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ABSTRACT 

 

Automated signal analysis can help for effective system surveillance and also to 

analyze the dynamic behavior of the system such as impulse response, step response etc. 

Autoregressive analysis is a parametric technique widely used for system surveillance 

and diagnosis. The main aim objective of this research work is to develop an embedded 

system for autoregressive analysis of sensor signals in an online fashion for monitoring 

system parameters. This thesis presents the algorithm, data representation and 

performance of the optimized microprocessor implementation of autoregressive analysis. 

 

In this work an autoregressive (AR) model is generated as a solution to a linear 

system of equations called Yule-Walker linear equations. The generated model is then 

implemented on Motorola PowerPC MPC555 processor. The embedded software for 

autoregressive analysis is written in the C programming language using fixed point 

arithmetic. It includes estimation of the autoregressive parameters, estimation of the noise 

variance recursively using the AR parameters, determination of the optimal model order 

and the model validation.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Objective 

The objective of this work is to estimate the autoregressive (AR) parameters of 

the sensor noise signals for system surveillance and monitoring of system parameters. 

The mathematical model for the estimation of the AR parameters is implemented on a 

microprocessor using the CodeWarrior development tool, which offers a complete 

integrated development environment for hardware bring-up through programming 

applications like C/C++ and Java. It also includes the estimation of the autoregressive 

parameters, the determination of the optimal model order and the model validation. 

The dynamic behavior of the system such as its impulse response, step and ramp 

responses can be estimated in a simple and fast manner using the autoregressive 

parameters. The power spectral density can also be estimated using the AR parameters 

for the frequency analysis of the system. Initially, the data is collected from the pressure 

sensor signals and an AR model is fitted to it for the estimation of the autoregressive 

parameters. Autoregressive parameter estimation model is chosen for the parameter 

estimation because the autoregressive spectrum contains sharp peaks which are used for 

the high resolution spectral analysis. The autoregressive parameter estimation is very 

simple and can be generated as a solution to a linear system of equations called the Yule-

Walker linear equations. The linear equations are solved using Yule-Walker recursive 

algorithm of autoregressive parameter estimation. A single block of 1024 samples is used 

at a time for the estimation of the autoregressive parameters. Noise variance is calculated 

using autoregressive parameters recursively and also using the residual error sequence of 

the time series. The optimal model order is decided based upon the Akaike Information 

Criterion (AIC) [1]. The model order, for which the AIC function is minimized, is 

considered to be the optimal model order. 

 

 



 2 

1.2 Time series analysis 

 A time series is a set of samples generated sequentially in time. It performs both 

univariate and multivariate analysis of signals. If a time series is a set of scalar quantities, 

it is called a univariate series and if it is a set of n-dimensional vector quantities, it is 

called a multivariate series of data. A time series can be either continuous or discrete. A 

discrete time series can be generated in two ways: 

a)  By sampling a continuous time series. 

b)  By accumulating a variable over a period of time. 

 

1.2.1 Deterministic and statistical time series 

 If the future values of the time series are exactly determined by some 

mathematical function or equation, such a time series is called a deterministic time series. 

If the future values can be described only in terms of a probability function, such a time 

series is called a statistical time series [2]. 

Time series analysis is used in the applications such as: 

• Predicting the future values of a time series from current and past values 

• Determining the transfer function of a system 

• Designing feed forward and feedback control schemes 

• Sales forecasting 

• Inventory studies 

• Census analysis 

• Budgetary analysis 

• Stock market analysis 

• Economic forecasting 

Using time series and different mathematical models, one can read, plot and 

convert the raw time series data into a form suitable for model fitting of the data. In many 

problems we have to consider a time dependent phenomenon for which it is not possible 

to write a deterministic model that allows exact calculation of the future behavior of the 

phenomenon. However, it is possible to derive a model that can be used to calculate the 

probability of a future value lying between two specified limits and such a model is 
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called a stochastic model. Stochastic models are very much useful for forecasting and 

control. 

 An important class of stochastic models for describing time series is stationary 

models in which the process remains in equilibrium about a constant mean level. Some of 

the stationary stochastic processes in modeling time series are autoregressive, moving 

average and autoregressive moving average processes [2].  

 

1.2.2 Autoregressive models 

 An autoregressive model is a stochastic model which is used to estimate the 

current value of the model using its previous values by expressing it as a linear 

combination of the previous values of the process as given by the equation 1.1. 

1 1 2 2 1...........t t t p p tz z z z aφ φ φ− − −= + + + +% % % %   1.1 

The above equation is called an autoregressive (AR) process of order ‘p’. Autoregressive 

processes may be stationary or non-stationary. In this project a simple stochastic 

stationary process with added white noise is considered for the AR model fitting to the 

time series data. 

 

1.2.3 Mean and variance of a stationary process 

The mean µ and variance of the stochastic process can be estimated with the 

following equations 1.2 and 1.3 respectively. Generally, the mean value of the time series 

data is subtracted from each sample of the time series sequence for the elimination of the 

DC components. 

1

1 N

t

t

z z
N =

= ∑%       1.2 

2 2

1

1
( )

N

z t

t

z z
N

σ
=

= −∑ %      1.3   

1.3 Microprocessor implementation of autoregressive analysis 

 The mathematical model for autoregressive analysis of the process sensor signals 

is implemented in the ‘C’ programming language on a microprocessor with the help of 

CodeWarrior integrated development environment (IDE) software. The microprocessor 
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used is a Freescale PowerPC MPC 555 [12]. The block diagram for the microprocessor 

implementation of the autoregressive analysis of process sensor signals is shown in 

Figure 1.1. 

 The analog sensor signal is first band limited using the Butterworth low pass and 

high pass filters and is amplified to obtain high resolution. The amplified signal is then 

fed to the queued analog-to-digital converter of the PowerPC MPC 555 for the generation 

of the digital time series data. The sampled time series data is generated using the 

periodic interrupt timer of the PowerPC. Both the timer and the QADC modules are 

programmed as per the desired specifications. The sampled data is fed to the software 

module for the estimation of the AR parameters and the optimal model order. The source 

code for the implementation of the autoregressive parameter estimation is written in ‘C’ 

and is compiled using the CodeWarrior software which is used for the translation of the 

source code written in C into the assembly language. 

 

1.4 Autoregressive model generation 

The basic steps involved in the generation of the autoregressive model are shown 

in the form of a block schematic in Figure 1.2 [2]. The steps involved are: 

• Initially, a useful class of models is chosen based upon the requirements. 

• Depending upon the data, rough methods for identifying the subclass of these 

models are developed. The identification process can be used for the rough 

estimate of the initial parameters for model fitting. 

• The selected model is fitted to data and its parameters are estimated. Rough 

estimated values determined during the identification of one particular model to 

be evaluated are used as the initial values for the iterative methods for the 

estimation of the parameters. 

• The model order is selected depending upon various criteria. Most of the criteria 

depend on minimizing the error variance. 

• Model validation is done to determine whether the developed model properly 

describes the physical phenomenon. 
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Figure1.1 Microprocessor implementation of the autoregressive analysis 
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Figure 1.2 Block diagram for the autoregressive model building 
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This process of model building is repeated until an appropriate model for the estimation 

of the parameters and an optimal model order are determined.  

 

1.5 Thesis outline 

Chapter 1 presents the objectives of this thesis and an outline of the 

implementation of the AR model. It also discusses the fundamentals of time series and 

autoregressive analysis. Chapter 2 presents the literature review of various parametric 

models. It discusses the autoregressive, moving average, and autoregressive moving 

average models in detail. It also presents various properties of autoregressive processes 

and the relationship between AR, MA and ARMA models. Various methods of AR 

parameter estimation methods such as Yule Walker method, Geometric method and 

Burgs method are explained in detail. Different model order estimation selection criteria 

are discussed in this chapter.  

Chapter 3 presents a mathematical approach to the AR parameter estimation, 

which is implemented using software and the model order selection criterion. The initial 

conditions for the model order estimation are also stated in this chapter.  

Chapter 4 describes the hardware modules of the microprocessor implementation 

of the AR model for process signals. It gives detailed information about the MPC555 

PowerPC and its various divisions QADC and timers. Chapter 5 describes the data 

acquisition apparatus and brings out some of the details of its components. In Chapter 6, 

the final results, graphs and discussion of the details of various specifications of the 

software are presented. Chapter 7 discusses the future work and conclusions. Appendix A 

presents the software code and Appendix B gives MATLAB code for the generation of 

the test data. Appendix C presents the results. 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

2.1 Parametric models 

Parametric estimation of the power spectral density (PSD) can be done assuming 

a time series model of random process. It can be calculated using the model parameters. 

Consider a random process with added white Gaussian noise. The parametric models that 

can be used for the estimation of the power spectral density are: 

(a) Autoregressive process model (AR model) 

(b) Moving average process model (MA model) 

(c) Autoregressive moving average process model (ARMA model) 

The output process of these above models is completely dependent on the model 

parameters and the variance on the white noise and has the following features: 

(a) Ability to achieve better PSD estimation depending on the model 

(b)  Better spectral resolution 

The degree of the improvement in resolution and spectral fidelity is determined by 

the appropriateness of the selected model and the ability of the model to fit the measured 

data with few parameters.  

 

2.2 AR, MA, and ARMA Models 

If spectra with sharp peaks but no deep nulls are required then the autoregressive 

analysis is appropriate for the estimation of the power spectral density.  If spectra with 

deep nulls, but no sharp peaks, are required then moving average analysis is appropriate. 

The autoregressive model required less computation when compared to moving average 

and autoregressive moving average models. 
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2.2.1 Mathematical analysis 

Let us consider a time series model as given in equation 2.1 [1] that approximates 

many discrete time deterministic and stochastic processes, 

1 0

0

[ ] [ ] [ ] [ ][ ]

[ ] [ ]

p q

k k

k

x n a k x n k b k n k

h k u n k

= =

∞

=

= − − + −

= −

∑ ∑

∑
    2.1 

 

where, 

            X [n] is the output sequence of a casual filter (h[k] =0 for k<0). 

            U [n] is an input driving sequence. 

The above equation represents an autoregressive moving average (ARMA) model 

for the time series x [n] with u [n] as the white noise sequence. ARMA model is given in 

the Figure 2.1. The a[k] parameters form the auto regressive parameters and b[k] 

parameters form the moving average parameters. 

The ARMA power spectral density is given by the equation 2.2 [1]. 

2

( )
( )

( )
ARMA

B f
P f T

A f
ρω=       2.2 

where the polynomials A(f) and B(f) are given by the Equation 2.3 [1] 

1

1

( ) 1 [ ]exp( 2 )

( ) 1 [ ]exp( 2 )

p

k

q

k

A f a k j fkT

B f b k j fkT

π

π

=

=

= + −

= + −

∑

∑

       2.3 

Figures 2.2 and 2.3 represent autoregressive and moving average models which are 

deduced from the autoregressive moving average model. If all the autoregressive 

parameters are zero except a [0] = 1 then  

1

[ ] [ ] [ ] [ ]
q

k

x n b k u n k u n
=

= − +∑       2.4 

is strictly a moving average (MA) process of order q [1]. 
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Figure 2.1 ARMA Filter of order (p, q) (from [1]) 
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Figure 2.2 Moving average filter of order q (from [1]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Autoregressive filter of order p (from [1]) 
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If all the moving average parameters are zero except b [0] = 1 then  

1

[ ] [ ] [ ] [ ]
p

k

x n a k x n k u n
=

= − − +∑        2.5 

is strictly an autoregressive (AR) process of order p. 

 

2.3 Determination of the model parameters with autocorrelation sequence 

Autoregressive parameters of an ARMA model are related by a set of linear 

equations to the autocorrelation sequence and is given in the matrix form for p lag indices 

1q m q p+ ≤ ≤ +  as [1]  

[ ] [ 1] ... [ 1] [ 1][1]

[ 1] [ ] ... [ 2] [ 2][2]

.. . . . .

.. . . . .

.. . . . .

[ ][ 1] [ 2] ... [ ] [ ]

xx xx xx xx

xx xx xx xx

xx xx xx xx

r q r q r q p r qa

r q r q r q p r qa

a pr q p r q p r q r q p

− − + +    
    + − + +    
    

= −    
    
    
    

+ − + − +        

 2.6 

Autoregressive parameters can be calculated from the moving average parameters 

as the solution to the simultaneous equations given in the above matrix. This relationship 

is called ARMA Yule-Walker normal equations. The number of computations required is 

proportional to 2p [1]. 

The relationship between the autocorrelation sequence and autoregressive model can be 

obtained by setting q = 0 yielding [1], 

1

1

*

[ ] [ ] [ ] 0

[ ] [ ] 0

[ ] 0

p

xx xx

k

p

xx

k

xx

r m a k r m k for m

a k r k for m

r m for m

ωρ

=

=

= − − >

− − + =

− <

∑

∑
   2.7 

This relationship may be evaluated for the p+1 indices 0 m p≤ ≤  and formed into the 

matrix expression as given by the equation 2.8 [1]. 
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[0] [ 1] ... [ ] 1

[1] [0] ... [ 1] [1] 0

.. . . . .

.. . . . .

.. . . . .

[ ][ ] [ 1] ... [0] 0

xx xx xx

xx xx xx

xx xx xx

r r r p

r r r p a

a pr p r p r

ωρ− −    
    − +    
    

=    
    
    
    

−          

  2.8 

The above relationship forms the AR Yule-Walker normal equations. The 

autocorrelation lags 0 to p uniquely describe the autoregressive process of order p, as the 

lags for  k p>  are obtained recursively using the equation 2.9 [1]. 

1

[ ] [ ] [ ]
p

xx xx

k

r m a k r m k
=

= − −∑      2.9 

The relationship between the autocorrelation sequence and moving average model can by 

obtained by setting p = 0 and is given by  

*

*

[ ] 0

[ ] [ ] 0

[ ] 0

xx

q

k m

xx

r m for m q

b k b k m for m q

r m for m

ωρ
=

= >

− ≤ ≤

− <

∑   2.10 

 

2.4 Autoregressive parameter estimation methods 

In general autocorrelation sequence is not given for the estimation of the 

autoregressive parameters. It has to be estimated using the available data. The techniques 

to estimate the autoregressive power spectral density are basically divided into two types 

(a) Algorithms for block of data. 

(b) Algorithms for sequential data. 

Algorithms based on the block of data can be described as fixed time recursive in order 

which operate on a fixed block of data and recursively calculate the higher order 

parameters based upon the lower order parameters. The simplest procedure to estimate 

the AR parameters from the block of data would to estimate the auto correlation sequence 

first from the data. This autocorrelation sequence is then used to estimate the AR 
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parameters by substituting them in the Yule Walker linear equations. Various techniques 

for the estimation of the AR parameters are: 

(a) Yule-Walker Method 

(b) Burg Method 

(c) Covariance Method 

(d)  Modified Covariance Method. 

Once the AR parameters are estimated then the AR power spectral density is given by the 

equation 2.11 [1]. 

2

1

( )

1 [ ]exp( 2 )

AR
p

n

T
P f

a n j fnT

ωρ

π
=

=

+ −∑
    2.11 

The AR model order needs to be given as the initial input data for the 

computations along with the input data samples for the estimation of the parameters. The 

Order determines the trade off between resolution and estimate variance in AR spectra 

[2]. 

 

2.4.1 Yule-Walker method  

In this method an autocorrelation sequence is first estimated from the data 

samples and then the AR parameters are estimated using the Yule-Walker linear 

equations. For large data records, Yule walker method of AR parameters estimation 

produces reasonable results. For short data records, the use of the Yule-Walker approach 

results in the poor resolution of the spectra when compared to the other techniques of 

estimation. This method of estimation of the parameters is explained in detail in Section 

3.1. 

 

2.4.2 Reflection coefficient methods 

In reflection coefficient method only the reflection is directly dependent on the 

autocorrelation function. AR parameters are then estimated using the reflection 

coefficients recursively the following equations 2.12 and 2.13 [1]. 
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*

1 1[ ] [ ] [ ]p p p pa n a n k a p n− −= + −      2.12                                                     

where, 
1

1

0

1

[ ] [ ]

[ ]

p

p xx

n
p p

p

a n r p n

k a p
ρ

−

−
=

−

− −
= =

∑
     2.13 

The recursive for driving white noise variance is given by equation 2.14 [1]. 

2

1(1 )p p pp kρ −= −        2.14 

Various methods exist for the estimation of the AR parameters based on the 

reflection coefficient concept such as: 

(a) Geometric Algorithm: Based geometric mean of the forward and backward prediction 

errors. 

(b) Burgs method: Based on the harmonic mean of the forward and backward prediction 

errors. 

 The forward linear prediction error and the backward linear prediction error are given by 

the following equations: 

1

[ ] [ ] [ ] [ ]
p

f f

p p

m

e n x n a m x n m
=

= + −∑      2.15 

*

1

[ ] [ ] [ ] [ ]
p

b f

p p

m

e n x n p a m x n m p
=

= − + + −∑     2.16 

1

*

1 1

[ ] [ ] [ 1]

[ ] [ 1] [ ]

f f b

p p p p

b b f

p p p p

e n e n k e n

e n e n k e n

−

− −

= + −

= − +
      2.17 

The reflection coefficient based on geometric mean of forward and backward prediction 

errors is determined as  

*

1 1

1

1 1
2 2

2 2
*

1 1

1 1

[ ] [ 1]

[ ] [ 1]

N
f b

p p

n p

p
N N

f b

p p

n p n p

e n e n

k

e n e n

− −
= +

− −
= + = +

− −

=
   

−   
   

∑

∑ ∑
    2.18 

 

The reflection coefficient based on harmonic mean of forward and backward prediction 

errors is determined as  
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*

1 1

1

2 2

1 1

1 1
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N
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p N N
f b

p p

n p n p

e n e n

k

e n e n

− −
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− −
= + = +

− −

=
+ −

∑

∑ ∑
     2.19 

The reflection coefficient method will then uses the Levinson algorithm for the 

computation of the AR parameters with known autocorrelation function values and the 

basic Levinson algorithm is provided with initial values at order zero given below. 

0 0[ ] [ ] [ ]f be n e n x n= =        2.20 

2

1

1
[ ]

N

o

n

x n
N

ρ
=

= ∑        2.21 

 

2.5 Autoregressive model order selection 

For the estimation of the model order we need to consider some error criterion for 

choosing optimal model order. Too low estimation of the model order results in a highly 

smooth spectral estimate. Too high estimation of model order increases the resolution and 

introduces spurious details into the spectrum. Hence the issue of model order selection is 

a trade off of increased resolution and decreased variance for AR parameter estimation. 

Some of the criteria for the estimation of the model order are given below. 

 

2.5.1 Final prediction error (FPE) 

  The optimal model order of the autoregressive process is selected based upon the 

average error variance. The model order, for which the average error variance is 

minimum, is selected as optimal model order. FPE for an AR process is defined as  

( 1)
[ ] ( )

( 1)
p

N p
FPE p

N p
ρ

+ +
=

− +
      2.22 

where, 

                 N is the number of data samples  

                 P is the order 

                 pρ is the estimated white noise variance. 
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2.5.2 Akaike information criterion (AIC) 

The AIC determines the model order by minimizing an information theoretic 

function.  AIC of a AR process is given by 

[ ] ln( ) 2pAIC p N pρ= +       2.23 

is the number of sample points

is the AR model order

 is the prediction error variancep

where

N

p

ρ

 

The model order is selected based upon the approach of minimizing the AIC. The model 

order which has minimum AIC is the required optimal model order. As N → ∞ , the 

AIC and FPE are asymptotically equal. AIC is applied for the pure AR processes. AIC is 

also considered to be too low for the real signals. AIC over estimates the model order as 

the data set length increases. 
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CHAPTER 3 

 

ALGORITHM IMPLEMENTATION 

 

In this chapter, we discuss the mathematical approach to the autoregressive (AR) 

parameter estimation of the process sensor signals and its software implementation in the 

‘C’ language.  

 

3.1 Autoregressive analysis 

The Yule-Walker method is used in this project for the estimation of the AR 

parameters, because of its simplicity. The Yule-Walker method can be used to estimate 

the parameters of an autoregressive model for a given model order ‘ ’. It is also used for 

the estimation of the power spectral density (PSD) of the input signal. This method is 

called the autocorrelation method. It fits an autoregressive (AR) model to the input data 

by minimizing the forward prediction error. This approach leads to the Yule-Walker 

equations, which are solved by Levinson Durbin recursion method [2]. Consider a 

random stationary sequence ky with added white noise kv , 

0

n

k i k i k

i

y a y v−
=

= +∑       3.1 

From the above sequence, the autocorrelation functions are estimated for different 

lags. Let 1 2 3, , ,........, ty y y y  be the time series observations of the random process ky . 

Then the auto-covariance between any observations ty and t ky +  separated by a lag of k 

intervals is estimated using the equation 3.2 [2]. 

1

1
( )( )

N k

k t t k

t

c y y y y
N

−

+
=

= − −∑      3.2 

              where lag k = 0, 1, 2, 3….k 

            kc is the estimated autocovariance between ty  and t ky +  

             y  is the mean of the random time series sequence  



 19 

Here, K is not larger than N/4 and in this project is considered to be the maximum 

model order for which the AR parameter estimation is done. 

Now the autocorrelation function is estimated as 
0

k
k

c
R

c
=  [2] where kc  s auto-covariance 

between two observations with lag k and 0c is the auto-covariance with lag 0 which is the 

variance of the time series sequence. Consider a general stationary stochastic process 

0

n

t i t i t

i

y a y v−
=

= +∑       3.3 

  The autocorrelation functions with different lags k = 0, 1, 2 …… K where K is the 

maximum model order, can be obtained by multiplying the equation by t ky − , where k >0, 

computing the expected value and normalizing both the sides. The observation t ky −  is 

independent of the white noise. Let the autocorrelation function [3] be defined as  

[ ]k t t kR E y y +=        3.4 

Now, 

1

n

t k t i t i t k t k k

i

y y a y y y v− − − −
=

= +∑  

1

[ ] [ ]
n

t k t i t i t k

i

E y y a E y y− − −
=

⇒ =∑  

1

0
n

k i k i

i

R a R where k−
=

⇒ = >∑      3.5 

The above equation represents a set of linear equations called Yule Walker linear 

equations. These linear equations can be represented in a matrix form as given in 

equation 3.6 [3]. 

1

2

(1) (0) (1) . . . . ( 1)

(2 (1) (0) . . . . ( 2)

. . . .

. . . .

. . . .

( ) ( 1) ( 2). . . . (0) n

aR R R R n

aR R R R n

R n R n R n R a

−     
    −     
    

=     
    
    
    

− −        

   3.6 

where R (0), R (1)….. , etc are autocorrelations 
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           1 2, ,....a a etc are autoregressive parameters 

n. where P is (n×n)Toeplitzmatrixn nR P a=   3.7 

These Yule Walker equations are solved using the Levinson-Durbin recursive 

algorithm for the estimation of the autoregressive parameters. Generally the Levinson-

Durbin algorithm is preferred over a direct solution of the Yule-Walker equations as it 

also gives the partial correlations and this helps us select the appropriate autoregressive 

model in the process of AR parameter estimation. 

 

3.1.1 Levinson Durbin recursive algorithm for AR analysis 

The Levinson Durbin Recursive Algorithm solves thn order system of linear 

equations of the form baR =∗  involving a Hermitian, positive-definite, Toeplitz 

matrix(R). In the Yule Walker method, the resulted Yule Walker linear equations can be 

written in the matrix form as given in equation 3.7. These equations can be solved for 

Autoregressive parameters using Levinson Durbin Recursive Algorithm resulting in the 

Levinson Durbin recursive formulae 3.8 and 3.9  [3], 

1 , 1

1
1 , 1

0 ,

1

n

n n i n i

i
n n n

n i i

i

R a R

a

R a R

+ + −
=

+ +

=

−
=

−

∑

∑
    3.8 

1, , 1, 1 , 1*n j n j n n n n ja a a a+ + + − += −      3.9 

3.1.2 Estimation of noise variance 

Consider a random stationary sequence ky with added white noise kv , 

0

n

k i k i k

i

y a y v−
=

= +∑  

On multiplying both the sides of the above equation by ky and taking the expectation 

value, it results in the equation 3.10 [3]. 

2

1

2

0

1

[ ] [ ] [ ]

ˆ

n

k i k k i k k

i

n

v i i

i

E y a E y y E y v

C a Cσ

−
=

=

= +

⇒ = −

∑

∑
   3.10 
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We observe from the above equation that the noise variance is expressed as a 

function of autoregressive parameters. The noise variance of higher orders is determined 

with the estimated autoregressive parameters recursively by using the equation 3.11 [2]. 

2 2 2

1 1, 1 1, 1(1 ) 1n n n n n na whereaσ σ+ + + + += − ≤    3.11 

2

nσ is variance of model order n 

,1 ,2 ,, ........n n n na a a  are autoregressive parameters of model order n 

 

3.1.3 Residual error sequence 

Noise variance can also be estimated using the residual error sequence. The noise 

variance estimated using the recursive formulae for a given model order should be 

approximately equal to the noise variance estimated using residual error sequence. Let 

( )x k be a sequence of time series data. The residual error sequence ( )v k for the given 

time series is given by the equation 

1

( ) ( ) ( )
n

i

i

v k x k a x k i
=

= − −∑      3.12 

The noise variance [2] is then estimated as  

2 2

1

1
ˆ ˆ

N

v k

k

v
N

σ
=

= ∑        3.13 

where 2ˆ
vσ  is the noise variance 

       2ˆ
kv  is the residual error sequence for model order k 

The whiteness of the sequence v  is checked by computing the correlation of v  and its 

spectrum. 

3.1.4 Initial conditions 

The Levinson Durbin recursive algorithm is supplemented with certain initial 

conditions prior to the computation of the AR parameters of the higher orders. In the 

Levinson Durbin recursive method, the first order parameters are initialized to [3] 

1
1,1

0

R
a

R
=  

where 1R  is the normalised autocorrelation function of first order 



 22 

0R  is the normalised autocorrelation with zero order. 

2

1 0 1,1 1R a Rσ = −
 

Where 2

1σ  is the first order noise variance 

                       1R  is the Normalised Autocorrelation function of first order 

           0R is the Normalised Autocorrelation with zero order 

 

3.2 Model order estimation 

Generally speaking, there is no definite way to determine the correct model order. 

The predicted model order needs to be accurate. An estimated model order, if too low, 

will not represent the properties of the signal and if too high, will include noise and 

inaccuracies. The selection of the model order is done depending upon the prediction of 

the residual error. The order, for which the prediction error is the least, is estimated as the 

optimal model order. Akaike information criterion is used for the estimation of the model 

order in this project. 

3.2.1 Akaike information criterion 

Akaike information criterion (AIC) function [1] is given by the equation 3.14: 

2ln( ) 2AIC N nσ= +       3.14 

is the number of sample points

is the AR model order

 is the prediction error variance

where

N

n

σ 2

 

The model order is selected based upon the approach of minimizing the Akaike 

Information Criterion function. The model order which has minimum AIC is the 

estimated model order. As N → ∞ , the AIC and final prediction error are 

asymptotically equivalent. Final prediction error estimates the model order depending 

upon the average error variance. AIC is applied to pure AR processes. AIC is also 

considered to be too low for real signals. AIC over-estimates the model order as the 

length of the data set increases. 
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3.2.2 Minimum description length (MDL) criterion 

 In order to overcome the above mentioned drawbacks of the AIC, the MDL 

criterion is used. MDL stands for Minimum Description Length. The MDL criterion is 

statistically consistent because  ln( )n N  increases faster with ‘N’ than with ‘n’ [1]. 

2[ ] ln( ) ln( )nMDL n N n Nσ= +     3.15 

where N is total no. of observations in a given time series 

n is the model order 

2

nσ  is the variance of model order n 

 

3.3 Software implementation of the autoregressive analysis 

Sections 3.1 and 3.2 discuss the mathematical algorithm that has to be 

implemented on a microprocessor for the estimation of the autoregressive parameters of a 

process signal. In this section, we discuss the software implementation of the algorithm in 

the ‘C’ language. The software for the implementation of the autoregressive model is 

developed in two stages. Initially, the algorithm is implemented in the ‘C’ language on a 

PC with floating point representation of the variables. In the second stage, the algorithm 

is implemented in ‘C’ with fixed point representation of the variables on CodeWarrior 

software, an integrated development environment for developing microprocessor 

applications, and run on Power PC MPC555. 

 

3.3.1 Code structure 

There are three modules in the software. The block diagram representing the three 

modules of the code is given in Figure 3.1. 

1. Timer Module: The timer of the PowerPC MPC 555 is programmed in such a 

way that it throws an interrupt at sampling frequency of 100 Hz [12]. 

2. QADC Module: The queued analog-to-digital converter of the PowerPC MPC 

555 is programmed to scan the analog signal at the 50
th
 channel of the QADC 

[12]. Single scan mode of operation is used. 
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Figure 3.1 Modules of the embedded software 

 

3. AR parameter Estimation and Model Order Selection: Once 1024 samples are 

collected at a sampling frequency of 100 Hz, the block of data is passed to the AR 

parameter estimation module and the autoregressive parameters are estimated by 

calculating the autocorrelation functions for different lags. The Yule-Walker 

linear system of equations is solved using the Yule-Walker method of AR 

parameter estimation.  

The higher model order parameters are estimated recursively using the lower 

order parameters and the optimal model order is selected based on the Akaike 

Information Criterion. The noise variance for different model orders is calculated 

recursively as well as using residual error sequences. 

 

3.3.2 Input and output variables 

A time series data sequence to which an autoregressive model needs to be fitted is 

given as the input to the software. The test data is generated from pressure sensors which 

are considered to have white noise. 

Input variables: 

• A block of data containing 1024 time series observations 

• Maximum order 

• Input channel for the QADC 

• Sampling frequency for the PIT timer 

• Radix: Number of bits allotted for the decimal par 

 

 

Timer 

 

Queued Analog to 

Digital Converter 

AR Parameter 

Estimation and 

Model Order 

Selection 
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Output variables: 

• Autocorrelation functions with the lag varying from 0 to maximum order 

• AR parameters for different model orders 

• Noise variance using recursion 

• Noise variance using residual error sequence for different model orders 

• Akaike Information Criterion functions for different model order. 

 

3.3.3 Flowchart 

The flow chart of the source code is given in the Figure 3.2. 

Description of the Flowchart: 

• Declaration of the variables: The signal is passed through the 50
th
 channel of the 

QADC of PowerPC MPC 555. The sampling frequency is set to 100 Hz. Single 

scan mode of operation is used. The input variables are set to their initial values. 

A block of data containing 1024 samples is read into an array. Radix is set to 24, 

8 or 10 based on the precision required. The maximum order is set to 25. 

• Mean of the block of data is calculated and subtracted from each sample in order 

to get rid of the DC components from the time series observations. 

• Normalized autocorrelation functions are calculated using the equation 3.2. 

• AR parameter estimation: Now the autoregressive parameters are calculated using 

the following recursive equations 3.16 and 3.17 respectively [3]. 

1 , 1

1
1 , 1

0 ,

1

n

n n i n i

i
n n n

n i i

i

R a R

a

R a R

+ + −
=

+ +

=

−
=

−

∑

∑
     3.16 

1, , 1, 1 , 1

1,n 2,n n,n

*

where j=1,2,3,........n

a ,a ,....,a areAR parametersof modelorder n

n j n j n n n n ja a a a+ + + − += −

   3.17 
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Figure 3.2 Flowchart for the implementation of the AR Model 
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• The optimal model order is estimated using the AIC function values for different 

model orders using the formula 

2ln( ) 2AIC N nσ= +  

is the number of sample points

is the AR model order

 is the prediction error variance

where

N

n

σ 2

 

• Noise variance is calculated using the formula. 

2 2 2

1 1, 1 n+1,n+1

2

n

n,1 n,2 n,n

(1 )wherea 1

σ is varianceof modelorder n

a ,a .......a areAutoregressiveparametersofmodelorder n

n n n naσ σ+ + += − ≤

 

• Residual variance is calculated using the residual error sequence using the 

formula 

1

( ) ( ) ( )
n

i

i

v k x k a x k i
=

= − −∑  

2 2 2

v

1

2

k

1
ˆ ˆ ˆwhereσ is thenoise variance

v̂ is the residualerror sequenceformodelorder k

N

v k

k

v
N

σ
=

= ∑
 

• Noise variance calculated in both the ways should be almost equal. There should 

not be much difference between the two values of variance. 

• Now, the sample count is again set to zero and the next block of 1024 samples is 

collected and the AR model is fitted to it for updating the AR parameters. 

 

3.3.4 Arithmetic operations 

For embedded processors, the computations are often done using a fixed point 

representation of the variables. The software for the microprocessor implementation is 

developed in two stages. Initially, the source code for the autoregressive parameter 

estimation is developed with floating point representation of the variables on a PC in ‘C’. 

Later, for implementing it on the embedded processor the source code is rewritten with 

fixed point representation of the variables and the results obtained are cross checked. 
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 A separate library of arithmetic operations – addition, multiplication, division and 

logarithmic function are implemented using the fixed point integer operations. The next 

section discusses some of the basic differences between the number representation 

systems: 

1. Floating point representation  

2. Fixed point representation. 

Floating point numbers: 

 Floating point representation is defined in IEEE standard 754. The IEEE standard 

defines both 32-bit single and 64-bit double formats. It also defines extended single 

precision and extended double precision numbers. Floating point representation is similar 

to scientific notation with a number multiplied by a base raised to some power. A floating 

point number consists of three parts: the sign bit, the exponent, and the mantissa. The 

sign bit is 0 if the number is positive and 1 if the number is negative. The format of 

floating point numbers is given in the Figure 3.3. 

Fixed point numbers: 

 Fixed point numbers have a fixed radix point. The format of the fixed point 

numbers is given in Figure 3.4.There are a fixed number of bits to the right of the radix 

point called fractional bits and a fixed number of bits to the left of the radix point called 

integer bits. Fixed point arithmetic includes only integer operation. Thus there is no 

requirement for the additional hardware in the arithmetic logic unit to have floating point 

unit. Fixed point representation of numbers can produce efficient embedded code when 

performing mathematically huge operations. The disadvantage of the fixed point numbers 

is that they have a limited range of values; so fixed point numbers have inaccuracies and 

these inaccuracies depend upon the number of fractional bits.  

 The major advantage of using fixed point numbers is high efficiency. The 

processing speed is high if the application includes only fixed point computations and 

numbers. 
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Figure 3.3 IEEE 754 format of 32 bit floating point numbers 

 

 

 

Figure 3.4 Bit format for the fixed point representation 

 

In this research work, the software model for the implementation of 

autoregressive analysis is developed using fixed point numbers. Though the dynamic 

range of numbers that can be presented using the floating point numbers is higher than 

the fixed point numbers, fixed point numbers are preferred in embedded processors as 

applications developed with fixed point numbers have high efficiency and high 

processing speed.  Most of the DSP applications require specific dynamic range which 

can be achieved using certain fixed point number representations.  In this work 8.24 fixed 

point representation is used and the precision up to 6
th
 decimal point is achieved. 
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CHAPTER 4 

 

MICROPROCESSOR IMPLMENTATION 

 

 In this chapter, the microprocessor implementation of the autoregressive model 

for autoregressive parameter estimation of a process signal is discussed. The PowerPC 

MPC 555 is used for the implementation of the AR model. Various modules of the MPC 

555 such as the queued analog to digital converter and timer module are described which 

are used for the generation digital time series data from analog process signal. 

The MPC 555 is interfaced with the PC on which the C source code of the AR 

model implementation is run using CodeWarrior software which generates the assembly 

language code for the microprocessor implementation. CodeWarrior is an integrated 

development tool which provides C/C++ level debugging of the code. It is used to design, 

create and implement applications for microprocessors. 

 

4.1 Block diagram for the microprocessor implementation of AR model 

 The hardware required for the microprocessor implementation of the 

autoregressive model for the estimation of the autoregressive parameters can be seen in 

Figure 4.1, which shows the block diagram of the microprocessor implementation of the 

AR model. The basic building blocks for the microprocessor implementation are: 

1. PowerPC MPC 555 

2. Queued analog to digital converter module of MPC 555 

3. Periodic interrupt timer module of MPC 555 

4. Pressure sensors 

5. Filters and amplifier 

6. PC with CodeWarrior software, which provides an integrated development 

environment for the generation of the code in ‘C’ and translates it into machine- 

understandable assembly language. 
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Figure 4.1 Microprocessor implementation of autoregressive analysis 

 

 Noise signals generated from the water flow pressure sensors are considered for 

the autoregressive analysis. The generated noise signals from the pressure sensors are 

first filtered using Butterworth low pass and high pass filters to get rid of the high 

frequency components band limiting the overall desirable frequencies. Then the analog 

signal is fed to the queued analog to digital converter module of the PowerPC MPC 555 

for the generation of the digital time series data. The PowerPC is interfaced with the PC 

with the CodeWarrior software installed. QADC is programmed in such a way that it 

generates the digital data with desired sampling frequency with the help of Programmable 

Interrupt Timer (PIT) which is set to throw an interrupt at sampling rate. Then the time 

series data is fed to the autoregressive parameter estimation software module written in 

‘C’, run on the CodeWarrior software which generates the machine-understandable 

assembly language code for programming the PowerPC. The PowerPC is interfaced with 

the PC through BDM connector. 
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4.2 PowerPC MPC 555 

 MPC 555 is a RISC processor and a member of Motorola MPC 500 family. It is 

built with Power PC core technology. Figure 4.2 gives the block diagram of the MPC 555 

which represents different modules of it and their organization. The salient features of the 

MPC 555 processor are listed below [12]. 

1. PowerPC core with floating-point unit 

2. 26 Kbytes fast RAM and 6 Kbytes TPU microcode RAM 

3. 448 Kbytes Flash EEPROM with 5V programming 

4. 5V I/O system 

5. Serial system: queued serial multi-channel module (QSMCM), dual CAN 2.0B 

controller modules  

6. 0-channel timer system: dual time processor units (TPU3), modular I/O system 

(MIOS1) 

7. 32 analog inputs: dual queued analog-to-digital converters (QADC64) 

8. Submicron HCMOS (CDR1) technology 

9. 272-pin plastic ball grid array (PBGA) packaging 

10. 40-MHz operation, -40 °C to 125 °C with dual supply (3.3 V, 5 V) (-55 °C to 

125°C for the suffix A device) 

11. 32-bit architecture (PowerPC ISA architecture compliant) 

12. Core performance measured at 52.7-Kbyte Dhrystones (v2.1) @ 40 MHz 

13. Fully static, low power operation 

14. Integrated double-precision floating-point unit 

15. Precise exception model 

16. On–chip watch points and breakpoints. 

17. BDM on chip emulation development interface with peripherals or PC. 
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Figure 4.2 Block diagram of MPC 555 (from [12]) 
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MPC 555 has a 32- bit RISC architecture. It works with SRAM, EPROM, FLASH 

EEPROM and other peripherals. It has an external bus interface with real time clock 

registers and two types of interrupt timer routines namely decrementer and time base. In 

this project the module periodic interrupt timer has been used for the sampling the digital 

data. 

 

 4.3 Queued analog to digital converter modules 

 MPC 555 is provided with 2 queued analog to digital converter modules and each 

QADC has the following features [12]: 

1. 16 analog input channels, using internal multiplexing 

2. 41 total input channels, using internal and external multiplexing 

3. 10-bit A/D converter with internal sample/hold 

4. Typical conversion time of 10 µs (100,000 samples per second) 

5. Two conversion command queues of variable length 

6. Single-scan or continuous-scan of queues 

7. 64 result registers 

8. Output data readable in three formats: 

— Right-justified unsigned 

— Left-justified signed  

— Left-justified unsigned 

9. Automated queue modes initiated by: 

— External edge trigger/level gate 

— Software command 

10. 5V reference and range 

The block diagram of the QADC module of MPC 555 is given in Figure 4.3. The QADC 

consists of 

1. Analog front-end  

2. Digital control subsystem. 
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Figure 4.3 Block diagram of QADC (from [12]) 

 

It also includes an inter module bus (IMB3) interface block. The analog section includes 

input pins, channel selection logic, an analog multiplexer, and one sample-and-hold 

analog circuit. The analog conversion is performed by the digital-to-analog converter 

(DAC) resistor-capacitor array, a high-gain comparator, and a successive approximation 

register (SAR).The digital control section contains the conversion sequencing logic. It 

also includes periodic/interval timer, control and status registers, the conversion 

command word (CCW) table RAM, and the result word table RAM. The QADC 

performs 8-bit, 16-bit, and 32-bit data transfers, at both even and odd addresses.  

 

4.3.1 Operation modes 

The QADC64 module configuration register (QADC64MCR) defines  

1. Freeze mode of operation 

2. Stop mode operation 

3. Supervisor space access  

4. Interrupt arbitration priority. 
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Stop mode operation:  

When the STOP bit in QADC64MCR is set, the clock signal to the A/D converter 

is disabled and analog to digital conversion analog circuitry is turned off. The STOP bit 

must be cleared to read results from RAM. 

Freeze mode of operation:  

The QADC64 enters freeze mode when background debug mode is enabled and a 

breakpoint is processed. 

 

4.3.2 Analog input channels 

The number of analog channels depends on whether or not external multiplexing 

exists.16 analog channels are present and supported by the internal multiplexing circuitry 

of the QADC. 

 

4.3.3 Scan modes 

The QADC provides several scanning input channels. In single-scan mode, a single 

pass through a sequence of analog to digital conversions is performed. In continuous-scan 

mode, multiple passes through a sequence of analog to digital conversions are executed. 

The different modes present are given below: 

1. Disabled and reserved mode 

2. Software initiated single-scan mode 

3. External trigger single-scan mode 

4. External gated single-scan mode 

5. Interval timer single-scan mode 

6. Software initiated continuous-scan mode 

7. External trigger continuous-scan mode 

8. External gated continuous-scan mode 

9. Interval timer continuous-scan mode. 

Software Initiated Single-Scan Mode: Execution of a scan sequence for queue 1 or 2 can 

be initiated by software by selecting single-scan mode. Upon trigger event, QADC 

immediately begins execution of the first CCW in the queue. If a pause occurs, another 
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trigger event occurs and then execution continues without pausing. The QADC then 

automatically performs the conversions in the queue until an end-of queue condition is 

encountered. The software initiated single-scan mode is useful for the following: 

• Enables software to completely control the queue execution 

• Enables software to easily alternate between several queue sequences 

In this project single scan mode of scanning sequence of data is followed, which 

is initialized by the software. The analog signal from the pressure sensors is applied to 

one of the analog input channels. The samples are collected at a frequency of 100Hz. 

Once a block of 1024 digital samples are collected, the QADC stops scanning and is 

paused till the execution of the software module of estimation of the autoregressive 

parameters. The QADC is enabled once the Periodic Interrupt Timer throws a level zero 

interrupt for the QADC to perform the conversion. 

4.4 Periodic interrupt timer 

The periodic interrupt timer has16-bit counter clocked by the PITRCLK clock 

supplied by the clock module of the processor. The 16-bit counter counts down till zero 

when provided with a value from the PITC. When the timer reaches zero value, the PS bit 

is set and an interrupt is generated. The software should be able to read the PS bit and 

change it to zero to stop the interrupt. At the next input clock edge, the value in the PITC 

is again loaded into the counter and the process continues with the divider reset and the 

counter begins counting again. If the PS bit is not cleared, an interrupt request is 

generated. The request remains pending until PS is cleared. If the PITC value is changed, 

the counting is stopped and the count resumes with the new value in PITC. If the PTE bit 

is not set, the PIT is unable to count and retains the old count value. The block diagram of 

the PIT is given by the Figure 4.4. 

The timeout period is calculated as given by the equation 4.1 [12]. 

1 1

{ }
4 256

period

pitrtclk

PITC PITC
PIT

External clockF

or

+ +
= =          4.1   
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Figure 4.4 Block diagram of PIT (from [12]) 

 

For example solving the above equation using 4 MHz external clock and a pre divider of 

256 gives: 

1

15625
period

PITC
PIT

+
=       4.2 

 

4.5 Pressure Sensors and Filters 

The QADC of the MPC 555 microprocessor is interfaced with the pressure 

sensors through filters. The analog signal from the pressure sensors are first passed 

through the Butterworth low pass filter to set a lower cut off frequency and then passed 

through Butterworth high pass filter to get rid of the all high frequency components as the 

noise signal is present only in the low frequency components of the signal. The filter 

signal is then amplified (20-dB amplification). 

 Till this chapter design and development of an embedded system for the 

implementation of autoregressive analysis is discussed. In the next chapters verification 

and testing of the developed prototype model of the embedded system for implementing 

AR analysis is focused. 
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CHAPTER 5 

 

TWO TANK FLOW CONTROL LOOP EXPERIMENT 

 

 In this chapter we discuss about the test data generation and describe the 

apparatus used for the generation of the data. The experimental flow control loop has 

been used to develop multivariate control algorithms that are being applied to a space 

reactor system. For the collection of test data we mainly concentrate on acquiring the 

noise signals generated using pressure sensors during the flow control. 

 

5.1 General description 

The 2-Tank loop is built on a wheeled table-like seven-foot long, four-foot wide 

and six-foot high steel frame structure. This structure holds all sensors, piping, pump, 

sump tank, and aircraft aluminum table top, cables, control valves, manual valves and 

two tanks and can be easily moved around. 

 

5.2 Component description 

Tanks: 

For the level control there are 2 similar acrylic tanks installed on this loop called 

Tank 1 and Tank 2, respectively, and their dimensions are: 5-3/4" in diameter and 3-foot 

long and a 27-gallon stainless steel tank is also installed underneath the table top to 

provide the necessary water for the circuit.  Figure 5.1 shows a detail of the 2 acrylic 

tanks used in this project. 

Sensors: 

There are 11 sensors installed in the 2 tank loop - 4 differential pressure sensors, 4 

thermocouples and 3 turbine meters. In addition to this, there are 2 primary orifice flow 

meters. 
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Figure 5.1 Level tanks details 

 

Pressure Transmitters: 

Four Rosemount differential pressure sensors are currently installed. Two of them 

are used to measure the water level in each tank. The two other pressure sensors are 

connected to orifice meters and are used to measure the water flow going into each of the 

level tanks. Information about the pressure sensors is given in Table 5.1 and Figure 5.2 

gives details of two sensors. To calibrate the pressure sensors range, a software package 

called AMS Suite from Emerson
®
 was used. This software package can provide us an 

easy way to calibrate, zero-trim, schedule maintenance and keep record of each and every 

calibration performed.  It comes with an RS-232 modem and cable to plug into the 

computer serial port.  On the other end, a pair of probes is used to connect the computer 

to the sensor terminals. 

Flow meters: 

Two different types of flow rate sensors are used in the loop: turbine and orifice 

meters. The orifice meters were provided by Rosemount
™
 and the turbines were 

manufactured by Omega
™
. Also, there are 3 turbines installed in the loop: one at each 

tank outlet and one in the bypass and all of them are factory calibrated. Two primary 

orifice plates are installed at the tank inlets to measure the inlet flow rate. 
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Table 5.1 Pressure Sensors Information 

 

Sensor ID Function Output Calibration Range 

Tank 1 Measures Level in Tank 1 4 – 20mA 0 – 900 mmH2O 

Tank 2 Measures Level in Tank 2 1 – 5 Volts 0 – 900 mmH2O 

Flow 1 Tank 1 Inlet flow 4 – 20mA 0 – 6165 mmH2O 

Flow 2 Tank 2 Inlet flow 4 – 20mA 0 – 6303 mmH2O 

 

 

 

 

Figure 5.2 Pressure sensors used in the control loop 
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Thermocouples: 

There are four type K thermocouples installed to monitor the temperature. These 

sensors are not calibrated; instead a standard calibration curve is being used.     

Data Acquisition Software: 

The data acquisition is conducted in two ways. 

Method 1: 

Data acquisition for the two tank loop for autonomous control experiment is 

written in Visual Basics software. The noisy digital data from the pressure sensors is 

collected using the data acquisition software. The graphical user interface for collecting 

the digital data is given below in the Figure 5.3. The graphical interface allows entering 

the required parameters for the data collection like sampling rate, cut off frequencies of 

low pass and the high pass filters. 

Method 2: 

First noise signal is filtered using the low pass and high pass Butterworth filters 

and then amplified. The amplified signal is then fed to the Analog to digital converter of 

the Power PC 555. The ADC of the PowerPC 555 is programmed in such a way that it 

reads the digital samples at the given sampling frequency. 

 

 
 

 

Figure 5.3 GUI of data acquisition software (from [11]) 
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CHAPTER 6 

 

RESULTS 

 

 In this chapter we discuss about the results obtained by running the software for 

estimating the autoregressive parameters on the microprocessor and analysis the 

parameters such as power spectral density and impulse response. Initially autoregressive 

parameters are estimated using the floating-point computations, the results of which are 

taken as the reference for the estimation of the parameters using fixed-point 

computations. The software is implemented with fixed numbers because embedded 

processors can perform only integer operations.  

Autoregressive model (AR) is developed and Tested in three stages. They are: 

1. Floating point implementation of the AR model on a PC and testing with the 

predefined data model. 

2. Fixed point implementation of the AR model on a PC and testing it with the 

synthetic data generated using oscilloscope. 

3. Fixed point implementation of the AR model on a PowerPC and testing it with a 

data generated from pressure sensors. 

 

6.1 Test data generation 

 The test data for testing the developed autoregressive (AR) model is generated in 

three different ways. 

Initially for the floating point implementation of the AR model on a PC, the test data is 

generated using a predefined 10
th
 order model using MATLAB. The block diagram for 

the test data generation using MATLAB is given in Figure 6.1. The MATLAB code for 

the generation of the test data is given in Appendix B. The results obtained by testing the 

AR model using the data generated using the predefined 10
th
 order AR model are 

considered to the desired results for the fixed point implementation of the model. 
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Figure 6.1 Test data generation using MATLAB 

 

In the second stage the autoregressive (AR) model is testing using the synthetic 

data generated using oscilloscope and function generator. In this stage fixed point 

implementation of the AR model is considered and is implemented on a PowerPC. A sine 

wave signal with added noise is generated at sampling frequency of 100 Hz for testing 

the model. Analog to digital converter model and the timer modules of PowerPC are 

testing by giving different sampling frequencies. 

In the third stage the AR model is testing using the data generated using real 

pressure sensors as explained in the Chapter 5. In this stage fixed point implementation of 

the AR model is considered and is implemented on a PowerPC. The AR parameters 

estimated in this stage have accuracy to the 6
th
 decimal point with reference to the 

floating point results in the first stage. 8.24 fixed point representation format is 

considering in this stage. 

The results presented in this chapter are obtained by fitting an autoregressive model 

to the following listed test data: 

1. A test data set generated using predefined AR model of order 10 as given below: 

( ) 1.15620 ( 1) 0.60582 ( 2) 0.69749 ( 3) 0.32119 ( 4)

0.26957 ( 5) 0.17467 ( 6) 0.09010 ( 7) 0.09005 ( 8)

0.01647 ( 9) 0.05458 ( 10)

x t x t x t x t x t

x t x t x t x t

x t x t

= − − − + − − −

+ − − − + − − −

+ − − −

 

Plots of the generated test data using predefined 10 order model and pressure sensors are 

given in Figure 6.2 and 6.3 respectively. 

Predefined AR 

(10) Model 

Parameters 

 

MALTAB code + 

White Gaussian 

Noise 

 

Test Data 
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Figure 6.2 Plot of the test data generated using a 10
th
 order AR model 
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Figure 6.3 Plot of the test data generated using pressure sensors 
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2. A test data set of 1024 points generated at a sampling frequency of 30 Hz, lower 

cutoff frequency of 0.01 Hz and upper cutoff frequency of 10 Hz. 

 

6.2 Estimated parameters using floating point numbers 

 

Using Test data 1: 

Total number of samples: 10000 

Maximum order: 25. Generally up to 5 % of the total data set is considered to be the 

maximum model order for which the AR parameters are estimated recursively. 

 The auto correlation sequence generated using the test data set 1 on a PC is: 

0.981312  0.980456        0.958669        0.950477        0.939282        0.922813        

0.904767       0.886751        0.867483        0.846133        0.824165        0.802691        

0.780979       0.759306        0.738271        0.717586        0.696871        0.675628        

0.655006        0.634519        0.614240        0.595468        0.577337        0.558824        

0.540262          0.522255 

Figure 6.4 gives the plot of autocorrelation sequence against lag. The optimal 

model order is estimated based upon the AIC functions. The model order, for which AIC 

function is minimized, is considered to be the optimal model order. Figure 6.5 gives the 

plot of AIC against model order. From Figure 6.5 we consider the optimal model order to 

be 10. The plot of the variance verse model order is given by the Figure 6.6. We observe 

from the variance plot that the variance decreases as the model order increases and 

around the optimal model order it tends to be nearly constant. 
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Figure 6.4 Plot of autocorrelation function Vs lag 
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Figure 6.5 Plot of Akaike information criterion function vs. model order 
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Figure 6.6 Plot of variance Vs model order 

 

Estimated AR parameters for model order 10: 

1.157715        -0.591488       0.630775        -0.271905       0.220209        -0.152097       

0.090882           -0.065840        0.005977      -0.045113 

Original AR parameters of the model through which the time series data is generated: 

1.15620 -0.60582 0.69749 -0.32119 0.26957 -0.17467 

0.09010 -0.09005 0.01647 -0.05458          

The power spectral density (PSD) for different model orders is evaluated, and it is 

observed that the PSD for model orders greater than 10 is similar. Figures 6.7, 6.8, and 

6.9, 6.10 give the power spectral density vs. frequency plot for model orders 9, 10, 11, 

and 12, respectively. The PSD for a particular model order is given by the equation 6.1. 
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Figure 6.7: Power spectral density plot for model order 9 
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Figure 6.8 Power spectral density plot for model order 10 
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Figure 6.9 Power spectral density plot for model order 11 
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Figure 6.10 Power spectral density plot for model order 12 
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Using Test Data Set 2: 

Specifications: 

Total number of samples: 1024 

 A block of 1024 is considered because it is easy to perform block computations 

with fixed point representation of numbers. 

Maximum order: 25.  

The auto correlation sequence generated using the test data set 2 on a PC is: 

0.981422        0.932467        0.860238        0.773216        0.678796        0.582349        

0.487326        0.395781        0.308957        0.227691        0.152753        0.084818 

0.024445         -0.027907           -0.071861        -0.107471          -0.135231         -0.155876        

-0.170158        -0.178809           -0.182488        -0.181846          -0.177589         -0.170541         

-0.161593 

Figure 6.11 gives the plot of autocorrelation sequence against lag. The model 

order is considered to be ‘8’ as the AIC function is minimum for that particular model 

order. The plot of the variance verse model order is given by the Figure 6.12. We observe 

from the variance plot that the variance decreases as the model order increases and 

around the optimal model order it tends to be nearly constant. 

The power spectral density (PSD) for different model orders is evaluated, and it is 

observed that the PSD generated for model orders 8,9, and 10 is almost similar and there 

is little difference in the PSD for model orders greater than 8. Figures 6.13 and 6.14 give 

power spectral density vs. frequency plot for model orders 8, and 6 respectively. The 

power spectral density is calculated using Equation 6.1. 

Estimated AR parameters for model order 8: 

1.817602 -0.729018 -0.262774 0.067808 0.094208 0.019240        

-0.011128       -0.027561 
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Figure 6.11: Plot of autocorrelation function Vs Lag 
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Figure 6.12 Plot of variance Vs model order 
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Figure 6.13 Power spectral density plot for model order 8 
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Figure 6.14 Power spectral density plot for model order 6 



 54 

6.3 Estimated parameters using fixed point numbers on PC 

 The software generated for the AR parameter estimation consists of macros, 

which converts the floating-point numbers to fixed-point numbers. The complete data set, 

which is in the floating-point representation, is converted to fixed point using the macros 

and the autoregressive parameters are estimated on the PC. The new estimated 

autocorrelation sequence differs from autocorrelation sequence estimated using floating-

point numbers by an error margin of 0.0001 due to the overflow conditions. 

 

Using Test data-1 

Specifications: 

Total number of samples: 1024 

Maximum order: 25. Generally up to 5 % of the total data set is considered to be the 

maximum model order for which the AR parameters are estimated recursively.  

Optimal model order: 10 

Estimated AR parameters for model order 10 with fixed point numbers: 

(a) In fixed point representation: 

18487870          -7961432           8775699           -2981324         2284315            -1747619        

953901              -790422             64131               -691830 

(b) In floating point representation: 

1.083820        -0.544189       0.645291        -0.274969       0.198357        -0.101958       

0.052591           0.018342        -0.066263           -0.029109  

Estimated AR parameters for model order 10 with floating point numbers: 

1.157715        -0.591488       0.630775        -0.271905       0.220209        -0.152097       

0.090882           -0.065840        0.005977           -0.045113 

Original AR parameters of the model through which the time series data is generated: 

1.15620  -0.60582   0.69749     -0.32119       0.26957        -0.17467 

0.09010  -0.09005   0.01647     -0.05458          

 The estimated autoregressive parameters vary from the original parameters with 

error margin of 0.001. The graphical plots generated for PSD, noise variance and AIC are 

almost similar to plots generated in Section 6.1.  
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Using Test Data Set 2: 

Specifications: 

Total number of samples: 1024 

Maximum order: 25.  

Optimal model order: 8 

Estimated AR parameters for model order 8 with fixed point numbers: 

(a) In fixed point representation: 

30490661         -12183795         -4533045         1278319   1517592      291335  

-126921  -487727 

(b) In floating point representation: 

1.817385 -0.726211   -0.270191     0.076194   0.090456    0.017365             

-0.007565       -0.029071 

Estimated AR parameters for model order 8 with floating point numbers: 

1.817602 -0.729018   -0.262774     0.067808  0.094208    0.019240        

-0.011128       -0.027561 

The estimated autoregressive parameters vary from the original parameters with error 

margin of 0.001. The graphical plots generated for PSD, noise variance and AIC are 

similar to plots generated in the Section 6.1.  

 

6.4 Estimated parameters using fixed-point numbers on PowerPC MPC 555 

 For the implementation of the algorithm on a PowerPC, the block size is restricted 

to 1024 because of the memory constraints. The internal flash memory of the PowerPC 

board is 448 Kbytes and the SRAM is 26 Kbytes. The analog sensor signals are converted 

to digital signals in QADC module of PowerPC and the time series data is generated at a 

sampling frequency of 10 Hz. A block of 1024 samples is considered for the block 

computations. Noise variance is calculated using recursive formula and also by 

calculating the residual sequence. 
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Using Test data 1 

Specifications:  

Total number of samples: 1024  

Maximum order: 25 

The auto correlation sequence generated using the test data set 1 on a Power PC MPC 

555 with fixed-point representation of numbers is given in Figure 6.15 and Figure 6.16 

gives the generated autoregressive parameters generated. 

 

We observe that there is a slight variation between the autocorrelation sequence 

and AR parameters generated by implementing the algorithm on a Power PC and the 

autocorrelation sequence and AR parameters generated on the PC because of the 

redefined logarithmic function and the overflow conditions. The error is in the range of 

0.0001. The noise variance values and AIC values for different model orders are found to 

be similar to the values generated in Section 6.2. 
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Figure 6.15 Screenshot showing the autocorrelation sequence for predefined AR model 

 

 

 

Figure 6.16 Screenshot showing the AR parameters of order ‘10 ’ 



 58 

CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

 

 In the previous chapter the results of the autoregressive implementation of the 

process sensor signals on a microprocessor are presented. The results produced are quite 

promising and are according to the given specifications. This chapter outlines the 

conclusions and presents future work of this research. 

 

7.1 Conclusions 

The following conclusions are drawn from the results of the research work. 

1. Estimation of the autoregressive parameters and model order selection is done 

with a precision up to 4th decimal point with 8.24 fixed point representation. 

2. Implementation of the Autoregressive analysis using fixed point implementation 

increases the speed of the block computations and reduces the power 

consumption. 

3. The microprocessor implementation of the AR analysis is constrained by the 

memory limitation of the board and better precision of the results, multiple block 

computations can be achieved with increased memory. 

4. Autoregressive analysis of process sensor signals involves fewer computations 

when compared to moving average analysis and mixed autoregressive and moving 

average analysis. 

 

7.2 Future Work 

 Future scope of the research work includes  

1. Implementation of the Autoregressive analysis on 8, 16 bit processors like 

ARM processors, etc. This can result in lesser power consumption than the 32 

bit processor.  

2. AR analysis can be extended to the multivariate noise signals which are 

vectors depending on multiple parameters. 
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3. Power spectral density and other dynamic behavior parameter estimation such 

as impulse response, step response etc can be done for the analysis noise 

signals. 
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A – SOURCE CODE 

 
/********************************************************************** 
Name of code: Autoregressive Analysis 
 
Purpose of code: To fit a model to process sensor signals and to 
estimate the autoregressive parameters and optimal model order of the 
model. 
 
Author of code: Swetha Priyanka Pakala 
 
Developed under the guidance of Gregory D. Peterson  
at The University of Tennessee in the Tennessee Advanced  
Computing Laboratory. 
 
Copyright (C) 2006 Swetha Priyanka Pakala and Gregory D. Peterson 
 
This library is free software; you can redistribute it and/or 
modify it under the terms of the GNU Lesser General Public 
License as published by the Free Software Foundation; either 
version 2.1 of the License, or (at your option) any later version. 
 
This library is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
Lesser General Public License for more details. 
 
You should have received a copy of the GNU Lesser General Public 
License along with this library; if not, write to  
 
Free Software Foundation, Inc. 
51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA. 
 
You may also view the GNU Lesser General Public License at 
http://www.gnu.org/licenses/lgpl.html 
 
For additional information or queries, send email to gdp@utk.edu. 
************************************************************/ 
/* Variables: 
   'Samples' is the two dimensional array consisting of the time  
    series   data with white noise 
     
   'blocksize' is the block size 
    
   'number_blocks' is number of blocks 
    
   'max_order' gives the maximum order possible for the model     
 

'mean' is a one dimensional array consisting of the avg mean value  
 of each and every block  

     
'covariance' is the two dimensional array consisting of the  
 covariance values  
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   'initial_autocor' is the intial Autocorrelation 
    
   'AutoCorrelation' is the one dimensional array consisting of the  
    Autocorrelations of lag varying from 1 to max_order 
    
   'ar_parameters' is the two dimensional array consisting of AR  
    parameters like a11,a21,a22,a31,a32,a33 etc  
     
   'variance' is the one dimensional array consisting of variance value   
    of each and every block 
     
   'aic' is the one dimensional array consisting of the AIC values of  
    different orders 
  
**********************************************************************/ 
 
#include "mpc555.h" 
#include <stdio.h> 
#include <math.h> 
#include "fdlibm.h" 
 
// declaring and initializing global variables 
 
#define blocksize 1024 
#define radix 24 
int sampleCount = 0; 
int mySamples[blocksize]; 
int pitctr = 0; // declaring and initializing a global variable 
int samples[1][1024],ar_parameters[25][25]={0},initial_autocor=0, 
AutoCorrelation[25]={0},temp1=0,numerator=0,denominator=0,residualError
[1024]={0},residualVariance=0; 
 
// Declaration of the Functions 
int numsum(int n); 
int densum(int n); 
int mul(int a,int b); 
int divide(int u,int v); 
int natural_logarithm(int u); 
int taylorlog(int z); 
void compute_AR_parameters(); 
 
 
void init555() 
{ 
  USIU.SYPCR.B.SWE = 0; // Disable Watchdog timer 
  USIU.PLPRCR.B.MF = 0x009; // Set 40 MHz system clock for 4MHz crystal     
  UIMB.UMCR.B.HSPEED = 0;  // Set the IMB to run at full clock speed 
} 
  
void initPIT() 
{  
// SPECIFIC INITIALIZATIONS FOR PIT: 
  USIU.PITC.B.PITC = 0x619; // Load desired count value   
  USIU.PISCR.B.PITF = 1; // Freeze enabled to stop PIT 
  USIU.PISCR.B.PTE = 1; // Enable PIT to start counting 
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 USIU.PISCR.B.PIRQ = 0x80; // Assign PIT interrupt to Level 0 
   USIU.PISCR.B.PIE = 1;  // Enable PIT interrupt 
   USIU.SIMASK.R = 0x40000000; // Enable level 0 interrupt 
} 
 
 
initQADC_A() 
{ // SPECIFIC INITIALIZATIONS FOR QADC-A: 
 
   USIU.PDMCR.B.PRDS = 1; // Disable pullups on QADC pins 
   QADC_A.QADC64MCR.R = 0x0080;// Configure QADC module for defaults: 
   QADC_A.QACR0.R = 0x0013; // Stop mode disabled, SUPV mode on 
   QADC_A.QACR1.B.MQ1 = 0; // Module is master, int clk = IMBCLK 
   return 0; 
} 
 
LoadCCW_A() 
{ 
 
   QADC_A.CCW[0].R = 0x0032;  // Convert CH 50, 2 QCLKs     
   QADC_A.CCW[1].R = 0xFF;      // End conversion command 
   return 0; 
 
} 
 
// MAIN FUNCTION 
 
void main() 
{ 
 int i=0; 
 init555(); // Perform minimal chip initialization 
 initPIT();  // Initialize PIT 
 asm(" mtspr EIE, r0");  // Enable interrupts 
 initQADC_A();  // Initialize QADC A 
      LoadCCW_A(); 
 while (1) 
 {  
  if(sampleCount >= 1024) 
  { 
   compute_AR_parameters(); 
   sampleCount=0;  
  } 
  
  i++;  
 }    // loop forever 
} 
 
Convert_A() 
{ 
 QADC_A.QACR1.R = 0x2100; // Trigger Queue 1 using s/w 
      // single scan mode 
 return 0;         
} 
 
 



 66 

 
void level_0() 
{ 
      int shiftedSample; 
 USIU.PISCR.B.PS = 1; // clear the interrupt 
 pitctr++; // update global variable 
 Convert_A();  // Perform conversions 
 mySamples[sampleCount] = QADC_A.RJURR[0].R; 
 shiftedSample = mySamples[sampleCount]<<2; 
 mySamples[sampleCount] = mySamples[sampleCount]+shiftedSample; 
 mySamples[sampleCount] = mySamples[sampleCount]<<14; 
      sampleCount++; 
} 
// DETERMINATION OF THE AUTO REGRESSION PARAMTERS AND THE MODEL ORDER 
ESTIMATION 
 
void compute_AR_parameters() 
{ 
 // Declaration of the local variables 
  int samples_count,max_order,number_blocks,blockCount=0,lag=0, 
      order=0,k=0,shifted_1_byradix=0;  
  int mean[25]={0},normalisationfactor[25]={0}; 
  int covariance[2][25]={0},variance[25]={0},aic[25]={0}; 
     
  for(samples_count=6;samples_count<1024;samples_count++) 
  { 
     for(k=1;k<=5;k++) 
      { 
      temp1=temp1+mul(ar_parameters[5][k],samples[0][samples_count+k]); 
      } 
      residualError[samples_count]=samples[0][samples_count]-temp1; 
      temp1=0; 
  } 
  for(samples_count=6;samples_count<1024;samples_count++) 
  {       
  temp1=mul(residualError[samples_count],residualError[samples_count]); 
  temp1=temp1/blocksize; 
  residualVariance=residualVariance+temp1; 
  } 
  //reading the samples  
  max_order=25; 
  for(samples_count=0;samples_count<1024;samples_count++) 
  { 
     samples[blockCount][samples_count]=mySamples[samples_count]; 
  } 
 /*Reading the time series data into the array 's[i][j]'  
    where 'i' is the no. of blocks and 'j' is the block size*/ 
     
  for(samples_count=0;samples_count<1024;samples_count++)       
  { 
     temp1=samples[blockCount][samples_count]/blocksize; 
     mean[blockCount]=mean[blockCount]+temp1; 
  } 
  number_blocks=1; 
  shifted_1_byradix=1<<24; 
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  for(blockCount=0;blockCount<number_blocks;blockCount++) 
 {  
 //Calcuation of the mean of the block                           
 for(samples_count=0;samples_count<blocksize;samples_count++)                                                
 { 
samples[blockCount][samples_count]=samples[blockCount][samples_count]-
mean[blockCount];// Subtracting the mean from all the samples 
temp1=samples[blockCount][samples_count]/blocksize; 
temp1=mul(temp1,samples[blockCount][samples_count]);                          
// Calculation of c0     
    
normalisationfactor[blockCount]=normalisationfactor[blockCount]+temp1; 
} 
// Calculation of the Covariance values of each block   
   for(order=1;order<=max_order;order++) 
   { 
   for(lag=0;lag<=(blocksize-order-1);lag++) 
   {   
      temp1=samples[blockCount][lag]/blocksize;    
      temp1=mul(temp1,samples[blockCount][lag+order]);       
 covariance[blockCount][order]=covariance[blockCount][order]+temp; 
   }               
covariance[blockCount][order]=divide(covariance[blockCount][order],norm
alisationfactor[blockCount]);  
// Calculation of normalised auto correlation functions from lag 1 to 
max_order 
   } 
} 
    // final normalised autocorrelation functions with lags from 1 to 
max_order 
for(lag=1;lag<=max_order;lag++)    
{ 
for(blockCount=0;blockCount<=number_blocks;blockCount++) 
{   
AutoCorrelation[lag]=AutoCorrelation[lag]+covariance[blockCount][lag];                 
} 
AutoCorrelation[lag] = AutoCorrelation[lag]/number_blocks; 
} 
// calculating the final  R0 value averaged of all the blocks 
for(blockCount=0;blockCount<=number_blocks;blockCount++)   
{ 
initial_autocor = initial_autocor 
normalisationfactor[blockCount]/number_blocks;   
} 
// initial a11 parameter 
ar_parameters[1][1]=AutoCorrelation[1]; 
/****AR paramemter calculation  for the orders from 1 to max_order****/ 
/***********************MODEL RECURSIVE ALGORITHM*********************/ 
/* FORMULA:  
 
                 a[n+1][i]=a[n][i]-a[n+1][n+1]*a[n][n-i+1] 
         where i= 1,2,.......n 
a[n+1][n+1]={R[n+1]- summation{a[n][i]*R[n+1-i]}}/{rin 
summation{a[n][i]*R[i]}} 
   where i= 1,2,......n 
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          Where a[n+1][i] is the ith AR parameter of the model whose 
order is n+1*/ 
                          
    // Determination of the a[n+1][n+1] parameters of different orders            
 for(order=1;order<max_order-1;order++)                
 { 
 numerator=AutoCorrelation[order+1]-numsum(order);  
 denominator=shifted_1_byradix-densum(order); 
 temp1=divide(shifted_1_byradix,denominator); 
 ar_parameters[order+1][order+1] = mul(numerator,temp1); 
   
      // Determination of a[n+1][i] parameters  
 for(k=1;k<=order;k++) 
      { 
 ar_parameters[order+1][k] = ar_parameters[order][k] - 
mul(ar_parameters[order+1][order+1],ar_parameters[order][order+1-k]); 
 } 
 } 
     
    /******** Calculation of the initial Varience sigma2********/ 
     
    temp1=mul(ar_parameters[1][1],ar_parameters[1][1]);  
 temp1=(shifted_1_byradix-temp1); 
    variance[1]=mul(temp1,initial_autocor); 
            
 /**** Calculation of the sigma2 values from 1 to max_order*****/ 
 for(order=1;order<max_order;order++)         
 { 
 
 temp1=mul(ar_parameters[order+1][order+1],ar_parameters[order+1][  
            order+1]); 
      temp1=shifted_1_byradix-temp1; 
      variance[order+1]=mul(variance[order],temp1); 
 } 
 // calculation of the AIC values from 1 to max_order 
 for(order=1;order<=max_order;order++)          
 {  
     temp1=natural_logarithm(variance[order]); 
      aic[order]=((blocksize*temp1)+2*order*shifted_1_byradix);         
    } 
    temp1=0; 
    sampleCount=0;        
} 
 
/* Defining the Function numsum which determines  
    
  Summation{a[n][i]*R[n+1-i]}  
                   where i=1,2....n.           */ 
 
int numsum(int n) 
{ 
int i;         // i is the index for different order 
int y = 0;      // y is the summation 
for(i=1;i<=n;i++) 
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{ 
y = y + mul(ar_parameters[n][i],AutoCorrelation[n+1-i]); 
} 
return y; 
} 
 
/* Defining the Function densum which determines  
    
  Summation{a[n][i]*R[i]}  
                   where i=1,2....n.           */ 
 
int densum(int n) 
{ 
  int i=0;               // i is the index for different orders  
  int x = 0;             // x being the summation 
  for(i=1;i<=n;i++) 
  { 
 x = x + mul(ar_parameters[n][i],AutoCorrelation[i]); 
  } 
  return x;                         
} 
 
// Multiplication of two Fixed point numbers u and v 
int mul(int u,int v) 
{ 
 
     int result=0; 
     long long answer=0; 
     answer=(long long)u*(long long)v; 
     result=(int)(answer>> radix);  
     return(result);    // result is the product of u and v 
} 
 
// Division of two fixed point numbers x and y 
 
int divide(int x,int y) 
 
{ 
     int z=0; 
     long long xl=0,zl=0; 
     xl = (long long)x << radix; // x1 is shifted version of x by radix 
     if (x < 0)  
   xl = xl & (-1 << radix); 
   zl = xl/(long long)y; 
   z = (int)zl;            //z is the quotient in fixed point 
   return(z);              
} 
 
// To determine natural logarithm 
 
int natural_logarithm(int b) 
{ 
   int y=0,z=0; 
   y=1024*1024*16;   
   z = (int)((taylorlog(b)-24*taylorlog(2))*y); 
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   return(z); 
} 
 
/*DETERMINATION OF THE NATURAL LOGARITHM OF A FIXED POINT NUMBER IN 
8.24 FIXED POINT REPRESENTATION*/  
 
int taylorlog(fixed_number)  
{ 
int fixed_eps=0.001,fixed_result,count,y,square_y,factor,temp1,temp2, 
    shifted1,number_terms; 
if(number<=0) 
  fixed_result=0; 
  else 
  { 
     if(number==1) 
     fixed_result=0; 
     else 
     { 
         shifted1=1<<radix; 
         /**** y= (x-1)/(x+1)*****/    
         temp2=fixed_number+shifted1;               
         y=divide(fixed_number,temp2); 
         temp1=divide(shifted1,temp2); 
    y=y-temp1; 
         count=3; 
  /******calculating multiplying factor (x-1)^2/(x+1)^2******/ 
         square_y=mul(y,y); 
    factor=mul(y,square_y); 
         temp1=count*shifted1; 
         fixed_result=y+divide(factor,temp1); 
         temp1=fixed_result-y; 
         if (temp1<0) 
         temp1=-temp1; 
         number_terms=2; 
         while(temp1>fixed_eps) 
    { 
         y=fixed_result; 
    count=count+2; 
    factor=mul(factor,square_y); 
              temp2=count*shifted1; 
    fixed_result=y+divide(factor,temp2); 
              temp1=fixed_result-y; 
              number_terms=number_terms+1; 
     } 
 } 
      temp2=shifted1*2; 
      fixed_result=mul(temp2,fixed_result); 
      return(fixed_result); 
  } 
} 
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B – MATLAB CODE FOR TEST DATA GENERATION 
 

% x(t)=1.15620*x(t-1)-0.60582*x(t-2)+0.69749*x(t-3)-0.32119*x(t-4)+0.26957*x(t-5)-

0.17467*x(t-6)+0.09010*x(t-7)-0.09005*x(t-8)+0.01647*x(t-9)-0.05458*x(t-10)+a(t) 

 

clear all; 

 

N=1024; 

% Generation of Random Numbers 

x(1) = randn(1,1); 

x(2) = randn(1,1); 

x(3) = randn(1,1); 

x(4) = randn(1,1); 

x(5) = randn(1,1); 

x(6) = randn(1,1); 

x(7) = randn(1,1); 

x(8) = randn(1,1); 

x(9) = randn(1,1); 

x(10) = randn(1,1); 

 

% Opening the files 

fid = fopen('ar10(1).txt','w'); 

fid1 = fopen('ar10(2).txt','w'); 

 

% Test data Generation using the predefined autoregressive parameters 

 

for k=11:(N+10)  

    s=randn(1,1); 

    x(k)=1.15620*x(k-1)-0.60582*x(k-2)+0.69749*x(k-3)-0.32119*x(k-4)+0.26957*x(k-

5)-0.17467*x(k-6)+0.09010*x(k-7)-0.09005*x(k-8)+0.01647*x(k-9)-0.05458*x(k-10)+s; 

 

    fprintf(fid,'%f,',x(k)); 

    fprintf(fid1,'%f\t',x(k)); 

end; 

status = fclose(fid); 
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C – RESULTS 

 
 

Estimation of AR parameters using floating point numbers on PC 

            
Lag Autocorrelation Sequence  Lag Autocorrelation Sequence  

1 0.981312  1 0.98142  

2 0.980456  2 0.93247  

3 0.958669  3 0.86024  

4 0.950477  4 0.77322  

5 0.939282  5 0.6788  

6 0.922813  6 0.58235  

7 0.904767  7 0.48733  

8 0.886751  8 0.39578  

9 0.867483  9 0.30896  

10 0.846133  10 0.22769  

11 0.82417  11 0.15275  

12 0.802691  12 0.08482  

13 0.780979  13 0.02445  

14 0.759306  14 -0.0279  

15 0.738271  15 -0.0719  

16 0.717586  16 -0.1075  

17 0.696871  17 -0.1352  

18 0.675628  18 -0.1559  

19 0.655006  19 -0.1702  

20 0.634519  20 -0.1788  

21 0.61424  21 -0.1825  

22 0.595468  22 -0.1818  

23 0.577337  23 -0.1776  

24 0.558824  24 -0.1705  

25 0.54026  25 -0.1616  
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Estimation of AR parameters using fixed point numbers on PC 
        

Lag 
Autocorrelation  

Sequence  Lag 
Autocorrelation 

Sequence    

1 16442734  1 0.98006    

2 16097369  2 0.95948    

3 16021349  3 0.95495    

4 15870874  4 0.94598    

5 15633851  5 0.93185    

6 15406996  6 0.91833    

7 15194020  7 0.90563    

8 14958657  8 0.89161    

9 14659644  9 0.87378    

10 14359019  10 0.85586    

11 14102901  11 0.8406    

12 13849523  12 0.8255    

13 13584504  13 0.8097    

14 13313707  14 0.79356    

15 13039419  15 0.77721    

16 12784013  16 0.76199    

17 12513106  17 0.74584    

18 12243654  18 0.72978    

19 11994646  19 0.71494    

20 11742368  20 0.6999    

21 11492469  21 0.68501    

22 11261530  22 0.67124    

23 11032942  23 0.65762    

24 10815890  24 0.64468    

25 10578309  25 0.63052    
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Lag Autocorrelation Sequence  Lag Autocorrelation Sequence 

1 16465517  1 0.981421 

2 15644097  2 0.932461 

3 14431955  3 0.860212 

4 12971763  4 0.773177 

5 11387334  5 0.678738 

6 9768914  6 0.582273 

7 8174474  7 0.487237 

8 6638306  8 0.395674 

9 5181312  9 0.30883 

10 3817665  10 0.227551 

11 2560153  11 0.152597 

12 1420180  12 0.084649 

13 407092  13 0.024265 

14 -471367  14 -0.028096 

15 -1208973  15 -0.07206 

16 -1806660  16 -0.107685 

17 -2272500  17 -0.135452 

18 -2618877  18 -0.156097 

19 -2858547  19 -0.170383 

20 -3003764  20 -0.179038 

21 -3065475  21 -0.182717 

22 -3054638  22 -0.182071 

23 -2983085  23 -0.177806 

24 -2864810  24 -0.170756 

25 -2714699  25 -0.161809 
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