
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2006

Microprocessor Implementation of Autoregressive Analysis of Microprocessor Implementation of Autoregressive Analysis of

Process Sensor Signals Process Sensor Signals

Swetha Priyanka Pakala
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Pakala, Swetha Priyanka, "Microprocessor Implementation of Autoregressive Analysis of Process Sensor
Signals. " Master's Thesis, University of Tennessee, 2006.
https://trace.tennessee.edu/utk_gradthes/1761

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Swetha Priyanka Pakala entitled "Microprocessor

Implementation of Autoregressive Analysis of Process Sensor Signals." I have examined the

final electronic copy of this thesis for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Master of Science, with a major in

Electrical Engineering.

Gregory D. Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Belle R. Upadhyaya, Syed Islam

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Swetha Priyanka Pakala entitled

“Microprocessor Implementation of Autoregressive Analysis of Process Sensor Signals.”

I have examined the final electronic copy of this thesis for form and content and

recommend that it be accepted in partial fulfillment of the requirement for the degree of

Master of Science, with a major in Electrical Engineering.

 Gregory D. Peterson

 Major Professor

We have read this thesis

and recommend its acceptance:

Belle R. Upadhyaya

Syed Islam

Accepted for the council

 Linda painter

 Interim Dean of Graduate Studies

 (Original signatures are on file with official student records)

Microprocessor Implementation of Autoregressive Analysis

of Process Sensor Signals

A Thesis

Presented for

Master of Science Degree

University of Tennessee

Swetha Priyanka Pakala

December 2006

 ii

Copyright © 2006 by Swetha Priyanka Pakala

All rights reserved.

 iii

Dedicated To

My Advisor Dr. Gregory D. Peterson

And

My Parents

 iv

ACKNOWLEDGEMENT

“Behind every successful achievement lies great contribution by those, without

which it could not have been achieved”. Although mere words of gratitude are

insufficient for their unlimited contribution, I take this opportunity to convey my thanks

to all of them who supported me in doing my thesis work.

First, I would like to sincerely thank my advisor Dr. Gregory D. Peterson for

giving me this opportunity to work in his research group and for guiding me throughout

my graduate studies. This work is a result of his constant encouragement, advice and

support. I thank him and Dr. Belle R. Upadhyaya for giving me an opportunity to work

on the project “Microprocessor Implementation of Autoregressive Analysis of Process

Sensor Signals” and Emerson Process Management for sponsoring the project.

Again, I would like to thank my committee members Dr. Belle R. Upadhyaya and

Dr. Syed Islam for reviewing my thesis and helping me in understanding some of the

concepts related to my work.

Special Thanks to Saumil Merchant, Akila Godhandaraman and Derek Rose for

sharing their knowledge with me and for helping me in debugging the design modules at

various stages of my project. I would also like to thank my friends Shailaja and Nanditha

for helping me in doing this work.

Finally, I would like to thank my parents, Sri Pakala Mallaiah, Srimati Pakala

Ramakumari and my sisters Keerthi and Divya and all other friends for their support and

encouragement throughout my education.

 v

ABSTRACT

Automated signal analysis can help for effective system surveillance and also to

analyze the dynamic behavior of the system such as impulse response, step response etc.

Autoregressive analysis is a parametric technique widely used for system surveillance

and diagnosis. The main aim objective of this research work is to develop an embedded

system for autoregressive analysis of sensor signals in an online fashion for monitoring

system parameters. This thesis presents the algorithm, data representation and

performance of the optimized microprocessor implementation of autoregressive analysis.

In this work an autoregressive (AR) model is generated as a solution to a linear

system of equations called Yule-Walker linear equations. The generated model is then

implemented on Motorola PowerPC MPC555 processor. The embedded software for

autoregressive analysis is written in the C programming language using fixed point

arithmetic. It includes estimation of the autoregressive parameters, estimation of the noise

variance recursively using the AR parameters, determination of the optimal model order

and the model validation.

 vi

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 Objective 2

1.2 Time series analysis 2

 1.2.1 Deterministic and statistical time series 2

 1.2.2 Autoregressive models 3

 1.2.3 Mean and variance of a stationary process 3

1.3 Microprocessor implementation of autoregressive analysis 3

1.4 Autoregressive model generation 4

1.5 Thesis outline 7

2. REVIEW OF LITERATURE 8

2.1 Parametric models 8

2.2 AR, MA and ARMA models 8

 2.2.1 Mathematical analysis 9

2.3 Determination of the model parameters with autocorrelation sequence 12

2.4 Autoregressive parameter estimation methods 13

 2.4.1 Yule-Walker method 14

 2.4.2 Reflection coefficient methods 14

2.5 Autoregressive model order selection 16

 2.5.1 Final prediction error 16

 2.5.2 Akaike information criterion 17

3. ALGORITHM IMPLEMENTATION 18

3.1 Autoregressive analysis 18

 3.1.1 Levinson Durbin recursive algorithm for AR analysis 20

 3.1.2 Estimation of noise variance 20

 3.1.3 Residual error sequence 21

 3.1.4 Initial conditions 21

3.2 Model order estimation 22

 3.2.1 Akaike information criterion 22

 vii

 3.2.2 Minimum description length (MDL) criteria 23

3.3 Software implementation of the autoregressive analysis 23

 3.3.1 Code structure 23

 3.3.2 Input and output variables 24

 3.3.3 Flowchart 25

 3.3.4 Arithmetic operations 27

4. MICROPROCESSOR IMPLEMENTATION 30

4.1 Block diagram for microprocessor implementation of AR model 30

4.2 Power PC MPC 555 32

4.3 Queued analog to digital converter modules 34

 4.3.1 Operation modes 35

 4.3.2 Analog input channels 36

 4.3.3 Scan modes 36

4.4 Periodic Interrupt timer 37

4.5 Pressure sensors and filters 38

5. TWO TANK FLOW CONTROL LOOP EXPERIMENT 39

5.1 General description 39

5.2 Components description 39

6. RESULTS 43

6.1 Test data generation 43

6.2 Estimated parameters using floating point numbers 46

6.3 Estimated parameters using fixed point numbers on PC 54

6.4 Estimated parameters on Power PC MPC 555 55

7. CONCLUSIONS & FUTURE WORK 58

7.1 Conclusions 58

7.2 Future work 58

REFERENCE 60

 APPENDICES 62

 VITA 75

 viii

LIST OF FIGURES

Figure 1.1 Microprocessor implementation of autoregressive analysis 5

Figure 1.2 Block diagram for the autoregressive model building 6

Figure 2.1 ARMA filter of order (p, q) 10

Figure 2.2 Moving average filter of order q 11

Figure 2.3 Autoregressive filter of order p 11

Figure 3.1 Modules of the embedded software 24

Figure 3.2 Flowchart for the implementation of the AR model 26

Figure 3.3 IEEE 754 format of 32 bit floating point numbers 29

Figure 3.4 Bit format for the fixed point representation 29

Figure 4.1 Microprocessor implementation of autoregressive analysis 31

Figure 4.2 Block diagram of MPC 555 33

Figure 4.3 Block diagram of QADC 35

Figure 4.4 Block diagram of PIT 38

Figure 5.1 Level tank details 40

Figure 5.2 Pressure sensors used in the control loop 41

Figure 5.3 GUI of the data acquisition software 42

Figure 6.1 Test Data generation using MATLAB 44

Figure 6.2 Plot of the test data 1 generated using 10
th
 order AR model 45

Figure 6.3 Plot of the test data generated using pressure sensors 45

Figure 6.4 Plot of autocorrelation function Vs lag 47

Figure 6.5 Plot of Akaike information criterion function Vs model order 47

Figure 6.6 Plot of variance Vs model order 48

Figure 6.7 Power spectral density plot for model order 9 49

Figure 6.8 Power spectral density plot for model order 10 49

Figure 6.9 Power spectral density plot for model order 11 50

Figure 6.10 Power spectral density plot for model order 12 50

Figure 6.11 Plot of autocorrelation function Vs lag 52

 ix

Figure 6.12 Plot of variance Vs model order 52

Figure 6.13 Power spectral density plot for model order 8 53

Figure 6.14 Power spectral density plot for model order 6 53

Figure 6.15 Screenshot showing the autocorrelation sequence for predefined

 AR model 57

Figure 6.16 Screenshot showing the AR parameters of order ‘10’ 57

 1

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this work is to estimate the autoregressive (AR) parameters of

the sensor noise signals for system surveillance and monitoring of system parameters.

The mathematical model for the estimation of the AR parameters is implemented on a

microprocessor using the CodeWarrior development tool, which offers a complete

integrated development environment for hardware bring-up through programming

applications like C/C++ and Java. It also includes the estimation of the autoregressive

parameters, the determination of the optimal model order and the model validation.

The dynamic behavior of the system such as its impulse response, step and ramp

responses can be estimated in a simple and fast manner using the autoregressive

parameters. The power spectral density can also be estimated using the AR parameters

for the frequency analysis of the system. Initially, the data is collected from the pressure

sensor signals and an AR model is fitted to it for the estimation of the autoregressive

parameters. Autoregressive parameter estimation model is chosen for the parameter

estimation because the autoregressive spectrum contains sharp peaks which are used for

the high resolution spectral analysis. The autoregressive parameter estimation is very

simple and can be generated as a solution to a linear system of equations called the Yule-

Walker linear equations. The linear equations are solved using Yule-Walker recursive

algorithm of autoregressive parameter estimation. A single block of 1024 samples is used

at a time for the estimation of the autoregressive parameters. Noise variance is calculated

using autoregressive parameters recursively and also using the residual error sequence of

the time series. The optimal model order is decided based upon the Akaike Information

Criterion (AIC) [1]. The model order, for which the AIC function is minimized, is

considered to be the optimal model order.

 2

1.2 Time series analysis

 A time series is a set of samples generated sequentially in time. It performs both

univariate and multivariate analysis of signals. If a time series is a set of scalar quantities,

it is called a univariate series and if it is a set of n-dimensional vector quantities, it is

called a multivariate series of data. A time series can be either continuous or discrete. A

discrete time series can be generated in two ways:

a) By sampling a continuous time series.

b) By accumulating a variable over a period of time.

1.2.1 Deterministic and statistical time series

 If the future values of the time series are exactly determined by some

mathematical function or equation, such a time series is called a deterministic time series.

If the future values can be described only in terms of a probability function, such a time

series is called a statistical time series [2].

Time series analysis is used in the applications such as:

• Predicting the future values of a time series from current and past values

• Determining the transfer function of a system

• Designing feed forward and feedback control schemes

• Sales forecasting

• Inventory studies

• Census analysis

• Budgetary analysis

• Stock market analysis

• Economic forecasting

Using time series and different mathematical models, one can read, plot and

convert the raw time series data into a form suitable for model fitting of the data. In many

problems we have to consider a time dependent phenomenon for which it is not possible

to write a deterministic model that allows exact calculation of the future behavior of the

phenomenon. However, it is possible to derive a model that can be used to calculate the

probability of a future value lying between two specified limits and such a model is

 3

called a stochastic model. Stochastic models are very much useful for forecasting and

control.

 An important class of stochastic models for describing time series is stationary

models in which the process remains in equilibrium about a constant mean level. Some of

the stationary stochastic processes in modeling time series are autoregressive, moving

average and autoregressive moving average processes [2].

1.2.2 Autoregressive models

 An autoregressive model is a stochastic model which is used to estimate the

current value of the model using its previous values by expressing it as a linear

combination of the previous values of the process as given by the equation 1.1.

1 1 2 2 1...........t t t p p tz z z z aφ φ φ− − −= + + + +% % % % 1.1

The above equation is called an autoregressive (AR) process of order ‘p’. Autoregressive

processes may be stationary or non-stationary. In this project a simple stochastic

stationary process with added white noise is considered for the AR model fitting to the

time series data.

1.2.3 Mean and variance of a stationary process

The mean µ and variance of the stochastic process can be estimated with the

following equations 1.2 and 1.3 respectively. Generally, the mean value of the time series

data is subtracted from each sample of the time series sequence for the elimination of the

DC components.

1

1 N

t

t

z z
N =

= ∑% 1.2

2 2

1

1
()

N

z t

t

z z
N

σ
=

= −∑ % 1.3

1.3 Microprocessor implementation of autoregressive analysis

 The mathematical model for autoregressive analysis of the process sensor signals

is implemented in the ‘C’ programming language on a microprocessor with the help of

CodeWarrior integrated development environment (IDE) software. The microprocessor

 4

used is a Freescale PowerPC MPC 555 [12]. The block diagram for the microprocessor

implementation of the autoregressive analysis of process sensor signals is shown in

Figure 1.1.

 The analog sensor signal is first band limited using the Butterworth low pass and

high pass filters and is amplified to obtain high resolution. The amplified signal is then

fed to the queued analog-to-digital converter of the PowerPC MPC 555 for the generation

of the digital time series data. The sampled time series data is generated using the

periodic interrupt timer of the PowerPC. Both the timer and the QADC modules are

programmed as per the desired specifications. The sampled data is fed to the software

module for the estimation of the AR parameters and the optimal model order. The source

code for the implementation of the autoregressive parameter estimation is written in ‘C’

and is compiled using the CodeWarrior software which is used for the translation of the

source code written in C into the assembly language.

1.4 Autoregressive model generation

The basic steps involved in the generation of the autoregressive model are shown

in the form of a block schematic in Figure 1.2 [2]. The steps involved are:

• Initially, a useful class of models is chosen based upon the requirements.

• Depending upon the data, rough methods for identifying the subclass of these

models are developed. The identification process can be used for the rough

estimate of the initial parameters for model fitting.

• The selected model is fitted to data and its parameters are estimated. Rough

estimated values determined during the identification of one particular model to

be evaluated are used as the initial values for the iterative methods for the

estimation of the parameters.

• The model order is selected depending upon various criteria. Most of the criteria

depend on minimizing the error variance.

• Model validation is done to determine whether the developed model properly

describes the physical phenomenon.

 5

Figure1.1 Microprocessor implementation of the autoregressive analysis

Pressure

Sensors

Amplifier

Section

Timer (PIT)

 QADC

 CPU

PC with

Code warrior IDE

Filtering

Stage

Analog

 signal

 MPC 555

 6

Figure 1.2 Block diagram for the autoregressive model building

System Output

Time Series Model

Parameter Estimation

Test for Model Order ‘n’

 Optimal Model Order

Selection, Frequency & Time

Domain Signature Estimation,

System Monitoring

Input

Model Validation

 Steps in model building

 7

This process of model building is repeated until an appropriate model for the estimation

of the parameters and an optimal model order are determined.

1.5 Thesis outline

Chapter 1 presents the objectives of this thesis and an outline of the

implementation of the AR model. It also discusses the fundamentals of time series and

autoregressive analysis. Chapter 2 presents the literature review of various parametric

models. It discusses the autoregressive, moving average, and autoregressive moving

average models in detail. It also presents various properties of autoregressive processes

and the relationship between AR, MA and ARMA models. Various methods of AR

parameter estimation methods such as Yule Walker method, Geometric method and

Burgs method are explained in detail. Different model order estimation selection criteria

are discussed in this chapter.

Chapter 3 presents a mathematical approach to the AR parameter estimation,

which is implemented using software and the model order selection criterion. The initial

conditions for the model order estimation are also stated in this chapter.

Chapter 4 describes the hardware modules of the microprocessor implementation

of the AR model for process signals. It gives detailed information about the MPC555

PowerPC and its various divisions QADC and timers. Chapter 5 describes the data

acquisition apparatus and brings out some of the details of its components. In Chapter 6,

the final results, graphs and discussion of the details of various specifications of the

software are presented. Chapter 7 discusses the future work and conclusions. Appendix A

presents the software code and Appendix B gives MATLAB code for the generation of

the test data. Appendix C presents the results.

 8

CHAPTER 2

REVIEW OF LITERATURE

2.1 Parametric models

Parametric estimation of the power spectral density (PSD) can be done assuming

a time series model of random process. It can be calculated using the model parameters.

Consider a random process with added white Gaussian noise. The parametric models that

can be used for the estimation of the power spectral density are:

(a) Autoregressive process model (AR model)

(b) Moving average process model (MA model)

(c) Autoregressive moving average process model (ARMA model)

The output process of these above models is completely dependent on the model

parameters and the variance on the white noise and has the following features:

(a) Ability to achieve better PSD estimation depending on the model

(b) Better spectral resolution

The degree of the improvement in resolution and spectral fidelity is determined by

the appropriateness of the selected model and the ability of the model to fit the measured

data with few parameters.

2.2 AR, MA, and ARMA Models

If spectra with sharp peaks but no deep nulls are required then the autoregressive

analysis is appropriate for the estimation of the power spectral density. If spectra with

deep nulls, but no sharp peaks, are required then moving average analysis is appropriate.

The autoregressive model required less computation when compared to moving average

and autoregressive moving average models.

 9

2.2.1 Mathematical analysis

Let us consider a time series model as given in equation 2.1 [1] that approximates

many discrete time deterministic and stochastic processes,

1 0

0

[] [] [] [][]

[] []

p q

k k

k

x n a k x n k b k n k

h k u n k

= =

∞

=

= − − + −

= −

∑ ∑

∑
 2.1

where,

 X [n] is the output sequence of a casual filter (h[k] =0 for k<0).

 U [n] is an input driving sequence.

The above equation represents an autoregressive moving average (ARMA) model

for the time series x [n] with u [n] as the white noise sequence. ARMA model is given in

the Figure 2.1. The a[k] parameters form the auto regressive parameters and b[k]

parameters form the moving average parameters.

The ARMA power spectral density is given by the equation 2.2 [1].

2

()
()

()
ARMA

B f
P f T

A f
ρω= 2.2

where the polynomials A(f) and B(f) are given by the Equation 2.3 [1]

1

1

() 1 []exp(2)

() 1 []exp(2)

p

k

q

k

A f a k j fkT

B f b k j fkT

π

π

=

=

= + −

= + −

∑

∑

 2.3

Figures 2.2 and 2.3 represent autoregressive and moving average models which are

deduced from the autoregressive moving average model. If all the autoregressive

parameters are zero except a [0] = 1 then

1

[] [] [] []
q

k

x n b k u n k u n
=

= − +∑ 2.4

is strictly a moving average (MA) process of order q [1].

 10

Figure 2.1 ARMA Filter of order (p, q) (from [1])

1Z −

∑

1Z −

[1]b [1]b []b q

[]u n

∑

∑

[]x n

[]a p [2]a [1]b

1Z − 1Z −

 11

Figure 2.2 Moving average filter of order q (from [1])

Figure 2.3 Autoregressive filter of order p (from [1])

[]x n

1Z −

∑

1Z −

[1]b [1]b []b q

[]u n

∑

∑

[]a p [2]a [1]b

1Z − 1Z −

[]u n []x n

 12

If all the moving average parameters are zero except b [0] = 1 then

1

[] [] [] []
p

k

x n a k x n k u n
=

= − − +∑ 2.5

is strictly an autoregressive (AR) process of order p.

2.3 Determination of the model parameters with autocorrelation sequence

Autoregressive parameters of an ARMA model are related by a set of linear

equations to the autocorrelation sequence and is given in the matrix form for p lag indices

1q m q p+ ≤ ≤ + as [1]

[] [1] ... [1] [1][1]

[1] [] ... [2] [2][2]

..

..

..

[][1] [2] ... [] []

xx xx xx xx

xx xx xx xx

xx xx xx xx

r q r q r q p r qa

r q r q r q p r qa

a pr q p r q p r q r q p

− − + +    
    + − + +    
    

= −    
    
    
    

+ − + − +        

 2.6

Autoregressive parameters can be calculated from the moving average parameters

as the solution to the simultaneous equations given in the above matrix. This relationship

is called ARMA Yule-Walker normal equations. The number of computations required is

proportional to 2p [1].

The relationship between the autocorrelation sequence and autoregressive model can be

obtained by setting q = 0 yielding [1],

1

1

*

[] [] [] 0

[] [] 0

[] 0

p

xx xx

k

p

xx

k

xx

r m a k r m k for m

a k r k for m

r m for m

ωρ

=

=

= − − >

− − + =

− <

∑

∑
 2.7

This relationship may be evaluated for the p+1 indices 0 m p≤ ≤ and formed into the

matrix expression as given by the equation 2.8 [1].

 13

[0] [1] ... [] 1

[1] [0] ... [1] [1] 0

..

..

..

[][] [1] ... [0] 0

xx xx xx

xx xx xx

xx xx xx

r r r p

r r r p a

a pr p r p r

ωρ− −    
    − +    
    

=    
    
    
    

−          

 2.8

The above relationship forms the AR Yule-Walker normal equations. The

autocorrelation lags 0 to p uniquely describe the autoregressive process of order p, as the

lags for k p> are obtained recursively using the equation 2.9 [1].

1

[] [] []
p

xx xx

k

r m a k r m k
=

= − −∑ 2.9

The relationship between the autocorrelation sequence and moving average model can by

obtained by setting p = 0 and is given by

*

*

[] 0

[] [] 0

[] 0

xx

q

k m

xx

r m for m q

b k b k m for m q

r m for m

ωρ
=

= >

− ≤ ≤

− <

∑ 2.10

2.4 Autoregressive parameter estimation methods

In general autocorrelation sequence is not given for the estimation of the

autoregressive parameters. It has to be estimated using the available data. The techniques

to estimate the autoregressive power spectral density are basically divided into two types

(a) Algorithms for block of data.

(b) Algorithms for sequential data.

Algorithms based on the block of data can be described as fixed time recursive in order

which operate on a fixed block of data and recursively calculate the higher order

parameters based upon the lower order parameters. The simplest procedure to estimate

the AR parameters from the block of data would to estimate the auto correlation sequence

first from the data. This autocorrelation sequence is then used to estimate the AR

 14

parameters by substituting them in the Yule Walker linear equations. Various techniques

for the estimation of the AR parameters are:

(a) Yule-Walker Method

(b) Burg Method

(c) Covariance Method

(d) Modified Covariance Method.

Once the AR parameters are estimated then the AR power spectral density is given by the

equation 2.11 [1].

2

1

()

1 []exp(2)

AR
p

n

T
P f

a n j fnT

ωρ

π
=

=

+ −∑
 2.11

The AR model order needs to be given as the initial input data for the

computations along with the input data samples for the estimation of the parameters. The

Order determines the trade off between resolution and estimate variance in AR spectra

[2].

2.4.1 Yule-Walker method

In this method an autocorrelation sequence is first estimated from the data

samples and then the AR parameters are estimated using the Yule-Walker linear

equations. For large data records, Yule walker method of AR parameters estimation

produces reasonable results. For short data records, the use of the Yule-Walker approach

results in the poor resolution of the spectra when compared to the other techniques of

estimation. This method of estimation of the parameters is explained in detail in Section

3.1.

2.4.2 Reflection coefficient methods

In reflection coefficient method only the reflection is directly dependent on the

autocorrelation function. AR parameters are then estimated using the reflection

coefficients recursively the following equations 2.12 and 2.13 [1].

 15

*

1 1[] [] []p p p pa n a n k a p n− −= + − 2.12

where,
1

1

0

1

[] []

[]

p

p xx

n
p p

p

a n r p n

k a p
ρ

−

−
=

−

− −
= =

∑
 2.13

The recursive for driving white noise variance is given by equation 2.14 [1].

2

1(1)p p pp kρ −= − 2.14

Various methods exist for the estimation of the AR parameters based on the

reflection coefficient concept such as:

(a) Geometric Algorithm: Based geometric mean of the forward and backward prediction

errors.

(b) Burgs method: Based on the harmonic mean of the forward and backward prediction

errors.

 The forward linear prediction error and the backward linear prediction error are given by

the following equations:

1

[] [] [] []
p

f f

p p

m

e n x n a m x n m
=

= + −∑ 2.15

*

1

[] [] [] []
p

b f

p p

m

e n x n p a m x n m p
=

= − + + −∑ 2.16

1

*

1 1

[] [] [1]

[] [1] []

f f b

p p p p

b b f

p p p p

e n e n k e n

e n e n k e n

−

− −

= + −

= − +
 2.17

The reflection coefficient based on geometric mean of forward and backward prediction

errors is determined as

*

1 1

1

1 1
2 2

2 2
*

1 1

1 1

[] [1]

[] [1]

N
f b

p p

n p

p
N N

f b

p p

n p n p

e n e n

k

e n e n

− −
= +

− −
= + = +

− −

=
   

−   
   

∑

∑ ∑
 2.18

The reflection coefficient based on harmonic mean of forward and backward prediction

errors is determined as

 16

*

1 1

1

2 2

1 1

1 1

2 [] [1]

[] [1]

N
f b

p p

n p

p N N
f b

p p

n p n p

e n e n

k

e n e n

− −
= +

− −
= + = +

− −

=
+ −

∑

∑ ∑
 2.19

The reflection coefficient method will then uses the Levinson algorithm for the

computation of the AR parameters with known autocorrelation function values and the

basic Levinson algorithm is provided with initial values at order zero given below.

0 0[] [] []f be n e n x n= = 2.20

2

1

1
[]

N

o

n

x n
N

ρ
=

= ∑ 2.21

2.5 Autoregressive model order selection

For the estimation of the model order we need to consider some error criterion for

choosing optimal model order. Too low estimation of the model order results in a highly

smooth spectral estimate. Too high estimation of model order increases the resolution and

introduces spurious details into the spectrum. Hence the issue of model order selection is

a trade off of increased resolution and decreased variance for AR parameter estimation.

Some of the criteria for the estimation of the model order are given below.

2.5.1 Final prediction error (FPE)

 The optimal model order of the autoregressive process is selected based upon the

average error variance. The model order, for which the average error variance is

minimum, is selected as optimal model order. FPE for an AR process is defined as

(1)
[] ()

(1)
p

N p
FPE p

N p
ρ

+ +
=

− +
 2.22

where,

 N is the number of data samples

 P is the order

 pρ is the estimated white noise variance.

 17

2.5.2 Akaike information criterion (AIC)

The AIC determines the model order by minimizing an information theoretic

function. AIC of a AR process is given by

[] ln() 2pAIC p N pρ= + 2.23

is the number of sample points

is the AR model order

 is the prediction error variancep

where

N

p

ρ

The model order is selected based upon the approach of minimizing the AIC. The model

order which has minimum AIC is the required optimal model order. As N → ∞ , the

AIC and FPE are asymptotically equal. AIC is applied for the pure AR processes. AIC is

also considered to be too low for the real signals. AIC over estimates the model order as

the data set length increases.

 18

CHAPTER 3

ALGORITHM IMPLEMENTATION

In this chapter, we discuss the mathematical approach to the autoregressive (AR)

parameter estimation of the process sensor signals and its software implementation in the

‘C’ language.

3.1 Autoregressive analysis

The Yule-Walker method is used in this project for the estimation of the AR

parameters, because of its simplicity. The Yule-Walker method can be used to estimate

the parameters of an autoregressive model for a given model order ‘ ’. It is also used for

the estimation of the power spectral density (PSD) of the input signal. This method is

called the autocorrelation method. It fits an autoregressive (AR) model to the input data

by minimizing the forward prediction error. This approach leads to the Yule-Walker

equations, which are solved by Levinson Durbin recursion method [2]. Consider a

random stationary sequence ky with added white noise kv ,

0

n

k i k i k

i

y a y v−
=

= +∑ 3.1

From the above sequence, the autocorrelation functions are estimated for different

lags. Let 1 2 3, , ,........, ty y y y be the time series observations of the random process ky .

Then the auto-covariance between any observations ty and t ky + separated by a lag of k

intervals is estimated using the equation 3.2 [2].

1

1
()()

N k

k t t k

t

c y y y y
N

−

+
=

= − −∑ 3.2

 where lag k = 0, 1, 2, 3….k

 kc is the estimated autocovariance between ty and t ky +

 y is the mean of the random time series sequence

 19

Here, K is not larger than N/4 and in this project is considered to be the maximum

model order for which the AR parameter estimation is done.

Now the autocorrelation function is estimated as
0

k
k

c
R

c
= [2] where kc s auto-covariance

between two observations with lag k and 0c is the auto-covariance with lag 0 which is the

variance of the time series sequence. Consider a general stationary stochastic process

0

n

t i t i t

i

y a y v−
=

= +∑ 3.3

 The autocorrelation functions with different lags k = 0, 1, 2 …… K where K is the

maximum model order, can be obtained by multiplying the equation by t ky − , where k >0,

computing the expected value and normalizing both the sides. The observation t ky − is

independent of the white noise. Let the autocorrelation function [3] be defined as

[]k t t kR E y y += 3.4

Now,

1

n

t k t i t i t k t k k

i

y y a y y y v− − − −
=

= +∑

1

[] []
n

t k t i t i t k

i

E y y a E y y− − −
=

⇒ =∑

1

0
n

k i k i

i

R a R where k−
=

⇒ = >∑ 3.5

The above equation represents a set of linear equations called Yule Walker linear

equations. These linear equations can be represented in a matrix form as given in

equation 3.6 [3].

1

2

(1) (0) (1) (1)

(2 (1) (0) (2)

. . . .

. . . .

. . . .

() (1) (2). . . . (0) n

aR R R R n

aR R R R n

R n R n R n R a

−     
    −     
    

=     
    
    
    

− −        

 3.6

where R (0), R (1)….. , etc are autocorrelations

 20

 1 2, ,....a a etc are autoregressive parameters

n. where P is (n×n)Toeplitzmatrixn nR P a= 3.7

These Yule Walker equations are solved using the Levinson-Durbin recursive

algorithm for the estimation of the autoregressive parameters. Generally the Levinson-

Durbin algorithm is preferred over a direct solution of the Yule-Walker equations as it

also gives the partial correlations and this helps us select the appropriate autoregressive

model in the process of AR parameter estimation.

3.1.1 Levinson Durbin recursive algorithm for AR analysis

The Levinson Durbin Recursive Algorithm solves thn order system of linear

equations of the form baR =∗ involving a Hermitian, positive-definite, Toeplitz

matrix(R). In the Yule Walker method, the resulted Yule Walker linear equations can be

written in the matrix form as given in equation 3.7. These equations can be solved for

Autoregressive parameters using Levinson Durbin Recursive Algorithm resulting in the

Levinson Durbin recursive formulae 3.8 and 3.9 [3],

1 , 1

1
1 , 1

0 ,

1

n

n n i n i

i
n n n

n i i

i

R a R

a

R a R

+ + −
=

+ +

=

−
=

−

∑

∑
 3.8

1, , 1, 1 , 1*n j n j n n n n ja a a a+ + + − += − 3.9

3.1.2 Estimation of noise variance

Consider a random stationary sequence ky with added white noise kv ,

0

n

k i k i k

i

y a y v−
=

= +∑

On multiplying both the sides of the above equation by ky and taking the expectation

value, it results in the equation 3.10 [3].

2

1

2

0

1

[] [] []

ˆ

n

k i k k i k k

i

n

v i i

i

E y a E y y E y v

C a Cσ

−
=

=

= +

⇒ = −

∑

∑
 3.10

 21

We observe from the above equation that the noise variance is expressed as a

function of autoregressive parameters. The noise variance of higher orders is determined

with the estimated autoregressive parameters recursively by using the equation 3.11 [2].

2 2 2

1 1, 1 1, 1(1) 1n n n n n na whereaσ σ+ + + + += − ≤ 3.11

2

nσ is variance of model order n

,1 ,2 ,,n n n na a a are autoregressive parameters of model order n

3.1.3 Residual error sequence

Noise variance can also be estimated using the residual error sequence. The noise

variance estimated using the recursive formulae for a given model order should be

approximately equal to the noise variance estimated using residual error sequence. Let

()x k be a sequence of time series data. The residual error sequence ()v k for the given

time series is given by the equation

1

() () ()
n

i

i

v k x k a x k i
=

= − −∑ 3.12

The noise variance [2] is then estimated as

2 2

1

1
ˆ ˆ

N

v k

k

v
N

σ
=

= ∑ 3.13

where 2ˆ
vσ is the noise variance

 2ˆ
kv is the residual error sequence for model order k

The whiteness of the sequence v is checked by computing the correlation of v and its

spectrum.

3.1.4 Initial conditions

The Levinson Durbin recursive algorithm is supplemented with certain initial

conditions prior to the computation of the AR parameters of the higher orders. In the

Levinson Durbin recursive method, the first order parameters are initialized to [3]

1
1,1

0

R
a

R
=

where 1R is the normalised autocorrelation function of first order

 22

0R is the normalised autocorrelation with zero order.

2

1 0 1,1 1R a Rσ = −

Where 2

1σ is the first order noise variance

 1R is the Normalised Autocorrelation function of first order

 0R is the Normalised Autocorrelation with zero order

3.2 Model order estimation

Generally speaking, there is no definite way to determine the correct model order.

The predicted model order needs to be accurate. An estimated model order, if too low,

will not represent the properties of the signal and if too high, will include noise and

inaccuracies. The selection of the model order is done depending upon the prediction of

the residual error. The order, for which the prediction error is the least, is estimated as the

optimal model order. Akaike information criterion is used for the estimation of the model

order in this project.

3.2.1 Akaike information criterion

Akaike information criterion (AIC) function [1] is given by the equation 3.14:

2ln() 2AIC N nσ= + 3.14

is the number of sample points

is the AR model order

 is the prediction error variance

where

N

n

σ 2

The model order is selected based upon the approach of minimizing the Akaike

Information Criterion function. The model order which has minimum AIC is the

estimated model order. As N → ∞ , the AIC and final prediction error are

asymptotically equivalent. Final prediction error estimates the model order depending

upon the average error variance. AIC is applied to pure AR processes. AIC is also

considered to be too low for real signals. AIC over-estimates the model order as the

length of the data set increases.

 23

3.2.2 Minimum description length (MDL) criterion

 In order to overcome the above mentioned drawbacks of the AIC, the MDL

criterion is used. MDL stands for Minimum Description Length. The MDL criterion is

statistically consistent because ln()n N increases faster with ‘N’ than with ‘n’ [1].

2[] ln() ln()nMDL n N n Nσ= + 3.15

where N is total no. of observations in a given time series

n is the model order

2

nσ is the variance of model order n

3.3 Software implementation of the autoregressive analysis

Sections 3.1 and 3.2 discuss the mathematical algorithm that has to be

implemented on a microprocessor for the estimation of the autoregressive parameters of a

process signal. In this section, we discuss the software implementation of the algorithm in

the ‘C’ language. The software for the implementation of the autoregressive model is

developed in two stages. Initially, the algorithm is implemented in the ‘C’ language on a

PC with floating point representation of the variables. In the second stage, the algorithm

is implemented in ‘C’ with fixed point representation of the variables on CodeWarrior

software, an integrated development environment for developing microprocessor

applications, and run on Power PC MPC555.

3.3.1 Code structure

There are three modules in the software. The block diagram representing the three

modules of the code is given in Figure 3.1.

1. Timer Module: The timer of the PowerPC MPC 555 is programmed in such a

way that it throws an interrupt at sampling frequency of 100 Hz [12].

2. QADC Module: The queued analog-to-digital converter of the PowerPC MPC

555 is programmed to scan the analog signal at the 50
th
 channel of the QADC

[12]. Single scan mode of operation is used.

 24

Figure 3.1 Modules of the embedded software

3. AR parameter Estimation and Model Order Selection: Once 1024 samples are

collected at a sampling frequency of 100 Hz, the block of data is passed to the AR

parameter estimation module and the autoregressive parameters are estimated by

calculating the autocorrelation functions for different lags. The Yule-Walker

linear system of equations is solved using the Yule-Walker method of AR

parameter estimation.

The higher model order parameters are estimated recursively using the lower

order parameters and the optimal model order is selected based on the Akaike

Information Criterion. The noise variance for different model orders is calculated

recursively as well as using residual error sequences.

3.3.2 Input and output variables

A time series data sequence to which an autoregressive model needs to be fitted is

given as the input to the software. The test data is generated from pressure sensors which

are considered to have white noise.

Input variables:

• A block of data containing 1024 time series observations

• Maximum order

• Input channel for the QADC

• Sampling frequency for the PIT timer

• Radix: Number of bits allotted for the decimal par

Timer

Queued Analog to

Digital Converter

AR Parameter

Estimation and

Model Order

Selection

 25

Output variables:

• Autocorrelation functions with the lag varying from 0 to maximum order

• AR parameters for different model orders

• Noise variance using recursion

• Noise variance using residual error sequence for different model orders

• Akaike Information Criterion functions for different model order.

3.3.3 Flowchart

The flow chart of the source code is given in the Figure 3.2.

Description of the Flowchart:

• Declaration of the variables: The signal is passed through the 50
th
 channel of the

QADC of PowerPC MPC 555. The sampling frequency is set to 100 Hz. Single

scan mode of operation is used. The input variables are set to their initial values.

A block of data containing 1024 samples is read into an array. Radix is set to 24,

8 or 10 based on the precision required. The maximum order is set to 25.

• Mean of the block of data is calculated and subtracted from each sample in order

to get rid of the DC components from the time series observations.

• Normalized autocorrelation functions are calculated using the equation 3.2.

• AR parameter estimation: Now the autoregressive parameters are calculated using

the following recursive equations 3.16 and 3.17 respectively [3].

1 , 1

1
1 , 1

0 ,

1

n

n n i n i

i
n n n

n i i

i

R a R

a

R a R

+ + −
=

+ +

=

−
=

−

∑

∑
 3.16

1, , 1, 1 , 1

1,n 2,n n,n

*

where j=1,2,3,........n

a ,a ,....,a areAR parametersof modelorder n

n j n j n n n n ja a a a+ + + − += −

 3.17

 26

Figure 3.2 Flowchart for the implementation of the AR Model

Declaration of the Variables

Sample count=0

Maximum Order Estimation

Computing the mean of the data

New samples = old samples-mean

Covariance estimation for single

block of data for different lags

Normalization of the covariance

to get Autocorrelation functions

Residual sequence and noise

Variance calculation

Sample count =0

Autoregressive parameter

estimation fitting an AR model

 27

• The optimal model order is estimated using the AIC function values for different

model orders using the formula

2ln() 2AIC N nσ= +

is the number of sample points

is the AR model order

 is the prediction error variance

where

N

n

σ 2

• Noise variance is calculated using the formula.

2 2 2

1 1, 1 n+1,n+1

2

n

n,1 n,2 n,n

(1)wherea 1

σ is varianceof modelorder n

a ,aa areAutoregressiveparametersofmodelorder n

n n n naσ σ+ + += − ≤

• Residual variance is calculated using the residual error sequence using the

formula

1

() () ()
n

i

i

v k x k a x k i
=

= − −∑

2 2 2

v

1

2

k

1
ˆ ˆ ˆwhereσ is thenoise variance

v̂ is the residualerror sequenceformodelorder k

N

v k

k

v
N

σ
=

= ∑

• Noise variance calculated in both the ways should be almost equal. There should

not be much difference between the two values of variance.

• Now, the sample count is again set to zero and the next block of 1024 samples is

collected and the AR model is fitted to it for updating the AR parameters.

3.3.4 Arithmetic operations

For embedded processors, the computations are often done using a fixed point

representation of the variables. The software for the microprocessor implementation is

developed in two stages. Initially, the source code for the autoregressive parameter

estimation is developed with floating point representation of the variables on a PC in ‘C’.

Later, for implementing it on the embedded processor the source code is rewritten with

fixed point representation of the variables and the results obtained are cross checked.

 28

 A separate library of arithmetic operations – addition, multiplication, division and

logarithmic function are implemented using the fixed point integer operations. The next

section discusses some of the basic differences between the number representation

systems:

1. Floating point representation

2. Fixed point representation.

Floating point numbers:

 Floating point representation is defined in IEEE standard 754. The IEEE standard

defines both 32-bit single and 64-bit double formats. It also defines extended single

precision and extended double precision numbers. Floating point representation is similar

to scientific notation with a number multiplied by a base raised to some power. A floating

point number consists of three parts: the sign bit, the exponent, and the mantissa. The

sign bit is 0 if the number is positive and 1 if the number is negative. The format of

floating point numbers is given in the Figure 3.3.

Fixed point numbers:

 Fixed point numbers have a fixed radix point. The format of the fixed point

numbers is given in Figure 3.4.There are a fixed number of bits to the right of the radix

point called fractional bits and a fixed number of bits to the left of the radix point called

integer bits. Fixed point arithmetic includes only integer operation. Thus there is no

requirement for the additional hardware in the arithmetic logic unit to have floating point

unit. Fixed point representation of numbers can produce efficient embedded code when

performing mathematically huge operations. The disadvantage of the fixed point numbers

is that they have a limited range of values; so fixed point numbers have inaccuracies and

these inaccuracies depend upon the number of fractional bits.

 The major advantage of using fixed point numbers is high efficiency. The

processing speed is high if the application includes only fixed point computations and

numbers.

 29

Figure 3.3 IEEE 754 format of 32 bit floating point numbers

Figure 3.4 Bit format for the fixed point representation

In this research work, the software model for the implementation of

autoregressive analysis is developed using fixed point numbers. Though the dynamic

range of numbers that can be presented using the floating point numbers is higher than

the fixed point numbers, fixed point numbers are preferred in embedded processors as

applications developed with fixed point numbers have high efficiency and high

processing speed. Most of the DSP applications require specific dynamic range which

can be achieved using certain fixed point number representations. In this work 8.24 fixed

point representation is used and the precision up to 6
th
 decimal point is achieved.

 30

CHAPTER 4

MICROPROCESSOR IMPLMENTATION

 In this chapter, the microprocessor implementation of the autoregressive model

for autoregressive parameter estimation of a process signal is discussed. The PowerPC

MPC 555 is used for the implementation of the AR model. Various modules of the MPC

555 such as the queued analog to digital converter and timer module are described which

are used for the generation digital time series data from analog process signal.

The MPC 555 is interfaced with the PC on which the C source code of the AR

model implementation is run using CodeWarrior software which generates the assembly

language code for the microprocessor implementation. CodeWarrior is an integrated

development tool which provides C/C++ level debugging of the code. It is used to design,

create and implement applications for microprocessors.

4.1 Block diagram for the microprocessor implementation of AR model

 The hardware required for the microprocessor implementation of the

autoregressive model for the estimation of the autoregressive parameters can be seen in

Figure 4.1, which shows the block diagram of the microprocessor implementation of the

AR model. The basic building blocks for the microprocessor implementation are:

1. PowerPC MPC 555

2. Queued analog to digital converter module of MPC 555

3. Periodic interrupt timer module of MPC 555

4. Pressure sensors

5. Filters and amplifier

6. PC with CodeWarrior software, which provides an integrated development

environment for the generation of the code in ‘C’ and translates it into machine-

understandable assembly language.

 31

Figure 4.1 Microprocessor implementation of autoregressive analysis

 Noise signals generated from the water flow pressure sensors are considered for

the autoregressive analysis. The generated noise signals from the pressure sensors are

first filtered using Butterworth low pass and high pass filters to get rid of the high

frequency components band limiting the overall desirable frequencies. Then the analog

signal is fed to the queued analog to digital converter module of the PowerPC MPC 555

for the generation of the digital time series data. The PowerPC is interfaced with the PC

with the CodeWarrior software installed. QADC is programmed in such a way that it

generates the digital data with desired sampling frequency with the help of Programmable

Interrupt Timer (PIT) which is set to throw an interrupt at sampling rate. Then the time

series data is fed to the autoregressive parameter estimation software module written in

‘C’, run on the CodeWarrior software which generates the machine-understandable

assembly language code for programming the PowerPC. The PowerPC is interfaced with

the PC through BDM connector.

Pressure

Sensors

Amplifier

Section

Timer (PIT)

 QADC

 CPU

PC with

Code warrior IDE

Filtering

Stage

 MPC 555

Analog

signal

 32

4.2 PowerPC MPC 555

 MPC 555 is a RISC processor and a member of Motorola MPC 500 family. It is

built with Power PC core technology. Figure 4.2 gives the block diagram of the MPC 555

which represents different modules of it and their organization. The salient features of the

MPC 555 processor are listed below [12].

1. PowerPC core with floating-point unit

2. 26 Kbytes fast RAM and 6 Kbytes TPU microcode RAM

3. 448 Kbytes Flash EEPROM with 5V programming

4. 5V I/O system

5. Serial system: queued serial multi-channel module (QSMCM), dual CAN 2.0B

controller modules

6. 0-channel timer system: dual time processor units (TPU3), modular I/O system

(MIOS1)

7. 32 analog inputs: dual queued analog-to-digital converters (QADC64)

8. Submicron HCMOS (CDR1) technology

9. 272-pin plastic ball grid array (PBGA) packaging

10. 40-MHz operation, -40 °C to 125 °C with dual supply (3.3 V, 5 V) (-55 °C to

125°C for the suffix A device)

11. 32-bit architecture (PowerPC ISA architecture compliant)

12. Core performance measured at 52.7-Kbyte Dhrystones (v2.1) @ 40 MHz

13. Fully static, low power operation

14. Integrated double-precision floating-point unit

15. Precise exception model

16. On–chip watch points and breakpoints.

17. BDM on chip emulation development interface with peripherals or PC.

 33

Figure 4.2 Block diagram of MPC 555 (from [12])

 34

MPC 555 has a 32- bit RISC architecture. It works with SRAM, EPROM, FLASH

EEPROM and other peripherals. It has an external bus interface with real time clock

registers and two types of interrupt timer routines namely decrementer and time base. In

this project the module periodic interrupt timer has been used for the sampling the digital

data.

 4.3 Queued analog to digital converter modules

 MPC 555 is provided with 2 queued analog to digital converter modules and each

QADC has the following features [12]:

1. 16 analog input channels, using internal multiplexing

2. 41 total input channels, using internal and external multiplexing

3. 10-bit A/D converter with internal sample/hold

4. Typical conversion time of 10 µs (100,000 samples per second)

5. Two conversion command queues of variable length

6. Single-scan or continuous-scan of queues

7. 64 result registers

8. Output data readable in three formats:

— Right-justified unsigned

— Left-justified signed

— Left-justified unsigned

9. Automated queue modes initiated by:

— External edge trigger/level gate

— Software command

10. 5V reference and range

The block diagram of the QADC module of MPC 555 is given in Figure 4.3. The QADC

consists of

1. Analog front-end

2. Digital control subsystem.

 35

Figure 4.3 Block diagram of QADC (from [12])

It also includes an inter module bus (IMB3) interface block. The analog section includes

input pins, channel selection logic, an analog multiplexer, and one sample-and-hold

analog circuit. The analog conversion is performed by the digital-to-analog converter

(DAC) resistor-capacitor array, a high-gain comparator, and a successive approximation

register (SAR).The digital control section contains the conversion sequencing logic. It

also includes periodic/interval timer, control and status registers, the conversion

command word (CCW) table RAM, and the result word table RAM. The QADC

performs 8-bit, 16-bit, and 32-bit data transfers, at both even and odd addresses.

4.3.1 Operation modes

The QADC64 module configuration register (QADC64MCR) defines

1. Freeze mode of operation

2. Stop mode operation

3. Supervisor space access

4. Interrupt arbitration priority.

 36

Stop mode operation:

When the STOP bit in QADC64MCR is set, the clock signal to the A/D converter

is disabled and analog to digital conversion analog circuitry is turned off. The STOP bit

must be cleared to read results from RAM.

Freeze mode of operation:

The QADC64 enters freeze mode when background debug mode is enabled and a

breakpoint is processed.

4.3.2 Analog input channels

The number of analog channels depends on whether or not external multiplexing

exists.16 analog channels are present and supported by the internal multiplexing circuitry

of the QADC.

4.3.3 Scan modes

The QADC provides several scanning input channels. In single-scan mode, a single

pass through a sequence of analog to digital conversions is performed. In continuous-scan

mode, multiple passes through a sequence of analog to digital conversions are executed.

The different modes present are given below:

1. Disabled and reserved mode

2. Software initiated single-scan mode

3. External trigger single-scan mode

4. External gated single-scan mode

5. Interval timer single-scan mode

6. Software initiated continuous-scan mode

7. External trigger continuous-scan mode

8. External gated continuous-scan mode

9. Interval timer continuous-scan mode.

Software Initiated Single-Scan Mode: Execution of a scan sequence for queue 1 or 2 can

be initiated by software by selecting single-scan mode. Upon trigger event, QADC

immediately begins execution of the first CCW in the queue. If a pause occurs, another

 37

trigger event occurs and then execution continues without pausing. The QADC then

automatically performs the conversions in the queue until an end-of queue condition is

encountered. The software initiated single-scan mode is useful for the following:

• Enables software to completely control the queue execution

• Enables software to easily alternate between several queue sequences

In this project single scan mode of scanning sequence of data is followed, which

is initialized by the software. The analog signal from the pressure sensors is applied to

one of the analog input channels. The samples are collected at a frequency of 100Hz.

Once a block of 1024 digital samples are collected, the QADC stops scanning and is

paused till the execution of the software module of estimation of the autoregressive

parameters. The QADC is enabled once the Periodic Interrupt Timer throws a level zero

interrupt for the QADC to perform the conversion.

4.4 Periodic interrupt timer

The periodic interrupt timer has16-bit counter clocked by the PITRCLK clock

supplied by the clock module of the processor. The 16-bit counter counts down till zero

when provided with a value from the PITC. When the timer reaches zero value, the PS bit

is set and an interrupt is generated. The software should be able to read the PS bit and

change it to zero to stop the interrupt. At the next input clock edge, the value in the PITC

is again loaded into the counter and the process continues with the divider reset and the

counter begins counting again. If the PS bit is not cleared, an interrupt request is

generated. The request remains pending until PS is cleared. If the PITC value is changed,

the counting is stopped and the count resumes with the new value in PITC. If the PTE bit

is not set, the PIT is unable to count and retains the old count value. The block diagram of

the PIT is given by the Figure 4.4.

The timeout period is calculated as given by the equation 4.1 [12].

1 1

{ }
4 256

period

pitrtclk

PITC PITC
PIT

External clockF

or

+ +
= = 4.1

 38

Figure 4.4 Block diagram of PIT (from [12])

For example solving the above equation using 4 MHz external clock and a pre divider of

256 gives:

1

15625
period

PITC
PIT

+
= 4.2

4.5 Pressure Sensors and Filters

The QADC of the MPC 555 microprocessor is interfaced with the pressure

sensors through filters. The analog signal from the pressure sensors are first passed

through the Butterworth low pass filter to set a lower cut off frequency and then passed

through Butterworth high pass filter to get rid of the all high frequency components as the

noise signal is present only in the low frequency components of the signal. The filter

signal is then amplified (20-dB amplification).

 Till this chapter design and development of an embedded system for the

implementation of autoregressive analysis is discussed. In the next chapters verification

and testing of the developed prototype model of the embedded system for implementing

AR analysis is focused.

 39

CHAPTER 5

TWO TANK FLOW CONTROL LOOP EXPERIMENT

 In this chapter we discuss about the test data generation and describe the

apparatus used for the generation of the data. The experimental flow control loop has

been used to develop multivariate control algorithms that are being applied to a space

reactor system. For the collection of test data we mainly concentrate on acquiring the

noise signals generated using pressure sensors during the flow control.

5.1 General description

The 2-Tank loop is built on a wheeled table-like seven-foot long, four-foot wide

and six-foot high steel frame structure. This structure holds all sensors, piping, pump,

sump tank, and aircraft aluminum table top, cables, control valves, manual valves and

two tanks and can be easily moved around.

5.2 Component description

Tanks:

For the level control there are 2 similar acrylic tanks installed on this loop called

Tank 1 and Tank 2, respectively, and their dimensions are: 5-3/4" in diameter and 3-foot

long and a 27-gallon stainless steel tank is also installed underneath the table top to

provide the necessary water for the circuit. Figure 5.1 shows a detail of the 2 acrylic

tanks used in this project.

Sensors:

There are 11 sensors installed in the 2 tank loop - 4 differential pressure sensors, 4

thermocouples and 3 turbine meters. In addition to this, there are 2 primary orifice flow

meters.

 40

Figure 5.1 Level tanks details

Pressure Transmitters:

Four Rosemount differential pressure sensors are currently installed. Two of them

are used to measure the water level in each tank. The two other pressure sensors are

connected to orifice meters and are used to measure the water flow going into each of the

level tanks. Information about the pressure sensors is given in Table 5.1 and Figure 5.2

gives details of two sensors. To calibrate the pressure sensors range, a software package

called AMS Suite from Emerson
®
 was used. This software package can provide us an

easy way to calibrate, zero-trim, schedule maintenance and keep record of each and every

calibration performed. It comes with an RS-232 modem and cable to plug into the

computer serial port. On the other end, a pair of probes is used to connect the computer

to the sensor terminals.

Flow meters:

Two different types of flow rate sensors are used in the loop: turbine and orifice

meters. The orifice meters were provided by Rosemount
™
 and the turbines were

manufactured by Omega
™
. Also, there are 3 turbines installed in the loop: one at each

tank outlet and one in the bypass and all of them are factory calibrated. Two primary

orifice plates are installed at the tank inlets to measure the inlet flow rate.

 41

Table 5.1 Pressure Sensors Information

Sensor ID Function Output Calibration Range

Tank 1 Measures Level in Tank 1 4 – 20mA 0 – 900 mmH2O

Tank 2 Measures Level in Tank 2 1 – 5 Volts 0 – 900 mmH2O

Flow 1 Tank 1 Inlet flow 4 – 20mA 0 – 6165 mmH2O

Flow 2 Tank 2 Inlet flow 4 – 20mA 0 – 6303 mmH2O

Figure 5.2 Pressure sensors used in the control loop

 42

Thermocouples:

There are four type K thermocouples installed to monitor the temperature. These

sensors are not calibrated; instead a standard calibration curve is being used.

Data Acquisition Software:

The data acquisition is conducted in two ways.

Method 1:

Data acquisition for the two tank loop for autonomous control experiment is

written in Visual Basics software. The noisy digital data from the pressure sensors is

collected using the data acquisition software. The graphical user interface for collecting

the digital data is given below in the Figure 5.3. The graphical interface allows entering

the required parameters for the data collection like sampling rate, cut off frequencies of

low pass and the high pass filters.

Method 2:

First noise signal is filtered using the low pass and high pass Butterworth filters

and then amplified. The amplified signal is then fed to the Analog to digital converter of

the Power PC 555. The ADC of the PowerPC 555 is programmed in such a way that it

reads the digital samples at the given sampling frequency.

Figure 5.3 GUI of data acquisition software (from [11])

 43

CHAPTER 6

RESULTS

 In this chapter we discuss about the results obtained by running the software for

estimating the autoregressive parameters on the microprocessor and analysis the

parameters such as power spectral density and impulse response. Initially autoregressive

parameters are estimated using the floating-point computations, the results of which are

taken as the reference for the estimation of the parameters using fixed-point

computations. The software is implemented with fixed numbers because embedded

processors can perform only integer operations.

Autoregressive model (AR) is developed and Tested in three stages. They are:

1. Floating point implementation of the AR model on a PC and testing with the

predefined data model.

2. Fixed point implementation of the AR model on a PC and testing it with the

synthetic data generated using oscilloscope.

3. Fixed point implementation of the AR model on a PowerPC and testing it with a

data generated from pressure sensors.

6.1 Test data generation

 The test data for testing the developed autoregressive (AR) model is generated in

three different ways.

Initially for the floating point implementation of the AR model on a PC, the test data is

generated using a predefined 10
th
 order model using MATLAB. The block diagram for

the test data generation using MATLAB is given in Figure 6.1. The MATLAB code for

the generation of the test data is given in Appendix B. The results obtained by testing the

AR model using the data generated using the predefined 10
th
 order AR model are

considered to the desired results for the fixed point implementation of the model.

 44

Figure 6.1 Test data generation using MATLAB

In the second stage the autoregressive (AR) model is testing using the synthetic

data generated using oscilloscope and function generator. In this stage fixed point

implementation of the AR model is considered and is implemented on a PowerPC. A sine

wave signal with added noise is generated at sampling frequency of 100 Hz for testing

the model. Analog to digital converter model and the timer modules of PowerPC are

testing by giving different sampling frequencies.

In the third stage the AR model is testing using the data generated using real

pressure sensors as explained in the Chapter 5. In this stage fixed point implementation of

the AR model is considered and is implemented on a PowerPC. The AR parameters

estimated in this stage have accuracy to the 6
th
 decimal point with reference to the

floating point results in the first stage. 8.24 fixed point representation format is

considering in this stage.

The results presented in this chapter are obtained by fitting an autoregressive model

to the following listed test data:

1. A test data set generated using predefined AR model of order 10 as given below:

() 1.15620 (1) 0.60582 (2) 0.69749 (3) 0.32119 (4)

0.26957 (5) 0.17467 (6) 0.09010 (7) 0.09005 (8)

0.01647 (9) 0.05458 (10)

x t x t x t x t x t

x t x t x t x t

x t x t

= − − − + − − −

+ − − − + − − −

+ − − −

Plots of the generated test data using predefined 10 order model and pressure sensors are

given in Figure 6.2 and 6.3 respectively.

Predefined AR

(10) Model

Parameters

MALTAB code +

White Gaussian

Noise

Test Data

 45

100 200 300 400 500 600 700 800 900 1000
-15

-10

-5

0

5

10

15
Plot of the TEST DATA 1

Figure 6.2 Plot of the test data generated using a 10
th
 order AR model

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5
Plot of Test Data 2

Figure 6.3 Plot of the test data generated using pressure sensors

 46

2. A test data set of 1024 points generated at a sampling frequency of 30 Hz, lower

cutoff frequency of 0.01 Hz and upper cutoff frequency of 10 Hz.

6.2 Estimated parameters using floating point numbers

Using Test data 1:

Total number of samples: 10000

Maximum order: 25. Generally up to 5 % of the total data set is considered to be the

maximum model order for which the AR parameters are estimated recursively.

 The auto correlation sequence generated using the test data set 1 on a PC is:

0.981312 0.980456 0.958669 0.950477 0.939282 0.922813

0.904767 0.886751 0.867483 0.846133 0.824165 0.802691

0.780979 0.759306 0.738271 0.717586 0.696871 0.675628

0.655006 0.634519 0.614240 0.595468 0.577337 0.558824

0.540262 0.522255

Figure 6.4 gives the plot of autocorrelation sequence against lag. The optimal

model order is estimated based upon the AIC functions. The model order, for which AIC

function is minimized, is considered to be the optimal model order. Figure 6.5 gives the

plot of AIC against model order. From Figure 6.5 we consider the optimal model order to

be 10. The plot of the variance verse model order is given by the Figure 6.6. We observe

from the variance plot that the variance decreases as the model order increases and

around the optimal model order it tends to be nearly constant.

2
2

1

2

)(ˆ1

ˆ
)(

fkjp

k p

wpYW

xx

eka

fP
π

σ

−

=∑+
= 6.1

22

1

xx

ˆˆ ˆ(0) [1 ()]

p is the model order

r (0) is the autocorrelation function with lag' 0 '

p
f

wp p xx k

k

where E r a kσ
=

= = −∏

 47

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag

A
u
to

C
o
rr
e
la

ti
o
n
 F

u
n
c
ti
o
n

Plot of Autocorrelation functions Vs. Lag

Figure 6.4 Plot of autocorrelation function Vs lag

5 10 15 20 25
120

140

160

180

200

220

240

260

Model order

A
k
a
ik

e
 I
n
fo

rm
a
ti
o
n
 C

ri
te

ri
o
n
 F

u
n
c
ti
o
n

Plot of AIC Function Vs. Model order

Figure 6.5 Plot of Akaike information criterion function vs. model order

 48

0 5 10 15 20 25
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Model order

V
a
ri
a
n
c
e

Plot of Variance Vs. Model order

Figure 6.6 Plot of variance Vs model order

Estimated AR parameters for model order 10:

1.157715 -0.591488 0.630775 -0.271905 0.220209 -0.152097

0.090882 -0.065840 0.005977 -0.045113

Original AR parameters of the model through which the time series data is generated:

1.15620 -0.60582 0.69749 -0.32119 0.26957 -0.17467

0.09010 -0.09005 0.01647 -0.05458

The power spectral density (PSD) for different model orders is evaluated, and it is

observed that the PSD for model orders greater than 10 is similar. Figures 6.7, 6.8, and

6.9, 6.10 give the power spectral density vs. frequency plot for model orders 9, 10, 11,

and 12, respectively. The PSD for a particular model order is given by the equation 6.1.

 49

0 50 100 150 200 250 300 350 400 450 500
-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8
Power Spectral Density - Yule Walker method - order 9

frequency (Hz)

P
S

D
 i
n
 D

B

Figure 6.7: Power spectral density plot for model order 9

0 50 100 150 200 250 300 350 400 450 500
-30

-25

-20

-15

-10

-5
Power Spectral Density - Yule Walker method - order 10

frequency (Hz)

P
S
D
 i
n
 D

B

Figure 6.8 Power spectral density plot for model order 10

 50

0 50 100 150 200 250 300 350 400 450 500
-30

-25

-20

-15

-10

-5
Power Spectral Density - Yule Walker method - order 11

frequency (Hz)

P
S
D

 i
n
 D

B

Figure 6.9 Power spectral density plot for model order 11

0 50 100 150 200 250 300 350 400 450 500
-30

-25

-20

-15

-10

-5
Power Spectral Density - Yule Walker method - order 12

frequency (Hz)

P
S

D
 i
n
 D

B

Figure 6.10 Power spectral density plot for model order 12

 51

Using Test Data Set 2:

Specifications:

Total number of samples: 1024

 A block of 1024 is considered because it is easy to perform block computations

with fixed point representation of numbers.

Maximum order: 25.

The auto correlation sequence generated using the test data set 2 on a PC is:

0.981422 0.932467 0.860238 0.773216 0.678796 0.582349

0.487326 0.395781 0.308957 0.227691 0.152753 0.084818

0.024445 -0.027907 -0.071861 -0.107471 -0.135231 -0.155876

-0.170158 -0.178809 -0.182488 -0.181846 -0.177589 -0.170541

-0.161593

Figure 6.11 gives the plot of autocorrelation sequence against lag. The model

order is considered to be ‘8’ as the AIC function is minimum for that particular model

order. The plot of the variance verse model order is given by the Figure 6.12. We observe

from the variance plot that the variance decreases as the model order increases and

around the optimal model order it tends to be nearly constant.

The power spectral density (PSD) for different model orders is evaluated, and it is

observed that the PSD generated for model orders 8,9, and 10 is almost similar and there

is little difference in the PSD for model orders greater than 8. Figures 6.13 and 6.14 give

power spectral density vs. frequency plot for model orders 8, and 6 respectively. The

power spectral density is calculated using Equation 6.1.

Estimated AR parameters for model order 8:

1.817602 -0.729018 -0.262774 0.067808 0.094208 0.019240

-0.011128 -0.027561

 52

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag

A
u
to

C
o
rr
e
la

ti
o
n
 F

u
n
c
ti
o
n

Plot of Autocorrelation functions Vs. Lag

Figure 6.11: Plot of autocorrelation function Vs Lag

0 5 10 15 20 25
1.77

1.78

1.79

1.8

1.81

1.82

1.83

1.84

1.85

1.86

1.87
x 10

-3

Model order

V
a
ri
a
n
c
e

Plot of Variance Vs. Model order

Figure 6.12 Plot of variance Vs model order

 53

0 50 100 150 200 250 300 350 400 450 500
-88

-86

-84

-82

-80

-78

-76
Power Spectral Density - Yule Walker method - order 8

frequency (Hz)

P
S
D
 i
n
 D

B

Figure 6.13 Power spectral density plot for model order 8

0 50 100 150 200 250 300 350 400 450 500
-90

-88

-86

-84

-82

-80

-78

-76
Power Spectral Density - Yule Walker method - order 7

frequency (Hz)

P
S

D
 i
n
 D

B

Figure 6.14 Power spectral density plot for model order 6

 54

6.3 Estimated parameters using fixed point numbers on PC

 The software generated for the AR parameter estimation consists of macros,

which converts the floating-point numbers to fixed-point numbers. The complete data set,

which is in the floating-point representation, is converted to fixed point using the macros

and the autoregressive parameters are estimated on the PC. The new estimated

autocorrelation sequence differs from autocorrelation sequence estimated using floating-

point numbers by an error margin of 0.0001 due to the overflow conditions.

Using Test data-1

Specifications:

Total number of samples: 1024

Maximum order: 25. Generally up to 5 % of the total data set is considered to be the

maximum model order for which the AR parameters are estimated recursively.

Optimal model order: 10

Estimated AR parameters for model order 10 with fixed point numbers:

(a) In fixed point representation:

18487870 -7961432 8775699 -2981324 2284315 -1747619

953901 -790422 64131 -691830

(b) In floating point representation:

1.083820 -0.544189 0.645291 -0.274969 0.198357 -0.101958

0.052591 0.018342 -0.066263 -0.029109

Estimated AR parameters for model order 10 with floating point numbers:

1.157715 -0.591488 0.630775 -0.271905 0.220209 -0.152097

0.090882 -0.065840 0.005977 -0.045113

Original AR parameters of the model through which the time series data is generated:

1.15620 -0.60582 0.69749 -0.32119 0.26957 -0.17467

0.09010 -0.09005 0.01647 -0.05458

 The estimated autoregressive parameters vary from the original parameters with

error margin of 0.001. The graphical plots generated for PSD, noise variance and AIC are

almost similar to plots generated in Section 6.1.

 55

Using Test Data Set 2:

Specifications:

Total number of samples: 1024

Maximum order: 25.

Optimal model order: 8

Estimated AR parameters for model order 8 with fixed point numbers:

(a) In fixed point representation:

30490661 -12183795 -4533045 1278319 1517592 291335

-126921 -487727

(b) In floating point representation:

1.817385 -0.726211 -0.270191 0.076194 0.090456 0.017365

-0.007565 -0.029071

Estimated AR parameters for model order 8 with floating point numbers:

1.817602 -0.729018 -0.262774 0.067808 0.094208 0.019240

-0.011128 -0.027561

The estimated autoregressive parameters vary from the original parameters with error

margin of 0.001. The graphical plots generated for PSD, noise variance and AIC are

similar to plots generated in the Section 6.1.

6.4 Estimated parameters using fixed-point numbers on PowerPC MPC 555

 For the implementation of the algorithm on a PowerPC, the block size is restricted

to 1024 because of the memory constraints. The internal flash memory of the PowerPC

board is 448 Kbytes and the SRAM is 26 Kbytes. The analog sensor signals are converted

to digital signals in QADC module of PowerPC and the time series data is generated at a

sampling frequency of 10 Hz. A block of 1024 samples is considered for the block

computations. Noise variance is calculated using recursive formula and also by

calculating the residual sequence.

 56

Using Test data 1

Specifications:

Total number of samples: 1024

Maximum order: 25

The auto correlation sequence generated using the test data set 1 on a Power PC MPC

555 with fixed-point representation of numbers is given in Figure 6.15 and Figure 6.16

gives the generated autoregressive parameters generated.

We observe that there is a slight variation between the autocorrelation sequence

and AR parameters generated by implementing the algorithm on a Power PC and the

autocorrelation sequence and AR parameters generated on the PC because of the

redefined logarithmic function and the overflow conditions. The error is in the range of

0.0001. The noise variance values and AIC values for different model orders are found to

be similar to the values generated in Section 6.2.

 57

Figure 6.15 Screenshot showing the autocorrelation sequence for predefined AR model

Figure 6.16 Screenshot showing the AR parameters of order ‘10 ’

 58

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

 In the previous chapter the results of the autoregressive implementation of the

process sensor signals on a microprocessor are presented. The results produced are quite

promising and are according to the given specifications. This chapter outlines the

conclusions and presents future work of this research.

7.1 Conclusions

The following conclusions are drawn from the results of the research work.

1. Estimation of the autoregressive parameters and model order selection is done

with a precision up to 4th decimal point with 8.24 fixed point representation.

2. Implementation of the Autoregressive analysis using fixed point implementation

increases the speed of the block computations and reduces the power

consumption.

3. The microprocessor implementation of the AR analysis is constrained by the

memory limitation of the board and better precision of the results, multiple block

computations can be achieved with increased memory.

4. Autoregressive analysis of process sensor signals involves fewer computations

when compared to moving average analysis and mixed autoregressive and moving

average analysis.

7.2 Future Work

 Future scope of the research work includes

1. Implementation of the Autoregressive analysis on 8, 16 bit processors like

ARM processors, etc. This can result in lesser power consumption than the 32

bit processor.

2. AR analysis can be extended to the multivariate noise signals which are

vectors depending on multiple parameters.

 59

3. Power spectral density and other dynamic behavior parameter estimation such

as impulse response, step response etc can be done for the analysis noise

signals.

 60

REFERENCES

 61

[1] S.L. Marple, Jr., Digital Spectral Analysis with Applications, Prentice-Hall,

 Englewood Cliffs, NJ, 1987.

[2] G.E.P. Box and G.M. Jenkins, Time Series Analysis: Forecasting and Control,

 Holden-Day, San Francisco, 1970.

[3] B.R. Upadhyaya and T.W. Kerlin, “Estimation of Response Time Characteristics of

 Platinum Resistance Thermometers by the Noise Analysis Technique,” ISA

 Transactions, Vol. 17, No. 4, pp. 21-38, 1978.

[4] J. G. Proakis and D. G. Manolakis, Digital Signal Processing – Principles,

 Algorithms, and Applications, Third edition, Macmillan Coll Div, 1992.

[5] M. J. Roberts, Probability and Random Variables (course notes).

[6] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-

 Hall, N.J., 1975.

[7] H. Schildt, C: the complete Reference, 4
th
 Edition, McGraw – Hill, 2000.

[8] E. Balaguruswamy, Programming in ANSI C, Second Edition, McGraw Hill, 1994.

[9] W. Stallings, Computer organization and Architecture, Designing for

 Performance, Sixth edition, Prentice Hall, 2003.

[10] J. L. Hennessy & D. A. Patterson, Computer Architecture: A Quantitative

 Approach, Third Edition, Morgan Kaufmann, 2003.

[11] Thesis and DOE report attached: B.R. Upadhyaya et al., “Autonomous Control of

 Space Reactor Systems”, Annual Report, November 2006.

 [12] http://www.freescale.com

http://www.freescale.com/

 62

APPENDICES

 63

A – SOURCE CODE

/**
Name of code: Autoregressive Analysis

Purpose of code: To fit a model to process sensor signals and to
estimate the autoregressive parameters and optimal model order of the
model.

Author of code: Swetha Priyanka Pakala

Developed under the guidance of Gregory D. Peterson
at The University of Tennessee in the Tennessee Advanced
Computing Laboratory.

Copyright (C) 2006 Swetha Priyanka Pakala and Gregory D. Peterson

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to

Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

You may also view the GNU Lesser General Public License at
http://www.gnu.org/licenses/lgpl.html

For additional information or queries, send email to gdp@utk.edu.
**/
/* Variables:
 'Samples' is the two dimensional array consisting of the time
 series data with white noise

 'blocksize' is the block size

 'number_blocks' is number of blocks

 'max_order' gives the maximum order possible for the model

'mean' is a one dimensional array consisting of the avg mean value
 of each and every block

'covariance' is the two dimensional array consisting of the
 covariance values

 64

 'initial_autocor' is the intial Autocorrelation

 'AutoCorrelation' is the one dimensional array consisting of the
 Autocorrelations of lag varying from 1 to max_order

 'ar_parameters' is the two dimensional array consisting of AR
 parameters like a11,a21,a22,a31,a32,a33 etc

 'variance' is the one dimensional array consisting of variance value
 of each and every block

 'aic' is the one dimensional array consisting of the AIC values of
 different orders

**/

#include "mpc555.h"
#include <stdio.h>
#include <math.h>
#include "fdlibm.h"

// declaring and initializing global variables

#define blocksize 1024
#define radix 24
int sampleCount = 0;
int mySamples[blocksize];
int pitctr = 0; // declaring and initializing a global variable
int samples[1][1024],ar_parameters[25][25]={0},initial_autocor=0,
AutoCorrelation[25]={0},temp1=0,numerator=0,denominator=0,residualError
[1024]={0},residualVariance=0;

// Declaration of the Functions
int numsum(int n);
int densum(int n);
int mul(int a,int b);
int divide(int u,int v);
int natural_logarithm(int u);
int taylorlog(int z);
void compute_AR_parameters();

void init555()
{
 USIU.SYPCR.B.SWE = 0; // Disable Watchdog timer
 USIU.PLPRCR.B.MF = 0x009; // Set 40 MHz system clock for 4MHz crystal
 UIMB.UMCR.B.HSPEED = 0; // Set the IMB to run at full clock speed
}

void initPIT()
{
// SPECIFIC INITIALIZATIONS FOR PIT:
 USIU.PITC.B.PITC = 0x619; // Load desired count value
 USIU.PISCR.B.PITF = 1; // Freeze enabled to stop PIT
 USIU.PISCR.B.PTE = 1; // Enable PIT to start counting

 65

 USIU.PISCR.B.PIRQ = 0x80; // Assign PIT interrupt to Level 0
 USIU.PISCR.B.PIE = 1; // Enable PIT interrupt
 USIU.SIMASK.R = 0x40000000; // Enable level 0 interrupt
}

initQADC_A()
{ // SPECIFIC INITIALIZATIONS FOR QADC-A:

 USIU.PDMCR.B.PRDS = 1; // Disable pullups on QADC pins
 QADC_A.QADC64MCR.R = 0x0080;// Configure QADC module for defaults:
 QADC_A.QACR0.R = 0x0013; // Stop mode disabled, SUPV mode on
 QADC_A.QACR1.B.MQ1 = 0; // Module is master, int clk = IMBCLK
 return 0;
}

LoadCCW_A()
{

 QADC_A.CCW[0].R = 0x0032; // Convert CH 50, 2 QCLKs
 QADC_A.CCW[1].R = 0xFF; // End conversion command
 return 0;

}

// MAIN FUNCTION

void main()
{
 int i=0;
 init555(); // Perform minimal chip initialization
 initPIT(); // Initialize PIT
 asm(" mtspr EIE, r0"); // Enable interrupts
 initQADC_A(); // Initialize QADC A
 LoadCCW_A();
 while (1)
 {
 if(sampleCount >= 1024)
 {
 compute_AR_parameters();
 sampleCount=0;
 }

 i++;
 } // loop forever
}

Convert_A()
{
 QADC_A.QACR1.R = 0x2100; // Trigger Queue 1 using s/w
 // single scan mode
 return 0;
}

 66

void level_0()
{
 int shiftedSample;
 USIU.PISCR.B.PS = 1; // clear the interrupt
 pitctr++; // update global variable
 Convert_A(); // Perform conversions
 mySamples[sampleCount] = QADC_A.RJURR[0].R;
 shiftedSample = mySamples[sampleCount]<<2;
 mySamples[sampleCount] = mySamples[sampleCount]+shiftedSample;
 mySamples[sampleCount] = mySamples[sampleCount]<<14;
 sampleCount++;
}
// DETERMINATION OF THE AUTO REGRESSION PARAMTERS AND THE MODEL ORDER
ESTIMATION

void compute_AR_parameters()
{
 // Declaration of the local variables
 int samples_count,max_order,number_blocks,blockCount=0,lag=0,
 order=0,k=0,shifted_1_byradix=0;
 int mean[25]={0},normalisationfactor[25]={0};
 int covariance[2][25]={0},variance[25]={0},aic[25]={0};

 for(samples_count=6;samples_count<1024;samples_count++)
 {
 for(k=1;k<=5;k++)
 {
 temp1=temp1+mul(ar_parameters[5][k],samples[0][samples_count+k]);
 }
 residualError[samples_count]=samples[0][samples_count]-temp1;
 temp1=0;
 }
 for(samples_count=6;samples_count<1024;samples_count++)
 {
 temp1=mul(residualError[samples_count],residualError[samples_count]);
 temp1=temp1/blocksize;
 residualVariance=residualVariance+temp1;
 }
 //reading the samples
 max_order=25;
 for(samples_count=0;samples_count<1024;samples_count++)
 {
 samples[blockCount][samples_count]=mySamples[samples_count];
 }
 /*Reading the time series data into the array 's[i][j]'
 where 'i' is the no. of blocks and 'j' is the block size*/

 for(samples_count=0;samples_count<1024;samples_count++)
 {
 temp1=samples[blockCount][samples_count]/blocksize;
 mean[blockCount]=mean[blockCount]+temp1;
 }
 number_blocks=1;
 shifted_1_byradix=1<<24;

 67

 for(blockCount=0;blockCount<number_blocks;blockCount++)
 {
 //Calcuation of the mean of the block
 for(samples_count=0;samples_count<blocksize;samples_count++)
 {
samples[blockCount][samples_count]=samples[blockCount][samples_count]-
mean[blockCount];// Subtracting the mean from all the samples
temp1=samples[blockCount][samples_count]/blocksize;
temp1=mul(temp1,samples[blockCount][samples_count]);
// Calculation of c0

normalisationfactor[blockCount]=normalisationfactor[blockCount]+temp1;
}
// Calculation of the Covariance values of each block
 for(order=1;order<=max_order;order++)
 {
 for(lag=0;lag<=(blocksize-order-1);lag++)
 {
 temp1=samples[blockCount][lag]/blocksize;
 temp1=mul(temp1,samples[blockCount][lag+order]);
 covariance[blockCount][order]=covariance[blockCount][order]+temp;
 }
covariance[blockCount][order]=divide(covariance[blockCount][order],norm
alisationfactor[blockCount]);
// Calculation of normalised auto correlation functions from lag 1 to
max_order
 }
}
 // final normalised autocorrelation functions with lags from 1 to
max_order
for(lag=1;lag<=max_order;lag++)
{
for(blockCount=0;blockCount<=number_blocks;blockCount++)
{
AutoCorrelation[lag]=AutoCorrelation[lag]+covariance[blockCount][lag];
}
AutoCorrelation[lag] = AutoCorrelation[lag]/number_blocks;
}
// calculating the final R0 value averaged of all the blocks
for(blockCount=0;blockCount<=number_blocks;blockCount++)
{
initial_autocor = initial_autocor
normalisationfactor[blockCount]/number_blocks;
}
// initial a11 parameter
ar_parameters[1][1]=AutoCorrelation[1];
/****AR paramemter calculation for the orders from 1 to max_order****/
/***********************MODEL RECURSIVE ALGORITHM*********************/
/* FORMULA:

 a[n+1][i]=a[n][i]-a[n+1][n+1]*a[n][n-i+1]
 where i= 1,2,.......n
a[n+1][n+1]={R[n+1]- summation{a[n][i]*R[n+1-i]}}/{rin
summation{a[n][i]*R[i]}}
 where i= 1,2,......n

 68

 Where a[n+1][i] is the ith AR parameter of the model whose
order is n+1*/

 // Determination of the a[n+1][n+1] parameters of different orders
 for(order=1;order<max_order-1;order++)
 {
 numerator=AutoCorrelation[order+1]-numsum(order);
 denominator=shifted_1_byradix-densum(order);
 temp1=divide(shifted_1_byradix,denominator);
 ar_parameters[order+1][order+1] = mul(numerator,temp1);

 // Determination of a[n+1][i] parameters
 for(k=1;k<=order;k++)
 {
 ar_parameters[order+1][k] = ar_parameters[order][k] -
mul(ar_parameters[order+1][order+1],ar_parameters[order][order+1-k]);
 }
 }

 /******** Calculation of the initial Varience sigma2********/

 temp1=mul(ar_parameters[1][1],ar_parameters[1][1]);
 temp1=(shifted_1_byradix-temp1);
 variance[1]=mul(temp1,initial_autocor);

 /**** Calculation of the sigma2 values from 1 to max_order*****/
 for(order=1;order<max_order;order++)
 {

 temp1=mul(ar_parameters[order+1][order+1],ar_parameters[order+1][
 order+1]);
 temp1=shifted_1_byradix-temp1;
 variance[order+1]=mul(variance[order],temp1);
 }
 // calculation of the AIC values from 1 to max_order
 for(order=1;order<=max_order;order++)
 {
 temp1=natural_logarithm(variance[order]);
 aic[order]=((blocksize*temp1)+2*order*shifted_1_byradix);
 }
 temp1=0;
 sampleCount=0;
}

/* Defining the Function numsum which determines

 Summation{a[n][i]*R[n+1-i]}
 where i=1,2....n. */

int numsum(int n)
{
int i; // i is the index for different order
int y = 0; // y is the summation
for(i=1;i<=n;i++)

 69

{
y = y + mul(ar_parameters[n][i],AutoCorrelation[n+1-i]);
}
return y;
}

/* Defining the Function densum which determines

 Summation{a[n][i]*R[i]}
 where i=1,2....n. */

int densum(int n)
{
 int i=0; // i is the index for different orders
 int x = 0; // x being the summation
 for(i=1;i<=n;i++)
 {
 x = x + mul(ar_parameters[n][i],AutoCorrelation[i]);
 }
 return x;
}

// Multiplication of two Fixed point numbers u and v
int mul(int u,int v)
{

 int result=0;
 long long answer=0;
 answer=(long long)u*(long long)v;
 result=(int)(answer>> radix);
 return(result); // result is the product of u and v
}

// Division of two fixed point numbers x and y

int divide(int x,int y)

{
 int z=0;
 long long xl=0,zl=0;
 xl = (long long)x << radix; // x1 is shifted version of x by radix
 if (x < 0)
 xl = xl & (-1 << radix);
 zl = xl/(long long)y;
 z = (int)zl; //z is the quotient in fixed point
 return(z);
}

// To determine natural logarithm

int natural_logarithm(int b)
{
 int y=0,z=0;
 y=1024*1024*16;
 z = (int)((taylorlog(b)-24*taylorlog(2))*y);

 70

 return(z);
}

/*DETERMINATION OF THE NATURAL LOGARITHM OF A FIXED POINT NUMBER IN
8.24 FIXED POINT REPRESENTATION*/

int taylorlog(fixed_number)
{
int fixed_eps=0.001,fixed_result,count,y,square_y,factor,temp1,temp2,
 shifted1,number_terms;
if(number<=0)
 fixed_result=0;
 else
 {
 if(number==1)
 fixed_result=0;
 else
 {
 shifted1=1<<radix;
 /**** y= (x-1)/(x+1)*****/
 temp2=fixed_number+shifted1;
 y=divide(fixed_number,temp2);
 temp1=divide(shifted1,temp2);
 y=y-temp1;
 count=3;
 /******calculating multiplying factor (x-1)^2/(x+1)^2******/
 square_y=mul(y,y);
 factor=mul(y,square_y);
 temp1=count*shifted1;
 fixed_result=y+divide(factor,temp1);
 temp1=fixed_result-y;
 if (temp1<0)
 temp1=-temp1;
 number_terms=2;
 while(temp1>fixed_eps)
 {
 y=fixed_result;
 count=count+2;
 factor=mul(factor,square_y);
 temp2=count*shifted1;
 fixed_result=y+divide(factor,temp2);
 temp1=fixed_result-y;
 number_terms=number_terms+1;
 }
 }
 temp2=shifted1*2;
 fixed_result=mul(temp2,fixed_result);
 return(fixed_result);
 }
}

 71

B – MATLAB CODE FOR TEST DATA GENERATION

% x(t)=1.15620*x(t-1)-0.60582*x(t-2)+0.69749*x(t-3)-0.32119*x(t-4)+0.26957*x(t-5)-

0.17467*x(t-6)+0.09010*x(t-7)-0.09005*x(t-8)+0.01647*x(t-9)-0.05458*x(t-10)+a(t)

clear all;

N=1024;

% Generation of Random Numbers

x(1) = randn(1,1);

x(2) = randn(1,1);

x(3) = randn(1,1);

x(4) = randn(1,1);

x(5) = randn(1,1);

x(6) = randn(1,1);

x(7) = randn(1,1);

x(8) = randn(1,1);

x(9) = randn(1,1);

x(10) = randn(1,1);

% Opening the files

fid = fopen('ar10(1).txt','w');

fid1 = fopen('ar10(2).txt','w');

% Test data Generation using the predefined autoregressive parameters

for k=11:(N+10)

 s=randn(1,1);

 x(k)=1.15620*x(k-1)-0.60582*x(k-2)+0.69749*x(k-3)-0.32119*x(k-4)+0.26957*x(k-

5)-0.17467*x(k-6)+0.09010*x(k-7)-0.09005*x(k-8)+0.01647*x(k-9)-0.05458*x(k-10)+s;

 fprintf(fid,'%f,',x(k));

 fprintf(fid1,'%f\t',x(k));

end;

status = fclose(fid);

 72

C – RESULTS

Estimation of AR parameters using floating point numbers on PC

Lag Autocorrelation Sequence Lag Autocorrelation Sequence

1 0.981312 1 0.98142

2 0.980456 2 0.93247

3 0.958669 3 0.86024

4 0.950477 4 0.77322

5 0.939282 5 0.6788

6 0.922813 6 0.58235

7 0.904767 7 0.48733

8 0.886751 8 0.39578

9 0.867483 9 0.30896

10 0.846133 10 0.22769

11 0.82417 11 0.15275

12 0.802691 12 0.08482

13 0.780979 13 0.02445

14 0.759306 14 -0.0279

15 0.738271 15 -0.0719

16 0.717586 16 -0.1075

17 0.696871 17 -0.1352

18 0.675628 18 -0.1559

19 0.655006 19 -0.1702

20 0.634519 20 -0.1788

21 0.61424 21 -0.1825

22 0.595468 22 -0.1818

23 0.577337 23 -0.1776

24 0.558824 24 -0.1705

25 0.54026 25 -0.1616

 73

Estimation of AR parameters using fixed point numbers on PC

Lag
Autocorrelation

Sequence Lag
Autocorrelation

Sequence

1 16442734 1 0.98006

2 16097369 2 0.95948

3 16021349 3 0.95495

4 15870874 4 0.94598

5 15633851 5 0.93185

6 15406996 6 0.91833

7 15194020 7 0.90563

8 14958657 8 0.89161

9 14659644 9 0.87378

10 14359019 10 0.85586

11 14102901 11 0.8406

12 13849523 12 0.8255

13 13584504 13 0.8097

14 13313707 14 0.79356

15 13039419 15 0.77721

16 12784013 16 0.76199

17 12513106 17 0.74584

18 12243654 18 0.72978

19 11994646 19 0.71494

20 11742368 20 0.6999

21 11492469 21 0.68501

22 11261530 22 0.67124

23 11032942 23 0.65762

24 10815890 24 0.64468

25 10578309 25 0.63052

 74

Lag Autocorrelation Sequence Lag Autocorrelation Sequence

1 16465517 1 0.981421

2 15644097 2 0.932461

3 14431955 3 0.860212

4 12971763 4 0.773177

5 11387334 5 0.678738

6 9768914 6 0.582273

7 8174474 7 0.487237

8 6638306 8 0.395674

9 5181312 9 0.30883

10 3817665 10 0.227551

11 2560153 11 0.152597

12 1420180 12 0.084649

13 407092 13 0.024265

14 -471367 14 -0.028096

15 -1208973 15 -0.07206

16 -1806660 16 -0.107685

17 -2272500 17 -0.135452

18 -2618877 18 -0.156097

19 -2858547 19 -0.170383

20 -3003764 20 -0.179038

21 -3065475 21 -0.182717

22 -3054638 22 -0.182071

23 -2983085 23 -0.177806

24 -2864810 24 -0.170756

25 -2714699 25 -0.161809

 75

VITA

Swetha Priyanka Pakala was born on 10
th
 December, 1983 in the city of Hyderabad,

India. She went to Little Flower High School, Hyderabad, India for high school. Swetha

did her undergraduate coursework at Sreenidhi Institute of Science and Technology,

Hyderabad, India with Electronics and Communication Engineering as major. She

developed a great interest for digital design during her undergraduate coursework and

came to United States of America in 2005 to pursue higher studies. She joined University

of Tennessee in 2005 and graduated with a Master of Science Degree in Electrical

Engineering in December 2006.

	Microprocessor Implementation of Autoregressive Analysis of Process Sensor Signals
	Recommended Citation

	Microprocessor Implementation of Autoregressive Analysis of Process Sensor Signals

