

A tuneable software cache coherence protocol for
heterogeneous MPSoCs
Citation for published version (APA):
Ophelders, F. E. B., Bekooij, M. J. G., & Corporaal, H. (2009). A tuneable software cache coherence protocol for
heterogeneous MPSoCs. In Embedded Systems Week 2009, ESWEEK 2009 - 7th IEEE/ACM International
Conference on Hardware/Software-Co-Design and System Synthesis, CODES+ISSS 2009, 11 October - 16
October 2009, Grenoble (pp. 383-392). New York: Association for Computing Machinery, Inc. DOI:
10.1145/1629435.1629488

DOI:
10.1145/1629435.1629488

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 29. Jun. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357578606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/1629435.1629488
https://research.tue.nl/en/publications/a-tuneable-software-cache-coherence-protocol-for-heterogeneous-mpsocs(68e42cfd-b5c0-46e9-8cea-ac5e3f821777).html

A Tuneable Software Cache Coherence Protocol for
Heterogeneous MPSoCs

Frank Ophelders1 Marco J.G. Bekooij2,3 Henk Corporaal1
1Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands

2NXP Semiconductors, Eindhoven, The Netherlands
3Department of EEMCS, University of Twente, The Netherlands

frank.ophelders@gmail.com, marco.bekooij@nxp.com, h.corporaal@tue.nl

ABSTRACT

In a multiprocessor system-on-chip (MPSoC) private caches
introduce the cache coherence problem. Here, we target at
heterogeneous MPSoCs with a network-on-chip (NoC). Ex-
isting hardware cache coherence protocols are less suitable
for MPSoCs because many off-the-shelf processors used in
MPSoCs do not support these protocols. Furthermore, these
protocols typically rely on global visibility and serialization
of writes which does not match well with the parallel point-
to-point communication provided by a NoC. Therefore, we
propose a software cache coherence protocol, which can be
applied in a heterogeneous MPSoC with a NoC. The soft-
ware cache coherence protocol relies on explicit synchroniza-
tion in the software. More specifically, caches are guaran-
teed to be coherent according to the Release Consistency
model, on top of which we have implemented the standard
Pthreads communication library. Heterogeneous MPSoCs
with off-the-shelf processors can easily be supported, be-
cause processors are only required to provide cache control

operations, e.g., clean and invalidate. All cache coherence
operations are interruptible and do not impact the execu-
tion of tasks on other processors, therefore this protocol is
suitable for predictable MPSoCs. Our software cache coher-
ence protocol is implemented on an ARM926EJ-S MPSoC
which is mapped on an FPGA. From experiments we con-
clude that the protocol overhead is low for the applications
taken from the SPLASH-2 benchmark set. For these appli-
cations we observed a speedup between 1.89 and 2.01 on the
two processor MPSoC.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming ; C.3 [Computer Systems

Organization]: Special-purpose and application-based sys-
tems—Real-time and embedded systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-628-1/09/10 ...$10.00.

General Terms

Design, Performance, Reliability

1. INTRODUCTION
In this paper, we consider heterogeneous multiprocessor

systems on chip (MPSoC) with a network-on-chip (NoC).
The processors in the MPSoC have private caches and pro-
cessors communicate through reading and modifying the
shared memory. An example MPSoC with n processors is
shown in Figure 1.

Figure 1: MPSoC with a NoC and shared memory

MPSoCs in which processors with private caches commu-
nicate through shared memory require a cache coherence

protocol and a memory consistency model. A cache co-

herence protocol ensures that processors observe the most
recent data, either in their cache or in the shared memory.
A memory consistency model defines constraints on when

writes become visible to processors with respect to other
writes, therefore memory consistency and cache coherence
are related. Cache coherence protocols can roughly be clas-
sified in a hardware and a software class.

A hardware cache coherence protocol, called snooping

based, relies on all caches to “snoop” the interconnect and
take appropriate actions based on transactions on the in-
terconnect [4]. For instance, all caches having the value of
a memory location X, invalidate their copy if another pro-
cessor writes a value to location X. However, for popular
snooping protocols such as MSI, and MESI [4], to function
correctly the MPSoC needs to support two properties [4].
First of all, all memory accesses should be observable by
all processors (write propagation). Secondly, all memory ac-
cesses to a location should be observed by every processor
in the same order (write serialization). These properties are
easily supported in an MPSoC with a bus, because of the na-
ture of the bus. However, in an MPSoC with a NoC it is dif-
ficult to support these properties efficiently. A NoC handles,

383

for performance reasons, memory accesses as point-to-point
transactions in parallel. Therefore these transactions are
usually not observable by all processors. In addition, pro-
cessors can observe different latencies to memories, which
makes it difficult to guarantee one single order of writes
(write serialization) being observed by all processors.

A second hardware cache coherence protocol, called direc-

tory based, exploits a directory that stores information about
the status of caches for each location in the shared memory.
The idea is as follows; a directory is consulted before writing
to a shared location X. On a write of a processor P to X, the
directory will respond with sufficient information to ensure
that all other caches invalidate their copy of X, i.e., ensuring
that the next time any processor reads X, the latest value
will be read.

A directory-based cache coherence protocol is intended
for MPSoCs with a NoC. However, according to [10] the
memory overhead of the directory can reach up to 20% of
the total memory. Additionally, there will be an increase in
traffic due to consulting the directory. This can also lead
to contention, because all memory accesses to a memory
location X require consulting the same directory, even if the
directory is physically distributed. Furthermore, the time
spent in sending and receiving transactions to and from the
directory is added to the memory access latency.

Both hardware cache coherence protocols require support
from all caches in the MPSoC. The design complexity of in-
tegrating heterogeneous processors on MPSoCs is not trivial
since it introduces several problems in both design and val-
idation, due to different bus interface specifications and in-
compatible cache coherence protocols [13]. An example of a
hardware/software methodology to ensure cache coherence
in heterogeneous MPSoC is proposed in [13], but it can only
be applied when all caches support hardware cache coher-
ence.

We are not aware of efficient hardware cache coherence
protocols for heterogeneous MPSoCs with a NoC. In con-
trast to this, software cache coherence protocols have the
potential to be a scalable cache coherence protocol that is
suitable for heterogeneous MPSoCs with a NoC. It is essen-
tial to understand that software cache coherence protocols
typically do not ensure cache coherence on the granularity
of individual memory accesses, but on groups of memory ac-
cesses. Therefore, software cache coherence protocols usu-
ally guarantee a relaxed memory consistency model. The
protocols rely on processor instructions to control the con-
tents of their cache. Important for a NoC based MPSoC;
software cache coherence protocols do not require global vis-
ibility of writes.

Typically software cache coherence protocols rely on ex-
plicit synchronization. In particular, the caches are guar-
anteed to be coherent on synchronization operations. This
poses the restriction that our MPSoC is limited to execut-
ing software with explicit synchronization, but we expect
that this does not significantly restrict the applicability of
our software cache coherence protocol, as many parallel pro-
grams rely on synchronization to guarantee correct behavior
[5]. Typically, in the embedded systems domain applications
belonging to this class can be selected at design-time.

Transactional Memory is intended to improve parallel pro-
gramming and it attempts to solve cache coherence and
memory consistency issues. Transactional Memory groups
memory accesses in transactions, and these transactions are

executed in parallel. Memory accesses are not visible to
other processors, until a transaction commits. The com-

mit operation checks whether any other transaction mod-
ified any location that has been read or modified by the
currently committing transaction. If so, one of the transac-
tions is aborted and restarted. Besides complex hardware
support for rolling back and comparing transactions, we see
an additional issue. This issue concerns predictability, which
is important in the design of MPSoCs, but predictable spec-
ulative execution appears to be challenging [6].

Concluding, we observe several issues in the design of
cache coherence protocols for MPSoCs with a NoC. Current
hardware cache coherence protocols are not well suited for
a NoC based MPSoC, because write serialization is difficult
to guarantee efficiently. In addition to this, designing a
hardware cache coherence protocol for heterogeneous MP-
SoCs is a challenging task. Alternatively, existing software
cache coherence protocols are also not always applicable
as these usually require a specific programming model, in-
stead of a widely used programming model like Pthreads [1].

Contributions of this paper: This paper presents a
software cache coherence protocol that is highly suitable for
heterogeneous MPSoCs with a NoC. The protocol is applica-
ble to off-the-shelf processors. These processors are not re-
quired to support hardware cache coherence. The software
cache coherence protocol ensures that caches are coherent
on synchronizations, which is sufficient to support Release
Consistency [7], on top of which standard communication
libraries, e.g., POSIX threads (Pthreads) and OpenMP can
be implemented. More specifically, we have embedded the
protocol in Pthreads.

The software cache coherence protocol is designed to be
applicable in a predictable MPSoC. All cache coherence op-
erations are interruptible and local to a processor. Therefore
cache coherence operations do not impact the execution of
tasks on another processor. This is different from many
hardware cache coherence protocols, where caches respond
to, e.g., invalidation requests from other processors.

The protocol is evaluated in an ARM926EJ-S MPSoC
which is mapped on an FPGA. Several applications from
the SPLASH-2 benchmark set [17] are executed in parallel
on the MPSoC. The overhead of the protocol is low for the
evaluated SPLASH-2 applications, because the speedup ob-
served is between 1.89 and 2.01 on a two processor MPSoC.

In addition to the software cache coherence protocol,
we have identified several optimizations to increase the
performance of the protocol. Firstly, it is important to
provide separate address ranges for private and shared
data. As a consequence, for private data and shared
data different and potentially more efficient cache policies
can be applied. Furthermore, cache coherence operations
can be limited to the shared address range. Secondly,
for some applications it may be beneficial to provide a
specific programming model which can further improve the
efficiency of the software cache coherence protocol. An
attractive programming model would be one that restricts
interprocessor communication through First-In-First-Out
(FIFO) buffers.

Organization of this paper: The rest of this paper
is organized as follows. In Section 2, we discuss related
work. In Section 3, we give a brief introduction to cache

384

coherence and memory consistency. Two popular memory
consistency models are discussed, and we discuss why
Sequential Consistency [8] is not well suited for MPSoCs
with a NoC. In Section 4, we present our tuneable software
cache coherence protocol. In addition we discuss tradeoffs,
identify several optimizations, and discuss how to embed the
protocol in Pthreads. In Section 5 we discuss characteristics
of the MPSoC on which we have implemented the software
cache coherence protocol. Then, in Section 6 we evaluate
the performance of the protocol. Lastly, Section 7 gives
concluding remarks and presents directions for future work.

2. RELATED WORK
This section discusses related work, and considers software

oriented solutions to cache coherence.
In [14] and [12] several software cache coherence protocols

are proposed. These protocols ensure that caches are coher-
ent on explicit synchronization points in the software. More
specifically, the shared address range is divided in segments
and shared segments are only accessed in a critical region.
The required cache coherence operations are performed on
the entry and exit procedures of a critical region.

Both [14] and [12] require explicit coupling of a critical re-
gion and accesses to specific parts of shared data. This cou-
pling is, to the best of our knowledge, not explicit in widely
used programming models. In addition to this, the mapping
of shared data on the memory is known. Furthermore, both
protocols require a software administration which is used to
determine whether a processor can have a valid copy of the
shared data.

Our software cache coherence protocol has three major
differences. Firstly, our protocol does not require a coupling
between synchronization operations and shared data. How-
ever, we do acknowledge that coupling shared data and syn-
chronization operations can improve the protocol efficiency
and we propose a specific programming model, FIFO com-

munication, as an optimization. Secondly, in our protocol
shared data can be scattered throughout the entire address
range. Thirdly, our protocol does not require a software
administration to guarantee correct behavior.

Cache coherence issues for NoC based MPSoCs are dis-
cussed in [11]. They propose to provide separate address
ranges for shared and for private data. Private data can
be cached, because it does not have the cache coherence
problem. Shared data is put in a noncacheable region, con-
sequently avoiding the cache coherence problem. However,
putting shared data in a noncacheable region is very likely
to result in performance degradation, and is therefore not al-
ways favorable. We see the separation of private and shared
data as an optimization. We provide means to keep shared
data in a cacheable region, while still ensuring cache coher-
ence.

In [16] a novel memory consistency model, Streaming Con-
sistency, is proposed. Streaming Consistency targets at the
streaming application domain. In [16] also an efficient soft-
ware cache coherence protocol is proposed. The protocol
relies on using FIFO buffers for all interprocessor commu-
nication. Hence, the software cache coherence protocol re-
quires a specific programming model.

In our software cache coherence protocol we propose FIFO
communication as an optimization, and we discuss an effi-
cient software cache coherence protocol for FIFO buffers.
Our protocol does not require all interprocessor communi-

cation through FIFO buffers, and can therefore be applied
in combination with our basic software cache coherence pro-
tocol, while still improving the performance.

3. CACHE COHERENCE AND MEMORY

CONSISTENCY
In this section we give a short introduction in cache coher-

ence and memory consistency. We give examples of cache
coherence and memory consistency issues and we discuss two
memory consistency models.

3.1 Cache coherence
This section discusses cache coherence in MPSoCs [4]. In-

tuitively a memory with cache hierarchy holds values, and
on a read, a memory returns the last value written to it. Un-
fortunately if in an MPSoC processors have a private cache,
without taking precautions, danger exists that one may see
stale values in its cache. The cache coherence problem is
illustrated in Figure 2.

Figure 2: Example cache coherence problem

Cache coherence is essential if data is being shared be-
tween processors. Cache coherence has two properties:
write propagation and write serialization. Write propaga-

tion means that writes become visible to other processors.
Write serialization means that all writes to a single location
(from one or multiple processors) are observed in the same
order by all processors.

3.2 Memory consistency
A memory consistency model is required, because it en-

ables the programmer to reason about outcome of the pro-
gram. Often in parallel programs a read returns the value of
a particular write; therefore there should be a known order

between memory accesses to different locations. However,
cache coherence only ensures a certain order among accesses
to a single location. A memory consistency model specifies
constraints on the order in which memory operations must
appear to be performed (i.e., become visible to other pro-
cessors) with respect to one another.

Consider the example in Algorithm 1, in which three pro-
cessors read and modify shared variables. The programmers
intention is that processor P3 prints value 1, written by P1.
Unfortunately, this is not necessarily true, as memory ac-
cesses can be reordered by the compiler, memory controller,
NoC, and the processor; e.g., reads can overtake writes that
are put in a write buffer.

Memory consistency and cache coherence are related in
the sense that memory consistency subsumes cache coher-
ence [4], because it specifies constraints on the order of mem-
ory accesses to a single and to different locations, which may
be issued by multiple processors. Cache coherence only en-
sures that eventually writes become visible, which is required

385

Algorithm 1 Importance of write atomicity

Require: A and B are initially 0

P1

A ← 1

P2

while A = 0
do

skip

end while

B ← 1

P3

while B = 0
do

skip

end while

print A

for interprocessor communication. A cache coherence pro-
tocol, in cooperation with the hardware and the compiler,
supports a certain memory consistency model, which is re-
quired by the programmer to reason about outcome of soft-
ware executed on the MPSoC.

The remainder of this section is organized as follows. First
we will discuss the most strict memory consistency model,
Sequential Consistency, followed by a memory consistency
model, Release Consistency, which allows more reordering
of memory accesses, but poses some requirements to the
software. Other memory consistency models are not dis-
cussed in this paper, but more information can for instance
be found in [2, 4].

3.2.1 Sequential consistency

Lamport formalized a strict model, called Sequential Con-
sistency [8]. Sequential Consistency requires memory ac-
cesses to be completed in program order. Every process
appears to issue and complete memory accesses one at a
time and atomically in program order [4]. Writes issued by
a processor are observed by all processors in one single order;
which is called write atomicity. This is intuitive for the pro-
grammer, but poses restrictions on hardware and compiler
optimizations [2].

Especially write atomicity poses restrictions on the hard-
ware. We are targeting at MPSoCs with a NoC, and proces-
sors can observe different memory latencies in a NoC (see
Figure 3). Therefore it is difficult to efficiently guarantee
Sequential Consistency in a NoC.

Figure 3: Write atomicity issues in a network-on-

chip

Imagine Algorithm 1 is executed on the MPSoC shown in
Figure 3. Assume all processors propagate, with different
latencies, all writes to other processors, furthermore L3 >

L1 + L2. Then, it is possible that P3 receives the write to
A (3) by P1 later than it receives the write to B (2) by P2.
Consequently, one single order of writes is not maintained
and write atomicity is violated.

A, likely inefficient, solution to ensure write atomicity in
a NoC is by adding a separate arbiter, called D, which seri-
alizes accesses to memory locations. However, this increases
the memory access latency and causes additional traffic. An

example of an MPSoC which relies on an arbiter to provide
write atomicity is SGI Origin according to [4, 9].

3.2.2 Release consistency

Release Consistency is introduced in [7]. This model relies
on distinction between types of shared memory accesses, and
different ordering requirements can apply to different types
of memory accesses. Two accesses are conflicting if they are
to the same memory location, and at least one of the accesses
is a write. A conflicting access is competing if two conflicting
accesses are not ordered, they may be issued simultaneously
and thus causing a race condition.

A conflicting access can be made non-competing by using
synchronization. Release Consistency specifies two types of
synchronization accesses; acquire and release.

A set of sufficient conditions for Release Consistency is as
follows (taken from [7]):

1. before a non-competing access is allowed to perform
with respect to another processor, all previous acquire
accesses must be performed and,

2. before a release access is allowed to perform with re-
spect to another processor, all previous non-competing
accesses must be performed and,

3. competing accesses (e.g., acquire and release accesses)
are processor consistent with respect to one another

Acquire and release accesses are processor consistent [4],
this means that each processor issues these accesses in pro-
gram order, but acquire and release accesses issued by dif-
ferent processors may be observed in a different order by
different processors.

The conditions for Release Consistency give ordering re-
quirements between non-competing and competing accesses,
and between competing accesses. These ordering constraints
are shown in an example program in Figure 4. There are
no ordering requirements between non-competing accesses.
Consequently caches are only guaranteed to be coherent on
the competing accesses, e.g., acquire and release accesses.

Figure 4: Ordering constraints for Release Consis-

tency

According to Release Consistency, it is sufficient to per-
form cache coherence operations only on synchronizations
and enforce an order between memory accesses and these
synchronization accesses, e.g., acquire and release. This is
in contrast to Sequential Consistency, which requires cache
coherence operations on each individual write access. In the
following section we will discuss a cache coherence protocol
that ensures coherent caches, and provides Release Consis-
tency. The Release Consistency model is sufficient to sup-

386

port Pthreads. In addition we present what is required to
embed the protocol in a POSIX thread library.

4. TUNEABLE SOFTWARE CACHE CO-

HERENCE PROTOCOL
This section presents our software cache coherence proto-

col, which is suitable for heterogeneous MPSoCs with a NoC.
First, we will describe the basic software protocol, which
poses minimal requirements to the software and hardware.
Following, we will discuss several optimizations to increase
the performance of the cache coherence protocol.

The protocol can be implemented on off-the-shelf proces-
sors, as long as these processors support cache control oper-

ations. Cache control operations are for instance, (i) clean,
which copies modified cache lines back to the shared mem-
ory, (ii) invalidate, which causes a cache miss the next time a
specific cache line is accessed. If a memory location is read,
a preceding invalidate causes the read to return values from
the shared memory, instead of values from the cache. Many
processors like ARM, MIPS, MicroBlaze, and TriMedia sup-
port these operations.

The protocol relies on explicit synchronization operations
in the software. Cache control operations are added to these
synchronization points, according to the Release Consis-
tency model. These cache control operations will be called
cache coherence operations in the remainder of this paper
because these operations are applied to guarantee cache co-
herence.

We will classify data as private or shared data. Private

data is all data that is local to a process, and consequently
writes to private data do not need to become visible to other
processes. Shared data is all data that is communicated
between processes, and includes the global variables.

4.1 Basic software cache coherence protocol
The basic software cache coherence protocol presented in

this paper does not require a specific mapping of private
and shared data in the memory. As a result shared data
can be scattered throughout the address range and mixed
with private data. Consequently all cache control operations
should operate on the entire cache.

Assume all caches in the MPSoC are in write-through
mode. Then, the basic software cache coherence protocol
works as follows. The software cache coherence protocol re-
lates cache coherence operations to synchronization opera-
tions. Two synchronization operations are presented, these
are acquire and release and these correspond to synchro-
nization accesses in Release Consistency. It is important to
note that cache coherence operations are only performed on
synchronization operations. Consequently caches are only
ensured to be coherent with the shared memory on these
synchronization operations. Acquire and release operations
can be used to construct a critical section, therefore acquire

obtains a lock, and release releases the lock.
After performing an acquire it is guaranteed that the most

recent data will be accessed. In our protocol this means that
acquire should invalidate all cache lines that can hold shared
data, because the shared memory is up-to-date if no process
is currently executing a critical section. In the basic protocol
all cache lines can hold shared data, consequently the cache
coherence operations operate on the entire cache.

A release ensures that all previous issued writes become

visible to other processors. We have assumed that all caches
in the MPSoC are in write-through mode, thus the release
only has to ensure that all previous issued writes have up-
dated the shared memory before the release completes.

Figure 5 shows which actions are initiated by the protocol
if two processors execute an example program like shown in
Figure 4.

Figure 5: Example software cache coherence proto-

col with only write-through cacheable regions

Keeping all data in write-through cacheable regions can
result in a high memory bandwidth requirement. There-
fore, it is desirable to also support a write-back cache policy.
However, using write-back cacheable regions results in sev-
eral issues, such as the sharing problem and ensuring that
writes are not lost on an acquire.

A write-back cacheable region introduces the sharing

problem in software cache coherence protocols. This prob-
lem is caused by the granularity of cache coherence opera-
tions; which usually operate on entire cache lines. The shar-
ing problem can arise if different processors modify memory
locations that map to the same cache line, thus these loca-
tions share a cache line. Assume two processors P1 and P2

read two memory locations A and B, consequently holding
identical values in their caches. Then P1 modifies location
A, while P2 modifies location B. In this situation both lines
are partially up-to-date. If both processors clean the cache
line, in any order, one of the two modified locations will be
overwritten by its old value. Clearly this can lead to incor-
rect behavior.

Different approaches are used to solve the sharing prob-
lem for private and shared data. Private data covers the
private stack for each process and private data allocated on
the heap. If we ensure that stacks for processes are cache

line aligned, in other words, it is not allowed to map parts
of two stacks to the same cache line, the sharing problem is
nonexistent. Similarly, each process has a private local heap
and these heaps are mapped on the address range such that
no two heaps share a cache line.

Ensuring cache line alignment for shared data is likely to
be inefficient and might be challenging to achieve in compar-
ison to private data. Therefore solving the sharing problem
for shared data requires a different approach. One way is to
adapt the granularity of cache coherence operations by sub-

blocking, which uses a bit per byte in the cache to identify
the modified bytes, and only these bytes are updated in the
memory. This is for instance supported by TriMedia pro-
cessors [15]. Unfortunately this solution is not supported by
all processors, e.g., ARM926EJ-S processors do not support
sub-blocking.

A different solution to avoid the sharing problem for
shared data is to use a write-through cacheable region for
shared data. In a write-through cacheable region all writes
are propagated to the memory, and only the bytes that are
written are updated. This is likely to be a suitable solution

387

in many cases, but it can be inefficient in combination with
an SDRAM that works on a page access granularity.

A second issue with write-back caches is guaranteeing that
writes issued preceding an acquire are never lost. In the ba-
sic protocol an acquire only performs an invalidate opera-
tion, but if a region of the memory is write-back cacheable,
an additional cache coherence operation is required. This
operation cleans all modified cache lines, before any cache
line is invalidated on an acquire. This guarantees that writes
to a write-back region are not lost.

4.2 Optimizations
This section presents several optimizations to increase the

performance of the basic software cache coherence proto-
col. The first optimization considers the separation of pri-
vate and shared data, which enables exploitation of differ-
ent cache policies for different regions of the memory. The
second optimization lowers the impact of cache coherence
operations on private data. The third optimization can in-
crease the performance of the cache coherence protocol, but
requires a specific programming model.

Separation of private and shared data. In the ba-
sic software cache coherence protocol private and shared
data are potentially scattered throughout the entire address
range. As a result, cache coherence operations are required
to operate on the entire cache, which potentially operates on
mainly private data that is not required to be cache coher-
ent. Additionally to avoid the sharing problem, the entire
memory has to be put in write-through cacheable regions.
This is because shared data can be stored at any location
in the memory, consequently causing a high memory band-
width requirement.

Separating dynamic data in private and shared data re-
quires two heaps, one heap is used for private data, and a
second for shared data. Two different malloc operations are
provided to the programmer to allocate memory on one of
the two heaps.

An important optimization that can increase performance
exploits the separation of the address range in a private
range and a shared range. This separation enables putting
private data in a write-back cacheable region, because writes
to private data are not required to become visible to other
processors. Keeping private writes in a write-back cache
successfully lowers the memory bandwidth requirement in
many applications. Remember that the sharing problem for
private data can be solved by ensuring cache line alignment
of the private stacks and heaps.

Writes to shared data need to become visible to other pro-
cessors, and the sharing problem can be solved by putting
shared data in a write-through cacheable region. It is im-
portant to note that the standard ARM926EJ-S processor
supports to apply different cache policies to different regions
of the memory. Off course, an acquire is still required to per-
form an invalidate operation on shared data.

Furthermore, the separation of private and shared data
enables selective cache coherence operations, because these
operations are only required to be performed on shared data.
A selective cache coherence operation only operates on the
shared regions of the memory, instead of operating on the
entire cache.

Put shared data in a certain cache way. We have
implemented our software cache coherence protocol on an
ARM926EJ-S processor, but unfortunately our ARM9 does

not support instructions to operate on only a range of the
entire address range. Therefore, we have implemented an
operation that guarantees to keep the caches coherent, while
it lowers the impact on private data in comparison to oper-
ating on the entire cache.

We propose a mixed hardware and software approach to
force shared data into a certain cache way. The ARM926EJ-
S cache consists of four cache ways. The cache controller is
adapted to put all shared data, that is mapped to a certain
region of the memory, in a specific cache way (see Figure 6).
In software it is guaranteed that all shared data is mapped
on the shared region of the memory. Private data, on the
other hand, can be put in any of the four cache ways.

Figure 6: Put shared data in a certain cache way

If shared data is forced in one cache way, then the cache
coherence operations only need to operate on this specific
cache way. This has the advantage that less private data
is invalidated on an acquire, because private data is also
put in the other three cache ways, and these ways are not
invalidated on an acquire.

A disadvantage of forcing a way for shared data is that
the cache size and associativity have decreased for shared
data. This can, for some applications, lead to performance
degradation because a higher number of cache misses and
collisions occur. Allowing more cache ways to be used for
shared data increases the impact of invalidation operations
on private data, which is therefore not considered as a solu-
tion.

FIFO communication. Our software cache coherence
protocol for FIFO communication is different from the pro-
tocol presented in [16]. In our protocol it is not required
to have all interprocessor communication through FIFO
buffers, consequently our protocol for FIFO communication
can be applied simultaneously with other variants of our
software cache coherence protocol.

In FIFO communication, shared data is communicated in
critical regions through FIFO buffers which are explicitly
coupled to these regions. Therefore, clean and invalidate
operations can easily be added to entry and exit procedures
of the critical regions. More specifically, a FIFO buffer has
one producer and one or more consumers. A producer only
needs to perform a clean operation after the process has
written to the buffer. A consumer only needs to perform an
invalidate operation before reading from the buffer. Clearly
this results in less protocol overhead in comparison to the
basic software cache coherence protocol, where all processes
were required to perform clean and invalidate operations on
synchronizations.

The software cache coherence protocol for FIFO commu-
nication is more selective than the basic software cache co-
herence protocol. On entry of a critical region it is known
which memory locations will be accessed. Only the cache

388

lines holding copies of these locations are required to be co-
herent.

The producer acquires mutual exclusive access to a token,
before it writes to that token in the buffer. After modifying
the token, all cache lines holding a copy of the token will be
cleaned. Note that the clean operation is only required if
the buffer is put in a write-back cacheable region. Following
the clean operation the lock for the token will be released,
allowing the consumer to read the token.

The consumer first obtains mutual exclusive access to the
next token to read. Then, preceding the read access all
lines holding a copy of the memory location belonging to the
token will be invalidated. This invalidate operation ensures
that the read will return values from the shared memory,
which holds the most recent values. Afterwards the lock is
released, allowing the producer to modify the token.

Besides putting FIFO buffers in a write-through cacheable
region, the sharing problem can also be avoided by mapping
only one buffer to a cache line. Therefore FIFO buffers can
easily be put in a write-back cacheable region, which saves
memory bandwidth and is attractive in combination with an
SDRAM.

4.3 Embedding the protocol in POSIX
threads

This section presents what is required to embed the soft-
ware cache coherence protocol in the POSIX threads stan-
dard. POSIX threads, also known as Pthreads, provides a
standard for an API for creating, manipulating, and man-
aging threads [1]. Pthreads is implemented on our MPSoC
because, firstly, it is widely used and accepted for writing
general purpose multi-threaded programs, and secondly, the
SPLASH-2 benchmark set [17] relies on Pthreads calls, and
several SPLASH-2 applications are used in the experimental
performance evaluation.

Pthreads intentionally avoids stating a memory consis-
tency model [3]. But in an attempt to give a clear and
concise description [3, 1]:

Applications shall ensure that access to any
memory location by more than one thread of
control (threads or processes) is restricted such
that no thread of control can read or modify a
memory location while another thread of control
may be modifying it. Such access is restricted
using functions that synchronize thread execu-
tion and also synchronize memory with respect
to other threads. The following functions syn-
chronize memory with respect to other threads:
e.g.,
pthread mutex lock(), pthread mutex unlock(),
...

The programmer adds synchronization operations to en-
sure mutual exclusive access to shared variables. The
Pthreads function pthread mutex lock() resembles an ac-

quire. Therefore we have extended the pthread mutex lock()
with a clean and invalidate operation.

In Pthreads a critical region is exited by calling
pthread mutex unlock(), which should ensure that all pre-
vious issued writes become visible. Therefore we have em-
bedded a clean operation in this Pthreads function.

4.4 Tradeoff in cache coherence operations
In previous sections, we have explained when cache co-

herence operations are required to be performed, without
discussing which cache control operation is most suitable to
be used. In our MPSoC, we can choose between operating
on the entire cache, an entire way, and lines based on mod-
ified virtual address (MVA). The latter might need some
clarification; the cache controller is instructed to clean and
invalidate several lines when using MVA. In this case, the
cache controller first checks whether the cache holds a copy
of a certain MVA. If so, the operation is only performed on
the line that holds the copy. This is in contrast to operating
on the entire cache or an entire way, which both uncondi-
tionally perform cache control operations.

Figure 7: Cycles required for performing invalidate

operation

In case shared data is scattered throughout the entire ad-
dress range, the only option is operating on the entire cache.
But, in case shared and private data are separated, there is
a tradeoff in deciding which cache control operations to use.

We identify two different types of costs for the cache con-
trol operations. The first cost is execution time, which de-
notes the number of cycles that are required to operate on a
certain number of cache lines. The second cost is false inval-

idations. A false invalidation is the invalidation of a cache
line that is not required to be invalidated, for instance, a
cache line holds private data, which never requires to be
invalidated.

Figure 7 shows the number of cycles versus a number of
cache lines to be invalidated. This figure only displays the
execution time, which considers the number of cycles re-
quired to invalidate a certain number of cache lines. The
time spent in executing the cache control operations was
determined on an ARM9 processor.

By using MVA, only a specific number of cache lines is
invalidated. Consequently no false invalidations occur. Un-
fortunately, using MVA has the drawback that it is only
efficient if a small number of cache lines need to be inval-
idated. Cache coherence operations using MVA are imple-
mented as a software loop, which loops through all MVAs
in the range that needs to be invalidated. Clearly, if the
range to be invalidated is large, this operation will take a
high number of cycles. For FIFO communication with small
tokens usually only a few cache lines have to be cleaned or
invalidated, therefore MVA is suitable for the FIFO software
cache coherence protocol.

389

A second option is to invalidate the entire cache on each
acquire. As depicted in Figure 7, invalidating the entire
cache requires a fixed number of cycles. However, this op-
eration has the disadvantage that a high number of false
invalidations can occur. In some applications the cache may
be mainly holding private data, e.g., stack and private heap,
and consequently upon an invalidate entire cache a high
number of false invalidations occurs.

A third option is to invalidate an entire cache way, which
requires a hardware change in the standard ARM926EJ-S
cache controller. This operation requires a fixed number
of cycles to perform and, even in the worst case, it causes
fewer false invalidations than operating on the entire cache.
The entire ARM926EJ-S cache consists of 4 cache ways, and
this operation only invalidates one of these ways. Although
invalidating an entire cache way requires fewer cycles than
operating on the entire cache, and it is likely that fewer false
invalidations occur in comparison to entire cache, it can still
result in lower performance compared to operating on the
entire cache. This is mainly caused by forcing all shared
data in a specific way, which results in a decrease in cache
size and associativity for shared data. This can result in a
high number of collisions and consequently a high number
of cache misses.

These cache coherence operations are implemented such
that the operations are interruptible. Being interruptible
is important for our predictability requirement, as we do
not allow task switches being postponed due to cache coher-
ence operations. The requirement for interruptible opera-
tions forced us to use slightly different cache operations than
provided by ARM. The standard ARM9 processor provides
operations to invalidate an entire cache, but unfortunately
these operations are not interruptible, or may restart once
being interrupted. These properties have a negative influ-
ence on predictability, consequently we have implemented
an interruptible software loop to (clean and) invalidate all
cache lines in all cache ways.

Processors can interfere with others in hardware cache
coherence protocols, e.g., invalidate requests are issued,
whereas our software cache coherence protocol has bounded
interference. All cache coherence operations are local to a
processor, and do therefore not impact the execution of tasks
on other processors. Local cache coherence operations en-
able worst-case execution time (WCET) analysis of the tasks
with classical single processor WCET analysis tools.

5. HARDWARE PLATFORM
This section discusses the hardware platform on top of

which our software cache coherence protocol is implemented.
This hardware platform is also used in the experimental per-
formance evaluation.

Figure 8 shows the ARM926EJ-S MPSoC which is imple-
mented on a Xilinx Virtex 4 FPGA. In addition to this we
have implemented an ARM926EJ-S MPSoC in which the
processors were connected through an Æthereal NoC, which
has been used in preliminary experiments and will be used
in further research. The ARM926EJ-S processors have a
four way associative 16Kb cache, and different cache poli-
cies, noncacheable, write-through cacheable, and write-back
cacheable, can be applied to different regions of the memory.

It is important to understand several specific characteris-
tics of the MPSoC, which can have an impact on the exper-
iments.

Figure 8: Multiprocessor system-on-chip architec-

ture

Access to the shared memory is controlled by a time-
division multiplexing (TDM) arbiter, which provides equal
service to both processors. If a processor does not con-
sume its slice, the slice is wasted. Because each processor
is granted a certain service, synchronization by spinning on
synchronization variables in shared memory does not influ-
ence execution of other processors.

The latency to shared memory is only 4 cycles for a word.
The number of cycles to fetch 8 single words is equal to
fetching one cache line of 8 words. This means that a cache
line is not fetched in a pipelined fashion. The memory con-
troller waits 2 cycles for each word, before it is transferred
to the processor.

Memory accesses are not reordered in the memory hierar-
chy, not even in the Æthereal NoC. Furthermore, the mem-
ory controller handles memory requests in order.

Software is executed in tasks that are managed by a
small preemptive operating system kernel which uses a TDM
scheduler. Each task is given a slice of a certain length, and
consequently a particular minimum service is guaranteed to
each task. The next task that is scheduled is determined
following a round-robin scheme.

We have added a yield signal to the kernel in order to
minimize the impact of spinning idly on locks. This yield

signal is initiated after an unsuccessful acquire of a lock and
forces a task switch. Consequently, a task blocking on a
lock does not consume its slice spinning idly, but instead it
initiates a task switch.

6. EXPERIMENTS
This section discusses the experiments that have been ex-

ecuted on the MPSoC described in Section 5.
Several applications from the SPLASH-2 benchmark set

[17] are used in the experimental performance evaluation.
These applications are executed with the standard problem
instances, which are given in Table 1. This table also gives
the number of locks and the execution time of the applica-
tion when executed on one processor without cache coher-
ence operations.

The SPLASH-2 applications are executed on the MPSoC
with a shared address range of 4 MB. Using MVA to per-
form the cache operations requires to loop through the en-
tire shared address range, which equals 131,072 MVAs. The
SPLASH-2 applications already distinguish between mem-
ory allocation for shared and for private data, which enables
the separation of private and shared data.

We have stated that separating private and shared data
is an optimization. In the first experiment we compare
three instances of FFT, which is executed on one pro-

390

Application Problem size Locks T1 (M cycles)

Cholesky lshp 305 467.99
FFT 64K points 13 1242.32
LU contiguous 512×512 matrix 66 8850.97

16×16 blocks
LU 512×512 matrix 66 9355.27
non-contiguous 16×16 blocks
Radix 256K integers 12 1656.75

radix 1024
Raytrace teapot 12237 1446.55

64x64

Table 1: SPLASH-2 applications

(a) Execution times FFT (b) Number of memory ac-
cesses FFT

Figure 9: Impact of separation shared and private

data

cessor without cache coherence operations. The instances
are WT+WT, which means both private and shared data
write-through cacheable, WB+NC, which means private
date write-back cacheable and shared data noncacheable (as
proposed in [11]), and our proposal, WB+WT, where pri-
vate data is write-back cacheable and shared data is write-
through cacheable. Figure 9(a) shows the execution time for
the three instances, and Figure 9(b) shows the total number
of memory accesses for the three instances.

Leaving shared data noncacheable (WB+NC) results in
the worst execution time compared to the other two in-
stances. This is most likely a result from a high number
of read misses in the shared address range. The other two
instances WT+WT and WB+WT do not differ much in
terms of execution time.

Putting private data in a write-through cache results in a
high number of memory accesses. These accesses are mainly
writes, which are presumably writes to the stack. In our
proposal WB+WT we observe a significant lower number of
memory accesses. The difference in memory accesses does
not result in a significant difference in execution time, be-
cause the write buffer successfully hides write latency.

A second experiment considers the speedup observed
when comparing the execution time of the applications exe-
cuted on a single processor without cache coherence opera-
tions with the applications executed on two processors with
three different cache coherence operations. In all cases pri-
vate data is put in a write-back cacheable region, and shared
data is put in a write-through cacheable region.

The speedup observed is shown in Figure 10 and the
best speedup is between 1.89 and 2.01 for the SPLASH-
2 applications. The performance is dependent on the
synchronization-to-computation ratio, which affects the
number of synchronizations in a time interval.

Cache coherence operations using MVA to loop through
the shared address range demand a high number of cycles.
Consequently, the performance for MVA is low compared to

the other instances. For Raytrace, it was not even possible
to retrieve any useful results, which is a direct result from
the high number of synchronizations.

For many applications, cache coherence operations on a
specific way show a reasonable speedup, comparable to op-
erating on the entire cache. However, this does not hold for
the LU non-contiguous application, which apparently suffers
from a high number of cache misses. LU non-contiguous per-
forms the same computation as LU contiguous, but the first
is not optimized for caches and consequently has a higher
cache miss rate than LU contiguous.

Although forcing a way for shared data may degrade the
performance in some applications, it can be beneficial. Ray-
trace with cache coherence operations on a way performs
better than operating on the entire cache. This results from
the high number of synchronizations that cause a higher
number of false invalidations and additionally requires more
time to perform the cache coherence operation.

Cache coherence operations on the entire cache usu-
ally perform best, but this is highly dependent on the
synchronization-to-computation ratio. The reason that op-
erating on the entire cache performs better than on a specific
way is a result from the performance degradation by forcing
shared data in a way, which can cause a higher number of
cache misses.

Figure 10: Relative speedup of SPLASH-2 applica-

tions

Another important metric for performance and assessing
scalability is the memory bandwidth requirement. We have
determined this requirement for the SPLASH-2 applications
executing with the three different cache coherence opera-
tions. In most cases the memory bandwidth requirement
was around 2%, consequently the scalability is expected to
be good for an MPSoC with up to 10 processors. For larger
MPSoCs it can be desirable to increase the memory band-
width by exploiting a shared level 2 cache and by applying
multiple memories in the address space.

More important is the increase in the number of mem-
ory accesses as a result of cache coherence operations. We
have compared the number of memory accesses for a single
processor without cache coherence operations with the total
number of memory accesses for the two processor instances
with cache coherence operations enabled. The increase in
the number of accesses is shown in Figure 11, in which the
number of memory accesses for the single processor is set at
one.

From Figure 11 it can be concluded that the cache coher-
ence operations do not significantly increase the number of
memory accesses. Surprisingly, for some applications the to-
tal number of memory accesses in the two processor instance

391

is lower than the number of memory accesses in the single
processor instance. This is a positive consequence from the
increase in cache size, because the total cache size in the two
processor MPSoC doubled.

Clearly, if shared data is forced in a specific cache way
the SPLASH-2 applications suffer from cache misses. For
all applications, except for Radix, the total number of ac-
cesses for way-based cache coherence operations is higher
than for the single processor instance. For Radix it is dif-
ferent because it only shares a little amount of data, and it
has a low synchronization-to-computation ratio.

An application with a high synchronization-to-
computation ratio can benefit from way-based cache
coherence operations. An example is Raytrace, which
shows that forcing a way only increases the total number of
memory access by a small amount, compared to operating
on the entire cache. The latter results in a high number of
cache misses due to false invalidations.

Figure 11: Relative increase in number of memory

accesses

In future work it may be interesting to study the impact of
processors that exploit instruction level parallelism. As this
has an impact on the synchronization-to-computation ratio,
which is important for the performance of our software cache
coherence protocol.

7. CONCLUDING REMARKS
We presented a tuneable software cache coherence proto-

col. The protocol has several interesting properties. Firstly,
it is applicable to heterogeneous multiprocessor systems-on-
chip (MPSoC) with a network-on-chip and with off-the-shelf
processors. Secondly, the protocol supports Release Consis-
tency [7], on top of which the standard Pthreads [1] com-
munication library has been implemented. Thirdly, all cache
coherence operations are local to a processor and the cache
coherence operations are interruptible, which makes the pro-
tocol to be suitable for predictable MPSoCs.

The protocol overhead is dependent on application char-
acteristics. The protocol performance is higher if the appli-
cation has a low synchronization-to-computation ratio. The
performance can be improved by providing separate address
ranges for private and shared data. Protocol performance
can also be improved by putting shared data in a specific
cache way, and by restricting interprocessor communication
to FIFO communication. The fact that the protocol per-
formance is dependent on application characteristics does

not need to be problematic because selection at design-time
of applications with specific characteristics is often a valid
option for embedded systems.

The software cache coherence protocol has been evalu-
ated in an ARM926EJ-S MPSoC which has been mapped
on a Xilinx Virtex 4 FPGA. Several applications from the
SPLASH-2 benchmark set [17] have been used in this eval-
uation.

From experiments we have concluded that the protocol
overhead is low for the evaluated SPLASH-2 benchmark ap-
plications, because we observe a speedup between 1.89 and
2.01. In addition we have demonstrated that the total num-
ber of memory accesses does not increase significantly due
to the cache coherence protocol. For applications with a
low synchronization-to-computation ratio we observe a lower
number of memory accesses, up to a 12% decrease, in the
two processor MPSoC compared to a single processor.

8. REFERENCES
[1] The POSIX Threads Standard. ISO/IEC standard

9945-1:1996, also known as ANSI/IEEE POSIX 1003.1-1995.

[2] S. Adve and K. Gharachorloo. Shared memory consistency
models: a tutorial. Computer, 29(12):66–76, Dec 1996.

[3] H.-J. Boehm. Threads cannot be implemented as a library. In
Proc. PLDI, pages 261–268, New York, NY, USA, 2005. ACM.

[4] D. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann, 1999.

[5] M. Dubois, C. Scheurich, and F. Briggs. Memory access
buffering in multiprocessors. SIGARCH Comput. Archit.
News, 14(2):434–442, 1986.

[6] S. F. Fahmy, B. Ravidran, and E. Jensen. On bounding
response times under software transactional memory in
distributed multiprocessor real-time systems. In Proc. DATE,
2009.

[7] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In Proc.
of the 17th Annual International Symposium on Computer
Architecture, pages 15–26, 1990.

[8] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans.
Comput., 28(9):690–691, September 1979.

[9] J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA highly
scalable server. In Proc. The 24th Annual International
Symposium on Computer Architecture, pages 241–251, 1997.

[10] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber,
A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. The stanford
Dash multiprocessor. Computer, 25(3):63–79, Mar 1992.

[11] F. Petrot, A. Greiner, and P. Gomez. On cache coherency and
memory consistency issues in NoC based shared memory
multiprocessor SoC architectures. Proc. DSD, pages 53–60,
2006.

[12] H. Sandhu, B. Gamsa, and S. Zhou. The shared regions
approach to software cache coherence on multiprocessors. ACM
SIGPLAN Notices, 28(7):229–238, 1993.

[13] T. Suh, D. Blough, and H.-H. Lee. Supporting cache coherence
in heterogeneous multiprocessor systems. In Proc. DATE,
volume 2, pages 1150–1155 Vol.2, Feb. 2004.

[14] I. Tartalja and V. Milutinovic. An approach to dynamic
software cache consistency maintenance based on conditional
invalidation. Proc. of the Twenty-Fifth Hawaii International
Conference on System Sciences, pages 457–466 vol.1, Jan 1992.

[15] J.-W. van de Waerdt, S. Vassiliadis, J.-P. van Itegem, and
H. van Antwerpen. The TM3270 media-processor data cache. In
Proc. Computer Design: VLSI in Computers and Processors,
ICCD, pages 334–341, Oct. 2005.

[16] J. van den Brand and M. Bekooij. Streaming consistency: a
model for efficient MPSoC design. Proc. DSD, pages 27–34,
2007.

[17] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations. Proc. of the 22nd Annual International
Symposium on Computer Architecture, pages 24–36, Jun 1995.

392

