best performance, while EA with a  =  4 presented the worst
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performance. Since SOR is a well balanced application, all the processors should have a 

normal workload. A very large value of a  like N /P  guarantees that the workload state 

of each processor is always “normal” so that the processor can increase its chunk size 

and reduce its execution time. Although SOR is well balanced, sometimes events such 

as cache misses, page faults, and interprocessor communication delays can cause some 

execution time variance among iterations. If we use a very small value for a, such as 

a  =  4, in the presence of interference from such kinds of events, some processors take 

their workload states as “heavy” and therefore decrease their chunk size by a factor of 

two. Since we do not give a limit for the chunk size for the EA variation, this decrease of 

chunk size at an exponential rate may cause some processors to take a very small chunk 

so that the processor may take only one iteration for each access to the local work queue 

(similar to self-scheduling). This is why the EA (with a  =  4 ) spent much more time 

than the ML when the number of processors is 2 or 4. When the number of processors 

increases to 6 and 8, a  =  4 becomes close to N /P 2. The same reason holds with a  =  32 

for EA. When P  = 2, the processors cannot determine their workload states correctly 

due to the system interference and the small value of a. As the number of processors 

increases, the a  =  32 gets close to the value of N / P 2. Therefore the algorithms performed 

well with number of processors 4, 6 and 8.

Figure 6.7 right presents the performance of the SOR application on the KSR-1 

using the CA adaptive variation with different a  values. We also show the curve for the 

ML algorithm and the curve for the EA variation with a  =  4 in order to compare them. 

Figure 6.7 right shows that CA with a  = N / P  and a  =  N / P 2 performed the best among 

them all. CA with a  =  4 shows that too small a value of a  (in comparison with the value 

of N / P 2) may cause a negative effect on the performance of our adaptive algorithm due 

to system interference. CA with a  =  4 performed the worst among the other CA curves. 

But we also notice that this curve is much lower than th a t of the EA with a  =  4. The 

reason is that we limit the range of chunk size for the CA variation within [P/2,2P|. It
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Figure 6.7: Performance of SOR on the KSR-1: (a) using EA with different a  values (left 

figure); (b) using CA with different a  values (right figure)

guarantees that the processor takes at least jp  of the remaining iterations to execute 

each access to the local work queue.

Figure 6.8 left and Figure 6.8 right plot the performance of the Jacobi Iteration 

(JI) on the Exemplar using the EA and CA adaptive variations with different a  values. 

Again, this kernel presents highly unbalanced workload. A large a  value makes all the 

processors think they are having the “normal” workload, thus to increase the chunk size 

and to get more and more iterations to execute. As a result, the heavily loaded processor 

has to finish almost all the iterations by itself, leaving no iterations for the lightly loaded 

processor to execute. That is why the performance of EA and CA with a  =  N /  P  was 

poor (Figure 6.8 left and Figure 6.8 right). On the other hand, since CA limits the chunk 

size within a range, the performance of CA with a  =  N /P  was better than the one of 

EA with a  =  N / P  (Figure 6.8 right).

Figure 6.8 left and Figure 6.8 right also show that the cost-efficient value of 

a  is N / P 2. A small value of a  (in comparison with the value of N /P 2) may not give 

precise information to the processors about their workload state; therefore it would affect
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Figure 6.8: Performance of JI on the KSR-1: (a) using EA with different a  values (left 

figure); (b) using CA with different a  values (right figure)

execution performance. This can be seen from the curves of EA and CA with a  =  4. 

When a  =  32, which is close to the value N /P 2, EA and CA also presented reasonably 

good performance for running this kernel.

6.5.3 Sum m ary o f  Com parisons

By adaptively adjusting the loop allocation granularity according to the workload and 

execution speed of each processor, our loop scheduling algorithm demonstrated better 

performance than the affinity scheduling algorithm proposed by Markatos and Leblanc in 

[51] and the dynamic partitioned affinity scheduling algorithm proposed by Subramaniam 

and Eager in [68]. These authors had showed that the two algorithms presented the 

best performance among all the loop scheduling algorithms. Our adaptive scheduling 

algorithm is suitable for a wider range of application programs. The algorithm can 

reduce the execution time not only for well load-balanced parallel loops, but also for 

those load unbalanced parallel loops. Our experiments show that the overhead caused
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by collecting state information is not significant compard with the benefit gained. One 

important conclusion from this research is that efficiently using runtime information can 

significantly improve the efficiency of loop scheduling algorithms.

Among the variations of the adaptive scheduling algorithm, the EA, LA and 

GA variations always demonstrate better performance than the CA and HA variations. 

Although EA, LA, and GA have higher risk than CA in terms of causing load-imbalance, 

and in terms of being much more sensitive to system interference, we have not observed 

the worst performance phenomena in our case studies, such as the Ping Pong effect where 

the state of a processor is often switched between the lightly loaded and the heavily loaded 

to cause overwhelming scheduling overhead. In addition, the negative effect of the EA, 

LA and GA variations can be significantly reduced by selecting the appropriate workload 

control constant a  as N f P 2.

Machine architecture may be another important factor that affects the perfor­

mance of loop scheduling algorithms. So far, we have been able to test our adaptive 

algorithm and its variations only on the KSR-1 and the Exemplar. Our experimental 

results indicate that the algorithm’s performance is quite independent of shared-memory 

architectures. However, the effectiveness of the adaptive algorithm is significantly af­

fected by the system size. When the system size scales very large, the cost to collect 

runtime information increases so that the advantages of the adaptive algorithm are nulli­

fied by the increased overhead. So, the adaptive algorithm is very suitable for scheduling 

parallel loops over a small number of processors.

6.6 Locality-preserved Task Scheduling

In our run-time system, task scheduling takes into consideration the exploited locality 

among tasks. The tasks in a partition are grouped in task bins based on their data-access 

affinities. The scheduling algorithm must take advantage of the exploited locality while

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6. Task Scheduling at Run-time 133

Task Control Link list

head \  heacT

✓ I

'  tail tail

head

✓

tail

Hash table

*

scheduling scheduling scheduling
on processor 1 on processor 2 on processor p

Figure 6.9: Scheduling framework.

minimizing load imbalance, because both locality and load imbalance have significant 

impact on performance. The proposed scheduling algorithms in section 6.3 cannot be 

directly applied. Here, we extend the linearly adaptive algorithm to schedule the tasks 

in the partitions generated from the locality optimization phase. The extended algo­

rithm is called the Locality-preserved Adaptive Scheduling algorithm, denoted as LAS. 

Because the number of processors in the targeted SMP system is in the range of small 

scale to medium scale, the linearly adaptive algorithm is aggressive enough to reduce 

synchronization cost.

From the scheduling point of view, tasks in the multi-dimensional hash structure 

axe organized in several separate task queues as shown in Figure 6.9. The head and the 

tail of each task queue axe pointed to by a corresponding record in the Task Control List 

(TCL). Let p be the number of processors. Initially, the z-th task group chain in the 

TCL list is assigned as the local task chain on processor z, for i =  1,2, • • • ,p. This initial 

allocation maintains the minimized data sharing achieved in the task reorganization step
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among processors. The number of tasks to be processed on processor i is counted by the 

corresponding TCL counter variable, denoted Ci, which is used in the LAS algorithm 

to estimate load imbalance, just like the processor speed variables do in the adaptive 

algorithm given in section 6.3. However, the TCL counter variables are different from 

the processor speed variables. A processor speed variable records the number of tasks 

that have been finished in the corresponding processor. This allows the processor to 

estimate precisely how many tasks remain, because the tasks are evenly partitioned 

among processors initially. It does not work in the run-time system because the task 

chains in the TCL list may contain imbalanced numbers of tasks. In addition, each 

processor has a chunk control variable with initial value of p, denoted K{ for processor i, 

to determine how many tasks to be executed at each scheduling step.

The LAS algorithm still works in two phases: the local scheduling phase and 

the global scheduling phase. However, the head of a task queue can only be accessed 

by its local processor and the tail of the queue is accessed by remote processors. This 

restriction tries to reduce the number of task groups whose tasks are split onto different

processors to execute. By doing so, the LAS algorithm also attem pts to take advantage

of the exploited locality while achieving a good load balance. All the processors start at 

the local scheduling phase. The algorithm is described for processor i (i =  1,2, • • • ,p) as 

follows.

L ocal scheduling  : Processor i first calculates its load status relative to the other 

processors as follows:

heavily loaded if C, > Yfj=i Cj/p  +  a  (6.2)

lightly loaded if Ci < £y=i Cj/p  — a  (6.3)

normally loaded otherwise (6.4)

Here, a  is an adjustable parameter. In the experiments, we selected a  =  N /p 2 (N  

is the number of tasks or iterations).
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During the above computation, if the number of remaining tasks in one processor’s 

local chain is found to be 0, i.e., 3j€[iiP](Cj =  0), processor i sets its chunk control 

variable, K t, to p, then goes to the global scheduling phase. Otherwise, processor 

i linearly adjusts its chunk control variable according to its load status as follows:

Ki =  {

max{p/2, Ki — 1} if its load is light

min{2p, Ki +  1} if its load is heavy (6.5)

Ki otherwise

The varying range [p/2,2p] for the chunk control variables has been shown to be 

safe for balancing the load [51, 61]. Then processor i gets the Ci/Ki tasks from the 

head of its local task queue. Having finished the allocated tasks, processor i goes 

back to repeat the local scheduling.

G lobal scheduling  : First, processor i always gets Ci/Ki  tasks from the head of its 

local task chain to execute until its local task chain is empty. Then, processor i 

gets 1 /K i  of the remaining tasks from the tail of the local task queue in the most 

heavily loaded processor until all the processors empty their local task queues.

In the local scheduling phase of the LAS algorithm, tasks are executed in group- 

by-group order where the tasks in a group are always executed together on the local 

processor. Only when a processor is trying to help other processors in the global phase 

may tasks in a group split to execute on different processors. This could possibly weaken 

the optimized locality. In the global scheduling phase, emphasis is put on load balancing. 

Usually, the global scheduling phase is executed for a short period in comparison with the 

local scheduling phase, provided that the partitions generated in the task reorganization 

step are not poorly imbalanced. The LAS algorithm maintains the feature of exploiting 

processor affinity while tasks are repeatedly executed. Our experimental results presented 

in the next chapter show its effectiveness.
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Perform ance Evaluation

This chapter describes the goals, the methods, and the environments of our performance 

evaluation. Then, the performance results are reported.

7.1 The G oals

As we described in section 1.1, the design of our run-time technique for optimizing cache 

locality is motivated by addressing difficult issues in improving the memory performance 

of the applications with dynamic memory-access patterns. So, we first must show the 

effectiveness of our run-time technique with respect to this type of application.

Compiler-based locality optimizations have been shown to be able to improve 

the memory performance of applications with regular computation patterns and memory- 

access patterns (as overviewed in section 2.5) significantly. However, compiler-based 

locality optimizations have not been widely available in commercial SMP systems. Our 

run-time system was implemented as a set of run-time library functions, which can be 

directly used by users. So, the second evaluation goal is to study how efficiently the 

run-time technique works in comparison with compiler-based techniques with respect to

136
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regular applications.

The third evaluation goal is to investigate the behavior of the run-time tech­

nique. This includes two aspects: (1) the effect of run-time locality optimizations on the 

memory-access pattern of a program, and (2) the effects of various performance factors 

on the quality of the run-time technique.

7.2 E valuation M ethod

In performance evaluation, three approaches are usually applied: modeling, simulation 

and measurement [91, 89]. A convincing performance evaluation must use at least two 

approaches to verify performance results. As described in Chapter 3, it is difficult to 

model the cache locality optimization problem on SMPs precisely. So, we use both the 

simulation approach and the measurement approach to evaluate our run-time system. 

The major advantage of the simulation approach over the measurement approach is that 

the simulation can provide detailed information on the execution behaviors of a new 

technique. An insightful analysis can be conducted using simulation. A major drawback 

of the simulation is that a simulator cannot be built to reflect a real system exactly when 

the system is very complex, such as an SMP system. So, measurement should be used to 

investigate the practical performance of a technique in real experimental environments.

Using a detailed simulator we built, we studied the effectiveness of the run-time 

system in exploiting the cache locality of applications with respect to the changes of the 

cache miss rate, bus traffic, execution time, and cache interference. Then, we further 

measured the effectiveness of the run-time technique on two commercial SMP systems. 

Besides the concrete evaluation approaches, the selection of performance metrics and 

benchmarks is important for performance evaluation.
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7.2.1 Perform ance M etrics

Locality optimizations are aimed at reducing the number of cache misses. As we dis­

cussed in section 2.3, there are different types of cache misses that can be targeted for 

reduction by a locality optimization technique. The reduction pattern in different types 

of cache misses provides an insightful view on the effectiveness of a locality optimization 

technique. So, cache-m iss red u c tio n  is our first performance metric. In general, a 

finer classification of cache misses requires a larger simulation time. We refine cache-miss 

types to an appropriate level so that an application can be simulated in a reasonable time 

without lossing the precision. This enables us to study the effectiveness of our run-time 

technique in increasing the total number of data reuses in caches and in reducing the 

total number of shared data among caches.

Cache misses are classified as the following three types:

•  C om pu lso ry  m isses: misses caused by reads or writes on data that have never 

been brought into the cache before.

•  R ep lacem en t m isses: misses caused by reads or writes on data that were brought 

into the cache but replaced by other block data most recently.

•  C oherence  m isses: misses caused by reads or writes on data that were brought 

into the cache but invalidated by other processors most recently.

The reduction in the total number of the first two types of misses measures the effective­

ness of the task regrouping technique proposed in section 5.2. The last type of misses is 

caused by data sharing among multiprocessors. However, the total number of coherence 

misses cannot precisely reflect the data sharing. In the example as shown in Figure 7.1, a 

processor consecutively executes three operations r(a) —> r(b) —> r(a). Assume that data 

a  and b be mapped onto the same cache block and an invalidation on the cache block 

happens between r(a) and r(b). In this pattern, the miss caused by the second r(a) is
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r(a) r(b)
invalidate(a)

miss miss

r(a) 

miss

An execution on a processor

Change in the corresponding 
cache block

Figure 7.1: The cache-access pattern of a simply execution sequence on a processor where 

data a and b are mapped into the same cache block. r(a) expresses a read on data a.

counted as a replacement miss, because no m atter whether in v a lid a tio n  (a) happens, 

r(b) will replace a with b. So, the invalidation caused by data sharing has not been 

counted into the number of coherence misses. In order to measure data sharing more 

precisely, we counted the total number of invalidations.

In order to investigate the network contention, the second metric we used is 

com m unica tion  size, which is the total amount of data communicated. In a SMP 

system, there are three types of communications: cache-to-cache, cache-to-memory, and 

memory-to-cache.

Regarding the execution performance of the run-time technique, three metrics

are used:

1. Execution time, which measures the overall performance of a computation.

2. Balance coefficiency, denoted as Imbalance(C) for computation C, which is defined 

as follows:
Dvi(C)

Imbalance(c) = (7.1)

where Dvi(C) and T  are, respectively, the standard deviation and the mean of the 

execution times of the multiprocessors used in a parallel computation. A smaller 

value of Imbalance refers to a computation with a better load balance. When 

Imbalance =  0, Dvi is 0 where all processors have the same execution time.
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int b =  n/p; /*  here matrix size n is assumed to be evenly divided 
by the number o f  processors. */

for (kk=0; kk<n; kk+=bf) 

for (jj=0: jj< n ; jj+=bf)
for (i=pid*b: i< (pid+l)*b; i++) /* task partition */ 

for (j=jj; j<min(jj+bf. n): j++)(

d = A[i][j]; f* d  is register type */ 

for (k=kk: k<min(kk+bf. n): kk++) 

d += B[i][k] * C[j][k];

A[i][j] = d:

}

Figure 7.2: A well-tuned parallel version of the DMM application [82]. Here, p id  is a 

thread id of value from 0 to p-1. p is the number of threads.

3. Overhead percentage, which is the rate of run-time overhead to execution time. 

This is used to measure the implementation efficiency of our run-time system.

7.2.2 Benchm arks

In section 4.3.2, applications have been classified into four types. The three benchmarks, 

DMM, AC, and SMM, have covered all the application types that fit our programming 

model. We evaluate the performance of our run-time system using these three bench­

marks. The optimized versions of DMM, AC and SMM using our run-time library func­

tions, which are given in section 4.3.2, are denoted as DMM_LO, AC_LO, and SMM_LO, 

respectively.

For comparison, the three benchmarks are parallelized respectively using the 

best existing techniques as follows.

1. We transform the dense matrix-matrix multiplication program shown on the left 

side of Figure 4.4 into the sequential block algorithm proposed by Wolf and Lam 

[82]. Then, the transformed program is parallelized by uniformly partitioning com­

putations on multiple processors, shown in Figure 7.2. The parallelized version,
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Figure 7.3: Optimizing locality and balance of AC.

denoted as DMM.WL, has well-optimized cache locality and perfect load balance. 

The locality of the block algorithm is further improved by transposing one m atrix 

so that the innermost loop accesses contiguous memory regions on the two arrays. 

Based on this benchmark which can be well optimized by compiler-based optimiza­

tions, we are interested in investigating whether the run-time technique can achieve 

as competitive performance as tha t by compiler-based optimizations.

2. For the adjoint convolution program shown on the left side of Figure 4.6, each 

iteration of the outermost loop accesses a contiguous segment of arrays A and C 

respectively. In order to investigate the effect of locality optimization, we assume 

that arrays A and C are too large to fill a cache. Two iterations of the outer loop that 

have closer values of index i  have larger overlap between their data sets. From the 

standpoint of optimizing cache locality, the AC program should be parallelized by 

using the blocking technique to chunk the outermost loop. By this, each processor 

will be allocated with a set of adjacent outermost iterations. Because the iterations
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of the outermost loop have decreasing workload as index i  decreases, a varying- 

sized blocking technique should be used to optimize both locality and load balance. 

For any given N and the number of processors, it is difficult or impossible to choose 

a set of different block sizes to balance load among processors.

Here, we integrate several compiler optimizations to solve this problem. For the 

sequential program shown on the left side of Figure 4.6, the outer loop is a parallel 

loop where its iterations are data-independent and are called parallel iterations 

of the AC program. The computation pattern of the outer loop is visualized in 

Figure 7.3(a), where the vertical axis gives the loop indices of parallel iterations 

and the horizontal axis represents the computation sizes of parallel iterations. The 

computation pattern has an imbalanced triangular shape. The best performance of 

the AC program can only be achieved by optimizing both locality and load balance.

We first equally split the outermost loop into two loops and reversed the compu­

tations of the second loop. The changed computation pattern is shown in Figure 

7.3(b) and the corresponding program is shown in Figure 7.4(b). Then, the second 

loop was aligned and fused with the first loop to make a new loop with balanced it­

erations. The program transformations are shown in Figures 7.4(c) and 7.4(d). The 

computation pattern of the final transformed program is shown in Figure 7.3(c), 

which has perfect load balance. Then, the final program is equally blocked onto 

multiple processors to maintain both load balance and cache locality.

3. The SMM program has an irregular memory-access pattern that is determined 

by run-time input data. This type of application is very hard for compiler-based 

techniques to partition effectively for cache locality optimization. For this kind of 

application, existing approaches to optimize the performance use run-time schedul­

ing to minimize load imbalance and to exploit a kind of weak locality: processor 

affinity [49, 51, 61]. In section 6, we have proposed several more efficient schedul-
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for (i=0; i<N*N; i++) 
for (j=i; j<N*N; j++)

A[i] += x*B[j]*C[j-i];

for (i=0; i<N*N/2; i++) 
for (j=i; j<N*N; j++)

A[i] += x*B[j]*C[j-l]; 
for (i =  N*N/2; i<N*N: i++) {

k = 3*N*N/2 - i - I; 
for (j=k; j<N*N ; j++)

(a) Originial AC. (b) Splited AC with reversed execution 
order in the second loop.

for (i=0; i<N*N/2; i++) 
for (j=i; j<N*N; j++)

for (i=0; i<N*N/2: i++X 
for (j=i; j<N*N : j++)

for(i=0: i<N*N/2; i++){ 
k = N*N - 1 - i;

k = N*N - 1 - i;
for (j=k; j<N*N: j++)

for (j=k; j<N*N; j++) A[kJ += x*B(j]*C[j-kJ:
A [k]+=x*B[j]*CU-k|;

(c) Align the second loop with the first 
loop.

(d) Fused AC.

Figure 7.4: A well-tuned parallel version of the AC application.

ing algorithms which have been shown to outperform previous run-time scheduling 

techniques for imbalanced parallel loops. For comparison, we use the linearly adap­

tive scheduling technique to schedule the executions of parallel iterations in SMM 

because the scheduling algorithm in our run-time system is also derived from the 

linearly adaptive scheduling technique. Hereafter, we denote this parallelized ver­

sion as SMM.A.

Although SMM_A has a similar execution procedure to SMM_LO, three significant 

differences are: (1) Initially, SMM_LO groups and partitions tasks with the objec­

tive of minimizing data sharing among partitions and maximizing data reuse in 

a partition. The SMM_A just cyclically puts tasks in local queues of processors. 

The SMM.LO has higher run-time scheduling overhead than that of SMM_A. (2) 

Although both SMM_LO and SMM_A use the linearly adaptive scheduling algo­

rithm, the scheduling in SMMJLO is locality-oriented, which has a better chance 

to reduce its number of memory accesses. Compared with SMM_A, SMM_LO is
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expected to  further reduce execution time by optimizing memory performance on 

modem computers.

The last issue is how to select problem sizes of the tested programs. Because our 

goal is to evaluate the effectiveness of the run-time system in exploiting cache locality, 

we select the problem sizes based on the underlying cache size so that the data set of 

an application is too large for the cache to hold the whole data set. In simulation, in 

order to shorten simulation time without losing the confidence of simulation results, we 

selected relatively small problem sizes for the applications. We scale down the cache 

size accordingly for these programs. These selections can prevent the advantage of the 

run-time system from being shadowed by hardware cache, because on a given commercial 

system, cache capacity is fixed but the problem size of an application can be changed.

7.3 Perform ance Evaluation Environm ents

7.3.1 E vent-D riven  Sim ulator

The simulation was conducted on an event-driven simulator for bus-based shared memory 

systems, which was built on MINT, a MIPS interpreter [79]. The MINT software package 

simulates the execution of standard Unix executable files compiled for a MIPS R3000- 

based multiprocessor and generates events for specific instructions, such as read and write. 

The MINT simulator is a simulator for shared-memory machines where processors are 

simulated by processes. The MINT simulator provides a flexible interface for developing 

complicated back-end simulators for different multiprocessor architectures. We built a 

detailed simulator for the memory hierarchy of a bus-based SMP system.

Figure 7.5 shows the architectures and the interfaces of the MINT simulator and 

the memory-hierarchy simulator. A threaded program in C language is first compiled as 

an executable on multiple SGI-R3000 processors, which is then executed on the MINT
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executables of programs
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Figure 7.5: The architecture and the interfaces of the MINT simulator and the memory- 

hierarchy simulator.

simulator. The MINT simulator interprets the instructions of an executable to simulate 

instruction executions on multiple CPUs. Meanwhile, the MINT simulator can generate 

a set of events to drive the memory-hierarchy simulator, which simulates the memory- 

access procedure of memory-access operations. The memory-hierarchy simulator can 

change and monitor the execution of the MINT simulator through a process-control 

interface provided by MINT.

Because MINT only simulates non-pipelined processors, we implemented the 

sequentially consistent shared-memory model [1], where each processor only issues one 

memory access at a time and subsequent memory accesses stall until an issued memory 

access finishes. The simulated memory hierarchy has two levels: one cache level and one
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shared-memory level. Although many commercial computers have multiple cache levels, 

one cache level is sufficient to study the effectiveness of the run-time system for exploiting 

the cache locality. Each cache block in the simulated cache has the following three state 

bits, denoted as MSI bits [19]:

Invalid  b it , which indicates whether the data in a cache block has been invalid.

S hared  b it  , which indicates whether there are multiple copies in the system of the data 

held by the cache block.

M odified b it , which indicates whether the data held by the cache block has been 

changed since it was brought into the cache block.

In a multiprocessor, a set of the cache blocks with the same cache set address in 

multiple caches is called a cache line. When shared data is read by multiple processors, 

multiple copies of the data may exist in the cache blocks of different processors. But, all 

the copies must be in the same cache line. Our memory-hierarchy simulator simulates 

a memory-bus based SMP. In order to maintain the consistency of the shared data, a 

snooping cache coherence protocol was implemented. The implemented snooping protocol 

is described as follows, which is similar to the standard snooping protocol [30]:

1. Regarding a read from the local cache:

(a) If it is a read hit, then return;

(b) Otherwise, it is a read miss:

If the target cache block of the read is dirty but not shared, the writeback 

protocol [30] is used to save the target cache block into memory. Then a 

memory access request is put onto the memory bus. If there is a copy of the 

requested data in another cache, the whole cache block, including its state 

bits, is copied into the requesting cache and the corresponding cache line is
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set to be shared; otherwise, the requested data is copied from memory where 

the state bits of the target cache block are set to be non-shared, valid, and 

non-modified.

2. Regarding a write to the local cache:

(a) If it is a write hit, data is written into the local cache and an invalidation is 

broadcast to the other caches to invalidate the data copies. The target cache 

block of the data is set to be non-shared and modified.

(b) Otherwise, it is a write miss:

An invalidation message is broadcast to the other caches to invalidate the data 

copies. Then data is written into memory and a copy is moved into the target 

cache block in the local cache. This is called the written allocation protocol 

[30] in which the data will be written to memory if the target cache block 

originally contains valid and modified data. The state bits of the updated 

cache block are set to be non-shared, valid, and non-modified.

Each instruction is assumed to take 1 cycle of execution time. To avoid overem­

phasizing the effect of cache misses in total execution time, we assume that the cache 

has a 1 cycle hit time, just like an on-chip cache, which helps to make a balance between 

the effect of instruction execution and the effect of memory accesses. To reduce arti­

ficial limitations as much as possible, we select simulation parameters for the bus and 

the memory system so that they are very close to modern commercial systems architec­

turally [14, 24, 66]. The shared main memory is fully pipelined, which has a memory 

bus of 64 bits and access latency of 24 cycles. The interconnection bus has arbitration 

time of 2 cycles, invalidation time of 3 cycles, and cache-to-cache transferring time of 3 

cycles. The hardware synchronization primitive, te s t& se t, is simulated to provide two 

high-level lock primitives: mutex_lock and mutex.unlock, which axe used in the dynamic
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schedulers.

7.3.2 M easurem ent environm ents

The HP/Convex S-class [7] is a cross bar-based cache coherent SMP system with 16 

processors, while the Sun Hyper-SPARCstation-20 is a bus-based cache coherent SMP 

system with 4 processors. The architectural differences of these two SMP systems provide 

the run-time system with different opportunities/challenges to improve the performance 

of applications.

The HP/Convex S-class has 16 PA8000 processors of 720 peak MFLOPS. A 

PA8000 is a 4-way super-scalar RISC processor, supporting a 64-bit virtual address space, 

which operates at 180MHz. A PA8000 processor has a single level primary cache with 

separate instruction cache and data cache of size 1 MB each. The cache is direct-mapped 

using a write back policy, which has cache line size of 32B and cache hit time of 3 cycles 

(about 16.7 nanoseconds). Cache coherence is maintained by a distributed directory- 

based hardware cache coherence protocol. The S-class has a pipelined, 32-way interleaved 

shared memory of 8 memory boards, which are interconnected with processors by a 8 x 8 

nonblocking crossbar. The data path from the crossbar to the memory controller is 64- 

bits wide and operates at 120 MHz. The access latency of a 32B cache line from the 

shared memory to a cache is 509 nanoseconds. The ratio between cache miss time and 

cache hit time is about 30.

Our Sun Hyper-SPARCstation-20 has 4 hyperSPARC processors operating at 

100MHz. Each processor has a two-level cache hierarchy: a 64KB on-chip cache and a 

256 KB virtual secondary cache where the cache line size is 64B. Compared with the S- 

class, the larger cache line of the Hyper-SPARCstation-20 exploits better spatial locality 

for applications. The cache hit time is about 300 nanoseconds. A cache miss time is 

about 13360 nanoseconds. The ratio of cache miss time to cache hit time is about 36.
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Processors Miss rate

DMM application AC application SMM application

DMM.WL DMM_LO AC.BF AC_LO SMM_A SMM_LO

2 0.006 0.008 0.051 0.043 0.025 0.011

4 0.006 0.008 0.051 0.044 0.025 0.011

8 0.005 0.007 0.052 0.044 0.025 0.012

Table 7.1: Cache miss-rate based comparison where experiments were conducted under 

shrinking factor /  =  1.

Cache coherence is maintained by the bus-based snooping protocol.

Compared with HP/Convex S-class with respect to instruction issuing rate and 

memory access latency, the Sun Hyper-SPARCstation-20 is much slower. In measure­

ment, we focused on the comparison of relative performance results.

7.4 Perform ance R esults

7.4.1 S im ulation  results

The selected array sizes of programs DMM, AC and SMM are 128 x 128, 4096, and 

256 x 256 respectively, which correspond to working sizes 384K, 96K, and about 450K, 

respectively. The simulation was conducted on a 16K cache with a 16B block size.

A. Cache Perform ance

Table 7.1 presents the miss rates of the six benchmark programs selected in section 7.2.2 

on 2 processors to 8 processors. The distribution patterns of different types of misses 

in the programs are presented in Figures 7.6, 7.7, and 7.8. From the miss rates, we can
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___________________ Simulation parameters______________________
| Direct-mapped cache size: 161c; Cache line size: 16 bytes: Shrink factor f = I:
| Tiling size: 16: Problem size: 128 * 128 with working set: 384 k
1

Figure 7.6: Cache performance comparison between DMM.WL and DMM_LO.

see that the miss rate is not much changed with the number of processors. However, the 

number of processors has a significant impact on the distribution patterns of different 

types of misses.

Regarding regular application DMM, the locality-optimized version (DMM_LO) 

using the run-time technique is 9% to 14% higher than the well-tuned version (DMM.WL) 

in the number of cache misses (Table 7.1). This mainly comes from their differences in 

handling replacement misses as shown in Figure 7.6. DMM.WL program performs the 

best when the block size is set to 16. A 16 x 16 array block has a working size of 2KB, 

which uses 12% of the cache size. In DMM_LO, the whole cache size is used to group 

tasks. In the following, we will further present the effect of different blocking factors 

on cache performance. Both versions presented similar performance in terms of their 

compulsory misses and invalidations. This shows that the run-time system can minimize 

the data sharing overhead as well as the compiler-based technique for regular application 

DMM. The DMMXO and DMM.WL had the nearly same number of replacement misses.
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Simulation parameters________________________
Direct-mapped cache size: 16k: Cache line size: 16 bytes:
Shrinking factor f = I: Array size: 4096 with working set: 96 k bytes

Figure 7.7: Cache performance comparison between AC_WL and AC-LO.

But, the former had a slightly larger number of replacement misses than the latter. This 

shows that the compiler-based technique can group tasks a little better than the run-time 

technique does. As the number of processors increases, the numbers of conflict misses 

and invalidations in both optimized versions increased, but the number of replacement 

misses decreased. The former is due to the increase in sharing degree among caches. 

The latter is due to the use of more caches. This is consistent with results in previous 

research work.

The AC application has a memory-access pattern which is not as regular as 

the DMM program. As shown the miss rates in Table 7.1, AC_LO, a locality optimized 

program of AC using the run-time technique, is shown to achieve slightly better cache 

performance than AC_BF, a well-tuned program. The number of both compulsory misses 

and replacement misses is improved by the run-time technique with respect to ACJBF. 

However, this improvement is mainly brought by the reduction in replacement misses 

because AC_LO causes a little more compulsory misses than AC_BF, as shown in Figure

Rep. misses in .<?
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SMM A

SMM LO

Processor

Rep. misses in l(? Comp, misses in IG? # of inv. in 10̂

| Simulation parameters_______________________
| Direct-mapped cache size: 16k: Cache line size: 16 bytes:
I Shrinking factor f = I: Problem size: 256 * 256 with working set: 450 k

Figure 7.8: Cache performance comparison between SMM_A and SMM_LO.

7.7. But, ACJLO caused larger number of invalidations than AC_BF did. This shows 

that the static partitioning method used by ACJ3F causes less data-sharing than that of 

the dynamic scheduling of the run-time technique. In addition, the distribution patterns 

of different types of misses in both programs did not show a significant change when 

the number of processors increased. This is different from the execution of the DMM 

program.

Regarding the application SMM, the run-time locality technique is shown to be 

very effective in reducing cache misses. The cache miss rate was reduced for more than 

50% as shown in Table 7.1. This reduction is mainly from a significant reduction in 

replacement cache misses and a slight reduction in compulsory misses. Both SMM_LO 

and SMM-A. present similar invalidation performance. These results show the great 

potential of optimizing the cache locality using run-time techniques for applications with 

dynamic memory-access patterns.
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Figure 7.9: Execution time comparison between DMM.WL and DMMJLO.
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Figure 7.10: Execution time comparison between AC.BF and AC_LO.

B. E xecution  Perform ance and The Effects o f  Bus Traffic

The ultimate goal of the locality optimization is to reduce the execution time of an appli­

cation. The execution performance of the locality-optimized programs on the run-time 

system is compared with their counterparts in Figures 7.9, 7.10, and 7.11. The perfor­

mance differences between different parallel versions can be clarified by the differences in 

bus contention and load balance quality. The load balance measurements are presented 

in Table 7.2. The execution time is decomposed in Table 7.3 into three components: 

bus-retrying time, invalidation time, and data moving time.
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Figure 7.11: Execution time comparison between SMM.A and SMM_LO.

Regarding the DMM program, DMM.WL slightly outperformed DMMXO. This 

is mainly because DMMXO had worse load balance and longer data transferring time. 

Although the parallel iterations were perfectly partitioned among multiple processors in 

DMM.WL, slight load imbalance was also observed. This may be caused by bus retrying 

contention. Regarding the AC program, AC.LO outperformed ACJ3F from 16% at 2 

processors to 8% at 8 processors in terms of execution time. This improvement was also 

mainly contributed by certain reductions in bus-retry time and data transferring time. 

The AC_LO had worse load balance than ACJ3F because AC-LO was trying to balance 

load based on pre-grouped tasks. However, this imbalance does not impact the overall 

performance significantly. This also shows that locality optimization is more important 

while load imbalance is not a major effect. Regarding the SMM program, SM M TO 

performed much better than SMM_A by reducing 50% execution time using the run­

time technique. The SMM_A still achieved a better load balance than SMM_LO. But, it 

caused higher bus-retrying contention and much longer data-transfer time due to a larger 

number of cache misses.

In order to study the effect of data  transferring time on the overall execution 

time, we further differentiate the different types of data transfers. Table 7.4 presents the
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Processors Balance Coefficiency (%)

DMM application AC application SMM application

DMM.WL DMMJjO AC.BF AC_LO SMM_A SMM.LO

2 1.10 1.3 0.001 0.11 0.03 0.18

4 1.48 1.47 0.11 0.61 0.24 0.34

8 1.90 1.95 0.20 0.12 1.9 3.0

Table 7.2: Load balance comparison where the load balance of each program is measured 

by the balance coefficiency defined in equation (7.1).

amount of data moved between different source-destination pairs. In all the programs, 

majority of data was moved from memory to caches and from caches to caches. There is 

only a small amount of data moved from caches to memory, which happened only when 

a dirty line was written back to memory before it was replaced. The amount of data 

that were moved between memory and caches decreased as the number of processors 

increased, because of the increase in the total capacity of available caches. But, the data 

communication traffic between caches was increased because more data was shared by 

more processors.

Compared with DMM.WL, DMMJLO caused more data movement by about 

0.2MB from the memory to caches, about 0.02MBfrom caches to the memory, and 0.1MB 

from caches to caches. Regarding the AC program, AC_LO had a reduction of up to 13MB 

in the memory-to-cache transfer, a 0.7MB reduction in the cache-to-memory transfer, and 

a reduction of up to 6MB in the cache-to-cache transfer. For program SMM, SMMXO 

achieved over 50% reduction in both the memory-to-cache transfer and the cache-to- 

memory transfer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7. Performance Evaluation 156

Dense matrix-matrix multiplication

Processors DMM.WL DMM_LO

bus-retry bus-inv. data-moving bus-retry bus-inv. data-moving

2 0.29 0.0029 3.78 0.35 0.0030 5.4

4 0.60 0.0031 1.9 0.68 0.0034 3.4

8 0.88 0.0032 0.66 0.97 0.0039 1.3

Adjoint convolution

Processors AC_BF AC.LO

bus-retry bus-inv. data-moving bus-retry bus-inv. data-moving

2 17.2 0.00005 79.7 15 0.006 66

4 31 0.00004 29 25 0.003 24

8 31.8 0.00003 9.6 29 0.002 9

Sparse matrix-matrix multiplication

Processors SMM_A SMM_LO

bus-retry bus-inv. data-moving bus-retry bus-inv. data-moving

2 0.57 0.012 2.62 0.24 0.007 1.35

4 0.79 0.006 1.16 0.48 0.003 0.51

8 1.14 0.004 0.50 0.76 0.003 0.23

Table 7.3: Execution performance and bus traffic: All the timing results are given in 106 

cycles. Load balance was measured by the ratio between execution-time derivation and 

the mean of the execution times of multiple processors. The locality optimized programs 

using our run-time approach use blocking factor 1.
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Dense matrix-matrix multiplication

Processors DMM.WL DMM_LO

M2C C2M C2C M2C C2M C2C

2 3.4 0.36 0.47 3.6 0.36 0.50

4 3.4 0.27 0.92 3.5 0.29 0.99

8 2.1 0.18 1.53 2.3 0.19 1.70

Adjoint convolution

Processors ACJBF AC.LO

M2C C2M C2C M2C C2M C2C

2 84.6 1.0 40.1 71 0.33 37

4 51.6 1.0 74.7 46 0.34 73

8 22.6 0.99 104 20.7 0.36 98

Sparse matrix-matrix multiplication

Processors SMM_A SMM_LO

M2C C2M C2C M2C C2M C2C

2 2.69 0.17 0.75 1.3 0.07 0.083

4 2.21 0.17 1.27 1.4 0.07 0.35

8 1.74 0.17 1.75 1.03 0.06 1.27

Table 7.4: Data movement traffic: M2C, C2M, and C2C, respectively, give the total amount 

of da ta  in Mega bytes moved from memory to caches, from caches to memory, and from 

caches to caches. The locality optimized programs using our run-time technique use 

blocking factor 1.
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applications / misses miss-rate comp. rep. inv.

DMM_LO

1 302 0.008 48 254 3201

0.5 253 0.007 49 204 3501

0.25 261 0.007 50 211 3224

0.125 280 0.008 50 230 3240

AC_LO

1 7462 4.4 24 7438 412

0.5 7476 4.4 24 7452 412

0.25 7492 4.5 35 7457 412

0.125 7538 4.6 45 7493 412

SMMXO 1 85 0.011 33.6 52 8261

0.5 88 0.012 44 44 8477

0.25 107 0.012 45 62 8788

0.125 107 0.013 45 62 8794

Table 7.5: Effects of varying blocking factor on cache performance (2 processors were 

chosen for DMM_LO, and 4 processors were chosen for both AC_LO and SMMJLO): 

m isses, comp., and re p ., respectively, give the numbers of misses, compulsory misses, 

and replacement misses in 103; and inv . gives the total number of invalidations.
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C. Effects o f interference

In our run-time technique, task grouping, which is controlled by factor /  ( fleql),  plays 

an important role in optimizing the memory performance of an application. The larger 

the / ,  the more number of tasks put in a group, possibly resulting in more cache in­

terference. Cache interference refers to the overlapping degree of mapping addresses of 

data in a cache. Intuitively, grouping a small number of tasks to execute may reduce the 

overlapping degree of data access addresses in a cache. But, this also reduces the chance 

for tasks to reuse their data in a cache. How cache interference and data reuse affect 

the memory performance of an application is mainly determined by the memory-access 

pattern of an application. For our three applications, we investigate this effect by varying 

the blocking factor / .

Table 7.5 presents the changes of different cache misses as /  is changed. For 

DMM_LO, the best cache performance is achieved with /  =  0.5. No large variation 

was found for the numbers of compulsory misses and invalidations. For AC_LO, the 

cache performance became worse while /  decreased. This phenomenon was also found 

for SMM_LO. Compared with AC_LO, SMM_LO was more sensitive to the change of / .

D. R un-tim e overhead

Run-time overhead is another important factor which affects the effectiveness of an run­

time technique. In our proposed run-time technique, run-time overhead is mainly caused 

by task organization and task run-time scheduling. The task organization overhead is 

affected by the number of tasks created at run-time and the number of arrays accessed. 

The run-time scheduling overhead is affected by the imbalance in the initial task partition 

and in the run-time executions of multiple processors. Table 7.6 gives the percentage of 

the run-time overhead in the total execution time. For both DMM_LO and SMM_LO, 

the run-time overhead had a bigger influence on execution performance than AC_LO.
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Applications Processor

2 4 8

DMMXO 4.1 3.2 2.8

AC.LO 0.23 0.3 0.20

SMM_LO 6 4.5 4

Table 7.6: Run-time overhead in percentage of total execution time.

This difference is mainly due to the difference in the computation granularities of tasks. 

The tasks in AC_LO had the largest computation granularity and the tasks in SMM_LO 

had the smallest computation granularity.

7.4.2 M easurem ents 

M easurem ents on H P /C O N V E X  S-class

Measurement results of the different parallel versions on HP/CONVEX S-class are pre­

sented in Table 7.7. Regarding the DMM program, DMM.WL consistently performed 

a little bit better than DMM_LO. The better load balance in DMM.WL is a reason for 

this. For program AC, AC_LO performed much better than ACJ3F on two processors. 

When more processors were applied, the execution times were close. But, AC-BF always 

balanced load better due to its perfect initial partition. But, the load imbalance occurred 

in the AL_LO was no larger than 1%. For SMM, SMM_LO had achieved a much better 

performance improvement over the SMM_A. This further confirms the effectiveness of the 

run-time technique in improving the performance of applications with dynamic memory- 

access patterns. However, SMM_A still achieved better load balance than SMM_LO. One 

reason for this is that SMM_LO used a locality preserved scheduling algorithm, which 

tried to keep the tasks in a group to execute together on a processor. This can increase
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Application: Dense matrix multiplication

size proc. DMM.WL DMMXO

time balance time overhead balance

1024 2 11 0.0026 13 0.83 0.024

4 5.7 0.0052 6.6 0.52 0.021

8 3.0 0.0095 3.9 0.34 0.038

16 1.8 0.010 2.2 0.24 0.040

Application: Adjoint convolution

size proc. AC_BF AC_LO

time balance time overhead balance

400 2 180 0.0007 144 0.398 0.003

4 102 0.0010 91 0.235 0.004

8 65 0.0018 60 0.174 0.006

16 39 0.0031 38 0.107 0.010

Application: Sparse matrix matrix multiplication

size proc. SMM_A SMM_LO

time balance time overhead balance

1024 2 4.1 0.02 2.2 0.12 0.03

4 2.5 0.03 1.3 0.11 0.05

8 1.4 0.04 0.5 0.08 0.06

16 0.8 0.06 0.5 0.01 0.06

Table 7.7: Execution time (in seconds) based comparison on HP/Convex S-class:

Columns tim e and overhead, respectively, give total execution time and task organiza­

tion overhead in second. Balance presents load balance measurements which is defined 

in equation (7.1). ( /  =  1).
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Application value of /

1 0.5 0.25 0.125

DMM_LO (N=1024) 6.6 6.1 5.8 5.8

AC.LO (N=400) 91 90 91 90

SMM_LO (N=1024) 1.3 1.3 1.4 1.5

Table 7.8: The effect of different values of /  on execution time (in seconds) for DMM_LO 

and AC_LO on four processors of HP/Convex S-class.

data reuse in a cache. But, it also tends to cause more imbalance.

Table 7.7 also gives the run-time overhead of the task reorganization. Among all 

the applications, SMM_LO had the largest run-time overhead in term of the percentage 

in the total execution time, and AC_LO had the lowest. This is consistent with the 

simulation results. As mentioned before, this is mainly affected by the task granularity.

Regarding the effect of different values of /  on performance, Table 7.8 presents 

the measurement results. For DMM_LO, the execution time decreased as /  decreased, 

resulting in groups with a smaller number of tasks. The AC_LO is not sensitive to the 

change of / ,  which is consistent with our simulation results. The SMM_LO had longer 

execution time when a smaller /  was used.

M easurem ents on H yperSPARC station-20

Table 7.9 gives the execution times of the parallel versions on HyperSPARC station-20, 

a much slower multiprocessor workstation than the S-class. The DMM_LO still achieved 

a close performance to DMM.WL, not worse than 9% in execution time. The run-time 

overhead in DMM_LO was about 10% of its execution time. For program AC, AC_LO 

outperformed AC_A for 8.5% in execution time reduction although it had worse load 

balance. Compared with SMM_A, SMM_LO reduced execution time up to 40%. These
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Application: Dense matrix multiplication

size proc. DMM.WL DMM_LO

time balance time overhead balance

1024 2 108 0.01 115 10 0.06

4 57 0.02 63 7 0.03

Application: Adjoint convolution

size proc. AC.BF AC.LO

time balance time overhead balance

256 2 763 0.002 698 0.67 0.003

4 390 0.003 349 0.67 0.005

Application: Sparse matrix multiplication

size proc. SMM_A SMM.LO

time balance time overhead balance

1024 2 37 0.012 23 2.0 0.035

4 20 0.022 12 1.3 0.038

Table 7.9: Execution time (in seconds) based comparison on HyperSPARC station-20: 

Columns time and overhead, respectively, give total execution time and task organiza­

tion overhead in second. Balance presents load balance measurements which is defined 

in equation (7.1). ( /  =  1).
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Application value of /

1 0.5 0.25 0.125

DMM_LO (N=1024) 63 64 58 59

AC_LO (N=256) 349 347 352 373

SMM_LO (N=1024) 12 13 14.6 14.2

Table 7.10: The effect of different values of /  on execution time (in seconds) for DMM_LO 

and AC_LO on four processors of HyperSPARC station-20.

measurements are consistent with that on the S-class although the absolute performance 

results are different.

The effects of different values of /  are presented in Table 7.10. The DMM_LO, 

AC_LO, and SMM_LO achieved the best performance respectively at /  =  0.25, /  =  0.5, 

and /  =  1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 8

C onclusions and Future Work

8.1 C onclusions

The locality of a program is affected by a wide range of performance factors. The de­

sign of efficient locality-optimization techniques relies on an insightful understanding of 

these performance factors. This dissertation models the locality optimization problem 

on uniprocessors and shows it to be an NP-complete problem. The locality optimization 

problem on uniprocessors is also a foundation for the optimization problem on multi­

processors. The dissertation provides an thorough analysis of the locality optimization 

problem on multiprocessors. As we point out, the non-deterministic factors in multipro­

cessor systems make the precise modeling of the locality optimization problem impossible. 

Based on the formal analysis of the locality optimization, a locality optimization tech­

nique should at least include the following three functionalities:

1. Information acquisition, which collects information on the cache-access pattern of 

a program. Here, the information on the data-access sequence of a program is 

essential for locality optimization. Higher precision in information acquisition is 

achieved at the cost of higher analysis complexity.

165
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2. Optimization, which reorganizes the data layout and execution sequences of a pro­

gram to maximize data reuse in caches and to minimize data sharing among caches.

3. Integration, which trades off locality with other performance factors to improve 

overall performance.

This dissertation proposes a run-time locality optimization technique, which tar­

gets applications with dynamic memory-access patterns. Previous experience in parallel 

computing has shown that real-world applications with irregular computational patterns 

and/or dynamic memory and data-dependence patterns are difficult to speedup, and are 

dominant among real-world applications [39]. The solutions to these applications rely 

on effective techniques to exploit the information of a program. The multi-dimensional 

internal structure proposed in this dissertation has been shown to be an effective way to 

integrate both static information and dynamic information. It allows the development of 

efficient run-time locality optimizations. Based on this internal structure, all the locality 

optimizations are implemented as a set of formal transformations that are represented 

by a compound hash function. The run-time overhead has been shown to be acceptable, 

which, in most cases, is not larger than 10% of the total execution time of a program. One 

important conclusion from this is that efficient run-time optimization and information 

acquisition techniques are able to be expressed in an integrated way in order to minimize 

the implementation overhead.

For the applications with dynamic memory-access patterns, we have shown that 

there is great potential for the run-time locality optimization technique to improve the 

performance. The data communication traffic on the interconnect network can be sig­

nificantly reduced. Most importantly, this approach reduces the number of memory 

accesses to alleviate increasing demand on memory-bus bandwidth. In comparison with 

a regular application which was well-optimized by compiler-based techniques, we have 

shown that the run-time optimizations could perform competitively as well. Our run­
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time system was implemented as a set of simple and portable library functions. It can 

be conveniently used by users on commercial SMPs. The run-time system is not aimed 

at replacing compiler-based techniques, but at complementing a compiler to optimize 

those applications that are beyond of its optimization capability. Furthermore, regarding 

an application with an irregular computational pattern but with a static memory-access 

pattern and a static data dependence pattern, the run-time technique can also achieve a 

little better performance than that of compiler-based optimizations. These results show 

the effectiveness of run-time techniques for a wide range of application patterns.

In the run-time system, task reordering, task partitioning and scheduling are 

three key optimization techniques. The effectiveness of the task reordering technique is 

shown by the reduction in the number of replacement misses and compulsory misses. 

Task partitioning and scheduling are effective as shown by the load-balance quality and 

the reduction of cache-to-cache data traffic. In the three optimized programs using the 

run-time technique, the deviation of execution times of multiple processors is no larger 

than 2% of the mean time. But, the cache-to-cache data traffic is still very large in some 

cases. This is because we consider load balance to have higher priority than locality in 

order to simplify the partitioning and scheduling procedure. So, determing an optimal 

tradeoff between load balance and locality is still an important open issue. Regarding 

the task scheduling problem, adaptive algorithms have been shown to be very effective 

in handling a wide range of load partitioning patterns.

The performance results were consistent across both simulation and measure­

ment approaches.

8.2 Future work

Because memory access is becoming more and more expensive, effective techniques to 

improve the memory performance of applications are being aggressively pursued by cur­
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rent computer industry. More techniques include run-time optimizations [2]. Although 

this dissertation has shown the potential and possibility of improving the performance 

of application using run-time locality optimizations, there are many aspects of this work 

that can be further extended. We point out some limits of our work and discuss possible 

solutions for addressing the limits.

8.2.1 L ocality  M odeling

In Section 3.3.2, we analyzed the locality optimization problem in uniprocessor systems 

and multiprocessor systems. In this dissertation, our analyses are aimed at understanding 

the effects of different factors in locality optimization to provide a guideline for the design 

of the run-time optimization technique. The development of a complete locality analysis 

theory and techniques is necessary.

Although the optimization problem in uniprocessors has been modeled in this 

dissertation, the model is based on the knowledge of the execution sequence of a program. 

In order to provide guidelines for sequential algorithm design, some techniques must be 

provided to conduct precise prediction on the execution sequence so that the locality of 

an algorithm can be predicted.

Regarding the locality optimization problem in multiprocessors, this dissertation 

only presents an approximate solution framework. One major difficulty in modeling the 

locality problem in multiprocessors comes from the nondeterministic interference among 

multiple processors, which is determined by the contention on the interconnection net­

work and memory, and the dynamic features of the coherence protocol and the parallel 

execution. A possible solution to nondeterministic interference is to use a stochastic 

model, similar to those stochastic models used for modeling nondeterministic effects in 

task scheduling [49]. Because a parallel computing system is highly complex, it is not 

easy to develop a simple and effective stochastic model. Our previous research experi­
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100 300 1200

Figure 8.1: An noncontiguous access pattern of a task in an array where the array is 

linearly laid out in memory.

ence on performance modeling has shown that the practical applicability of a stochastic 

model is very restricted [87, 88, 89, 91, 92]. So, a more realistic approach is to develop a 

deterministic model to quantify the nondeterministic interference. One approach is given 

by reference [20], which proposes a deterministic performance model for parallel comput­

ing, called the LogP Model. One possible solution is to extend the LogP model with a 

consideration of the cache-access pattern of a program. Here, one challenging problem is 

how to integrate both program characteristics and cache architecture characteristics into 

the model effectively.

8.2 .2  Inform ation E stim ation  at R un-tim e

The effectiveness of a run-time locality optimization technique depends on how precisely 

the memory-access pattern of an application can be predicted. The multi-dimensional 

structure proposed in Section 4.2.2 can completely capture the whole memory-access 

space of an application. Regarding the prediction of the memory-access patterns of tasks, 

we only consider the starting physical addresses of the array-access regions of tasks. The 

simplicity of this prediction makes our formal transformations highly efficient. However, 

this prediction is obviously not precise.

An array-access region can only be captured by both its starting address and its
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size, which can be expressed as an 2-tuple (ad d re ss , s i z e ) . In some parallel applica­

tions, a  task may access several noncontiguous regions in an array. Figure 8.1 shows such 

a situation where the three noncontiguous regions in the array are accessed by a task. To 

capture this more complicated case, the array-access pattern of a task must be captured 

using multiple address-size pairs. For the example in Figure 8.1, the array-access pattern 

should be represented by three 2-tuples: (100, 50), (300, 50), and (1200,70). If there 

are M  tasks and the average number of access-regions of each task in an array is T, the 

analysis on the relations among tasks will take O^M'7) time because each contiguous 

region of a task should be analyzed with respect to all the contiguous regions of the other 

tasks (in contrast, the run-time optimization in our run-time system only has complexity 

O(M)).  This would greatly increase run-time overhead.

How to trade off the prediction precision and the run-time overhead depends 

on whether the benefit of using more precise information can bring more performance 

improvement. Here, we need some way to estimate the performance improvement so that 

a proper tradeoff is made.

8.2.3 R un -tim e O ptim izations

Task reordering and task partitioning are two major run-time optimizations conducted 

in our run-time system. Based on the collected information in the multi-dimensional 

memory-access space, tasks are grouped using a square space-shrinking method, which 

equivalently shrinks each dimension. However, when more information items on the 

array-access region are available, different dimensions should be shrunk by different fac­

tors. This problem should be studied together with the improvement of the prediction 

precision that is discussed in the last section.

Regarding the task partitioning, we have proposed a heuristic algorithm based 

on several discovered properties. This part can also be improved by investigating more
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Type 4: The hardest application.
* dynamic memory access pattern.
* irregular computation pattern.
* dynamic data-dependence.

double B[N], X[N], A[M]; 
int Row[N+l], Col[M];

trangular()
{ int i, j;

for (i=0; i<N; i++){
X[i] = B[i];
for (j=Row[i]; j<Row[i+l]; j++)

x[i] -= Am * xrcoirni;
 ̂ A__________A

}

Figure 8.2: A Type 4 benchmark: Sparse Triangular Solver (STS). Here equation B  = 

A x X  is solved where A is a sparse lower triangular m atrix with a dense representation.

properties. But, the use of more properties may incur more partitioning overhead. The 

effectiveness of using a more precise partitioning method is determined by two factors: 

its overhead and the data sharing degree of an application. How to make an optimal 

selection is really a difficult problem.

8 .2 .4  Program m ing M odel E xtension

Because we emphasize on the locality exploitation in this dissertation, the proposed pro­

gramming model only takes into consideration the nested loops without data-dependence. 

However, many applications may not fit into this model due to loop-carried data depen­

dence. In the classification of applications given in Section 4.3.2, the applications in 

Type 4 have irregular computational patterns, dynamic memory patterns, and dynamic
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Runrdme inspecting

Run-jdme executing

Figure 8.3: A framework of a run-time optimization system for all types of applications.

data-dependence patterns. This type of application is the most difficult for the locality 

optimization, because both the data-dependence and the locality optimization must be 

resolved at run-time. Here, we propose an approach to address this problem by com­

bining our run-time technique with some existing research work on data dependence 

recognization.

Figure 8.2 gives a Type 4 benchmark, denoted the STS. Here, the Ar-th iteration 

of the loop with index variable i  is considered as the fc-th task, denoted tk {k = 0, 1,

• • N).  The fc-th task updates the Ar-th element of array A using several elements of

array A which are indirectly determined by arrays Col and Row. Because arrays Col and 

Row could be input at run-time, the indirect accesses cannot be analyzed by a static 

compiler. So, the data dependence of the STS must be analyzed a t run-time. For this 

type of applications, a run-time optimization system should integrate data-dependence
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Type 4: The hardest application.
* dynamic memory access pattern.
* irregular computation pattern.
* dynamic data-dependence.

double B[N], X[N], A[M]; 
int Row[N+l]t Col[Ml; 
int wave_front[N]; 
trangular()
{ in t i j ;  

int wf;
for (i=0; i<N; i++){ 

wf = 0;
for (j=Row[i]; j<Row[i+l ]; j++) 

if (wf < wave_front[Col(j]]) 
wf = wave_ffont[Col[j]]; 

wave_ffont[i] = wf + 1;
}

1

Figure 8.4: A generated wave-front analysis program of the STS [64].

analysis and locality optimization. Based on this and the run-time system framework 

4.1, an integrated system framework for dependence analysis and locality optimization 

at run-time is described in Figure 8.3. For a given program, the compiler is responsible 

for generating analysis program to analyze data dependence and for inserting run-time 

library functions to optimize the locality. At run-time, the data-dependence of a program 

is first analyzed, then the locality is optimized based on the analyzed data-dependence.

The run-time analysis techniques for data dependence have been studied previ­

ously. A wave-front based analysis technique was proposed by Saitz and Mirchandaney

[64]. Here, we describe how to incorporate their technique with our locality optimization 

technique to deal with the most difficult type of applications, such as STS. For any given 

set of tasks, their data-dependence can be expressed as a dataflow graph where each node 

represents a task and each edge represents that the sink node needs the output of the
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wave-front number
tO 0
tl I

t2 t3 t4 2

(7 (5 t6 3

t8 t9 4

(a) A data flow example <b) Wave-front parallelization model.

Figure 8.5: An example for the wave-front analysis.

source node. All the nodes without input edges are called starters. An example dataflow

graph is shown in Figure 8.5(a) where only tO is a starter. The wave-front number of

each node is defined as the length of the longest path from the node to the starters. For 

the STS, a compiler will generate a wave-front analysis procedure, which is presented in 

Figure 8.4, to calculate the wave-front numbers of each iteration of the loop with index 

i .  Based on wave-front numbers of tasks, tasks are classified into different wave-front 

groups where all tasks with the same wave-front number are in a group. For the example 

in Figure 8.5(a), tasks are classified into five wave-front groups. Associated with the 

wave-front groups, the following two properties hold:

• All the tasks in a wave-front group are data independent, i.e., there are no edges 

from one task to another in the group. So, the locality of the tasks in a wave-front 

can be optimized using our run-time technique.

•  A task in a wave-front group only needs data from the tasks with smaller wave-front 

numbers. This determines the execution order of wave-front groups.

To integrate the wave-front analysis technique in our run-time system, we can 

simply split each task bin as a set of sub-bins where each sub-bin corresponds to a different 

wave-front number. Abstractly, the original multi-dimensional space is augmented with

2
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one more dimension, the wave-front dimension. So, the mapping of a task into the new 

multi-dimensional space is finished by the combination of the original compound hash 

function and the wave-front number of the task.
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