
Extending the Reach of Microprocessors:

Column and Curious Caching

by

Derek T. Chiou
S.B., Massachusetts Institute of Technology (1989)
S.M., Massachusetts Institute of Technology (1992)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1999
MASSACHUSETTS IN'

@Massachusetts Institute of Technology. OFTECHNOLOG
All rights reserved. 0

c

Author.........................

Department of Electrical Engineering and Computer Science
August 11, 1999

C ertified by

C ertified by

-2 - 2 -

............. V . w e
Arvind

Professor of Computer Science
Thesf j-upervisor

Larry Ru ph
Principal Research Scientist

Thesis Supervisor

Accepted by..........................
Arthur C. Smith

Chairman, Committee on Graduate Students
Department of Electrical Engineering and Computer Science

Extending the Reach of Microprocessors:

Column and Curious Caching

by

Derek T. Chiou

Submitted to the Department of Electrical Engineering and Computer Science
on August 11, 1999, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis proposes column caching and curious caching, two mechanisms that enable
caches to be dynamically customized, improving performtance and resource control and
enabling novel functionality. Column caching provides the ability to partition a cache
between address regions while curious caching provides the ability for devices other
than the master to insert data into the cache. Column and curious caching provide
simple, controlled ways to dynamically change the traditionally static replacement
policy that treats all memory and cache locations the same.

These mechanisms were conceived during the design of START-VOYAGER, a high-
performance parallel system. That effort demonstrated how current memory hierar-
chies and bus protocols interfere with fast communication. Though the mechanisms
were originally developed for communciation, they are surprisingly useful elsewhere.
For example, column/curious caching can minimize pollution, reduce miss rates, im-
prove multitasking/multithreading performance, reduce or eliminate read latencies
and implement new functionalities such as bus-accessal$1e SRAM within the cache.

This thesis motivates column and curious caching by high-performance commun-
ciation, evaluates these adaptive mechanisms for communication and other uses and
proposes various implementations designed for different constraints. It demonstrates
how these simple mechanisms can enable substantial performance improvements and
support a wide range of additional functionality.

Thesis Supervisor: Arvind
Title: Professor of Computer Science

Thesis Supervisor: Larry Rudolph
Title: Principal Research Scientist

3

4

Acknowledgments

I would like to thank my two advisors, Arvind and Larry Rudolph, for their support
and advice throughout my graduate career. I have been in Arvind's group since I was
a junior, many, many years ago. Arvind provided me with the opportunity to design
whole systems, something I will always be grateful for. His ability to organize ideas
and clearly see the real problems was a tremendous help with this thesis.

Larry worked with me on a daily basis, challenging me to improve every aspect
of the research work but also helping to rein me in when I was heading off course.
His encouragement and advice were essential to finishing this thesis. Larry teaches
by example and makes the quest for knowledge fun.

My reader, Srinivas Devadas, provided very helpful comments to drafts of the
thesis and during our weekly meetings. His energy is truly inspiring.

Boon S. Ang has been my partner in crime since he joined our group. We have
worked on every major project together, from software for Monsoon and the original
*T, to designing START-NG and START-VOYAGER. We traveled together, worked
late nights together and complained about grad school together. He read through
this thesis, providing very detailed comments and suggestions. I would like him for
his friendship and all of his support, both professionally and personally.

I would also like to thank Dan Rosenband and Mike Ehrlich, my colleagues who im-
plemented START-VOYAGER. They took our high-level, imprecise and often changing
specs and turned them into a real machine. Throughout the process, they demon-
strated professionalism and dedication second to none. I learned a lot from both of
them.

I greatly enjoyed my interactions with all my fellow graduate students, past and
present, especially Alex Caro, James Hoe, Xiaowei Shen and Matteo Frigo. Alex was
not only a great lab mate, but a great roommate for six years as well. James could
always entertain us with his many stunts, stories, jokes and is always generous with
his deep technical knowledge. I enjoyed being his officemate all these years. Xiaowei
Shen not only taught me a lot about cache coherence protocols, he also taught me all
I know about classical Chinese literature and patiently listened to my poor Chinese.
My other officemate Matteo Frigo and I had many enjoyable discussions on a variety
of topics, from algorithms to his dislike of Microsoft to the Italian political system.

In the last few months, Krste Asanovic has been very helpful in critiquing column
and curious caching as well as educating me in the detailed micro-architecture of
processors and caches. My summer UROPs, David Chen, Boris Zbarsky, Richard
Schalck and Carl Steinbach have helped to built the infrastructure necessary to test
these ideas. Peter S. Magnusson and Virtutech provided SimICS, the simulator we
used to generate the memory references fed to the cache simulators.

Last, but not least, I would like to thank my family and friends who always
supported me during this time. My grandparents, my mother and Brian and Jeff
have always patiently supported me. I am lucky to have the best friends a person
could ever ask for, especially Angelina, Ning, Henry and Lisa, Lisa, Erica and Ronald.
I know that I can always count on you.

5

6

In memory of my father

7

8

Contents

1 Introduction
1.1 Optimizing the Common Case
1.2 C aches .
1.3 Uniform, Hardware Replacement Algorithms
1.4 The Times They Are A Chang'in
1.5 What Do We Want?
1.6 Contributions
1.7 Assumptions and Terminology
1.8 Rest of Thesis

2 Communication and Caches
2.1 The START Project
2.2 Providing High-Performance Communication

2.2.1 The Evolution of Caches
2.2.2 Message Passing with Caching . .

2.3 START-VOYAGER Solutions
2.3.1 B asic
2.3.2 Express
2.3.3 Tagon

2.4 Sum m ary

3 Column Caching
3.1 A Motivating Example
3.2 One Partitioning Solution: Page Coloring . .
3.3 Column Caching Overview

3.3.1 What is a Column?
3.3.2 How To Partition?
3.3.3 Software Control: Virtual Partitions

3.4 Uses for Column Caching
3.4.1 Controlling Pollution
3.4.2 Constructive Interference
3.4.3 Enabling Compiler Optimizations . .
3.4.4 Embedded SRAM
3.4.5 Multiprogramming/Multithreading
3.4.6 Combining Instruction/Data Cache

to COTS Microprocessors

9

12
13
14
15
16
18
19
20
21

23
24
28

. 29

. 32

. 36

. 38

. 39

. 40

. 41

42
. 44
. 46
. 49
. 50
. 52
. 55
. 58
. 58
. 60
. 60
. 62
. 62
. 64

3.4.7 Speculative Execution Buffers
3.4.8 Multiple Memory Operations per Cycle
3.4.9 Copying in Cache: Tag Access

3.5 Implementation Details .
3.5.1 Implementing Control Mechanisms
3.5.2 P rotection .
3.5.3 Simple Replacement Algorithms for Column Caching
3.5.4 Column-Caching-Specific Modifications to LRU: Reinforced Repar

titioning .
3.5.5 Combining Random and LRU
3.5.6 Impact of Column Caching on Clock Cycle

3.6 Effect of Multi-Level Caches .
3.7 Cache Associativity .

3.7.1 High-Associativity .
3.7.2 Large Columns: Low Associativity

3.7.3 Separating Cache Addresses and Memory Addresses

3.7.4 Improving Low Associativity with Retargeting
3.7.5 Pseudo-High-Associative Caches
3.7.6 Retargeting and Direct-Mapped Caches

3.8 Fine Granularity Mappings .
3.8.1 Mapping memory regions smaller than a page

3.8.2 Mapping Cache Regions Smaller than a Page
3.8.3 Non-Contiguous Mappings .

3.9 Related Work
3.10 Summary

4 Curious Caching
A 1 The Probleom

4.2

4.3

4.4
4.5
4.6

Extant Approaches to the Problem
4.2.1 Dedicated Interface
4.2.2 Prefetching
4.2.3 Update Protocols
Curiosity Overview
4.3.1 Curious Caching in Action
4.3.2 Curiosity Parameters
4.3.3 Curiosity Actions
4.3.4 Curiosity Parameters and Actions Summarized
4.3.5 Pitfalls .
4.3.6 Curious Caching with Memory Hierarchies . .
4.3.7 Curiosity with Point-to-Point Data Networks .
4.3.8 Related Work
Software Control .
U ses .
Implementation .
4.6.1 Hardware Overview

64
64
65
66
66
68
69

70
72
73
74
76
76
78
81
85
87
88
88
88
89
89
91
92

94
95
96
97
98
99

100
102
105
108
111
113
113
115
116
117
119
121
123

10

4.6.2 BIU Modifications 126
4.6.3 Impact of Curious Caching on Clock Cycle 128
4.6.4 Additional Support . 129

5 Putting It All Together 131
5.1 START-VOYAGER with Column/Curious Caches 131

5.1.1 Sim plify Design . 132
5.1.2 Actual Differences in START-VOYAGER 134

5.1.3 Improving START-VOYAGER Message Passing Performance . 136
5.2 Emulating Column/Curious Caching on START-VOYAGER 139
5.3 Column Caching Evaluation . 142

5.3.1 Simulation Tools . 142
5.3.2 Column Caching with a Single Program 145
5.3.3 Partitioning Between Multiple Programs 150

6 Conclusions 153

A START-VOYAGER Shared Memory 155
A.1 Removing the sP from Miss Handling 158
A.2 Making Shared Memory Faster . 160

11

Chapter 1

Introduction

This thesis proposes column and curious caching, two simple mechanisms that enable

the effective use of caches in a changing application landscape. Modern caches (i) treat

all cached data the same, applying the same replacement algorithm to all memory

accesses, (ii) treat the cache monolithically, always selecting the cache-line to replace

from the entire set, and (iii) only insert cache-lines in reaction to requests from its

master(s) as opposed to its snoopers. The first two properties assume that reference

patterns of all memory locations are very similar, an assumption that is quickly

becoming less valid. The third property limits cache performance by making reads

inherently more expensive than writes and disallowing pushes into the cache by others.

Column caching provides the ability to dynamically partition the cache between

different memory regions, while curious caching provides the ability for devices other

than the master to initiate the insertion of data into a cache. Mapping regions of

memory that would otherwise interfere with each other to different regions of the

cache and memory regions that coexist to the same regions of the cache can improve

performance and reduce cache usage. Non-master insertion allows a producer to insert

data into a consumer's cache, dramatically reducing fetch latency for that data.

Column and curious caching were devised to address problems encountered when

designing START-VOYAGER, a parallel system built from commercial, off-the-shelf

(COTS) systems. The memory hierarchies hindered fast communication, requiring

complex work-arounds to get reasonable, but not optimal, performance. Column and

12

curious caching give greater control over the memory hierarchy, enabling much more

efficient data movement.

This thesis examines ways to make better use of caches and bandwidth. It mo-

tivates the mechanisms, develops them, discusses their use and evaluates them. The

rest of this chapter contains a discussion of current cache architecture and its defects,

a list assumptions and terminology used throughout the thesis and a summary of the

rest of the thesis.

1.1 Optimizing the Common Case

The computer architect's battle mantra, "optimize the common case", has fueled

the incredible increases in processor performance. The mantra has been successfully

applied in virtually all areas of computer architecture, from instruction sets to branch

prediction to caches and even to circuits. To this end, architects have devoted the

lion's share of design and processor resources to the common case. Caches are perhaps

the most glaring example currently occupying up to 75% of area[40] and 75% to 95%

of the transistors on a processor die[21, 15].

As general-purpose processors grow faster, their application space grows as well.

For example, general-purpose processors can now run applications such as real-time

MPEG compression or high-performance routing that required specialized hardware

just a year or two ago. New applications, however, sometimes exercise processor func-

tionality in ways previously thought to be "uncommon", invalidating old assumptions

and exposing suboptimal areas in the processor architectures. Thus, yesterday's as-

sumptions create today's processors that can now run tomorrow's applications that

invalidate yesterday's assumptions.

A common approach to dealing with a new common case is to add mechanisms

that deals with those specific cases. For example, stream buffers were added to provide

prefetching ability and buffering for stream data and spatial/temporal cache splits

were provided to separate spatially accessed data from temporally accessed data in

the cache. Though adding new mechanisms can be advantageous in some cases, doing

13

so statically splits processor resources and can be inefficient if the mechanisms are

not frequently used.

Better is to modify existing structures to actively support the new common cases

while providing backward-compatibility. Doing so enables dynamic resource sharing

yielding both the performance of dedicated mechanisms and higher resource utiliza-

tion while preserving the peak performance of any single mechanism.

We take this approach, proposing modifications to caches that can improve per-

formance over a range of metrics. Though caches are one of the linchpins of processor

performance, they have reached a point of diminishing returns for many applications.

Often times, caches are larger than is necessary to run a single process, opening an

opportunity for optimization. Our proposed modifications provide software control

of hardware, letting software provide hints that hardware executes. Thus, complex

functionality is supported with simple and easy-to-implement hardware.

1.2 Caches

Caches are small, local, fast memories designed to reduce memory latency and band-

width requirements by maintaining copies of data that will be accessed in the near

future. Conceptually, a cache sits between the data requester and the main data

store. To keep cycle times low while maintaining a large amount of state, caches

themselves may be divided into many levels forming a hierarchy. The cache examines

each memory request to determine whether it can satisfy that request from data it

caches. If the cache can satisfy the request, i.e., a cache hit, the memory operation

is not propagated to the next hierarchy level. If the cache cannot satisfy the request,

i.e., a cache miss, a potentially modified request is passed to the next level of the

memory hierarchy. The greater the number of memory requests satisfied out of the

cache, the greater the reduction in average memory latency and bandwidth demands.

Thus, it is important to keep the data that will be accessed in the near future in the

cache.

Caches incorporate data fetched in response to a cache miss. Depending on the

14

cache architecture, there may be a choice of cached data to replace. The cache

replacement algorithm decides what data to replace and is usually some variant of the

least-recently-used (LRU) algorithm. LRU assumes that the recent past predicts the

near future making least-recently-used data least likely to be used in the near future

and is thus likely to be the best candidate for replacement. The only other common

replacement algorithm is random, where the data to replace is selected at random.

Traditionally, caches are transparent to software and thus are managed completely

by hardware. A cached memory address can reside within any cache-line that is a

member of its assigned set. The set assigned to an address is determined by extracting

specific bits from the address.

1.3 Uniform, Hardware Replacement Algorithms

Caches were developed in an earlier era of computing when the ratio of processor

speed to memory speed was much smaller than it is today. Because memory at

that time was fairly similar in speed to processors and, therefore, the cache had to

respond quickly to have a real benefit. In addition, cache sizes were quite small.

Because of their small size, early caches could not contain the entire working set of

many programs, making frequent replacements inevitable.

Caches were also designed to be transparent to software, that is, they were de-

signed to improve performance without software involvement. The reason for trans-

parency is simple; when caches first appeared in computer systems, neither compilers

nor software were sufficiently sophisticated to explicitly manage fast storages that

were distinct from normal memory. The B registers and T memories, fast explicitly-

managed memories found in the Cray I[61] and subsequent Cray architectures, are

examples of fast, explicit memories that were generally too difficult for compilers to

use.

Because of the need for cache speed and transparency, cache replacement protocols

were implemented in simple hardware and were uniform across the entire address

space. With the exception of uncached space, mostly used for I/O, and the frequent

15

separation of instruction and data caches, all cached memory was treated the same

way. Because caches had to be small, and hit rates were relatively low, a uniform

policy could perform reasonably well compared to an optimal scheme. Cache capacity

issues would force to be frequently reloaded regardless of the replacement algorithm.

Another side effect of a small cache is that accurate cache studies could be made

by looking at individual, rather than groups of applications that might be scheduled

together, since each time applications were swapped, the cache had to be refilled with

the application's data.

A perfect cache is an oracle; it decides what to cache based on future reference

patterns. Because the replacement algorithm is implemented in hardware, it only

has past references to assist in predicting the future1 . Often times, however, the

past produces a good enough prediction of the future. Many applications have fairly

regular memory reference patterns that exhibit "local" behavior, that is, if an address

is referenced in the near past, it and/or its neighbors would probably be accessed in

the near future. Cache designers took advantage of this observation, selecting least-

recently-used algorithms as the de facto standard of cache replacement protocols.

Coupled with the fact that caches and miss penalties were small, the LRU replacement

policy was good enough.

1.4 The Times They Are A Chang'in

Times, however, have changed. Processor cycle times are getting faster much more

quickly than memory, making the cache miss penalty high and this penalty is getting

higher. Current processors take around 100 cycles to access memory[20, 46], an

order of magnitude more than a generation ago. This trend is expected to continue.

Processor clock rates are now five or six times that of the bus clock rate.

In order to compensate for this ever increasing miss penalty, architects try to

'Speculation and multiple outstanding operations could permit a processor to "lookahead" some-
what in the memory reference stream. Even with perfect control prediction, however, memory ad-
dresses would need to be computed and therefore could not be predicted. If there was good data
prediction, caching would not be necessary.

16

decrease the number of misses by increasing cache size and adding extra levels of

caches. The HP PA-8500 processor contains 1.0MB of Li data cache (4-way set

associative) and 0.5MB of Li instruction cache (also 4-way set associative), both

on-chip. The AMD K6-3[2] contains a 256 KB L2 (4-way set associative) cache and

64KB Li cache, both on-chip. As caches grow in size, their percentage of die resources

grows as well. Current processor are dominated by caches that take 80% or more of

the total die space. These numbers are still increasing. In addition to on-chip caches,

processors such as the Sun UltraSPARC[69], Compaq Alpha[20] and SGI R10000[54],

support off-chip caches of 4 MB or more. As time goes on, caches are expected to get

larger and deeper.

Though caches are larger, however, application memory footprint size has not

necessary grown at the same rate. Rather than containing a fraction of a single

programs working set, current caches are large enough to contain multiple application

working sets simultaneously. Caches, however, generally do not take advantage of

this fact. The standard LRU replacement policy throws away data that has not been

accessed recently (such as live data of a swapped out application) over data that

has (such the current application's recently accessed but dead data). As computers

become faster and more capable and the number of jobs per processor increases, the

chance that live data gets thrown away, even though there is sufficient space, increases

as well.

Applications and systems have also changed substantially. Certain computing

paradigms, such as object-oriented codes, access memory less regularly than appli-

cations coded in more traditional paradigms. In addition, applications do not use

memory as regularly or for the same uses as they once did due to a number of

factors including much more communication between different devices, new stream-

ing applications such as decompression, video and graphics, larger register sets and

better compilers that eliminate redundant memory requests and so on. With these

less-regular memory references, standard LRU algorithms perform sub-optimally. To

further aggravate the problem, the bigger and deeper caches incur more latency with

each additional layer, making misses more costly.

17

In addition, compilers and users have become significantly more sophisticated

than when caches were first designed. Users have been able to do the same by hand.

Advanced parallelizing compilers are able to automatically partition programs so that

they run well on distributed memory machines. Though users and compilers cannot

always give complete information about the memory usage of a program, a significant

amount of information can now be made available at compile time as well as run-time.

This information could potentially make a replacement algorithm much more accurate

since it can give a much more accurate estimate of future accesses.

1.5 What Do We Want?

Processor architects want to minimize perceived memory access times, especially to

data whose latency cannot be masked, to improve performance. The standard ap-

proach is to throw resources at the problem resulting in very large caches. This brute

force approach is necessary for some applications but is overkill for many applications.

Because the caches are managed in a very simple and straightforward fashion, they

are often vastly under-utilized[15].

Despite their problems, however, standard caches still work very well for many

applications. Rather than adding additional mechanisms, our approach is to modify

caches to allow software (and/or additional smart hardware) to tune how caches work

when such tuning improves performance. Such modified caches must be backward-

compatible, enabling others to assist in controlling the cache, but also able to revert

back to normal cache behavior.

What sort of cache management should be provided and how should it be imple-

mented? Providing fast, explicitly addressed SRAMs instead of caches2 is a solution,

but not general due to its reliance on as yet undeveloped software. The automatic

management of caches as well as the ability to use the same name (address) to address

fast cache memory and the slower DRAM main store make caches almost essential

for general compiler-generated codes or codes that have unpredictable memory access

2 Obviously, you can provide both at a cost.

18

patterns. Explicit SRAMs which reside in an orthogonal address space as in DSPs,

require copying thus requiring changes to legacy code. Very few users are willing to

spend the time to hand tune code to run better with explicitly addressed SRAMs;

in fact, it is impossible to do so in many cases because of the dynamic nature of the

programs.

So, we need caches. What kind of software cache management is appropriate?

Most current caches do not allow software management of caches[38, 28]. Some

current microprocessors have cache management instructions which can flush or clean

a given cache-line, prefetch a line or zero out a given line[51, 69]. Others permit

locking down cache-lines within the cache, essentially removing those cache-lines as

candidates to be replaced[22, 23]. All of these operations are on a cache-line basis,

requiring a separate operation per cache-line. In addition, the exact address must

be specified in the instruction which requires either predicting or tracking cache-line

addresses. The first is a difficult task, akin in complexity to mapping memory to

a separate address space, the latter incurs overheads. Cache-line locking does not

give control over which cache-line is replaced, but rather which cache-lines cannot be

replaced assuming they are in the cache when the operation is executed (a subtle but

significant difference). Though cache management operations and cache-line locking

are extremely useful, they require detailed knowledge and do not cover all cases.

This thesis describes an efficient, easy-to-implement, safe and fully backward-

compatible set of cache management mechanisms which give software dynamic control

over the cache. The mechanisms will still allow the cache to operate as a standard

cache and are guaranteed to be safe; software cannot violate memory semantics.

We developed these mechanisms during the design of START-VOYAGER, a high-

performance parallel machine built from stock systems. Some of the deficiencies of

those stock systems lead us to these mechanisms.

1.6 Contributions

The contributions of this thesis are as follows.

19

" Design and evaluation of the Column Caching cache partitioning mechanism

that opens opportunities for performance enhancement and resource control

by allowing software to dynamic split the cache between different memory re-

gions. Various designs compatible with a wide range of cache architectures are

presented.

" Design and evaluation of the Curious Caching mechanism that opens opportu-

nities for performance enhancement and resource conservation by allowing data

to be safely inserted by devices other than the cache's master. Curious caching

makes memory hierarchies communication-friendly, eliminating the asymmetry

between transmitting and receiving data and can emulate bus memory, even for

other bus devices, within a cache.

" Design and implementation of START-VOYAGER, a high-performance message

passing/shared memory machine. START-VOYAGER provides hardware and

firmware flexibility that allows the efficient implementation of almost any con-

ceivable communication mechanism and provides a test-bed for communication

mechanism research.

1.7 Assumptions and Terminology

Many assumptions throughout this thesis provide a base for discussion, but do not

limit the described mechanisms and techniques.

Though we discuss caches in the context of general-purpose microprocessors, the

mechanisms are applicable to caches that do not have processors as masters (disk

drives, digital-signal processors, etc).

We use "cache-line" to mean the physical entry in the cache where a cache-line of

data is stored. A "higher cache" is a cache closer to the processor core while a "lower

cache" is a cache further from the processor core. For example, the LI is a higher

cache than the L2 cache.

We use "bus transaction" to mean the entire bus transaction including the bus

20

operation, address, etc. "Bus operation" is the specific operation (read, write, flush,

sync) of the bus transaction.

We assume an least-recently-used (LRU) replacement algorithm unless otherwise

noted. Variants of the LRU algorithm are used in almost all commercial general-

purpose microprocessors.

Unless otherwise stated, we assume an invalidation-based MESI cache coherence

protocol. MESI stands for the four possible states a cache-line can be in: MODIFIED

(cached data is most up-to-date copy), EXCLUSIVE (data is unmodified but is not

cached by other caches that not direct ancestors or descendants), SHARED (data

is unmodified but other caches may have copies) and INVALID (cache-line contains

invalid data).

We use read-exclusive to mean a read between memory hierarchy levels indi-

cating that the reader wants an exclusive copy of the data, presumably to allow it

to write. read means a read between memory hierarchy levels indicating the reader

would be satisfied with a shared copy, implying others can have shared copies of that

data as well.

Because of our experience with the PowerPC architecture, we often use its termi-

nology and assume its functionality. Specifically, the dclaim bus operation is issued

to get write permission for data cached in a shared state. The flush instruction

(that can also appear on the bus as a flush bus operation) flushes an address out of

the cache, performing a pushout bus operation if the cached data is modified. The

clean instruction forces a writeback of the specified address if the cached data is in

modified state, but keeps an exclusive copy in that case.

1.8 Rest of Thesis

In the next chapter, we describe the START project from the 88110MP, to START-

NG and START-VOYAGER. These machines were all designed to maximize perfor-

mance within the given constraints. START-VOYAGER built around a stock micro-

processor is used to illustrate the difficulties that standard memory hierarchies impose

21

on high-performance communication.

In Chapter 3, we describe column caching, a mechanism to partition a cache

between different address ranges. Column caching enables an application and/or

an operating system to explicit manage of cache allocation, potentially improving

performance, reducing memory footprint and providing additional functionality.

In Chapter 4, we describe curious caching, a mechanism that enables a cache to

insert data it snoops on the bus. This mechanism used properly can dramatically

reduce memory latencies for shared data as well as dramatically reduce bandwidth

requirements. This mechanism works well with column caching to provide these

benefits while containing pollution and providing new functionalities within cache.

In Chapter 5, we evaluate START-VOYAGER, column and curious caching, pro-

viding preliminary performance numbers. We also describe how START-VOYAGER

could efficiently emulate column and curious caching and how column and curious

caching could improve START-VOYAGER performance and simply its design.

In Chapter 6, we conclude the thesis with some parting thoughts and observations.

We also give some future work and directions that should be explored.

22

Chapter 2

Communication and Caches

The column and curious caching mechanisms emerged from our exasperation with

the design defects of modern processor memory hierarchies that we discovered dur-

ing the design of START-VOYAGER, a high-performance parallel system based on

commercial-off-the-shelf (COTS) processors. This chapter describes those defects,

how they can impact high-performance communication that operate over the mem-

ory hierarchies and how they can be attacked.

Though this discussion assumes message passing communication, the memory hi-

erarchy issues apply to a wide range of memory patterns that do not perform well

in conventional caches. For example, emulating message passing on top of shared

memory hardware has precisely the same problems that we encountered for START-

VOYAGER's message passing. Likewise, rapid context switching between several

threads, even if each thread's memory usage works well within a cache, can also

perform sub-optimally.

In this chapter we briefly describe the START project and its design challenges,

and give an overview of the final design that was implemented. Specifically we discuss

the difficulties of implementing high-performance communication on top of off-the-

shelf processors.

23

2.1 The START Project

START was originally a collaborative effort between MIT and Motorola to build a

high-performance parallel system from off-the-shelf or slightly modified components.

It was our intention to build a research prototype that would be one or two generations

ahead of a commercial product. Thus, it was deemed reasonable to make small

changes to a microprocessor to achieve very high communication performance. These

changes, if successful, could be propagated into the mainstream processors. The

significant changes would be concentrated within the processor itself; the rest of the

hardware and the operating system would only have modifications necessary to use

the modified processor.

The first machine in the START family, *T[59], was based on a modified Mo-

torola MC88110 (88110MP) and the Arctic[13] network routing chip. The 88110MP

augments the MC88110 core with an internal network interface implemented as a

functional unit. A diagram of an 88110MP processor is shown in Figure 2-1. The

network interface is accessed via register operations, and is thus very fast. It utilizes

the MC88110's dual instruction issue capability and wide internal datapath allowing

up to 256 bits to be moved into the network buffer each cycle. A simple message

could be formatted and launched in 6 cycles. Reading an incoming message is also

done with simple register operations, albeit at a lower bandwidth of 128 bits/cycle.

Due to many issues ranging from the resources required to add the network inter-

face functional unit to the 88110 processor core, uncertainty surrounding the operat-

ing system and the new alliance between Motorola and IBM to design and build the

PowerPC processors, we were strongly encouraged to change processors. We decided

to design a new machine, START-NG, around stock SMPs based on the PowerPC

620 (Figure 2-2).

Though we could not modify the processor, the 620 supported a special co-

processor interface that allowed the back-side L2 cache interface to simultaneously

support a memory-mapped device. A region of the physical address space was stat-

ically mapped to a special region of the L2 cache interface. It was possible to have

24

64b 400 Mbytes/sec
local bus

Figure 2-1: An 88110MP node (taken from [59])

25

Figure 2-2: A START-NG site: the white areas comprise the base SMP. The grey
areas are our additions.

26

a memory-mapped device, such as a network interface, share the back-side L2 inter-

face with the L2 address tag and data RAMs. The memory-mapped device could be

cached in the Li cache but not in the L2 cache.

The 620 L2 interface was quite fast with a 128-bit data path and potentially

running at 1/2 the processor clock rate. Though the network interface was moved off

of the processor and thus incurred additional latency, the closeness of the interface

and the available bandwidth could still produce extremely aggressive performance. A

network interface supporting message passing was designed. Shared memory support

that relied on one processor on each SMP node to coordinate the moving of data

and act as a coherence protocol engine was also provided. A complete overview is

provided elsewhere[19].

In October 1995, we were informed that the PowerPC 620 was indefinitely de-

layed, forcing us to redesign START once more. Rather than relying on unavailable

technology, we decided to design around an existing processor, its systems and a stock

operating system. We selected the PowerPC 604e processor since it was Motorola's

highest performance processor at that time. Soon after, our relationship with Mo-

torola dissolved. As we had disagreed with Motorola on the aggressiveness of the

machine, we scrapped the joint design in favor of a new, higher performance design

based on the 604e. This machine was named START-VOYAGER[6, 8, 7]. Because we

could not modify the 604e or its bus, we were forced to implement all communication

over the standard memory bus and thus had to design around around the given mem-

ory model, cache semantics and memory bus. Communication had to be encoded

within standard memory operations that would be subjected to the associated cache

and bus protocols. Some communication mechanisms, such as shared memory, do fit

better into the cache and bus protocols provided than other communication mecha-

nisms, such as message passing, that do not necessary fit well within standard cache

and bus protocols.

During this design processi, we found that standard processors and their memory

'The author was responsible for *T's run-time system and Boon S. Ang and the author were
principal architects of START-NG and the architects of START-VOYAGER.

27

" Destruction of one-to-one mapping between memory operations and bus oper-
ations.

" Uncached operation performance degradation relative to cached operation per-
formance.

" Multiple word cache-lines one result of which are bus operations for cache-line
transfers.

" Coherency protocols to maintain a coherent view of memory given multiple
devices accessing memory one result of which is specialized coherency support
in bus protocols.

" Weak memory models requiring memory barriers to enforce ordering.

Figure 2-3: Cache Characteristics that Impact High-Performance Communication

hierarchies are not well suited for high-speed communication. Instead, they are op-

timized for memory operations with significant locality. Thus, a significant amount

of the START-VOYAGER design effort went into developing an interface between the

processor and it caches and the network interface made the best out of the memory

hierarchy.

2.2 Providing High-Performance Communication

to COTS Microprocessors

In this section, we detail how the memory hierarchy, memory models and bus protocols

get in the way of high-performance communication. In Figure 2-3 we summarize

the specific cache characteristics that affect communication discussed in the next

section[34]. The following section describes how a high-performance message passing

mechanism might be implemented on top of such caches. We finish with a description

of how START-VOYAGER attacks the problems.

28

2.2.1 The Evolution of Caches

The very first computers did not have a memory hierarchy. The memory system

itself was quite simple. There was no cache. All memory requests were serviced by

the memory itself over the bus in the order the memory operations appear within

the instruction stream. Because each instruction would generally take several cycles

to finish, demands on the memory were fairly light, eliminating the need to heavily

optimize memory.

Processors, however, have become very fast. Though memories have improved

in speed, they have not kept up with processors. Standard processors depend on

fast access to memory, or at least a perceived fast access to memory. Caches were

introduced to reduce memory latency and potentially reduce required bandwidth.

The replacement algorithm and miss penalty together play a key role in determining

the effectiveness of the cache. Originally, cache replacement algorithms were not so

critical since cache miss latencies were low, masking replacement errors. The miss

penalties seen today, however, are so large that even small miss ratios can significantly

impact performance.

The introduction of caches, however, has had a profound effect on the memory

system. For example, with caches bus transactions do not correspond one-to-one

with memory operations. Caches intercept and satisfy memory operations, often

completely avoiding the bus. Caches can also cause more than one bus transaction to

occur in response to a single memory operation such as when a modified cache-line is

written back to make room for new data.

Another impact of caching is that uncached operations have become relatively

slower. Most processor pipelines and bus interface units, including those found in

the 604, are not optimized for uncached transfers since they are generally used only

for I/O operations or control register operations that are not speed critical. Most

buses issue an address for each word of data being read or written from/to uncached

space, cutting into the critical address bus bandwidth. Generally, burst transfers are

not allowed from or to uncached space. Though store-gathering buffers (to aggregate

29

uncached stores) are becoming common, no such structure exists for reads since each

read may return different data or signal different events if they occur at different

times. Care must be taken even with store gathering since bus devices that depend

on uncached stores must be able to handle the burst data.

In order to both exploit spatial locality and reduce tag overhead, cache-lines be-

came larger than a single word. Doing so, however, requires either additional book-

keeping to specify the valid words within a cache-line or that data is moved from/to

lower cache levels in full cache-line blocks rather than single words. Virtually all

modern caches take the latter approach. Of course, moving cache-lines rather than

single words generally improves bus efficiency.

In order to further improve performance, bus protocols were tuned for caches.

Special cache-line bus operations were introduced and highly optimized. Bus opera-

tions of sizes other than cache-line size were not as optimized because they are used

less frequently.

In order to improve overall system performance and better utilize memory, addi-

tional processors were introduced on the same memory bus. Since multiple processors

could be writing the same memory location at the same time, the original assump-

tion that a value within storage would not change between two memory accesses was

no longer true2 . Thus, a cached copy of a value could become "stale". Protocols

designed to keep caches coherent were developed to address this problem. Though

many protocols have been proposed, the most common is the MESI protocol, for

MODIFIED, EXCLUSIVE, SHARED, and INVALID, the four possible states of a cache-

lines. The MESI protocol is an invalidation-based protocol, that is, it optimized for

single-writer and multiple-reader situations. The protocol ensures that when a pro-

cessor is writing cached data, no other processors can be caching that data. Multiple

readers, however, can be caching the same data simultaneously.

Bus-based coherency protocols maintain a coherent view of memory by "snooping"

2 Other bus devices, such as I/O devices, can also read and write storage, causing the same
coherency problem.

3 A real coherence protocol would require either several intermediate states or support for those
cache-lines in transient states as well.

30

the bus operations of other bus devices. Snooping protocols require each cache to

watch all bus transactions from other caches and react to the snooped transactions in

a way that maintains coherence. For example, if a cache caches data in the MODIFIED

state and snoops a read operation from another cache, it is required to return the

modified data to the bus. The exact response, of course, are determined by the

coherence protocol. The bus protocol, as opposed to the coherence protocol, may

retry the snooped bus operation and writeback the data to memory or may return

the data directly to the requesting cache while writing the data back to memory.

Obviously, bus protocols were modified to better support snoopy cache coherency

protocols. For example, most bus protocols support multiple distinct read operations.

The PowerPC 60X bus protocol includes a simple read, a read-with-intent-to-modif y

(which we will call read-exclusive throughout this thesis), a read-atomic, etc.

The distinct bus operations notify the coherence protocols of the intended use of the

requested data, giving the coherence protocol the information necessary to react ap-

propriately. Thus, as cache coherency protocols became more complex, bus protocols

followed.

As performance became more and more important, weak memory models were

developed. In a weak memory model, memory operations to different addresses can

proceed out-of-order. For example, two reads to different locations could appear on

the bus in the opposite order that they appear in the instruction stream. Weak

memory models are becoming more more prevalent within superscalar architectures,

since they allow operations to proceed at their own pace, rather than being limited

by their instruction order. The arguments necessary to generate the address of a

particular read could take a long time to obtain because they depend on previous

reads that have not yet been returned by the cache while a read that appears later

in the instruction stream may have all of its arguments available immediately.

While weak memory models can dramatically improve performance, they elim-

inate the possibility of using a single standard memory operation to indicate the

completion of previous memory events. Some sort of "memory barrier" that ensures

previous memory operations have completed before the barrier and subsequent mem-

31

ory operations are allowed to complete becomes necessary. Memory barriers, however,

are quite expensive. Most architectures implement them by forcing all outstanding

operations to complete before the memory barrier is allowed to complete and instruc-

tions further in the instruction stream are allowed to issue. For example, a sync

instruction takes about 20 processor cycles in a 166MHz PowerPC 604e. It is difficult

to make memory barriers fast because each memory instruction may have a complex

set of dependencies.

This memory system evolution dramatically improve memory performance as long

as memory access patterns follow the optimizations' assumptions. The memory hier-

archy evolution has specialized the memory system for cache-line-sized coherent, weak

memory model cache accesses, neglecting other forms of memory accesses. If memory

usage does not follow the assumptions, however, performance can suffer, sometimes

greatly. As time goes on, the uses of memory and the fast memory bus have become

more and more diverse and tend to fit less and less into the simple cached memory

model assumed and optimized by modern memory systems.

2.2.2 Message Passing with Caching

This section describes a naive message passing mechanism and how it might better

deal with COTS caches and buses as well as how caches and buses get in the way

of message passing paradigms. Consider a connection-based stream message passing

interface where the first step to communicating is to establish a link between a single

producer and a single consumer. Then, the producer generates data which is somehow

transfered to the consumer for consumption. The consumer should see the data in

the order that it was produced.

Given a standard memory system and assuming that control information such as

the address and bus operation are kept separate from the message data, the producer

would ideally write message data to a single address that identifies the stream input

and the receiver reads from another address that identifies the stream output. Using

a single address allows the producer/consumer to concisely specify the exact stream it

is accessing. Assuming uncached writes to produce and uncached reads to consume,

32

an uncached bus write to a stream-out address can indicate that a message has been

launched and an uncached bus read to a stream-in address can indicate that a message

has been received. Some handshaking is necessary for flow-control to ensure that

buffers do not overflow. If uncached reads and writes to the same location can get

out of order, memory barriers are necessary to keep data in order.

Unfortunately, it is impossible to implement such a scheme in an stock proces-

sor if maximum bandwidth is desired. Uncached reads and writes are slow and use

the bus inefficiently. Caching the interface only makes things worse. Caches are de-

signed to move cache-line sized blocks of data, not single words. Bandwidth would

be wasted moving cache-lines of data when only single words need to be moved. In

addition, transmits and receives would have to flush out data after each composi-

tion/consumption to avoid overwriting/reading the same data.

Rather than using a single address to specify a transmit or receive queue, a range

of cached addresses can be used to create a circular buffer. Additional computation

needs to be performed to compute each address and deal with wrap-around in the

circular queue, though superscalar execution eliminates any significant performance

impact. The buffers should be large to reduce signaling overheads and provide elas-

ticity between the producer and the consumer rates.

Caches remove the one-to-one correlation between memory operations and bus

transactions and, thus, there must be a way to signal that a message has been com-

posed or consumed as well as a way to provide flow-control to avoid buffer overflow.

One way to provide both signaling and flow-control is to specify bits within a block of

data that indicates a message has been produced or consumed[19]. Polling on those

bits can determine when it is safe to transmit or receive additional messages. This

technique can eliminate the need for the memory barrier if there is such a signal in

each word of data but does not eliminate the memory barrier if there is one signal for

a group of words. It does, however, reduce the amount of state that can be moved at

one time and may require undesirable overheads.

Another possible way to signal completion is to have the producer/consumer up-

date a separate location indicating that data has been produced/consumed. That

33

separate location could be a counter or a pointer. Either scheme allows the aggrega-

tion of signals. For weak memory models, a memory barrier is required between the

production of data and the updating of a signaling location in order to ensure that

the signaling write occurs after the data is produced. We assume uncached producer

and consumer pointers to indicate message composition and consumption signaling.

Though cached circular buffers avoid the problems of the original single address

specification of transmit and receive queues, they have their own set of problems. The

sequential access of message buffers does not match well with standard cache LRU

replacement algorithms. The message data that is streaming into or out of the cache

tends to replace data that will actually be used again, polluting the cache with dead

message data.

One way to minimize cache pollution is to make the message buffers small. Doing

so, however, reduces elasticity between the producer and consumer, increasing the

possibility of unintended throttling due to limited resources. It also increases overhead

by reducing the ability for pointers to be amortized. Additional bus transactions

for the pointer reads and writes as well as the synchronization operations become

required; all are expensive operations.

Another way to minimize pollution is to insert cache-line flush instructions right

after data is produced or consumed. Inserting flushs however, increases execution

overhead, requires bookkeeping and tends to be expensive; they are almost as costly

as a memory barrier in the PowerPC 604e. In addition, flush instructions must

either be proceeded by a memory barrier or semantically include a memory barrier

to ensure that data is not pushed out prematurely, adding additional overheads.

Barriers can be aggregated then data is not flushed immediately, bringing back the

pollution problem. Rather than having the processor explicitly flush data from the

cache, another bus device can issue bus operations that force the cache to invalidate

or write-back the desired data. The bus device starts issuing the flushes once it

sees a pointer update indicating completion. Having another bus device perform

the flushes does eliminate the overhead of processor-initiated flush instructions but

significantly increases latency since a signal to the bus device must travel down the

34

memory hierarchy and the externally launched flush back up again before the data

is written back.

There is tension between coherence protocols and controlling cache pollution. If

data is completely flushed from the cache to launch a message, after wrap-around a

future message will require a cache reload. If data is just cleaned, that is the data is

written back but an exclusive copy is kept, the bus transaction is not necessary but

the cache becomes polluted.

Another problem with cached buffers is the inherent latency imposed by cache

hierarchies. Moving data through multiple levels on the way to and from the bus is

costly. In order to get produced data to the network interface quickly, a producer

must explicitly flush produced data increasing processor overhead. The alternative

of having an external bus device issue bus operations that force flushes increases

latency. Thus, a producer must balance between latency and overhead; it cannot

minimize both.

Such a tradeoff is not as available to a consumer who must issue a read to pull

the message into its cache, requiring a round-trip to the memory bus. Generally, the

consumer must wait for the data to return since instructions further in the instruction

stream often depend on the read data. The consumer could prefetch the message,

but that would require (i) it knows a message has arrived and (ii) the consumer does

something else while waiting for the prefetch to return to mask the latency. Such a

switch might not always be cost effective since it has its own overheads. On the other

hand, if prefetching is done too early, the cache could become polluted.

Yet another problem is the sharing of message queues between different processes

or different threads. In general, process/thread switches can occur at any time. Since

messages take more than one instruction to transmit (check flow-control, compose

and launch,) or receive (check for message arrival, receive, indicate consumption),

locks must be taken to ensure sequential access to a single queue. Instead, it would

be preferable to have an independent queue per process/thread. A large number of

queues, however, requires a large amount of buffer space. Memory can be used to

provide a large region of buffer space.

35

DRAM, however, is much slower than SRAM. Generally, buses support much

higher bandwidth than the memory can provide. Also, buffering in DRAM will

generally create more bus transactions than buffering in dedicated message buffers

because message data is moved to and from the DRAM. For example, when a message

is received from the network, it is written to the DRAM buffer. The receiver then

reads the message from DRAM for a total of two bus transactions and two accesses to

DRAM as opposed to one bus transaction if a dedicated message buffer was provided.

Special message buffers, however, would probably be much smaller than memory due

to its higher cost and special-purpose nature.

Figure 2-4 summarizes the problems facing message passing on stock hardware

and the other issues with which it conflicts. There are no perfect solutions for im-

plementing stream-based message passing within a standard memory hierarchy. We

found the same to be true for all forms of message passing we looked at; all had

unavoidable overheads.

2.3 START-VOYAGER Solutions

START-VOYAGER attacks these issues, producing excellent performance in the con-

text of COTS processors and caches. START-VOYAGER is built from unmodified

IBM PowerPC 604e-based SMPs, each with a processor card in one processor slot

and the START-VOYAGER network interface unit (NIU) in a second processor slot as

shown in Figure 2.3. The processor card consists of a 166MHz 604e, which we refer to

as the application processor or AP, and a 512KB in-line L2 cache. The NIU consists

of custom hardware, some SRAM, and a 604 microprocessor used as an embedded

service processor (sP) to execute firmware.

Buffering space is provided by two banks of dual-ported SRAMs, each attached

to one of the 604 data buses on one side and to a central bus, called the IBus on the

other side. Multiple message passing queues are available to reduce or eliminate the

atomicity problem. SRAM buffers are provided on the network interface to address

the DRAM performance problem, though DRAM can be used as buffer if more queues

36

Pollution Message buffers can pollute caches since their access patterns do not
match standard replacement algorithms.

Coherency Standard coherency protocols require a writer to get permission and

(sometimes) have a current copy of the cache-line of data to write. Ei-
ther a producer keeps a copy causing pollution or must issue reads to get
permission/cache-lines. Conflicts with pollution.

Explicit Cache Management Generally, software-initiated cache management in-
structions are costly. Preferably, the data is written-back/flushed automatically
after composition/consumption. Conflicts with pollution, latency.

Cache Latency Cache hierarchies are deep, creating latency. Conflicts with explicit
cache management.

Synchronization The memory barriers implemented in modern microprocessors are
expensive. Solutions require either modifications to the processor core, limits
on the scope of the synchronization operation or both. Conflicts with pollution.

Receive/Transmit Asymmetry Transmitting a message is more efficient than re-
ceiving a message. Transmits are pushes, not requiring any information other
than aggregatable flow-control to execute while receives are pulls and cannot
continue until the received data is available. There are no general solutions
possible with COTS hardware.

Atomicity Sharing of a single queue between different threads of control is expen-
sive. Separate queues are desired but are potentially expensive to implement,
especially if buffering space is tight. Conflicts with DRAM performance.

DRAM Performance DRAM is slow in terms of both latency and bandwidth
(though bandwidth limitations are being fixed with SDRAM). But, DRAM
is a large resource. Conflicts with atomicity and performance.

Figure 2-4: The problems faced by high-performance communication implemented
through standard caches.

37

FIZ ASIC clSRAM NIU Board
Dl FPGA

Standard

....... Control

- Data

SP

604 -- aBIU sBIU
(aP)

......... MC

aSRAM sSRAM

-Tx Rx
DRAM MC Arctic

Network

Figure 2-5: A START-VOYAGER node. The NIU contains 3 FPGAs, 1 LPGA, two
dual-ported banks of SRAM (labeled aSRAM and sSRAM), an SRAM attached to
the aP address bus, and an embedded processor. The NIU connects to the system
bus of an SMP as well as a high performance interconnection network.

than are supported in the SRAM are needed. Unfortunately, there is nothing that

we could do about cache latency and our solutions to cache pollution are simply

balancing acts, allowing the user to trade one negative for another.

START-VOYAGER'S message passing mechanisms that address the problems men-

tioned earlier in this chapter are now described. A more complete description of

START-VOYAGER'S message passing can be found elsewhere[7, 5]. Information about

shared memory and its performance can be found in the Appendix of this thesis.

2.3.1 Basic

Basic messages are implemented in a cached (though they could be uncached if de-

sired), circular buffer. Buffer sizes are configurable, allowing pollution to be traded

for coherency, explicit cache management and synchronization. Up to 88 bytes (in

8 byte increments) of data can be sent in each message. Messages are launched by

uncached pointer updates and are received by first reading an uncached pointer that

points to the first free location in the receive buffer then reading the received data. By

38

comparing to the previous pointer, a consumer can detect if messages have arrived.

Pointers are aggregate-able, allowing amortization of memory barriers and uncached

operations. Because several operations are necessary to produce/consume a message,

there is a atomicity problem.

Hardware support to "reclaim" cached message buffer data is provided by the

network interface. When production/consumption pointers are updated, the network

interface issues the necessary clean or flush operations to clean/flush the appropri-

ate address regions from the cache. This support eliminates the need for the processor

to issue cache management instructions to pushout transmit messages or to flush re-

ceive messages but increases latency. This support can be turned off on a per queue

basis.

2.3.2 Express

Express messages are uncached thereby eliminating the pollution problem. Writes to

a single address indicate a specific queue and destination. Reads to a single address

indicate a specific queue. Transmit compose/launch are combined into a single 32b

uncached write. The lower address bits are used as a logical destination as well as

extra 5 bits of data if necessary. The data from the write is the bulk of the transmitted

data.

Receives from a specific queue are performed by reading a 64b value from a specific

address. The 64b read will return either a valid message (containing the 37b of data

plus some return destination information) or the contents of a set location, the "miss

location". The 64b read can be performed either as a single 64b read or 2 32b reads.

The express message mechanism emulates hardware FIFOs. They eliminate pollu-

tion, pushout costs and cache latency problems because they are completely uncached.

The uncached write/reads and FIFO emulation also eliminate the need to signal and

synchronize when a message is composed or consumed though transmits still need to

read counters for flow-control. Express messages, however, are limited in bandwidth.

There is still a receive/transmit asymmetry but that is unavoidable in standard mem-

ory hierarchies. In addition, Express messages are safer for multithreaded codes, since

39

each transmit/receive can be atomic, though the transmit flow-control still needs to

be finessed.

Express messages have excellent latency, very poor bandwidth and good processor

overhead. There is a potential impact on the TLB, since a wide range of addresses is

used when stealing address bits for destination/data, but that impact can be limited

by limiting the number of address bits used.

2.3.3 Tagon

The Tagon mechanism allows the Express and Basic mechanisms to specify a pointer

to additional data stored within the SRAM buffers. The additional data area can

be cached, providing burst transfer of blocks of data to Express messages. The

Tagon mechanism is especially useful for multicasting to multiple locations (by writing

the data once and sending multiple messages with that data) and for multithreaded

sharing of queues (by giving each thread a separate region to compose Tagon data.)

On the receive side, Express messages with Tagon are split into two queues, the

standard Express message and the Tagon part. The user must read the Tagon part

separately and explicitly deallocate it by updating an uncached consumer pointer.

For Basic messages, the received messages look as if they were composed as normal

Basic messages.

Tagon buffer space size is configurable, allowing pollution to be controlled. Since

Tagon data is launched when its corresponding Basic or Express message is launched,

there is no additional issues with pointer aggregation. Hardware support can be pro-

vided to support a reclaim ability for Tagon data. When used aggressively, Tagon has

the same pollution verses coherency, explicit cache management and synchronization

issues as Basic messages. Atomicity can be finessed by dividing buffer space, but then

increases the buffer space required.

40

2.4 Summary

To reiterate, the problems we faced are not inherently message passing problems,

but can be found in a variety of memory reference patterns such as streaming data

and rapid context switching between threads. Even aggressive shared memory has

some of the same problems such as inherent read latencies (see Appendix for detail

on START-VOYAGER'S shared memory support).

Though START-VOYAGER attacked all the addressable issues given the PowerPC

604e and its caches, there is still considerable room for improvement. For example,

containing cache pollution only comes by increasing other overheads. In addition,

there is still the issue of the inherent latency to receive messages.

There are several possible solutions to these unresolved issues. For example, a

fast memory barrier and fast flush/clean implementations would solve many of

the remaining issues. The mechanisms described in the next two chapters, column

and curious caching, however, are much more general, solving most of the problems

discussed in this chapter while also having applicability across a wide range of other

applications. In addition, they provide additional functionality not currently available

in standard microprocessors and caches.

41

Chapter 3

Column Caching

A column cache is a cache modified so that the replacement algorithm can be con-

trolled, by software, hardware, or both. The column cache replacement algorithm is

dependent on parameters such as the address and memory operation that caused the

replacement. Performance and cache resource efficiency can be improved by control-

ling the regions of memory that are allowed to replace particular cache locations.

Standard caches use a uniform replacement policy for all cached memory locations,

creating a monolithic cache appropriate for caching memory references that exhibit

uniform locality. Standard reference streams, however, rarely exhibit uniform locality.

Logically, a standard reference stream is an interleaving of multiple streams, each with

a unique region of locality (Figure 3-1). Within a region of locality, memory reference

behavior is uniform but different regions of locality have different behaviors, that is

their range and access frequency change over time. A particular region may appear

to a uniform replacement algorithm to require more cache than another region when,

in reality, the opposite is true, producing sub-optimal caching behavior.

Ideally, the replacement policy is an oracle that does optimal replacement based

on knowledge of the future. Unfortunately, oracles are currently beyond the state-of-

the-art but there are situations in which software may know future access patterns.

Newer processors, such as the Intel IA-64[37], provide instructions that can specify

in which level of the cache accessed data should be cached. Such control, however,

is tied to instructions and thus provides control that may be too fine-grained or too

42

U Q 1J Processes

Interleaved reference
stream seen by cache

Separated reference
streams each with uniform
region of locality

Slowly moving LRU data Static LRU Stream data

Figure 3-1: Multiple Regions of Locality. Multitasking operating systems multitask

sophisticated applications that each use memory in a variety of different ways creating

the memory reference stream seen by the cache. That stream seen by the cache can

be logically decomposed into unique streams, each with a unique region of locality.

static. More dynamic and aggregatable control provides additional benefits.

One possible aggregation is for software to inform hardware of the regions of

locality and their probable reference pattern. Logically, the predictability of future

references based on past references is much higher in a single region of locality and

thus hardware could potentially do a good job with replacement. Giving each region

of locality its own, appropriately-sized cache using a specialized replacement policy

can approximate an ideal replacement policy and improve performance and resource

usage. It is possible for software to specify regions of locality and the cache size and

replacement policy for each region.

Column caching is a mechanism that gives software the ability to make such spec-

ifications and cause the cache to act accordingly. Specifically, column caching enables

software (or special hardware) to dynamically map regions of address space to cache

partitions that are made up of columns. Cache partitions can overlap completely or

partially, or be completely independent. Partitioning the cache isolates regions and

eliminates conflicts resulting from standard replacement algorithms. Our implemen-

tation of partitioning, referred to as column caching, can improve hit rates and tune

cache usage.

43

An alternative to column caching relies on the software control available in direct-

mapped caches. Direct-mapped caches do not have a replacement policy since every

physical address is always mapped to the same cache location. Such a cache provides

software with substantial control since the software maps virtual addresses to physical

addresses and thus can map memory regions to specific cache regions. Mapping pages

to avoid conflicts and thus improve performance is called page coloring[12, 66 and

has been shown to make a direct-mapped cache perform as well as a low-associative

cache. Page coloring is orthogonal to column caching; the two techniques can be used

together for mutual benefit.

This chapter first presents a motivating example for column caching. It then de-

scribes page coloring in more detail. Column caching is then introduced. Several of

the possible uses for column caching are enumerated followed by a detailed implemen-

tation. Alternative designs are then explored. Related work and a summary finish

up the chapter.

3.1 A Motivating Example

Consider a data compression application. Compression algorithms read a data stream

into an input window and repeatedly search for common patterns within that window.

It identifies the largest patterns, encodes them into smaller representations, and out-

puts these encodings. A large fraction of the memory accesses involve the repetitive

searching within the window. While searching the window, other data structures are

used to record patterns. Finally, there is a memory-mapped output buffer.

The three basic regions of memory, the input window, the patterns, and the

output buffer are each accessed differently. The input window is read linearly, with

some backtracking, as the application searches for patterns. It is never written. The

patterns are stored in hash tables, a data structure that intentionally destroys spatial

locality to evenly spread records. If the file is compressible, the patterns hash table

will have temporal locality because a compressible file has repeated patterns. Thus

some hash table references will be to a small number of repeatedly accessed locations,

44

Window Pattern Output Standard Ideal
Hash Buffer Cache Cache

~.' -Accessed rarely

Always accessed

L lii EIWritten Once

Figure 3-2: Compression. The 3 figures on the left, labeled Window, Pattern and

Output Buffer, show the memory consumption, specific access locations and frequency
and type of access. The standard cache shows how a standard LRU cache would

cache these references. The ideal cache shows how these references should be cached
to achieve best performance.

while the others will appear random. The output buffer, on the other hand, is written

sequentially, but never read. It is accessed less frequently than the window or the

hash table since it stores compressed data on the way to the disk.

The three memory regions compete for cache space (Figure 3-2). The input win-

dow and the pattern hash table are accessed at approximately the same rate (look in

the window, then look for the pattern), while the output buffer is accessed far less

frequently. A standard LRU replacement algorithm will cache the frequently accessed

hash table entries and (approximately) split the rest of the cache between the window,

the randomly accessed hash table entries and the output buffer. With limited cache

space, the randomly accessed hash table entries should not be cached since they are

rarely reused. Moreover, the output buffer does not need to be cached at all. Due to

cache-lines being bigger than a single word, however, it may improve performance to

cache a single cache-line of the output buffer.

To maximize performance, it is important to protect the window data from being

replaced prematurely. Window data has a fairly long lifetime, but each cache-line

within the window is not accessed frequently enough to keep it from being replaced

by the pattern and output memory accesses. Thus, the window should be cached

in its entirety since it will be reused several times. An ideal cache (also shown in

Figure 3-2) would dedicate most of the cache to the window data, only caching the

frequently accessed hash table entries and very little (if any) of the output buffer.

45

The LRU algorithm, however, replaces it with far less useful randomly accessed hash

table entries and useless output buffer entries since they were more recently accessed.

To give an example, an ideal cache can improve gzip L2 hit rates by approximately

a factor of two for L2 cache sizes of 32K and 64K and getting more the a 25%

improvement for a 128K L2 cache, potentially improving performance by the same

amount or more. In these examples, the Li is assumed to be 8K, 2-way set-associative.

Li hit rates are very high to begin with due to a significant number of stack references

and thus cannot be improved much by the ideal cache.

3.2 One Partitioning Solution: Page Coloring

Our approach is to provide the ability to partition the cache between different address

regions, separating different regions of locality. Thus, in the example, a large partition

of the cache is allocated to window data, a small region of the cache to the hash table

and an even smaller region (or none at all) to the output buffer.

Page coloring[12] (see Figure 3-3) is a method to partitioning the cache that

generally assumes a direct-mapped cache. Two virtual pages can be isolated from each

other by mapping them to physical pages that do not overlap in the cache. Mapping

virtual pages to the same cache page requires that the corresponding physical pages

must be a multiple of the cache size apart.

Page coloring can have a significant performance benefit. Early research demon-

strated that page coloring can generally make a direct-mapped cache perform as well

as a two-way set-associative cache[12], providing better hit rates without the added

hardware complexity. More recent research demonstrates that page coloring can im-

prove overall performance by 20% to 30%[66].

Page coloring, however, has limitations. Once a page is allocated, the only way to

relocate the page within the cache is by copying that page to another page that maps

to another cache page, a costly operation. In addition to copying the page, the TLB

and the page table entry also need to be updated in order to maintain transparency

to the running program. Of course, the program can do the copying and deal with

46

Physical Memory

Cache

0
1

2

3

Figure 3-3: Page Coloring. When the operating system maps a virtual page to a
physical page frame, it choses a physical page frame that resides in the desired region
of the cache. For example, a 0 memory region must be selected to map to the 0
cache region. By judicious mapping, the operating system can either separate regions
of memory from each other in the cache, or combine regions of memory within the
cache.

47

Virtual Address Space
Wasted pages

A

Cache

B

E F

C

D

Physical Address Space

Figure 3-4: How page coloring can waste both memory and cache when used with a
set-associative cache. We want to map the memory page marked A to the cache page
marked E. Only one more page that maps to cache pages E or F can be allocated to
avoid conflicting with A in the cache. If none of those pages are allocated, however,
part of the cache pages E and F are wasted.

the address change itself. This will eliminate the need for page table manipulation

but not eliminate copying.

Many remappings require many more than one page copy. They may also waste

memory. If a page Q is being mapped to an exclusive cache page, it is possible that

mp/c, - 1 pages (where mp is the number of pages in memory and c, is the number

of pages in the cache divided by the associativity of the cache) need to be copied to

give page Q exclusive access to that cache page, a tremendously expensive operation.

Those mp/cp -1 pages are wasted as well, since they would conflict with page Q in the

cache. Thus, there are both performance and resource problems with page coloring

in a direct-mapped cache.

Things are even worse in a set-associative cache. The same copying problem exists.

The same memory wastage problem exists, but worse, because c, will be smaller for

a n-way set-associative cache compared to a direct-mapped cache of the same size.

Of course, it is possible to use n - 1 of the wasted pages since the cache is capable

of caching them without interfering with the isolated page. If no pages within the

wasted 1/p range are used, however, (n - 1)C/nc, space in the cache (where C is the

total size of the cache) will be wasted as well. Figure 3-4 illustrates these problems.

48

Page coloring is also unable to map contiguous regions of memory addresses to a

single cache page so it cannot be used with I/O streams. Virtually all I/O devices

have memory-mapped buffers that occupy contiguous physical addresses.

Hardware support can improve page coloring. For example, a high speed memory

copy implemented by the memory controller, coupled with a block invalidation for

the cache(s) would dramatically improve the ability to move memory pages from one

region of cache to another. These mechanisms would be generally useful as well as

they would dramatically improve memory copying performance. Though improving

remapping, however, they would be difficult to implement lazily. In addition, this

support will does not deal with non-contiguous regions of memory.

3.3 Column Caching Overview

In column caching, each region of locality is conceptually mapped to its own separate

cache. The mappings can be changed dynamically. Cache partitioning can guarantee

that regions of locality interfere or do not interfere. Often times, different regions of

locality can coexist - after all, standard caching generally performs very well. If a

cache is correctly partitioned, where the reference patterns within each partition have

uniform characteristics, it is much easier to accurately predict future references from

past references and, therefore, get better hit rates.

A cache partitioning mechanism should have the following properties:

" Allow fast repartitioning of the cache and remapping of regions to those parti-
tions.

" Allow flexible mapping between regions of memory and regions of cache.

" Use memory and cache resources efficiently.

* Have no negative effect on the clock speed nor slow down the critical lookup
phase. Since caches are on the critical path in all processors, increasing latency
can significantly impact performance.

* Be backward performance-compatible - that is, there should be no penalty if
partitioning is not used.

* Be inexpensive to implement.

49

Page coloring violates the first three requirements. Page coloring does not allow

fast dynamic repartitioning of the cache. It does not allow flexible mappings since it

cannot map a contiguous region of memory to a single cache page. And, it does not

use memory and cache resources efficiently since mapping a single memory page to a

single cache page wastes memory and potentially cache space.

The simplest hardware approach, providing several separate caches, where each

cache contains only specific data and only that cache is searched when looking for

that specific data, violates all of the requirements. The static nature of the cache

does not allow for fast repartitioning, flexible mapping and efficient use. In addition,

there is negative impact on cycle time, since it must be determined where to look for

the requested data. Finally, such a cache cannot be used as a single monolithic cache.

As we shall see shortly, our proposed mechanism, column caching, addresses all of

these issues: it allows flexible and dynamic partitioning, uses resources efficiently, has

no performance impact during lookups', runs as a normal cache if necessary and it is

easy to implement with minimal extensions to standard set-associative caches. The

rest of this we describes this mechanism and how it is able to achieve these design

goals.

3.3.1 What is a Column?

We now describe reference column caching through the end of this section. Each

column is one "way", or bank, of the n-way set-associative cache (Figure 3-5). Every

cache-line in the set is searched during every access, making each column effectively

a separate direct-mapped cache and allowing any memory location to be cached in

any column.

In a standard cache, lower-order bits are used to select a set of cache-lines which are

then associatively searched for the desired data. There are two control units normally

associated with the cache. The hit unit determines whether or not there is the hit

on each access using the address tags and cache state tags stored in the cache itself

'No performance impact during lookups is assuming the reference column caching implementation
and not low-associativity designs.

50

LRU Information

Permission Tag

Address Tag

Op Virtual add ress

Replacement Unit BIU
TLB e.ejBI

Hit? BIU
Data

Figure 3-5: A four-way set-associative cache. Dotted boxes surround each possible
column.

along with the requested physical address and the opcode of the request. Though

physical caches are assumed throughout, column cachinig works just as easily with

virtual caches. The replacement unit determines which cache-line should be replaced

if replacement is necessary. We assume a least-recently-used (LRU) replacement

algorithm throughout our base implementation and thus store LRU state with each

cache-line. In addition, a permission tag and an address tag are stored for each

cache-line.

Column caching incurs no performance penalty during lookup, since lookup is

precisely the same as for a standard set-associative cache. By mapping all regions

of memory across all columns, the cache becomes a normal set-associative cache.

Repartitioning is graceful; if data is moved from one column to another (but always

in the same set), the associative search will still find the data in the new location. A

memory location can be cached in one column during one cycle, then re-mapped to

another column on the next cycle. The cached data will not move to the new column

instantaneously, but will remain in the old column until it is replaced. Once removed

from the cache, it will be cached in a column to which it is mapped the next time it

is accessed.

By aggregating columns into partitions, we provide set associativity to partitions

51

as well as increase the size of partitions. Obviously, larger partitions require more

columns, implying more set-associativity for the partition. Again, this functionality

fits in well with standard set-associative caches.

An additional level of software management may be necessary if the column cache

services multiple independent processes. Traditional caching allows each running

process to use the entire cache. Such a policy is undesirable for latency-sensitive

periodic processes and when context switch times must be minimized. The operating

system can manage the entire cache, not surrendering mapping control to individual

processes, optimizing cache usage across all processes. This scheme can improve

overall throughput without any modifications to applications, but may not improve

the performance of individual applications.

The operating system could manage the cache with hints from the running pro-

cesses. Or, it could give each application a part of the cache to manage on its own,

reserving the right to take back columns if necessary. These last two options, similar

to user-level page management[45], allow applications to optimize their own cache

usage without the operating system giving up all control.

The remaining high-level problem, then, is how to partition the cache so that data

from specific memory regions are cached only in specified columns.

3.3.2 How To Partition?

Column caching partitions the cache by modifying the replacement policy imple-

mented by the replacement unit. A standard set-associative cache replacement policy

considers all cache-lines in a set as candidates for replacement. A column cache

replacement policy, on the other hand, provides the ability to limit replacement can-

didates to a subset of cache-lines in a set. Selectively restricting replacement is

essentially partitioning the cache.

Implementation is greatly simplified if the minimum mapping granularity is a

page, since existing virtual memory translation mechanisms including the ubiquitous

translation-look-aside-buffers (TLB) can be used to store mapping information that

will be passed to the replacement unit. TLBs are designed to be accessed every

52

Virtual address

''''"""""""--.-.. Replacement Unit " - BIU

Column 0 Column 1 Column 2 Column 3

Figure 3-6: Basic Column Caching. Three modifications to a set-associative cache are
necessary: (i) augmented TLB to hold mapping information, (ii) modified replace-

ment unit that uses mapping information and (iii) a path between the TLB and the
replacement unit that carries that information.

memory reference and are designed to be fast in order to minimize physical cache

access time. Partitioning is supported by simply adding column caching mapping

entries to the TLB data structures and providing a data path from those entries to

the modified replacement unit.

Thus, column caching is implemented by three small modifications to a set-

associative cache (Figure 3-6). The TLB must be modified to store the mapping

information. The replacement unit must be modified to respect TLB-generated re-

strictions of replacement cache-line selection. A path to carry the mapping informa-

tion from the TLB to the replacement unit must be provided. Similar control over the

cache already exists in standard caches for uncached data, since the cached/uncached

bit resides in the TLB.

Basic column caching specifies replacement candidacy using a bit vector in which

a bit indicates if the corresponding column is a candidate for replacement. The bit

vector is used by the replacement unit, along with standard replacement data such as

LrU information normally associated with each cache-line, to decide which cache-line

to replace. There may be a single bit vector per partitionable unit, or there may be

several bit vectors depending on factors such as the memory operation. For example,

there may be different bit vectors for data cached in response to a store than a load.

Such differentiation is useful to allocate different amounts of space to a memory region

53

depending on its use, .e.g., production verses consumption of a buffer.

The cache is made software-partitionable by allowing software to set the bit vector.

It can be reset by the software at any time to allow repartitioning. Simply changing

the bit vector does not move or invalidate data in the cache. Rather, a changed bit

vector only affects how new memory addresses are brought into the cache. There is no

need to move data out of a cache unless there is space pressure or the data is needed

elsewhere exclusively. Lazily repartitioning in this fashion reduces the overhead of

partitioning and the resources required to repartition. By simple changes to the

replacement algorithm, however, data cached in a region where it is not mapped will

quickly be replaced by data that is mapped to that region (more details will follow in

Section 3.5.3). If all the bits in the bit vector are asserted for all memory addresses,

the column cache behaves exactly like the original set-associative cache.

The bit vector have semantics other than indicating which columns are potential

replacement candidates. Instead, the nth bit can indicate whether to replace into

the nth most-recently-used position. A standard LRU cache, for example, would

be emulated by having only the 0th bit set since replacement is always done into

the most-recently-used position. In order to achieve true partitioning, however, this

approach requires careful updating of LRU state.

To improve clarity, we define the terms that we will use throughout the rest of

this chapter. We define a cache page as the minimum cache mapping region. Because

the reference implementation of column caching assumes that the minimum unit of

cache allocation is a column and a column is the size of a page, we often use column

as a synonym of a cache page. Towards the end of the chapter, when discussing

low-associativity column caching, we use the term "cache page" instead of column,

since the latter means an entire way or bank of of the cache. A set of cache pages is

equivalent to a set of cache-lines, just at page granularity.

A cache partition is a set of cache pages that are assigned to a specific region of

memory. A partition may overlap with other partitions, i.e., they may contain cache

pages that are assigned to other partitions as well.

54

3.3.3 Software Control: Virtual Partitions

To leverage existing virtual address translation mechanisms, especially the TLBs, our

reference column caching mechanism uses pages as the basic granularity of mapping

to columns. Thus, mapping information is mostly contained within page table entries

and is accessed on every memory access just as translation information is accessed.

Mapping, therefore, requires manipulation of virtual memory translation structures.

Mapping a page to a cache partition represented by a bit vector is a two phase

process. Pages are mapped to a tint rather than to a bit vector directly. A tint is a

virtual grouping of address spaces. For example, an entire streaming data structure

could be mapped to a single tint, or all streaming data structures could be mapped

to a single tint, or just the first page of several data structures could be mapped to a

single tint. Tints are independently mapped to a set of columns, represented by a bit

vector; such mappings can be changed quickly. Thus, tints, rather than bit vectors,

are stored in page table entries.

The tint level-of-indirection is introduced to isolate the user from machine-specific

information such as the number of columns, or the number of levels of the memory

hierarchy. Another motivation is to make re-mapping easier. Imagine a scenario

where initially each page is mapped to all columns, the default case that behaves

exactly the same as a normal cache, and one page is remapped to its own dedicated

column. This operation requires changing the mapping of all pages to columns. If bit

vectors were stored within the page table entries, then all page table entries would

have to be changed (top of Figure 3-7). In our tinting scheme, on the other hand,

a new tint is allocated and assigned to the to-be-isolated page and the mappings

between two tints and their bit vectors must be changed. The level of indirection

allows the bit vectors of a group of pages to be changed simultaneously, rather than

requiring each page to be changed individually.

Rather than eagerly tinting all pages, the appropriate tint can be automatically

applied when a page table entry is allocated. If a region's tint is changed (re-tinted),

each page table entry of that region needs to be updated and any corresponding TLB's

55

Page Table/TLB Entries

11 [111111 11W11 111 1 1[E 111
_al JDlL JCjt Z~L JD

0 1 0 0 1 01 11 1 0 1 1 1 0 11 1 01 11

red ii 1i

rd]red re rd re blue X X

ble red red red [ed red 1 0 1 1

blue j0 1 0 0

Figure 3-7: An example that demonstrates the advantage of storing tints instead of
bit vectors in the page table entries. In the first example, where we store raw bit
vectors in page table entries, in order to remap page 0 to use its own column and
the rest of the pages to use the remaining columns, we need to change all page table
entries. In the second example, using tints, only one tint and two tint/bit-vector table
entries need to be changed. All pages start with the default tint, red. In order to give
one page its own column, that page's tint is changed to blue. Tint blue corresponds
to a bit vector that specifies that page to be cached in the second column. Tint red's
bit vector is changed to remove the second column as a possible replacement column.
The TLB entries for all former tint red pages must be flushed or modified in place to
reflect the new bit vector.

56

Tint/Bit Vector Table

map-init-tints(num-tints) OS call that creates a specified number of tints. Re-
turned status indicates how many tints, if any, were actually created and a
pointer that provides control access to the tints.

map-init-columns(numncolumns) OS call that allocates a specified number of
columns. Returned status indicates how many columns, if any, were actually
allocated and a pointer that provides control access to the columns.

map-malloc (size, tint) User-level call that allocates memory and maps that mem-
ory to a certain tint.

map-address-range-to-tint (*addr, size, tint) User-level call that maps a pre-
allocated region of memory to a certain tint.

map-tint-to-bit-vector(tint, bitvector) User-level call that maps a tint to a
bit vector. Here, we assume a virtual bit vector that is translated to a physical
bit vector by software and protected by hardware mechanisms (Section 3.5.2).

Figure 3-8: Possible Cache Mapping Services

either updated or flushed depending on the requirements of the processor architecture.

Re-tinting should occur very infrequently since changing the mapping between tints

and bit vectors is all that is necessary for most remappings.

Both mappings are achieved via user-level memory operations. Operating system

calls are first made to initialize mapping data structures and to allocate control regions

of memory in user-level space. User-level code access the control regions of memory

directly to set mappings between address regions and tints, and mappings between

tints and columns.

In Figure 3-8 we list a possible set of mapping services functions.

The map-init and map-change calls are operating system calls and, therefore, in-

cur more overhead. They should be called very infrequently. The rest of the functions

are user-level functions. Because they are composed of memory accesses to user-space,

they should incur very little overhead. Helper functions to assist with tasks such as

bit vector generation will also be provided.

Protection mechanisms to ensure that one process cannot map to columns assigned

to another process should be provided. To achieve best performance, some of those

57

protection mechanisms may need to be part of the hardware. Ideally, user-level code

can update tints and bit vectors without operating system calls. The operating system

must perform mappings for processes that do not use column caching explicitly, in

order to avoid polluting mapped columns that are expected to persist across context

switches.

3.4 Uses for Column Caching

Column caching enables tuning the tradeoff between cache-resources and perfor-

mance. In a traditional system, the entire cache is used by the currently running

process. Thus, the running process is allowed to use all the resources to maximize its

performance. If the running process does not need all of the cache or if the running

process is not performance critical, however, there may be better uses for regions of

the cache. Column caching allows the operating system to target a "global maxi-

mum", rather than throwing all available resources to the task at hand. With proper

management, processor throughput can improve with either no degradation or even

improvement in individual process latency.

In the rest of this section, we elaborate on ways that cache partitioning can help

achieve higher performance or maintain performance with fewer resources.

3.4.1 Controlling Pollution

Memory references that have short temporal locality can pollute a standard cache,

replacing data that should remain cached. Pollution is caused by multiple regions of

locality sharing the same monolithic cache, e.g., a stream and a stack or a FIFO queue

slightly larger than the capacity of the cache. Pollution can also be caused by sparse,

random accesses such as accesses to a hash table or by regions of memory that have

different access patterns depending on the phase of the program. To avoid damaging

the locality of other regions, the multiple regions of locality should be dynamically

separated into different partitions, as the situation dictates.

A standard cache has no provision for controlling pollution; in fact, the standard

58

LRU replacement algorithm often aggravates pollution because it keeps recently ac-

cessed data (that is often not used again) and replaces less recently accessed data.

Column caching can solve this problem by partitioning the different regions of locality

into different partitions of the cache.

Explicit cache management mechanisms have been introduced into certain pro-

cessor instruction sets, giving those processors the ability to limit pollution. Perhaps

the most interesting are the new load/store instructions found in the Compaq Alpha

21264[46] that minimize pollution by invalidating the cache-line after it is used. In-

structions to load into a specific memory hierarchy are provided by next generation

Compaq Alphas and the EPIC/Merced/IA-64[37] instruction sets. Such instructions,

if used properly, can improve performance and reduce cache pollution but statically

bind specific cache behavior to specific instructions.

It has been demonstrated[73] that for several applications only a few memory

instructions cause most of the cache misses. Simple hardware (or compilers) can

track these "missing" memory instructions to determine whether to cache loaded

data on an instruction-by-instruction basis, yielding fairly good results. It addresses

the worse pollution, but cannot deal with data that should be cached, but should

take less space that a standard replacement algorithm allocates it.

Most current and future processors provide support to allow uncached writes to be

store-gathered, that is, consecutive writes to an uncached page will be gathered into a

more-efficient burst transfer on the bus. This support allows regions of memory that

would normally pollute the cache be mapped uncached but still use the fast burst

path to the bus. Regions of memory mapped uncached for transmit must either

be mapped cached for receive, requiring an additional virtual mapping to the same

physical pages, or must have corresponding modifications to the receiving path to

achieve reasonable receive bandwidth. In addition, not all stream data sequentially

addresses the cache and there may be reason to cache the written data as well.

These sorts of cache management instructions and policies can be used with col-

umn caching to provide additional flexibility. Column caching, however, can provide

many of the same benefits and is, in many ways, easier to conceptualize and use since

59

it deals with regions of memory rather than individual instructions.

3.4.2 Constructive Interference

Purposely mapping a region of memory to a region of cache so that the current con-

tents of the cache will be forced out is called constructive interference. For example, a

memory region can be mapped to a small cache region, allowing a region to construc-

tively interfere with itself. Such self-interference is very useful for memory regions

that are accessed in a stream-like fashion, such as a buffer. For example, a message

passing transmit buffer of size n can be mapped to a cache region of size m, where

n is much larger than m. If messages are written out nearly continuously, not only

will this mapping limit pollution, it will automatically push out message data as new

messages are being composed in the cache. In contrast, a standard cache would sim-

ply become polluted by the transmitted data and delay moving the transmitted data

out to the network.

A standard cache has no provision for doing constructive interference. Some pro-

cessors support cache management operations such as flush or clean[51], but the

instruction stream must execute one such instruction per cache-line consuming in-

struction dispatch and load-store unit slots, the exact cache-line address must be

tracked creating run-time overheads, and synchronization must be inserted to en-

sure that the cache management operations are executed after the last access to the

cache-line, to avoid ping-ponging the cache-line.

3.4.3 Enabling Compiler Optimizations

Significant progress has been made in the area of cache-aware compiler optimizations.

Through careful allocation of memory, careful layout of data structures on top of

that memory and careful scheduling and insertion of loads/stores to ensure that the

correct data remains in the cache, compilers (or the extraordinary user) can improve

cache performance within a standard cache. Such optimizations fall loosely into

one of two categories: data layouts/instruction reordering that improve hit ratios

60

and instruction rearrangement or instruction addition (prefetching) to ensure that

data is cached before it is used extensively. Most of these optimizations depend on

knowing specific details about the cache such as total size, block size, associativity,

replacement strategy, etc. The compiler combines that knowledge with its program

analysis with the assumption of a dedicated cache. Such hacks, however, are imprecise

because (i) the cache replacement algorithm may not be fully understood or may vary

depending on the particular implementation, (ii) instruction reordering can occur

within virtually all modern superscalar processors and (iii) process switches can swap

in other code that subsequently destroys the careful layout. Different cache instances

also have different sizes requiring fancier layout code.

Column caching facilitates compiler-based cache mapping techniques by guaran-

teeing mappings, ensuring that mapped memory stays mapped and that they do not

interfere with other regions of memory. For example, standard blocking techniques

can benefit from cache partitioning that can prevent other data from being displaced

by the blocked data. In addition to optimizing compilers for sequential machines, col-

umn caches are natural targets for compilers that optimize parallel codes by mapping

memory to different nodes in a distributed system.

Cache-line pinning is available in processors like the Cyrix MII[23], while column-

pinning is provided in other processors like the Motorola 8240[55]. The 8240 column-

pinning allows software to specify that a specific column in the instruction cache

not be replaced. Pinning eliminates a particular cache-line/column as a candidate

for replacement, keeping the memory cached. Unfortunately, these mechanisms do

not provide a way to determine whether the right data is in the cache when the

pinning occurs, and potentially not pinning the data even though the instruction to

do so was issued. In addition, at least for the cache-line mechanism, pinning requires

an operation per cache-line to pin and probably another operation per cache-line to

unpin.

61

3.4.4 Embedded SRAM

Column caching has the ability to create dedicated SRAM within the cache by map-

ping a single memory page to a single cache page. This emulated SRAM is better

than SRAM, however; it is automatically swapped in and out if the cache page is

remapped rather than requiring an explicit swapping as a standard embedded SRAM

would. Of course, in order to guarantee performance, the load/store can be performed

during remapping, just like with a dedicated SRAM. Such a structure is obviously

of benefit to embedded applications as well as compilers that can detect and use

embedded SRAMs.

3.4.5 Multiprogramming/Multithreading

The operating system can use column caches to improve multitasking. Current ma-

chines are fast enough to run a huge number of processes. Process switches, however,

are limited by the cost of amortizing cache misses incurred by conflicts due to the

multiple jobs, which are essentially cache pollution caused by multiple processes shar-

ing the same cache (see Section 5.3.3). Such pressures can reduce the number of jobs

a processor can realistically support.

Cache partitioning can improve the situation. For example, consider four running

jobs (Figure 3-9). Each job uses memory in an LRU fashion and their working sets

are smaller than the total cache. A mapped cache would allow efficient time sharing

of the cache, while a traditional cache requires refilling the cache on each context

switch. Notice that one job whose working set is twice as large as the rest can either

share space with another job or be relegated to a smaller region of the cache.

Cache trashing, another form of pollution, has also been observed in multithreaded

systems, especially those that perform context switches on cache misses such as the

Alewife machine[47]. Column caching could eliminate thrashing by ensuring that

memory operations from one thread cannot interfere with the memory operations

from another thread by simply mapping the memory used by the two threads to

different regions of the cache. Column caching can also ensure that a critical job's

62

Memory Footprint

Standard Cache Column Cache Time

x 11 0

I"". K

Nee OA

RW

X11

Figure 3-9: Four jobs scheduled in a round-robin fashion. Three jobs have a one
page memory footprint, while the fourth job has a two page memory footprint. A
standard cache always be cold when a job is swapped in because the other jobs have
thrashed out its cache state. A column cache, however, allows state to be protected
from other processes' references, allowing two out of the four jobs to run out of cache
and another job to have half of its data in the cache at all times.

63

::777

state is not polluted by other, less critical jobs.

3.4.6 Combining Instruction/Data Cache

Harvard architectures that imply separate instruction-data caches are a classic ex-

ample of a statically-partitioned cache. Column caching can eliminate cache conflicts

between instructions and data sharing the same cache while better utilizing the com-

bined cache. Often times, programs with small instruction footprints have large data

footprints (scientific codes) and programs with large instruction footprints have small

data footprints. Certain commercial processors, such as the Cyrix 6x86MX[22] have

fast, unified caches.

3.4.7 Speculative Execution Buffers

By partitioning the cache and specifying special replacement policies, part of a mapped

cache can be used for speculative thread execution. In speculative execution, either

(i) a branch is predicted and a path is speculated, (ii) a non-blocking request for a

lock is issued and the thread is started on the assumption that the lock will eventually

be returned or (iii) execution continues based on a speculated data value. Until the

speculation is resolved, no writebacks can occur. Once that happens, writebacks are

reenabled. If the speculation fails, the mapped regions of the cache are invalidated

without being written back. Deadlock is possible in the locking case, but can be

circumvented by timeouts. By partitioning the cache in a column cache, the specula-

tion writes can be contained in a small part of the cache, potentially eliminating the

need for special speculation store buffers, and speculation-initiated cached memory

operations can be isolated to prevent pollution.

3.4.8 Multiple Memory Operations per Cycle

Column caching is compatible with the simpler multiple memory operation imple-

mentations that split odd addresses and even addresses to two banks and allow si-

multaneous access to those banks. There is no change necessary to column caching if

64

the odd and even words accessed simultaneously must be from the same cache-line. If

the odd and even words can be from different cache-lines, it is possible (but perhaps

not desirable) to have different bit vectors for odd and even words.

3.4.9 Copying in Cache: Tag Access

Assume that user-level code has protected access to cache address tags, cache per-

mission tags and LRU information. Having such a mechanism enables a lot of useful

functionality. For example, examining address tags allows software to determine what

has been accessed recently and may assist in adaptive mapping policies. By changing

the address tags and permission tags from one region of memory to another region of

memory, we have effectively done a memory copy within the cache.

Of course, coherence issues immediately arise when you allow the ability to change

address and permission tags. Protection must be provided to (i) limit such access to

regions of memory that the current process has permission to access, and (ii) restrict

update abilities to eliminate the possibility of an unhandled condition such as having

two modified cache copies of the same address.

Protection can be provided by the standard translation mechanisms. The paging

mechanism can also ensure that a process is only able to read its own tags from the

cache, ensuring privacy to other processes. Protecting other process's tags from being

accessed, however, may not be necessary since the non-shared data still cannot be

read.

To support our copying example, pages could be marked single-process and pinned

to a processor, indicating that only a single process (and no other bus devices) will

be using the data, ensuring that no other devices will be caching the data. Thus,

it would be possible for a process to change address and permission tags without

worrying about coherence with other processors' caches. If the hit and replacement

algorithms account for the possibility of having two cached copies of the same data,

potential machine errors are eliminated. Then, by careful mapping of addresses (for

example, the copied-from page and the copy-to page are both mapped to a single

cache page), it can be guaranteed that such an operation is possible.

65

Issuing instructions for each cache-line may become too expensive, motivating

block operations. The memory copy in cache, for example, could be easily imple-

mented as a block operation, allowing whole pages to be copied with a single instruc-

tion.

Such an ability can deal with data accesses whose stride modulo a column size is

zero, thereby using the cache very inefficiently. The data could be first copied to a

new space, completely within the cache. After the computation completes, the data

can be copied back to the original space by simply changing the address tags then

immediately flushing the data. Address tags would need to be as large as the entire

address minus the cache-line index bits and write-backs would need to regenerate the

address from the address tag alone, potentially making such a scheme impractical.

Though tag access mechanisms are useful in non-column caches, these mechanisms

work better in column caches. In a normal cache, hardware support must be provided

to ensure that changing an address tag is safe and that the intended data has not

been replaced. Such support requires an atomic operation that checks the original

tag then replaces it. Such complexity implemented within the cache will likely slow

the entire cache down. Column caching can ensure that the specific addresses are not

replaced from the cache, potentially making such mechanisms easier to implement.

3.5 Implementation Details

In this section we cover column caching implementation details. We start by dis-

cussing where tints and bit vectors are stored within page table and TLB entries.

We then describe how protection of the partitioning mechanism might be provided.

Modifications to the replacement unit and the replacement algorithm follow. The

section finishes with the clock cycle impact of column caching.

3.5.1 Implementing Control Mechanisms

One simple implementation of the tint-to-bit-vector translation stores a page's tint

in the page table entry and translates the tint to a bit vector when loading into the

66

| P Virtual address

TLB" ..".""""" ...""""" ...".""""" ..."""""..." ."""""..."""""....".."""""..."""
in o ,.RplcH eUit? BlU

Data

Column 0 Column i Column 2 Column 3

Figure 3-10: Adding a Tint-to-Bit-Vector translation unit between the TLB gener-
ating the bit vector and the replacement unit. This unit allows tints to be quickly
remapped to different columns.

TLB. When tint-to-bit-vector mappings change, only the corresponding TLB entries

need to be updated or flushed while the page table entries remain the same. The bit

vector mappings are part of process state and thus must be saved and subsequently

restored on process switches.

To eliminate the need to update the TLB on remapping, an additional lookup

structure can be inserted (see Figure 3-10). When a TLB entry is loaded, the tint is

stored in the TLB entry. When the TLB entry is accessed during a memory reference,

the tint is read and passed to another translation unit that dynamically converts the

tint to a bit vector that is passed to the replacement unit. The bit vector is only

needed when replacement is necessary, probably removing this translation from the

critical path. The conversion is a simple lookup, given a reasonable number of tints,

since the tints are contiguous rather than sparse like the virtual address space. The

resulting bit vector is passed to the replacement unit. If a tint-to-bit-vector mapping

changes, only this tint-to-bit-vector needs to be updated. On the other hand, if a

page is re-tinted, its page and corresponding TLB entry (if there is one) needs to be

updated.

67

3.5.2 Protection

Protection mechanisms are provided to allow user-level access to mapping structures,

avoiding expensive operating system calls every time a mapping needs to change.

Protection can be imposed in one of two places: when the tint-to-bit-vector table

is written or when the tint-to-bit-vector table is accessed for cache-line replacement.

The former method requires no additional hardware but does require some protection

during the table updates and updating or flushing the tint-to-bit-vector table when

protections change. The latter method requires additional hardware but requires

no changes when protections change. It is likely, however, that protections will not

change often and thus the former method will probably work well with little effort.

The simplest implementation of the first method requires operating system calls to

change tint-to-bit-vector mappings. Such a scheme requires no additional hardware

but has fairly high overhead due to the operating system call.

Another implementation of the first method requires additional hardware in the

form of a bit mask that encodes to which columns the running process can map.

When the user writes a new bit vector, it is ANDed with the bit mask to produce the

bit vector stored in the tint-to-bit-vector table. The bit mask requires maintenance.

If the columns assigned to a running process changes, the operating system must

update the bit mask. On a context switch, the operating system must save and

restore the bit mask. If the columns assigned to a process change, the corresponding

tint-to-bit-vector table entries must be updated accordingly.

An implementation of the second method uses the bit mask to mask bit vectors

before they are passed to the replacement unit. Any such approach, however, adds

time to the path between the TLB and the replacement unit. Performing the bit

vector mask at this point eliminates the need to make changes in the tint-bit-vector

mapping table when column permissions change since the bit mask ensures only valid

mapping columns are passed to the replacement unit. It may be, however, that

An implementation of the second method uses "virtual bit vector" in the tinting-

to-bit-vector map structure rather than an actual bit vector. Such an approach does

68

add time to the path between the TLB and the replacement unit. The virtual bit

vector assumes contiguous virtual columns rather than having to deal with the actual

physical columns that are allocated to the process. During replacement, the virtual

bit vector is translated into a physical bit vector in a way very similar to standard

page translation. Using a virtual bit vector allows the operating system to change

column allocation in a way transparent to the process. The translation process could

be done in a way similar to page translation, requiring a bit vector page table with

bit vector TLBs. Such a solution is very similar to simply translating tints, however,

since the virtual bit vector can be considered a tint but may require fewer entries

since there may be fewer cache partitions than tints.

There are other ways to implement partitioning without using bit vectors. One

possibility is to specify a replacement mode per memory page. Replacement modes

might include (i) use all unmapped columns, (ii) map to stream column, or (iii) map

to unique column 0. There would be a corresponding column mode per column such

as (i) unmapped, (ii) stream, or (iii) unique column 0) that define how the column

should be used. The replacement mode might also specify the replacement policy

used for its page.

The semantics of column caching might be that partitioning is a hint rather than

an imperative. Doing so might make the mechanism less useful, but it may also make

the implementation easier under certain circumstances.

3.5.3 Simple Replacement Algorithms for Column Caching

The replacement unit and the policy it implements is the center of modifications to

implement column caching. Exactly how the replacement selection is restricted using

a bit vector is very dependent on the details of the replacement algorithm itself.

The full range of replacement algorithms can be used with a bit vector to spec-

ify which columns are candidates for replacement. Pseudo-random replacement is

the simplest replacement policy to implement for both standard caches and column

caches. In a standard cache using a random replacement algorithm the cache-line to

be replaced is selected at random. One implementation of a column cache with ran-

69

dom replacement would generate a random number from 0 to the number of columns

the requested address is mapped to minus one. That number will then be used to

select the corresponding column.

Similar modifications can be made to least-recently-used replacement algorithms

to implement column caching. One way to implement an LRU replacement policy

within a column cache is to delay the computation of the replacement cache-slot until

the bit vector has been read from the TLB. Then, the same LRU algorithm is run

on the bit-vector-specified subset of the cache. LRU replacement information, as in

a standard cache, must be maintained.

Another possible replacement unit implementation provides a replacement unit

for each partition specified by a unique bit vector. After translation is done and the

correct subset has been determined, the output of the appropriate replacement unit

is used for replacement. The standard LRU bookkeeping information is kept as in

a normal LRU algorithm. Providing a separate replacement unit per unique active

bit vector allows the replacement algorithm to start before the bit vector is actually

read. Of course, it consumes a significant amount of resources, since there must be

logically one replacement unit per unique bit vector pattern present.

To really tune replacement, it is possible to make the replacement policy per

partition specifiable by software. The replacement policy selection can be part of a

TLB entry's state which is passed to the replacement unit along with the bit vector.

Thus, the replacement policy can be selectable per page, though that replacement

policy applies across all the columns that that page might reside.

3.5.4 Column-Caching-Specific Modifications to LRU: Rein-

forced Repartitioning

Standard LRU algorithms consider all cache-lines in a set equal, a policy not well

suited for column caching. If a column cache is repartitioned, a standard LRU al-

gorithm may prevent the repartitioning from occurring because frequently accessed

memory locations are still cached in old columns. For example, tint red is initially

70

A, B mapped to Red

-* -Red mapped
to columns 0, 1

4............

0 1 2 3

Red Blue

A, B mapped to Red
5 C, D mapped to Blue

Red mapped
to column 0

.J JBumapped
-p -Bto column 1, 2

0 1 2 3

Reference Stream: B, C, B, D, B, C, B

Figure 3-11: A standard LRU algorithm may prevent repartitioning from taking
effect. The top figure shows the cache right before the remapping. The bottom figure
shows the cache after the columns are remapped and the specified reference stream
completes. When tint red is shrunk to a single column, it might still have data in
columns it does not currently map. Data in the unmapped columns may still be
consistently accessed, while the data in the mapped columns not accessed at all. A
standard LRU algorithm, however, will continue to update the LRU data for that
column and thus, given certain reference patterns, never replace it.

mapped to columns zero and one (Figure 3-11). Then, tint red is repartitioned to

column zero while tint blue is mapped to columns one and two. Column one will

continue to contain its old data while column two is forced to cache all of the tint

blue data. Column zero, however, is full of data that will never be used again. This

problem is due to the standard LRU replacement algorithm not accounting for column

caching.

The following modification to the LRU algorithm fixes this problem. LRU algo-

rithms maintain bits for each cache-line in order to keep track of which cache-lines

are least recently used. After a cache-line is accessed, the LRU bits are updated to

indicate that it was just accessed. Depending on the LRU algorithm, the update

could be to all LRU bits in the set or some subset of the LRU bits.

71

If the cache-line caches a location that is not mapped onto that column our modi-

fication either (i) does not update the LRU bits for that cache-line or (ii) updates the

LRU bits for the accessed cache-line to least-recently-used. In doing so, the cache-

line will be replaced much sooner, since it will seem that it is either never accessed

or immediately becomes the least-recently-accessed. This behavior reinforces repar-

titioning; cache-lines that do not belong in a specific partition are quickly replaced

from that partition. It may be that an address belongs in another partition in which

case it will be replaced from the unmapped column and read back into a mapped

column. Additional support, such as a victim cache, can dramatically reduce or even

eliminate the need to reload data replaced in this way.

3.5.5 Combining Random and LRU

Another possible modification to the LRU algorithm has potential benefits to standard

caches as well as column caches. Standard LRU algorithms conceptually keep track

of the absolute order in which cache-lines have been accessed. Instead, imagine if the

accessed cache-line's LRU bits are set to zero while all other cache-lines' LRU bits

are incremented by one. LRU bits cannot be incremented past a maximum value.

Using these values, the new replacement algorithm is as follows. When selecting a

replacement cache-line, first find all cache-lines whose LRU bits are set to the maxi-

mum value. Choose one of those cache lines randomly for replacement. If none are at

the maximum value, choose the cache-line whose LRU bits are at the largest value.

This replacement algorithm combines random replacement with LRU. Intuitively,

random replacement will perform better on memory reference streams that perform

poorly under a LRU replacement algorithm, while LRU replacement performs better

on streams that do have good LRU behavior. This intuition is supported by recent

research[48].

72

3.5.6 Impact of Column Caching on Clock Cycle

Many caches precompute replacement cache-lines in parallel with the cache access.

Upon a cache miss, the replacement line, address and bus operation information are

sent to the bus interface unit that initiates a request for the line and coordinates

the return of the requested data. If the replacement line currently contains modified

data, that data also needs to be written back to the bus.

The bit vector is incorporated into the TLB and thus is not available until after

the TLB is read. For a physically-addressed cache, a hit cannot be determined until

after the TLB is read and the physical-address is constructed and thus, the extra cycle

to read the bit vector is likely not on the critical path. If the cache set associated

with the virtual address can be determined before translation completes, however, it

is possible to determine the replacement cache-line before the TLB read completes.

Determining the cache set from a virtual address requires either that (i) the cache

banks (columns) are smaller than or equal to a virtual page in size or that (ii) the

virtual-to-physical mappings are restricted so that the lower order bits needed to

access the cache set are the same in the virtual address as the physical address.

Computing the replacement cache-line in a single cycle is difficult and is a timing

bottleneck in many caches. There is, however, little reason for the replacement cache-

line to be determined so early other than to allow the initiation of a pushout if

necessary. In the fastest realistic system, data requested from the next memory

hierarchy level takes at least three cycles to return. One cycle is needed to pipeline

the request to the next memory hierarchy level, one cycle to read the data, and

one cycle to pipeline the reply. Most systems take at least another two cycles from

initiation to completion of a memory request since there are generally more pipeline

stages. The exact replacement cache-line does not need to be decided until the data

returns, giving the replacement algorithm at least 3 to 5 cycles to make a decision.

Since the replacement algorithm has several cycles to make a decision, it is likely

that designers pipeline it. The bus operation to fetch the new line can be issued

before replacement determination has completed. If the cache-line is not selected by

73

the time the read completes, read buffers will buffer the data pending the decision.

Since write-backs cannot be initiated until after the replacement line is selected, a

few more pushout buffers may be necessary to balance the system.

Such a design removes replacement from the critical path and may even improve

cache cycle times. Pipeline provides additional time to execute more complex re-

placement algorithms, such as column caching, without performance penalties. Thus,

column caching should have no cycle time impact or may even improve cycle times

as an artifact of pipelining the replacement policy.

3.6 Effect of Multi-Level Caches

Most modern memory hierarchies have more than one level of cache. The presence of

column caching on each level of the memory hierarchy is not dependent on any other

level. For example, column caching may only be provided in the LI cache or only in

the L2 cache or just in the LI and L3 caches.

Generally, each level of the cache is different in size and in associativity, making it

both undesirable and impractical to reuse the same partitioning across all levels. Our

basic column caching implementation maintains a single tint for each page of memory.

Providing the tint to each level of the memory hierarchy requires either (i) passing

tint information from the TLB down through the hierarchy levels or (ii) duplicating

the information in each memory hierarchy level. The latter is probably the preferred

solution when successive hierarchy levels cross chip boundaries, since silicon is a far

cheaper resource than bandwidth while the former is probably the preferred solution

when the successive hierarchy levels are on the same chip.

The tint is converted to a bit vector at each memory hierarchy level independently

so that different partitionings can be achieved at each level. Thus, each level in the

memory hierarchy contains a table of tints to bit vector mappings. Software has the

ability to change each mapping individually.

Controlling each level of the memory hierarchy may be too much trouble for the

code generator (the user or the compiler) since details about the memory hierar-

74

chy might not be known at compile time. Instead, dynamically-linked libraries that

contain specific information about the current hardware and that map common "pat-

terns" to the respective cache levels can be provided to ease the mapping task for

portable code. These libraries would allow the specification of tints, the mapping of

regions of memory onto tints, and the specification of abstract mapping policies of

tints onto a cache.

There are many possible mapping policies. The simplest would have every level

in the hierarchy devoting approximately the same amount of space, modulo hardware

constraints. An "expanding" policy, where the mapping at each lower level of the

memory hierarchy is proportional to the highest level of the hierarchy, up to some

limit, would probably be the default. Something like one of these first two policies for

realistic behavior with inclusive caches, since every level of the hierarchy must contain

everything cached in higher levels of the hierarchy. For non-inclusive caches, on the

other hand, there is no dependence between levels of the cache; therefore, there is no

restriction on how much space is allocated at each level. Polices that bypass the first

level of cache, or first few levels of cache would also be provided for large data sets

that have no spatial locality and not enough temporal locality to make caching in a

small cache worthwhile.

Inclusive caches can implement a form of column caching by just implementing

column caching in lower-levels of the memory hierarchy. By restricting the amount

of space that a region of memory can take in a lower cache, ancestor caches are

automatically limited as well. Though conflicts are not necessarily avoided, space

in a higher cache is automatically limited to be smaller than or equal to the space

allocated in a lower cache.

Some caches (MIPS R8000[35, 63]) load certain data such as floating point data

into the L2 cache (a "streaming cache" in the MIPSR8000) rather than into the Li

cache since regions of memory containing floating point numbers tend to be accessed

in ways that would thrash the Li cache. Research has been done in techniques to

dynamically determine whether a cache should be bypassed[42, 73]. Such approaches,

however, are a fixed replacement policy which will perform well in some cases but will

75

likely perform poorly in others. In addition, additional structures must be inserted

(read buffers for example) in order to exploit the available spatial locality.

3.7 Cache Associativity

Our reference design for column caching imposes the following constraints: columns

are each one page large and memory regions are mapped on a page basis. Even with

current cache sizes, however, page-sized columns result in a large number of columns,

requiring high-associativity caches. High-associativity caches are desirable to get the

full benefit from column caching but are expensive to implement. We discuss how

high-associativity caches might be efficiently implemented. We also discuss column

caching implementations that use low-associativity caches.

3.7.1 High-Associativity

Since the minimum cache partition granularity in column caching is a column, more

columns means a finer granularity of partitioning. High-associativity, however, can

create high implementation overheads and, in extreme cases, impact cycle times,

latency, or both; more cache-lines need to be searched on each access and the replace-

ment algorithm has more possibilities from which to choose. Thus, there are greater

costs to a cache of higher associativity. High associative designs, however, have not

been aggressively investigated since research has shown that there is very little benefit

of associativity higher than four for common benchmarks[33]. By restructuring cache

organization, it is possible to implement a high associative cache with little to no

performance penalty.

One way to implement fast, high-associativity is to use Context-Addressable-

Memories (CAM) to do lookup instead of using the standard single comparator per

column architecture. CAMs do require significantly more space, perhaps two to four

times more space for the address tags than the standard approach, since there is

conceptually a comparator associated with each address tag. High-speed implemen-

tations of high associativity, such as with TLBs that are often 64-way or 128-way fully

76

associative caches, are possible with CAMs. The SA-1100 StrongARM processor[39]

contains a 32-way set-associative cache implemented with CAMs.

Another option to implement high-associativity caches is to use on-chip tags and

pipelined hit units and replacement units. Current processors dedicate a considerable

amount of silicon area to on-chip L2 caches or include dedicated L2 cache interfaces

on the processor die. Assuming we have access to the space that would be consumed

by an on-chip L2 cache and we had a dedicated path to off-chip SRAM, a very high-

performance, high associativity (perhaps 128 to 256 way) L2 cache could probably be

implemented.

By putting only tags and logic on the processor die and placing the cache data

on external SRAMs, like the next generation UltraSPARC[49], much more space is

available for tags. Since the tags, the hit unit and the replacement unit for the L2

cache are all on the processor die, L2 hit determination can be initiated at the same

time as Li hit determination. The L2 hit determination circuit can be pipelined since

it is expected that accessing the L2 takes longer than accessing the L1. The pipelined

depth should not be too deep, perhaps two to five cycles. The L2 replacement unit,

of course, can also be pipelined and thus should not take any additional time. If the

Li misses and the L2 hits, the data is read from the external SRAM to satisfy the

request. By removing data from the processor chip and replacing it with tags, very

large L2 caches that can be quickly checked for hits are achievable.

There are some disadvantages to this scheme. High-associativity requires more

computation and thus more pipeline stages than a low-associativity design. In ad-

dition, this technique does require an SRAM interface implying extra pins, or at

least extra pads, that would not be needed if the entire L2 cache was on-chip. If

the Li cache, however, is large and is used efficiently due to column caching, these

slight penalties may not make any real performance difference. There are also other

alternatives to high associativity design described the next few sections.

77

Physical Address Space 4-way Low-Associativity Cache

A

B C

D

Figure 3-12: A naive low-associativity column cache. Each of the four vertical lines
is a column. Four pages of memory are mapped into four cache pages, but regions A
and D are permanently separated. Only B and C can potentially occupy the same
region of the cache.

3.7.2 Large Columns: Low Associativity

It is desirable to have some associativity in a cache to avoid conflict misses. Modern

set-associative caches are generally low in associativity, perhaps four to eight way,

making each column fairly large. For example, the HP PA-8500 with a four way set-

associative 1MB cache will have columns of 256MB each. Column caching techniques

can still be used with low associativity caches, but the supported functionality is

different than a reference column cache. With additional hardware support, however,

a reasonable approximation of column caching can be provided within the context of

a low-associative cache.

A naive implementation of low-associativity column caching maps page-granularity

memory regions to tints that are then mapped to specific columns in the cache (Fig-

ure 3-12). When columns are larger than pages, a mapped page will consume only a

cache page rather than the entire column. Only pages that map to the same sets can

interfere with each other, while pages that do not map to the same sets are always

completely independent of each other.

78

Virtual Address Space Virtual Address Space

B B

C Cache C Cache

A A

Physical Address Space Physical Address Space

Figure 3-13: The limitations of low associativity. In the picture on the left, C cannot
use the same cache space as A or B since it sits in a different sets. To fix this, C
can be mapped to a physical page (via page coloring) that maps into the sets of the
cache as A and B. Upon doing so, however, only 2 of A, B, and C can coexist in
isolated regions of the cache since there is limited associativity. In the figure, A and
B are cached, while C cannot be cached because there is not enough associativity,
even though there is room in the cache.

Page coloring can improve naive low associativity column caching by allowing

pages to be mapped to isolated sets of cache pages or the same set of cache pages.

Column caching provides some dynamic remapping abilities, though such abilities are

limited by the associativity of the cache. Figure 3-13 gives an example in a two-way

set associative cache. In order for page A and page B to be able to be mapped onto

the same region of the cache, they must occupy physical page frames that map to the

same set of cache pages. If structure C is mapped to the same set of cache pages,

however, it is impossible to isolate all three from each other and still keep them all

cached because there is not enough associativity in the cache. If C is allocated to

pages that do not overlap with A and B, it cannot share the same region of the cache

without copying C (page coloring) to a page frame that does overlap with A and B

in the cache.

Page coloring with column caching within a low-associativity cache can be thought

of as several reference column caches bound together where each page is mapped to a

single reference column cache. We will refer to each of the reference column caches as

a row. Rows can be aggregated by mapping (using page coloring) a region of virtual

memory to physical memory that maps to more than one row in the cache. Row

aggregation increases the number of pages that can share the same cache space, but

79

Figure 3-14: If the two regions of memory, each consisting of two pages, need to be
able to interfere as well as be isolated in the cache, they might be mapped to two
cache pages each, but within the same cache page sets, rather than every page to the
same cache page. That way, they can coexist in the cache separated from each other
as well as the third, one page region.

at the cost of increasing the minimum amount of cache space they take up. Thus, as

potential cache region sharing goes up, the cache region actually increases in space,

limiting benefits (Figure 3-14).

Another disadvantage of low-associative column caches is that, even with page col-

oring, they cannot map contiguous regions of memory to a single cache page. Even

with all these restrictions, however, low-associativity column caching still improves on

page coloring by providing more mapping control and thus enabling reducing poten-

tial waste of memory and cache. Low-associativity column caching enables efficient

isolation in set-associative caches, eliminating the memory and cache waste that ac-

companies page coloring on set-associative caches. Figure 3-15 gives an example.

The limited mapping capability provided by low-associativity column caching with

page coloring is sufficient in some cases, and provides benefits over plain page col-

oring. There may be cases, however, when more flexibility to remap regions quickly

and/or the ability to map a contiguous region of memory to a single cache page is

essential. In the next section, a mechanism that solves these problems is proposed.

80

L J

...

Figure 3-15: Page A should be mapped to cache page E. In a standard page coloring
scheme, A cannot be isolated to only cache page E but gets replaced into either E or
F. In order to avoid conflicts with A in the cache, at most one of pages B, C and D
can be allocated at a time. Column caching fixes the problem by allowing A to only
use cache page E and pages B, C and D to only use cache page F.

This mechanism eliminates most of the problems found in direct-mapped cache-based

page coloring as well.

3.7.3 Separating Cache Addresses and Memory Addresses

Caches use memory addresses both to derive the cache set and to generate the address

tag. Using the memory address as the basis of the cache address is the root of the page

coloring problems described throughout this chapter as well as some of the problems

with the low-associativity column caching implementation.

Rather than using the same address for cache and memory, an independent address

can be generated for the cache. In fact, such a translation can be done logically at

each level of the memory hierarchy. We call this separation of "global address" from

a physical address used to access the current memory hierarchy retargeting. See

Figure 3-16 and Figure 3-17 for the default and three examples of how retargeting

might be implemented. In the default, the TLB generates a physical address that is

used both for the next level of the memory hierarchy as well as the cache. In the first

example, labeled A, the TLB stores two addresses, a physical memory frame number

and a cache frame number. In the second example, labeled B, the TLB generates

81

Default

|TLB

MA

A
Virtual address Hit?

TLB

MAM

Figure 3-16: A standard cache (top) and a modified cache (bottom) that uses a
Cache Address (CA) generated by the TLB to access the cache. MA stands for
memory address and is the standard physical address.

the memory address for the next level of the memory hierarchy as well as a set of

cache pages. The lower order bits of the address index into the cache pages. In the

third example, labeled C, the functional unit takes all of the address bits as well as

information from the TLB. The functional unit can ignore any of the information.

The last method is the most flexible of the solutions presented here and is the

one we will refer to when discussing retargeting. One possible function is to specify

separate cache pages for each column. Doing so allows full flexibility as to where a

page is mapped within the cache.

If the retargeting functional units are sufficiently powerful, retargeting can even

provide the ability to map regions of memory to regions of cache that are smaller than

a cache page (Section 3.8.2). Flexible retargeting allows the mapping of any memory

region onto any cache region. Such an ability is useful for many things including large

pages and for regions of memory that need less than a page of cache.

Note that adding such a mechanism does introduce additional logic into the cache

hit path that adds at least a cycle since the cache cannot be read until the cache

address is generated. The logic could also impact cycle time. Low associativity,

82

B

C

Figure 3-17: A cache (top) that uses a TLB-generated Cache Address that selects
a cache page and a functional unit per column that generates the offset within that
region. An obvious simplification provides a single functional unit to select the same
cache page in each column. The second cache (bottom) generates the set of Cache
Addresses as well as the address tag from the entire address and TLB-generated
information using a functional unit per column. Any arbitrary functionality mapping
can be implemented by such a scheme, assuming the functional units are sufficiently
powerful.

83

however, is more prevalent in lower level caches. Since lower level caches are vir-

tually all physically addressed, if retargeting can occur within the time needed for

address translation, there will be no impact. Our primary design for low-associativity

retargetted designs has that property.

Lower levels of cache generally can tolerate more latency anyways. Finally, initi-

ating requests for these lower level caches early, in a similar fashion to that described

to deal with high associativity (Section 3.7.1), could be used and thus potentially

eliminate any cycle time impact.

Another issue raised by retargeting is the coherence problem within a single col-

umn cache (not the same as the coherence problem between multiple caches). By

changing a memory page's cache page, it is possible to miss in the cache when the

requested data is actually in the cache, causing another copy of the same data to be

read and cached in a different position in the cache. Because the original copy of the

data might be modified, the newly read data may actually be stale.

Given a standard set-associative cache structure, there is no simple solution to the

coherence problem. In order to remap within the same column, the original location

must either be cleared of modified data or both locations must be searched. It is

possible that the clearing of the cache-lines can be done lazily, with the replacement

unit tracking the cache-lines that are replaced. If it is expected that the entire cache

region will be replaced, a simple counter indicating how many cache-lines new data

has replaced is sufficient. More advanced tracking hardware, that keeps track of which

cache-lines were replaced for example, could reduce the number of invalidations that

need to be done in order to reuse the column. A block invalidation unit is another

potential solution that has other uses as well.

Associativity can be achieved by sequentially cycling through multiple possible

locations within a direct-mapped cache[1, 75]. Obviously, the most likely position

is checked first. Such a technique could be used to alleviate the coherence problem

associated with remapped data by providing the old location as a secondary location

to look. Depending on the circumstances, however, it may or may not be advantageous

to move data found in second or greater tries to its first try location or change the

84

first try location if possible. If the associativity is really needed, it may be wise to

leave data in the non-first position. If not, it would probably be best to move the

data to avoid the successive checks.

Though such cycling will incur more latency, because the cycling starting point is

specified under software control, it is likely to hit on the first try. Such emulation of

set associativity, however, will require additional address tag bits, since a particular

cache-line could exist in a variety of positions.

Having two copies of the same data in different columns of the cache is, however,

potentially desirable. The hit algorithm, however, needs to know that this might

happen and must handle it in a reasonable fashion. One way to handle multiple

copies of the same data is to have a favored column for each page where data is read

from, if possible.

One possible use for having multiple copies of data is a speculation buffer. Two

columns are allocated as a single speculation buffer. One caches read data and the

other caches write data to the same addresses. When reading from speculation buffer,

the write column is favored. If the speculation turns out to be incorrect, the write col-

umn is thrown away while the read column remains. Having such an ability eliminates

the need for having dedicated speculation buffers.

Retargeting makes cache position independent of the memory address, an ability

that is useful for a variety of purposes including improving low-associativity column

caching and making page coloring truly useful.

3.7.4 Improving Low Associativity with Retargeting

Retargeting improves low-associative column cache functionality since it enables full

flexibility to map a memory page to any cache page. The footprint of a memory region

in a specific column is difficult to change once it has been set due to the coherence

problem. However, the footprint in each column can be different if a separate function

is provided for each set. Figure 3-18 shows an example. The retargeting functions

map the memory region to 4 cache pages in column 0, 2 cache pages in column 1 and 1

cache page in column 2, while column 3 is reserved and not currently mapped. Thus,

85

0

1

2 0 4 0 4 2 6 0 4 2 6

1 5 1 5 3 7

2 6

537 3 7>

6

7

Figure 3-18: The memory range is mapped onto a different number of cache pages
in each column. Such a mapping can be achieved by simple retargeting support that
allows each memory page to be mapped to a distinct cache page for each column. Such
support can be implemented by a set of cache page numbers in each page-table/TLB
entry, avoiding the need for any special functional unit. By mapping in increasing
binary sizes, any number of cache pages from 0 to 7 can be used to cache this memory
region. Expansion and contraction is easy to do simply by changing the bit vector
that maps the region to columns. In order to avoid coherence problems, the mapping
of pages to cache pages cannot change without copying the data.

the memory region can consume between zero and 7 cache pages, with the possibility

to expand to 7 + (1/4 cache-size) if the last column is mapped completely to the

address region. Thus, retargeting supports fairly flexible expansion and contraction

of a single memory region.

It is clear that the retargeting function required to implement such a mapping is

quite simple. One way to implement this type of retargeting function is to maintain for

each memory page, a cache page for each column. Again, using a level of indirection

similar to tints either in the page table entries or in the TLB that is then converted

to the respective page numbers simplifies remapping.

With retargeting, statically isolating two regions of memory from each other in the

86

cache or combining two regions of memory within the cache is no different than in the

naive low-associativity cache and still trivial. Allowing two regions to dynamically

combine or be isolated still depends on the associativity of the cache in order to avoid

the coherence problem and is thus limited by the available associativity.

Regions that were previously not able to share the same region of the cache,

however, can with retargeting support. Two cache regions, mapped to independent

columns regardless of the specific cache page set within those columns can be mapped

on top of each other via retargeting. Thus, they can be quickly separated or combined

simply by changing their tints. The retargeting mapping must not change until the

previously mapped cache pages are flushed of the retargetted data to avoid having

multiple, potentially inconsistent copies of the same data in the cache.

3.7.5 Pseudo-High-Associative Caches

An alternative to a retargetted low-associative cache is a pseudo-high associative

cache. In such a cache, the number of columns is large. Rather than looking in

all cache-lines in a set to determine hit, however, only specify columns could be

examined. Some specifier, perhaps another bit vector, must be provided to indicate

which columns to search for a specific address. Though there is some overhead to

providing this sort of selector for reads, the overhead will probably be less than

searching all columns in a high associativity cache.

If the limit for the number of columns simultaneously accessible is reached, ad-

ditional columns are unaccessible and thus non-intersecting. Thus, pseudo-high-

associative caches are limited in the maximum size of the cache region that can be

mapped to a specific region of memory, since there is a limit on the associativity and

each column is a page large.

Of course, pseudo-high-associative caches have the coherence problem. If a mem-

ory address exists in one column, but that column is not specified as a searched

column, the cache will falsely determine that the address does not exist in the cache

and proceed to fetch it into the cache. If there is not enough associativity to address

the problem, a memory copy is required.

87

Overall, it is likely this scheme is not quite as flexible as the retargeting-enabled

low-associativity column cache, but could still be useful for implementing column

caching.

3.7.6 Retargeting and Direct-Mapped Caches

The simplest form of retargeting, having the TLB generate a separate cache address,

can easily implement some column caching-like abilities within direct-mapped caches.

By making the cache address independent of the memory address, full page coloring

functionality can be provided without the restriction of having to map to specific

page frames. Thus, the requirement of two memory pages being an integer number of

cache strides apart in order to map to a single cache page is eliminated. In addition,

it is now possible to map a memory page to a unique cache page without wasting

memory since the other memory pages that normally map to the unique cache page

in a standard cache can be put elsewhere in the cache. It is, however, still potentially

costly to remap memory pages to different cache pages.

This idea was proposed independently by other researchers[66].

3.8 Fine Granularity Mappings

The assumption so far has been that memory pages and cache were the minimum gran-

ularity of mapping. Though pages are convenient because of the virtual-to-physical

translation hardware is already available, it may be desirable to map at finer granu-

larities to capture small data structures, or may be desirable to map non-contiguous

regions of memory. We discuss these alternatives and the issues involved with their

use and implementation in the latter part of this section.

3.8.1 Mapping memory regions smaller than a page

There might be a need to be able to map regions of memory smaller than a page.

In order to do so, the ability to associate more than one tint with each page is

88

necessary. The simplest solution is to divide each page into some number of equally

sized, aligned sub-pages. A separate tint for each sub-page is provided within the

page table entries and are also cached within TLB entries. The appropriate tint

corresponding to the accessed sub-page is selected during each memory access and

provided to the replacement unit.

Another solution is to provide support for pages of different sizes. By doing so,

memory regions that are smaller (or larger) than a page are automatically mappable.

If the page sizes do not have to be powers of two, problems involving strided data

accesses that all map to the same cache-line can be solved.

3.8.2 Mapping Cache Regions Smaller than a Page

It is also desirable to map to regions of cache each smaller than a single column.

The simplest solution is to make smaller columns. Doing so, however, requires higher

associativity.

Mapping cache regions smaller than a page requires retargeting ability to allow

changing the memory addresses to cache addresses mappings. If the mapped cache

region is smaller than a column, some of the same issues raised in the low-associativity

column caching sections arise. By mapping memory regions to these small cache

regions, certain memory regions cannot interfere with each other. The same solutions

proposed for retargetted low-associativity column caching apply.

3.8.3 Non-Contiguous Mappings

There is clearly a need to map noncontiguous regions of memory to continuous re-

gions of cache. Providing this ability will require additional translation units, since

page tables and TLBs are designed specifically for pages. Retargeting provides the

appropriate capability.

By providing the correct functions within the retargeting functional units, the

cache is not limited to storing consecutive regions of memory in each successive set.

See Figure 3-19 for an example. In this example, there is an array of structures,

89

Memory

0 no
4 ko
8 do
c d,

10 d2

14 d3

18 d4

1c d
20 d
24 n1

28 k, Standard Cache Column Cache With

2c d7
Non-Continuous Mapping

30 d _______________~jd jd~30 nd n, ko n, k, n2 k2

38 d,

3c dI d, d n2 k2 dt d1 d d
40

ZJf44 d
48 n2

4c d2
50 do
54 df
58 d10
5c dil
60 d12

64 d13

68 d14

Figure 3-19: By altering the mapping between addresses and cache addresses, non-
contiguous data can consume contiguous cache space and thus using the cache space
much more efficiently.

each containing nine elements. The first two elements are the key and the pointer

to the next structure. Most accesses to the structure are only to the key and to the

next pointer and thus, only those two elements need to be cached. Using the right

retargeting functional units, we can efficiently pack the key and the next pointer into

a region of the cache.

Cache-lines of greater than one word are a problem, since they assume that the

data within each cache-line comes from a contiguous address range. If retarget-

ing functional units can relax that assumption, full generality of the cache becomes

possible. Strided data or even irregularly spaced data can potentially be stored in

contiguous regions of the cache, saving space within the cache and improving perfor-

mance by better utilizing the cache.

90

As usual, the same consistency issues will again arise for general solutions during

remapping. The same sorts of solutions, notably cache invalidation and pushout,

memory copy and searching the old space, are all possible solutions.

The Impulse[17] project proposes something very similar to retargeting, but within

the memory controller rather than the cache. By changing mappings within the

memory controller, non-contiguous data can be packed into a contiguous region of

memory before being sent over the bus, thus saving bandwidth. The modifications

were proposed to be made within the memory controller in order to avoid any changes

the the processor. A major disadvantage of such a scheme is that the software must

be aware of the remapping, which is difficult and thus would make such remappings

infrequent. In addition, memory controllers are becoming as complex or more complex

than the processors they serve, since they must deal with network interfaces, a variety

of peripheral interfaces, and multiple processors.

Such a memory controller, however, would potentially work well with a column

cache that support non-contiguous regions of memory since the memory controller

could return requested data in the correct, packed format and the cache deals with

transforming requests from the processor. There would then be no need for software

to know about the transformation since the transformation back would be done within

the cache. The partitioning benefits of column cache would be available, along with

the bandwidth benefits of the Impact memory controller.

3.9 Related Work

Conceptually, column caching provides much of the same functionality as page color-

ing, but eliminates the limitations of page coloring. Column caching eliminates the

need to do a memory copy when remapping to a new region of the cache. Without

the ability to do fast remappings, much of the potential benefits of partitioning are

lost. In addition, unlike page coloring, column caching has the ability to map con-

tiguous page frames to a single cache page. Column caching also works well with

set-associative caches, where page coloring potentially wastes a significant amount of

91

space.

Page coloring, however, can be used to assist the implementation of column

caching-like functionality in low-associativity or direct-mapped caches. It is also

possible that page coloring can be used in some hierarchy levels and not in others.

We will discuss these possibilities later in this chapter.

Some existing and proposed architectures support a pair of caches, one for spatial

locality and one for temporal locality[62, 72, 39, 9, 49, 27]. These designs statically

separate the two caches in hardware, generally wasting resources since the partition

is rarely exactly correct. Some rely on hardware-based algorithms that separate the

reference streams into one or the other cache. Hardware algorithms may not be able

to react quickly to changing reference patterns. Others keep information indicating

which cache to use in the page table, allowing software to specify the mapping of

memory to a specific cache.

Sun Microsystems Corporation holds a patent on a mechanism[57] very similar to

column caching that allows partitioning of a cache between processes at cache column

granularity. As part of a process state, a bit mask is specified that indicates which

columns can be replaced by that process. The Sun technique allocates partitions to

processes, rather than to address ranges, limiting its usefulness to isolating processes

from each other.

3.10 Summary

Software partitioning of the cache enables application and operating system code

provides the opportunity to optimize cache usage and, therefore, tradeoffs between

control resources and performance. We summarize column caching and cache mapping

in Figure 3-20.

92

C)

cli

4CD 0

0z

0)
91e

0z

0

C
rj~
0

0

7=

;-_

0
C)

C

Ce

0

0

0

0

Description U < C 4 W r U
PC no direct yes no 5 5 5 1 1 1
CC yes high no no 1 1 1 1 1 4?
CC + PC yes low yes no 3 5 2 1 1 3
CC + PC + RT yes low yes yes 2 1 1 1 3 4?
CC + pseudo yes pseudo no no 4 2 2 2 3 3
PC + Column Assoc no direct yes no 4 4 4 1 2 3
PC + RT no direct yes yes 5 1 1 1 3 4

Figure 3-20: A summary of the costs and benefits of some
discussed in this chapter. The abbreviations are as follows:

of the mapping options
Column Caching (CC),

Page Coloring (PC), Retargeting (RT), pseudo-set-associative (pseudo), Column As-
sociative (Column Assoc). Difficulty is rated from 1 (easiest) to 5 (hard). In order
to simplify the chart, several options were omitted or simplified. Retargeting stores
a cache page per column within the page table. Column-associative is assumed to be
direct-mapped. By adding additional support within page table entries and TLBs,
sub-pages of memory can be mapped. By adding additional mapping structures and
aggressive retargeting support, non-contiguous regions of memory can be mapped.
Aggressive retargeting could also enable different cache mapping granularities.

93

Chapter 4

Curious Caching

Curious caching is a set of mechanisms that enable a cache to incorporate data not

explicitly requested by its master, but, observed on the snooping side. Traditionally,

caches incorporate new data only in reaction to actions initiated by the master side. In

a curious cache, deciding whether to incorporate data is done on a per bus transaction

basis based on the bus transaction as well as the current state of the snooping cache.

A curious cache can insert data accessed by specific threads or processes, for example,

the producer of data used by the curious cache's master. Curiosity can control the

cache state associated with data being inserted. Curiosity can also prevent writes

from occurring to lower levels of the memory hierarchy. Though curious caching is

useful on its own, it was designed assuming some form of cache partitioning and,

thus, works best in such an environment; throughout this chapter, we assume column

caching support both from the master side and from the snooping side of the cache.

For example, curious caching can have full retargeting ability on the snooping side.

When combined with column caching, curious caching also provides other valuable

benefits such as reducing read latencies, improving message transmission and recep-

tion, emulation of buffers and RAM within the cache, improving stream buffers and

enabling external prefetching. A cache supporting both column and curious caching

functionality is called a Column/Curious Cache or CCC.

Curious caching was designed to address the high cost of reading data loaded or

stored by another device, for example, another processor or a network interface. These

94

reads are expensive because of large caches that cause deep memory hierarchies. This

problem has been attacked repeatedly in the past, but with limited success. Most

other approaches only handle one aspect of the problem such as message passing,

ignore causes of the problem and often try to circumvent the cache. Curious caching,

on the other hand, is a general solution to a wide range of problems introduced by

large, deep cache hierarchies that uses caches rather than trying to get around them.

The next two sections discuss the problems addressed by curious caching and

common extant approaches. Curious caching is then described in greater detail,

compared to the extant approaches and contrasted with related work. A specific

example demonstrates the power of curious caching. Specific uses and software control

follow. The chapter finishes with implementation details and tradeoffs.

4.1 The Problem

Memory hierarchies are not well suited for communication. As we have argued in

Chapter 1 and Chapter 2, memory hierarchies are already very deep and getting

deeper. Deep hierarchies increase the distance to the memory bus, increasing latency

for data that do not benefit from large caches, notably message data. Deep hierarchies

are especially bad for receiving messages, since they generally must be read from the

memory bus through all the memory hierarchy levels, incuring significant latency that

is often difficult to mask.

Non-local reference patterns are in direct conflict with locality-based reference

patterns; optimizing one within a shared mechanism will degrade the other. Local

reference patterns need large caches that are best implemented with deep hierarchies.

Non-local data patterns, on the other hand, work best with little or no cache and as

little hierarchy as possible. If data changes often and moves between hierarchy stacks

frequently, large caches are not necessary since there is little valid data to cache.

Non-local reference patterns have their revenge on caches, however, by polluting

them. As soon as communication data is written, the producer will not reuse the data

and therefore does not need to cache it. The same is true, though sometimes to a

95

lesser extent, after the consumer has consumed received data. Standard replacement

algorithms consider the used data most recently accessed and are thus likely to keep

the data around, polluting the cache.

To minimize pollution the communication regions should be as small as possi-

ble. Small buffers, however, reduce elasticity in the communication and increase the

amount of synchronization necessary to manage the buffers, potentially restricting

performance since a slow consumer will hold up a faster producer. Keeping the entire

communication buffer in cache will pollute the cache, reducing the amount of space

available to data that should be cached. Thus, buffers should be large to minimize

synchronization and maximize elasticity between producer and consumer, but the

cache footprint in both the producer and consumer should be small to limit pollu-

tion.

Communication buffers can be implemented either in memory or in dedicated

hardware such as a network interface. If the buffers are only accessible over the mem-

ory bus, at least two bus operations are needed to transmit/receive each cache-line

of message data: one for the producer to write the data to memory and the other for

the consumer to read the data from memory. Memory bandwidth can be significantly

lower than SRAM bandwidth and therefore cause bottlenecks if the communication

buffer is implemented in memory. Providing buffers for communication data (as is

done in START-VOYAGER) in the network interface to eliminate memory bandwidth

constraints, however, adds cost and complexity to the design and restrictions on

buffering size, raising flow-control and synchronization issues.

4.2 Extant Approaches to the Problem

The latency issue for communication data associated with deep cache hierarchies is

a significant problem that others have attacked with varying degrees of success. We

discuss three approaches in this section: dedicated interface, prefetching and update

protocols.

96

4.2.1 Dedicated Interface

Conceptually, the simplest approach is to avoid the memory hierarchy altogether by

providing a dedicated communication interface on the processor[36, 59, 10, 25]. The

interface might be in a special region of the physical address space in order to lever-

age virtual-to-physical translation mechanisms for protection. The interface would be

accessed by load/store operations, their variants, or dedicated communication instruc-

tions. Buffer space provides elasticity in communication and makes the often-required

software disciplines to avoid deadlock/livelock easier to implement. Providing dedi-

cated buffer space for message composition and receive also avoids the copies required

to compose and receive elsewhere.

Because a dedicated interface completely bypasses the memory hierarchy, the la-

tencies and cache pollution problems are avoided, but there are significant disad-

vantages. A dedicated connection consumes processor pins, a critical resource[14].

Having the network interface share pins with a high-speed memory interface such as

a back-side L2 cache interface[19] can create significant electrical design challenges

since there is an additional drop on the signal lines connecting the processor and the

cache RAMs. In the START-NG design[19], for example, adding the network inter-

face reduced the speed of the L2 cache interface from 1/2 the processor clock rate to

1/3 the processor clock rate, reducing cache performance as well as network interface

performance.

Another disadvantage is the inability of the dedicated interfaces to use the caches,

especially for shared memory. Though a completely separate interface supporting

shared memory can be provided, such a duplication of communication resources is

undesirable.

Yet another disadvantage is the difficulty to migrate a communicating process

from one processor to another. Outstanding messages in the network destined for the

original processor must either be dropped, automatically redirected or the network

must be drained prior to any migration. All such solutions are expensive to implement

and/or impact performance.

97

Finally, there is the additional cost of buffer space. Large buffers reduce flow-

control, synchronization and deadlock/livelock problems but also consume more re-

sources.

4.2.2 Prefetching

Prefetching[56] the data into the cache before it is actually used is another approach

that potentially eliminates the processor overhead of reads. In the best case, the data

is available when it is needed. While the data is being prefetched, other work not

dependent on the requested data, if available and economical to run, is done to hide

the latency to memory.

There are hardware prefetching solutions and software prefetching solutions. Vir-

tually all standard caches implement a form of hardware prefetching by having cache-

line sizes larger than a single word that automatically prefetch the data around

the requested data. More aggressive forms of hardware prefetching include stream

buffers[43, 58] that automatically read ahead and adaptive prefetching that can dy-

namically adjust the amount of data prefetched[74].

Hardware prefetching can be quite effective, but is limited since it generally

prefetches in reaction to master-initiated operations. Such prefetching tries to de-

termine a pattern from the master's operations and prefetch the next data elements

assuming that the master will continue to access memory in that pattern. If the

pattern cannot be correctly determined or the master does not continue to access

memory in the detected pattern, bandwidth and sometimes cache space is wasted

prefetching data that will not be used. Some hardware solutions provide additional

buffer space, eliminating cache pollution, but others that prefetch directly into the

cache often pollute the cache.

Software prefetching inserts additional loads, sometimes in the form of special

instructions, that anticipate future usage. If successful, software prefetching can

reduce or eliminate the observed latency of memory reads. The technique, however,

does require the issuing of additional load or prefetch instructions that in turn require

bookkeeping overheads as well as additional load/store unit issue slots. To effectively

98

prefetch, significant compiler/user analysis is necessary to determine when to prefetch.

Since it often unknown exactly when communication data is produced, bandwidth

and other processor resources may be wasted by speculative prefetches that are never

used. Such failed prefetches pollute the cache as well. Prefetching without regards to

cache space can displace other prefetched but not-yet-consumed data, causing ping-

ponging[47].

4.2.3 Update Protocols

Rather than trying to guess when interesting data is created so that it can be

prefetched, update protocols watch the bus for interesting data, then incorporate

that data into their caches. Update protocols incorporate data that is already it its

cache. Implemented systems with update protocols[71, 30, 44] tend to use write-

through caches for data that is shared to allow the updates to occur. Such systems

allow the data to be delivered to the consumer as soon as possible. A variant of the

update protocol called read snarfing [60, 3, 24] uses a standard invalidation-based

scheme, but allows updates to cache-lines with the same address tag but that were

necessarily in the INVALID state. Depending on the reference patterns, however, such

a scheme can reduce the effectiveness of the update protocol since it is possible that

the invalid cache-lines will be replaced before the updated data is pushed out.

Update protocols can work well for communication data. If a consumer has the

memory locations containing its communication buffer cached, the producer writing

new data to that buffer will automatically propagate to the consumer's cache. Then,

the consumer can receive the data directly out of its cache, effectively eliminating

memory latency from processor overhead.

Update protocols, however, only update already-cached data. Latency-critical

data, or at least their address tags, must stay in the consuming cache in order to

get updated. Keeping a lot of data in the cache, however, will pollute it. Thus,

pollution control, such as restricting the amount of cache used for communication

buffers, conflicts with update protocols.

In addition, making writes to shared data write-through can negatively impact

99

performance since, for many locations, there are many more writes to a location than

are actually used externally. Single word writes, most common for write-through

caches, often use buses inefficiently.

There are no widely-used systems that use an update protocol.

4.3 Curiosity Overview

A mechanism that addresses the communication data latency problem should have

the following properties:

" Eliminate memory latency from the processor overhead of consuming data.

* Require little or no software support.

" Be compatible with the memory hierarchy, allowing its use with cache-line co-
herent distributed shared memory.

" Be compatible with cache pollution containment mechanisms in place.

* Minimize bandwidth requirements.

" Use sharable resources rather than dedicated resources.

Existing solutions fail to meet these goals. All optimize the communication case

at the expense of the usual case. Dedicated communication interfaces either require

additional pins or put an additional device on a specialized, point-to-point interface,

generally slowing that interface down. Prefetching often wastes bandwidth by in-

correctly guessing what data is needed and when that data should be fetched, often

causing pollution.

The update protocol, on the other hand, fulfills some of the most important re-

quirements. It eliminates the latency component of data consumption, it requires

no software support, it is compatible with the memory hierarchy and it uses shared

(cache and memory) resources as buffer space. It's major shortcoming is that it can-

not incorporate data that is not already in the cache, making it difficult to use with

pollution control mechanisms.

Curious caching, a new mechanism that allows the incorporation of snooped data

whose address need not already be cached in the snooping cache, solves that problem.

100

Rather than relying only on address tags in the cache to determine what should be

incorporated into the cache, curious caching provides additional hardware structures

that allow software (or potentially other hardware) to specify what snooped bus

transactions' data should be incorporated into the cache. A cache could be instructed

to be curious about a range of memory or the memory accesses of a specific thread or

process. Advanced forms might make curiosity dependent on bus operations, current

cache tags, whether cached data was brought in because of curiosity, etc. If curiosity

hardware indicates it is curious about a snooped bus transaction, the corresponding

data is automatically incorporated into the cache. A bus transaction determined to

be curious can be thought of as a read that was initiated by another bus device.

Thus, curious caching is a mix of prefetching and the update protocol. In prefetch-

ing, once it is decided to prefetch, the prefetch occurs, bringing the data into the cache.

In an update protocol, any snooped data already in the cache is automatically brought

into the cache at that point. Curiosity combines the benefits of update and prefetch

by automatically incorporating data when it is inexpensive to do so (update), but not

being limited to data that is already in the cache (prefetch). Curiosity betters both

by specifying regions of curiosity rather than dealing with single cache-lines of data.

There are two extremes to hardware handling of curiosity directives: they can be

viewed as performance hints that the hardware can ignore if desirable or necessary

or they can be considered imperatives that the hardware must fulfill. The former

makes hardware easier, the latter provides additional functionality such as memory

emulation. Of course, software must be told whether to assume its specifications are

hints or imperatives and act accordingly. The hardware itself is configurable to treat

curiosity specification as a hint or as an imperative to enable additional functionality

without forcing all regions of curiosity to be imperative.

To ensure fair resource usage, the running process, with the blessing of the oper-

ating system, controls that processor's curiosity. Often times, however, a producer

knows more about what will be produced and/or what the consumer should consume,

than the consumer. In these cases, the producer should be able to have limited control

the consumer's curiosity. By simply exporting the ability to write to the curiosity

101

control regions, the producer can modify curious caching structures on another pro-

cessor. Each curious processor should be curious about snooped operations to its

curious control region and accept commands that it snoops.

Curious caching was originally designed for a bus-based system, but can be adapted

for point-to-point networks as well. We will discuss how in Section 4.3.6.

Rather than giving more functionality detail at this point, we now give an extended

example that demonstrates and motivates various components of curious caching.

4.3.1 Curious Caching in Action

Consider emulated message passing between two processors on in an SMP. In a stan-

dard system, the processor overhead of transmitting a message is much lower than

the processor overhead of receiving a message because transmitting fundamentally

does not need to wait for a round-trip to the memory bus. Though transmits, per-

formed by writes, do need to get permission to write either by a read-exclusive or

a dclaim bus operation, aggressive systems can let writes continue while simultane-

ously obtaining permissions. A receive, however, cannot continue until the data is

obtained, requiring a round-trip to the bus.

Assume a four-page region of shared memory that is used as a circular buffer

between the producer processor and the consumer processor. The producer writes its

data to the tail and updates the tail pointer to signal that data is ready. The consumer

reads from the head of the buffer and updates the head to receive a message. The

head and tail pointers are compared by both producer and consumer to determine

whether there is more room to transmit messages in the buffer and whether there are

yet-to-be-received messages within the buffer. When the end of the communication

buffer is reached, the pointer wraps around to the front of the communication buffer.

For this example, we ignore how the head and tail pointers are communicated between

the producer and consumer.

An aggressive invalidation-based protocol will allow the transmit to proceed at

speed, allowing the writes to proceed while the write permission is simultaneously

obtained. Receives, however, must go to the bus since the transmit write has in-

102

Producer Consumer Producer Consumer

Wt 5 , Flush 5,

R 2f 4 0 2 T 1-4-02 1 2 _4_FT
1 3U 5H 5713 7 FT1 3 _ 7ff

,pClaim 5

Figure 4-1: Simple Curiosity. Rather than having the consumer go to the bus to

receive data, curiosity lets the data come to the consumer. When the curious cache

sees software-specified "interesting" data, the curiosity inserts that data according to

the replacement algorithm specified by the curiosity.

validated its cached copy of the data. Though aggressive coherence protocols allow

cache-to-cache transfers, especially when the snooping cache is caching the data in

MODIFIED state, the consumer must still wait for the data to return from the bus.

A simple form of curious cache can solve this problem, eliminating the processor

overhead from receiving messages. Consider mapping the communication buffer to

four cache pages in the producer and consumer, mirroring the entire communication

buffer in both the producer's and consumer's caches (Figure 4-1). Make the consumer

curious about the communication buffer region. After the producer produces data,

it flushes that data out of its cache. Performing the flush operation is relatively

easy, since the producer knows exactly when it completes a message. As the data

is written back to memory, the consumer's cache snoops that data and the curiosity

incorporates that data into its memory. When the consumer receives data, it always

reads that data from its cache, eliminating the formerly-necessary bus transaction.

To eliminate the need for the producer to flush communication data as it is written,

the producer maps the communication buffer to the minimum granularity of cache,

for now a page. The consumer continues to map the communication buffer to four

pages of cache and is still curious about the entire communication buffer. Assume

for now that the producer is a couple of pages ahead of the consumer and that they

operate at approximately the same rate (Figure 4-2).

Column caching limits the amount of cache the producer uses for the commu-

nication buffer, creating constructive interference (Section 3.4.2) that automatically

103

Producer Consumer Producer Consumer

wt5
0 2

RdE5

Producer Consumer Producer Consumer

Rd 3,,Rd4

R4

Figure 4-2: Improving Transmit with Column Caching. Rather than having the

producer flush out composed data after composition, the communication buffer is

mapped to a single page of cache. As the producer continues to produce within the

circular buffer, new data will be brought in to be written, automatically pushing out

older composed data. As that data is pushed out, it is captured by the curious cache.

104

pushes the produced data to the bus. Because the receiver is curious about all opera-

tions to the communication buffer, the producer's pushed out data will automatically

be inserted into the consumer's cache. If the consumer maps the communication

buffer to an equally-sized, unique cache partition, there will be no conflicts with

other data and the entire communication buffer will fit into the receiver's cache as

long as the producer is more than a page of data ahead of the consumer. Note that

the produced data is still being written to memory as it is being pushed out of the

producer. Thus, the consumer can always read communication data from memory,

making the mechanism completely transparent, even if processes are migrated to other

processors.

Thus, curious caching meets our requirements for a mechanism that eliminates the

read latency from receiving processor overhead. Though the minimum latency is no

shorter than the minimum latency of optimal prefetching, there is far less overhead

and software bookkeeping than prefetching. In addition, there is no wasted band-

width as is seen in most update protocols and prefetching. Curious caching not only

effectively uses caches and the memory bus, it also seamlessly handles migration of

consuming processes. In addition, it works well with column caching which, at the

very least, allows pollution to be controlled.

4.3.2 Curiosity Parameters

A cache master explicitly configures the curiosity of its cache to ensure fair man-

agement of resources. Conceptually, curiosity is determined by a curiosity table that

maps a set of parameters to actions. In the next few sections we discuss some possible

parameters and actions in the context of their utility.

A simple form of curiosity allows the specification of regions of curiosity, regions

of memory that should be brought into the cache by curiosity. When a curious cache

snoops an address that falls within a region of curiosity is snooped, it is inserted into

an appropriately selected replacement cache-line. The complexity of the replacement

decision for such data is similar to that for a standard cache or a column cache.

Consider the case when the allocated cache space is smaller than the communica-

105

Producer Consumer Producer Consumer

Wt6

RdE 6

1 M3 H' i fi 4

Producer Consumer

Rd 0

5 1=

Rd 0

Figure 4-3: Basic Curiosity going bad. It is possible for basic curiosity (or poorly
configured curiosity) to replace data that will be needed in the near future by data

that will not be needed until later.

tion buffer. Assume that the consumer caches only two pages of the communication

buffer (Figure 4-3). As the producer writes back data, the consumer's curiosity will

bring that data into the cache that will overwrite older queue data, even if the older

data has not yet been consumed. By the time the consumer reads the head of the

queue, the desired data may have already been replaced by data from further in the

queue.

The receiver can avoid this problem by changing the region of curiosity as data is

received, being curious only about data that will be used in the future and that will

fit in the allocated cache partition. This scheme, however, is clumsy and depends on

curiosity granularity.

A more general solution makes the curiosity decision dependent on current cache

state such as cache address tags, permission tags and LRU information. Basing

replacement decisions on current cache state is done even in conventional caches that

use replacement tags and permission tags to make replacement decisions. With a

curious cache, however, specific cache state can result in curiosity hardware deciding

to not be curious about a snooped bus operation, even though the bus operation

106

address is within a curious range.

One way to avoid curious data thrashing is to make curiosity dependent on the

availability of an INVALID cache-line within the allocated cache partition. Another

way to avoid thrashing is to make curiosity dependent on a cache-line that does not

cache a communication buffer location. In both cases, the receiver flushes each cache-

line of data after it consumes it to free space for new curiosity data. Thus, two

possible parameters are permission tag state and address tag state.

Under these schemes, as long as the consumer is less than two pages behind the

producer and either the producer is flushing transmitted data or one page ahead of

the consumer, the consumer will be able to consume out of its cache. If the consumer

falls behind, the data will not be brought in to its cache via curiosity, but must be

read out of memory. Thus, in the worst case, the protocol degrades to a standard

system without curiosity. By careful tuning of the consumer cache space allocated to

communication buffers, however, such degradation should rarely occur.

Since the producer's cache is guaranteed not to be caching addresses that it will

produce, a read-exclusive is issued by most coherence protocols to get a full copy

of the cache-line and obtain permission to write. Those read operations read data

useless to the consumer and thus the consumer should not be curious about them.

Rather than being curious about all bus operations issued to the communication

buffer memory region, the consumer should only be curious about pushouts. Thus,

another possible curiosity parameter is the bus operation of snooped bus transactions.

It may be easier for the consumer and also improve semantics to issue a store to

the received data to indicate completion. Assume that the producer produces n - 1

words of data, where n is the size of the cache-line. In the first word of each cache-line

of data, it writes a 1 indicating to the consumer that the data has been produced.

The consumer writes a 0 to that first location after it consumes the data, indicating

that the producer can reuse that address.

This "in-band" handshake between producer and consumer works very well with

a column/curious cache. In this case, curiosity is dependent on both the region of cu-

riosity and a replacement cache-line in MODIFIED state. Instead of having to perform

107

a flush operation, the consumer just does his standard handshake write. After the

consumer writes to indicate that it has received data, that data will automatically be

pushed out by newly produced data being inserted by curiosity.

Weak memory models may allow stores or flushs to occur before the receiving

reads complete, causing potential correctness problems. Such problems are common

and are solved by strategically placing the memory barrier already required for hand-

shaking.

4.3.3 Curiosity Actions

The most important curiosity action is, of course, whether the cache is curious about

a bus transaction. Given that the cache is curious, there are additional actions that

can improve curiosity and increase its range as a mechanism.

For example, if in-band handshaking is used it would be preferable for the receiver

to get an exclusive copy of the data, rather than a shared copy that will need to be

upgraded before being updated. Thus, the permission tag is a possible curiosity

action. When curiosity inserts data into a cache, it can easily set other information

such as the permission tags or LRU tags.

At first glance, making the permission tag for data inserted by curiosity depen-

dent on the snooped bus operation seems reasonable. One simple policy is when a

pushout is snooped, curiosity inserts that data in an exclusive state and when a read

is snooped, curiosity inserts that data in a shared state. This naive policy, however,

is incompatible with standard coherence protocols. For example, if two caches are

curious about the same region of memory and a pushout occurs, both caches will get

exclusive copies of the data, generally considered a protocol paradox. Care in curios-

ity specification must be taken to avoid coherence paradoxes though the coherence

protocols in systems that support curious caching should be as accommodating as

possible.

Rather than hard-wiring the mappings of bus operation to new cache states, de-

fault curious caching makes states a function of the all parameters. Thus, in our

example, the consumer could configure curiosity to obtain an exclusive copy upon

108

snooped pushout. In other circumstances where an exclusive copy is not needed or

not allowed, curiosity could be configured to obtain a shared copy.

There are benefits to having the producer be curious about the communication

buffer. Curiosity can create constructive interference that helps push out the produced

data sooner. For such a purpose and to save internal cache-bandwidth, curiosity may

be configured to insert with an INVALID permission tag, allowing it to forgo inserting

the data.

Another benefit to producer curiosity occurs if the producer maps the commu-

nication buffer to a large enough cache space. Then, the consumer's pushouts can

be brought into the producer's cache so the producer's handshake read can be sat-

isfied from the cache. The producer should be curious only about pushouts to the

communication buffer to avoid inserting data that the consumer is reading.

Since caches are significantly faster than memory, it may be advantageous to use

cache as memory to lessen the bandwidth demands on the memory and to reduce

request latencies. By mapping a region of memory to the same size region of cache,

the data will not be replaced once it has been entered into the cache. By making

the cache curious about pushouts to that region of memory and having the curiosity

insert a modified copy, the cache will capture all updates to the memory. If a read or a

read-exclusive is issued by another processor, that cache will satisfy the read. Thus,

with column and curious caching support, a cache can emulate memory available to

all bus devices that has no backing DRAM.

Aggressive caches allow cache-to-cache transfer (called cache intervention) when

one cache issues a request for data that resides in another cache in modified state,

avoiding a write-back to memory .' If the requester issues a read-exclusive, the

cache acting as memory sends the data to the requester in MODIFIED state, avoiding

the necessity of a writeback to the sink (sink is used throughout this section to mean

the next level of the memory hierarchy). If the read requested the data in shared

state, the cache acting as memory will provide the data to the requester in shared

'Some processors such as certain MIPS R4XOO processors, allow a cache to satisfy requests if it
has a clean copy of the requested data.

109

state while writing back to the sink.

Once the cache in question has data in shared state, however, the coherence pro-

tocol may not let it satisfy future reads. If the coherence protocol allows caches with

a clean copy to satisfy a snooped request, there is no problem. This sort of protocol

requires arbitration to decide which cache will satisfy the request.

To remove the arbitration requirement, an additional state, EXCLUSIVE-SHARED,

indicating the cache should satisfy requests for the associated data, can be introduced.

Only one cached copy of specific data can exist in that state. Curiosity insertion is the

only way data can be associated with EXCLUSIVE-SHARED. The extra state eliminates

the need for complex arbitration to decide which cache will satisfy a load.

Rather than encoding the EXCLUSIVE-SHARED state within each cache-line, in-

creasing cache tag size, the information can be encoded within the curiosity state.

An entire curiosity region would return data if that data is available in the cache.

Thus, curiosity hardware would determine that its cache should satisfy the request

and indicate that to the bus. This function logically belongs within the standard

snooping hardware since it decides when to intervene and thus may be implemented

there with the appropriate information from curiosity hardware.

Regardless of how a cache satisfies snooped loads, certain coherence protocols

might still write to the sink during writebacks. It is often desirable to bypass the sink

if possible, especially if the sink is memory. For example, the cache may implement

memory regions that do not actually exist in memory.

The cache knows when it will be acting as memory and can assert a sink-redirection-

line, called MODIFIEDP for cache intervention, to indicate to the sink that it should

ignore that bus operation. Sink redirection is already supported for cache interven-

tion, but only when one cache issues a read-exclusive for data cached in MODIFIED

state in another cache. This same ability should be provided to curious caching.

Sink redirection can be ignored by the sink but it might slightly alter curious cache

memory semantics, depending on the supported cache operations.

For improved efficiency, a clear operation that deletes MODIFIED data from the

cache without a pushout bus operation occurring can be provided. This instruction

110

would be useful when remapping a region of the cache that was emulating memory.

Rather than writing back values that are no longer useful, clear operations would

clear them out.

4.3.4 Curiosity Parameters and Actions Summarized

Logically, a series of curiosity lookup tables are provided, one for each region of

curiosity. Figure 4-4 gives three example curiosity tables for the consumer of our

examples. In these examples, the specific table to use is associated with a region of

memory. After it has been determined that the cache is potentially curious about a

bus transaction due to its address, the corresponding table is applied. Table access

can be implemented as a simple memory lookup operation. Since cache state may be

curiosity parameters, one lookup per potential replacement cache-line may be neces-

sary. The shown tables are simplified, giving only three parameters: bus operation,

permission tag and whether the data in the cache-line is curiosity data. Only the

curiosity action is specified in these tables. A C table entry indicates that the cache

is curious about the data, while a blank entry indicates that curiosity should ignore

the data.

The table actions are asserted only if the snooped address falls in the corresponding

region of curiosity, the curiosity address is column-mapped to the cache-line and the

bus transaction has not been retried. The table generates the possible action for a

specific cache-line. It is likely that each cache-line meeting the initial conditions uses

the same table to determine its possible course of action but different tables could be

provided for different columns as well.

Obviously, additional parameters and actions make curiosity even more flexible.

Every observable bus signal and current cache state is a possible parameter. Addi-

tional bus signals, such as an indicator of whether other caches are curious, may be

introduced to further specify curiosity behavior.

Additional actions, such as sink-redirection, propagation to ancestor caches can

also be useful to provide curious caching with more capability and flexibility. Pro-

viding separate bit vectors for curiosity data, for example, allows separation of data

111

TF
currentistate I

F T F
S S E

T F T
E M M

busop read
pushout .C C

curious? F T F T F T F T
currentstate I I S S E *E M M

busop read
pushout C C C C

curious? F T F T F T F T
currentstate I I S S E E M M

busop rea

pushout.... . C C

Figure 4-4: Three possible curiosity tables. Table 1 indicates that the cache should

be curious only if the snooped bus operation is a pushout and the current cache state

is INVALID. This reaction is useful for a communication buffer where the receiver

invalidates data after receiving it. Table 2 indicates the cache should be curious if

the snooped bus operation is a pushout and the current cache does not contain data

inserted by curiosity. Table 3 indicates the cache should be curious of the snooped
bus operation is a pushout and the current cache state is MODIFIED which is useful
for a communication buffer where the receiver writes the received data to indicate
has completed its receive.

112

I

2

3

brought in explicitly by the master from data that is speculatively inserted due to cu-

riosity. The separation of bit vectors for master data and snooped data are probably

needed to allow parallel access anyways.

4.3.5 Pitfalls

Depending on the curiosity functionality supported, coherence paradoxes can arise.

For example, a curious cache can be curious about a snooped read caching the data in

modified state. This situation is useful if the reading cache is only a reader and will

soon discard the data, while the curious cache will write the location after the reader

discards. The situation, however, is a coherence paradox for a single-writer proto-

col. Of course, software should avoid paradoxical situations, but hardware should be

implemented to handle any possible paradox gracefully. Thus, it is likely that either

hardware protection will be provided, user-level software will be restricted to safe poli-

cies when directly accessing curiosity configuration, or software must use operating

system calls that ensure safety to modify curiosity.

Cycles are possible with unrestricted curiosity (Figure 4-5). To avoid cycles, cer-

tain mappings will be disallowed. The simplest policy would be to have disjoint

curiosity, that is, no two cache hierarchies can be curious about the same region of

memory in the same way. Of course, the operating system can be called upon to

ensure that no curiosity cycles exist.

4.3.6 Curious Caching with Memory Hierarchies

Hierarchical caches present additional challenges to curious caches. In machines where

the cache hierarchy is filtered, that is a bus operation seen by a descendant cache may

not be seen by an ancestor cache, additional support is needed to support curiosity

in ancestor caches. Filtered cache hierarchies are always inclusive, that is, a descen-

dant cache contains all data cached by all ancestors to maintain standard memory

semantics while filtering.

Data that higher levels of the cache hierarchy are curious about should be sent

113

Proc 0 Proc 1

Wt C

RdE C

Proc 0 Proc 1

Proc 0 Proc I

mmIp
Figure 4-5: A curiosity cycle. Two caches are curious about the same region of
memory and both allocate a single column to that region of memory. Assume that
A, B and C are distinct addresses within the mapped region of memory that map
to the same cache-line in both caches. A is cached modified in Processor 0's cache
and B is cached modified in Processor l's cache. Processor 0 writes C, forcing a
read-exclusive of C, writing back A in the process. Processor l's cache snoops the
pushout of A and brings in the data, writing-back B in the process. Processor 0's
cache snoops the pushout of B, bringing it in and writing-back C in the process.

114

up to those higher levels of cache. The simplest solution is to propagate all snooped

operations to each higher level of the hierarchy. Doing so, however, eliminates filtering

and increases bandwidth requirements.

To support filtering, a propagation bit indicating whether an ancestor is poten-

tially curious could be associated with each curiosity table entry. The operation is

propagated up only if the bit is asserted and the currently snooping cache is curious

about the transaction. Since curiosity may depend on cache state, however, ancestor

cache state must be duplicated in descendent caches to achieve full filtering. Because

inclusive descendent caches must contain all data stored in ancestor caches and thus

must have similar curiosity mappings, the fact that the descendent cache is curious

with the propagation bit is likely to provide adequate filtering.

Distributed shared memory systems have a similar problem to hierarchical caches

since each node will not see every bus transaction. Simple curiosity does not work on

such systems, but the same sorts of solutions for hierarchical caches will work here.

In order for curiosity to work, potentially-curious bus transactions must be for-

warded to a destination snoop-able by the curious cache. One way to do so is to

incorporate curiosity hardware within the network interface that sits on each node's

memory bus. That curiosity hardware acts as an agent for curious caches, forwarding

interesting data to the appropriate curious nodes. The consumer, or an enabled pro-

ducer, would specify to the curiosity hardware what to be curious about and where

to send snooped data that met that criteria.

Curiosity hardware could also be placed at data home sites within a distributed

shared memory system. Once data propagates back to its home site, it can be au-

tomatically sent to curious consumers. Similar solutions has been proposed indepen-

dently by others[64].

4.3.7 Curiosity with Point-to-Point Data Networks

If data travels over a point-to-point network rather than a bus, the data will not

normally be available to a curious cache. One possible solution is to add one more

bus signal, CURIOUS_P, that indicates to the data network that a copy of the data

115

should also be sent to the curious cache. The data network will have to support

this functionality. Another possible solution is for the curious cache to issue its

own memory access to get the data. Such a solution consumes both address bus

bandwidth and data bus bandwidth and increases latency but can simplify hardware

and automatically deal with data networks.

The point-to-point data network must also be able to handle the MODIFIEDP line

as well, instructing the memory to ignore the data if the signal is asserted. Again,

this signal can be ignored at the cost of a slightly different memory semantics.

Out-of-order data bus/networks are very common. Typically, bus operations in

an out-of-order system will include a tag that is attached to data when it is returned.

Handling out-of-order data tags for curiosity data is exactly the same as if the cache

issued the bus operations itself. It must store the tags it snoops and match against

those stored tags with the tag delivered with the data.

4.3.8 Related Work

A mechanism very similar to curious caching, called "cache injection" has been in-

dependently proposed by other researchers[52, 53]. This mechanism brings snooped

data based on memory regions into special purpose buffers that are then incorporated

into the cache if accessed. The special purpose buffers are intended to avoid pollution.

Later versions of cache injection inject directly into the cache, potentially polluting

the cache. Curious caching, however, uses column caching to avoid pollution as well

as provide additional functionality, allowing more aggressive specification of curiosity

without worrying about cache pollution. In addition, curious caching can use parame-

ters other than just memory ranges to determine curiosity and allows the exportation

of the ability to specify curiosity to others. These additional features enable a wider

range of functionality than cache injection.

IBM patented[67] a mechanism called ALL-READ, a special load instruction that

automatically inserts the loaded data into all snooping caches. This mechanism is

similar to curious cache in that it has the ability to insert data into a snooping cache.

Since all caches are loaded with the requested data, however, there is no ability to

116

restrict pollution. In addition, other bus operations are not included.

The KSR-1[16, 31] parallel computer implemented a Poststore instruction, essen-

tially a store that would immediately update other caches that were caching the same

data. Poststore is essentially a write-through store and the automatic integration of

Poststore written data is essentially update. Unlike curious caching, only the pro-

ducer of data controls what data is updated in potential consumers' caches, rather

than the consumer indicating what data would be useful. Also, the producer must

use a special instruction to issue the write.

The original Avalanche design[18] injects data from the network interface into

any level of the memory hierarchy depending on the current context being run on

the processor. The design is not precisely defined in any published document and

thus cannot be accurately compared to column/curious caching. This design can,

however, place received data into the Li cache, allowing very rapid access from the

receiver and very low latencies. This design is actually a modification of a dedicated

interface, since incoming data does not travel over the bus, but through a dedicated

interface. Cache inclusion is probably difficult to maintain and wastes bandwidth,

since a write to the Li cache must be simultaneously reflected in lower levels of the

cache to maintain inclusion.

4.4 Software Control

It is likely that user-level software will not use curiosity directly but instead will be

given library calls that implement performance functionalities. These libraries would

abstract away architectural details such as the number of hierarchy levels, the size

of the caches and so on. These library calls would include calls that provide such

functionalities as in-FIFO, out-FIFO, dedicated SRAM and critical shared memory.

The performance, however, is not guaranteed, though additionally library calls may

be provided to quantify the actual performance obtained.

A compiler can analyze programs to determine which regions of memory would

benefit from curiosity. Generally, data that is actively shared between two threads

117

or processes that may reside on different processors are good candidates for curiosity.

Software writers can easily annotate explicit communication code such as message

passing libraries. Examining data accessed between acquiring and releasing of locks

in shared memory programs may yield memory locations that would also benefit from

curiosity.

Data shared between some input I/O device and the processor is also a good

candidate for curiosity. For example, making gigabit Ethernet buffers or read-buffers

for a disk drive producing critical data curious could potentially improve performance

dramatically. Such curiosity notations could actually be made within the device

drivers themselves, avoiding the need for the compiler or the user to do the mappings.

The operating system provides arbitration and resource allocation for curiosity

resources. The specification interfaces would be memory-mapped and protected by

the translation mechanism, allowing the operating system to export control if desired

and allowing the operating system to be backwardly-compatible with processors that

do not support curious caching. Software with the right permissions could write to

the curiosity tables, specifying mappings of parameters to actions for each region of

curiosity. Hardware protection may be necessary to prevent software from specifying

a curiosity configuration that may create a coherence paradox that cannot be han-

dled by the hardware. An alternative to exposing curiosity configuration to software

directly would be to have the operating system can provide configuration services,

allowing it to check for illegal configurations in software.

When an application requests and receives direct curiosity control, the operating

system returns a pointer that allows user-level manipulation of curiosity. That region

will be mapped write-through in the reference implementation. If the operating sys-

tem cannot allocate the curiosity resources to the application or provide that control

to the application, it can notify the application of that fact. If curiosity specification

is only a performance hint, the operating system can return the pointer that allows

the application to specify curiosity mappings. When more resources become available,

the mappings can then be used.

Like bit vector state, curiosity state is process state and must be maintained across

118

process swaps. Doing so provides transparent (except for performance) migration

from one processor to another.

4.5 Uses

Curiosity is especially useful to improve the performance of memory regions used

for communication. Curiosity can also enable or enhance performance hacks. For

example, a separate prefetch engine can be incorporated into the memory controller

that then determines reference patterns and puts that data on the bus for the curiosity

to incorporate into the cache. The memory controller is generally the bus arbitrator

and thus knows when the bus is idle, allowing the prefetch to use only bus cycles that

would be otherwise wasted. Another bus device can also provide external prefetching.

For example, another processor could implement this functionality, executing codes

that can more accurately model what will be needed in the future and prefetch those

locations for the working processor. These prefetching techniques provide better

performance than stream buffers since the data is brought directly into the cache

while eliminating the need for the stream buffers.

As mentioned in Section 4.3.1, curiosity can also be used to force data out of a

cache by being curious about bus transactions that will replace unwanted data or

data that needs to be written-back as soon as possible. Rather than issuing separate

flush operations to force out newly produced data, a producer can be curious about

what the consumer was reading or pushing out. Since the consumer is reading data

different from the data that the producer is currently producing, the producer will

replace old produced data with newly consumed data. If the producer has sufficient

cache space mapped to the communication buffer, that data brought into the producer

in EXCLUSIVE state avoids the need for the producer to get permission to write that

data.

Instead of moving data, curious caching enables the prefetching of the write-

permission alone, allowing a device to push write-permission to another device. To do

so, the producer should be curious about a flush operation (that must be propagated

119

to the bus), incorporating a EXCLUSIVE state into its cache without getting the useless

data.

A CCC can take advantage of many memory performance optimizations designed

for distributed/parallel systems, such as memory-mapping, but can often do better

than the hardware for which the optimizations were designed. For example, global

memory management[29, 4] allows nodes in a distributed system to page to memory

on other nodes, thus using remote memory as a disk substitute. Curiosity can do the

same for caches, but more efficiently since no software involvement is necessary.

Curious caching can also provide additional functionality such as emulated mem-

ory. The SRAM/memory emulation capability of curious caching, however, is more

powerful than a true explicit SRAM because (i) with appropriate modifications, it

can serve as SRAM to other bus devices, (ii) it allows lazy swapping of the emulated

SRAM and (iii) and exists in the same address space as the standard RAM. If the

performance demands on that memory are reduced, the cache region can be remapped

and curiosity removed without having to copy the data to standard memory as would

be required with an explicit SRAM. If performance is not terribly critical, swapping

in can also be done lazily rather than eagerly. Of course, if performance does matter,

swapping can be done explicitly as well.

The same instruction set architecture is often shared between embedded pro-

cessors and general-purpose processors, such as in the PowerPC family. A curious

cache brings embedded and general-purpose processors closer together, allowing more

shared development and enabling general-purpose processors to better emulate em-

bedded processors. Such closeness can reduce time to market and give an accu-

rate development environment for embedded processors that often appear after the

general-purpose version. Putting a curious cache in an embedded processor or DSP

allows better utilization of that valuable state, allowing the region to be dynamically

partitioned between cache and explicit SRAM.

Processors-in-Memory systems implemented with curious caches instead of mem-

ory provide the benefits of PIMs with all of the performance and functionality benefits

of curious caching. Though more costly to implement because of the cache structures,

120

a CCC has significant advantages over a PIM. Memory can be easily migrated from

one processor to another in a CCC since all the memory is implemented in cache.

Communication can potentially become much faster. Multiple copies are much eas-

ier to support. Data movement is automatically managed by hardware but under

software-defined policies.

4.6 Implementation

Like any other architectural mechanism, there are many ways to implement curious

caching. In this section, we describe one reference implementation to demonstrate its

feasibility.

Curiosity hardware transforms snooped bus transactions into a decision whether

to incorporate and, if so, a set of curiosity actions. Snooped bus operations are

transformed to curiosity tables using TLB-like structures for single page regions and

BAT-like (Block Address Translation, essentially base and bound pointers, as pro-

vided in PowerPC architectures[51]) structures for larger contiguous address ranges.

BAT structures could also be used to identify curiosity when addresses are not a

parameter by specifying the full range of memory. These translation structures only

determine whether a bus transaction's address is within a curious range while the cor-

responding curiosity tables further determine whether a cache is really curious based

on other parameters. There are, of course, many actual implementations of curiosity

determination.

It is important to have separate structures than the standard virtual-to-physical

translation TLB/BAT for the curiosity TLB (C TLB)/curiosity BAT (CBAT) and the

TLB/BAT not only for ease of implementation ease but also for additional flexibility.

For example, a cache can be curious about an address that that is not yet mapped

into its TLB or can have a different column bit vector (discussed earlier in Chapter 3)

for data brought in via the curiosity mechanism than data brought in under explicit

master memory operations.

For configuration, each CTLB and CBAT is assigned its own address regions that

121

software reads and writes to read/write table state. To set curiosity parameters, the

application simply needs to write the appropriate actions to the appropriate entries

in the table. Each cache is also curious about snooped operations to the current

curiosity mapping address space. In this manner snooped operations can reconfigure

curiosity.

Translation between virtual addresses that user-level code would specify to the

physical addresses needed by curiosity is necessary. Hardware support could be pro-

vided. Of course, operating system routines could be written that provide the neces-

sary functionality.

The operating system manages the assignment of CTLBs and CBATs to pro-

cesses. It is likely the CTLBs and CBATs will be managed in a partitioned fashion.

Obviously, there may be more curiosity mappings than are possible due to limited

hardware, making swapping of curiosity potentially desirable. Also, column caching

(if provided) limitations on cache space and partitioning ability will probably re-

strict how much curiosity can be effectively used. To reduce complexity, the refer-

ence implementation of curious caching requires the operating system to perform all

CTLB/CBAT swapping. When curiosity is swapped in, its curiosity mappings and

the base pointer to the physical memory region that stores its curiosity mappings are

restored. It is unnecessary to save curiosity mappings on a swap since they are al-

ready written to memory via configuration tables mapped as write-through. Curiosity

swaps may not correspond directly to their owner process swaps, since curiosity can

be useful even if its owner is swapped out.

It would be convenient to keep curiosity information within the page table entries.

Unfortunately, doing so in a simple-minded way limits curiosity. Generally, there is

a single page table entry for each virtual page within a process. In that case, each

virtual page is associated with a single curiosity table. In the case of producer and

consumer threads in the same process using the same virtual address to access the

communication buffer, the same curiosity information will be used for both. Though

such sharing is still useful, curiosity is more more flexible if separate structures are

provided for curiosity data. There may be such a structure provided for each thread,

122

rather than each process. That structure will be small since it will be limited to the

amount of curiosity that the thread is allowed to specify.

As usual, configuring curiosity should be protected to prevent one process from

overwriting another's curiosity specification. Especially important to protect is the

ability to specify curiosity permission tags, redirection and the curiosity bit vectors.

The same sort of protection mechanisms provided for column caching can also be

provided for the specification of curiosity bit vectors. As described in Section 4.3.5,

complex situations can arise if permission tags and or redirection are used incorrectly.

Operating system oversight may be essential to avoid the most complex difficulties.

Operating system oversight would also facilitate the building of data structures nec-

essary to track and adjust for any demand paging activity.

Rather than using the familiar associative CTLB structure, a hashed TLB can be

used instead. Since the snooped bus is slow compared to the processor, a simple hash

function is affordable and could enable a much large CTLB.

4.6.1 Hardware Overview

Hardware support for curious caching consists of three basic components: determining

whether the cache should be curious about a particular bus operation, informing the

bus of the decision (if necessary) and incorporating the data brought in by curiosity.

Curious caching can be implemented on top of existing snoopy cache mechanisms

(Figure 4-6 shows standard snooping hardware). Logically, there is a curiosity table

associated with each CTLB/CBAT entry. If a CTLB/CBAT determines that a

snooped address is within a curious region, the other parameters are passed to the

corresponding curiosity table which is accessed using those parameters to determine

a curiosity action, if any.

To improve lookup speed, it is possible to split the CTLBs into CTLBas and

CTLBbs and the cache replacement unit, CRU, that uses CTLB units-generated

information to determine replacement (Figure 4-7). In addition, the Bus Interface

Unit (BIU) needs to be modified to inform the bus of its cache's curiosity and to

accept curiosity data.

123

The two CTLB units provide information to determine if the cache is curious

about a snooped bus operation. The CTLB, is accessed with the bus operation

and snooped address in parallel with the cache-line state (that is read for snooping

anyways) and produces a lookup-table specifier. The CTLBb uses the read cache-line

state (potential replacement lines for the snooped data) to access the lookup-table

specified by the CTLB, producing actions for each possible replacement cache-line.

The CTLB is split into three parts to improve performance: CTLBa, CTLBb

and the CRU . The lookup part of the CTLB is split into two parts, the CTLB,

and the CTLBb. The CTLB, is accessed right after a bus transaction is snooped

with parameters from the bus transaction. The CTLB, produces a lookup table

specifier that is used as a pseudo-parameter for the CTLBb. Parameters that are

available after the CTLB, is accessed, such as cache state, are looked up in the

CTLBb when they become available. Of course, if no read state such as cache-line

state is a curiosity parameter, there is no need for the CTLBb. The CTLBb may need

to provide a lookup table for each column if cache-line state are curiosity parameters

and speed is essential. The results are combined in the CRU. Of course, the CTLBa

and CTLBb may be combinable depending on the parameters and the timing2 .

The possible replacement cache-lines along with their associated actions generated

by the CTLBa/CTLBb are passed to the CRU that then determines whether the

cache is curious and, if so, which cache-line to replace. If the CRU determines it is

curious about a snooped bus operation, it notifies the BIU of that fact. The BIU

notifies the bus that its cache is curious (if necessary) and coordinates moving the

curious data into the cache when the data becomes available. If BIU buffer space is

unavailable, the snooped bus operation can either be retried or, if curiosity is only a

hint, that particular data is ignored.

Some possible parameters, such as whether data was inserted due to curiosity,

could be stored in the cache rather than performing the corresponding lookups in

the CTLBb. Such a design can sometimes avoid extra lookups, but will also require

2If a low-associativity column cache is used, the cache access needed to access the CTLBb may
have to wait until the CTLBa produces a cache address or series of cache addresses.

124

Op Virtual address

Column Replacement Unit idWBlU

Hit? Data

rDat

Snoop Hit? BIU

Physical address

Figure 4-6: Standard Snoopy Cache Address Structure (assuming a column caching
replacement unit).

Op VIrta address

Column Replacement Unit 13-11B1

Hit? BIU
Data

____I~4noop HI ? ___BiU

g....

CTLBb

Curious Replacement Unit 24-* BIU

Op Phiaddr

Figure 4-7: Curious Cache Address Structure

125

more bits in the cache and support to handle changing curiosity mappings within the

cache. In addition, the CRU may become more complex to accommodate and thus

may negate any savings.

There are, of course, alternate implementations. Rather than putting curiosity

detection within the cache, the cache could have an input indicating whether to be

curious about the current bus transaction. That input could be a single bit or a

number of bits indicating how data should be brought in. Input bits may also specify

a curiosity hue that is looked up within a simple table that specifies curiosity and

curiosity actions. Such an implementation allows implementations of curiosity outside

of the cache, greatly simplifying the hardware within the cache and enabling potential

sharing of that hardware between several caches. For example, hues could be stored as

part of the cache state, eliminating the need for CTLB/CBAT structures altogether

and only requiring additional support during remapping of curiosity.

4.6.2 BIU Modifications

The BIU needs to be modified to (i) provide additional signals to the bus to convey

necessary curiosity information and (ii) provide the hardware needed to handle the

incoming data due to curiosity. Both are straightforward.

Our default implementation assumes a simple in-order broadcast-based data bus.

We discuss designs that accommodate out-of-order, point-to-point network-based

data buses in Section 4.3.7.

Bus Signals

In our default implementation, only MODIFIEDP one-bit bus signal to signal sink redi-

rection needs to be added. Its assertion indicates that the data will reside in modified

state within the cache, eliminating the need for memory or another cache to keep

a copy of the data. Similar functionality is already supported in high-performance

buses that support intervention such as the PowerPC 6XX. In those cases, the signal

indicates that the data will be passed from a snooping cache that contains the data

126

permission read write read return

data bus

i busop
address
data

Figure 4-8: Unmodified BIU

in modified state to a cache that is requesting an exclusive copy of the cache-line.

The sink, therefore, is not required to make a copy, since the requesting cache has the

most up-to-date copy and will ensure it is either written back or passed to another

exclusive read.

The MODIFIEDP signal can be implemented as a bussed signal that is asserted

only if a cache will take a copy, otherwise it remains in tri-state. If point-to-point

electrical characteristics are desired, a combining circuit can be used. Either way, the

signal is an input to memory.

Handling Curious Data

A simplified, unmodified BIU is shown in Figure 4-8 while a curious cache BIU is

shown in Figure 4-9.

When CRU indicates that the cache is curious about the data and passes that

intention to the BIU, the BIU must allocate a buffer to store the relative information

until the data returns. This buffer, which we call a curious buffer, is virtually identical

to a standard read buffer. The standard collision detection mechanisms (either in the

master or in the snooper, depending on the implementation) that ensure two bus

operations to the same cache-line are not simultaneously outstanding conveniently

127

permission read wrre

data bus

i busop
address
data

Figure 4-9: Curious Cache BIU

prevent ancestor caches from issuing loads to the same data that is being brought in

via curiosity. The buffer must be able to handle a retry of the curious bus operation

at a later time if the bus protocol supports it.

The only difference between the standard BIU path and the curiosity BIU path

is that completion of the bus operation does not necessarily signal an outstanding

load/store that it can continue since there might not be a load/store issued by a

master for that data.

When the curious data appears at the cache's BIU, the BIU moves the data into

the cache when possible. If the cache master had issued a memory operation to the

same cache-line and the permissions are correct, it is possible to service that memory

operation with the curious data as if the memory operation issued the curious bus

operation.

4.6.3 Impact of Curious Caching on Clock Cycle

Curious caching snooping operations occur in parallel with standard snooping. They

do, however, potentially take a bit more time than standard snooping because an

128

return curious return

additional lookup (CTLBb) takes place before curious snooping can complete and

deciding on actions is potentially a bit more complex. If the timing impact of the

CTLBb is too large, the information it generates should be made part of the cache

lookup and additional support to flush or change that information when curiosity

mappings change should be provided.

Since caches generally run some 2 to 5 times faster than the buses they snoop,

there is generally ample time to perform such operations when the cache is snooping

a bus across a chip boundary. If the cache is snooping traffic that is being generated

on the same die, additional pipeline latency may occur. If the additional latency is

significant, curiosity can be asserted eagerly, that is, curiosity can be indicated to

the bus but the data not necessarily incorporated. During the time the data is being

returned, the curious cache can positively determine if the data will be inserted into

the cache. Thus, there should be no impact on the clock cycle.

4.6.4 Additional Support

Additional support can assist curious caching. Block operations, such as a block

invalidation, are very useful to curious caching, especially to force a region of memory

to be written back so that they can be brought into another cache via curiosity. Such

operations are easy to implement and can also provide benefits to standard codes.

Those block operations can also be implemented outside of the processor/cache by

placing them on the memory bus.

With hardware support, a producer can start to write data before permission to

write that data is obtained. In a standard coherence protocol, the permission can be

obtained in parallel and the written data combined with the rest of the cache-line of

data when it is available for writing within the cache. Another solution could allow

a page to be specified "write without permission". The reader would be responsible

to invalid its cache entries to read new data.

A variant of this approach is supported by the Commit/Reconcile/Fence (CRF)

instructions[65] A store-local instruction is provided that allows the processor to store

to cache; permission or the cache-line of data does not need to be obtained first. This

129

store would take the place of the page specifier "write without permission". This

CRF instruction set is also capable of implementing most memory models with no

additional hardware support.

130

Chapter 5

Putting It All Together

This chapter examines how column and curious caching might be used to improve

performance, simplify design complexity and reduce resource requirements for a wide

range of applications from standard sequential codes and multitasking/multithreaded

execution to message passing in parallel systems like START-VOYAGER. We also

describe how START-VOYAGER can efficiently emulate column and curious caching

and provide a test-bed to try various implementation ideas.

Column/curious caching can significantly improve performance and reduce part

counts. For example, curious caching reduces START-VOYAGER message-passing

receive processor overhead time by almost 50% assuming a memory latency of only

twenty cycles. Column/curious caching would also reduce the non-trivial part count

of the START-VOYAGER network interface by 50%. We observed in some cases that

column caching can achieve the same cache hit rates as an LRU cache with 40% less

cache space or improve hit rates by at least 10% with the same size cache. Column

caching also enables more flexible process/thread scheduling while keeping cache hit

rates high. We detail each of these results in the rest of this chapter.

5.1 START-VOYAGER with Column/Curious Caches

START-VOYAGER would have been easier to design, implement and achieve better

performance had it been built around processors that supported column and curious

131

caching. This section describes START-VCCC, a modified START-VOYAGER that

assumes such caches.

5.1.1 Simplify Design

START-VOYAGER's network interface included buffer space for cached memory-based

message composition. The network interface must be prepared to buffer cache-lines

that may have been prematurely evicted. Such premature eviction requires the ability

to satisfy requests for the same data, making some sort of RAM essential for buffering

messages. A FIFO is not sufficient. Premature eviction also eliminates the possibility

of using bus transactions to signal that messages have been composed or consumed

since the number of bus transactions per message is not constant.

A common solution is to buffer in memory. The network interface reads composed

messages from memory, potentially getting data via intervention from the cache, and

writes received messages to memory for the processor to receive. This solution elimi-

nates the need for RAM on the network interface but requires additional bus crossings

for receives and may incur additional bus crossings for transmits if messages are not

read from the cache. In addition, DRAM bandwidth is consumed and DRAM latency

is incurred, potentially limiting performance. Putting a cache on the network inter-

face, an approach taken by the current Utah Avalanche[70] design, eliminates bus

crossings DRAM impact in the normal case but does complicate the design consider-

ably to include the coherent, dual-ported cache. Neither of these solutions, however,

affect the possibility of premature eviction and its implications.

A column/curious cache addresses all these design/implementations issues, im-

proving performance at the same time. Assume communication buffers backed by

memory. By mapping each active communication buffer into a dedicated cache par-

tition, the possibility of premature eviction is eliminated assuming that messages are

composed/consumed sequentially and the cache partition is large enough to avoid

premature eviction due to speculative memory accesses to the buffer itself. With-

out the possibility of premature eviction, it is possible to use a simple FIFO rather

than a RAM for transitory buffering of messages within the network interface. By

132

using a smaller cache partition than the entire communication buffer, constructive

interference will push composed/received messages out as new messages are being

composed/received.

If the cache partition is curious about their respective communication buffers

as well, the network interface can push write permissions and received data into the

producer/consumer's caches, respectively. Thus, it is possible to eliminate on-demand

bus transactions to transmit/receive a message. From the processor's perspective, all

such operations will be performed out of the cache, eliminating the need for aggressive

write-buffers for transmits and dramatically improving receive performance.

Standard handshaking can still be used to signal the network interface aggres-

sively to move data in/out of the cache from/to the network interface. Since there is

no chance of premature eviction and the resulting extra bus transactions, however,

it is possible for producers/consumers to use implicit bus transactions to indicate

composition and consumption completion. In other words, producers/consumers do

not need to explicitly indicate completion of their tasks; the implicit bus transactions

created by continued execution of their tasks can interpreted by the network interface

as a task completion signal.

For example, if the network interface sees a read bus operation for an element

in the receive buffer, it knows that the previous messages have been received and

thus can push additional messages into the cache via curiosity. The same applies

for the transmit queue. Of course, such a scheme needs to be augmented to work

with messages that are not continuously being transmitted or received or if there are

dependencies between message transmits and receives.

Because the message queues are backed by memory, there are no correctness is-

sues. In the worst case, performance degrades to a standard memory-based queue

design. In the usual case, however, performance will be significantly better, de-

sign/implementation complexity significantly reduced, and new lower-overhead mes-

sage mechanisms such as the reduced-handshake scheme described about can be sup-

ported. We discuss the first two points in the next two sections.

133

clSNAM NIU Board

CTRL --

604 --- alUsU
(aP)

sLV

DRM

Tx Rx
DRAM MC I Arctic

Network

Figure 5-1: START-VCCC

5.1.2 Actual Differences in START-VOYAGER

START-VCCC is shown in Figure 5-1. The biggest visible difference is the part

count reduction by going from dual-ported SRAMs to FIFOs. START-VCCC does

not require dual-ported SRAMs. A pair of transmit FIFOs and a pair of receive

FIFOs would be sufficient, allowing high priority bypass of low priority messages. An

additional pair of transmit address FIFOs needs to reside in each of the BIUs. Another

pair of FIFOs between the AP and the sP would be desirable to minimize latency

between the two processors, though is not necessary as the high priority buffers could

be used. These FIFOs could make the Tx-Rx FIFOs redundant, especially if the clock

boundary crossing is done in the added FIFOs.

Another benefit is reduced BIU state and complexity. The BIUs do not have to

track SRAM addresses for each of the supported queues. For transmits, the BIU

simply needs to know a range of physical addresses that correspond to valid transmit

queues and a transformation from the physical address to the queue number. If it

sees a write to one of those addresses and the queue is active, it enqueues the written

data into the appropriate transmit FIFO. Depending on the type of transmit queue,

the BIU passes either the address and bus operation to CTRL or some condensed

134

information via the appropriate address FIFO.

For receives, the BIU simply writes the data to where CTRL tells it to write the

data. This write is identical to an shared memory write of data back to DRAM. If

the receive queue is active and in the cache, the data will be brought into the cache

via the curiosity mechanism.

A third benefit would be hardware support of many more queues than are currently

possible on START-VOYAGER. Buffer space and to a lesser extent BIU state, were the

limiting factors for number of queues and queue size in START-VOYAGER. By moving

buffer space to DRAM, many more queues can be efficiently supported. Queue state

within CTRL is implemented as RAM and could easily scale to support significantly

more queues. Caches are configured to store the "hot" queues while the others operate

like a standard DRAM-buffer-based machine.

Since the number of supportable queues can grow a significant amount, non-

resident queue support may not be be necessary. If they are, however, hot swapping

queues becomes much more elegant since resident and non-resident queues are handled

almost exactly the same way. Rather than swapping queues to/from the dual-ported

SRAMs, only the memory region recognized as a transmit queue must be changed. If

pushouts signal that a message has been composed, the sP should be notified of such

an event for a non-resident queue. Transmitting to and receiving from non-resident

queues proceeds as with the original START-VOYAGER.

To summarize, the benefits of column and curious caching to the design and

implementation of a parallel machine like START-VOYAGER are as follows.

" Elimination of premature eviction enables

- FIFOs replace RAM for fast buffering.

- Processor-to-network-interface signaling to be done implicitly in bus trans-
actions.

" Reduction of control complexity.

" Increase in number of queues.

" Simplify non-resident queue handling.

135

5.1.3 Improving START-VOYAGER Message Passing Performance

Processor overhead on START-VCCC is dramatically better. Consider START-

VOYAGER's Basic message passing mechanism. A single message transmit requires

43 + 2 * numwords + 5 * numCL + 1 StOTeuncached

instructions to execute while a receive requires

27 + 2 * numwords + 5 * numCL + 1 stoTreuncached

instructions. The numbers are not exact because we do not count code, such as

aggregated pointer reads, that are not executed for every message library call. Of

course, since these are instruction counts and not cycle counts, cache miss penalties

are not included.

To generate numbers comparing START-VOYAGER and START-VCCC perfor-

mance, we made the following assumptions: (i) one instruction is issued per cycle,

except for memory operations, (ii) there is sufficient buffering to avoid blocking on

writes and (iii) no memory barrier instructions are required. Under these assump-

tions, transmit overheads and receive overheads for standard caches (20 cycle and 100

cycle hierarchy latencies) and a curious cache are given (Figure 5-2). The START-

VOYAGER system has about a 30 cycle memory latency. Current processors have

a 100 cycle memory latency. We do not account for a performance advantage of

START-VCCC, notably that the network interface pushes pointer updates to the

processor via curiosity eliminating the memory latency component of pointer reads.

In particular, note that with curious caches, message receives are faster than

the corresponding message transmits, reducing the chance of overflowing queues and

blocking the network or invoking flow-control or dropping and retransmitting mes-

sages. In addition, since START-VOYAGER's message passing bandwidth is limited by

processor overhead[5], START-VCCC's significantly lower processor overheads make

substantially higher bandwidth possible (Figure 5-3).

136

250

200

*150

* Basic Rx curious cache
0 0 Basic Rx standard cache, 20 cycles

OBasic Rx standard cache, 100 cycles

C 100

50

0
2 4 6 8 10 12 14 16 18 20

Message Size (48 Words)

Figure 5-2: Receive Overheads with a Standard Cache and with a Curious Cache. The

numbers presented here are generated using the instruction counts and an estimate

(generated from the real system) of a 20 cycle penalty for a cache miss. A cache

penalty of 100 cycles is also presented. It is assumed that the cache is aggressive and

can issue multiple overlapping loads, allowing subsequent cache-lines to be accessed

16 processor cycles (4 bus cycles per operation, 4 processor cycles per bus cycle). A

curious cache allows messages to be pushed directly into the cache, avoiding cache

misses for receives and thus achieving a much lower receive processor overhead.

137

1.20E+08

1.OOE+08

8.OOE+07

0 Curious

6.OOE+07 - Standard, 20 cycle hierarchy
:2 . . Standard, 100 cycle hierarchy

4.OOE+07 -

2.00E+07

0.OOE+00
2 4 6 8 10 12 14 16 18 20

Message Size (4B Words)

Figure 5-3: Bandwidth with a Standard Cache and with a Curious Cache. Since pro-

cessor overhead bottlenecked bandwidth, with lower processor overheads, bandwidth

correspondingly goes up. These numbers assume that there is no other bottleneck in

the system.

General message handling code is less efficient than specialized code. If the number

of instructions needed to receive a message is reduced, the impact of cache latency

will increase since there memory latency will consume a larger fraction of the overall

overhead and there is less opportunity to overlap computation with the memory

latency, further increasing the benefit of curiosity compared to standard caches.

If bus transactions are used to signal handshaking events as described in Sec-

tion 5.1.1, synchronization can be eliminated. Even if handshaking is explicit, syn-

chronization can be minimized or eliminated by exploiting the limited speculation and

reordering inherent in superscalar processors. These techniques can further reduce

processor overheads. Of course, they increase latency and are thus not appropriate

for certain forms of message passing.

Column caching can restrict cache pollution, further improving performance by

improving hit rates. The actual performance improvements are dependent on what

else is running with the message passing routines.

138

5.2 Emulating Column/Curious Caching on START-

VOYAGER

Ideally, processors and memory hierarchies should allow programmability of their

communication and storage components. A program should be able to decide what

data gets cached, using what policy in what part of the cache, and what information

goes out onto the bus when. Column and curious caching are mechanisms that are

easily supported by such hardware. Unfortunately, such control does not currently

exist in current commercial hardware.

The START-VOYAGER network interface connects to the MIT Arctic network[13],

giving it the ability to communicate with other START-VOYAGER sites. With the

network capability emulating a bus or a network and each START-VOYAGER site

emulating a single processor (see Figure 5-4), START-VOYAGER is an excellent plat-

form to research advanced processor/cache mechanisms such as column and curious

caching, or other storage and communication mechanisms.

START-VOYAGER emulates smart memories by watching all bus operations and

performing programmable actions based on those observed bus operations. For ex-

ample, START-VOYAGER has the ability to implement an S-COMA cache, a large L3

cache whose data exists in memory and whose tags are maintained in clsSRAM.

Using this S-COMA support, we can accurately emulate column caching by slight

changes in the coherence protocol currently implemented by the sP (Figure 5-5). In

normal S-COMA, pages are the unit of allocation, but cache-lines are the unit of

coherence. Thus, each page being accessed in S-COMA space is allocated a physical

page frame in local memory. Replacement decisions are only made when a new page

is accessed and needs to be mapped into local memory. Then, an old page needs to

be vacated to make space for the new page.

By having the coherence protocol artificially limit the number of valid cache-lines

within a specific region of memory to the number of columns where that region of

memory is mapped, column caching is accurately emulate column caching. Of course,

this limits the amount of space in the S-COMA cache, potentially significantly. It

139

StarT-Voyager

60)
S m a r t ----6 m e

___________ me
buffer

NE:
N Smart Smart
Buffer Buffer

Network
Network

Figure 5-4: START-VOYAGER site seen as a single processor with flexible caches and
bus interface unit. FPGAs provide hardware programmability, while an embedded
processor provides firmware programmability. With its programmable ability to in-
terpret and respond to any bus operation in an arbitrary way, START-VOYAGER is

able to emulate storage and communication control. START-VOYAGER could easily
emulate curious caching. Using the Arctic network to emulate a bus, each START-
VOYAGER site is now a processor sitting on a bus. Using firmware, data that the
site is curious about can be brought into the system and written to local DRAM.
START-VOYAGER is also able to effectively emulate column caching with a special-
ized replacement algorithm and leveraging existing S-COMA support.

140

Mapped Pages

Emulated
Column
Cache

S-COMA
Implementation

Ox0
Ox1i
0x2

Ox0

Ox2i
6xO-

0x2-

V

V

V

V

V

V

V

0x7
0x8
0x9

0x7
0x7

0x7

v- -

Kx7
0x7

V

V

V

V
V

Oxa
Oxb
0xc

Oxa

0xb
Oxa
Oxa
Oxa

V

V

V

Oxa
Oxb
0xc

Oxb

0xc

Oxa

Oxb

V

0
1
2
3
4
5
6
7

V

V

0
1
2
3
4
5
6
7

Ox0 Oxa 0x2 0x7 0xc 0xI Oxb 0x4

Figure 5-5: START-VOYAGER emulating column caching by artificially restricting the
number of valid cache-lines in each set to n where n is the associativity and selecting
cache victims using column mapping information. Note that for a particular region
of memory (Oxa-Oxc for example), the number of valid cache-lines in a given set is
no greater than the number of columns in the assigned partition. For example, if
cache-line 4 of page Oxb should be brought into the cache, either cache-line 4 of page
Oxa or cache-line 4 of page Oxc must be invalidated.

does, however, enable accesses that hit in the cache to proceed at a normal pace and

accesses that miss incur approximately the same miss penalty as a normal remote miss,

since the additional invalidation to emulate the limited resources of column caching is

not on the critical path and thus can occur later. The timing characteristics of such

an emulation are very similar to that of a real L3 column cache implemented with

DRAM.

START-VOYAGER can also implement a distributed bus protocol over its network,

emulating a bus or a full network or anything in between. Since both firmware

and configurable hardware can access the network, the emulation can be made quite

efficient.

Curiosity can also be easily emulated by START-VOYAGER. For simplicity's sake,

however, assume that START-VOYAGER is emulating a bus over its network, letting

141

v

every network interface sees all requests. The network interface can then easily im-

plement curiosity. The site's processor is provided with an interface that allows it

specify the curiosity table and the network interface, either the sP, the FPGAs or

both in conjunction, can then bring in snooped data and incorporate that data into

the emulated column cache.

As described before (Section 4.3.6), START-VOYAGER can emulate distributed

curiosity. The aBIU and sP have the ability to see writebacks to S-COMA space.

If a writeback occurs that another cache is curious about, that writeback can be

forwarded to the curious cache. The producer of the data needs to know which

caches are curious to avoid a broadcast. Thus, the curiosity information is pushed to

the producer which then sends the desired information as it is produced.

5.3 Column Caching Evaluation

Column and curious caching provide control over storage and communication re-

sources. Control can provide two potential benefits: reducing necessary resources

and improving performance. Though we have focused on improving performance

rather than reducing resources, in reality they are highly related.

By dynamically mapping regions of memory to regions of the cache in a fashion not

unlike overlays which were popular before demand paging, it is possible for software to

improve performance with a given set of resources. By judicious mapping of memory

regions to cache regions, data that should be kept but would have been replaced by

a fixed replacement algorithm can be kept and data that should not be kept will be

replaced instead.

5.3.1 Simulation Tools

We use several tools to evaluate column caching. A trace-driven approach was selected

for several reasons including the ability to quickly rerun experiments with different

parameters, to run experiments on different machines than the trace-generation ma-

chines, to improve performance, to allow ideal cache simulation, and to facilitate

142

multithreaded/multitasking experimentation. Instruction and data reference traces

are generated by SimICS[50], a fast and accurate instruction-level simulator. SimICS

was augmented to produce traces in the PDATS format[41], a trace-knowledgeable

compressed format. The traces are further compressed with the Gnu compression

utility gzip[32] and stored in a gzip'ed pdt format.

The traces are processed by our cache simulator hiercache. Multiple cache sizes

with constant column sizes and increasing associativity (Figure 5-6) are simulated si-

multaneously, immediately illustrating the benefit of additional columns[68]. Multiple

cache levels can also be simulated.

Two replacement algorithms are used for general experimentation: LRU and

pseudo-ideal. The multiple-cache simulation technique automatically simulates the

LRU replacement algorithm. Pseudo-ideal replacement is done by looking forward

within the traces and choosing the cache-line that will be accessed furthest in the

future for replacement[11]. Despite its name, it is not truly ideal since since it (i) it

does not consider the cost of cache misses as replacing pushing out modified data is

more costly than clean data and (ii) it models a set-associative cache rather than a

full-associative cache.

hiercache also simulates a column cache with LRU weighting by allowing the

specification of a bit vector of replacement columns for any page of memory. Columns

are not all equal, since lower-numbered columns are "more-recently-used" and higher-

numbered columns are "less-recently-used". Thus, column specification in hiercache

also specifies LRU weighting that can make a difference during remapping.

The pseudo-ideal replacement algorithm adds lookahead information to the LRU

simulation. Rather than always moving the accessed address to the first column

as is done in the standard LRU cache, the pseudo-ideal replacement looks ahead in

the reference stream to choose the cache-line that contains data that will be used

furtherest in the future for replacement. The "next-access-time" is maintained for

each cache-line to make this process easy. The process is started from column 0. When

a cache-line containing data that will be accessed further in the future than the data

looking for a cache-line, they are swapped. The process is iteratively performed until

143

Initial State
0 1 2 3 4 5 6 7

0x3 0x5 Oxi Ox0 Oxa 0x2 0x4 0x6

Access address tag Oxa
0 1 2 3 4 5 6 7

0x3 0x5 Ox1 OxO Oxa 0x2 0x4 0x6

Record hit in column 4, shift address tags right up to column 4

0 1 2 3 4 5 6 7
0x3 0x5 Ox1 OxO 0x2 0x4 0x6

Write accessed address tag to column 0
0 1 2 3 4 5 6 7

Oxa 0x3 0x5 Ox1 OxO 0x2 0x4 0x6

Figure 5-6: hiercache simulates multiple cache sizes simultaneously in the following
way. A memory reference is first checked to see if it exists in the correct set of the
cache. If it does, a hit is recorded, otherwise a miss is recorded. Then, the addresses
in the set are each moved down one column. If the referenced address was found in
the cache, the movement stops at the column where it was found. The referenced
address is then placed in the first column. The position of an address within its set
indicates how recently it was accessed relative to the other addresses in the set. Hit
rates for multiple cache sizes, from one column to n columns, where n is the number
of columns, can be generated from such a simulator simultaneously.

144

the cache-line that the original address was located in is reached, where the currently

comparison data will be inserted. This algorithm will produce optimal replacement

statistics for a range of cache configurations, just like the LRU simulator.

Our numbers are entirely in terms of hit rates. Because of the variable costs to

service a miss, hit rates cannot give a completely accurate picture of the performance

benefits of a mechanism. Different processor architectures can vary the actual bene-

fits, making it impossible to say that one mechanism is always better than another.

As research in this area continues, we hope eventually to be able to account for such

effects and give much more accurate evaluation of these mechanisms.

In a similar vein, large cache-lines deceptively raise cache hit ratios. For example,

given a cache-line size of eight and a sequential pattern of reference, an 87.5% hit

rate (7/8) will be achieved. However, if the additional references to the data in the

cache-line will follow one right after the other, those loads may still pay almost the

same latency as the first access that fills the cache-line. Thus, the 87.5% hit rate

achieved may be very different than eight accesses to data in different cache-lines,

where one cache-line of data is uncached and the other seven are cached.

5.3.2 Column Caching with a Single Program

It is possible make applications cache-aware, improving their performance within a

cached system. Many benchmark applications are already somewhat optimized in

this regard, making it difficult to improve their performance with column caching. It

is interesting, however, to examine these applications and understand whether cache

mapping can improve performance at all. In this study, we examine a set of standard

applications, such as gzip and a few synthetic benchmarks.

Column caches can be viewed as a superset of separated spatial/temporal caches

and thus can achieve all of the benefits of such caches. A simple example demon-

strating the benefits of such a cache reads data from an input, lookups up the data

in a table and outputs the result. The stream reads and the writes pollute the cache,

displacing the lookup table data.

Assume the input and output streams are larger than the cache, and a uniformly

145

100

80

70

S 60-
ILRU
5 Isolated
OSS

SSS/FT

S40

30

20

10-

1 2 3 4 5 6 7 8 9 10 16

Number of 4KB Columns

Figure 5-7: LRU verses a Column Cache. The various mapping strategies are (i)
Isolated where each stream is allocated one column and the lookup table the rest
of the cache (ii) Single Stream column (SS) where the two streams share the same
column and the lookup table takes the rest of the cache and (iii) SS/Full Temporal,
where the streams share a column and the lookup table uses the entire cache. Note
that a separate spatial/temporal cache where the temporal cache is n columns in size
will perform like an SS cache of n + 1 columns.

accessed 32KB lookup table. The hit rates for a perfect LRU cache, along with

four and eight column caches with different column allocation policies are given in

Figure 5-7. The column allocation policies are (i) separate each region of memory, (ii)

separate stream from temporal regions and (iii) isolate streams into a single column

but allow temporal regions to also use that column.

The best policy depends on the amount of available cache space compared to the

working sets of the various regions of locality. It is generally better, however, to let

the temporal region use the entire cache, but restrict the streams to a single column.

This policy is fairly logical; the temporal region of memory can use cache-lines in the

sets that are not currently being used by the streams. If stream usage is very high,

the LRU algorithm will effectively keep temporal data out of the streams' column

while if the stream usage is low, the temporal data will use that column.

A separate spatial/temporal cache is very similar to a column cache where streams

146

are isolated from temporal data. Because of the ability of column caches for temporal

data to use columns where stream data is isolated, column caching often provides

better performance than split spatial/temporal caches.

If cache space is not an issue, every region of memory can be isolated into its

own set of columns. In that case, column caching achieves an pseudo-ideal cache hit

rate between nine or ten columns, since there are no replacement conflicts at all. The

standard LRU cache is only able to achieve 85.49% hit rate at the same size and needs

16 columns (64K of cache) to get over 91% hit rates. Thus, a mapped cache improves

hit rates by almost 6% at the same size cache or requires more than 6 columns or

24KB less cache space to achieve the same hit rates.

For all programs, we started by looking at Li hit rates. Because of the high hit

rates and the modest sizes of current Li caches, however, little advantage can be

gained from standard programs from column caching in the Li cache. As the Li

cache grows, however, or if the additional functionalities that column caching can

provide are desired, column caching may become useful within the Li cache.

Hit rates within the L2 cache, on the other hand, are not nearly so uniform. In

many cases, pseudo-ideal L2 hit rate and LRU L2 hit rate are significantly different.

There is significant pollution within the L2 cache making it fertile ground for column

caching. In addition, low-associativity designs that rely on some translation of the

address almost force column caching to be implemented after the TLB or some other

form of translation unless a virtual Li cache is used.

We examined the current version (1.2.4) of gzip in some detail. We compiled

gzip with the standard arguments that included -o optimization. We ran gzip on

SimICS, compressing three equal-sized files: a completely random file (not much

compression possible) called HARD, a portion of this thesis text (medium amount

of compression possible) called MEDIUM, and a single repeated character (very high

compression possible) called EASY. We identified the most important variables from

the source code, aligned them' so that they could be mapped on a page granularity

'Previous checks showed that alignment did not negatively affect hit rates; sometimes, they even
marginally improved hit rates.

147

and determined the cache hit rate had each been given a dedicated cache. Using this

information off-line, we determined preliminary cache partitions, statically mapping

variables to sets of unique cache columns.

We examined both Li and L2 cache performance for gzip. As expected, the Li was

difficult to partition without very small column sizes. Benefits were seen at 4 cache-

line columns, but such column sizes are impractical. We had better luck, however,

with the L2 cache.

We expected the hard case the perform the best under our simple form of cache

partitioning, since the access patterns are predictable and fairly static but perform

poorly under an LRU replacement algorithm because the reference patterns cause an

sub-optimal division of the cache (see Section 3.1). By separating regions that would

otherwise conflict, we were able to achieve significant improvements (Figure 5-8) in

the L2 cache.

On the other extreme, the EASY trace had very high hit rates in an LRU Li cache

and thus had very few accesses to the L2 cache. This behavior was also expected

since the hash table storing found patterns was minimally sized due to the single

pattern. Because it was trivial to find the pattern, the input window was effectively

not retraversed, turning it into a stream. The frequent accesses to the single entry

in the pattern hash table prevented it from being replaced by the polluting input

stream. The output stream was so infrequently used, it's impact was negligible.

For the MEDIUM trace, however, our performance was virtually the same as a

standard LRU cache (within a tenth of a percentage point for 16 columns) using

a mapping almost identical to the mapping for the hard trace. By relaxing the

constraint that memory regions never share columns, we were able to improve the

medium case to perform marginally better than an LRU cache by about 0.5% for

either an 8 or 16 column cache. We believe, however, that dynamic partitioning and

better sharing off cache between regions of memory can significantly better these

numbers.

The strong dependence between data and cache behavior for programs like gzip

argues for the ability to dynamically change cache partitioning. For example, if the

148

Columns LRU Hit Rate Column Hit Rate

8 17.29% 26.27%
16 36.81% 41.28%
32 70.43% 73.21%

Figure 5-8: L2 Hit Rate Comparison: LRU verses Column Caching on hard trace.

file is non-uniformly compressible, it is desirable to change the amount of cache space

as the demands on the cache change. Software knows the compression ratios and thus

can adjust the mappings accordingly. The high cost of remapping for approaches like

page coloring probably make such approaches ineffective for this class of problems.

As compilers get better, the number of load/store operations will reduce, increas-

ing column caching impact on hit rates. Extraneous memory operations to recently

accessed locations improve hit rates, reducing the proportional improvements of par-

titioning the cache. We noticed this effect with our initial traces that were uninten-

tionally under-optimized.

Keeping important data within the cache may not make a noticeable difference

within the hit rate, but could dramatically improve performance depending on the

instruction level parallelism that is "guarded" by a load that might otherwise have

missed. In some cases, hit rate may actually be lower for a mapped program but

performance may be higher because the misses that are incurred may incur less of a

penalty. Modern superscalar processors do not have constant miss penalties, reducing

the ability to use hit rate as a measure of performance. This effect is even more

pronounced in a parallel system. For example, remote data that may take hundreds

or thousands of cycles to access could be allocated to dedicated partitions to avoid

their being replaced by local data that is accessed more frequently but has much lower

miss penalties. Column caching provides the ability for software to guide hardware

in these cases, with huge potential payoffs.

149

5.3.3 Partitioning Between Multiple Programs

As processors become faster and more capable, being able to issue, process, and

retire more instructions per cycle, users want to do more and more with them. Since

more is done in each cycle and each cycle is getting shorter, fewer cycles are required

between threads switches and more threads can be supported. In addition, recent

architectural work[26] has shown the potential performance advantages of fine-grain,

hardware-supported multithreading. Having multiple threads time sharing or even

simultaneously running on a processor can potentially put significant pressure on the

cache.

We have run a set of experiments demonstrating the effect of rapid context switch-

ing. Not surprisingly, if there is sufficient room within the cache and the contexts are

switched rapidly enough, there is no detrimental effect on the unpartitioned cache.

Each thread is run sufficiently often, keeping its cache footprint warm and preventing

it from being replaced.

There are schedules of well-behaved (in terms of caching behavior assuming a ded-

icated cache) programs, however, that perform sub-optimally in the cache. In these

cases, the overall footprint is larger than the entire cache, but each job's footprint

is no bigger than the entire cache. Many scheduling quantums in a non-partitioned

cache will result in the cache being cold when a job is swapped back in.

By partitioning the cache between different processes, this problem can be alle-

viated. We ran a simple experiment with 10 synthetic jobs, one large one with a 1

MB footprint and 9 small jobs with 64KB footprints. The Li cache is 64KB large

(16-way set-associative) and unmapped, while the L2 cache is 512KB large (128-way

set associative) and is mappable at 64KB granularity. We varied scheduling time

quantums between 1 and 1,000,000 cycles but eliminated combinations where there

was more than a factor of 100 difference in scheduling time since such policies are

unlikely to occur.

The cache performance of a standard LRU cache was determined for each option,

along with the cache performance of a statically-mapped cache. The two policies

150

60-

50--

L2 Hit Rate Difference
(Column - LRU)

30

20i

1000000

100000

++,' 10000 Large Job Time Quantum

1 10 100 1000 10000 10 001 0

Small Job Time Quantum 1000000

Figure 5-9: This figure shows the difference in L2 hit rate between a column cache
and a standard LRU cache over a number of different time quantums for each small
job and the large job. The small jobs are all scheduled for the same time quantum.
Round-robin scheduling is used.

allowed for the static cache were (i) all of L2 allocated to the big job and (ii) all of L2

allocated partitioned between eight of the smaller jobs. Determining the allocation

strategy from process working sets and scheduling quantums is quite simple since hit

rates given a certain size cache can be estimated from working sets.

Column caches enables operating system/multithreading scheduling flexibility.

There is no case when column caches perform worse than a standard LRU algorithm

and there are many cases were a column cache does substantially better (Figure 5-9).

By mapping specific processes into the L2 cache, while providing sufficient cache space

to those programs that cannot be maintained in the cache across context switches,

certain processes state can be saved, improving hit rate. Doing so improves system

throughput and can significantly decrease latency of a few critical jobs.

There are a few trends in Figure 5-9 worth noting. One general trend is that when

one job runs for a long time compared to its footprint, leveraging the locality in the

reference stream, LRU hit rates are similar to column caching hit rates.

Another trend is for hit rate differences to be fairly constant along diagonals. For

151

example s = 1, s = 101 and 10s = 1, where s is the small job time quantum axis and

I is the large job time quantum axis, have fairly consistent hit rate differences. This

phenomenon occurs because the hit rates along those diagonals, for both LRU and

column caching, are fairly consistent as well. The hit rates are consistent since the

cache sizes are smaller than the total footprint size and the time quantums are small

enough to keep the amount of cache thrashing fairly consistent.

Once the small job quantum reaches 10,000 and the large job quantum is less

than that, however, the vast majority of the references are satisfied by the Li cache.

The few references that go to the L2 cache invariably miss for LRU. Because column

caching pins the footprints of 7 of the 9 small jobs into the L2 cache, column caching

still achieves reasonable hit rates and thus produce significantly higher hit rates than

LRU.

One may question the actual performance impact of L2 hits, given that the context

switch time is 10,000 cycles for 9 of 10 jobs. Even at time quantums of 10,000, such

pinning can impact performance. There are 2048 cache-lines (assuming a 32B cache-

line) in a 64KB footprint. Given 10,000 references, it is likely that all cache-lines will

be touched and thus need to be loaded. If each incurs an average of only only 5 cycles

of memory latency, the access time will be doubled over always hitting within the Li

cache.

Of course, latency is mask-able to some extent. For example, a 10 cycle latency

to an L2 cache may be quite mask-able by modern superscalar architectures, but a

100 cycle latency to memory might not be. There is likely to be a performance "cliff"

that hitting in L2 avoids but missing in L2 excites. Thus, actual run-time impact

may be significantly more than what might be predicted assuming a linear penalty.

Thus, column caching greatly expands the potential for multitasking/multithreading

by reducing or eliminating the cache impact of switching processes/threads. Correct

mapping does require knowledge of the cache footprint of the running threads, but is

quite easy to do once that information is known.

152

Chapter 6

Conclusions

Caches need to be very large in order to compensate for non-ideal replacement al-

gorithms and thus are often under-utilized. As multi-tasking, multi-threading and

communication become more important, and processors are powerful enough to sup-

port many tasks, better use of the cache can translate to better performance at a

lower cost. Column and curious caching open the door to a wide range of new ways

to use caches better.

Partitioning a cache can achieve significant performance improvements by isolat-

ing regions of locality that would otherwise conflict in the cache. Static replacement

algorithms perform better in a well-partitioned cache because the reference behav-

ior is more regular within each partition. Column caching and its variants provide

partitioning ability and are straightforward to implement.

Partitioning the cache can also minimize cache footprint while maintaining per-

formance, allowing more jobs to run well on the same machine, reduce bandwidth

requirements by avoiding poor replacements. Minimizing cache usage can improve

processor throughput without reducing the latency of any given application.

Configurable partitioning allows the tuning of the resource-to-performance ratio.

If a specific process is more critical than the overall system throughput, that pro-

cess can be allocated more resources at the expense of throughput. As a process's

requirements change over time, the cache can be quickly and efficiently repartitioned

to account for those changes.

153

"Pull-only" caches ignore the possibility that another device may know more about

what a master wants than it knows itself, and assume that addresses will be often

reused and are unlikely to be modified by anyone besides the pulling master. Today,

these assumptions are becoming less and less valid. For example, most communication

completely breaks these assumptions.

The ability to push data into a cache in a protected fashion immediately enables

significant performance and functionality benefits. Read latencies can be effectively

eliminated and bandwidth requirements reduced, while SRAMs and dedicated buffers

with specific functionality can be provided within cache space. Curious caching is

fairly easy to implement and can be fully backwardly-compatible, allowing proces-

sor/caches to use existing unmodified system infrastructure.

Our designs for high-speed communicating systems using a variety of approaches

provide a road map of possible design tradeoffs. START-VOYAGER demonstrates

that fairly fast systems can be built from completely stock hardware. The modified

design that assumes column and curious caching, however, produces significantly

better performance with much less effort and resources, demonstrating their potential

in the realm of high-speed computing.

As with most research work, there is always more to do. Though users can anno-

tate code, either directly or via library calls, to exploit column and curious caching,

it would be preferable to have compilers be able to do some of that work automati-

cally. In addition, tuning mapping strategies for specific multiple-issue, out-of-order

processors can probably further improve performance.

154

Appendix A

START-VOYAGER Shared Memory

Because global memory is simply another memory hierarchy level, cache-coherent

distributed shared memory is a better match for standard memory hierarchies than

message passing. Getting good performance from shared memory, however, is still

quite difficult. Shared memory performance depends on two things: miss rate and

miss penalty. Network topologies, degrees of pipelining, amount of buffering, etc. all

can have a substantial effect on global miss penalty. Miss rates are strongly affected

by cache size, replacement policies, and the ability to pre-fetch or push data.

Unfortunately, reducing miss rate often conflicts with reducing miss penalty. Re-

ducing miss rate relies heavily on software, as cache sizes have gotten quite large. We

believe that miss rates can be dramatically reduced if software is allowed to control

the replacement algorithms. Software control of replacement algorithms, however, re-

quires flexibility that can potentially increased miss penalty. Minimizing miss penalty

implies keeping all miss handling functionality implemented in simple hardware and

eliminating any software flexibility.

We designed START-VOYAGER for flexibility rather than absolute minimal la-

tency. Achieving minimum latency requires specialized hardware support to move

shared memory requests and replies as quickly as possible. Interpretation should be

kept to a minimum, buffers optimized for flow-through and pipelining minimized.

START-VOYAGER is not as heavily optimized for shared memory as it could be,

though it does have significant support for high performance shared memory.

155

Choosing flexibility over absolute minimum latency, however, might not be as

bad a decision for shared memory as it might seem. The flexibility we provide al-

lows hardware and firmware to be customized for the specific application being run.

Thus, we can support a specialized coherence protocol for each application that could

significantly improve performance, even though latency is longer than the absolute

minimum.

START-VOYAGER implements basic shared memory within its interpreted 1GB

region of physical address space that are handled in firmware by the sP. A handled

bus operation is retried on the AP bus while the sP is notified of the bus operation for

interpretation and handling (see Figure A-1). The sP first determines dispatches on

the address, since multiple functionalities may be supported within service space. If

the interpreted bus operation is a shared memory operation, the sP then determines

which node is the home site of the desired data and sends the request to that home

site.

The home site sP receives the message and determines the appropriate action. In

a standard shared memory protocol, the home site may be able to satisfy a request on

its own, or may need to issue a read to a third node and/or one or more invalidations

to one or more other nodes to maintain coherence first. We assume the simple case

where the sP simply issues a read to its local AP's DRAM, updates its coherence

tables and returns the data to the requesting sP via a Tagon message. Hardware

support is provided to ensure that sP commands to a special queue (that support

issuing bus operations to the local AP bus and message sends among other things)

proceed in exact FIFO order, allowing an sP to issue a block of commands that

complete an entire task without polling for completions of sub tasks.

After the requesting sP receives the message and determines it is the requested

data, it issues a command that stops the retrying of the AP bus operation that started

the whole process. The sP is then out of the loop of returning the data. The next

time the AP issues the bus operation, it receives the returned data automatically.

156

A

C~ ~7

66

B

3 13

4 14

D
' 8

9b - 9a

10

111

Figure A-1: A simple but slow implementation of shared memory. The requester

starts the process by issuing a memory operation that misses in its cache creating
a bus operation that is enqueued into a special sP queue (A.1). The sP polls that

queue, finding the request (A.2.). The requester's sP issues a request to the home site

using an Express message (B.4, B.5) as the requester is continuously retried (B.3.).
The request is received by the home site (C.6) and received by the home site sP (C.7.).
The home site determines that a clean copy exists locally and issues two commands
to the command queue; the first reads the desired data (D.8) and the second sends

a reply back to the requester using an Express Tagon message (D.9a). While the

second command is being issued, the read could be taking place (D.9b.). As soon as

the read completes (D.10), the reply is sent back to the requester (D.11). The reply
is received by the requester NIU (E.12), then polled by the requester sP (E.13) who

then indicates to the aBIU that the operation should be allowed to continue with the
returned data (E.14.).

157

A E

1*

CDt

ET3 65

Figure A-2: Eliminating the requester sP from global cache miss servicing.

A.1 Removing the sP from Miss Handling

The simple shared memory described in the previous section is slow, mainly due to

sP involvement. The sP wastes time polling and reacting to events. Even though the

sP uses the low-latency Express messages to perform these tasks, it is still virtually

impossible to compete with fully hardware implementations in terms of round-trip

times.

Because of START-VOYAGER'S flexibility, however, performance can be signifi-

cantly improved. The simplest improvement is to remove requester sP involvement.

An automatic request forwarding mechanism that automatically issues request mes-

sages can be implemented within the aBIU. The remote memory queue already sup-

ported by START-VOYAGER can automatically handle the return of the requested

data (Figure A.1). With these two mechanisms, the requester sP does not need to

take any action to service a cache miss, saving a significant amount of time.

Similar tricks can be used on the home site. Rather than having the home sP

issue the bus request to fetch the data, the incoming request can prefetch that data

by targeting the remote memory queue (Figure A.1). The request can specify that

the home sP is notified when the prefetch is complete. When that happens, if the

158

A

A E

- C D

34

6
2

Figure A-3: Prefetching data at the home site.

sP determines it is safe to, it sends an Express Tagon message, returning the data to

the requester.

If hardware is thus configured, START-VOYAGER can service a round-trip remote

request in about 150 processor cycles. Such latencies are actually quite similar to

current memory latencies of standard processors. The Alpha, for example, takes

close to 100 processor cycles to access local memory.

This technique only save a little time, since the home sP must explicitly send back

the requested data. The clsSRAM that provides 4 bits of state for each cache-line

region of data enables an automatic reply (Figure A.1). Data should not be returned

unless the coherence state is correct. When the request message is received, it is

"mirrored" into an identical queue for the sP, allowing the sP to see the request as

soon as it arrives. When the prefetch is automatically issued onto the home's bus, the

aBIU reads the clsSRAM state associated with that cache-line of data. If the state

is acceptable for the request, the aBIU creates an Express Tagon message itself and

sends back the request, otherwise it notifies the home sP. Simultaneously, the aBIU

changes the clsSRAM state for that address to be a transient state and notifies the

sP that it returned the data who updates its directory state and resets the clsSRAM

state correctly.

159

3 4

6
2

Figure A-4: Removing the sP from the critical path altogether.

In this last case, the critical path of a clean global access is handled completely in

hardware. Though START-VOYAGER's datapath is not absolutely optimal for ease

of implementation, it will still perform quite well with such a configuration. There

are issues of buffer management and deadlock avoidance, but both can be handled

by a combination of firmware and configurable hardware.

A.2 Making Shared Memory Faster

The clsSRAM can also be used as cache tags to implement S-COMA. 64MB of DRAM

can be used as an S-COMA cache. If that space is well managed, hit rates will

generally be very low.

In addition, replacement policies are implemented by firmware code allowing the

ultimate flexibility. Applications can communicate with firmware to specify automatic

prefetching, memory usage durations so that the replacement policy can yank data

back after a specified time, completion of an entire region of memory, or messages

to indicate that data has arrived. In fact, applications can even download firmware

code to the firmware engine if required. This flexibility allows the user to minimize

the miss rate of his application.

160

EA

Although synchronization is still a problem in shared memory, we can use mes-

sage passing for synchronization thus reducing the shared memory synchronization

problem to the message passing synchronization problem. The sync probably still

needs to be used for shared memory synchronization but is less costly relative to the

miss penalty than for message passing.

Pushing and prefetching data will become more and more important as processors

become faster relative to networks and memory. Currently, caches relying solely on

"pulling", that is, they require an explicit read from their processor before data is

brought into the cache. Pushing and prefetching can dramatically reduce latencies

over pulling, since these techniques attempt to keep data close to the consumer rather

than forcing the consumer to fetch at high latency the data right when it needs

it. START-VOYAGER's configurable hardware and firmware can easily implement

pushing, potentially reducing latencies significantly.

161

Bibliography

[1] A. Agarwal and S. Pudar. Column-Associative Caches: a Technique for Reducing
the Miss Rate of Direct-Mapped Caches. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 179-190, 1993.

[2] AMD. AMD-K6-III Processor Data Sheet, Feb. 1999.

[3] C. Anderson and J.-L. Baer. Two Techniques for Improving Performance on
Bus-based Multiprocessors. In First IEEE Symposium on High-Performance
Computer Architecture, Raleigh, North Carolina, pages 264-275, Jan. 1995.

[4] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Server-
less Network File Systems. ACM Transactions on Computer Systems, Feb. 1996.

[5] B. S. Ang. Design and Implementation of a Multi-purpose Cluster System Net-
work Interface Unit. PhD thesis, Massachusetts Institute of Technology, Feb.
1999.

[6] B. S. Ang, D. Chiou, D. Rosenband, M. Ehrlich, L. Rudolph, and Arvind. StarT-
Voyager: A Flexible Platform for Exploring Scalable SMP Issues. In Proceedings
of SC'98, Orlando, Florida, Nov. 1998.

[7] B. S. Ang, D. Chiou, L. Rudolph, and Arvind. Message Passing Support in
StarT-Voyager. In HiPC98, Dec. 1998.

[8] B. S. Ang, D. Chiou, L. Rudolph, and Arvind. The StarT-Voyager Parallel
System. In Proceedings of PACT'98, Paris, France, Oct. 1998.

[9] K. Asanovic. Vector Microprocessors. PhD thesis, University of California at
Berkeley, May 1998.

[10] P. Bannon. Alpha 21364: A Scalable Single-chip SMP.
http://www.digital.com/alphaoem/present/sld001.htm.

[11] L. Belady. A Study of Replacement Algorithms for a Virtual-Storage Computer.
IBM Systems Journal, 5(2):78-101, 1966.

[12] B. K. Bershad, B. J. Chen, D. Lee, and T. H. Romer. Avoiding Conflict Misses
Dynamically in Large Direct-Mapped Caches. In ASPLOS VI, 1994.

162

[13] G. A. Boughton. Arctic Routing Chip. In Parallel Computer Routing and Com-
munication: Proceedings of the First International Workshop, PCRCW '94, vol-
ume 853 of Lecture Notes in Computer Science, pages 310-317. Springer-Verlag,
May 1994.

[14] D. Burger, J. Goodman, and A. Kagi. Limited Bandwidth to Affect Processor
Design. In IEEE Micro, November/December 1997.

[15] D. Burger, A. Ksgi, and J. R. Goodman. The Declining Effectiveness of Dynamic
Caching for General Purpose Microprocessors. Technical Report 1261, Computer
Sciences Department, University of Wisconsin, Madision, WI, Jan. 1995.

[16] H. Burkhardt III et al. Overview of the KSR1 Computer System. Technical
Report KSR-TR-9202001, Kendall Square Research, Boston, Feb. 1992.

[17] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis,
C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse:
Building a Smarter Memory Controller. In Fifth International Symposium on
High Performance Computer Architecture, pages 70-79, Jan. 1999.

[18] J. B. Carter, A. Davis, R. Kuramkote, C.-C. Kuo, L. B. Stoller, and M. Swanson.
Avalance: A Communication and Memory Architecture for Scalable Parallel
Computing. Technical Report UUCS-95-022, Computer Systems Laboratory,
University of Utah, 1995. Original Avalanche.

[19] D. Chiou, B. S. Ang, R. Greiner, Arvind, J. C. Hoe, M. J. Beckerle, J. E.
Hicks, and A. Boughton. StarT-NG: Delivering Seamless Parallel Computing.
In Conference Proceedings of the First International EURO-PAR Conference,
Stockholm, Sweden, pages 101 - 116, Aug. 1995.

[20] Compaq. The Alpha Architecture Handbook, October 1998.

[21] D. E. Culler and A. Singh, Jaswinder Pal with Gupta. Parallel Computer Archi-
tecture: A Hardware/Software Approach. Morgan Kaufmann Publishers, 1998.

[22] Cyrix. Cyrix 6X86MX Processor, May 1998.

[23] Cyrix. Cyrix MI Data Book, Feb. 1999.

[24] F. Dahgren. Boosting the Performance of Hybrid Snooping Cache Protocols.
In The 22th Annual International Symposium on Computer Architecture, Santa
Margherita Ligure, Italy, pages 60-69, June 1995.

[25] W. J. Dally et al. Architecture of a Message-Driven Processor. IEEE Micro,
12(2):23-39, 1992.

[26] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, , and D. M.
Tullsen. Simultaneous Multithreading: A Foundation for Next-generation Pro-
cessors. IEEE Micro, pages 12-18, September/October 1997.

163

[27] G. Faanes. A CMOS Vector Processor with a Custom Streaming Cache. In Hot
Chips 10, August 1998.

[28] E. Farquhar and P. Bunce. The Mips Programmers Handbook, 1993.

[29] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, and H. M. Levy. Imple-
menting Global Memory Mangement in a Workstation Cluster. In Proceedings
of the 15th ACM Symposium on Operating System Principles, Dec. 1995.

[30] J.-M. Frailong, C. M., P. Sindhu, J. Gastinel, M. Splain, J. Price, and A. Sing-
hal. The next-generation SPARC multiprocessing system architecture. In COM-
PCON Spring '93, pages 475-80, 1993.

[31] S. Frank, H. Burkhardt III, and D. J. Rothnie. The KSR1: Bridging the Gap
Between Shared Memory and MPPs. In COMPCON 93, Feb. 1993.

[32] Free Software Foundation, http://www.gnu.org/manual/gzip/index.html. Gzip
User's Manual.

[33] J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, and A. J. Smith. Cache Performance
of the SPEC92 Benchmark Suite. IEEE Micro, August 1993.

[34] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 2nd edition, 1996.

[35] P.-Y.-T. Hsu. Design of the R8000 Microprocessor. IEEE Micro, 1993.

[36] M. Hull, D. Crookes, and P. Sweeney, editors. Parallel processing. The Transputer
and its Applications. Addison-Wesley, 1994.

[37] Intel. IA-64 Application Developer's Architecture Guide, May 1999.

[38] Intel, http://developer.intel.com/design/pentiumii/manuals/243191.htm. Intel
Architecture Software Developer's Manual, Volume 2: Instruction Set Reference
Manual, 1999.

[39] Intel. Intel StrongARM SA-1100 Microprocessor, April 1999.

[40] D. Johnson. Techniques for Mitigating Memory Latency Effects in the PA-8500
Processor. In Hot Chips 10, August 1998.

[41] E. E. Johnson and J. Ha. PDATS: Lossless Address Trace Compresssion for
Reducing File Size and Access Time. In Proceedings of 1994 IEEE International
Phoenix Conference on Computers and Communications, 1994.

[42] T. L. Johnson and W. Hwu. Run-time Adaptive Cache Hierarchy Management
via Reference Analysis. In Proceedings of the 24st Annual International Sympo-
sium on Computer Architecture (ISCA), June 1997.

164

[43] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition
of a Small Full-Associative Cache and Prefetch Buffers. In The 17th Annual
International Symposium on Computer Architecture, pages 364-373, May 1990.

[44] A. W. W. Jr., R. P. L. Jr., R. J. lonta, R. P. Valentino, B. Hu, P. R. Breton,
and P. Lau. Update propagation in the galactica net distributed shared mem-
ory architecture. CHPC TR 93-007, Center for High Performance Computing,
Worcester Polytechnique Institute, 293 Boston Post Road West, Marlborough,
MA 01752, 1993. (Also in IPPS '94).

[45] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceno, R. Hunt,
D. Mazieres, T. Pinckney, R. Grimm, J. Jannotti, and K. MacKenzie. Ap-
plication Performance and Flexibility on Exokernel Systems. In 16th Symposium
on Operating Systems Principles, Saint-Malo, France, October 1997.

[46] R. Kessler. The Alpha 21264 Microprocessor: Out-Of-Order Execution at 600
Mhz. In Hot Chips 10, August 1998.

[47] J. Kubiatowicz, D. Chaiken, and A. Agarwal. Closing the Window of Vulnerabil-
ity in Multiphase Memory Transactions. In Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS V), pages 274-284, Oct. 1992.

[48] C. Law. A new competitive analysis for randomized caching. Master's thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, June 1999.

[49] B. Lynch and G. Lauterbach. UltraSPARC III: A 600 MHz 64-bit Superscalar
Processor for 1000-Way Scalable Systems. In Hot Chips 10, 1998.

[50] P. S. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson, F. Lundholm,
A. Moestedt, J. Nilsson, P. Stenstr6m, and B. Werner. SimICS/sun4m: A Virtual
Workstation. In Usenix Annual Technical Conference, New Orleans, Lousiana,
pages 101 -116, June 1998.

[51] C. May, E. Silha, R. Simpson, and H. Warren, editors. The PowerPC Architec-
ture: A Specification for a New Family of RISC Processors. Morgan Kaufmann
Publishers, Inc., 1994.

[52] A. Milenkovid and V. Milutinovi6. Cache Injection on Bus Based Multiprocessors.
In Workshop on Advances in Parallel and Distributed Systems, West Lafayette,
Indiana, Oct. 1998.

[53] V. Milutinovi6, A. Milenkovid, and G. Sheaffer. The Cache Injection/Cofetch
Architecture: Initial Performance Analysis. In MASCOTS-97, Jan. 1997.

[54] MIPS Technologies, Inc. R10000 Microprocessor User's Manual, December 1996.

[55] Motorola. MPC8240 Integrated Processor User's Manual, July 1999.

165

[56] T. C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching.
PhD thesis, Stanford University, Mar. 1994.

[57] B. Nayfeh and Y. A. Khalidi. Us patent 5584014: Apparatus and method to
preserve data in a set associative memory device, Dec. 1996.

[58] S. Palacharla and R. Kessler. Evaluating Stream Buffers as a Secondary Cache
Replacement. In Proceedings of the 21st Annual International Symposium on
Computer Architecture (ISCA), pages 24-33, April 1994.

[59] G. M. Papadopoulos et al. *T: Integrated Building Blocks for Parallel Com-
puting. In Proceedings of Supercomputing '93, Portland, Oregon, pages 624-635,
Nov. 1993.

[60] L. Rudolph and Z. Segall. Dynamic Decentralized Cache Schemes for MIMD
Parallel Processors. In The 11th Annual International Symposium on Computer
Architecture, Ann Arbor, Michigan, pages 340-347, June 1984.

[61] R. M. Russell. The cray-1 computer system. Communications of the ACM,
21(1):63-72, Jan. 1978.

[62] F. Sinchez, A. Gonzilez, and M. Valero. Software Management of Selective
and Dual Data Caches. In IEEE Computer Society Technical Committee on
Computer Architecture: Special Issue on Distributed Shared Memory and Related
Issues, pages 3-10, Mar. 1997.

[63] SGI. R8000 Microprocessor Product Information.

[64] X. Shen, Arvind, and L. Rudolph. CACHET: An Adaptive Cache Coherence
Protocol for Distributed Shared-Memory Systems. In Proceedings of the 13th
ACM SIGARCH International Conference on Supercomputing, Rhodes, Greece,
June 1999.

[65] X. Shen, Arvind, and L. Rudolph. Commit-Reconcile & Fences (CRF): A New
Memory Model for Architects and Compiler Writers. In Proceedings of the 26th
International Symposium On Computer Architecture, Atlanta, May 1999.

[66] T. Sherwood, B. Calder, and J. Emer. Reducing Cache Misses Using Hardware
and Software Page Placement. In Proceedings of the International Conference
on Supercomputing, Rhodes, Greece, June 1999.

[67] S. Shimizu and M. Ohara. Method and apparatus to maintain cache coherency
in a multiprocessor system with each processor's private cache updating or in-
validating its contents based upon set activity. United States Patent 5,228,136,
July 1993.

[68] R. A. Sugumar and S. G. Abraham. Efficient Simulation of Caches under Optimal
Replacement with Applications to Miss Characterization. In Proceedings of the
1993 ACM Sigmetrics Conference on Measurements and Modeling of Computer
Systems, pages 24-35, May 1993.

166

[69] Sun Microsystems. UltraSparc User's Manual, July 1997.

[70] M. R. Swanson, R. Kuramkote, L. B. Stoller, and T. Tateyama. Message Passing
Support in the Avalanche Widget. Technical Report UUCS-96-002, Department
of Computer Science, University of Utah, Mar. 1996. Current Avanlanche design.

[71] C. Thacker, L. Steward, and E. Satterthwaite, Jr. Firefly: A Multiprocessor
Workstation. IEEE Transactions on Computers, 37(8):909-920, Aug. 1988. Also
SRC Research Report 23.

[72] M. Tomasko, S. Hadjiyiannis, and W. Najjar. Experimental Evaluation of Array
Caches. In IEEE Computer Society Technical Committee on Computer Archi-
tecture: Special Issue on Distributed Shared Memory and Related Issues, pages
11-16, Mar. 1997.

[73] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A Modified Approach
to Data Cache Management. In Proceedings of the 28th Annual International
Symposium on Microarchitecture Ann Arbor, MI, November/December 1995.

[74] A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. Adapting Cache
Line Size to Application Behavior. In International Conference on Supercomput-
ing, June 1999.

[75] C. Zhang, X. Zhang, and Y. Yan. Two Fast and High-Associativity Cache
Schemes. IEEE Micro, pages 40-49, September/October 1997.

167

