
Institute of Software Technology

Department of Programming Languages and Compilers

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis Nr. 3554

Language Independent
Modelling of Parallelism

Nazmul Alam

Course of Study: INFOTECH

Examiner: Prof.Dr.rer.nat./Harvard Univ. Erhard Plödereder

Supervisor: Dipl.-Inf. Mikhail Prokharau

Commenced: August 23, 2013

Completed: May 09, 2014

CR-Classification: C(1.1,1.2,4b),D(1.3b,2.5f,3.4f,3.4g,4.1,4.2d,4.7e,4.8)

Abstract

To make programs work in parallel contexts without any hazards, programming languages re-
quire changes to their structures and compilers. One of the most complicated parts is memory
models and how programming languages deal with memory interactions. Different proces-
sors provide a different level of safety guarantees (i.e. ARM provides relaxed whereas Intel
provides strong guarantees). On the other hand, different programming languages provide
different structures for parallel computation and have individual protocols for communicating
with parallel processes. Unfortunately, no specific choice is best in all situations. This thesis
focuses on memory models of various programming languages and processors highlighting
some positive and negative features from the point of view of programmability, performance
and portability. In order to give some evidence of problems and performance bottlenecks,
some small programs have been developed. This thesis also concentrates on incorrect be-
haviors, especially on data race conditions in programs, providing suggestions on how to
avoid them. Also, some litmus tests on systems featuring different vendors’ processors were
performed to observe data races on each system. Nowadays programming paradigms also
became a big issue. Some of the programming styles support observable non-determinism
which is the main reason for incorrect behavior in programs. In this thesis, different pro-
gramming models are also discussed based on the current state of the available research.
Also, the imperative and functional paradigms in different contexts are compared. Finally,
a mathematical problem was solved using two different paradigms to provide some practical
evidence of the theory.

iv

Acknowledgments

I would like to express my gratitude to Prof. Dr. rer. nat./Harvard Univ. Erhard Plödereder
for creating the opportunity and allowing me to do my master’s thesis at the Department
of Programming Languages and Compilers, Institute of Software Technology, University of
Stuttgart.

Moreover, I would like to express the deepest appreciation to my supervisor Dipl.-Inf. Mikhail
Prokharau who has continuously supervised, suggested and corrected different problems with
his great enthusiasm and passion throughout my whole thesis work. He also provided guid-
ance and productive discussions for structuring of my thesis work. Furthermore, he also
supported me with vital suggestions of corrections all the way through the writing process
of my thesis.

In addition, my sincere appreciation to (Dipl.-Ing. FH) Klemens Krause and Ms. Kornelia
Kuhle for their continuous support. They ensured a flawless working environment for this
thesis by instant support and provision of tools, information and required access permissions
to the server and computer lab.

I would like to thank the Department of Programming Languages and Compilers, especially
those members who provided some constructive suggestions after my intermediate presen-
tation of this thesis, as well as my colleagues who were doing their master’s thesis in this
department at the same time with me.

Finally, and most importantly, I would like to thank Miss Mounomita Nasreen for her support,
encouragement and always having a warm-hearted ear. Without her unconditional love, I
could not have completed this study. I would like to give special thanks to my parents for
their faith in me and allowing me to be as ambitious as I wanted. It was under their watchful
eye that I gained so much drive and the ability to tackle challenges head on. I also thank all
of my friends for their support in all the ways during my master’s study.

vi

Contents

1. Basic Concepts . 1

1.1 Definitions . 1

1.1.1 Memory Model . 1

1.1.2 Atomic Variable . 1

1.1.3 Data Race . 1

1.1.4 Sequential Consistency (SC) . 1

1.1.5 Sequential Consistency for Data Race Free Programs (SC-DRF) . . . 2

1.2 Why Threads? . 2

1.3 Transformations & Optimizations . 3

1.4 Compiler Optimizations . 3

1.5 Processor Out-of-Order (OoO) execution . 4

2. Various Parallelisation Concepts . 7

2.1 Types of parallel computers . 7

2.1.1 Flynn’s Classical Taxonomy of computer architectures [45] 8

2.1.2 According to memory arrangement and communication among Pro-
cessing Elements(PEs) . 11

2.1.3 According to Interconnection Networks 16

2.1.4 Cache Coherency [37] . 16

2.2 Efficiency analysis of multiprocessor architectures [40] 18

2.3 Predictability analysis of multiprocessor architectures 20

2.4 Types of Parallel Programming Models . 21

2.4.1 Instruction Level Parallelism (ILP) 21

2.4.2 Thread Level / Task Level Parallelism (TLP) 22

2.4.3 Data Level Parallelism (DLP) . 22

2.5 Tests and Analysis . 23

viii Contents

3. Incorrect Behaviors . 25

3.1 Common incorrect behaviors in a concurrent program 25

3.2 Factors that are commonly responsible for incorrect behaviors 26

3.2.1 Race condition . 26

3.2.2 Deadlock . 28

3.2.3 Livelock . 28

3.2.4 Starvation . 28

3.3 Way to avoid/eliminate/prevent incorrect behaviors 29

3.3.1 Race Condition . 29

3.3.2 Deadlock . 33

3.3.3 Starvation . 35

3.4 Tests and Analysis . 35

4. Interaction Between Software and Hardware . 39

4.1 Memory Models . 40

4.1.1 Hardware Memory Models . 40

4.1.2 Software Memory Models . 47

4.2 Real-time systems . 60

4.2.1 Predictability in real-time systems 60

Contents ix

5. Programming Paradigms . 63

5.1 Introduction . 63

5.2 Types of Programming Paradigms . 65

5.2.1 Imperative Paradigm . 65

5.2.2 Functional Paradigm . 66

5.2.3 Logic Paradigm . 66

5.2.4 Object Oriented Paradigm . 66

5.3 A comparison between Functional and Imperative Programming 66

5.4 Test and Analysis . 67

6. Conclusion and Future Work . 69

6.1 Conclusion . 69

6.2 Future Work . 70

x Contents

List of Figures

1.1 Phase of execution [9] . 3

1.2 Phases of compiler translation [9] . 4

2.1 Flynn’s Classical Taxonomy of computer architectures 8

2.2 SISD Architecture. 9

2.3 MIMD Architecture. 11

2.4 Shared Memory Architecture . 11

2.5 UMA Shared Memory Architecture . 12

2.6 NUMA Shared Memory Architecture . 13

2.7 Distributed Processor Computer Architecture 14

2.8 Hybrid Processor Computer Architecture 15

2.9 Bus Snooping Protocol architectures . 17

2.10 Directory-Based Protocol architectures . 18

2.11 Instruction level parallelism example . 22

3.1 Compiler Optimization may introduce unexpected result 27

4.1 A state diagram of a computer start-up process 39

4.2 C++ Development History . 52

4.3 Hierarchical Table of C++ Synchronization Mechanisms 53

4.4 Scheme of a task with a call point . 57

5.1 Taxonomy of programming paradigms [104] 64

5.2 Different levels of support for state[104] . 65

xii List of Figures

List of Tables

2.1 A SISD instruction sequence . 8

2.2 A SIMD instruction sequence . 9

2.3 A MISD instruction sequence . 10

2.4 A MIMD instruction sequence . 10

3.1 Deterministic concurrent state in different programming paradigms [104] . . 29

3.2 Test Machine Specification . 36

3.3 Number of data races detected on different machines 37

4.1 A Violation of Sequential Consistency . 49

4.2 Hierarchical table of Java synchronization mechanisms 50

4.3 Java synchronization mechanisms performance table 50

4.4 An Out of Thin Air Result . 51

4.5 Happens-Before relations example . 51

4.6 Ada mutual exclusion mechanism performance table 58

4.7 Ada explicit processor allocation check . 59

xiv List of Tables

1. Basic Concepts

1.1 Definitions

1.1.1 Memory Model

A memory model is a specification of the memory system for hardware or software system
that will appear to programs. It eliminates the gap between the expected behavior and the
actual behavior supported by the system [6].

1.1.2 Atomic Variable

A thread concurrently reading the object from shared memory will see the old value or the
new value, never see any value in-between. In order to ensure this, an atomic type variable
may have stricter alignment than a plain type variable[100].

1.1.3 Data Race

A Data race occurs when multiple threads want to access same shared memory location
during the execution, and at least one of them tries to modify that location. It may introduce
unpredictability, unexpected results that are often hard to detect[76].

1.1.4 Sequential Consistency (SC)

A multiprocessor based parallel system is called sequentially consistent if, the result of any
execution is the same as if all processors executed their operations in some sequential order
and the operation result for each processors appears in this sequence the way the program
specified the order[67].

2 1. Basic Concepts

1.1.5 Sequential Consistency for Data Race Free Programs (SC-

DRF)

If a program does not allow data races and synchronizes with only the following options-

• Sequentially consistent atomic, and

• Use acquire and release semantics for Lock and Unlock operations respectively.

-then the program follows sequential consistency order of execution, i.e. the result for any
execution appears as if the program executed sequentially interleaving its actions letting all
read operations see the preceding value stored to the location in this interleaving sequence[4].

1.2 Why Threads?

A thread executes as a small sequence of program instructions. An operating system scheduler
can manage it independently.
Threads can change the timing of operations, but threads should not change the semantics
of a program. For this reason, thread programming is always a smart solution for program
performance issues[54]. Following are some examples where programmer might use threads:

• Lengthy processing: when an operating system is performing some long mathematical
calculation, it cannot process any more messages. As a result, the display driver is
unable to update data.

• Background processing: Some tasks may need to perform continuously but might not
if time is critical. There could be some task which needs to perform continuously with
a fixed time interval.

• IO work: DMA (Direct Memory Access) operation or I/O to a memory disc can have
unpredictable delays. The programmer confirmed that I/O latency of thread operations
does not delay unrelated parts of the application.

Some real-time operations sometimes have limited execution, however, some operations expe-
rience unpredictable delay or CPU hogging. In thread programming, tasks with unavailable
resources or low priority wait in a waiting-state until resources become available and then are
scheduled for execution. Threads also make use of multi-core processor systems in a multi-
threaded program. It is not expected that a multi-core processing system will be used by
only one application with one thread. Threads also do efficient time-sharing, programmers
can make sure that all threads have fair allocation of CPU time by using threads and process
priority[54].

1.3. Transformations & Optimizations 3

1.3 Transformations & Optimizations

A processor does not execute the program that a programmer wrote. Because, there are some
other factors that come in between program code and processor execution[9], i.e. Compiler
Optimizations, Processor Out of Order (OoO) execution, Cache Coherency.

Compiler / JIT

Source Code

Processor

Cache

Actual Execution

Fig. 1.1: Phase of execution [9]

Usually a programmer cannot tell on which level the optimization happens. The only thing
programmers care about is that the program is synchronized correctly.

1.4 Compiler Optimizations

A compiler knows all memory operations in a thread and exactly what they will do, including
data dependencies and how to be conservative enough in the face of possible aliasing[9]. On
the other hand, a compiler does not know which memory locations are ”mutable shared”
variables and could change asynchronously due to memory operations in other threads and
how to be conservative enough in the face of possible sharing.

4 1. Basic Concepts

character stream

token stream

syntax tree

syntax tree

Intermediate Code Generator

intermediate representation

Machine Independent Code

Optimizer

intermediate representation

Code Generator

target machine code

Machine Dependent Code

Optimizer

target machine code

Semantic Analyzer

Syntax Analyzer

Lexical Analyzer

Fig. 1.2: Phases of compiler translation [9]

1.5 Processor Out-of-Order (OoO) execution

In pipelined programming, cycles are sometimes wasted for stalling[9]. In order to reduce the
number of stalls in the execution, processor needs to execute the program instructions out of
order.

In an out-of-order execution the system processor tries to find the instructions in the instruc-
tion stream that are independent of the current (stalled) instruction and can be executed in
parallel with it, i.e. the x64 family of processors supports out-of-order execution.

1.5. Processor Out-of-Order (OoO) execution 5

An obstacle is that processors become more complex rapidly as the degree of ”Out-of-
Orderness” is increased[9].

6 1. Basic Concepts

2. Various Parallelisation Concepts

The concept of parallel computing is to solve a large computation problem with multiple
processing units simultaneously by dividing the problem into small tasks assigned to all pro-
cessing units. There are several different types of parallel computer architectures and parallel
computing styles. Although parallel computing was confined to scientific applications, nowa-
days it is coming into commercial and business applications to provide high performance
computing capabilities for decision support, data mining and risk management applications.

There are several different types of parallel computers and parallel computing (programming)
styles that exist from different points of view.

2.1 Types of parallel computers

Parallel computer architectures can be categorized from different points of view, some of
them are as follows:

1. Flynn’s Classical Taxonomy of computer architectures[45].

i Single Instruction, Single Data stream (SISD)

ii Single Instruction, Multiple Data stream (SIMD)

iii Multiple Instruction, Single Data stream (MISD)

iv Multiple Instruction, Multiple Data stream (MIMD)

2. Classification according to memory arrangement and communication among Processing
Elements (PEs).

i Shared Memory Multiprocessor

• Uniform Memory Access (UMA)

• Nonuniform Memory Access (NUMA)

• Cache-only Memory Architecture (COMA)

ii Message passing multiprocessors / Distributed memory multiprocessors.

iii Hybrid distributed model.

3. According to Interconnection Network.

8 2. Various Parallelisation Concepts

2.1.1 Flynn’s Classical Taxonomy of computer architectures [45]

Since 1966, one of the most popular used classifications is Flynn’s classical Taxonomy. It
distinguishes multi-processor computer architectures with respect to two independent dimen-
sions: Instruction Stream and Data Streams : single or multiple[45].

SISD SIMD

MIMD

Single
(SI)

Multiple
(MI)

Single
(SD)

Multiple
(MD)

In
st

ru
ct

io
n

S
tr

ea
m

Data Stream

? ? ?

-

-

-

Fig. 2.1: Flynn’s Classical Taxonomy of computer architectures

2.1.1.1 Single Instruction, Single Data stream (SISD):

SISD is the standard for uniprocessor computers. CPU can execute only one instruction
stream in one clock cycle. So, only one data stream is being used as input during any one
clock cycle. The result of execution is deterministic[45].

Load X
Load Y

Z = X + Y
store Z

X = Y * 2
store X

y ti
m

eA

Tab. 2.1: A SISD instruction sequence

2.1. Types of parallel computers 9

Control
Unit

Processor
(P)

Memory
(M)

Instruction Stream Data Stream

Instruction Stream

I/O

Fig. 2.2: SISD Architecture.

2.1.1.2 Single Instruction, Multiple Data stream (SIMD):

SIMD is a parallel computer architecture. Processors execute the same instruction stream
with different data, e.g., graphical machine (RAW to JPEG conversion). This taxonomy
is best suitable for solving specially categorized problems characterized by a high degree of
regularity, such as graphics/image format conversion. This execution is always synchronous
and deterministic[45].

There are two varieties of SIMD:

i Processor arrays: connection machines ILLIAC IV, CM-2, MasPar MP-1 & MP-2.

ii Vector pipelines: Fujitsu VP, Cray X-MP, IBM 9000, Y-MP & C90, NEC SX-2, Hitachi
S820, ETA 10

Prev. Inst.
Load X(1)
Load Y(1)

Z(1) = X(1) * Y(1)
store Z(1)

Prev. Inst.
Load X(2)
Load Y(2)

Z(2) = X(2) * Y(2)
store Z(2)

Prev. Inst.
Load X(n)
Load Y(n)

Z(n) = X(n) * Y(n)
store Z(n)

y ti
m

eA

Tab. 2.2: A SIMD instruction sequence

The computer with a Graphics Processing Unit (GPU) and most modern computers employ
SIMD instructions and execution units.

10 2. Various Parallelisation Concepts

2.1.1.3 Multiple Instruction, Single Data streams (MISD):

MISD is another parallel computer architecture type. All processing units execute a single
data stream independently with separate instruction streams. In real life, only few computers
were built using this architecture. One of these is the experimental Carnegie-Mellon C.mmp
computer (1971)[110][45].

Prev. Inst.
Load X(1)

Z(1) = X(1) * 1
store Z(1)
Next Inst.

Prev. Inst.
Load X(1)

Z(2) = X(1) * 2
store Z(2)
Next Inst.

Prev. Inst.
Load X(n)

Z(n) = X(1) * m
store Z(n)
Next Inst.

y ti
m

eA

Tab. 2.3: A MISD instruction sequence

2.1.1.4 Multiple Instruction, Multiple Data stream (MIMD):

This architecture is used in modern types of parallel computers. Every processor can work
with a different data stream and every processor can execute a different instruction stream.
Synchronous and asynchronous execution, deterministic or non-deterministic execution can
co-exist on this architecture. Today’s high performance computer architectures are built
using this concept. Most of the commonly used personal computers and supercomputers use
this architecture[45].

Prev. Inst.
Load X(1)
Load Y(1)

C(1) = X(1) * Y(1)
store Z(1)

Next. Inst.

Prev. Inst.
Call funcD
X = Y * Z

sum = X * 2
call sub1(i,j)

Next. Inst.

Prev. Inst.
do 10 i = 1,N

alpha = W * 3
Zeta = C(i)
10 continue

Next Inst.

y ti
m

eA

Tab. 2.4: A MIMD instruction sequence

2.1. Types of parallel computers 11

Control
Unit-1 P1 M1

Instruction Stream Data Stream1

Instruction Stream

I/O

Control
Unit-n Pn Mn

Instruction Stream Data Stream

Instruction Stream

I/O

Fig. 2.3: MIMD Architecture.

Many MIMD architectures also include SIMD execution units as sub-components.

2.1.2 According to memory arrangement and communication among

Processing Elements(PEs)

From the point of view of interconnection between processor and memory, parallel computer
architectures can be classified into following categories.

2.1.2.1 Shared Memory Multiprocessors[97]

M M M M

InterConnectionNetwork

PP P P

Fig. 2.4: Shared Memory Architecture

12 2. Various Parallelisation Concepts

In a shared memory multiprocessor architecture, all processors have equal access to the
memory module and these memory modules are seen as a single address space by all pro-
cessors. Each memory module stores data as well as serving to establish communication
among the processors via some bus arrangement. Programming in this architecture is quite
straightforward and attractive. The executable programming code and data related to the
program are stored in memory for each processor to execute. There is no direct processor-
to-processor communication involved in the programming process; instead communication is
handled mainly via shared memory modules. Access to these memory modules can easily
be controlled through appropriate programming mechanisms such as multitasking. However,
this architecture suffers from a bottleneck problem when a number of processors endeavors
to access global memory at the same time[97]. This limits the scalability of the system.

There are different types of shared memory architectures in existence

• Uniform Memory Access (UMA)[97]

• Nonuniform Memory Access (NUMA) [97]

• Cache-only Memory Architecture (COMA) [52]

Uniform Memory Access (UMA)[97]:

M M M M

C C C C

PPP P

Fig. 2.5: UMA Shared Memory Architecture

UMA architecture is also called symmetric multiprocessor. A UMA architecture is composed
of multiple processors with identical characteristics. The processors share the same main
memory and IO facilities and are interconnected by some form of bus-based interconnection
scheme such that the memory access time is approximately the same for all processors. The
Sun Starfire servers[28] are an example of UMA architecture.

A subclass of UMA is called Cache Coherence UMA (CC-UMA). Cache coherence means
that if one processor updated a shared global memory then all other processors should know
about the newly updated values. At the hardware level, cache coherency is accomplished.

2.1. Types of parallel computers 13

Non-Uniform Memory Access (NUMA)[97]:

Inter Connection Network

P P P P

M M M M

1

Fig. 2.6: NUMA Shared Memory Architecture

The NUMA architecture is often created by physically linking two or more UMA architec-
tures. In NUMA architectures, the memory access time depends on the different regions of
memory. Memory access across the links is slower. Intel Nehalem[98] and Tukwila[33]
CPUs support NUMA. Both CPU families share a common chipset (Intel Quick Path Inter-
connect (QPI)) for interconnection between CPUs.

A subclass of NUMA systems is Cache Coherent NUMA (CC-NUMA) where cache coherence
is maintained among the caches of various processors. The main advantage of the CC-
NUMA is that it can deliver efficient performance at higher levels of parallelism than UMA
architecture. The Stanford DASH[111] is based on the CC-NUMA architecture.

Cache-only memory architecture (COMA)[52]:

COMA is similar to NUMA, in this architecture shared memory is divided into processor-
related blocks and the memory is connected through an interconnected network. However,
in this system shared memory is made of cache memory. In a COMA system data need to
migrate from one processor block to another on a processor request. To migrate the data,
the cache directory (D) is used for access from a remote processor. An example of COMA
machine is ”The Kendall Square Research’s KSR-1”[111].

Advantages of the shared memory architecture:

• Global address space architecture provides an easy, and user-friendly programming
perspective to memory.

• Due to the proximity of memory to CPUs, data sharing between tasks is uniform

Disadvantages of shared memory architecture:

14 2. Various Parallelisation Concepts

• Primary disadvantage is the lack of scalability among CPUs and memory. Adding more
CPUs can geometrically increase traffic on the shared memory-CPU path, and for a
cache coherent system, geometrically increase traffic associated with cache/memory
management.

• The programmer is responsible for synchronization constructs that ensure correct access
to global memory.

• To design and produce large scale shared memory machines, difficulties and cost increase
with the increasing number of processors.

2.1.2.2 Message passing multiprocessors / Distributed memory mul-

tiprocessors [94]

The distributed memory multiprocessor architecture is different from shared memory archi-
tecture in that each unit of the architecture is a complete computer building block including
processor, memory and I/O system. A processor can access directly attached memory. A
processor can communicate with another processor in the form of I/O operations through
message signaling and bus networks. Changes a processor made in its local memory have no
effect on the memory of other processors. Hence, the cache coherency does not apply.

 Processor
+Cache

I/O Memory

 Processor
+Cache

I/O Memory

Interconnection Network

 Processor
+Cache

I/O Memory

 Processor
+Cache

I/O Memory

 Processor
+Cache

I/O Memory

 Processor
+Cache

I/O Memory

 Processor
+Cache

I/O Memory

 Processor
+Cache

I/O Memory

Fig. 2.7: Distributed Processor Computer Architecture

Advantages of the distributed memory architecture:

• Memory is scalable with the number of processors. Memory increases proportionally
with increment of the number of processors.

2.1. Types of parallel computers 15

• Each processor can access its own memory without interfering with other processors.

• Cost effective: can use commodity, off-the-shelf processors and networking.

Disadvantages of the distributed memory architecture:

• The programmer is responsible for many of the details associated with data communi-
cation among processors.

• Difficult to map data structures based on global memory confined to this memory
organization.

• Non-uniform memory access time – data residing on a remote node take longer to access
than node local data.

2.1.2.3 Hybrid distributed model[99]

The largest and fastest computer in the world employs both shared and distributed memory
architectures. The shared memory components can be accessed by shared memory-CPUs and
remote memory locations can be accessed through the interconnection network. Therefore,
network communication is required to transfer data from one processor to a remote processor.

Memory Memory

Memory Memory

network

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Fig. 2.8: Hybrid Processor Computer Architecture

Advantages and disadvantages of the hybrid memory architecture:

• Whatever is common to both shared and distributed memory architectures.

• The most significant advantage is it increases scalability.

• The most significant disadvantage is it increases programmer time.

16 2. Various Parallelisation Concepts

2.1.3 According to Interconnection Networks

Parallel computers can be categorized according to the interconnection network between
processors and memory.

i Linear network

ii A single shared bus network

iii Multiple shared bus network

iv Crossbar interconnection network

v Star interconnection network

vi Ring interconnection network

vii Tree interconnection network

viii Hypercube interconnection network

ix Mesh and torus interconnection network

x Complete graph interconnection network

xi Switching or dynamic interconnection network

2.1.4 Cache Coherency [37]

In a shared memory multiprocessor architecture with each processor containing a separate
cache memory, it is possible to have several copies of any single instruction operand (main
memory, each processor cache). All copies for each processor should be updated to their new
values with an update of a single processing unit.

Cache coherency protocol is the discipline that ensures that changes in the shared operand
values are propagated throughout the system in a timely fashion.

There are three distinct levels of cache coherence:

1. Every write operation appears to occur instantaneously.

2. All processes see exactly the same sequence of changes of values for each separate
operand.

3. Different methods may see an operand assuming different sequences of values. (This is
considered non-coherent behavior.)

2.1. Types of parallel computers 17

Possible solution to cache coherence problems:

1. No data cache memory
Eliminating the data cache memory from a shared memory architecture could be a
solution of the cache coherence problems, e.g., Cray MTA -2 uses no data cache [10].
This reduces CPU complexity and eliminates the cache coherence problem. However,
no data caching introduces performance problems [13], e.g. memory reference takes
150-170 cycles which is a much higher latency than when using a slower cache.

2. By software: disallow caching of shared variables[72]
By disallowing cache memory to have a local copy of shared operands could be another
way to avoid cache coherence problems, e.g. Cray T3D [81][61]. Nowadays generic
programming languages are using this concept to access shared variableS exclusively,
e.g. volatile in Java[72].

3. Use a cache coherence protocol

2.1.4.1 Cache coherence protocols[14]

In shared memory systems of modern computers two types of cache coherence protocols are
used.

1. Bus Snooping Protocol [101]:

Processor

Cache

Processor

Cache

Processor

Cache

Main Memory

Loads and

Stores

Data Block

Fig. 2.9: Bus Snooping Protocol architectures

This protocol is used by bus-based and small scale interconnected shared memory
systems. It relies on a common channel (or bus) connecting the processors to main
memory. This protocol may be further classified into two schemes.

18 2. Various Parallelisation Concepts

i Write Update Scheme
With this scheme processor immediately broadcasts the performed write operation
on the bus; thus as other processors observe the new data being broadcast over the
bus, they update their copy of the block data. This scheme creates much traffic on
the bus.

ii Write Invalidates Scheme
In this scheme processor perform an invalidate bus transaction before writing the
data, in order to ensure that it has the only valid copy of the data block.

Snooping protocols are extensively used in commercial multiprocessor systems such as
Pentium 4 and PowerPC.

2. Directory Based Protocol [69]

Processor
+ Cache

Memory

Directory

I/O

Processor
+ Cache

Memory

Directory

I/O

Processor
+ Cache

Memory

Directory

I/O

Interconnection Network

Fig. 2.10: Directory-Based Protocol architectures

In a directory-based system, a common directory is used for shared data to maintain
the duplicate data from different caches. The directory works as a filter. To load data
into its cache memory from main memory, the processor must ask for the permission.
The directory either changes or updates whenever the entry is changed. The DASH
multiprocessor system uses this protocol.

2.2 Efficiency analysis of multiprocessor architectures [40]

If n is a number of subtasks of a given task, ts is the execution time of the whole task using a
single processor and tm is the time to execute the whole task on n processors, then tm = ts/n;
the speedup factor of a parallel system is

2.2. Efficiency analysis of multiprocessor architectures [40] 19

S(n) = Speedup Factors

=
ts
tm

=
ts
ts
n

= n

The communication overhead factor has been overlooked in the above derivation, which
results in the time needed for processor to communicate and synchronize with each other. If
tc is the time to communication then tm = (ts/n) + tc .

S(n) = Speedup factor with communication overhead

=
ts
tm

=
ts

ts
n

+ tc

=
n

1 + n× tc
ts

The efficiency (η) measurement of a parallel system is-

η =
1

1 + n× tc
ts

Let (f) be a fraction of the given task of a concurrent program that has to execute sequentially.
The remaining part (1 − f) is assumed to be divisible into concurrent subtasks executed
concurrently. Now, time required to execute the task on n processors is tm = fts + (1 −
f)(ts/n). The speed-up factor is now -

S(n) =
ts

fts + (1− f)(ts/n) + tc

=
nts

nfts + ts − fts + ntc
=

n

nf + 1− f + n
tc
ts

=
n

f(n− 1) + 1 + n
tc
ts

The maximum speed-up factor under such condition is given by -

20 2. Various Parallelisation Concepts

limn→∞ S(n) = limn→∞
n

f(n− 1) + 1 + n
tc
ts

=
1

f +
tc
ts

Again, the maximum speed-up factor without communication overhead is -

limn→∞ S(n) =
1

f

Now, the new efficiency (η) is -

η(with no communication overhead) =
1

1 + n× tc
ts

η(with communication overhead) =
n

f(n− 1) + 1 + n
tc
ts

2.3 Predictability analysis of multiprocessor architectures

Nowadays, multi-core processors are conquering the world to meet the demand for compu-
tational power. As computer processors are becoming more capable, new intelligent applica-
tions will emerge, such as, real-time image processing and object recognition, multiple-sensor
information fusion, and online spectral analysis for state-based maintenance. Some of these
applications will have hard real-time constraints, and these constraints will then have to be
predictable on hardware level with respect to time. This requires a Worst Case Execution
Time (WCET) analysis for the involved tasks to make the system predictable.

Estimating WCET is very hard. If the estimation is too tight for the system, it becomes
possible to violate task deadlines for hard real-time systems, causes being buffer overflow or
cache-misses. On the contrary, if estimation is relaxed enough the system efficiency will go
down because processor idle time will increase. Moreover, the fundamental problem with the
WCET analysis on multiprocessor systems is that the load on other processors is generally
unknown. For a task the number of cache misses and their location in time depend on the
program control flow path. This means that it is very hard to foresee where there will be
bus access collisions, since this will differ from execution to execution. Furthermore, the
worst-case control flow path of the task will change depending on the bus load originating
from other concurrent tasks.

2.4. Types of Parallel Programming Models 21

On the other hand, programming languages contain observable non-determinism properties,
which make programs unpredictable with respect to the result of the program execution.
Non-determinism is caused when a program execution is not completely determined by its
specification; during execution, program can choose the next step by using the run-time
scheduler. For instance, observe the following example with parallel thread T1 and T2,
sharing the variable n:

T1 : x; n = 1, 000, 000;
T2 : y; n = 10; fori = 1 to n do r;
Here, there is a race condition for the global variable n. If the processor executes T1 first,
the loop will iterate 10 times, if the processor executes T2 first then switches to T1 by
preemption before executing the loop then the loop will iterate 1,000,000 times. Moreover,
if the programs use synchronization through locks, then an imprecise analysis might even
falsely detect deadlocks. For instance, the following example with parallel threads T1 and
T2 using a global variable n might create deadlock of a program.

T1 : x; lock l;
T2 : y; lock l; n = 10;unlock l;

Way to avoid non-determinism in a concurrent language: The easiest way to avoid
non-determinism is to design a language that does not support any non-determinism. How-
ever, this is unrealistic in practice, because most programming languages must allow some
internal optimization to make the program more efficient. So, the problem could be solved by
distinguishing non-determinism into two types. The first one is inside non-determinism, which
cannot be avoided, the second is observable non-determinism, which might be avoidable.[104]

The table 3.1 on chapter 3 shows a comparison of five programming paradigms with respect
to their non-deterministic properties.

2.4 Types of Parallel Programming Models

2.4.1 Instruction Level Parallelism (ILP)

Instruction Level Parallelism (ILP) [56] is a process where several instructions can execute
in parallel. In pipelined processes, only one instruction per cycle can execute, but in ILP
multiple instructions per cycle can execute. In these processes instructions which are not
dependant on previous instruction can execute simultaneously. For example, consider the
following program optimization by ILP. In this example, ILP process required 3 instruction
cycles instead of 5.

22 2. Various Parallelisation Concepts

Cycle 1: LOAD r1,(r2);

Cycle 2: ADD r5,r6,r7;

Cycle 3: SUB r4,r1,r4;

Cycle 4: MUL r8,r9,r10;

Cycle 5: STORE (r11),r4;

Cycle 1: LOAD r1,(r2); ADD r5,r6,r7;

Cycle 2: SUB r4,r1,r4; MUL r8,r9,r10;

Cycle 3: STORE (r11),r4;

Fig. 2.11: Instruction level parallelism example

The available parallelism is limited by any sequence of instructions [106]. ILP is limited by
following hazards/dependencies.

- Data Dependencies: RAW (Read After Write), WAR (Write After Read), WAW (Write
After Write);

- Control Dependencies: If a program has a condition branch then until execution of this
condition all later instructions must wait.

- Memory Dependencies: 100(r1) and 35(r3) may indicate the same memory location. De-
pendencies that flow through memory locations are difficult to detect.

2.4.2 Thread Level / Task Level Parallelism (TLP)

An alternative model of parallelism is Thread/Task Level Parallelism (TLP) [60] where mul-
tiple flows of executions run on a single processor. Sometimes processes wait for their re-
sources (e.g. printer acknowledgement signal), and the processor has some idle time. In this
idle time, the processor can start another independent process. To do this, a big process is
divided into a few independent small chunks named threads/tasks. Each thread contains its
own instruction and data. In a multiprocessor system, TLP is achieved by running different
threads/tasks on a different processor with the same or different data. When a thread’s re-
source is not available then the thread goes into a blocked state and waits until the resource
is available. Once the resource becomes available afterwards, the thread goes into a waiting
queue and finally executes. The thread may execute the same or different code. Different
threads can communicate with each other through message passing or using shared global
memory. With this method processes need an extra mechanism to synchronize with each
other.

2.4.3 Data Level Parallelism (DLP)

In a multiprocessor system Data Level Parallelism (DLP) [70] is a method where data are
distributed into different parallel computing nodes. For example in the image processing
engine, different processors execute the same line of instructions with a different set of data,
vector processing is also an example of DLP.

2.5. Tests and Analysis 23

2.5 Tests and Analysis

To test and analyze the performance and efficiency of different parallelization techniques, it
is necessary to have different hardware resources. The following section discusses the resulta
of different parallelization tests taken from the currently available published research.

Case 1 : Efficient Parallelization using Combined Loop and Data Transformations [77].

Usually some parts of the program consist of a loop or an array access which requires par-
ticular transformation while other parts of that program require completely different trans-
formations. For these various transformation techniques large cache memory is required, or
else, cache misses occur. To solve this problem, parallelizing compilers need to minimize the
degree of internal synchronization and inter-processor communication and also need to max-
imize temporal and spatial locality within a program. To improve spatial locality, Cierniak
and Li [30] and Kandemir et al. [58],[57] have combined non-singular loop transformations
with data transformations.

The research has been done to develop a compiler heuristic MARS [21] to minimize paral-
lelization overheads, which explore how to resolve the requirement of a conflicting loop by
data transformation and vice-versa[77]. This is achieved by treating data and loop trans-
formation in a unified manner. They used seven theorems for their compiler to develop
a communication and synchronization mechanism. Finally, they combined loop and data
transformation for optimization.

For testing they developed a compiler to test alternative techniques in a number of experi-
ments on an SGi Origin 2000. Three SPECfp92 kernels: vpetst, btrtst, chotst were selected,
and four different approaches tested: combined, data, loop, PFA(a commercial loop-oriented
parallelizing compiler). Their performance was plotted into a graph against the number of
processors used[77]. With the VPETST kernel, the combined method shows a vast perfor-
mance improvement on a larger number of processors (e.g. 32). The results were 50% faster
over PFA and 20% over 30% faster over loop method, and with BTRTST kernel the com-
bined approach is a factor of 2 faster than PFA for a large number of processors. Finally,
the CHOTST kernel test shows that combined, data and loop give the same result whereas
PFA process is 80% slower than the other method[77].

Case 2 : A detailed analysis of contemporary ARM and x86 Architectures[20]:

In a processor architecture design system the Instruction Set Architecture (ISA) plays a
vital role in the performance, efficiency and consumption power of that processor. The
development of RISC and CISC ISA began in the 1980 when the design complexity and
cheap area were the primary concerns. Today, the low power ARM ISA enters into the high-
performance market for desktop server PCs, while the traditional high-performance Intel x86

24 2. Various Parallelisation Concepts

ISA is trying to enter into the low-power mobile device market. Thus, the question arises
whether the energy efficiency is dominating the market over ISA or vice-versa.

Clark and Bhandarkar compared the VAX and MIPS ISA by comparing the Digital VAX
8700 to the M/2000 implementations [19] and summed up with ”RISC as exemplified by
MIPS provided a significant processor performance advantage.” In 1995 another research
by Bhandarkar compared the Alpha 21164 to Intel Pentium-Pro [19], this study focused
on performance and concluded ”the Pentium Pro processor achieves 80% to 90% of the
performance of the Alpha 21164”.

A detailed analysis has been done on Intel Atom and Sandybridge i7 and ARM cortex-A8
and cortex-A9 microprocessors [20]. The test used four different workloads spanning mobile,
desktop INT and FP memory footprints and server computing. This test demonstrates the
role of ISA on modern processors in performance and efficiency. For this test, they used
Linux 2.6 LTS kernel with some minor board-specific patches and a gcc4.4 cross compiler
[20]. Machine specific tuning and THUMB instructions were disabled and x86 32-bit pro-
cessors were used. For the application in mobile client WebKit regression tests [50], desktop
SPECCPU2006 (www.spec.org) and server Cloud Suite workload[43] were used [20].

The performance analysis from this test found a large performance gap across the four plat-
forms, where Intel was showing high performance. Compared to A9, i7 perform 5 times to
102 times faster and compared to A8, Atom performs 2 times to 997 times faster. In cycle
count comparison i7 took 2.5 times less cycle time than A9 and Atom took 1.5 times less time
than the A8 processor[20]. So, finally, in Power and Energy test i7 consumed 17 to 21 times
more power than the A9 processor and Atom consumed about 3 times more power than the
A8 processor [20].

The result was as expected that Intel processors provide high performance but consume
much power, on the other hand, ARM processors provide energy efficiency but perform
comparatively slowly.

3. Incorrect Behaviors

In order to build compatible software for modern high performance multicore computers, pro-
grammers have to design complicated parallel software architectures to achieve performance
improvement and hardware efficiency.

Several level optimizations are required for creating mainstream software applications that
utilize the full power of parallel hardware. Mainstream generic programming languages like
C++, Java, Ada [22]allow the non-determinism in a program to achieve maximum efficiency
of the processors. The execution is called non-deterministic if, during its execution a program
has to decide the next line of instruction to execute. This non-deterministic behavior may
introduce bugs into the program that will cause its incorrect functionality.

3.1 Common incorrect behaviors in a concurrent program

There are several kinds of bug that may appear in a program [102] -

• Race condition

• Deadlock

• Livelock

• Starvation

Race Condition: A race condition affects program’s correctness by changing the timing
and ordering of program events [76]. More generally, some external efforts need to change the
timing and ordering of the program, to produce a race condition. General examples are OS
signals, hardware interrupts, context switching and memory operations on a multiprocessor
system.

A Data race occurs when multiple threads want to access same shared memory location
during the execution, and at least one of them tries to modify that location. It may introduce
unpredictability and unexpected results that are often hard to detect.

Race condition usually depends on the execution order of a program that may vary on
different hardware architectures. So, a program with a race condition may perform normally
on particular hardware. Race conditions can only be avoided but not eliminated from the
program in programming languages that allow the non-determinism.

26 3. Incorrect Behaviors

Deadlock: If two or more threads wait on each other, forming a cycle that prevents all of
them from making any further progress, this is called Deadlock[113]. It could be created
by the programmer while trying to avoid race conditions. For example, incorrect use of
synchronization condition primitives such as locks may introduce multiple threads waiting
for each other. Deadlock is also possible without synchronization mechanisms; circular wait
in a program can result in a deadlock.

Starvation: Starvation is a situation in a multi-threaded application, where single or mul-
tiple threads are delayed indefinitely or blocked permanently[3]. For example, a thread with
a low priority is waiting for being scheduled, but high priority threads are executed although
this lower priority thread is neither blocked nor waiting for any resources. Typically, schedul-
ing rules and policies are the reasons for starvation in a multi-threaded program.

Livelock: Livelock is a situation where multiple threads depend on each other and changes
of their own states result in a circular way in response to changes in the other threads. The
result is none of them will complete[36].

3.2 Factors that are commonly responsible for incorrect
behaviors

3.2.1 Race condition

The first and main source of race conditions in a program is observable non-deterministic[104]
behavior of mainstream programming languages e.g. C++, Java. On the other hand, pro-
gramming languages like Oz or Alice do not support any race conditions, because they are
free of observable non-determinism.

Among the programming languages that support observable non-determinism, shared memory

/ variables are responsible for producing data races into programs. However, shared mem-
ory plays a vital role for communication among processors in a shared memory computer
architecture. It is also possible to use message passing communication mechanisms in sys-
tems with shared memory architectures, but, performance and efficiency of those systems
will fall dramatically. So, to achieve performance and efficiency at an optimum level, pro-
grammers have to use shared variables while maintaining specific rules and regulations.

To introduce a race condition into a program, concurrent access is required in a multiple
threaded shared memory program. Multi-threaded sequential consistent program cannot
produce race condition.

3.2. Factors that are commonly responsible for incorrect behaviors 27

Compiler optimizations may change order of program events and may produce an unex-
pected result[9]. For example, the following optimization may introduce a race condition into
a program.

Initially A = 0; B = 0;
Thread 1 Thread 2
r1 = 1;

A = 1;

B = 3;

r2 = 2;

A = r2;

if (A == 2)

B = 2;

Original Code

Initially A = 0; B = 0;
Thread 1 Thread 2
r1 = 1;

A = 1;

B = 3;

B = 2;

r2 = 2;

A = r2;

After compiler optimization

The final value of B = 2/3 ?

Fig. 3.1: Compiler Optimization may introduce unexpected result

In some programming languages, adjacent data field may introduce data races. For
example, the following program may create data races in the C++ programming language.
According to the C++11 standard, adjacent bit fields are one ”Object”[23].

a global s of type struct {char m:9; char n:7;}

//Thread 1
lock guard<mutex>lock(mMutex)

{
s.m = 1;
}

//Thread 2
lock guard<mutex>lock(nMutex)

{
s.n = 1;
}

Finally, execution order may also introduce data races into a program. As an example,
the following program shows ”Dekker’s” example (all variables are initially zero):

Thread 1
x = 1;

r1 = y;

Thread 2
y = 1;

r2 = x;

Could be executed as:

x = 1; y = 1; r2 = x; r1 = y;
or,
x = 1; y = 1; r1 = y; r2 = x;

Whereas, second execution sequence has a data race with y variable e.g.- r1 variable trying
to read y while y is updating its own values.

28 3. Incorrect Behaviors

3.2.2 Deadlock

Deadlock can arise in any concurrent program, where processes can preempt each other and
generate a waiting cycle chain with each program/thread. More generally, deadlock can be
introduced in any system that satisfies Coffman’s four conditions [31].

Mutual exclusion: Threads claim accesses of resources exclusively. (e.g. Threads grab a
lock)

Hold-and-wait: Threads that already hold a resource claim new resources.

No preemption: Thread holding a resource cannot be forcibly removed, only a pro-
cess/thread holding a resource can release it.

Circular wait: Multiple processes create a circular waiting chain where all processes request
a resource that the next process in the chain holds.

Concurrent programs may satisfy these requirements, as they use synchronization mecha-
nisms and may deadlock. Deadlocks can be avoided by rearranging the program so that one
of the Coffman conditions does not hold.

3.2.3 Livelock

A livelock is almost the same as a deadlock, except that the involved process states constantly
change one after another, but no one can progress[16].

3.2.4 Starvation

Typically following factors cause process/thread starvation [59]

1. Processes hand over resources to other processes without any control. If resource alloca-
tions for processes are decided locally without considering the overall resource require-
ments for the system, irregularities can occur and result in some processes suffering
starvation.

2. Higher priority processes consume all CPU time from lower priority processes. For
example, the programmer sets process priority so that longer execution time processes
will have higher priority. So, the processes with lower execution time may never execute
and suffer starvation.

3.3. Way to avoid/eliminate/prevent incorrect behaviors 29

3. Randomly selected processes using resources may also cause starvation. If a waiting
queue is not maintained for processes waiting service, some processes can never use
required resources and may suffer starvation.

4. If the number of processes is much higher than the number of resources, some process
execution periods may be exceeded before the process can use required resources.

Starvation can occur at any organized scheduling level though it more often takes place in
the automatic process allocation than in the higher-level manual process allocation parts.

3.3 Way to avoid/eliminate/prevent incorrect behaviors

3.3.1 Race Condition

3.3.1.1 Avoid observable non-determinism
The easiest way to eliminate a race condition from a program is by using a programming
language that doesn’t have non-determinism. However, nearly all main stream programming
languages support non-determinism[104]. So, the programmer has to make a clear distinction
between non-determinism insidethe system, which cannot be avoided, and observable non-
determinism, which may be avoidable. This can be done with two following steps:

First, separate and limit observable non-deterministic events from a program. The remaining
part of the program should have no observable non-determinism.

Second, define the programming languages so that it would be possible to write concurrent
programs without observable non-determinism.

Concurrent Paradigm Example Languages Race
Possi-
ble?

Input
can be
nondeter-
ministic?

Declaration concurrency OZ[32], Alice[103] No No
Constraint programming Gecode[89], Numerica[82] No No
Functional respective programming FrTime[51], Yampa[53] No Yes
Discrete synchronous programming Esterel[46], Lustre[75] No Yes
Message-passing concurrency Erlang[15], E[74] Yes Yes

Tab. 3.1: Deterministic concurrent state in different programming paradigms [104]

Java, C++ and C# use shared state concurrency[27] and Erlang, E use message passing
concurrency [15] [74]; both paradigms have observable non-determinism. Fortunately, there
are at least four useful programming paradigms in existence that are concurrent but do
not allow observable non-determinism[104]. Table 3.1 lists these paradigms together with
message passing concurrency.

30 3. Incorrect Behaviors

3.3.1.2 Use of Synchronization Mechanisms

Mutex Locks:
Mutex lock: Mutex lock is the basic form of synchronization between processes/threads[72][23],
where Mutex stands for Mutual Exclusion. It guarantees that only one process/threads can
access into Mutex block. If a code section is blocked by Mutex then it makes sure that only
one thread can lock this code section. Other thread can lock this block only after the first
thread unlocks this block.

1 //The mutex has been p r e v i o u s l y cons t ruc ted
2 l ock the mutex () ;
3 // This code w i l l be executed only by one thread
4 // at a time .
5 unlock the mutex () ;

Condition Variable:
Condition variables allow threads to wait until the occurrence of a particular condition[38].
They cannot be shared across processes; they are user mode objects. They allow threads to
release the lock automatically and enter the sleeping state. A condition variable can do two
following things:

First, wait: the thread has to wait until some other thread notifies that it can continue
because of fulfillment of the condition.

Second, notify: the thread sends a signal to a particular thread or to all threads to tell them
that the condition that provoked their wait is fulfilled.

1 CRITICAL SECTION Cr i tSe c t i on ;
2 CONDITION VARIABLE ConditionVar ;
3

4 void cond i t i on v a r i a b l e ()
5 {
6 E n t e r C r i t i c a l S e c t i o n (& Cr i tSe c t i on) ;
7

8 // Wait u n t i l the p r e d i c a t e i s TRUE
9

10 whi le (TestPred icate () == FALSE)
11 {
12 SleepCondit ionVariableCS(&ConditionVar , &Cr i tSec t ion , INFINITE) ;
13 }
14

15 // The data can be changed s a f e l y because we own the c r i t i c a l
16 // s e c t i o n and the p r e d i c a t e i s TRUE
17

18 ChangeSharedData () ;

3.3. Way to avoid/eliminate/prevent incorrect behaviors 31

19

20 L e a v e C r i t i c a l S e c t i o n (& Cr i tSe c t i on) ;
21

22 // I f necessary , s i g n a l the cond i t i on v a r i a b l e by c a l l i n g
23 // WakeConditionVariable or WakeAllCondit ionVariable so other
24 // threads can wake
25 }

Semaphores:
Semaphore is a synchronization mechanism that uses an integer type variable or abstract
data type that is used to control the access of shared resources by multiple processes[62]. It
uses the following two types of signals for the process synchronization.

Wait: Processes will test the variable values and wait until the value become greater than
zero. Otherwise, process will decrement the semaphore variable. If S is the variable for
semaphore then wait can be defined as -

1 wait (S) {
2 whi le (S <= 0) ;\\ wait u n t i l the va lue i s > 0 ;
3 s−−;
4 }

Signal: Increment the value of the semaphore and awake a process if any of them is blocked.
If S is the variable for semaphore then Signal can be defined as -

1 s i g n a l (S) {
2 S++;
3 }

If the initial value of the semaphore variable is 1, a wait operation is similar to Mutex
locking and Signal value is similar to Mutex unlocking. To synchronize multiple threads
with a semaphore -

1 \\wait f o r a c c e s s i n to c r i t i c a l s e c t i o n
2 wait (S) ;
3

4 \\ ente r c r i t i c a l s e c t i o n
5 GlobalVar iba l = Globa lVar iab le + 2 ;
6

7 \\ e x i t from c r i t i c a l s e c t i o n
8 s i g n a l (S) ;

32 3. Incorrect Behaviors

Low level primitives:
Many popular generic programming languages include low-level primitives for synchronizing
programs/threads at low level. However, different languages were implemented using differ-
ent names for their own low level primitives. For example, C++ uses atomic type variables
[18] whereas Java uses volatile and atomic as volatile with some extra features[84], Ada uses
volatile and atomic pairs via pragmas[1]. Low level primitive read and write operations are
not stored into the cash register, but are directly transferred to the memory location. More-
over, this prevents compiler optimizer to reorder memory access and automatically includes
Read/Write operations as memory acquire/release respectively. Furthermore, its write op-
eration happens-before all following reads of the same variable. Compared to lock/unlock
or monitor exit/monitor enters operations, writes work as unlock or monitor exit and reads
work as lock or monitor enter. In addition, it also guarantees the visibility and ordering of
operations and these types of operations are cheaper than other synchronization operations.
The main disadvantage of low level primitives is that even if there is only a limited set of
operations using this variable in a program, it is very complicated and requires sophisticated
analysis to verify, although it looks very easy to use. An example of low level primitives in
Java could be as follows:

1 import java . u t i l . concurrent . atomic . AtomicInteger ;
2

3 c l a s s AtomicVariableExample {
4 p r i v a t e AtomicInteger num = new AtomicInteger (0) ;
5

6 pub l i c void increment () {
7 num. incrementAndGet () ;
8 }
9

10 pub l i c void decrement () {
11 num. decrementAndGet () ;
12 }
13

14 pub l i c i n t va lue () {
15 re turn num. get () ;
16 }
17

18 }

3.3.1.3 Sequential Consistency for Data Race Free (SC-DRF)

If a program does not allow data races and synchronizes with only following options -

• Sequentially consistent atomic, and

• Uses acquire and release semantics for Lock and Unlock operations respectively.

3.3. Way to avoid/eliminate/prevent incorrect behaviors 33

- then the program follows sequential consistency rules, i.e. it behaves as though it had been
executed by sequentially interleaving its actions, and letting each load instruction see the
last preceding value stored to the same location in this interleaving.

Software memory model has converged on SC-DRF. Java required SC-DRF since 2005 [72]
and in C/C++ since 2011[23] it is the default type memory ordering.

3.3.1.4 Use Race detection algorithm

Several algorithms have been developed to detect race conditions in a program. Further
mentioned some of the well-known algorithms that are used to detect race conditions in
programs.

• FastTrack:Efficient and Precise Dynamic Race Detection [44]

• HARD: Hardware Assisted Lockset Based Race Detection[112]

• Eraser: A Dynamic Data Race Detector for Multithreaded Programs[88]

• Hybrid Dynamic Data Race Detection[78]

3.3.2 Deadlock

3.3.2.1 Deadlock Prevention

To prevent deadlocks, it is necessary to make it logically impossible for one of the four
Coffman deadlock situations to hold in a concurrent program[105]. To achieve this, several
methods have been already developed:

Elimination of “Mutual Exclusion” condition: To eliminate mutual exclusion from
a program means that no process will have exclusive access to a resource. On the other
hand, avoiding data races in program tasks means exclusive use of resources is needed. Non-
blocking synchronization algorithms [48] can be used to avoid mutual exclusion in a program.
Low level primitives are also useful to avoid mutual exclusion in a concurrent program.

Elimination of “Hold-and-wait” condition: There are two techniques that can be used
to eliminate hold-and-wait conditions[105]. The first method is achieved by acquiring all
locks at once atomically. In practice, this could be achieved as follows:

34 3. Incorrect Behaviors

1 l o ck (holdandwait) ;
2 l o ck (R1) ;
3 l o ck (R2) ;
4 l o ck (R3) ;
5
6 unlock (holdandwait) ;

The first lock guarantees that only one process can acquire all resources and no other pro-
cess can acquire these resources until the first process releases it. However, this method is
problematic for a number of reasons, i.e. this method decreases the concurrency as all shared
resources are acquired early on (at once) instead of exactly when they are truly needed.
Second method is by disallowing processes to request a resource whenever it was allocated
previously. In this technique the system has to grant resources on one or none basis. If
the full set of resources that is needed by a process cannot be acquired then it has to wait
until the complete set is available. So while waiting, processes may not hold any resources to
avoid a deadlock situation. However, this approach also can lead to waste of resources and
processes may have to wait for a long time.

Elimination of “No-preemption” condition: The non-preemption condition can be
eliminated by sending the process that is waiting for a resource that cannot be allocated
immediately to a waiting state to hand over all of its currently held resources, so that other
processes may use those resources. However, eliminating no-preemption situation from a
concurrent program may introduce circular wait for processes and result in a deadlock.

Elimination of “Circular Wait” condition: by imposing a total ordering on all resource
types circular wait condition can be eliminated. All processes request resources in a certain
order. This method imposes a totally ordered use of all resource types with this rule; the
resource allocation graph can never have a cycle. Lamport’s happens before relation [66]
could be used for a total order of resource access.

3.3.2.2 Avoiding Deadlock

In some scenarios, deadlock avoidance is preferable to preventing a deadlock. This technique
to the deadlock problem predicts deadlock before it occurs. A process uses an algorithm to
predict the possibility of a deadlock and to act accordingly. This method is not similar to the
deadlock prevention that guarantees that deadlock cannot occur by denying one of the four
necessary conditions for deadlocks. Moreover, with this approach if necessary conditions for
a deadlock are in place, deadlock avoidance would be still possible. One famous example al-
gorithm for this method is Dijkstra’s Banker’s algorithm[35]. In addition, resource allocation
graph algorithm is also useful where only one instance per resource is present.

3.4. Tests and Analysis 35

3.3.2.3 Deadlock Detection

The final strategy is deadlock detection. In this approach, the system may enter into a
deadlock state. In that state, the system needs an algorithm that periodically examines if
a deadlock has occurred in the system and offers a procedure to recover from the deadlock
[92]. The deadlock detection algorithms maintain a wait-for graph and periodically invoke
an algorithm that searches for cycles in the graph. A deadlock is detected in that system
if any cycle is completed. If a deadlock is detected, the system needs to recover from that
state. Recovery can be done using two approaches. One is terminate all processes in the
cycle; it works fast but may lose process work. Second is terminate one process from the
cycle and run deadlock detection algorithm again; it’s better in terms of process work, but
with an extra work to resolve a deadlock.

3.3.3 Starvation

Remedies for starvation are applied by ensuring the conditions for starvation cannot happen[3].
Here is a selection.

1. There should be an independent manager for each resource, which will manage all
allocation for its resources; this will guarantee that processes do not just pass resources
around between themselves without making them available for general allocation.

2. Fair scheduling method for all processes may avoid starvation by changing process
priority at execution level.

3. There should be a waiting queue for processes that need to access the resources. Ran-
dom selection technique, uncontrolled competition, should be avoided for resource al-
location.

4. Provide fair number of resources compared with the number of processes, though this
solution can cost money. However, it is better than having process starvation which
may cause some serious issues in the system.

3.4 Tests and Analysis

In this thesis data race detection test has been done on two different machines with two
different versions of Linux kernel and one Windows version in two different programming
languages. In this test, a simple multi-threaded program with global and local variable runs
1,000,000 times using different hardware, operating system and programming languages. The
pseudo code of this program is as follows:

36 3. Incorrect Behaviors

Pseudo Code:

Initial state: x = 0; y = 0;

Thread 1 Thread 2

x = 1;
y = 1;

r1 = y;
r2 = x;

Race if r1 != r2;

In the above program, one thread updates global variables and another thread reads global
variables and copies them into local variables. In a sequential consistent execution, either
thread 1 or thread 2 will execute first and the values for local variables r1, r2 will be 0 or 1.
But, two different values of r1 and r2 will cause a data race.

Implementation Platforms: Hardware Platform: In this thesis two different hardware
platforms: one server and one desktop PC were used. The detailed information about both
hardware systems is shown in table 3.2.

 Machine 1 (Server) Machine 2 (Desktop)

Number of
processing Unit

48 (4 processor with
12 Core each)

2 (One processor with 2 core)

Vendor AMD Opteron ™ Intel core 2 duo

Clock Speed 2.194 GHZ 1.8 GHZ

Instruction bit 64-bit 32 bit

Cache L1d : 64K
L1i : 64K
L2: 512K
L3: 5118K

L1: 128K
L2: 2048K

Memory 264 GByte 2 GByte

Operating System Linux server (debian
version 6.0.9)

Windows 8.0
Ubuntu 12.04 LTS

Tab. 3.2: Test Machine Specification

Operating System: Three different operating systems were used on two different types
of hardware systems. Linux Server (Debian version 6.0.9) was used on the server machine
and Desktop PC Windows 8.0 and Ubuntu 12.04 operating system were used on the desktop
machine.

Compiler: On both machines, three different operating systems, eclipse IDE for Java and
C++ data race check were used. On the server machine, the Java version JDK 1.6 and
gcc version 4.4.5 were used. So on the desktop machine JDK 1.7 for the Java compiler in
Windows, JDK 1.6 in Linux and gcc 4.4.7 for C++ in Linux were used. Compiler optimization
level was manually turned off for this test process.

Test process: The above program ran on both machines on three different operating sys-
tems. For a single tested data set, the same program was run in the same environment several

3.4. Tests and Analysis 37

times then the maximum number of data races was counted. Each time the above threads
ran 1,000,0000 times and the number of data race was counted in the program. The resulting
data is shown in table 3.3.

 Execution time
(millisecond)

Maximum
number of data
race detected

Machine 1 with
-Java Compiler (JDK 1.6)
-OS: Linux server

418,053 ms 0

Machine 2 with
-Java Compiler (JDK 1.7)
-OS: Window 8.0

208,740 ms 4

Machine 2 with
-Java compiler
- OS: Linux (Ubuntu)

206,568 ms 173

Machine 1 with
-gcc compiler (4.4.5)
-OS: Linux Server

58,640 ms 7

Machine 2 with
-gcc compiler
-OS: Linux (Ubuntu)

57,260 ms 7

 Tab. 3.3: Number of data races detected on different machines

Analysis: Data races are very hard to detect. Their number depends on compiler and
hardware optimization systems. In this test a huge change in result was observed on machine-
two; for the Java compiler the number was four in Windows whereas 173 races were detected
on the Linux (Ubuntu) operating system, although the hardware and the code were the same
in both cases.

38 3. Incorrect Behaviors

4. Interaction Between Software and Hardware

A computer is a state machine. If a processor is forced into its initial condition, then its
next state is completely predictable. We can use this simple fact to see what happens when
a computer system boots.

Jump to
BIOS

Perform
self-test

Search for
deice

Search for
extended BIOS

Load OS
Boot Code

Jump to OS
Boot Program

Read OS Kernel
from Disk

Jump to OS
kernel

Load
Application

Jump to
Application

Reset

Fig. 4.1: A state diagram of a computer start-up process

Over the past few decades processors developed rapidly showing increases in performance,
speed and power while coming from different vendors (e.i. Intel, ARM, POWER PC, etc.)
using different architectures but none of them is best for all tasks. For example, Intel chips
are good in performance but have had highest power consumption and price; ARM chips have
lower power consumption and are significantly less expensive, but suffer from the performance
problem. Moreover, each vendor has its own multicore processing architecture. As a result,
software portability became limited to a particular vendor’s design. So, software developers
had to develop several versions of software with the same functionality.

The interface between a program and any software or hardware (for example, the virtual
machine, operating system, the compiler, or any dynamic optimizer) is defined by a memory
model. In a concurrent hardware or programming system, it is not possible to meaningfully
write a program (written either in a machine language, assembly, byte code, or a high-level
language) or any part of the program without an explicit memory model.

40 4. Interaction Between Software and Hardware

4.1 Memory Models

The memory consistency model or memory model defines the set of rules of a system or
program stating what it is allowed to do. It is the heart of the concurrency semantics of a
shared memory system or program, thereby defining the basic semantics of shared variables[5],
for example, the return value of a memory read operation, thread synchronization mechanism,
concurrent write operation rules for two adjacent data fields, eliminating out-of-thin air
values.

It is difficult to write a program with a complex memory model. An extremely complex one
may limit the compiler and hardware optimization, critically reducing performance, portabil-
ity and maintainability of programs. Therefore, the memory model has long lasting effects.
The hardware architecture with a strong memory model cannot change later without break-
ing binary compatibility for a weaker model, and a compiler with a weaker memory model
may require rewritten source code. Finally, memory-model-related decisions must be consid-
ered for the rest of the system. If the memory system designer gives a weaker memory model,
processor vendors cannot guarantee a strong hardware model, and a strong hardware model
cannot provide full performance with a program that compiled using a weak memory model
programming language. However, the importance of memory models has often been empha-
sized. The reason behind that could be the surprising complexity to specifying a model,
which balances all desirable properties of portability, performance and programmability.

Another challenge had to be faced by hardware architects in that they confronted the limita-
tion of memory models at the programming language level. Programmer expectations from
hardware were not clear. Despite that, hardware researchers proposed different approaches
to minimize this gap[7]. Since 2000, experts have started to specify cleanly memory models
at the programming language level. As a result, in 2004/05 Java and in 2011 C++ provided
a well-defined software memory model, for C and other languages efforts are now under way.

Nowadays, most hardware vendors and mainstream programming languages have published
(or plan to publish) compatible memory model specifications. Despite a dramatic improve-
ment achieved by this convergence, some basic shortcomings were exposed in parallel lan-
guages and their compatibility with hardware. After decades of research, it is still undefined
what value a read operation can return while using any modern safety/synchronization mech-
anism.

4.1.1 Hardware Memory Models

The relaxed memory model is weaker than the sequential consistency. Currently, most hard-
ware supports the relaxed memory model. It takes a performance-centric or implementation
view, where model specification derives from the hardware optimization level.[8][6] Typical

4.1. Memory Models 41

strong memory model guarantees that shared memory write operation values will become
visible to all other thread read operations in the program order. Such models additionally
insert fence instructions to confirm the total program order. Such a program ordering and
fencing style of specification is easy to use. However, its excessive use results in an inefficient
system.

4.1.1.1 IBM Power and ARM processors

IBM Power and ARM multiprocessor products come with a low-power consumption architec-
ture and an inexpensive RISC instruction set[73]. Nowadays many smart phones and tablet
PCs have ARM processors inside them to achieve their low power consumption. Finally,
ARM chips started to improve their performance. As a result, it is observable how much
faster tablet computers and smart phones have become over the past few years. On the other
hand, PowerPC was designed to use as desktop CPU but it has become popular in embed-
ded systems. Many game consoles, embedded architecture, router and network switches use
PowerPC chips.

PowerPC and ARM multiprocessors both have the relaxed memory model to achieve the
maximum hardware optimization. However, in a multiprocessor architecture excessive opti-
mizations required out-of-order execution which resulted in incorrect behavior (e.g. deadlock,
data race) of a program. To avoid such incorrect/undefined behavior and to regain the pro-
gram execution order, a strong memory barrier or synchronization mechanism is presented
by both ARM and PowerPC. PowerPC uses sync instructions[11] and ARM uses dmb [29]
instructions for a strong memory barrier. PowerPC introduced another lightweight sync
instruction called lwsync that is potentially faster than the sync instruction.

ARM7 has Princeton memory architecture (one bus for both data and instructions, and never
both at the same time) and the ARM9 processor has Harvard architecture (separate buses,
each for data and instructions). To test the ARM and IBM Power processors, a simple classic
Message Passing (MP) example was written with two threads and two global variables (x
and y). This is a simple low-level concurrency programming idiom, the desired behavior is
that if the Thread 2 reads y = 1 then read x != 0, In other words, the situation where of r1
= 1 and r2 = 0 should be forbidden.

 MP Pseudo code
Initial State: x = 0 ^ y = 0;
Thread 1 Thread 2

x = 1;
y = 1;

r1 = y;
r2 = x

Forbidden? : r1 = 1 ^ r2 = 0;

In a sequentially consistent model, there are only the following possible ways to execute and
none of them results in r1 = 1 and r2 = 0; to get this result the processor must have to
execute instructions out-of-order.

42 4. Interaction Between Software and Hardware
 Order of instruction Registers final value

x=1; y=1; r1=y; r2=x r1=1 ∧ r2=1

x=1; r1=y; y=1; r2=x r1=0 ∧ r2=1

x=1; r1=y; r2=x; y=1 r1=0 ∧ r2=1

r1=y; r2=x; x=1; y=1 r1=0 ∧ r2=0

r1=y; x=1; r2=x; y=1 r1=0 ∧ r2=1

r1=y; x=1; y=1; r2=x r1=0 ∧ r2=1

The only possible order of instructions to get r1 = 1 and r2 = 0 is x=1; r1=y; r2=x;
y=1; To see whether it is observable or not, a test using the Litmus tool (a test harness
[12] on particular processors was implemented [73]. The following table gives some sample
experimental data, this test has been implemented for different versions of the IBM Power
and ARM processors using the test harness produced by the Litmus tool [12]. Each entry in
the table gives a ratio of n/m, where n is the number of times that the final result was r1 =
1 and r2 = 0; and m is the number of trials.

 POWER ARM

 PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP 10M/4.9G 6.5/29G 1.7G/167G 40M/3.8G 138K/16M 61K/552M 437K/185M

From the above table it is clear that both POWER and ARM processors executed out-of-
order instructions or contain relaxed memory operations. But, sometimes these types of
behavior in a program cause incorrect/unpredictable results. To regain the program order,
the programmers need to use a memory barrier explicitly between the two write operations of
Thread 1 and two read operations of Thread 2, which is sufficient. On PowerPC this would
be sync/hwsync, and on ARM it would be dmb, as follows:

 MP+dmb/sync Pseudo code

Initial State: x = 0 ^ y = 0;

Thread 1 Thread 2

x = 1;
dmb/sync;

y = 1;

r1 = y;
dmb/sync;

r2 = x;

Forbidden : r1 = 1 ^ r2 = 0;

The dmb/sync barrier causes an extra cycle in a program, but fulfills the ordering proper-
ties, if inserted between every pair of read/write operations accessing the memory. A brief
explanation dealing with the four cases of pairs of read/write operations before and after a
barrier is as follows:

RR: For two reads separated by dmb/sync barrier, ensure the memory is read in program
order.

4.1. Memory Models 43

RW: For a read before a write operation separated by dmb/sync, the barrier will ensure that
the read operation will execute before any consecutive write operation, and becomes visible
to any other thread.

WR: For a write before a read operation separated by dmb/sync, the barrier will ensure that
the write operation will execute and be visible to all other treads before the consecutive read
operation.

WW: For a write before another write operation separated by dmb/sync, the barrier will
ensure that the first write operation will execute and be visible to all other threads before
any consecutive write operations.

The above properties of dmb/sync instructions make the program strictly sequentially con-
sistent for memory read/write operations and add extra cost to a program. To reduce that
cost IBM PowerPC introduced a ‘light weight sync’ instruction called lwsync[11], which is
weaker and potentially faster than the ‘heavy weight sync’ instructions. The ARM does not
have any instruction like lwsync. The properties of lwsync are as follows:

RR: For two read operations separated with the lwsync instruction it works just like sync
instruction

RW: For a read before a write operation separated by the lwsync instruction, it also works
like sync instruction

WR: For a write before a read operation separated by a lwsync barrier, it ensures that the
write is committed before the read is satisfied, but lets the read be satisfied before the write
has been propagated to any other thread

WW: For a write operation before another write operation separated by a lwsync barrier,
it ensures that for any other thread it is observed that the first write has been propagated
before the second write

Below is shown some experimental data for the Litmus test using Message Passing (MP) and
dmb/sync instruction for ARM and PowerPC, and Message Passing (MP) and lwsync for
PowerPC processors.

 POWER ARM

 PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP 10M/4.9G 6.5/29G 1.7G/167G 40M/3.8G 138K/16M 61K/552M 437K/185M

MP+dmb/sync 0/6.9G 0/40G 0/252G 0/24G 0/39G 0/26G 0/2.2G

MP+lwsync 0/6.9G 0/40G 0/220G - - - -

The above table shows that the relaxed memory operation with message passing is observable
on all platforms, while with barrier instructions the relaxed memory operation cannot be
observed on any processor.

44 4. Interaction Between Software and Hardware

Moreover, a parallel program contains another hazard named dependency. The different
dependencies are address dependency, control dependency, and data dependency. To avoid
the control dependency problem, ARM introduced the isb and PowerPC introduced the isync
instructions. All dependency problems can be avoided by proper use of sync/isb on ARM and
sync/lwsync/isync on PowerPC processors. A more detailed Litmus test for all dependency
problems has been done by [73].

4.1.1.2 Intel Processors

Intel started their processing products with guaranteed high performance but they were ex-
pensive and consumed more power using the CISC instruction set[19]. As a result, mobile
devices where power consumption becomes a sophisticated issue avoid Intel processors, al-
though most desktop and notebook computers use Intel processors. Finally, Intel realized
that they had fallen behind to ARM on mobile devices and started improving the power
consumption of their x86 and x64 processors. Intel began their improvements with the intro-
duction of inexpensive low power consumption high performance products. So the end-user
chips became more price competitive.

Intel multiprocessor uses the strong memory model to achieve maximum performance. They
published several versions of their hardware memory model; some of them introduced a lot of
changes compared to earlier versions. From August 2007, Intel published their more precise
memory model with detailed analysis and examples named Intel White Paper (IWP). Prior
to IWP, Intel Software Developer Manual (SDM) was published as an unofficial specification
model called “processor ordering”. It was very hard to interpret based on its description, nor
was it supported with any examples.

In August 2007, Intel published their first hardware memory model “Intel White Paper [49]
(IWP)” which gave somewhat more clarity. In this IWP they informally proposed eight prin-
ciples that were supported by 10 litmus test examples. This principle was unchanged in the
later versions of IWP. These principles allow an independent reader to observe independent
writes (by different processor to a different address) in a different order [23].

The most recent version of the Intel software developer’s manual is [49] which was published
in February 2014. This IWP also proposed some unofficial specification style similar to the
previous version and was supported by litmus tests. Some parts of the content are related
to memory operations on multicore CPUs. Some other parts define strong guarantees on
memory operations. These strong guarantees[49] are as follows:

• ”Stores are not reordered with other stores.”

• ”Stores are not reordered with older loads.”

• ”Loads are not reordered with older stores to the same location.”

4.1. Memory Models 45

• ”Stores are transitively visible.”

• ”Stores are seen in a consistent order by other processors.”

• ”Stores across string operations are not reordered.”

• ”String operations are not reordered with later stores.”

• ”String operations are not reordered with earlier stores.”

Based on the above lines, it can be said that Intel processors have strong memory ordering
protocols. There is no chance for out-of-order execution, so there is no need to add any extra
fencing into programs to ensure memory ordering or to prevent hardware optimizations.
However, according to their SDM, a few statements are relaxed enough to reorder their
execution. These relaxed statements[49] are as follows:

• ”Loads may be reordered with older stores to a different location.”

• ”Intra-processor forwarding is allowed.”

• ”Stores within a string operation may be reordered.”

As mentioned above “loads may be reordered with the older stores to a different location”,
which may present incorrect behavior in a program. To further clarify this statement, Peter-
son lock could serve as an example that can be illustrated as follows:

 Thread 0 Thread 1

x = 1;
z = 0;
while (y & z == 0)
continue;
//critical section
x = 0;

y = 1;
z = 1;
while(x & z = 1)
continue;
//critical section
y = 0;

Initially x = y = z = 0;

The above program rewritten in pseudo assembly:

 Thread 0 Thread 1

store(x,1);
store(z,0);
r0 = load(y);
r1 = load(z);

store(y,1);
store(z,1);
r0 = load(x);
r1 = load(z);

Initially x = y = z = 0;

46 4. Interaction Between Software and Hardware

The interesting point in the above program is load and store operations of x and y. They
follow the same pattern as the Intel reordering statement. The processor is free to move the
read of y to before the write to x. Similarly, it can move the read of x to before the write to
y. This may end up with the following execution scenario

 Thread 0 Thread 1

r1 = load(z);
store(x,1);
store(z,0);
r0 = load(y);

r1 = load(z);
store(y,1);
store(z,1);
r0 = load(x);

Initially x = y = z = 0;

As a result, r1 and r2 may end up with zero. In that case, the while loop never executes and
both threads enter into the critical section. So, Peterson locks are broken on x86 systems.
To avoid this type of incorrect performance and strengthen the memory operation explicitly,
Intel introduced SFENCE instruction (presented in the Pentium III processor IA-32 archi-
tecture), as well as the LFENCE and MFENCE instructions (introduced in the Pentium IV
processor). These instructions provide synchronization and memory-ordering capabilities for
specific types of memory operation. With these fencing instructions, Intel also provided a
few statements[49] of the model as follows.

• ”Locked instructions have a total order.”

• ”Loads are not reordered with locks.”

• ”Stores are not reordered with locks.”

Finally, although Intel started with the strong memory model, nowadays they began to
develop relaxed memory designs for mobile devices. In 2012, Intel said that at least 70

4.1.1.3 Comparison of Different Hardware Memory Models

Intel and ARM chips have different processor architectures and instruction sets. ARM and
PowerPC are RISC (Reduced Instruction Set Computers) based, while Intel x86 is a CISC
(Complex Instruction Set Computer) architecture [64]. This means an application compiled
on Intel architecture cannot run on ARM and vice-versa. For example, Windows RT and
Windows 8 are both Microsoft operating systems, but Windows RT runs on ARM archi-
tectures and Windows 8 runs on Intel architectures. However, an application running on
Windows RT is incompatible with Windows 8.

4.1. Memory Models 47

To compare different hardware memory models, the Instruction Set Architecture (ISA) is a
big concern for any processor system. ARM and IBM PowerPC both implemented Reduced
Instruction Set Computing (RISC) which contains a fixed length instruction set, relatively
simple for writing code. On the other hand, Intel x86 implemented Complex Instruction
Set Computing (CISC) which has a variable length instruction set, relatively complex for
writing code. Moreover, CISC has decode latency which prevents pipelining and results in
slow decoding and higher code density. To reduce this decode latency, Intel has to implement
a decode optimizer for general instructions and I-cache to reduce the code density impact.
Concerning the complexity, CISC instructions are complex, multi-cycle instructions requiring
encryption and string manipulation. On the contrary, RISC systems have simple, single
function, single cycle instructions. However, the size of the code written on RISC is much
higher than on CISC systems. The most important observation is that the number of data
accesses from the cache is similar in both ISAs, because CISC instructions split into RISC-
like microprocessor operations. Currently available research and tests show that expressing
more semantic information has led to improved performance [], better security, and better
visualization. Moreover, current research shows that some extensions of hardware allow to
balance accuracy with efficiency [42] [34] and unique hardware extensions for energy efficiency
[47].

In summary, most of hardware memory model specifications that were published by processor
vendors are excessively complex, incomplete and ambiguous enough that they may be misin-
terpreted even by experts. For instance, such is the Intel x64 and IA-32 Architecture Software
Developers Manual [49]. Furthermore, since hardware models mostly focused on hardware
optimizations, which have often been not well-matched to software design requirements, the
result was loss in performance or incorrect code.

4.1.2 Software Memory Models

Among the high-level programming languages, Ada 83 [68] was possibly the first high-level
programming language that provided first-class support for shared memory models, although
Ada’s initial thread synchronization approach was significantly different from the currently
popular high-level language memory design. However, until mainstream programming lan-
guages (e.g. Java) introduced memory design principles, thread and shared memory pro-
gramming mostly used libraries and APIs such as OpenMP and Posix threads. When par-
allel programming started to be used for general purposes without a clear memory model
coming from programming languages defining the context of threads, it was unclear what the
programmer was allowed to assume and what compiler transformations were legal.

4.1.2.1 Java Memory Model

History:

48 4. Interaction Between Software and Hardware

1991: Oak was developed under the name Green Project by James Gosling and another
developer within 18 months[26]. The project was initiated by Sun Micro-systems to develop
a kernel for executing object-oriented and multithreaded software on set-top Boxes featuring
security and portability.

Oak programming was designed to target interactive television market, but for that period
it was too advanced a technology for the digital cable television industry.

1996 (January 23): The first stable version for Java was released officially as JDK 1.0[26]. It
was also known as Java 1.

The original Java memory model was developed in this version, and was widely perceived as
broken, preventing many run-time optimizations and providing guarantees not strong enough
for code safety. Moreover, final fields could be observed to change and finalization semantics
were unclear.

2004: Original memory model was updated through Java Community Process, like Java
Specification request 133 (JSR-133), for Java 5.0 (code name Tiger). [72]

Java language community updated their language specification as Java Specification Request
(JSR). JSR-133 is related to memory operations and synchronization mechanisms which
describe the semantics of locks, threads, volatile variables and data races. The goals of JSR
133 were as follows [84]:

• Clear and easy to understand.

• Provide out-of-thin air safety.

• Foster reliable multi-threaded code

• Allow for high performance Java Virtual Machine (JVM).

• New synchronization idioms for security guarantees.

• Minimal impact on existing code.

Programming languages had to face two implementation challenges that do not occur in
hardware systems. First, many programming languages provide safety and security properties
of their code that must be respected. Second, while performing optimization the ability of the
compiler to perform subtle and global analysis of all variables constrains program execution
order. Research [85] [86] shows that the previous version of the Java memory system had
serious problems. To overcome these issues, the Java memory model was revised in 2005. The
new design provides a clear notation how to write a correct program, gives greater flexibility
to programmers and provides clear semantics defining both incorrect and correct programs.

4.1. Memory Models 49

Regardless of these fundamental changes, the programming style and program quality remain
the same. The memory model needs to keep a balance between implementation flexibility
for the system designer and the programmer’s ease-of-use.

The major goals of the new Java memory model were to provide a balance between suffi-
cient ease-of-use and transformations and optimizations in current compilers and hardware.
However, current compilers and hardware transformations violate sequential consistency of
programs. For this reason, currently it was not possible to give a strong sequentially consis-
tent memory model for Java. Currently the Java memory model is relaxed (a weaker model).
A research paper provided details about the requirements of the Java memory model and
their evolution [71].

Program synchronization:

The first requirement of the Java memory model is to provide a sequentially consistent data-
race-free programming model. Programmers need to worry about the impact of their program
code transformation on their program result only if that program contains data races, as in
the following example:

 Thread 1 Thread 2

1: r2 = x;
2: y = 1;

3: r1 = y;
4: x = 2;

Initially, x = y = 0;

r2 = 2; r1 = 1;
Violates sequential consistency.

Tab. 4.1: A Violation of Sequential Consistency

The above example is incorrectly synchronized. The global variables x and y have access con-
flicts for any sequentially consistent execution. So, these conflicting accesses are not ordered
by the happens-before relation. A possible way to make this program correctly synchro-
nized is by declaring the global variables volatile. Volatile variables ensure the sequential
consistency in the program.

To make the program code data-race-free, the Java specification provides a different level of
synchronization mechanisms [84]. A hierarchical table of those mechanisms is as follows:

50 4. Interaction Between Software and Hardware

A

d
d
it

io
n

al
 S

yn
ch

ro
n

iz
at

io
n

 C
o

st

B
u
t,

 r
ec

o
m

m
en

d
ed

 t
o

 u
se

Medium level utilities JSR – 166, java.util.concurrent

Low level locking Synchronized() blocks

Low level primitives volatile variables,
java.util.concurrent.atomic
classes, also allow for non-
blocking synchronization

Data race Deliberate under synchronization

W
ea

k
er

 m
o

d
el

A
n

d
,
re

co
m

m
en

d
ed

 n
o

t
to

 u
se

Tab. 4.2: Hierarchical table of Java synchronization mechanisms

From the above model the programmer can determine the required synchronization mech-
anisms for their programs. As shown in the table, the weaker synchronization mechanism
provides higher efficiency but lower security guarantees; on the other hand, stronger (medium
level) mechanisms give higher security guarantees but incur additional cost.

A performance check has been done using different Java synchronization mechanisms (syn-
chronized block, semaphores fair and unfair, explicit locks fair and unfair, atomic variables).
The results are as follows:

Number of threads Sync Ex (uf) Ex(f) Sem(uf) Sem(f) Atomic volatile

1 Thread 53.0 77.0 68.0 113.0 110.0 27.0 24.0

2 Thread 372.0 200.0 3737.0 168.0 1294.0 63.0 53.0

4 Thread 746.0 313.0 14743.0 583.0 14422.0 154.0 97.0

8 Thread 1246.0 576.0 28614.0 1371.0 29336.0 290.0 197.0

*) Time measured in milliseconds (ms)

Tab. 4.3: Java synchronization mechanisms performance table

The test is made using a little piece of code written for this thesis. Each method executed
600,000 times exactly.

Hardware platform: The test was executed on a Windows 8.0 machine with the Oracle Java
7 virtual machine. The computer featured a 32 bit Core 2 Duo 1.8 GHz processor with 2GB
of DDR2 memory.

Out-of-thin air safety:

4.1. Memory Models 51

The previous strategy of leaving semantics of the Java language was incorrect, as the program
is inconsistent with Java safety and security guarantees. Sometimes the program’s read
operations may read unexpected values. The reason behind this could be an interruption, or
cache memory value changes by another thread. The following illustrates this on an example:

 Thread 1 Thread 2

1: r1 = x;
2: y = r1;

3: r2 = y;
4: x = r2;

Initially, x = y = 0;

Incorrectly synchronized, java
want to disallow r1 = r2 = 42;

Tab. 4.4: An Out of Thin Air Result

Although the above program is incorrectly synchronized, getting the result 42 is not allowed
by the Java semantics. Java provides out-of-thin air value safety by default from Java 2005[84]
on.

Happens-before relation:

The happens-before memory model is a synchronization order over a synchronization mechanism[72].

Thread 1 Thread 2

1: x=1;
2: go = true;

3: if(go)
4: r1 = x;

Initially, x = 0, go = false;

If r1 = x execute, it will read 1.

Tab. 4.5: Happens-Before relations example

Happens-before consistency says that if a read operation r reads a variable v, it is allowed
to observe a write w of v in the happens-before partial order of execution:

• if w
hb−→ r, write operation w happens before read r, the write operation is not observable

if it happens after read.

• there is no intervening write w′ between these two operations that are ordered by

happens-before relation. w
hb−→ w′ hb−→ r, the write was not overwritten by another write

operation along happens-before path.

52 4. Interaction Between Software and Hardware

The Java Language Specification does not provide any guarantees of preemption for multi-
threaded programming, nor any fairness. The reason behind this is such guarantees would
make the specification complicated by issues such as thread priorities and real-time threads[84].
On the contrary, Java Virtual Machine provides some fairness guarantees, but it depends on
the particular hardware specification.

4.1.2.2 The C++ Memory Model

The C/C++ programming language style hung on to single core CPUs or single threaded lan-
guages, without any reference to threads. The most recent version of the C++ programming
language standard is C++11 (formerly known as C++0X) which supports multi-threaded
programming.

History of the C++ memory model:[87]

C++98 C++03 C++0x
C++11

Fig. 4.2: C++ Development History

The C++ language was initiated as a development of C programming language by including
classes, then multiple inheritance, operator overloading, virtual functions, exception handling
and templates, among other features. After several years of the development process, in
1998, an official version of the C++ programming language was standardized and published
as ISO/IEC 14882:1998.

After five years, the standard was revised by the technical Corrigendum at 2003, ISO/IEC
14882:2003.

Finally, in September 2011 the current standard extended C++ with new features approved
and published by ISO as ISO/IEC 14882:2011 [55] (informally known as C++11).

The C++ Memory Model:

Prior to C++11, C++ was specified as a single threaded language, multi-threading was
supported only by libraries such as pThreads. C++11 integrated thread specification into
its new standard and now defines the behavior of multithreaded applications. Moreover, for

4.1. Memory Models 53

low level synchronization it introduces and simplifies atomic operations that allow writing
lock-free algorithms. As a result, more performance conscious way of programming can be
achieved.

C++11 provides distinct memory ordering semantics that can have varying cost on different
CPU architecture. This ordering gives fine grain control over the visibility of the operations
by processor. The following table shows a hierarchical diagram of memory ordering constrains
in C++11[23].

Sequential Consistent Ordering memory_order_seq_cst (default type)

Acquire-Release Ordering memory_order_acquire
memory_order_release
memory_order_consume
memory_order_acq_rel

Relaxed Ordering memory_order_relaxed

Data race Undefined behavior

 A
d

d
it

io
n

al
 S

yn
ch

ro
n

iz
at

io
n

 C
o

st

B
u
t,

 r
ec

o
m

m
en

d
ed

 t
o

 u
se

W
ea

k
er

 m
o

d
el

A
n

d
,
re

co
m

m
en

d
ed

 n
o

t
to

 u
se

Fig. 4.3: Hierarchical Table of C++ Synchronization Mechanisms

Synchronization mechanisms: there might be additional synchronization need for sequentially
consistent ordering over the relax ordering or acquire-release ordering and for acquire-release
ordering over relaxed ordering. In a multiprocessor system, the synchronization instructions
add extra costs to the program and decrease overall program efficiency [109]. Currently,
C++11 supports following synchronization mechanisms.

Mutex locks < mutex >:

A mutex is a synchronization mechanism that is designed to be use in programs to exclusively
use some part of the program code [23]. It is a standard low level locking primitive. It prevents
other threads from using resources concurrently by providing protection. Pseudo code for
mutex lock is as follows:

1 mutex . l o ck (1)
2 r1 = z ;
3 z = r1 + 1 ;
4 mutex . unlock (1)

mutex objects do not support recursion (i.e., a thread shall not lock a mutex it already
owns) and provide exclusive ownership. It is guaranteed to be a standard-layout class.
[www.cplusplus.com/reference/mutex/mutex/]

54 4. Interaction Between Software and Hardware

Condition variable < condition variable >:

A conditionvariable is a low level synchronization primitive object that can block the calling
thread until notified to resume[23].

1 cond i t i on \ v a r i a b l e . wait (unique\ l o c k) ;
2 r1 = z ;
3 z = r1 + 1 ;
4 cond i t i on \ v a r i a b l e . n o t i f y \ a l l () ;

To lock a thread, it uses a unique lock when one of its wait functions is called. Until another
thread wakes up this lock, the thread that calls a notification function remains blocked on
the same condition variable object.

Ordered Atomic:

Memory acquire and release operations done automatically with atomic variable reads and
writes respectively[23].

1 i n t x ;
2 std : : atomic<int> r
3 whi le (r !=4) // acqu i r e e x c l u s i v e l y
4 read / wr i t e o f x
5 r = x ; // r e l e a s e e x c l u s i v e l y

Transactional memory:

This concept is still at research level now, but a rough idea is given by the following[91]:

1 Atomic{ // acqu i r e e x c l u s i v e l y
2 read / wr i t e o f x
3 } // r e l e a s e e x c l u s i v e l y

The C++11 standard provides a clear definition about the memory model and standard op-
erations. However, no standard compiler yet fully implement the C++11 standard. Visual
C++ 2013 has not yet implemented data dependency ordering, i.e. function annotation and
atomic in signal handlers [http://msdn.microsoft.com/en-us/library/hh567368.aspx]. GCC
4.9 does not yet implement variable templates, features relaxing requirements on constexpr
functions and member initializers, aggregates and sized deallocation [http://gcc.gnu.org/projects/cxx1y.html].

4.1. Memory Models 55

4.1.2.3 Ada Memory Model

Ada is a modern object-oriented, highly reliable and efficient high level programming language
designed for long-lived, large applications and embedded systems in particular. Nowadays,
the places where high security/high integrity/safety critical domains are required include
medical devices, air traffic control, commercial and military aircraft avionics, railroad sys-
tems, all of which use Ada programming. Ada is a multi-faceted programming language. It
has structured control statements, strong type checking, simple syntax, flexible data compo-
sition facilities, a mechanism for exception handling and code modularization features[2].

History of the Ada programming language:[17]

1983: First reference manual for military standard 1815A, ANSI standard published and also
the Ada/Ed implementation of the language was validated the same year.

1995: The older version of Ada was revised and published, a new joint ANSI and ISO
standard was validated. It described overall objectives and scope of Ada95. Its Reference
Manual summarized the significant difference between Ada83 and Ada95.

2005: Ada language was revised using the basic structure of Ada83 and Ada95. ISO/IEC
standardization process was approved and published as ISO/IEC 8652:1995/Amd 1:2007.
The Rationale for Ada 2005 described the difference between Ada95 and Ada2005.

2012: Ada language was revised again introducing safe, reliable and secure features for
modern processors. The current ISO/IEC standard version for Ada is ISO/IEC 8652:2012.
The Rationale for Ada 2012 provides the differences between Ada2005 and Ada2012.

The Ada memory model:

Ada provides first class support for concurrent programming. Among all high level main-
stream programming languages Ada83 was the first language that provided clear support for
shared memory models. From the beginning of Ada, it was always concerned with parallel
architectures. Ada provides the following three types of task synchronization mechanisms.

Protected Objects:

A protected object gives mutually exclusive access to shared data through calls on its visible
protection operations. The access could protect entries or protected subprograms. Pro-
tected declarations define protected units, which contain a corresponding protected body.
A protected declaration may be a sing type declartion or protected type declaration. The
protected type declarations declares a named protected type while single protected declaration
defines an anonymous protected type. The syntax of protected objects is as follows[39]:

56 4. Interaction Between Software and Hardware

1 p r o t e c t e d t y p e d e c l a r a t i o n : :=
2 protec ted type d e f i n i n g i d e n t i f i e r [known discr iminant part] i s
3 p r o t e c t e d d e f i n i t i o n ;
4

5 s i n g l e p r o t e c t e d d e c l a r a t i o n : :=
6 protec ted d e f i n i n g i d e n t i f i e r i s p r o t e c t e d d e f i n i t i o n ;
7

8 p r o t e c t e d d e f i n i t i o n : :=
9 { p r o t e c t e d o p e r a t i o n d e c l a r a t i o n }

10 [p r i v a t e
11 { p r o t e c t e d e l e m e n t d e c l a r a t i o n }]
12 end [p r o t e c t e d i d e n t i f i e r]
13

14 p r o t e c t e d o p e r a t i o n d e c l a r a t i o n : :=
15 subprogram dec larat ion
16 | e n t r y d e c l a r a t i o n
17 | a s p e c t c l a u s e
18

19 p r o t e c t e d e l e m e n t d e c l a r a t i o n : :=
20 p r o t e c t e d o p e r a t i o n d e c l a r a t i o n
21 | component dec larat ion

Protected type does not require predefined assignment or comparison operators because it is
a “limited type”.

Suspension objects:

The suspension object type is described in Real-Time annex; it is used for event-based
synchronization between two tasks. The syntax for suspension object is as follows[39]:

1 package Ada . Synchronous Task Control i s
2 type Suspens ion Object i s l i m i t e d p r i v a t e ;
3 procedure Set True (S : in out Suspens ion Object) ;
4 procedure Se t Fa l s e (S : in out Suspens ion Object) ;
5 f unc t i on Current State (S : Suspens ion Object) re turn Boolean ;
6 procedure Suspend Unti l True (S : in out Suspens ion Object) ;
7 p r i v a t e
8 . . . −− not s p e c i f i e d by the language
9 end Ada . Synchronous Task Control ;

The suspension object type is a by-reference type object, it has two visible states: false and
true. The default value is false.

Rendezvous:

4.1. Memory Models 57

The Rendezvous concept is Ada’s universal mechanism of synchronization and data exchange
between tasks[2]. Two tasks, an emitter and a receiver, synchronize by executing the code
sequence together on the receiver’s side. An accept instruction, a so-called call point, in-
troduces this code sequence. The call points are also listed in the task’s declarative part as
shown in the following figure. Like procedures, they can feature input and output parameters
that realize the data exchange and successful communication.

-- Declarative Part:

task myTask is

 entry CallPoint1;

 -- further entries possible

end myTask;

-- Body:

task body myTask is

 -- possibly variable decl.

begin

 -- possible statements...

 accept CallPoint1 do

 -- InstructionSequence1

 end CallPoint1;

 -- ...

end myTask;

-- Declarative Part:

task myTask is

 entry CallPoint1;

 -- further entries possible

end myTask;

-- Body:

task body myTask is

 -- possibly variable decl.

begin

 -- possible statements...

 accept CallPoint1;

 -- ...

end myTask;

Fig. 4.4: Scheme of a task with a call point

If there is no data transfer between the tasks and the call point serves for synchronization
only, there is usually no need for jointly executed code sequence (that would be “Instruction
Sequence 1” in Figure on the left). In this case, the accepted instruction can be abbreviated
as shown in the figure on the right side.

Mutual exclusion mechanism:[2]

volatile: Specified via a pragma, which may not be optimized into a “temporary” location
such as a register.

atomic: Specified via a pragma, whose accesses are indivisible (with respect to task context
switching) because of the hardware, and which may not be optimized into a “temporary”
location such as a register

protected object/type: With associated protected operations, based on the concept of “con-
current read, exclusive write” locks and designed for efficient implementation.

passive task: Expressed as a loop around an accept or selectiveaccept statement.

58 4. Interaction Between Software and Hardware

A performance check has been done using different Ada mutual exclusion mechanisms (pro-
tective type, volatile/atomic/Semaphore). The results are as follows:

Number of Task Protected type Volatile/atomic Semaphore

1 thread/task 64.97 2.12 5032.59

2 thread/task 141.29 2.14 13115.85

4 thread/task 388.91 5.04 27230.76

8 thread/task 952.43 10.05 56989.55

*)Time measured in millisecond (ms)

Tab. 4.6: Ada mutual exclusion mechanism performance table

The test is made using a little code written for this thesis. Each method was executed 600,000
times exactly.

Hardware platform: The test was executed on a Windows 8.0 machine with the Oracle Java
7 virtual machine. The computer features a 32 bit Core 2 Duo 1.8 GHz processor with 2GB
of DDR2 memory.

Ada2012 includes new features in the new standard called explicit processor allocation found
in Real-Time System annex[2].

A new package named System.Multiprocessor was introduced as follows[2]:

1 ” package System . Mu l t i p roc e s so r s i s
2 typeCPU Rangeis range0 . . implementation−de f ined ;
3 Not A Specif ic CPU : constantCPU Range := 0 :
4 subtypeCPU isCPU Range range1 . . CPU Range ’ Last ;
5 functionNumber Of CPUs returnCPU ;
6 endSystem . Mu l t i p ro c e s so r s ; ”

But, in practice it is broken; sometimes it swaps CPU cores, a program with string out
operations keeps other processors busy as shown in the following figure.

4.1. Memory Models 59

Tab. 4.7: Ada explicit processor allocation check

4.1.2.4 Comparison of different software memory models

As comparison of different aspects of different programming language memory models one
could use practical approaches (e.g., efficiency measurement for different hardware, syn-
chronization mechanism validation, performance check, program portability check, hardware
compatibility check), or, abstract level ones (compare different research papers and differ-
ent language protocols). Here only the abstract level comparison has been done because of
resource limitation. For abstract level comparison, the faced difficulty was insufficient num-
ber of research papers for comparison of different memory models. The reason behind it is
the fact that most definitions of memory models defined by the programming languages are
recently published (e.g. C++ at 2011, Ada at 2012).

Portability :

For portability Java says that “compile once run anywhere [65]” is true because of Java’s
use of a virtual machine to run programs on different platforms. On the other hand, Ada
and C++ say that “write once compile anywhere [90]” means that to run an Ada or C++
program on a platform like Linux requires a respective compiler for that particular language.
So, when comparing these three different languages, Java is more portable than C++ and
Ada.

Correctness :

In multiprocessor programming, especially in a shared memory environment, the main prob-
lem is incorrect behavior of programs. The main reason behind this is compiler optimizations.
Java, C++ and Ada provide mechanisms for synchronization. Using these mechanisms in

60 4. Interaction Between Software and Hardware

a program, one can regain the correct behavior but has to compromise performance. The
reason behind this is that synchronization mechanisms add extra clock cycles into programs.
To reduce the number of these extra clock cycles, all three programming languages provide
non-blocking synchronization called mutual exclusion mechanism. Although it minimizes the
extra clock frequency compared to the blocking synchronization mechanism, it makes it very
hard to program even for experts.

Flexibility :

In multiprocessor programming flexibility rules are a significant issue of concern for programs,
for instance, scheduling policy and explicit processor allocation. In a real-time environment
poor thread/task scheduling policy can cause deadline violations, while the result could
be catastrophically dangerous. Java and C++ provide implementation defined scheduling,
whereas Ada uses specific scheduling [25]. Moreover, Ada 2012 included explicit processor
allocation into its specification [39]. However, currently this specification is broken as shown
in the Ada memory model section, it is expected to be fixed in the next update.

4.2 Real-time systems

Most embedded systems are bound to real-time constraints. “Real-time” system means that
an IT system is no longer in control of its own time domain. Now it may progress with
time of the physical world or its time may be artificially generated by some surrounding
environment. “A real-time computer system is a computer system in which the correctness
of the system behavior depends not only on the logical result of the computation, but also
on the physical instant at which these results are produced.”[63] It can be concluded that
in real-time systems the program logic of application tasks has to be designed in accordance
with the timing mechanism of that particular hardware. Many tasks have to be executed
concurrently on an embedded computing system. Such situations are usually handled by
some kind of operating system, named Real Time Operating System (RTOS). In RTOS, the
worst-case execution time (WCET) on a specific target architecture of any real-time task
has to be available. WCET should be as small as possible. Sometimes, over-estimating of
WCET could reduce efficiency of the implemented system.

4.2.1 Predictability in real-time systems

In a large complex real-time system, 100% guarantees of scheduling must be relaxed [96].
The following example will demonstrate a detailed idea about this:

Let a complex, large, real-time system be operating in a non-deterministic environment.
It has both loose-time constraint and time constraint tasks; it has soft and hard real-time

4.2. Real-time systems 61

tasks; some of its tasks are critical; part of the system may be highly static, but many parts
require a dynamic approach. In other words, all dimensions of a possible real-time system are
included simultaneously into the system. Designers cannot focus on one predominant feature
of the system such as tight time constraints, or only be bound to the interrupt latency, or
assume a fixed set of periodic tasks. In this system, it is difficult to define and demonstrate
predictability. The notion that the system can obtain a 100% guarantee must be relaxed.

Designers have to show that the requirements are met at two levels of detail and for each class
of tasks. At the macroscopic level, it has to be shown that all critical tasks will always meet
their deadlines (100% guarantee) and then non-critical tasks both soft and hard deadline
tasks meet overall requirements. As an example, 98% of hard real-time and 94% of soft real-
time tasks meet their deadlines. At a microscopic level (on the task group and individual
task level), also have to achieve some level of predictability. Critical tasks are already defined
and always meet their deadlines. For other real-time tasks, their performance depends on
the state of the system. Scheduling algorithm can define the state of the system and at any
point the system can identify exactly which tasks will meet their deadlines. This will give
the ability to handle overloads, and the ability to make more intelligent decisions concerning
the overall operation of the system [95].

4.2.1.1 Achieving predictability

There could be two different ways to achieve predictability in complex real-time systems [96].
The first is layer-by-layer approach and the second is top layer approach. Layer-bye-layer
approach requires both macroscopic and microscopic predictability while top layer approach
requires only macroscopic predictability. In addition, these approaches can be merged.

Layer-by-Layer approach:

In this approach, to obtain a predictable system, it is necessary to have a tight interaction
among all aspects of the system starting from programming language to the compiler, to the
operating system, to the hardware, to the design rules and constraints used. With a precise
hardware and software design, it is possible to achieve both macroscopic and microscopic
predictability. The worst case execution time of any task can be computed at the microscopic
level. Furthermore, it also provides performance analysis of non-critical hard real-time tasks
giving the expected normal and overload workloads.

In some circumstances, layer-by-layer approach may not satisfy the requirements, because
everything is not 100% guaranteed. However, this calculation is necessary and unavoidable
in a complex, non-deterministic real-time environment.

Top layer approach:

In the top layer approach, the calculation concentrates on application layer predictability
requirements. The lower layer only provides services for predictable application layer, so

62 4. Interaction Between Software and Hardware

lower level predictability is not required. In a critical real-time system, the error handlers
support fail-safe and fail-stop behavior; even if predictability has been proven to work as
required at each of the layers [96]. The job of the error handler is to detect predictability
errors in an algorithm, it also provides the guarantee to return the system to a safe state.
So, it is important to include an error handler into the scheduling algorithm with a 100

The top-layer approach is most suitable for complex activities. For example, sometimes it
may not be possible to break a complex activity into different layers. Furthermore, in the
situation where the bounds found at one layer are based on bounds at the lower layers, they
may be so high as not to be of any practical value. For example, if two sub-problem activities
execute on two different nodes and use a common communication channel, then both activity
and communication channels are bound at the node that takes the maximum time to execute.

5. Programming Paradigms

5.1 Introduction

A fundamental style of computer programming is programming paradigm, a way of building
elements and structures of a computer program. A programming paradigm is an approach
based on a coherent set of principles or mathematical theory to program a computer. There
exist several programming paradigms. All paradigms support a set of ideas and rules that
make them the best for a particular problem. For example, object-oriented programming
paradigm is most popular for problems with a large number of related data abstractions
organized in a hierarchy. On the other hand, logic programming is well known for being able
to transform or navigate complex symbolic structures according to rules of logic.

There are many programming languages on the market, and practical programming languages
are usually quite complicated.

On the programming language side, the language should ideally support many ideas (paradigms)
in a well factored way, so that the programmer can choose the best ideas whenever they are
needed. Unfortunately, popular mainstream languages such as Java, C++ or Ada support
just one or two separate paradigms[104], different programming concepts need to solve differ-
ent programming problems cleanly, and the available paradigms often do not provide the best
ideas. For example, if programmers need to model many independent activities, then the
programmer will have to implement different execution stacks, a scheduler, and a mechanism
for switching execution from one activity to another. All this complexity is unnecessary if
programmer adds one concept to the language: concurrency.

The number of programming paradigms is much smaller than the number of programming
languages. So, it would be easier to learn programming paradigms rather than learn a huge
number of programming languages. From this point of view, such languages as C#, Java,
Python, Javascript and Ruby are all virtually identical: they all use the object-oriented
paradigm with only minor differences[104].

Although the number of programming paradigm is much smaller than the programming
languages, there are still many paradigms. Figure5.1 [104] mentioned 27 different paradigms
that are actually used, and all have reasonable implementations and practical applications.
Fortunately, these paradigms have a lot of features in common. In the figure5.1, when a
language is mentioned under a paradigm, it means that this particular language is intended
to support that paradigm without interference with the other paradigms.

64 5. Programming Paradigms�� �������	�	�
��������	�	���������������� �����������������������	�	������������� !�!" #$%"��&'%(�)�" *+,-./0,1234054166/,5789-4/3./:8;8-2141./:834054166/,5 <63841./:89814-=34054166/,5>:8,.?200334054166/,5@+2./?158,.34054166/,5@899158?3199/,5-0,-+448,.34054166/,5A'�'B"��CD�C��"B��(EFG+,/*/-1./0, A'�'H(�IB'��JKLMNOPQRLMSTUUV JKLMNOPQRLMSTUUV SWXLMJSYZOLMJK [MP\M]\RM̂Y_0̀,./,+1./0,34054166/,5a�b!DB'��D��"��'!��" �""'b�Bc'""!�b d�""'b�Bc'""!�b ef'���B"�'��gB�������� !�!"�!D hDf'���(iJKLMNOPQRLMSTUUVLM[jQROLNkWLMlmnSLMlSogB"E�DfpB��Bc'��!'(B��� !�'�!��lUqPZRLMrYZsY7/9-48.8G9t,-=40,0+934054166/,5[u_RUROLMWTu_URLMvPw\YOx+,-./0,12G481-./:834054166/,5Gyxz{|0̀,./,+0+9G9t,-=40,0+934054166/,5oPsRuLM}Ys~R�TQR�����	���	�	� [UOY\wLMNkWSvoLMJQQYZL[LMJKLMNOPQRLsT�OPu��uT�uQUP�RL_TsORMusYQRM�WP\�Y�gBD(�D���BD� cC�'�!�� �P��u_UY�uMmSW gBD�((Bh"�'��igB������pBDf�!D� 34054166/,5<63841./:8oYuQYOLMS34054166/,5�+14;8;-0661,;Df�!D��0,60,0.0,/-;1.1*20�34054166/,50̀,-+448,.G205/-34054166/,5 JKLMNOPQRLMNkWgBc���@+2./?158,.;1.1*20�34054166/,5 gB(�D'(BD�((�-./:8G0��8-.34054166/,5���8-.?-131�/2/.t34054166/,5�C�!�bBD� c(��� �ŶYLMJSYZOgBD(�"C��RZ�R��P\wugB"�(&��W�l[LMNkWSWoLM�WJmMv]ÔRU gB�f��'�gB"!�b(�B'""!b� ��� gB�f��'� vZYOO_YO�LMJKLgB�f��'��ŶYLMNOPQRgB(�bgBD�((h"�'��i�C�D�!��'(v�WMRZ�R��P\wuoU]O]wLMv�WgB"�'�Df ��D����}WLv�RjsURuuP]\ nYu�ROOLM}WLM[hC�H��b�'%(�BD��"�'��igBD�((vQ�RZRLM}WgBc��D��C��gBD(�"C�� v�J�JWLM�Q]\LMoU]O]wgB"�'�DfhDf'���(igBc���vQ�RZRLM}Wh��C'(!�Ei gB�' �gB%E�����B"E�Df���!�'�!�� gB%E�����"E�Df���!�'�!��gB�f��'� gBD���!�C'�!���1�tG-0,-+448,. 0��8-.?04/8,.8;0̀,-+448,.34054166/,5�=148;?9.1.8-0,-+448,.34054166/,5�0*.�148.41,91-./0,1268604tGy� @|�8¡+8,./120��8-.?04/8,.8;34054166/,5�.1.8*+2*+,-./0,1234054166/,5�1�t;8-2141./:8-0,-+448,.34054166/,534054166/,5�1�t;1.1*20�0̀,-+448,.-0,9.41/,.34054166/,5-0,9.41/,.34054166/,50̀,9.41/,.Gy205/-|34054166/,5z821./0,12G¢G205/-34054166/,578.846/,/9./-205/-G34054166/,5 "E�Df���pgB%E����� gB�f��'�gB"!�b(�B'""!b�pnYu�ROO�1�t*+,-./0,1234054166/,5 @0,0.0,/-;1.1*20�34054166/,578-2141./:8-0,-+448,.34054166/,5 �7 *+,-./0,1234054166/,5 �7 /63841./:834054166/,5x+,-./0,1234054166/,5x/49.?04;84
Fig. 5.1: Taxonomy of programming paradigms [104]

Observable non-determinism:
Non-determinism arises when program execution is not completely determined by its specifi-
cation, i.e. during the execution of a program the language specification allows the compiler
to choose the next step. Non-determinism can be highly undesirable, because programmers
can see different results of a program execution on the same internal configuration. Typical
effect is a race condition, dead locks[104].

Named State:
The strongest to support the state is the second key property of a paradigm. The ability
to remember information is called State, or more precisely, the ability to store a sequence
of values in time. Support of state by different programming paradigms differs. This level
of support in paradigm can be separated into three axes of expressiveness[104] depending
on whether the state is named or unnamed, deterministic or non-deterministic, sequential or
concurrent. Figure5.2 arranges this into a lattice;

5.2. Types of Programming Paradigms 65

unnamed, deterministic, sequential

named, deterministic, sequential

named, nondeterministic, sequential

unnamed, deterministic, concurrent

unnamed, nondeterministic, concurrent

named, nondeterministic, concurrent

Expressiveness of state
Less

More

Declarative paradigms (relational and functional)

Deterministic concurrency

Concurrent logic programming

Imperative programming

Guarded command programming

Message-passign and shared-state concurrency

Fig. 5.2: Different levels of support for state[104]

5.2 Types of Programming Paradigms

Although there are a number of programming paradigms, mainstream paradigms can be of
4 types.

1. Imperative (Procedural) Paradigm.

2. Functional (Applicative) Paradigm

3. Logic (Rule Based) Paradigm.

4. Object Oriented Paradigm

5.2.1 Imperative Paradigm

Imperative programming (also known as procedural programming) works by modifying a
memory state from a sequence of instructions[41]. The principle is almost close to actual
computer structures. The current state of the program is defined by all of the variable values,
the locations of the next execution statements and currently active internal data that need
to return from the subprogram. The state of program changes with the change of variable
values after execution of each statement. Thus, an imperative program execution can be
viewed as the executing line of sequential instructions. Examples of imperative languages
are Ada,C, Pascal, Cobol and Fortran.

66 5. Programming Paradigms

5.2.2 Functional Paradigm

Functional Paradigm (also known as Applicative) is a programming style which concerns
itself with what has to be computed[41]. This style prevents one from having any global
variables. Function parameters are used to pass the variable values and, therefore, variable
values are stored locally to all processors. Implementing efficient code with this style is harder
than with the other programming styles. Haskell, Scheme, LISP and Miranda languages
use Functional Program style.

5.2.3 Logic Paradigm

Logic programming (also known as Rule-Based programming) is a programming paradigm
intended to solve problems using predicate logic, in which the basic concept is a relation[108].
The main focus of logic programming is to achieve the goal rather than focusing on perfor-
mance of the program. Examples of major logic programming languages include Datalog
and Prolog.

5.2.4 Object Oriented Paradigm

Object Oriented programming (often written as O-O) is an approach to deal with designing
modular, reusable software systems[107]. It integrates the code and data of the program as an
”object” which has state(data) and behavior(code). In addition, this style provides program
security by encapsulating the data that restricts direct visibility of data. The mainstream
programming languages like Java, C + + and Delphi use this style of programming.

5.3 A comparison between Functional and Imperative Pro-
gramming

The primary difference between functional and imperative style is based on program execution
control and memory management of the program data[41].

A functional program executes an expression and results in a value[41]. The execution order
of a functional program does not matter, because the result is the same anyway. On the
other hand, imperative programming modifies the memory state by executing a sequence
of instructions. Each instruction execution controls the instruction to be executed. Hence,
the order of execution is maintained strictly, or otherwise the result may differ. Moreover,
imperative languages provide greater control over the execution of a program and the memory

5.4. Test and Analysis 67

representation of data, and are closer to the actual machine but lose the execution safety.
Contrary to this, functional programming provides a higher level of abstraction and a greater
level of execution safety.

A purely functional program cannot be iterative because the value of the condition of a loop
never varies. By contrast, an imperative program may be iterative. Moreover, compared with
imperative programming, functional style is less error-prone and more productive. On the
other hand, imperative programming gives more control over the program to achieve better
performance compared to the functional style[93].

5.4 Test and Analysis

In this thesis, two mathematical problems were solved using both functional and imperative
model in a Visual C# 2010 compiler as a code test. This language supports both functional
and imperative style programming. This test program shows that the lines of code for both
problems differ for each paradigm. The functional requires a smaller number of lines of codes
compared with imperative. However, functional style programming is complex compared with
imperative. Moreover, the execution time required for functional programming is higher than
that for the imperative style.

A large experiment has been done to determine performance and efficiency of two different
programming styles, imperative and functional [83]. Two different programming languages
have been used to complete this experiment. One is Scala, which combines functional and
imperative programming [79]. Second is Java, which focuses on imperative shared memory
programming. For this experiment, 13 experienced programmers wrote 39 Scala and 39 Java
parallel program in two phases. The first one is a training phase, the second one is an
industry project. The test environment and the resulting outcome of this experiment [83]
are as follows-

Test environment:

Hardware: All programs were evaluated on two different machines. The first one was Intel
x5677 which is a single-chip architecture with 4 cores and 2 hardware threads per core, having
48GB of memory. The operating system was RedHat Linux 6.0 Enterprise Edition[83]. The
second one was Sun SPARC T3-4 which has a 4 chip NUMA architecture with 8 cores per
chip and 8 hardware threads per core and 256 GB of memory. Operating system was Solaris
10[83].

Compilers: Two different compilers were used for Scala and Java. Java is a well-known
mainstream imperative programming language [24] which supports parallel programming
through threads. On the other hand, ”Scala’s programs tend to short”[80, p. 59] and ”a
typical Scala program should have about half the number of lines of the same program

68 5. Programming Paradigms

written in Java”[80, p. 59]. ”Scala’s functional programming constructs make it easy to
build interesting things quickly from simpler parts” [80, p. 49] and ”Scala is easy to get
into”[80, p. 49]. ”Scala’s unique features promise to make parallel software development
easier”[83].

Parallelization technique: Scala parallel programming technique was by using actors and
Java was shared memory parallelization[83].

Results:

Efforts: Scala required more effort to finish this project compare with Java. The median is 56
hours and 43 hours for Scala and Java respectively [83]. However, Scala parallel programming
technique using actors is easier than the shared-memory programming in Java according to
the test programmers and 69% of the programmes said that Scala’s programming composition
is much easier than Java’s [83].

Programming Compactness: For this experimental project, Java required more Lines of Code
compared with Scala. The median Lines of Code (LOC) is 533 (mean 536) and 546 (mean
632) for Scala and Java respectively [83]. However, Scala promised that the number of lines
of code would be half the number compared with Java, in practice it was not the case.

Performance: On the Intel x5677 machine, the best Scala runtime was 7 seconds and the best
Java run time was 4 seconds. The median runtime of all programs amounted to 83 seconds
for Scala and 98 seconds for Java, which shows that average runtime for Scala programs is
shorter than for Java programs. On the Sun SPARC T3-4 machine, the best runtime for
Scala was 34 seconds and for Java it was 37 seconds. Moreover, the median run time for
Scala was 466 seconds and for Java 576 seconds. Again, Scala was faster[83].

6. Conclusion and Future Work

6.1 Conclusion

In this thesis various parallelization techniques that are found on modern computation sys-
tems and their incorrect behavior has been studied in detail based on the available related
literature in the context of predictability and efficiency. A simple test process has been de-
veloped to test the data races on different systems. Furthermore, the interaction between
hardware and software affecting correctness, predictability and efficiency in the different con-
texts has also been studied. A practical test has been done to measure the performance of
different programming memory models. Finally, different programming paradigms of differ-
ent languages have been studied and a comparison has been made for the functional and
imperative styles based on the currently available published literature. Also, some mathe-
matical problems have been solved in both paradigms as proof of literature sources that were
mentioned in this comparison.

There are a large number of parallelization techniques and system available. Some of them
were developed for the purposes of special use and a few of them are for general use. To
measure the predictability and efficiency of all systems and find the most efficient and pre-
dictable one, access to all categories of machines would be required, in practice that was not
possible in this thesis because of resource limitations. From the available literature, two test
results have been analyzed. First one was for software efficiency test, and the second one was
for two types of hardware (ARM and Intel x86).

In order to detect, avoid and eliminate the incorrect behavior of parallel systems, four types of
problems (races, deadlocks, livelocks, starvation) were discussed in this thesis. In this discus-
sion, reasons behind the problems and ways to avoid this kind of behavior were also included.
Some tests of data races show that the number of races detected in Linux environment was
much higher than the Windows environment, in particular on an Intel system.

To observe the software performance on hardware systems, the interaction between software
and hardware that affects correctness, predictability and efficiency was discussed. It was
observed that memory models for both software and hardware play the most significant role
for compatibility between the two. So, memory models in hardware and software have been
discussed in depth. Some simple programs were also developed to test the software memory
model performance using different synchronization mechanisms. These tests were compiled by
Java, C++ and Ada compilers. For all of the compilers, non-blocking synchronization mech-
anisms result in significantly better performance and provide maximum efficiency, whereas
blocking synchronization mechanism provides maximum predictability and reliability.

70 6. Conclusion and Future Work

Finally, different types of programming paradigms were also discussed in this thesis based on
the currently available research. In addition, a comparison has been made between Functional
and Imperative styles. The results of the functional and imperative comparison test were also
analyzed based on a recent test experiment. In this thesis some solutions to mathematical
problems were also developed in both functional and imperative paradigms to give some
practical proof of the analysis.

6.2 Future Work

The current study about various parallelization concepts included most of the theoretical
knowledge and analyzed some test results from the currently available literature. Doing some
practical tests and comparing most popular multi-core processors would be an interesting
opportunity to add a new dimension to current research.

The current test of incorrect behavior of different hardware and software architectures was
limited to two different hardware systems and three types of operating systems. An extension
of this test could be possible by adding more hardware and operating system tests while using
the same code. In addition, the test in this thesis deals only with data races. Adding deadlock,
livelock and starvation tests of threads would add extra features to the testing process.

To check the compatibility of software and hardware, different language memory models and
their synchronization mechanisms have been tested in this thesis. The I/O operation and
interrupt handling tests would be a nice addition.

Finally, a comparison between Imperative and Function programming paradigm has been
done. Other combinations of comparison of all four paradigms would be of interest.

Bibliography

[1] ISO/IEC 8652:1995(E). Ada reference manual - with technical corrigendum 1 and
amendment 1. Technical report, 2012.

[2] ISO/IEC 8652:2012(E). Ada reference manual 2012. Language and Standard Libraries,
2012.

[3] Josh Aas. Understanding the linux 2.6. 8.1 cpu scheduler. Retrieved Oct, 16:1–38, 2005.

[4] Martın ABADI and Examinateur Santa Cruz. Operational semantics of relaxed mem-
ory models.

[5] Sarita V Adve and Hans-J Boehm. Memory models: a case for rethinking parallel
languages and hardware. Communications of the ACM, 53(8):90–101, 2010.

[6] Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tutorial. computer, 29(12):66–76, 1996.

[7] Sarita V Adve and Mark D Hill. Weak ordering—a new definition. In ACM SIGARCH
Computer Architecture News, volume 18, pages 2–14. ACM, 1990.

[8] Sarita Vikram Adve. Designing memory consistency models for shared-memory multi-
processors, volume 2. University of Wisconsin–Madison, 1993.

[9] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers: principles,
techniques, & tools, volume 1009. Pearson/Addison Wesley, 2007.

[10] Sadaf R Alam, Richard F Barrett Collin B McCurdy, Philip C Roth, and Jeffrey S
Vetter. Characterizing applications on the cray mta-2 multithreading architecture. In
Proc. of CUG Conf, 2006.

[11] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O Myreen, Susmit Sarkar, Peter
Sewell, and Francesco Zappa Nardelli. The semantics of power and arm multiprocessor
machine code. In Proceedings of the 4th workshop on Declarative aspects of multicore
programming, pages 13–24. ACM, 2009.

[12] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus: Running tests
against hardware. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 41–44. Springer, 2011.

[13] Wendell Anderson, Preston Briggs, C Stephen Hellberg, Daryl W Hess, Alexei
Khokhlov, Marco Lanzagorta, and Robert Rosenberg. Early experience with scien-
tific programs on the cray mta-2. In Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, page 46. ACM, 2003.

72 Bibliography

[14] James Archibald and Jean-Loup Baer. Cache coherence protocols: Evaluation using a
multiprocessor simulation model. ACM Transactions on Computer Systems (TOCS),
4(4):273–298, 1986.

[15] Wikström C. Armstrong J., Williams M. and Virding R. Concurrent programming in
erlang, prentice-hall. 1996. See www.erlang.org.

[16] Alan F. Babich. Proving total correctness of parallel programs. Software Engineering,
IEEE Transactions on, (6):558–574, 1979.

[17] John Barnes. Ada rationale 2012. Ada Core, 2012.

[18] Pete Becker et al. Working draft, standard for programming language c++. Technical
report, 2011.

[19] Dileep Bhandarkar. Risc versus cisc: a tale of two chips. ACM SIGARCH Computer
Architecture News, 25(1):1–12, 1997.

[20] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. A detailed analysis
of contemporary arm and x86 architectures. Report, UW-Madison Technical, 2013.

[21] François Bodin and Michael O’Boyle. A compiler strategy for shared virtual memories.
In Languages, Compilers and Run-Time Systems for Scalable Computers, pages 57–69.
Springer, 1996.

[22] Hans-J Boehm. Position paper: Nondeterminism is unavoidable, but data races are
pure evil. In Proceedings of the 2012 ACM workshop on Relaxing synchronization for
multicore and manycore scalability, pages 9–14. ACM, 2012.

[23] Hans-J Boehm and Sarita V Adve. Foundations of the c++ concurrency memory
model. In ACM SIGPLAN Notices, volume 43, pages 68–78. ACM, 2008.

[24] Rafael H Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah Seghrouchni, Jorge J
Gomez-Sanz, Joao Leite, Gregory O’Hare, Alexander Pokahr, and Alessandro Ricci. A
survey of programming languages and platforms for multi-agent systems. Informatica
(03505596), 30(1), 2006.

[25] Benjamin M Brosgol. A comparison of the concurrency features of ada 95 and java.
ACM SIGAda Ada Letters, 18(6):175–192, 1998.

[26] Jon Byous. Java technology: an early history. URL: http://java. sun. com/fea-
tures/1998/05/birthday. html, Artigo pesquisado em 07 de Junho de 2002, 1998.

[27] Richard H Carver and Kuo-Chung Tai. Modern multithreading: implementing, testing,
and debugging multithreaded Java and C++/Pthreads/Win32 programs. John Wiley &
Sons, 2005.

Bibliography 73

[28] Alan Charlesworth, Nicholas Aneshansley, Mark Haakmeester, Dan Drogichen, Gary
Gilbert, Ricki Williams, and Andrew Phelps. The starfire smp interconnect. In Super-
computing, ACM/IEEE 1997 Conference, pages 37–37. IEEE, 1997.

[29] Nathan Chong and Samin Ishtiaq. Reasoning about the arm weakly consistent mem-
ory model. In Proceedings of the 2008 ACM SIGPLAN workshop on Memory systems
performance and correctness: held in conjunction with the Thirteenth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS’08), pages 16–19. ACM, 2008.

[30] Micha l Cierniak and Wei Li. Unifying data and control transformations for distributed
shared-memory machines, volume 30. ACM, 1995.

[31] Edward G Coffman, Melanie Elphick, and Arie Shoshani. System deadlocks. ACM
Computing Surveys (CSUR), 3(2):67–78, 1971.

[32] Mozart Consortium et al. The mozart programming system. 1.4.0, July 2008. see
www.mozart-oz.org.

[33] Intel Corp. Intel quickpath architecture: A new system architecture for unleashing the
performance of future generations of intel multi-core microprocessors. white paper,
2008. http://www.intel.com/content/dam/doc/white-paper/performance-quickpath-
architecture-paper.pdf.

[34] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: An architec-
tural framework for software recovery of hardware faults. In ACM SIGARCH Computer
Architecture News, volume 38, pages 497–508. ACM, 2010.

[35] Edsger W Dijkstra. Cooperating sequential processes, the origin of concurrent pro-
gramming: from semaphores to remote procedure calls, 2002.

[36] Greggory D Donley and Manoj Gujral. Livelock avoidance, June 2 1998. US Patent
5,761,446.

[37] Michel Dubois and Faye A Briggs. Effects of cache coherency in multiprocessors. Com-
puters, IEEE Transactions on, 100(11):1083–1099, 1982.

[38] Polina Dudnik and Michael M Swift. Condition variables and transactional mem-
ory: Problem or opportunity. In Proceedings of the 4th ACM SIGPLAN Workshop on
Transactional Computing. Citeseer, 2009.

[39] S Tucker Taft Robert A Duff, Randall L Brukardt Erhard Ploedereder, and Pascal
Leroy Edmond Schonberg. Ada 2012 reference manual.

[40] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced computer architecture and
parallel processing, volume 42. John Wiley & Sons, 2005.

74 Bibliography

[41] Pascal Manoury Emmanuel Chailloux and Bruno Pagano. Developing Applications
With objective caml. O’Reilly France, 2000.

[42] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture sup-
port for disciplined approximate programming. In ACM SIGARCH Computer Archi-
tecture News, volume 40, pages 301–312. ACM, 2012.

[43] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the clouds: a study of emerging scale-out workloads on
modern hardware. In ACM SIGARCH Computer Architecture News, volume 40, pages
37–48. ACM, 2012.

[44] Cormac Flanagan and Stephen N Freund. Fasttrack: efficient and precise dynamic race
detection. In ACM Sigplan Notices, volume 44, pages 121–133. ACM, 2009.

[45] Michael Flynn. Some computer organizations and their effectiveness. Computers, IEEE
Transactions on, 100(9):948–960, 1972.

[46] Berry G. The esterel v5 language primer. Ècole des Mines and INRIA, April 1999.

[47] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. Dynami-
cally specialized datapaths for energy efficient computing. In High Performance Com-
puter Architecture (HPCA), 2011 IEEE 17th International Symposium on, pages 503–
514. IEEE, 2011.

[48] Michael Barry Greenwald. Non-blocking synchronization and system design. PhD the-
sis, Stanford University, 1999.

[49] Part Guide. Intel R© 64 and ia-32 architectures software developer’s manual. 2010.

[50] Anthony Gutierrez, Ronald G Dreslinski, Thomas F Wenisch, Trevor Mudge, Ali Saidi,
Chris Emmons, and Nigel Paver. Full-system analysis and characterization of inter-
active smartphone applications. In Workload Characterization (IISWC), 2011 IEEE
International Symposium on, pages 81–90. IEEE, 2011.

[51] Cooper G. H. Integrating dataflow evaluation into a practical higher-order callby-value
language. Ph.D. dissertation, Brown University, Providence, Rhode Island, May 2008.

[52] Erik Hagersten, Anders Landin, and Seif Haridi. Ddm-a cache-only memory architec-
ture. Computer, 25(9):44–54, 1992.

[53] Nilsson H. Hudak P., Courtney A. and Peterson J. Arrows, robots, and functional
reactive programming. In summer School on Advanced Functional programming, pages
159–187, 2003. Springer LNCS 2638.

[54] Paul Hyde. Java thread programming. Sams Pub., 1999.

Bibliography 75

[55] ISO ISO. Iec 14882: 2011 information technology programming languages — c++.
International Organization for Standardization, Geneva, Switzerland, 27:59, 2012.

[56] Norman P Jouppi and David W Wall. Available instruction-level parallelism for super-
scalar and superpipelined machines, volume 17. ACM, 1989.

[57] M Kandemir, Alok Choudhary, Jagannathan Ramanujam, and Prithviraj Banerjee. A
matrix-based approach to the global locality optimization problem. In Parallel Archi-
tectures and Compilation Techniques, 1998. Proceedings. 1998 International Conference
on, pages 306–313. IEEE, 1998.

[58] Mahmut Kandemir, J Ramanujam, and Alok Choudhary. A compiler algorithm for
optimizing locality in loop nests. In Proceedings of the 11th international conference
on Supercomputing, pages 269–276. ACM, 1997.

[59] Gerald M. Karam and Raymond J. A. Buhr. Starvation and critical race analyzers for
ada. Software Engineering, IEEE Transactions on, 16(8):829–843, 1990.

[60] Stephen W Keckler, William J Dally, Daniel Maskit, Nicholas P Carter, Andrew Chang,
and Whay S Lee. Exploiting fine-grain thread level parallelism on the mit multi-alu
processor. In ACM SIGARCH Computer Architecture News, volume 26, pages 306–317.
IEEE Computer Society, 1998.

[61] Richard E Kessler and James L Schwarzmeier. Cray t3d: A new dimension for cray
research. In Compcon Spring’93, Digest of Papers., pages 176–182. IEEE, 1993.

[62] Steve Kleiman, Devang Shah, and Bart Smaalders. Programming with threads. Sun
Soft Press, 1996.

[63] Hermann Kopetz. Real-time systems: design principles for distributed embedded appli-
cations. Springer, 2011.

[64] Christoforos Kozyrakis and David Patterson. Vector vs. superscalar and vliw archi-
tectures for embedded multimedia benchmarks. In Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, pages 283–293. IEEE Com-
puter Society Press, 2002.

[65] Douglas Kramer. The java platform. White Paper, Sun Microsystems, Mountain View,
CA, 1996.

[66] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[67] Leslie Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. Computers, IEEE Transactions on, 100(9):690–691, 1979.

[68] Henry Ledgard. Reference Manual for the ADA Programming Language. Springer-
Verlag New York, Inc., 1983.

76 Bibliography

[69] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hen-
nessy. The directory-based cache coherence protocol for the DASH multiprocessor, vol-
ume 18. ACM, 1990.

[70] Thinking Machines. Introduction to data level parallelism. TechnicM Report, 86, 1986.

[71] Jeremy Manson and William Pugh. Requirements for programming language mem-
ory models. In Workshop on Concurrency and Synchronization in Java Programs, in
association with PODC. Citeseer, 2004.

[72] Jeremy Manson, William Pugh, and Sarita V Adve. The Java memory model, vol-
ume 40. ACM, 2005.

[73] Luc Maranget, Susmit Sarkar, and Peter Sewell. A tutorial introduction to the arm
and power relaxed memory models.

[74] Close T. Frantz B. Yee K-P. Morningstar C. Shapiro J. Hardy N. Tribble E .D. Barnes
D. Bornstien D. Wilcox-O’Hearn B. Stanley T. Reid K. Miller M S., Stiegler M. and
Bacon D. E: Open source distributed capabilities. 2001. See www.erights.org.

[75] Halbwachs N. and Pascal R. A tutorial of lustre. January 2002.

[76] Robert HB Netzer, Sanjoy Ghosh, et al. Efficient race condition detection for shared-
memory programs with post/wait synchronization. In ICPP (2), pages 242–246, 1992.

[77] Michael FP O’Boyle and Peter MW Knijnenburg. Efficient parallelisation using com-
bined loop and data transformations. In Parallel Architectures and Compilation Tech-
niques, 1999. Proceedings. 1999 International Conference on, pages 283–291. IEEE,
1999.

[78] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. ACM
SIGPLAN Notices, 38(10):167–178, 2003.

[79] Martin Odersky, Lex Spoon, and Bill Venners. Programming in scala. Artima Inc,
2008.

[80] Martin Odersky, Lex Spoon, and Bill Venners. Scala. URL: http://blog. typesafe.
com/why-scala (last accessed: 2012-08-28), 2011.

[81] Wilfried Oed. The cray research massively parallel processor system, cray t3d. Cray
Research, Munich, 1993.

[82] Van Hentenryck P. A gentle introduction to numerica. Artif. Intell 103 (1-2), Aug
1998. pp. 209-235.

Bibliography 77

[83] Victor Pankratius, Felix Schmidt, and Gilda Garretón. Combining functional and
imperative programming for multicore software: an empirical study evaluating scala
and java. In Proceedings of the 2012 International Conference on Software Engineering,
pages 123–133. IEEE Press, 2012.

[84] W Pugh. Java memory model and thread specification revision, 2004. jsr 133.

[85] William Pugh. Fixing the java memory model. In Proceedings of the ACM 1999
conference on Java Grande, pages 89–98. ACM, 1999.

[86] William Pugh. The java memory model is fatally flawed. Concurrency - Practice and
Experience, 12(6):445–455, 2000.

[87] Amaya S. History of c++. URL: http://www.cplusplus.com/user/Albatross/, 2012.

[88] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: A dynamic data race detector for multithreaded programs. ACM
Transactions on Computer Systems (TOCS), 15(4):391–411, 1997.

[89] Lagerkvist M. Schulte C. and Tack G. Gecode: Generic constraint development envi-
ronment. 2006. see www.gecode.org.

[90] Sohrab P Shah, David YM He, Jessica N Sawkins, Jeffrey C Druce, Gerald Quon,
Drew Lett, Grace XY Zheng, Tao Xu, and BF Francis Ouellette. Pegasys: software
for executing and integrating analyses of biological sequences. BMC bioinformatics,
5(1):40, 2004.

[91] Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Robert Geva, Yang Ni, and Adam Welc.
Towards transactional memory semantics for c++. In Proceedings of the twenty-first
annual symposium on Parallelism in algorithms and architectures, pages 49–58. ACM,
2009.

[92] Mukesh Singhal. Deadlock detection in distributed systems. Computer, 22(11):37–48,
1989.

[93] David B Skillicorn and Domenico Talia. Models and languages for parallel computation.
ACM Computing Surveys (CSUR), 30(2):123–169, 1998.

[94] Marc Snir. Distributed-memory multiprocessor. In Encyclopedia of Parallel Computing,
pages 574–578. Springer, 2011.

[95] John A. Stankovic and Krithi Ramamritham. The spring kernel: a new paradigm for
real-time operating systems. ACM SIGOPS Operating Systems Review, 23(3):54–71,
1989.

[96] John A Stankovic and Krithi Ramamritham. What is predictability for real-time sys-
tems? Real-Time Systems, 2(4):247–254, 1990.

78 Bibliography

[97] Norihisa Suzuki. Shared Memory Multiprocessing. MIT Press, 1992.

[98] Michael E Thomadakis. The architecture of the nehalem processor and nehalem-ep
smp platforms. Resource, 3, 2011.

[99] Milo Tomaševic, Jelica Protic, Milo Tomasevic, and Veljko Milutinović. Distributed
shared memory: Concepts and systems, volume 21. John Wiley & Sons, 1998.

[100] John Tromp. How to construct an atomic variable. Springer, 1989.

[101] Rasmus Ulfsnes. Design of a snoop filter for snoop based cache coherency protocols.
2013.

[102] Stephen H Unger. Hazards, critical races, and metastability. Computers, IEEE Trans-
actions on, 44(6):754–768, 1995.

[103] Saarland University. Programming systems lab. Alice ML Version 1.4, 2004. see
www.ps.uni-sb.de/alice.

[104] Peter Van Roy. Programming paradigms for dummies: What every programmer should
know. New Computational Paradigms for Computer Music, 2009.

[105] N Viswanadham, Y Narahari, and Timothy L Johnson. Deadlock prevention and
deadlock avoidance in flexible manufacturing systems using petri net models. IEEE
Transactions on Robotics & Automation Magazine, 6(6):713–723, 1990.

[106] David W Wall. Limits of instruction-level parallelism, volume 19. ACM, 1991.

[107] Peter Wegner. Concepts and paradigms of object-oriented programming. ACM SIG-
PLAN OOPS Messenger, 1(1):7–87, 1990.

[108] Peter Wegner. The logic programming paradigm and prolog. ACM SIGPLAN OOPS
Messenger, 1(1):7–87, 1990.

[109] Anthony Williams. C++ Concurrency in Action. Manning; Pearson Education, 2012.

[110] William A Wulf and C Gordon Bell. C. mmp: a multi-mini-processor. In Proceedings of
the December 5-7, 1972, fall joint computer conference, part II, pages 765–777. ACM,
1972.

[111] Xiaodong Zhang and Yong Yan. Comparative modeling and evaluation of cc-numa
and coma on hierarchical ring architectures. Parallel and Distributed Systems, IEEE
Transactions on, 6(12):1316–1331, 1995.

[112] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard: Hardware-assisted lockset-
based race detection. In High Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on, pages 121–132. IEEE, 2007.

Bibliography 79

[113] Dieter Zöbel. The deadlock problem: A classifying bibliography. ACM SIGOPS Oper-
ating Systems Review, 17(4):6–15, 1983.

80 Bibliography

Bibliography 81

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all di-
rect or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part be-
fore. The electronic copy is consistent with all submitted
copies.

place, date, signature

	Basic Concepts
	Definitions
	Memory Model
	Atomic Variable
	Data Race
	Sequential Consistency (SC)
	Sequential Consistency for Data Race Free Programs (SC-DRF)

	Why Threads?
	Transformations & Optimizations
	Compiler Optimizations
	Processor Out-of-Order (OoO) execution

	Various Parallelisation Concepts
	Types of parallel computers
	Flynn's Classical Taxonomy of computer architectures flynn1972some
	According to memory arrangement and communication among Processing Elements(PEs)
	According to Interconnection Networks
	Cache Coherency dubois1982effects

	Efficiency analysis of multiprocessor architectures el2005advanced
	Predictability analysis of multiprocessor architectures
	Types of Parallel Programming Models
	Instruction Level Parallelism (ILP)
	Thread Level / Task Level Parallelism (TLP)
	Data Level Parallelism (DLP)

	Tests and Analysis

	Incorrect Behaviors
	Common incorrect behaviors in a concurrent program
	Factors that are commonly responsible for incorrect behaviors
	Race condition
	Deadlock
	Livelock
	Starvation

	Way to avoid/eliminate/prevent incorrect behaviors
	Race Condition
	Deadlock
	Starvation

	Tests and Analysis

	Interaction Between Software and Hardware
	Memory Models
	Hardware Memory Models
	Software Memory Models

	Real-time systems
	Predictability in real-time systems

	Programming Paradigms
	Introduction
	Types of Programming Paradigms
	Imperative Paradigm
	Functional Paradigm
	Logic Paradigm
	Object Oriented Paradigm

	A comparison between Functional and Imperative Programming
	Test and Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

