648 research outputs found

    Large-Area, High Spatial Resolution Land Cover Mapping Using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations

    Get PDF
    Despite the need for quality land cover information, large-area, high spatial resolution land cover mapping has proven to be a difficult task for a variety of reasons including large data volumes, complexity of developing training and validation datasets, data availability, and heterogeneity in data and landscape conditions. We investigate the use of geographic object-based image analysis (GEOBIA), random forest (RF) machine learning, and National Agriculture Imagery Program (NAIP) orthophotography for mapping general land cover across the entire state of West Virginia, USA, an area of roughly 62,000 km2. We obtained an overall accuracy of 96.7% and a Kappa statistic of 0.886 using a combination of NAIP orthophotography and ancillary data. Despite the high overall classification accuracy, some classes were difficult to differentiate, as highlight by the low user’s and producer’s accuracies for the barren, impervious, and mixed developed classes. In contrast, forest, low vegetation, and water were generally mapped with accuracy. The inclusion of ancillary data and first- and second-order textural measures generally improved classification accuracy whereas band indices and object geometric measures were less valuable. Including super-object attributes improved the classification slightly; however, this increased the computational time and complexity. From the findings of this research and previous studies, recommendations are provided for mapping large spatial extents

    A novel approach to updating municipal tax parcel impervious surface calculations

    Get PDF
    Accurate impervious surface calculations are important to many municipalities due to the high volumes of surface rainwater runoff caused by high impervious surface density. Municipalities must deal with this runoff through the establishment and maintenance of drainage facilities. To help offset the added cost of these facilities, many municipalities impose taxes and fees on privately owned impervious surfaces such as homes, driveways, and patios. Currently, in order for a city like Harrisonburg to calculate tax parcel impervious surface density, aerial images must be manually digitized or mapped using computer-based classification techniques using predictive models. These methods of impervious surface calculations can cost municipalities thousands of dollars and/or hundreds of person hours. The purpose of this project is to devise and test a novel procedure for updating municipal tax parcel impervious surface calculations in an effort to help reduce the time and cost currently required to perform these updates. The procedure that was devised establishes a statistical relationship between current aerial imagery attributes (such as mean pixel value, texture, and homogeneity) and past impervious surface calculations. Tax parcels where actual impervious surface density differed greatly from the model’s expected density were flagged to be looked at manually for possible update. This procedure is useful to municipalities because it cuts costs and labor time compared to other methods currently available. Although this project is a case study for the City of Harrisonburg, this procedure could potentially be tailored to other municipalities that have access to high resolution aerial imagery and pre-existing impervious surface maps

    A methodology to produce geographical information for land planning using very-high resolution images

    Get PDF
    Actualmente, os municípios são obrigados a produzir, no âmbito da elaboração dos instrumentos de gestão territorial, cartografia homologada pela autoridade nacional. O Plano Director Municipal (PDM) tem um período de vigência de 10 anos. Porém, no que diz respeito à cartografia para estes planos, principalmente em municípios onde a pressão urbanística é elevada, esta periodicidade não é compatível com a dinâmica de alteração de uso do solo. Emerge assim, a necessidade de um processo de produção mais eficaz, que permita a obtenção de uma nova cartografia de base e temática mais frequentemente. Em Portugal recorre-se à fotografia aérea como informação de base para a produção de cartografia de grande escala. Por um lado, embora este suporte de informação resulte em mapas bastante rigorosos e detalhados, a sua produção têm custos muito elevados e consomem muito tempo. As imagens de satélite de muito alta-resolução espacial podem constituir uma alternativa, mas sem substituir as fotografias aéreas na produção de cartografia temática, a grande escala. O tema da tese trata assim da satisfação das necessidades municipais em informação geográfica actualizada. Para melhor conhecer o valor e utilidade desta informação, realizou-se um inquérito aos municípios Portugueses. Este passo foi essencial para avaliar a pertinência e a utilidade da introdução de imagens de satélite de muito alta-resolução espacial na cadeia de procedimentos de actualização de alguns temas, quer na cartografia de base quer na cartografia temática. A abordagem proposta para solução do problema identificado baseia-se no uso de imagens de satélite e outros dados digitais em ambiente de Sistemas de Informação Geográfica. A experimentação teve como objectivo a extracção automática de elementos de interesse municipal a partir de imagens de muito alta-resolução espacial (fotografias aéreas ortorectificadas, imagem QuickBird, e imagem IKONOS), bem como de dados altimétricos (dados LiDAR). Avaliaram-se as potencialidades da informação geográfica extraídas das imagens para fins cartográficos e analíticos. Desenvolveram-se quatro casos de estudo que reflectem diferentes usos para os dados geográficos a nível municipal, e que traduzem aplicações com exigências diferentes. No primeiro caso de estudo, propõe-se uma metodologia para actualização periódica de cartografia a grande escala, que faz uso de fotografias aéreas vi ortorectificadas na área da Alta de Lisboa. Esta é uma aplicação quantitativa onde as qualidades posicionais e geométricas dos elementos extraídos são mais exigentes. No segundo caso de estudo, criou-se um sistema de alarme para áreas potencialmente alteradas, com recurso a uma imagem QuickBird e dados LiDAR, no Bairro da Madre de Deus, com objectivo de auxiliar a actualização de cartografia de grande escala. No terceiro caso de estudo avaliou-se o potencial solar de topos de edifícios nas Avenidas Novas, com recurso a dados LiDAR. No quarto caso de estudo, propõe-se uma série de indicadores municipais de monitorização territorial, obtidos pelo processamento de uma imagem IKONOS que cobre toda a área do concelho de Lisboa. Esta é uma aplicação com fins analíticos onde a qualidade temática da extracção é mais relevante.Currently, the Portuguese municipalities are required to produce homologated cartography, under the Territorial Management Instruments framework. The Municipal Master Plan (PDM) has to be revised every 10 years, as well as the topographic and thematic maps that describe the municipal territory. However, this period is inadequate for representing counties where urban pressure is high, and where the changes in the land use are very dynamic. Consequently, emerges the need for a more efficient mapping process, allowing obtaining recent geographic information more often. Several countries, including Portugal, continue to use aerial photography for large-scale mapping. Although this data enables highly accurate maps, its acquisition and visual interpretation are very costly and time consuming. Very-High Resolution (VHR) satellite imagery can be an alternative data source, without replacing the aerial images, for producing large-scale thematic cartography. The focus of the thesis is the demand for updated geographic information in the land planning process. To better understand the value and usefulness of this information, a survey of all Portuguese municipalities was carried out. This step was essential for assessing the relevance and usefulness of the introduction of VHR satellite imagery in the chain of procedures for updating land information. The proposed methodology is based on the use of VHR satellite imagery, and other digital data, in a Geographic Information Systems (GIS) environment. Different algorithms for feature extraction that take into account the variation in texture, color and shape of objects in the image, were tested. The trials aimed for automatic extraction of features of municipal interest, based on aerial and satellite high-resolution (orthophotos, QuickBird and IKONOS imagery) as well as elevation data (altimetric information and LiDAR data). To evaluate the potential of geographic information extracted from VHR images, two areas of application were identified: mapping and analytical purposes. Four case studies that reflect different uses of geographic data at the municipal level, with different accuracy requirements, were considered. The first case study presents a methodology for periodic updating of large-scale maps based on orthophotos, in the area of Alta de Lisboa. This is a situation where the positional and geometric accuracy of the extracted information are more demanding, since technical mapping standards must be complied. In the second case study, an alarm system that indicates the location of potential changes in building areas, using a QuickBird image and LiDAR data, was developed for the area of Bairro da Madre de Deus. The goal of the system is to assist the updating of large scale mapping, providing a layer that can be used by the municipal technicians as the basis for manual editing. In the third case study, the analysis of the most suitable roof-tops for installing solar systems, using LiDAR data, was performed in the area of Avenidas Novas. A set of urban environment indicators obtained from VHR imagery is presented. The concept is demonstrated for the entire city of Lisbon, through IKONOS imagery processing. In this analytical application, the positional quality issue of extraction is less relevant.GEOSAT – Methodologies to extract large scale GEOgraphical information from very high resolution SATellite images (PTDC/GEO/64826/2006), e-GEO – Centro de Estudos de Geografia e Planeamento Regional, da Faculdade de Ciências Sociais e Humanas, no quadro do Grupo de Investigação Modelação Geográfica, Cidades e Ordenamento do Territóri

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Mapping Europe into local climate zones

    Get PDF
    Cities are major drivers of environmental change at all scales and are especially at risk from the ensuing effects, which include poor air quality, flooding and heat waves. Typically, these issues are studied on a city-by-city basis owing to the spatial complexity of built landscapes, local topography and emission patterns. However, to ensure knowledge sharing and to integrate local-scale processes with regional and global scale modelling initiatives, there is a pressing need for a world-wide database on cities that is suited for environmental studies. In this paper we present a European database that has a particular focus on characterising urbanised landscapes. It has been derived using tools and techniques developed as part of the World Urban Database and Access Portal Tools (WUDAPT) project, which has the goal of acquiring and disseminating climate-relevant information on cities worldwide. The European map is the first major step toward creating a global database on cities that can be integrated with existing topographic and natural land-cover databases to support modelling initiatives

    Comparison of Urban Tree Canopy Classification With High Resolution Satellite Imagery and Three Dimensional Data Derived From LIDAR and Stereoscopic Sensors

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Despite growing recognition as a significant natural resource, methods for accurately estimating urban tree canopy cover extent and change over time are not well-established. This study evaluates new methods and data sources for mapping urban tree canopy cover, assessing the potential for increased accuracy by integrating high-resolution satellite imagery and 3D imagery derived from LIDAR and stereoscopic sensors. The results of urban tree canopy classifications derived from imagery, 3D data, and vegetation index data are compared across multiple urban land use types in the City of Indianapolis, Indiana. Results indicate that incorporation of 3D data and vegetation index data with high resolution satellite imagery does not significantly improve overall classification accuracy. Overall classification accuracies range from 88.34% to 89.66%, with resulting overall Kappa statistics ranging from 75.08% to 78.03%, respectively. Statistically significant differences in accuracy occurred only when high resolution satellite imagery was not included in the classification treatment and only the vegetation index data or 3D data were evaluated. Overall classification accuracy for these treatment methods were 78.33% for both treatments, with resulting overall Kappa statistics of 51.36% and 52.59%

    FINE SCALE MAPPING OF LAURENTIAN MIXED FOREST NATURAL HABITAT COMMUNITIES USING MULTISPECTRAL NAIP AND UAV DATASETS COMBINED WITH MACHINE LEARNING METHODS

    Get PDF
    Natural habitat communities are an important element of any forest ecosystem. Mapping and monitoring Laurentian Mixed Forest natural communities using high spatial resolution imagery is vital for management and conservation purposes. This study developed integrated spatial, spectral and Machine Learning (ML) approaches for mapping complex vegetation communities. The study utilized ultra-high and high spatial resolution National Agriculture Imagery Program (NAIP) and Unmanned Aerial Vehicle (UAV) datasets, and Digital Elevation Model (DEM). Complex natural vegetation community habitats in the Laurentian Mixed Forest of the Upper Midwest. A detailed workflow is presented to effectively process UAV imageries in a dense forest environment where the acquisition of ground control points (GCPs) is extremely difficult. Statistical feature selection methods such as Joint Mutual Information Maximization (JMIM) which is not that widely used in the natural resource field and variable importance (varImp) were used to discriminate spectrally similar habitat communities. A comprehensive approach to training set delineation was implemented including the use of Principal Components Analysis (PCA), Independent Components Analysis (ICA), soils data, and expert image interpretation. The developed approach resulted in robust training sets to delineate and accurately map natural community habitats. Three ML algorithms were implemented Random Forest (RF), Support Vector Machine (SVM), and Averaged Neural Network (avNNet). RF outperformed SVM and avNNet. Overall RF accuracies across the three study sites ranged from 79.45-87.74% for NAIP and 87.31-93.74% for the UAV datasets. Different ancillary datasets including spectral enhancement and image transformation techniques (PCA and ICA), GLCM-Texture, spectral indices, and topography features (elevation, slope, and aspect) were evaluated using the JMIM and varImp feature selection methods, overall accuracy assessment, and kappa calculations. The robustness of the workflow was evaluated with three study sites which are geomorphologically unique and contain different natural habitat communities. This integrated approach is recommended for accurate natural habitat community classification in ecologically complex landscapes

    a Berlin case study

    Get PDF
    Durch den Prozess der Urbanisierung verändert die Menschheit die Erdoberfläche in großem Ausmaß und auf unwiederbringliche Weise. Die optische Fernerkundung ist eine Art der Erdbeobachtung, die das Verständnis dieses dynamischen Prozesses und seiner Auswirkungen erweitern kann. Die vorliegende Arbeit untersucht, inwiefern hyperspektrale Daten Informationen über Versiegelung liefern können, die der integrierten Analyse urbaner Mensch-Umwelt-Beziehungen dienen. Hierzu wird die Verarbeitungskette von Vorverarbeitung der Rohdaten bis zur Erstellung referenzierter Karten zu Landbedeckung und Versiegelung am Beispiel von Hyperspectral Mapper Daten von Berlin ganzheitlich untersucht. Die traditionelle Verarbeitungskette wird mehrmals erweitert bzw. abgewandelt. So wird die radiometrische Vorverarbeitung um die Normalisierung von Helligkeitsgradienten erweitert, welche durch die direktionellen Reflexionseigenschaften urbaner Oberflächen entstehen. Die Klassifikation in fünf spektral komplexe Landnutzungsklassen wird mit Support Vector Maschinen ohne zusätzliche Merkmalsextraktion oder Differenzierung von Subklassen durchgeführt...thesi

    Small-Area Population Estimation: an Integration of Demographic and Geographic Techniques

    Get PDF
    Knowledge of detailed and accurate population information is essential to analyze and address a wide variety of socio-economic, political, and environmental issues and to support necessary planning practices for both public agencies and the private sector. However, such important data are generally only available once every decade through the National Census. Moreover, populations in some rapidly-developing areas may increase quickly, such that this ten-year frequency does not meet the needs of these areas. Therefore, a cost-effective method for population estimation is necessary. To address this issue, this research integrated geographic, sociological, and demographic theories and exploited remotely sensed imagery and geographic information system (GIS) datasets to derive better population estimates at the census block level, the finest level of the national census. Specifically, three new approaches have been proposed in this dissertation to assist in the improvement of small-area population estimation accuracy. First, existing remotely sensed and GIS data have been adopted to estimate two major components of a demographic framework, including the redistribution of newly built dwelling units from the aggregated geographic level to the census block level and the estimation of persons per household (PPH) at such a fine scale. Second, in addition to the use of existing data, new urban environmental indicators were also extracted and employed to improve population estimation. In particular, to implement the automatic enumeration for individual housing units, a new spectral index, biophysical composition index (BCI), has been proposed to derive impervious surface information, a desirable urban environmental parameter. Third, using the extracted high-resolution urban environmental information and GIS data, a new bottom-up method was developed for small-area population estimation at the census block level by incorporating these high-resolution data into the demographic framework. Analyses of the results suggest three major conclusions. First, existing GIS spatial factors, together with demographic information, can assist in improving the accuracy of small-area population estimation. Second, the BCI has a closer relationship with impervious surface area than do other popular indices. Moreover, it was shown to be the most effective index of the four evaluated for separating impervious surfaces and bare soil, which consequently might assist in more accurately deriving fractional land cover values. Third, the use of the new environmental indicators extracted from remote sensing imagery and GIS data and the integration of demographic and geographic approaches has significantly improved the estimation accuracy of housing unit (HU) numbers, PPH, and population counts at the census block level. Therefore, this research contributes to both the remote sensing and applied demography fields. The contribution to the remote sensing field lies in the development of a novel spectral index to characterize urban land for monitoring and analyzing urban environments. This index provided more significant separability between impervious surfaces and bare soil than did other existing indices. Moreover, three major contributions have been made in the field of applied demography: 1) the generation of accurate HU estimates using high-resolution remote sensing and GIS datasets, 2) the development of a model to derive an accurate PPH estimate, and 3) the improvement of small-area population estimation accuracy through the integration of geographic and demographic approaches
    corecore