1,306 research outputs found

    Framework for a space shuttle main engine health monitoring system

    Get PDF
    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available

    Thermal diagnostic of the Optical Window on board LISA Pathfinder

    Full text link
    Vacuum conditions inside the LTP Gravitational Reference Sensor must comply with rather demanding requirements. The Optical Window (OW) is an interface which seals the vacuum enclosure and, at the same time, lets the laser beam go through for interferometric Metrology with the test masses. The OW is a plane-parallel plate clamped in a Titanium flange, and is considerably sensitive to thermal and stress fluctuations. It is critical for the required precision measurements, hence its temperature will be carefully monitored in flight. This paper reports on the results of a series of OW characterisation laboratory runs, intended to study its response to selected thermal signals, as well as their fit to numerical models, and the meaning of the latter. We find that a single pole ARMA transfer function provides a consistent approximation to the OW response to thermal excitations, and derive a relationship with the physical processes taking place in the OW. We also show how system noise reduction can be accomplished by means of that transfer function.Comment: 20 pages, 14 figures; accepted for publication in Class. Quantum Gra

    Microprocessor Implementation of Autoregressive Analysis of Process Sensor Signals

    Get PDF
    Automated signal analysis can help for effective system surveillance and also to analyze the dynamic behavior of the system such as impulse response, step response etc. Autoregressive analysis is a parametric technique widely used for system surveillance and diagnosis. The main aim objective of this research work is to develop an embedded system for autoregressive analysis of sensor signals in an online fashion for monitoring system parameters. This thesis presents the algorithm, data representation and performance of the optimized microprocessor implementation of autoregressive analysis. In this work an autoregressive (AR) model is generated as a solution to a linear system of equations called Yule-Walker linear equations. The generated model is then implemented on Motorola PowerPC MPC555 processor. The embedded software for autoregressive analysis is written in the C programming language using fixed point arithmetic. It includes estimation of the autoregressive parameters, estimation of the noise variance recursively using the AR parameters, determination of the optimal model order and the model validation

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    A digital tuning scheme for digitally programmable integrated continuous-time filters and techniques for high-precision monolithic linear circuit design and implementation

    Get PDF
    Multiple topics which all focus on precision monolithic circuit design but beyond this are not directly related to each other are presented. The first topic is a digital tuning scheme for digitally programmable integrated continuous-time filters (4), (8) - (10). Emphasis of this research is on development of a more general tuning scheme which can be applicable to various filter functions as well as high-frequency applications. The tuning scheme consists of two phases: system identification and adjustment. Various continuous-time filter identification methods including time-domain and frequency-domain approaches are investigated, and a filter adjustment algorithm is presented. Potential of high accuracy of the proposed tuning scheme and successful applicability to high-frequency filters with versatile functions have been demonstrated through simulations and experiments;Four other topics are separately presented. First, nonidealities associated with high-precision amplifiers (5), (7) are discussed. Special emphasis is given on analysis of statistical characteristics of random CMRR and offset of CMOS op-amps which can help estimating yield of high-volume production and help engineers design for a given yield. Next, an automatic offset compensation scheme for CMOS op-amps with ping-pong control (2), (6) is presented. A very low-voltage circuit design technique using floating gate MOSFETs (3) is introduced. Finally, an accurate and matching-free threshold voltage extraction scheme using a ratio-independent SC amplifier and a dynamic current mirror (1) is discussed

    UAS Model Identification and Simulation to Support In-Flight Testing of Discrete Adaptive Fault-Tolerant Control Laws

    Get PDF
    In mission-critical applications of unmanned and autonomous aerial systems(UAS), it is of significant importance to develop robust strategies for fault-tolerant systems that can countermeasure system degradation and consequently support the integration into the National Airspace (NAS). This thesis research illustrates the results of systems identification that is performed using DATCOM followed by the flight test data. This data is acquired from conducting an intensive flight testings program of a fixed-wing UAS to determine the state-space model of the aircraft. A discrete state-space system is reconstructed from these models to derive Auto-Regressive Moving-Average (ARMA) models used to design a Discrete Direct and Indirect Model Reference Adaptive Control. Description of the UAS, sub-systems, and integration is presented in this thesis along with analysis of results from numerical simulation to support the design, development, and validation of adaptive control laws for fault tolerance. A set of performance metrics are defined to perform the analysis in terms of control effort, tracking performance, and reconfiguration of control laws under commonly occurring failures such as partial control surface damage, pilot-induced oscillations, and uncertain ice accretion

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Get PDF
    Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks
    • …
    corecore