320 research outputs found

    A review of infrared thermography applications for ice detection and mitigation

    Get PDF
    Ice accretion on various onshore and offshore infrastructures imparts hazardous effects sometimes beyond repair, which may be life-threatening. Therefore, it has become necessary to look for ways to detect and mitigate ice. Some ice mitigation techniques have been tested or in use in aviation and railway sectors, however, their applicability to other sectors/systems is still in the research phase. To make such systems autonomous, ice protection systems need to be accompanied by reliable ice detection systems, which include electronic, mechatronics, mechanical, and optical techniques. Comparing the benefits and limitations of all available methodologies, Infrared Thermography (IRT) appears to be one of the useful, non-destructive, and emerging techniques as it offers wide area monitoring instead of just point-based ice monitoring. This paper reviews the applications of IRT in the field of icing on various subject areas to provide valuable insights into the existing development of an intelligent and autonomous ice mitigation system for general applications

    A survey of sag monitoring methods for power grid transmission lines

    Get PDF
    The transmission line is a fundamental asset in the power grid. The sag condition of the transmission line between two support towers requires accurate real-time monitoring in order to avoid any health and safety hazards or power failure. In this paper, state-of-the-art methods on transmission line sag monitoring are thoroughly reviewed and compared. Both the direct methods that use the direct video or image of the transmission line and the indirect methods that use the relationships between sag and line parameters are investigated. Sag prediction methods and relevant industry standards are also examined. Based on these investigation and examination, future research challenges are outlined and useful recommendations on the choices of sag monitoring methods in different applications are made

    Research and Technology, 1998

    Get PDF
    This report selectively summarizes the NASA Lewis Research Center's research and technology accomplishments for the fiscal year 1998. It comprises 134 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to he a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Lewis-published technical reports, journal articles, and presentations prepared by Lewis staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Lewis contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. At the time of publication, NASA Lewis was undergoing a name change to the NASA John H. Glenn Research Center at Lewis Field

    NASA Tech Briefs, July 1995

    Get PDF
    Topics include: mechanical components, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section of Federal laboratory computing Tech Briefs

    Radio frequency identification for the measurement of overhead power transmission line conductors sag

    Get PDF
    This dissertation deals with the challenge of power utility in South Africa which is on proactive detection of fallen power line conductors and real time sagging measurement together with slipping of such conductors. Various methods which are currently used for sag detection were characterized and evaluated to the aim of the research. A mathematical reconstruction done to estimate the lowest point of the conductor in a span is presented. Practical simulations and application of radio frequency identification (RFID) for sag detection is attempted through matlab software. RFID radar system is then analyzed in different modes and found to give precision measurement for sag in real time as opposed to global positioning system (GPS) if one dimension of the tag assumed fixed on the power line. Lastly errors detected on the measurements are corrected using a trainable artificial neural network. A conclusion is made by making recommendations in the advancement of the research.Electrical EngineeringM. Tech. (Electrical Engineering

    Fiber Bragg Grating Based Sensors and Systems

    Get PDF
    This book is a collection of papers that originated as a Special Issue, focused on some recent advances related to fiber Bragg grating-based sensors and systems. Conventionally, this book can be divided into three parts: intelligent systems, new types of sensors, and original interrogators. The intelligent systems presented include evaluation of strain transition properties between cast-in FBGs and cast aluminum during uniaxial straining, multi-point strain measurements on a containment vessel, damage detection methods based on long-gauge FBG for highway bridges, evaluation of a coupled sequential approach for rotorcraft landing simulation, wearable hand modules and real-time tracking algorithms for measuring finger joint angles of different hand sizes, and glaze icing detection of 110 kV composite insulators. New types of sensors are reflected in multi-addressed fiber Bragg structures for microwave–photonic sensor systems, its applications in load-sensing wheel hub bearings, and more complex influence in problems of generation of vortex optical beams based on chiral fiber-optic periodic structures. Original interrogators include research in optical designs with curved detectors for FBG interrogation monitors; demonstration of a filterless, multi-point, and temperature-independent FBG dynamical demodulator using pulse-width modulation; and dual wavelength differential detection of FBG sensors with a pulsed DFB laser

    9th EASN International Conference on Innovation in Aviation & Space

    Get PDF
    This Special Issue book contains selected papers from works presented at the 9th EASN (European Aeronautics Science Network) International Conference on Innovation in Aviation & Space, which was held in Athens, Greece from the 3rd until the 6th of September, 2019. About 450 participants contributed to a high-level scientific gathering, providing some of the latest research results on the topic, as well as some of the latest relevant technological advancements. Eight interesting articles, which cover a wide range of topics including characterization, analysis and design, as well as numerical simulation, are contained in this Special Issue

    3D Reconstruction of Building Rooftop and Power Line Models in Right-of-Ways Using Airborne LiDAR Data

    Get PDF
    The research objectives aimed to achieve thorough the thesis are to develop methods for reconstructing models of building and PL objects of interest in the power line (PL) corridor area from airborne LiDAR data. For this, it is mainly concerned with the model selection problem for which model is more optimal in representing the given data set. This means that the parametric relations and geometry of object shapes are unknowns and optimally determined by the verification of hypothetical models. Therefore, the proposed method achieves high adaptability to the complex geometric forms of building and PL objects. For the building modeling, the method of implicit geometric regularization is proposed to rectify noisy building outline vectors which are due to noisy data. A cost function for the regularization process is designed based on Minimum Description Length (MDL) theory, which favours smaller deviation between a model and observation as well as orthogonal and parallel properties between polylines. Next, a new approach, called Piecewise Model Growing (PMG), is proposed for 3D PL model reconstruction using a catenary curve model. It piece-wisely grows to capture all PL points of interest and thus produces a full PL 3D model. However, the proposed method is limited to the PL scene complexity, which causes PL modeling errors such as partial, under- and over-modeling errors. To correct the incompletion of PL models, the inner and across span analysis are carried out, which leads to replace erroneous PL segments by precise PL models. The inner span analysis is performed based on the MDL theory to correct under- and over-modeling errors. The across span analysis is subsequently carried out to correct partial-modeling errors by finding start and end positions of PLs which denotes Point Of Attachment (POA). As a result, this thesis addresses not only geometrically describing building and PL objects but also dealing with noisy data which causes the incompletion of models. In the practical aspects, the results of building and PL modeling should be essential to effectively analyze a PL scene and quickly alleviate the potentially hazardous scenarios jeopardizing the PL system
    • …
    corecore