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UAS MODEL IDENTIFICATION AND SIMULATION TO SUPPORT IN-FLIGHT

TESTING OF DISCRETE ADAPTIVE FAULT-TOLERANT CONTROL LAWS

Abstract

by Mansi Subash Bakori
Master of Science in Unmanned and Autonomous Systems Engineering

Embry-Riddle Aeronautical University
August 2020

In mission-critical applications of unmanned and autonomous aerial systems(UAS), it is of

significant importance to develop robust strategies for fault-tolerant systems that can coun-

termeasure system degradation and consequently support the integration into the National

Airspace (NAS). This thesis research illustrates the results of systems identification that is

performed using DATCOM followed by the flight test data. This data is acquired from con-

ducting an intensive flight testings program of a fixed-wing UAS to determine the state-space

model of the aircraft. A discrete state-space system is reconstructed from these models to

derive Auto-Regressive Moving-Average (ARMA) models used to design a Discrete Direct

and Indirect Model Reference Adaptive Control. Description of the UAS, sub-systems, and

integration is presented in this thesis along with analysis of results from numerical simula-

tion to support the design, development, and validation of adaptive control laws for fault

tolerance.A set of performance metrics are defined to perform the analysis in terms of control

effort, tracking performance, and reconfiguration of control laws under commonly occurring

failures such as partial control surface damage, pilot-induced oscillations, and uncertain ice

accretion.

v



ACKNOWLEDGMENT

Though the following dissertation is an individual effort, I believe that it epitomizes my

years of hard work, propensity to move forward and most importantly, people who have

assisted me in this journey. Recapitulating my journey, I have nothing but utmost appreci-

ation and gratitude for the valuable support, guidance and efforts of people. My passion for

contributing to aerospace unmanned industry has been reinforced by a strong organizational

resilience and academic guidance. Therefore, I would like to extend my gratitude to my

Research advisor Dr. Hever Moncayo for directing me with his experience and aptitude and

for being an exceptional coach in my scholastic life.

My sincere appreciation towards my Advisory Committee , Dr.Richard Stansbury and

Dr. Yan Tang for giving your valuable time and insights. An exceptional thanks to Michael

Potash and Bill Russo for your enormous assistance with hardware and calmly noting every

one of my inquiries. I would also like to offer gratitude to Dr. Gordan Leishman and Dr.

Zheng Zang for their distinctive contribution in helping me calibrate air-data probe and

allowing me to use the Subsonic Wind-Tunnel Facility.

I acknowledge assistance from Rob, Austin, Ethan and Jeremy for being ever ready to

be the test-pilot and not complaining about early morning flights. I likewise recognise con-

tributions from Jorge Begue for providing helping hand in assembling the UAV.

On board of this journey, there was unprecedented team of talented individuals that pro-

vided valuable expertise and their benevolent support in the advancement of the unmanned

iii



aerial vehicle thus I will be everlastingly thankful to my lab colleagues turned friends: An-

gelica, Sharath, Andrei, Diana, Christoph, Sherwin, Juan and Nolan.

Last however not the least, ardent gratitude to my companions turned family here;

Omkar, Suyash, Ravi, Karan, Harsh, Farhan, Ashwini, Hardik, Varad, Akshay and Pratik

They gave unending enthusiasm, motivation and consolation to achieve what I call it as one

of my best scholarly accomplishments so far..

iv



TABLE OF CONTENTS

Page

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Reconfigurable Flight Control . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Model Reference Adaptive Control . . . . . . . . . . . . . . . . . . 7
1.4.3 Pilot-in-Loop Oscillation . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Icing Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.5 Calibration of Air Data Probe . . . . . . . . . . . . . . . . . . . . 11

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER

2 Discrete Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Stability Analysis of Discrete Controller . . . . . . . . . . . . . . . 15
2.2 Introduction to Model Reference Adaptive Control . . . . . . . . . . . . . 16

vi



2.3 Design of a Discrete Direct Model Reference

Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Design of a Discrete Indirect Model Reference

Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER

3 Development of Research Testbed . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Airframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 On-board Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Transmitter and Receiver set-up . . . . . . . . . . . . . . . . . . . 27
3.3.2 On-Board Flight Computer (OBC) . . . . . . . . . . . . . . . . . 27
3.3.3 Servo Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 Sensors Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Real-Time Operating System . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 MAVLink Communication . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Fail-safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER

4 Development and Calibration of Multihole Air Data Probe . . . . . . 34
4.1 Method of Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 The Wind Tunnel Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Post-Processing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

CHAPTER

5 Systems Identification and Flight Testing . . . . . . . . . . . . . . . . . 43
5.1 Rascal 110 DATCOM Analysis . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Flight Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Parameter Identification of Rascal 110 . . . . . . . . . . . . . . . . . . . 51

5.3.1 Systems Identification Toolbox . . . . . . . . . . . . . . . . . . . 52

CHAPTER

6 Numerical Simulation and Performance Analysis . . . . . . . . . . . . . 58
6.1 Failure Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



6.2 Constant gain and Open-loop Response . . . . . . . . . . . . . . . . . . 61
6.3 Discrete Direct MRAC Results . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 Discrete Indirect MRAC Results . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Performance Analysis of Direct and Indirect MRAC . . . . . . . . . . . . 68

6.5.1 Graphical Comparison . . . . . . . . . . . . . . . . . . . . . . . . 70

CHAPTER

7 Conclusion and Future Scope . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

APPENDIX
.1 Raw Data recorded during Elevator Step . . . . . . . . . . . . . . . . . . 84

viii



LIST OF TABLES

5.1 Digital Datcom Input File Parameters . . . . . . . . . . . . . . . . . . . . . 45

5.2 Stability Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Trim Conditions for Rascal in Simulation . . . . . . . . . . . . . . . . . . . . 46

5.4 ANALYTICAL: Eigenvalues, Natural Frequency, and Damping of Rascal’s

dynamic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 SIMULATION: Eigenvalues, Natural Frequency, and Damping ratio of Ras-

cal’s dynamic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Eigenvalues, Natural Frequency, and Damping obtained from stat-space . . . 57

6.1 Change in Control and Stability Parameters . . . . . . . . . . . . . . . . . . 61

6.2 Performance Comparison for Control Surface Failure . . . . . . . . . . . . . 72

6.3 Performance Comparison for Pilot-in-loop Oscillation . . . . . . . . . . . . . 73

6.4 Performance Comparison for Icing Condition . . . . . . . . . . . . . . . . . . 74

ix



LIST OF FIGURES

1.1 Share of Fatal Accidents By risk Category Source: ICAO Accident-Statistics 3

1.2 Asiana Airline Flight 214 , Soucre: Wings Herald . . . . . . . . . . . . . . . 4

1.3 Low Angle Reference System - Source: A.A Gerner, C.L. Maurer U.S. Air

Force Academy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 General Structure of MRAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Discrete Direct Model Reference Adaptive Control Architecture . . . . . . . 21

2.3 Discrete Direct Model Reference Adaptive Control Architecture . . . . . . . 24

3.1 Rascal 110 Airframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Motor mounting on the aircraft . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 PCM 3356 and Analog board enclosed in 3D Printed Box . . . . . . . . . . . 28

3.4 IMU, Pixhawk and OBC Set-up . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Attitude, Gyroscope, Accelerometer, GPS sensor . . . . . . . . . . . . . . . 30

3.6 Real-Time Operating Software . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 MAVlink Message frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Multiplexor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 IMU, Pixhawk and OBC Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 33

x



4.1 Catia Sketch of Air-Data Probe Assembly inside the Wind-Tunnel . . . . . 35

4.2 ADP is assembled with sting, rod and mounting block with pneumatic tubes 36

4.3 Differential Pressure Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Microscopic view of ADP for ensuring a 180 degree Orientation in the Mount-

ing block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 ADP setup in test section of Wind Tunnel . . . . . . . . . . . . . . . . . . . 38

4.6 ADP setup in the wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Numbering of ADP holes to compute Angle of Attack(Pitch Axis) , Sidelsipe

(Yaw Axis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Angle of Attack versus Coefficient of Pressure (alpha and beta) . . . . . . . 40

4.9 Angle of Sideslip versus Coefficient of Pressure (alpha and beta) . . . . . . . 41

4.10 Average Pressure Coefficient(Left) and Total Pressure Coefficient(Right) ver-

sus Alpha and Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Parameter Identification Process . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 3D DATCOM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Output Responses from Transfer Functions of Linear Model . . . . . . . . . 48

5.4 AMA’S Daytona Beach RC Flying Field . . . . . . . . . . . . . . . . . . . . 49

5.5 Test Flight in progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Doublet injected by OBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 Responses recorded during and post doublet . . . . . . . . . . . . . . . . . . 50

5.8 Responses recorded during and post doublet . . . . . . . . . . . . . . . . . . 51

5.9 Input Signal pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xi



5.10 Output Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.11 System Identification Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.12 Measured and Simulated Output response for Angle of Attack . . . . . . . . 55

5.13 Measured and Simulated Output response for Pitch Rate . . . . . . . . . . . 56

5.14 Measured and Simulated Output response for Pitch Angle . . . . . . . . . . 56

5.15 Measured and Simulated Output response for Pitch Angle . . . . . . . . . . 57

6.1 Actuator model with rate saturation . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Constant Gain Controller Response under PIO Condition . . . . . . . . . . . 61

6.3 Open-Loop Response under PIO Condition . . . . . . . . . . . . . . . . . . . 62

6.4 Output Response for partial Elevator Damage . . . . . . . . . . . . . . . . . 62

6.5 Control Surface Damage:Bezout’s Coefficients . . . . . . . . . . . . . . . . . 63

6.6 Control Surface Damage:Bezout’s Coefficients . . . . . . . . . . . . . . . . . 63

6.7 Control Surface Damage: Bezout’s Coefficients . . . . . . . . . . . . . . . . . 64

6.8 Pilot-Induced Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.9 PIO: Bezout’s Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.10 PIO: Bezout’s Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.11 Output Response during Icing condition . . . . . . . . . . . . . . . . . . . . 66

6.12 Icing condition: Bezout Coefficient . . . . . . . . . . . . . . . . . . . . . . . 66

6.13 Icing condition: Bezout Coefficient . . . . . . . . . . . . . . . . . . . . . . . 67

6.14 Icing condition: Bezout Coefficient . . . . . . . . . . . . . . . . . . . . . . . 67

6.15 Aircraft response in Partial Elevator damage and Polynomial Coefficient(right) 68

6.16 Control Surface Damage:Polynomial Coefficients . . . . . . . . . . . . . . . . 69

xii



6.17 Control Surface Damage: Polynomial and Bezout Coefficient . . . . . . . . . 69

6.18 Control Surface Damage:Bezout Coefficient . . . . . . . . . . . . . . . . . . . 70

6.19 Control Surface Damage:Bezout Coefficient . . . . . . . . . . . . . . . . . . . 70

6.20 Aircraft response during PIO and Estimated Polynomial Coeff(right) . . . . 71

6.21 PIO: Estimated Polynomial Coeff(right) . . . . . . . . . . . . . . . . . . . . 71

6.22 PIO: Estimated Polynomial Coeff and Bezout Coeff(right) . . . . . . . . . . 72

6.23 PIO: Bezout Coeff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.24 PIO: Bezout Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.25 Aircraft response during icing condition and Estimated Polynomial Coeff.(right) 73

6.26 Icing Condition:Estimated Polynomial Coefficient . . . . . . . . . . . . . . . 74

6.27 Icing Condition:Estimated Polynomial Coefficient and Bezout Coeff.(right) . 74

6.28 Icing Condition:Estimated Bezout Coefficient . . . . . . . . . . . . . . . . . 75

6.29 Responses during partial failure of Elevator . . . . . . . . . . . . . . . . . . 75

6.30 Output Responses during PIO . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.31 Output Responses during Icing Condition . . . . . . . . . . . . . . . . . . . 76

1 Step elevator command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2 Pitch Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3 Pitch-rate from Microstrain . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Pitch Angle from Pixhawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Pitch Speed from Pixhawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Pitch-rate from Pixhawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xiii



8 Angle of Sideslip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



Nomenclature

Symbols

k denotes the current sample

k + 1 denotes one sample in future

sd Damage parameter

Ts sampling time

x states of the aircraft

Abbreviations

ADP Air Data Probe

AMA Academic of Model Aeronautics

AOA angle of attack

APC Aircraft Pilot Coupling

AR AutoRegressive

ARMA Auto Regressive Moving Average

BEC battery eliminator circuit

xv



CFD Computational Fluid Dynamics

CTS Continuous Time System

DATCOM DATa COMpendium

DCS Discrete Control System

EKF Extended Kalman Filter

ERAU Embry-Riddle Aeronautical University

FBW fly by wire

FMU Flight Management Unit

GBI Generalized Bezout Identity

GNC Guidance, Navigation and Control

IAE Integral Absolute Error

IMU Inertial Measurement Unit

INS Inertial Navigation System

ISE Integral Square Error

ISR Intelligence, Surveillance and Reconnaissance

MA Moving Average

MAV link Micro Air Vehicle LINK

MIMO Multi-input Multi-output

MRAC Model Reference Adaptive Control

xvi



OBC On-Board Computer

ODE Ordinary Differential Equation

OSD Office of Secretary of Defense

PEM Prediction Error Minimization

PID Parameter IDentification

PIO Pilot Induced Oscillations/Pilot-in-Loop Oscillations

PWM Pulse Width Modulation

RFCS Reconfigurable Flight Control System

RMSE Root Mean Square Error

RPV Remotely Piloted Vehicle

RTOS Real Time Operating System

SBC Single Board Computer

SEAD Suppression of Enemy Air Defense

SIDPAC Systems IDentification Program for AirCraft

SysID Systems Identification Toolbox

UA Unmanned Aerial

UAS Unamnned Aerial System

UAV Unmanned Aerial Vehicle

ZOH Zero Order Hold

xvii



Subscripts

α Angle of Attack

β Angle of Sideslip

ρ Density

P1 Pressure at port number 1

Pstatic Static Pressure

Ptotal Total Pressure

ym m stands for reference model

xi



Chapter One

Introduction

1.1 Research Background

The importance of Unmanned Aerial Vehicle (UAV) or more general Unmanned Aerial Sys-

tem (UAS) is revealed by many different statistics published in official and unofficial reports

like the manufacturing of more than 600 unmanned aerial systems of various sizes by 250

manufacturers in 42 nations, and this includes solely commercial and government organiza-

tions(K. K. Bhamidipati, Daniel Uhlig and Natasha Neog, 2008).Geological surveying, fire

monitoring, rescue missions, wildfire mapping, law enforcement, aerial imaging are some

parts of civilian applications of UAS, and Intelligence, Surveillance and Reconnaissance

(ISR), Suppression of Enemy Air Defense (SEAD), and high-value asset recovery scenarios

are some examples of military applications. Simultaneously the importance of UAV safety

and reliability is attracting more attention in this field. An acknowledgement of this impor-

tance related to UAV roadmap for 2005-2030 years is reported by The Office of the Secretary

of Defense (OSD) by stating that “Improving UA (Unmanned Aircraft) reliability is the single

most immediate and long-reaching need to ensure their success.”

In early years, UAVs were completely controlled by human operator from the ground

known as Remotely Piloted Vehicles (RPVs) and the last decade has witnessed unprecedented

interactions between technological developments in computing, control, and communications.

1



These developments led to the design and implementation of interacting dynamical systems

such as cooperative as well as networked unmanned multi-vehicle systems. Advances in

sensor systems, on-board computational platforms, energy storage, and other enabling tech-

nologies have made it possible to build a huge variety of UAVs for a range of different mission

scenarios. Many of the mission scenarios of interest, such as persistent surveillance, are in-

herently long duration and require coordination of multiple cooperating UAVs in order to

achieve the mission objectives. In these types of missions, a high level of autonomy is desired

due to the logistical complexity and expense of direct human control of each individual ve-

hicle. On the other hand, although military/civilian researches and implementation results

around the world have underscored the potential utility of unmanned aerial vehicles but still,

most of their successes have occurred in a setting that allows a relatively large margin for

errors, thereby, such sophisticated control systems should meet increased performance and

safety requirements. In other words, although the knowledge of control is trying to save the

pilot’s life as the most valuable part of manned aerial vehicle, by replacing it with different

controller architectures in the control loop, but in parallel, it is an important task for control

engineers also to save the UAV system itself, in the case of fault/failure occurrence in either

hardware or software components.Furthermore, the use of unmanned aircraft for verification

and validation of flight control laws has become an appealing option due to the high cost

and risks associated with flight testing programs of manned aircraft for research scientists.

Failures and faults in manned or unmanned aircraft can lead to catastrophic consequences

resulting loss of life and the aircraft itself. As the operation of UAV becomes more common,

the implementation of technologies with fault-tolerant control capabilities have become a

required part of the integrated Guidance, Navigation and Control (GNC) architecture.
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Figure 1.1 Share of Fatal Accidents By risk Category Source: ICAO Accident-
Statistics

1.2 Motivation

Nearly half of the current-generation of unmanned surveillance aircraft has been lost. Ac-

cording to aircraft accident statistics for world wide commercial jet fleet, 1926 out of 2200

accidents analysed, were caused due to loss of control in flight resulting large number of

fatalities. This loss rate is about 10 times worse than manned combat aircraft. This fact

reveals the importance of fault-tolerant control of UAVs. The consequences of a minor fault

in a system component can be catastrophic particularly for many safety-critical systems, in-

cluding aircraft. Therefore, the demand on reliability, safety and fault tolerance is generally

high.

The chief goal of this research thesis is to present analysis and results obtained for gen-

erating a non-linear mathematical model of a UAS used as research platform to support

the design, development and in-flight testing of a set of fault-tolerant flight control laws

previously implemented in simulation. The model identification is performed within an in-

tensive flight research program initiated at Embry-Riddle Aeronautical University (ERAU)

to demonstrate navigation and control of aerial systems under nominal conditions while as-

sessing the overall system health with detection and evaluation of abnormal conditions, and
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Figure 1.2 Asiana Airline Flight 214 , Soucre: Wings Herald

accommodation of the upset conditions. As complex systems are controlled by computers,

which are discrete in nature, of particular interest is the design of discrete-time adaptive

control laws. In this study, a discrete model reference adaptive control is designed and its

performance is validated using numerical simulations of the UAS model. Then, the com-

pensation capabilities are verified considering three types of faults: partial loss of actuator

elevator, pilot-induced oscillations(PIO) and uncertain icing condition.

1.3 Research Objective

The objective of this research is to identify a model of an Unmanned Aerial Vehicle, the

Rascal 110 from flight data that accurately represent its dynamic behavior. This mathemat-

ical model finds its application within a fault-tolerant flight control system for commonly

occurring failures.
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1.4 Literature Review

1.4.1 Reconfigurable Flight Control

Reliability and survivability play a vital role in modern high performance aircraft that leads

to designing of reconfigurable flight control system (RFCS) that can automatically recon-

figure during the occurrence of the faults. In certain, unexpected scenarios, aircraft has a

control surface damage or locked/jammed control surfaces during which its dynamics alters

with non-linearities being produced. These non-linearities can deteriorate aircraft’s perfor-

mance tremendously. In this situation, RFCS can redistribute and coordinate the control

effort among remaining control surfaces, is desired to retain stability or satisfactory flight

performance of the aircraft when it is physically possible. In recent years, for this purpose,

adaptive controls are being studied extensively.

One such efforts was taken D.G. Ward, J.F. Monaco and M. Bodson (1998)[4]. Real-

time parameter identification and control reconfiguration algorithm were implemented and

evaluated on series of flight tests. The author discusses about the challenges associated with

poor information content of the signals used for identification and its need for autonomy,

reliability and fast adaption. Modified Sequential Least Square algorithm was developed

to overcome the problem of identifying time-varying parameters in the system that is often

insufficiently excited during on-line estimation. The identification technique was evaluated

using Lockheed Martin’s Non Linear 6-DOF simulation of the F-16 and flight data provided

by Calpan. A series of flight tests resulted in a landing under a simulated failure condition and

on-line reconfigurable control and demonstrated the success of the identification algorithm

in determining the parameters of the aircraft in real-time.

In 2009, a team of researchers [5] performed parameter identification that was partic-

ularly used for fault-tolerance purpose. Their research efforts described the extraction of

the mathematical model of WVU(West Virginia University) YF-22 unmanned research air-

craft under nominal and failure conditions for both linear and non-linear models. These
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models were developed using flight test data collected during the performance of doublets

that were injected by on-board computer. For identification of nominal longitudinal model,

’n4sid’ function of MATLAB System Identification Toolbox®was used which estimates a

state-space model using a subspace based identification method. For nominal-lateral iden-

tification, prediction-error minimization ’pem’ was used. The methods and equations for

identification of decoupled non-linear longitudinal and lateral model was implemented. Sim-

ulation results were presented to compare the results from measured flight test data.

Continuing this work, Kerri Philips in her dissertation[7] derived a non-linear model for

YF-22. From this analysis, the stability and control derivatives were extracted to determine

the aerodynamic forces and moments on each aircraft. These aerodynamics were next intro-

duced into a simulation environment to validate the accuracy of the identified mathematical

models. The author performed several simulation studies to validate the accuracy of the

models for each research platform, focusing on both nominal and primary control surface

failure conditions where applicable. Later her results, the model outputs were compared to

the measured flight data from the two respective research platforms to validate the accuracy

of the estimated parameters.

In 2012, J. Lee, H. S. Choi, S. Lee, E. T. Kim and D. Shin[8], worked on building a

fault-tolerant controller that can compensate for actautor failures during aircraft autoland-

ing. Acoridng to the authors, the last component in control -action implementation on an

airplane are the actuators and they play vital role in delivering necessary power to change the

controlled variable. Also, it is not ideal to have multiple redundant actuators on airplanes

due to cost-effectiveness. Actuators are heavy and bulky for operating control surfaces under

large aerodynamic forces hence fault-tolerant control design considering faults in actuators is

an active area of research. In this research, in order to achieve robust performance of small

jet aircraft, authors adopted time delay control(TDC) scheme to design fault-tolerant flight

control system. They apply this to the automatic landing problem under actuator failures.

The performance was validated via a 6-DOF non-linear simulation. The results proved that
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aircraft can perform auto-landing without degradation of performance in case of single and

multiple faults.

1.4.2 Model Reference Adaptive Control

Model reference adaptive control(MRAC) is usually used in situations where conventional

feedback controllers may not perform well due to changes in process dynamics, non-linear

actuators, alterations in environmental conditions and other types of disturbances.

Adaptive controls in discrete system is very rarely found in the controls literature. S.Hyung

and Y.Kim [2005] used discrete MRAC to create a reconfigurable flight control. The systems

identification was performed using Auto regressive(AR) model since it can handle variable

structure systems. Discrete MRAC was utilized for fault-tolerant control systems that can

adapt to the reference system since reference system is viewed as ideal nominal system for

the aircraft.

The faulty case considered here is control surface damage of F-16. The 60 percent dam-

age of elevator was induced at 4 sec in the numerical simulation. The derived results stand

as a testament for Linear Quadratic Tracking controller that follows the reference command

even after the instance of the fault occurrence. The appendix of the paper also proves the

stability of the discrete adaptive control.

Experimental results on actuator fault-tolerant control for a quadcopter Unmanned Aerial

Vehicle system was presented by A. Chamseddine , Y. Zhang, C. Rabbath, C, Fulford and

J.Apkarian[2011] . The control strategy to achieve this goal is based on Model Reference

Adaptive Control(MRAC). Three different schemes of MRAC were discussed and imple-

mented with their pros and cons namely the MIT rule MRAC, the Conventional MRAC(C-

MRAC) and the Modified MRAC (M-MRAC). These MRAC schemes were compared to

Linear Quadratic Regulator baseline controller. The primary advantage of MRAC is that it
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does not require explicit information about fault location and or amplitude and thus, fault

detection and identification is not needed to detect, isolate and identify the occurred faults.

The fault scenarios that were experimented on Qball-X4 included partial effectiveness loss

in the total thrust, partial effectiveness loss in the 4th rotor and partial damage of the 4th

propeller. Conventional MRAC out of all the three schemes proved to be capable of rapidly

reacting to faults without any priori knowledge about the system or fault-location. Also, the

results clearly showed that depending on actuator constraints, only a certain amplitude of

actuator fault can be reconfigured. Beyond this limit, system cannot be stable anymore.

1.4.3 Pilot-in-Loop Oscillation

Pilot Induced Oscillations (PIO), sometimes referred to as Pilot Involved Oscillations and,

more recently, as unfavourable Aircraft-Pilot Couplings (APC), are rare, unexpected, and

unintended excursions in aircraft attitude and flight path caused by anomalous interactions

between the pilot and the aircraft. Many researches have been conducted to implement the

advanced control systems that could provide great potential for improvement in airplane’s

performance. Different techniques involve using L1 Adaptive Control(M. Santone, C. Cao,

2012 ), control allocation techniques(Y. Yildz, I. V. Kolmanovsky, 2010), etc. There are

several causes of PIO occurrence some of them are, due to actuator rate saturation, actuator

delay in response to pilot input, dynamic coupling.

I. Alcala, F. Gordillo and J. Aracil presented phase compensation design for prevention of

PIO due to actuator rate saturation in 2004. They developed a simple and effective solution

for type 2 pilot-induced oscillations due to rate limit in the control surface. All aircraft control

surfaces have restrictions when the actuators are operating at their maximum capacity. One

of these limitations is known as rate limit and it relates to the maximum speed at which

an actuator can follow changes in the input signal. Furthermore, in fly-by-wire (FBW) the

8



control signals are rate limited by software before feeding the control surface in order to avoid

stress in the actuator. The proposed method uses a non-linear filter that compensates the

phase of the control signal before feeding the actuator. It is developed with a rate-limited

feedback and a phase-lead network for compensating the phase lag .

The structure of this filter has advantages over previous realizations that allow tun-

ing simplicity considering limit cycle prevention as control specification. Simulation results

demonstrate the good performance of the proposed compensation.

Y.Yildiz, I. V. Kolmanovsky’s research efforts illustrates a control allocation technique

that can help pilots recover from PIO. PIO are described as unwanted aircraft oscillation

that occur due to joint enterprise between the aircraft and pilot. There are several other

ways of causing PIO. They included rate saturated actuators, high gain pilot or controller,

system delays and phase lags. This paper particularly concentrates on PIO caused by rate

saturated actuators. It proposes control allocator that reduces the effective time delay by

minimizing the phase shift between the commanded and the actual attitude accelerations.

CAPIO functions by minimizing the error between the derivatives of desired total control

effort and the achieved noise, digital realization of the derivative. The integration of CAPIO

with a PIO detector are important points to be addressed for a successful technology transfer.

Simulation results are reported, which demonstrate phase shift minimization and recovery

from PIOs.

L1 Adaptive control, as mentioned earlier, has been used to suppress PIO. Combined

efforts of C. Wang, M. Santone and C. Cao presents the L1 adaptive controller that has

been introduced to suppress the PIO, which is caused by rate limiting and pure time delay

in 2012. According to the authors, due to its architecture, the L1 adaptive controller will

achieve a desired response with fast adaptation. The analysis of PIO with its categories and

its suppression by L1 adaptive controller are given in detail in the journal paper. The authors

show the system modeling and PIO modeling in simulation. The numerical simulations
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results indicate that the L1 adaptive control is efficient in solving this kind of problem.

1.4.4 Icing Condition

Many aircraft accidents have occurred due to uncertain ice accretion on the aircraft’s body.

Pilots generally have a very less time to escape the harmful icing condition. Sometimes ex-

perienced pilots do not even realise that they have flown into such harmful condition. Also

sometimes ice accretion goes unnoticed during the cruise condition. In this thesis research[K.

M. Rankin, 2014], author mentioned few examples of air-crash owing to effects of icing con-

dition. Effects of ice on the equations of motion of airplane are studied and modelled here

which author describes it as a challenging task since there are many shapes and areas on the

aircraft where ice can form where it can have some or no effect on control surface. It can

even lead to total loss of control of aircraft.

The iced aircraft models are based on data taken from the effects of ice accretion on a

DeHavilland Twin Otter aircraft. Statespace models for, with and without icing are derived

for Cessna 208 Super Cargomaster where change in stability and control parameters due to

icing are mentioned with explicit percentage change.

Author designed the classical fixed gain controller to show its inadequate performance

during the ice accretion.This is followed by designing and implementation of adaptive output

tracking control algorithm in simulation for normal and ice conditions. The adaptive control

algorithm illustrates the effectiveness of adaptive control to handle the alterations in aircraft’s

dynamics.
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1.4.5 Calibration of Air Data Probe

Air data probe(ADP) is very important to successfully complete an aircraft’s mission and is

derived from the air surrounding the aircraft.These air data encompass, indicated and true

airspeed, pressure altitude, ambient air temperature, angle of attack(AOA) and sideslip,

Mach number, and rate of climb (E.A Haering, 1995).There are several ways to calibrate

the ADP, some include using inertial measurements, inertial navigation system(INS), wind-

tunnel method, etc.

In 1982, A.A. gerner and C.L. Maurer at Air Force Academy submitted the research paper at

AIAA 20th Aerospace Sciences Meeting that describes the method of calibrating seven-hole

ADP upto 80 degrees for compressible and incompressible airflow [9]. The probe measures

total and static pressures that are used to calculate the angle of attack(α) and angle of

sideslip(β) of the aircraft. The authors explain the experimental procedure and apparatus

needed to carry out in 1 by 1 foot blowdown wind tunnel

Figure 1.3 Low Angle Reference System - Source: A.A Gerner, C.L. Maurer U.S.
Air Force Academy
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For this research [9], only low flow angles and incompressible theory was point of interest

where mainly the probe’s axis are less than or equal to 30 degrees. The author considers

tangential plane as a reference system which is slightly different from wind reference frame

where α - β system exists. To conserve the air in the blow down wind tunnel, the authors

ended up using least squares to sample large amount of data therefore reducing it to minimum

number of data sets required for a polynomial fit. The probe calibration is represented by

three-variable third order polynomials that yields all the desirable output quantities that are

computed from the pressures measured by probe.

1.5 Thesis Outline

This thesis is organized as follows. The first chapter provides brief introduction and motiva-

tion behind choosing this topic research with some literature review. Chapter two presents

an overview of discrete control theory and how it is different from continuous time systems.

Chapter three describes the process of developing and instrumenting the UAV test bed.

Chapter four presents a detailed procedure of calibrating the seven hole air data probe. This

is followed by detailed description of how identification of mathematical model was carried

out in Chapter five. Chapter six illustrates the numerical simulations and results performed

from implementing direct and indirect MRAC.
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Chapter Two

Discrete Control Theory

2.1 Introduction

Recently, there has been an increase in usage of digital controllers in control systems. Digital

control or discrete control system (DCS) are used for achieving optimal performance in form

of maximum productivity, maximum profit, minimum cost or minimum energy. Also, they

behave more robust to environment disturbances when compared to continuous time systems

(CTS). Discrete-time controls are the ones in which one or more variables can change only

at discrete instant of time. These are called samples and the rate at which it gets updated

is called sample rate. Samples are denoted by letter k in this thesis.

DCS operate in Z-domain while CTS in S-domain for computing response of the dynamic

system. Z-domain transfer functions are computed by difference equations whereas S-domain

transfer functions use ordinary differential equation(ODE). Difference equations are suitable

for computer systems as they operate upon discrete samples of system input (past and

present) and previous system output. Differential equation requires continuous knowledge

of input and output and solving them on computer requires numerical methods which is

essentially a difference equation. Since continuous time system uses ODE, it requires higher

computing processors than discrete controls.

There are three general approaches for implementing DCS on a continuous plant system.
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1.Design CTS controller for a continuous plant and convert to an equivalent DCS considering

the effects of sample time.

2.Convert a continuous plant system and continuous sensors to discrete plant and discrete

sensors followed by designing a discrete controller for them.

3.Tune a discrete controller with a continuous plant model

This thesis research follows the 2nd approach.

There are five methods to convert continuous time system to discrete. They are

1. Zero-order hold (ZOH): exact discretization in the time domain for staircase inputs.It

holds the previous sample value with zero slope or zeroth order polynomial and step up the

value with next sample time. ZOH is used in this research for converting continuous plant

system to discrete plant.

2. First order hold (FOH): provides the exact match for discretization in the time domain for

piecewise linear inputs. This method is also referred to as ramp invariant method because

it produces the same ramp response between CTS and DCS.

3. Impulse : The impulse-invariant mapping produces a discrete-time model with the same

impulse response as the continuous time system

4. Tustin Approximation or Bilinear approximation: yields the best frequency-domain match

between the continuous-time and discretized systems. If the system has important dynamics

at a particular frequency that the transformation needs to preserve, use the Tustin method

with frequency prewarping. This method ensures a match between the continuous- and

discrete-time responses at the prewarp frequency. By default, the Tustin method rounds any

time delay to the nearest multiple of the sample time. Therefore, for any time delay tau, the

integer portion of the delay, k*Ts, maps to a delay of k sampling periods in the discretized

model. This approach ignores the residual fractional delay, tau k*Ts .

5. Zero-Pole Matching equivalent: The stability of continuous time closed loop controller

that is linearly time-invariant is determined by placement of closed-loop poles in s-plane.
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The poles that are on left half of the s-plane i.e. negative real part are stable which mean

they will showcase the exponential decay. The poles that are on right half of s-plane are

unstable. Complex variable z and s are related .

z = eTs (2.1)

Hence the locations of poles of closed-loop pulse transfer function can help determine the

stability of linear-time invariant discrete time closed loop system. Sampling period T affects

the dynamic behavior of the discrete-time control system. In terms of poles and zeros in z

plane their locations depend on the sampling period. It means that alteration in sampling

period modifies poles and zero locations in z plane causes the response behavior to change.

[K.O.,Discrete-Time Control Systems,2013] This method involves taking poles of CTS and

mapping those poles in discrete time. If the time constant of the system is slow compared

to sample time then each of the method stated above is similar.

2.1.1 Stability Analysis of Discrete Controller

For discrete control, sampling period holds an important place. If sampling period is too

long where Nyquist sampling theorem is not satisfied then it leads to frequency folding and

aliasing. This alters the location of poles and zeros.

The stability of linear-time invariant single input-single output discrete-time control sys-

tems is determined by the position of closed-loop poles in the z plane or the roots of char-

acteristic equation. Lets consider a system that has the following transfer function.

C(z)

R(z)
=

G(z)

1 +GH(z)
(2.2)

The characteristic equation is

P (z) = 1 +GH(z) = 0 (2.3)
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The roots of characteristic equation will determine the system’s stability. For the system

to be stable, the roots must lie within the unit circle in the z -plane. Any closed-loop pole

outside the unit circle makes the system unstable. If a pole lies on the unit circle that is z =

1 then the system is critically stable. System also becomes critically stable if the single pair

of the conjugate complex poles lies on the unit circle in the z - plane. Any multiple close-loop

poles on the unit circle makes the system unstable. Zeros of closed-loop system do not affect

the system stability and therefore may be located anywhere in the z -plane.

Hence to summarize for a discrete closed-loop system is unstable, if the poles lies outside

the unit circle and/or any multiple-closed loop pole lies on the unit circle in the z plane.

2.2 Introduction to Model Reference Adaptive Control

When something or someone ’adapts to’ a situation it means to adjust to a new situation so

when it comes to controllers, standard ones are unalterable and cannot be used in systems

that have varying parameters over time. Thus the requirement for adaptive controllers.An

adaptive control system resembles any other control system which has the capability to

mutually adjust itself based on the inputs from the system in consideration of the system

uncertainty. The parameters that are altered are called adaptive parameters and the mech-

anism of adjustment, described by mathematical equations is the adaptive law. Figure 2.1

describes the general architecture of MRAC. In this research thesis, MRAC approach is

used to solve mid-air occurrence of faults/failures in the fixed wing UAV. MRAC is used for

making a closed loop controller which adjusts the variables of the system dynamically by

comparing the output of the plant with a standard reference response. Further, MRAC is

classified into two types:

1) Direct Control: In this controller, the system adjusts itself to the error signal which is

described as the difference between the plant and the reference response. The controller

parameter T of the controller C(T) is updated in real time by adaptive law.
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2) Indirect Control: The basic philosophy of this approach is to estimate the parameters of

the unknown plant from input output data and, in turn, use these estimates to adjust the

parameters for a controller so that the transfer function of the controlled plant evolves to

that of the model (Kumpati S. N., L S. Valavani,1976).

Figure 2.1 General Structure of MRAC

2.3 Design of a Discrete Direct Model Reference

Adaptive Control

Discrete MRAC using system identification is one approach that can be used as a fault-

tolerant control system. In this work, the identified aircraft model was converted to a discrete

system. Later a Discrete Direct MRAC was designed and implemented and its capabilities

of compensating actuator failures, PIO and uncertain ice accretion are evaluated. Consider

the following discrete linear system plant in state-space in equation 2.4. The ouput model

for that equation can be defined as:

x(k + 1) = Ax(k) +Bu(k) (2.4)
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y(k) = Cx(k) (2.5)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp and A, B, C are system, input and output matrices,

m is number of inputs, n is number of states and p is m × n respectively. Consider a

reference model for the system to follow and represented as:

xm(k + 1) = Amxm(k) +Bmrmu(k) (2.6)

ym(k) = Cmxm(k) (2.7)

The objective of the control law is to determine adequate control input to make the output

y(k) follow the reference model output ym(k). The output error can be then defined as:

e(k) = y(k)− ym(k) (2.8)

For a Multi-Input-Multi-Output (MIMO) system, the linear discrete-time model is consid-

ered as follows

A(z−1) = I + a1z
−1 + ...+ anz

−n (2.9)

B(z−1) = b0 + b1z
−1 + ...+ bmz

−m (2.10)

where z−1 is a shift operator, u(k) is the input vector, a′s and b′s are control and sta-

bility parameters and y(k) is an output vector. A variety of parametric model structures

are available to modeling an unknown system. Parametric models describe systems in terms

of differential equations and transfer functions. The system used here was defined using an

ARMA model. In the statistical analysis of time series, ARMA models provide a parsimo-

nious description of a (weakly) stationary stochastic process in terms of two polynomials,

one for the Auto Regression (AR) and the second for the Moving Average (MA). Both solve
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linear regression in analytic form. The ARMA model is expressed by the past input-output

data and the dimension of the system model is determined by the data size of the gathering

input-output information. It is natural that the data size must be larger than the system di-

mension, and the accurate size of dimension needs not to be known[4] . The discrete system

is stable if every pole of every transfer function has a magnitude less than 1. All poles of

all transfer functions must exist inside the unit circle on the Z plane. The roots for A(z−1)

, B(Z−1), Am(Z−1) and Bm(Z−1) are within the unit circle and therefore they are stable.

Combining equation (6), (7) and (8), an ARMA model can be written as

y(k+1) = b0u(k)+b1u(k−1)+b2u(k−2)...+bm(k−m)−a1y(k)−a2y(k−1)..−any(k−n+1)

(2.11)

With the known number of inputs and outputs, m and n, respectively. The coefficient

values of A(Z−1) and B(Z−1) polynomial equations are to be exactly determined since they

are affected by changes in the system. The objective of Direct MRAC is to generate the

appropriate input u(k) at the kth step to make system output y(k) follow the reference ym(k).

A system tracking problem can be formulated by using a desired tracking dynamics with

a delay d greater than 1:

D(Z−1)[ym(k + d)− y(k + 1)] = 0 (2.12)

A(Z−1)y(k + 1) = B(Z−1)u(k) (2.13)

and using generalized Bezout Identity defined as D(z−1) :

D(Z−1) = z−dR(Z−1) + S(Z−1)A(Z−1) (2.14)

Within this approach the system tracking is achieved while estimating on-line the unknown

parameters within the control laws u(k) for the Discrete DMRA:

u(k) =
1

b0
[D(Z−1)ym(k + d)−R(Z−1)y(k)−B∗s (Z−1)u(k − 1)] (2.15)
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where,

B∗s (Z
−1) = b1 + b2Z

−1 + b3Z
−1 + ....+ bmZ

−1 (2.16)

From which we have:

D(Z−1)ym(k + d) = b̂0u(k) +B∗s (Z
−1)u(k − 1) + R̂(Z−1)y(k) (2.17)

where in a matrix form,

D(Z−1)ym(k + d) = [b̂0 B̂∗s1....B̂
∗
s(d+m−1)R̂0 R̂1...R̂n−1]...

[u(k) u(k − 1)..u(k − d−m+ 1) y(k) y(k − 1)...y(k − n+ 1)]′
(2.18)

and

P T (k) = [b̂0 B̂∗s1....B̂
∗
s(d+m−1) R̂0 R̂1...R̂n−1] (2.19)

M(k) = [u(k) u(k − 1)..u(k − d−m+ 1) y(k) y(k − 1)...y(k − n+ 1)]′ (2.20)

Thus

D(Z−1) ym(k + d) = P T (k)M(k) (2.21)

A priori tracking error in Discrete DMRAC can be defined as:

e(k + d) = D(z−1) [ym(k + d)− y(k + d)] (2.22)

where

D(z−1) [ym(k + d)] = P̂ T (k)M(k) (2.23)

D(z−1) [y(k + d)] = P T (k)M(k) (2.24)

Consider residual error e(k) defined as follows.

e(k) = P TM(k − d)− P̂ T (k − d)M(k − d) (2.25)

Unfortunately this error has built-in inherent delay, therefore adaptive signal error is intro-

duced that is defined as:

e∗(k) = e(k)− [(P T − P̂ T (k − d))M(k − d)] = (P T − P̂ T (k))M(k − d) (2.26)
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Therefore,

P̂ (k) = P̂ (k − 1) + F (k − 1)M(k − d)e∗(k) (2.27)

F (k) = F (k − 1)− F (k − 1)M(k − d)MT (k − d)F (k − 1)

1 +MT (k − d)F (k − 1)M(k − d)
(2.28)

Solving for the adaptive signal error:,

e∗(k) = [P T − P̂ T (k − 1)]M(k − d)− e∗T (k)[F (k − 1)M(k − d)]TM(k − d) (2.29)

Rearranging the terms,

e∗(k) =
P TM(k − d)− P̂ T (k − 1)]M(k − d)

1 +MT (k − d)F (k − 1)M(k − d)
(2.30)

The general architecture for the designed Direct MRAC is shown in Fig. 2.2.

Figure 2.2 Discrete Direct Model Reference Adaptive Control Architecture
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2.4 Design of a Discrete Indirect Model Reference

Adaptive Control

The approach for Indirect MRAC is quite different from the Direct MRAC. Infact within

the indirect MRAC, the coefficients of polynomials A(Z−1) and B(Z−1) of the ARMA (m,n)

model describing the actual system y(k) are estimated. This is followed by application of

Bezout identity

D(z−1) = z−dR(z−1) + S(z−1)A(z−1) (2.31)

where ˆ̂
R(Z−1) and ˆ̂

S(Z−1) which are both function of A(Z−1). ˆ̂
Bs(Z

−1) is found using

B̂(Z−1) and ˆ̂
S(Z−1). Finally the expression u(k) is derived similarly as the direct MRAC

when the delay is greater than one.

u(k) =
1

b̂0
[D(z−1)ym(k + d)− ˆ̂

R(Z−1)y(k)−

b̂0 has only one sign of estimation because it is direct estimate while ˆ̂
R(Z−1) and ˆ̂

S(Z−1)

has double sign because they are function of estimates. Although the overall indirect MRAC

algorithm is more complicated than the direct MRAC algorithm(since it involves all the

steps outlined above), the parameter estimation part is considerably simpler and it does

not involve the problems associated with the delay. For parameter estimation, most recent

available output is used that is’y(k)’ Hence the equation 2.11 becomes

y(k) = Z−dy(k + d) (2.33)

Z−dy(k+d) = b0u(k−d)+b1u(k−d−1)+b2u(k−d−2)...+bm(k−d−m)−a1y(k−1)−a2y(k−2)..−any(k−n)

(2.34)

The above equation can be written in matrix form as follows.
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y(k) =

[
b0b1...bma1a2...an

]



u(k − d)

u(k − d− 1)

...

u(k − d−m)

−y(k − 1)

−y(k − 2)

...

−y(k −m)



(2.35)

where first part of matrix product is P T (k) and second is M(k − 1) Similarly the estimate

ŷ(k) will be given by:

ˆy(k) = P̂ T (k)M(k) (2.36)

where a’s and b’s are estimated that form the part of P̂ T (k)

P̂ (k) = P̂ (k − 1) + F (k − 1)M(k − d)[y(k)− P̂ T (k − 1)M(k − 1)] (2.37)

with

F (k) = F (k − 1)− F (k − 1)M(k − d)MT (k − d)F (k − 1)

1 +MT (k − d)F (k − 1)M(k − d)
(2.38)

where F (k) is symmetric matrix of (m + n + 1) by (m + n + 1). Once the P̂ (k) is com-

puted, the algorithm proceeds as explained earlier. Therefore P̂ (k) yields estimated control

and stability matrix coefficients while Genearilized Bezout’s Identity(GBI) produces input

sequence(equation ??).

Figure 3.8 shows the architecture of discrete Indirect MRAC.
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Figure 2.3 Discrete Direct Model Reference Adaptive Control Architecture
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Chapter Three

Development of Research Testbed

Combining interest and theory in to a practical problem ensured a steep learning curve,

demanding using earlier experience and expanding ones horizon. This chapter highlights

the electronic components that goes on the aircraft to make it autonomous and capable for

collecting the flight data required for systems identification.

3.1 Airframe

Rascal 110 is a single engine, high wing, 9 ft wingspan, balsa wood airplane. Originally

designed as a radio-controlled airplane, the Rascal 110 was chosen for conversion to UAS

mainly due to its high gross weight and ample cabin space. "Take-offs and landings are

spectacular in their smoothness, and when it comes to what goes on in the air, the Rascal

110 is positively elegant"(Tower hobbies, Rascal 110 manual) .

Figure 3.1 Rascal 110 Airframe
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3.2 Propulsion

The power plant was chosen as a AXI 5345/18 HD GOLD Line electric motor with a 20"x13"

propeller for longer flight time. The motor is a brushless DC motor that can draw up

to 75 amps and operates at 171 Kv (171 RPM/V). It can handle up to a 12-cell lithium

polymer (Li-Po) battery. The 20x13 APC propeller means it has a diameter of 20 inches

and a pitch of 13 degrees at 25 percent of the length of the radius.The electronic speed

controller(ESC) selected with this motor is Jeti Spin 99 Pro Opto Brushless.This ESC can

support a continuous draw of 99 amps and a max current draw of 109 amps. It is important

that the proper ESC, motor, propeller, and battery combination is selected to meet the needs

of the desired performance. There are 4 batteries used on board the Rascal. Two 6-cell Li-

Po batteries connected in series generate approximately 50V to power the AXi 5345/18HD

motor. The servos and on-board computer are powered by two 3-cell (11.1V) LiPo batteries

that uses battery eliminator circuit(BEC) for converting it to 5V. BEC is used for delivering

full electrical power that is needed for electronics without any voltage drops.

Figure 3.2 Motor mounting on the aircraft
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3.3 On-board Electronics

3.3.1 Transmitter and Receiver set-up

The Transmitter used to by the RC pilot is a FrSky 7-channel receiver. The transmitter is

integrated with RF Long range module This transmitter is used due to its many channels

and ability to integrate with Long range RF module. The receiver obtains the signal from

the transmitter and then feeds the signal to both the Pixhawk and an 8-channel RC/RX

multiplexer by Cytron Technologies. The multiplexer board can receive signals in PWMs.

Its function is to switch signals from RC mode to On-board Computer(OBC)/Autonomous

mode.

3.3.2 On-Board Flight Computer (OBC)

The primary flight computer is a high performance, single board computer(SBC): PCM-3356

by Advantech. This is a PC-104 type computer that has a capability to join other boards

to perform necessary processes. The PCM-3356 is the primary(and a companion) computer

of the this UAV system. It gives the vehicle the ability to process and save large amounts

of data and can be used to run the real-time algorithms. The system features an AMD

LX800/500 MHz and LX600/366 MHz processor by Geode™. Also included are three RS-

232/422 ports and four USB 2.0 ports. In addition to the use of the PCM-3356, an analog

board MM 16R-AT by Diamond Systems® was assembled to provide inputs for analog

sensors and convert it to digital output. The computer with analog board were assembled

and then placed inside a 3D printed enclosure with input/output ports to allow for external

devices to be easily connected to the PCM-3356.PCM 3356 is loaded with external bootable

flash drive with a real-time simulink code. The PCM 3356 is connected to Pixhawk Cube 2

that is the flight computer.

Pixhawk cube 2 is a micro controller that has built-in sensors.These built-in sensors
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Figure 3.3 PCM 3356 and Analog board enclosed in 3D Printed Box

include accelorometer, gyroscope, and GPS. In this research experiment, primary function

of Pixhawk is to receive servo commands from transmitter through receiver send them to

OBC. Second purpose of Pixhawk is using as data acquisition system. It records and sends

all the values from sensors to OBC for redundancy purpose, more like a back-up system in

case the other external sensors fail to record the data. Pixhawk comes with built-in Extended

Kalman Filter (EKF) that computes Euler angles.

In order for OBC to read messages from Pixhawk, it has to first go to TTL(Transistor to

Transistor Logic) to RS232 converter. This is because Pixhawk communicates in TTL which

is a binary logic that uses voltages between 0V and +5V while RS-232 port on most PCs

typically read voltages from -13V to +13V. The RS-232 to TTL converter changes voltages

so that the two systems can communicate.

3.3.3 Servo Set-up

Pololu mini maestro 18 is a servo controller that delivers the control commands from on-board

computer to servos in pulse-width modulation (PWMs) through RS232 to TTL converter.

It actuates the servos on the aircraft with resolution of 0.25µs
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Figure 3.4 IMU, Pixhawk and OBC Set-up

3.3.4 Sensors Package

MicroStrain® 3DM-GX4-45™ INS is one of the sensors that is read by the PCM-3355 on-

board the aircraft. This sensor provides highly accurate measurements of the aircraft attitude

(±0.8º), angular rates, and accelerations. It uses an EKF to provide more accurate results

and, to compute GPS location (±5m), velocities (±0.1m/s) as well as pressure altitude

under high g maneuvers. This sensor is the selected because it is the smallest and for its

ease of use, light weight, high accuracy, and has the lowest power of GPS/INS available. The

MicroStrain® automatically compensates for vehicle noise and vibration, and does not need

field calibration due to automatic magnetometer calibration and anomaly rejection that is

estimated and compensated by the EKF. The 3DM-GX4-45™ architecture has been carefully

designed to substantially eliminate common sources of error such as hysteresis induced due to

temperature changes and sensitivity to supply voltage variations. For redundancy , sensors

from Pixhawk are used It has 3 sets of Inertial Measurement Unit (IMU) sensors for extra

redundancy and two sets of IMU are vibration-isolated mechanically, reducing the effect of

frame vibration to state estimation IMUs are temperature-controlled by on-board heating

resistors, allowing optimum working temperature of IMUs. The entire flight management
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unit(FMU) and IMU are housed in a relatively small form factor (a cube). It comes with

RS-232 and USB 2.0 communication interfaces and both of these are connected to PC/104

computer. A detachable antenna is plugged to the sensor and position on top of the aircraft

to obtain GPS satellite links.

Figure 3.5 Attitude, Gyroscope, Accelerometer, GPS sensor

3.4 Real-Time Operating System

xPC Target is a host-target solution for prototyping, testing, and deploying real-time systems

using standard PC hardware. "It is an environment that uses a target PC, separate from the

host PC, for running real-time applications" It enables the user to load MATLAB Simulink®

models on to physical systems and execute them in real-time.

There are different ways to configure this on target computer i.e. through Ethernet cable

and stand alone mode. In former, a host computer is needed to build and start/stop you

model. SDK C compiler is then called to generate real-time code. Then, the host computer

sends this information to both of the computers to execute the code with two separate

instances of the xPC Target Real-time Operating System (RTOS) pre-loaded while in the

later the Target PC runs completely autonomously. The model is no longer downloaded from

the host, but is stored on the CF boot disk. When the computer starts, the model begins
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running automatically, with an indefinite stop time.

Figure 3.6 Real-Time Operating Software

3.4.1 MAVLink Communication

The Micro Air Vehicle Link (MAVLink) is a communication protocol for unmanned sys-

tems(eg.drones).It is developed in MATLAB Simulink to establish a communication between

Pixhawk Cube and PCM-3356. Pixhawk sends RC messages from transmitter to PCM-3356.

It is a light weight, well-established message binary serialization protocol. Binary serializa-

Figure 3.7 MAVlink Message frame

tion means that the content of the message is transformed into a sequence of bytes to be

transmitted through the network. The receiver(in this case is OBC - PCM 3356) of the

serialized message performs its de-serialization(i.e. decryption) in the opposite direction to

reconstitute the original message sent. Each MAVlink message has a header appended to
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the payload message. The header contains the information related to the message whereas

payload contains the data itself that has to be transmitted.

3.5 Fail-safe

Most vital part of any aircraft operation is designing a fail-safe for its flight. This helps

the RC pilot recover the unmanned aircraft if there is any kind of glitch in the autonomous

system. For this reason, Rascal 110 was instrumented to operate in two ways, first is man-

ual flight where a pilot has direct control over the aircraft(fail-safe mode) and second is

autonomous mode. Cytron Multiplexer 8 channel is used for this purpose. It switches the

signal from one input to another for servo output. Autonomous mode passes through flight

computer to servos while manual flight from transmitter-receiver to servos which allows RC

pilot to abort the test anytime during a critical situation and land safely.

Figure 3.8 Multiplexor

Figure 3.9 summarizes the signal flow and the assembly of all the electronics that goes

on Rascal 110.
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Figure 3.9 IMU, Pixhawk and OBC Set-up
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Chapter Four

Development and Calibration of

Multihole Air Data Probe

An air data probe (ADP) is an effective light weight solution that has an ability to compute

angle of attack, angle of sideslip and true airspeed for aircraft based on the static and total

pressure measured. The basic principle of operation, which most multihole probes have

in common, is the ability to determine velocity magnitude and direction from a measured

pressure differential (Zillac,1989). These probes are an extension on the pitot-tube notion –

i.e. the knowing the relative position of each pressure port allows calculation of both a flow

magnitude and direction (Crawford, 2011). Three-hole probes are measure a 2-dimensional

flow i.e. a single flow angle. Five and seven-hole probes are capable of fully measuring a

3-dimensional velocity field i.e. two flow angles. The two extra holes on the 7-hole probe

allows to measure higher angles of attack almost to 80 degrees relative to their axis. When

combined with computerized data acquisition system, they are capable of taking data rate

of nearly two data points per second. Additionally, these probes are too small to disturb

any flow stream that they are measuring but due to probe’s small size, it suffers from from

inherent manufacturing defects. As a result, the probe must be calibrated before it can be

used for measuring any flight data. (A.A. Gerner and C.L. Maurer, 1982)
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4.1 Method of Calibration

A seven-hole probe was built and calibrated in house. The probe is 12 inch in length with 0.25

in total radius. Figure 4.1 and 4.2 shows the catia sketch of the air-data probe assembly and

assembly of sting, rod and mounting block with pneumatic tubes respectively.Microscopic

view of the ADP is seen in Figure 4.4. In-flight, the flow stream pressure at each hole of

ADP are recorded by pressure transducer.These pressure transducers are shown in Figure 4.3.

LP-series-Analog pressure sensors were used for this purpose. They are surface mountable

pressure sensor package with compensated analog output suitable for ultra-low pressure

sensing application. They measure pressure ranging from -0.15 to 0.15 psi. They are available

in two different types, Gage and Differential. Later type was used for this research. The

differential pressure is measured in an analog electrical signal. These signals are sent to

analog-digital board where using the transfer function formula fromMerit Data sheet, voltage

is converted to meaningful pressure reading. Analog-Digital board supplies 5V of power to

these sensors.

Figure 4.1 Catia Sketch of Air-Data Probe Assembly inside the Wind-Tunnel

For instance, voltage measured by pressure transducer is 3.70V

Pmin = -0.15psi , Pmax = 0.15psi, Vout = 3.70V

Vmin = 0.5V , Vmax = 4.5V
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Figure 4.2 ADP is assembled with sting, rod and mounting block with pneumatic
tubes

Ppsi = (Pmax − Pmin).
Vout − Vmin
Vmax − Vmin

+ Pmin (4.1)

where Ppsi is pressure recorded in pound per square inch (PSI).

Figure 4.3 Differential Pressure Sensors

Ppsi = (0.15− (−0.15)).(
3.25− 0.5

4.5− 0.5
) + (−0.15) (4.2)

Ppsi = 0.5625 (4.3)

4.2 The Wind Tunnel Testing

The ADP calibration was performed using new sub-sonic FluiDyne Wind Tunnel in Micaplex

Research Park at ERAU. The 7-hole ADP was calibrated from the range -30 to 30 degrees

in both angle of attack α and angle of sideslip β. The calibration matrix was nominally in
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Figure 4.4 Microscopic view of ADP for ensuring a 180 degree Orientation in the
Mounting block

steps of 2-degree increments (961 measurement points), with possible refinement in the step

size based on the initial outcomes from the tests. For the wind tunnel experiment, different

set of multi-channel pressure sensor bank and pressure tube adapters were used to calibrate

the ADP. This was done by mounting a special angular calibration fixture from the ceiling of

the wind tunnel, this fixture being used to precisely position the angle of attack and angle of

sideslip in the flow of the wind tunnel. The test set-up is shown in Figure 4.5.The sting rod

was the main device that held the ADP out into the slipstream of the wind tunnel. The steel

rod (Figure 4.5) was originally was 1/4” thick, but was increased to 3/8”. The thicker rod

would further ensure that there would be no unnecessary oscillation inside the wind tunnel.

The wind tunnel can deliver a maximum flow speed of up to 420 ft/s. The test was done at

a flow speed of 150 ft/s. The fixture is controlled through LabView. It is very important

to align the port number 1 and 4 with X-Z plane of Wind Tunnel test section. The data

sample rate was 50Hz and each angle increment was sampled for 15 seconds with a 5 second

rest time. From the measurements of the corresponding 7 pressures at each angle of attack

and angle of sideslip, then the full calibration matrix for the ADP can be calculated. This

calibration matrix is then used in flight to measure the angle of attack and angle of sideslip

of the aircraft. Two tests were conducted for this process.
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(a) (b)

Figure 4.5 ADP setup in test section of Wind Tunnel

Test 1: This is the Partial sweep. This was performed by increasing one angle (angle of

attack or angle of sideslip) over the full range to obtain a general idea of the calibration curve

and the quality of the curve fit. This test required less than 30 minutes of wind-on time, and

verified that the calibration fixture was operated properly that allowed an examination of the

general nature of the pressure responses and the expected calibration curves. Test 2: This

is a full sweep test. This test examined the full range of +/- 30 degrees for angle of attack

and sideslip at 2-degree increments (961 measurement points). Each calibration point lasted

approximately 20 seconds to provide accurate calibration data; 5 seconds of probe move and

wait time and 15 seconds for the pressure data to be recorded. The pressure data are then

ensemble averaged over the 15 seconds. The results were normalized with dynamic pressure.

This test lasted for 4hours wind-on time. Figure 4.6 shows the air-data probe assembled on

the left wing of the airplane. The probe was placed in a position that assured that there was

no prop wash affecting the measurements.

4.3 Post-Processing data

The pressure data for each each hole on ADP is collected and post-processed using MAT-

LAB® and MATLAB® SIMULINK. For low flow angles, it is advisable to define dimension-

less pressure coefficients which utilizes all seven measured probe pressures and are sensitive
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Figure 4.6 ADP setup in the wing

to change in flow angularity with respect to probe’s x-axis. The pressure coefficients that

are sensitive to change in angle of attack in x-z plane is defined as

Cα1 =
P4 − P1

P7 − Avg(P1−6)
(4.4)

In equation 4.4, numerator is angular flow difference in opposite port pressures while denom-

inator pseudo dynamic pressure since this is obtained from the difference of 7th i.e. central

port and average six surrounding pressure from P1 to P6. Central port gives the total

pressure while P1 to P6 yields approximated static pressure. Other coefficient of pressure

are

Cα2 =
P3 − P6

P7 − Avg(P1−6)
(4.5)

Cα3 =
P2 − P5

P7 − Avg(P1−6)
(4.6)

These coefficients are then resolved into the αT - βT reference system where αT is defined as

projection on vertical plane of the angle between the velocity vector and the probe’s axis.

βT is defined as projection on the horizontal plane of the angle between probe’s axis and the

relative wind. For resolving the above coefficients, contribution of each coefficient is weighed

in determining alpha and beta.

Cα =
1

3
(2Cα1 + Cα2 − Cα3) (4.7)
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Figure 4.7 Numbering of ADP holes to compute Angle of Attack(Pitch Axis) ,
Sidelsipe (Yaw Axis)

Cβ =
1√
3

(Cα2 + Cα3) (4.8)

In equation 4.7, it contains all the three coefficients to determine Cα where Cα1 has the

maximum significance because it directly falls on axis of interest. The equation4.8 has equal

weights from Cα2 and Cα3 while it does not take into account Cα1 since it perpendicular to

axis of βT .

Figure 4.8 Angle of Attack versus Coefficient of Pressure (alpha and beta)

The MATLAB was used to post-process the data from Wind-tunnel. The data was

processed using the curve fitting tools.Mainly four plots were generated from this process.
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Figure 4.9 Angle of Sideslip versus Coefficient of Pressure (alpha and beta)

Figure 4.10 Average Pressure Coefficient(Left) and Total Pressure Coeffi-
cient(Right) versus Alpha and Beta

First important plot is angle of attack versus coefficient of pressures for alpha and beta

(Figure 4.8) followed by angle of sideslip versus coefficient of pressures for alpha and beta

(Figure 4.9). The other two graphs that were generated are total pressure versus alpha, beta

and Average coefficient of pressure versus alpha,beta (Figure 4.10).

The blue points on graphs show the data set obtained from the wind-tunnel. From the
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measurements of the corresponding seven pressures at each angle of attack and angle of

sideslip, then the full calibration matrix for the ADP can be calculated. This calibration

matrix is then used with a separate set of pressure transducers to measure the angle of attack

and angle of sideslip of the aircraft during actual flight.

The aircraft is also mounted with pitot-static tube from 3DR. It measures the static

pressure of the incoming air stream. The tube from pitot-static is connected to the static

ports of the pressure transducer. This helps in determining the true airspeed of the aircraft.

The true airspeed is computed from the dynamic pressure measured which is the difference

between the total and static pressure(according to Bernoulli’s principle).

Ptotal − Pstatic =
1

2
ρV 2 (4.9)

where ρ is the density at which the aircraft is flying, V is the airpeed or relative velocity of

the aircraft Hence,

V =

√
2(Ptotal − Pstatic)

ρ
(4.10)

42



Chapter Five

Systems Identification and Flight Testing

The determination of the parameters describing the aerodynamic behavior of the aircraft

from flight data is one of the approaches(Marcello Napolitano ,2012) that are available to

extract a system’s mathematical model. The drawback of this method is that it requires

prior estimation of aircraft’s information to conduct the test flights. Nevertheless, identifying

system through test flights has its own advantages like it validates the methods that were

previously used for the estimation of aerodynamic coefficients, evaluating performance of

flight control laws to comprehend closed-loop system and also testing and assessing the new

modified aerodynamic coefficients. The overall idea of this process is to know the input

and record the output from flight test and using these two set of information, identify the

mathematical model. It is known as Parameter IDentification(PID). A conceptual block

diagram of the PID process is shown in Figure 5.1. Once initial estimates from flight data

is computed, a technique is used to minimize the error between actual flight data and the

output of the state-space/mathematical model.This is known as validation technique.

5.1 Rascal 110 DATCOM Analysis

DATCOM stands for DATa COMpendium is a digital tool that is used for preliminary design

operations for an aircraft. This is the computational fluid dynamics (CFD) based analysis
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Figure 5.1 Parameter Identification Process

of conventional airplane subsonic configurations featuring wing,fuselage, horizontal tail and

vertical tail. It is a low budget approach for initial estimation. Digital DATCOM computes

static stability, high lift and control devices using the massive wind tunnel results that are

mainly obtained by US Air force and NASA. These wind tunnel results analyze virtually all

possible aircraft configuration at subsonic, transonic and supersonic speeds. The DATCOM

requires geometric properties, general flight conditions, mass properties and inertia properties

of the aircraft model that are shown in Table 5.1. In previous research conducted at Advanced

Dynamics and Control Lab, ERAU, Digital DATCOM analysis on Rascal 110 was performed

(Lyons, Bredon 2013). The stability and dynamics derivatives obtained are shown in Table

5.2. Using the derivatives obtained in Table 5.2, trim conditions of the aircraft were obtained

in MATLAB Simulink as shown in the table 5.3

The aircraft system is linearized at trim conditions resulting in a longitudinal and lateral

state space matrix model. State-space is set of first-order differential equations represented

mathematically as Equation 5.1. In this case coefficients in differential equations are made
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Figure 5.2 3D DATCOM Model

Parameter Value Units

Speed 68.10 ft/s

Altitude 0 ft

Chord 1.25 ft

Wing Area 10.57 ft2

Span 9.17 ft

Weight 15.74 lb

Table 5.1 Digital Datcom Input File Parameters

of aerodynamic stability derivatives, mass, and inertia characteristics of the airplane. These

state-space models are computed in continuous time system which are then converted to

discrete system with sampling time = 0.01 as shown in Equations 5.3 and 5.2 using Zero-

hold method. To validate this step, state-space model was also computed analytically using

lateral and longitudinal linearized set of equations (Nelson,2018).

Comparing Table 5.4 and 5.5, the Eigen values, natural frequency and damping ratio of

all the dynamic modes are very similar from simulation and analytical. These models were

further used design the flight test inputs.
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Longitudinal Stability Derivatives per rad Lateral/Directional Stability Derivatives per rad

CLo 0.4940 Cγβ -0.3198

CLα 5.9730 Cγp -0.1138

CLq 4.8850 CLβ -0.1138

CDO 0.0310 CLP -0.5087

CMO
0.0323 CNβ 0.0127

CMα - 0.3217 CNP -0.0380

CMq -11.000 CNr -0.0378

Table 5.2 Stability Derivatives

Parameter Value Units

Altitude 275 m

Airspeed 31 m/s

Angle of Attack -6.7 degrees

Elevator Deflection -6.3 degrees

Thrust 19.27 N

Table 5.3 Trim Conditions for Rascal in Simulation

x(k + 1) = Ax(k) +Bu(k) (5.1)



α(k + 1)

v(k + 1)

q(k + 1)

θ(k + 1)


=



0.7286 −0.0003616 0.015 3.734e− 05

−0.5503 0.9966 −0.007061 −0.1958

−0.4864 8.953e− 05 0.8854 −5.397e− 06

−0.00523 5.504e− 07 0.01885 1





α(k)

v(k)

q(k)

θ(k)


+



0.07551

−0.02303

7.785

0.07944


δe(k)

(5.2)
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Dynamic Mode Eigenvalue Natural Frequency (rad/s) Damping ratio

Short Period -9.02±2.25i 9.3 0.970

Phugoid -0.0419±0.445i 0.447 0.11

Dutch Roll -0.527±3.16i 3.2 1.90

Roll -11.9 - -

Table 5.4 ANALYTICAL: Eigenvalues, Natural Frequency, and Damping of Ras-
cal’s dynamic models

Dynamic Mode Eigenvalue Natural Frequency (rad/s) Damping ratio

Short Period -10.7±2.02i 10.9 0.983

Phugoid -0.066±0.216i 0.226 0.295

Dutch Roll -0.428±3.56i 3.59 1

Roll -14.6 - -

Table 5.5 SIMULATION: Eigenvalues, Natural Frequency, and Damping ratio of
Rascal’s dynamic models



β(k + 1)

p(k + 1)

r(k + 1)

φ(k + 1)


=



0.985 0.0002299 −0.01968 0.00735

−0.7618 0.7937 0.007885 −0.002937

0.1168 −0.01558 0.9815 0.0004262

−0.007932 0.01786 5.371e− 05 1





β(k)

p(k)

r(k)

φ(k)


+



0.0004802 0.01058

3.599 0.07604

−0.04921 −1.06

0.03737 0.0008049


δa(k)
δr(k)


(5.3)

Figure 5.3 shows the responses of two calculated transfer functions from simulation de-

rived state-space longitudinal model. The two transfer functions plots the responses of

pitching angle and and angle of attack with respect to change in elevator deflection.
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(a) Change in Pitching angle due to an el-
evator input

(b) Change in angle of attack due to an
elevator input

Figure 5.3 Output Responses from Transfer Functions of Linear Model

5.2 Flight Testing

Various set of flight tests were performed with the UAS research platform. The flight tests

are part of an extensive flight test program initiated at ERAU to support research on the

design, development, and testing of intelligent adaptive flight control systems and health

management algorithms. The ’Academy of Model Aeronautics’ (AMA) Daytona Beach field

was chosen for the flight test program. Approximately 1400 ft long and 1300 ft wide, the

field has enough space to perform the necessary maneuvers. It has a single and hard-surface

runway located on the east side. Figure 5.6 shows a satellite image of the field. The flight

trajectory selected for the flight tests was a rectangle, as shown in Figure 5.6, with maneuvers

taking place during the long straight portions of the track. These longer portions allow the

aircraft to respond to the stimuli for enough time so that the aircraft’s dynamic response

can be observed.

The maneuvers were coded and automatically injected from the OBC. It injects the two

types of elevator maneuvers that can possibly excite the short period and phugoid mode

of the airplane. The frequency of the maneuvers was based on a preliminary model and

was refined as new data became available. The maneuvers consisted of a combination of
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Figure 5.4 AMA’S Daytona Beach RC Flying Field

Figure 5.5 Test Flight in progress

doublets, 3-2-1-1 ans step. During each flight, after the pilot enters the maneuver section

of the track, the maneuver switch is activated. The OBC then performs a state check that

determines if a maneuver can be safely injected at that specific moment. If so, the OBC

injects the maneuver’s signal to the actuators. For safety reasons, the pilot has, at all times,

the ability to override the flight computer and control the aircraft manually. Five seconds

prior to the injection of doublet, aircraft is trimmed to ensure that there will not be any

additional excitation. The flight tests were conducted early in the morning to avoid any kind

of disturbances from high winds. This provided an additional means that during the flight,
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aircraft’s control surfaces were very close to the trim position. Once the OBC injected the

doublet, six to ten seconds were provided to record the aircraft’s responses. Sample flight

segment of aircraft’s responses during the performance of doublet are shown below. Figure

4.5a shows a typical doublet maneuver generated by the OBC in the elevator. The plots

generated in Figure 5.7 and 5.8 are the unfiltered data collected during test-flights. Notice

how the OBC maintains an autonomously steady state level flight before the maneuver is

injected.

Figure 5.6 Doublet injected by OBC

(a) Angle of Attack (b) True Airspeed

Figure 5.7 Responses recorded during and post doublet

50



(a) Pitch Angle (b) Pitch-rate

Figure 5.8 Responses recorded during and post doublet

5.3 Parameter Identification of Rascal 110

Identifying the mathematical model or transfer functions of the system based on its input

and output data is known as parameter/systems identification. In this research, input were

provided by elevator commands to excite the natural frequencies of the dynamic modes of the

aircraft while output were responses recorded from the various sensors during this excitation.

The identification process can be conducted off-line or online. Online or real-time estimation

are conducted during the flight, mostly using frequency-domain methods. For off-line param-

eter identification, either time-domain or frequency domain methods can be implemented.

PID can be performed using several ways such as SIDPAC(Systems IDentification Program

for AirCraft), Systems Identification Toolbox from MATLAB, etc. The key to a successful

parameter identification is the apt designing of the experiment that includes proper selection

of sensors for data acquisition and proper selection of PID maneuvers The following data

channels were used for longitudinal model identification: angular rates from gyroscope, linear

accelerations, attitude angles, air-data probe and engine parameters. The calibration of all

the sensors were performed in laboratory at ground level and alignment of IMU to aircraft’s

X axis to ensure the provision of correct data. PID maneuver selection should be done in a

manner that can excite the appropriate states to be measured. For example the pilot inputs
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determine the operating point of the system and which modes will be excited. The elevator

steps excite the short period and phugiod mode while rudder-aileron combination excite the

dutch roll. Sometimes there are restrictions on the maneuvers performed for PID such as

the frequency and amplitude of the doublet. The time is also significant limitation factor

that in specific circumstances during higher angle of attack approach , the airplane cannot

sustain there for longer time hence shorter time will be available to collect the data.

Doublet inputs are two sided pulses that are mostly used in this research for systems

identification. These doublets were designed at six different frequencies that fell in range of

natural frequencies of short period and phugoid obtained rom initial estimation of the state-

space from DATCOM. This thesis focuses mainly on computing longitudinal state-space.

5.3.1 Systems Identification Toolbox

The linear parameter identification is performed using Matlab® System Identification (SysID)

toolbox. The toolbox estimates the the linear and non-linear models of dynamic systems

from input and output data. The SysID toolbox performs four major steps to estimate the

model. They are:

1. Collect and pre-process the input data

2. Select a Model Structure

3. Find the best model in a structure.

4. Evaluate the resulting model.

With this tool, segmented flight data was imported into the toolbox. Many flight seg-

ments were available for this process but the best were the once that had captured maximum

information about airplane dynamics that is short period and phugoid. The very first step

is importing the input and output data to SysID toolbox and specifying whether it is time

domain or frequency domain. In this case, time domain with 0.01 sec sampling time was
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selected. This is sampling time at which data is collected in OBC. Also the user can select

the input properties like how the behaviour of input signal was between the samples during

data acquisition. It is used when transforming models from discrete-time to continuous-time

and when re-sampling the data. Zero-order hold was selected, which indicates that the input

was piecewise-constant during data acquisition. Once this is established, input-ouput data

can be imported from Matlab workspace. For input, elevator deflection and for output-

angle of attack, pitch rate, pitch angle and true airspeed were imported. These data can

be pre-processed by removing the means or normalizing the data from measured and input

signal. User can also perform the filtering to remove outliers or noise from sensor data.This

step is mainly performed for preparing the data for identification as shown in Figures 5.9

and 5.10.

Figure 5.9 Input Signal pre-processing

There were to two sets of data selected, one for estimation while other for validation.

Estimation data was dropped into working data and the other set was dropped into validation

data box as shown in Figure 5.11

There are different models available for end-user which can be quickly ran through to

check best fit model. Of all the models that were tested in this research, state-space and
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(a) Angle of Attack(top) and Pitch rate (b) Pitch Angle(top) and True Airspeed

Figure 5.10 Output Data Preprocessing

Figure 5.11 System Identification Toolbox

transfer function did fairly well. The difference between these two types is transfer function

representation, the model order is related to the number of poles and zeros but for state-space

representation, the model order corresponds to the number of states. Once the model was

selected, the data was run through the model and posted in the Model Views section. Model

Output allows the user to graphical comparison of the simulated output of the channels

to the measured data. These models can be evaluated on basis of the best fit percentage

that is the accuracy measurement between 0 to 100 percent to give the user a quantitative

measure of how the model is performing. The model information output is a state space
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representation for which the eigenvalues and eigenvectors are used to assess the stability of

the modeled system.

The different processed models are shown below where state-space and transfer function

models are compared with best fit percentages. ’ss1’ represents state-space model estimated

using ’N4SID’ function with prediction focus. ’N4SID’ is non-iterative subspace method for

estimating linear state space models. This also includes disturbance component K. This

model is further refined using ’Refine Existing Model’ with simulation focus named ’ss1.1’

in the legend. Comparing overall estimation from all the models, refined state-space model

(ss1.1) performs better looking at the best fit values across all the states.

(a) Angle of Attack (b) Zoomed-in

Figure 5.12 Measured and Simulated Output response for Angle of Attack

Longitudinal State-space Model

The discrete state-space(ss1.1) that was estimated from the toolbox was imported to Matlab

to compute the open-loop poles. The state-space representation is in form of Equations 5.4

and 5.5 where ’K’ is the disturbance component

x(k + Ts) = Ax(k) +Bu(k) +Ke(k) (5.4)

y(k) = Cx(k) +Du(k) + e(k) (5.5)
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(a) Pitch Rate (b) Zoomed-in

Figure 5.13 Measured and Simulated Output response for Pitch Rate

(a) Pitch Angle (b) Zoomed-in

Figure 5.14 Measured and Simulated Output response for Pitch Angle



α(k + 1)

q(k + 1)

θ(k + 1)

v(k + 1)


=



0.9763 −0.0211 0.0300 0.0159

−0.0083 0.9909 0.0120 −0.0003

0.0181 0.0522 0.9435 −0.0897

−0.0299 −0.0124 0.0307 1.0063





α(k)

q(k)

θ(k)

v(k)


+



−0.0002

−0.0001

0.0011

−0.0002


δe(k) +Ke(k)

(5.6)
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where,

K =



−0.0106 −0.0000 −0.0000 −0.0000

−0.0025 0.0000 0.0019 −0.0000

−0.1701 0.0001 0.0015 0.0083

−0.0071 −0.0022 0.0007 −0.0038


e(k) (5.7)

The eigenvalues are shown in Table 5.6 with damping ratio and natural frequencies of short

and long period dynamics.

Dynamic Modes Eigenvalue Natural Frequency (rad/s) Damping ratio

Phugoid -0.197 ±0.346i 0.398 0.495

Short period -3.96 ± 4.03i 5.65 0.253

Table 5.6 Eigenvalues, Natural Frequency, and Damping obtained from stat-space

(a) Pitch Angle (b) Zoomed-in

Figure 5.15 Measured and Simulated Output response for Pitch Angle
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Chapter Six

Numerical Simulation and Performance

Analysis

The Rascal 110 modeling procedures were designed with the end goal of application within a

fault-tolerant flight control system handling actuator failures on the primary control surfaces.

After the nominal longitudinal model was derived through DATCOM and flight testing,

extensive simulation studies were conducted to validate the discrete Direct and Indirect

MRAC for commonly occurring upset conditions in the aircraft. All the simulations had 60

seconds duration with the inputs consisting of the two sides pulses or doublets. Only one

failure occurred at a time. Pilot commands has also been characterised in a mathematical

model to give ideal handling of an actual aircraft. For this purpose, a reference model has

been used. A pilot reference model architecture like that presented by Perez et. al. (2015)

was used to take the stick commands from the pilot [δlat, δlong, δdir].

6.1 Failure Modeling

There are several types of possible upset conditions that may disturb the dynamics of the

UAS outside bounds of nominal design. Some of them are faults in actuator. Actuator

are the last component in the control-action hence they play a very important role in the
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airplane, eg. delay in actuators that can cause PIO. Rate saturated actuators, system delays,

high gain pilot/controller and phase lags are another known reasons that leads to PIO.

Rate Saturation: when actuators are rate-saturated due to aggressive pilot commands,

high gain flight control systems or some anomaly in the system, the effective delay in the

control loop may increase depending on the nature of the cause. This effective delay manifests

itself as a phase shift between the commanded and actual system signals. This tends to make

pilot compensate with faster responses and can induce PIO. This often worsens the situation.

Figure 6.1 Actuator model with rate saturation

Partial Loss of Control Surface: Partial loss of elevator has been modeled in this research.

This type of failure includes (partial) destruction(parts missing,holes) and/or deformation.

The aerodynamic efficiency(aerodynamic forces and moments) of a control surface is altered

at the beginning of the disturbance when compared to the output of the nominal aircraft

response with the same pilot input. A surface damage parameter sd models the magnitude

of the failure through the ratio between the efficiency parameter after and before failure

occurring moment which is modeled in equation 6.4

sd =
EukAfterFailure
EukBeforeFailure

(6.1)

where sd ∈ [0,1] with sd = 1 for ’no failure’ case and sd = 0 for a failure involving a completely

missing surface. The control matrix A remains unchanged during such failures however the

the control surface inputs that is B matrix changes as shown in equation 6.2

x(k + 1) = Ax(k + 1) +Bu(k) ∗ [1− sddeL] (6.2)

where sddeL is change in control surface effectiveness. For this case sddeL = 0.7 i.e. 30

percent loss of effectiveness in elevator.
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Icing Condition: Icing condition on the airplane control surfaces changes the shape of

the airfoil that changes the aerodynamics of the system. The accounts of ice effects was

developed by Bragg et al 2001. He presented in his work for DeHavilland Twin Otter, the

effects of icing on individual performance, stability or control parameter. The aerodynamic

coefficient under icing effect is computed in the following equation

C(A)iced = (1 + ηicek
′
c(A))C(A) (6.3)

C(A)iced = (1 + fice)C(A) where, fice = ηicek
′
c(A) (6.4)

where C(A)iced is the control and stability parameter after ice accretion has taken into

account while C(A) is the nominal parameter before ice accretion. ηice and k′c(A) is the icing

severity and coefficient icing factor that depends on the aircraft information respectively.

The model described by Bragg is not very accurate since there are still more factors that

can be taken into consideration. This icing factor is based on calculations obtained from

DeHavilland Twin Otter that are applied to control and stability parameters of Rascal 110.

The change of stability and control parameters due to icing are listed in Table 6.1.

For instance , the nominal Mα is given in the Equation 6.5.

Mα =
q̄Sc̄Cmα
Iyy

(6.5)

where q̄ is the dynamic pressure, S is the wing area, and c̄ is the mean geometric chord of

the aircraft. After taking ice accretion into account, the Mα can be modeled in following

way:

Mα =
q̄Sc̄(1 + fice)Cmα

Iyy
(6.6)

In the similar way, rest of the stability and control parameters of A and B matrices of

state-space can be modelled.
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Longitudinal Parameters fice

∆Z0 0

∆Zα -0.10

∆Zq -0.012

∆Zδe -0.095

∆ZM0 0

∆ZMα -0.099

∆ZMq -0.035

∆ZMδe
-0.10

Table 6.1 Change in Control and Stability Parameters

6.2 Constant gain and Open-loop Response

Using rate-saturated gain in one of the actuators, pilot-in-loop oscillation were simulated for

constant gain controller and open-loop system. Figure 6.3 and 6.2 show the response of the

open-loop plant and the effect of a linear controller during the PIO scenario. It is clear that

even a linear control feedback will lead to an undesired oscillations and consequently to a

failure in the aircraft hence they are incapable during such events of disturbances.

Figure 6.2 Constant Gain Controller Response under PIO Condition
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Figure 6.3 Open-Loop Response under PIO Condition

6.3 Discrete Direct MRAC Results

Discrete Direct MRAC was implemented using the equations from Section 2.3. Performance

of Direct MRAC was evaluated on the basis of the failures mentioned in Section 6.1.

Control Surface Damage Analysis

The partial control surface failure was injected at 30th second before the second doublet was

commanded. The output aircraft response is pitch rate.

(a) Pitch Rate response (b) Zoomed-in

Figure 6.4 Output Response for partial Elevator Damage

Figure 6.4a shows the full 60 seconds of simulation and Figure 6.4 shows from 30th to
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44 seconds. Irregular oscillations are observed at 30th second indicating the partial damage

to control surface. Up until 30 seconds, aircraft’s response follows the reference command

indicating the Direct MRAC controller is working. Figure 6.4a and 6.4b show that at the

instant of fault, the aircraft takes about 1 second to reconfigure and make the system follow

the reference command once again.

(a) (b)

Figure 6.5 Control Surface Damage:Bezout’s Coefficients

(a) (b)

Figure 6.6 Control Surface Damage:Bezout’s Coefficients

Figure 6.5b, 6.6 and 6.7 shows the estimated Generalized Bezout Identity (GBI) Coeffi-

cients using equation 2.15 These are unknown control parameters that are estimated. Notice

that the parameters change at the moment where the fault occurs, as a compensatory action.
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(a) (b)

Figure 6.7 Control Surface Damage: Bezout’s Coefficients

Pilot-Induced Oscillation Analysis

This sub section shows the results produced when Direct MRAC’s performance was evaluated

under PIO. Rate saturation in actuator is causing unwanted oscillation in the beginning of

the first commanded doublet as seen Figure 6.8. These oscillations are due to compensatory

action generated from the controller.

(a) Output Response (b) Bezout’s Coefficient

Figure 6.8 Pilot-Induced Oscillation

Figure 6.9 and 6.10 represents the estimated bezout coefficients for PIO condition.At the

beginning, the parameters change due to the occurrence of PIO and resume to the nominal
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response after reconfiguration.

(a) (b)

Figure 6.9 PIO: Bezout’s Coefficients

(a) (b)

Figure 6.10 PIO: Bezout’s Coefficients

Icing Condition Analysis

Icing conditions are modeled in failure modeling section and results are produced on this

section. Figure 6.11 shows the output response of the aircraft during ice accretion.The un-

certainties(oscillations) produced by this particular disturbance is very less. This is because

the icing condition modelled is not very severe. Figures 6.12, 6.13 and 6.14 shows the change

in parameters due to ice accretion.
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(a) (b)

Figure 6.11 Output Response during Icing condition

(a) (b)

Figure 6.12 Icing condition: Bezout Coefficient

6.4 Discrete Indirect MRAC Results

Control Surface Damage Analysis

Discrete Indirect MRAC Controller is evaluated for partial elevator damage in Figure 6.15.

The Figure 6.9, 6.17, 6.18 and 6.19 are estimated polynomial and bezout coefficients.

Polynomial coefficients are direct representation of the aircraft’s system that are derived in

ARMA model. These coefficients shows the change of values at the instant of control surface

damage.
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(a) (b)

Figure 6.13 Icing condition: Bezout Coefficient

Figure 6.14 Icing condition: Bezout Coefficient

Pilot-Induced Oscillation Analysis

PIO is modeled into Indirect MRAC controller by saturating the actuator. Figure 6.20a

shows the oscillations at the beginning of doublet which lasts few seconds followed aircraft

returning to the reference trajectory.

This is also evident in the polynomial and bezout coefficients estimation in Figure

6.21,6.22,6.23 and 6.24 . During the PIO occurrence, these coefficients adapt to new values

for to make aircraft follow the reference command.
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(a) Output Response (b) Polynomial coefficient

Figure 6.15 Aircraft response in Partial Elevator damage and Polynomial Coeffi-
cient(right)

Icing Condition Analysis

Icing Conditions produces disturbances in the beginning of second doublet as seen the output

response produced in Figure 6.25. The estimated coefficients alters at the 30th second where

the fault due to Icing condition occurs as observed in figure 6.26, 6.27 and 6.28.

6.5 Performance Analysis of Direct and Indirect MRAC

All the measures require a fixed experiment to be performed on the system (i.e. a fixed set-

point or disturbance change). The following metrics were implemented to further analyze the

performance of both controllers: integral square error (ISE), integral absolute error (IAE)

and Root Mean Square(RMSE).

ISE integrates the square of the error over time. ISE penalizes large errors more than

smaller ones (since the square of a large error will be much bigger). Control systems specified

to minimise ISE will tend to eliminate large errors quickly, but will tolerate small errors

persisting for a long period of time. Often this leads to fast responses, but with considerable,

low amplitude, oscillation.

IAE integrates the absolute error over time. It does not add weight to any of the errors
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(a) (b)

Figure 6.16 Control Surface Damage:Polynomial Coefficients

(a) (b)

Figure 6.17 Control Surface Damage: Polynomial and Bezout Coefficient

in a systems response. It tends to produce slower response than ISE optimal systems, but

usually with less sustained oscillation.

Performance indices of Direct and Indirect for control surface damage, PIO and Icing

Condition are presented in Table 6.2, 6.3 and 6.4. The bold values shows the better perfor-

mance of two controllers. Indirect MRAC performs better in control surafce damage and PIO

condition. This is due to the fact that Indirect MRAC explicitly estimates the plant (ARMA

model coefficients) and controller parameters while in Direct MRAC only controller param-

eters are estimated to directly adapt such that plant tracks the reference model. However
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(a) (b)

Figure 6.18 Control Surface Damage:Bezout Coefficient

Figure 6.19 Control Surface Damage:Bezout Coefficient

for the icing condition case, Direct MRAC outperformed the Indirect MRAC.

6.5.1 Graphical Comparison

This section emphasises on the graphical analysis of both controllers at the instant of fail-

ure. Observing the figure 6.30, the partial control surface damage, Direct MRAC has a

higher amplitude of oscillations than the Indirect one. However there are lesser number of

oscillations in Direct controller.

For the case of PIO as it can be observed in figure 6.31b, Direct controller takes lesser

time to reconfigure but with higher amplitude of oscillations whereas Indirect controller
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(a) (b)

Figure 6.20 Aircraft response during PIO and Estimated Polynomial Coeff(right)

(a) (b)

Figure 6.21 PIO: Estimated Polynomial Coeff(right)

takes longer time with lower amplitude of oscillations. An interesting observation is made

for icing condition, according to Figure 6.31 , Direct MRAC controller as reconfiguration

action generates lower amplitude of oscillations and takes lesser time to reconfigure when

compared to Indirect. There can be several reason for this behavior, such as the uncertainty

ice condition modeled in state-space is adapted from DeHavilland Twin Otter[13], hence it

is not very accurate for Rascal 110. Therefore its not certain that Direct controller in all

icing circumstances will outperform the Indirect MRAC controller.
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(a) (b)

Figure 6.22 PIO: Estimated Polynomial Coeff and Bezout Coeff(right)

(a) (b)

Figure 6.23 PIO: Bezout Coeff

Direct MRAC Indirect MRAC

ISE 0.0078 0.0050

IAE 0.0869 0.0653

RMSE 0.0114 0.00914

Table 6.2 Performance Comparison for Control Surface Failure
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Figure 6.24 PIO: Bezout Coefficient

(a) (b)

Figure 6.25 Aircraft response during icing condition and Estimated Polynomial
Coeff.(right)

Direct MRAC Indirect MRAC

ISE 2.44e−5 3.46e−6

IAE 0.0115 0.0046

RMSE 6.3828e−4 2.4022e−4

Table 6.3 Performance Comparison for Pilot-in-loop Oscillation
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(a) (b)

Figure 6.26 Icing Condition:Estimated Polynomial Coefficient

(a) (b)

Figure 6.27 Icing Condition:Estimated Polynomial Coefficient and Bezout Co-
eff.(right)

Direct MRAC Indirect MRAC

ISE 3.6254e−6 2.7323e−5

IAE 0.0017 0.0050

RMSE 2.4577e−4 6.7471e−4

Table 6.4 Performance Comparison for Icing Condition
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(a) (b)

Figure 6.28 Icing Condition:Estimated Bezout Coefficient

(a) Direct MRAC (b) Indirect MRAC

Figure 6.29 Responses during partial failure of Elevator
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(a) Direct MRAC (b) Indirect MRAC

Figure 6.30 Output Responses during PIO

(a) Direct MRAC (b) Indirect MRAC

Figure 6.31 Output Responses during Icing Condition

76



Chapter Seven

Conclusion and Future Scope

7.1 Concluding Remark

In this research effort, a parameter identification for Rascal 110 was carried out. For an initial

estimation, digital DATCOM was used that computed stability and control derivatives. A

priori knowledge from initial estimation was later utilized to design flight tests for parameter

identification. Data obtained from flight tests were used to compute the high fidelity model.

For the state space estimation, the Matlab® System Identification Toolbox was used to

evaluate the aircraft maneuvers and the aircraft system dynamic responses recorded during

the flight. After evaluating the eigenvalues, damping ratios, and natural frequencies from

the maneuvers, a a state space model with better fit was selected.

A high fidelity model was generated to support the design, validation and verification of

adaptive discrete fault tolerance control laws. In particular, a Discrete Direct and Indirect

Model Reference Adaptive Control was designed and implemented. The controllers are

applied to an ARMA model that has been previously identified from flight test data.The

adaptation performances of both algorithms were compared and tested in simulation for

two commonly occurring failure cases: actuator delay and partial loss of elevator as well ice

accretion that occurs commonly on small airplanes. The performance metrics was defined

and computed.The results show the potential of Discrete Direct and Indirect MRAC to
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generate compensation actions.

According to the performance metrics, Indirect controller outperfoms the direct controller

for control surface damage and PIO where direct controller performs better for ice accretion

case.

7.2 Future Scope

There is a lot room for future exploration on this research topic. In this thesis, only longitu-

dinal model was identified that was used for validation of discrete adaptive control. Flight

testings can be conducted to extract Lateral/Directional Model for Rascal 110. The longitu-

dinal model obtained from the flight test data can be further optimized further to uppdate

the aerodynamic coefficients generated from DATCOM.

Further in terms of identification process, coupled dynamics with individual control de-

flections can be obtained where the three primary control surfaces are divided into six indi-

vidual components. This will improve the fidelity of the mathematical model.

Further study can be carried out for implementing discrete MRAC for non-linear systems

and validate the non-linear controller with the same failures modeled in this thesis research,

Finally, a study on the stability analysis of discrete direct and indirect MRAC can be

investigated.
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APPENDIX



.1 Raw Data recorded during Elevator Step

Figure 1 Step elevator command
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Figure 2 Pitch Angle

Figure 3 Pitch-rate from Microstrain
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Figure 4 Pitch Angle from Pixhawk

Figure 5 Pitch Speed from Pixhawk

86



Figure 6 Pitch-rate from Pixhawk

Figure 7 Angle of attack
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Figure 8 Angle of Sideslip
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