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ABSTRACT 

Matthew Lee Baller 

 

COMPARISON OF URBAN TREE CANOPY CLASSIFICATION WITH HIGH 

RESOLUTION SATELLITE IMAGERY AND  THREE DIMENSIONAL DATA DERIVED 

FROM LIDAR AND STEREOSCOPIC SENSORS 

 

Despite growing recognition as a significant natural resource, methods for accurately 

estimating urban tree canopy cover extent and change over time are not well-

established.  This study evaluates new methods and data sources for mapping urban 

tree canopy cover, assessing the potential for increased accuracy by integrating high-

resolution satellite imagery and 3D imagery derived from LIDAR and stereoscopic 

sensors.  The results of urban tree canopy classifications derived from imagery, 3D data, 

and vegetation index data are compared across multiple urban land use types in the City 

of Indianapolis, Indiana.  Results indicate that incorporation of 3D data and vegetation 

index data with high resolution satellite imagery does not significantly improve overall 

classification accuracy.  Overall classification accuracies range from 88.34% to 89.66%, 

with resulting overall Kappa statistics ranging from 75.08% to 78.03%, respectively.  

Statistically significant differences in accuracy occurred only when high resolution 

satellite imagery was not included in the classification treatment and only the vegetation 

index data or 3D data were evaluated.  Overall classification accuracy for these 

treatment methods were 78.33% for both treatments, with resulting overall Kappa 

statistics of 51.36% and 52.59%.  

Jeffery S. Wilson, Ph.D. 
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CHAPTER 1:  INTRODUCTION 

 

Urban forests are correlated with environmental quality and, through appropriate 

planning, can function to mitigate environmental impacts brought on by urban 

development (McPherson and Rowntree, 1991).   Improved water quality, reduced 

rainfall runoff, and enhanced flood protection have been attributed to urban forests and 

green space (Nowak and Dwyer, 2000).  Urban forests also affect air quality by reducing 

air temperatures, atmospheric pollutants, and energy use in buildings (Nowak, 2000).  

The significance of urban forests and green space goes beyond physical and biological 

environmental impacts.  The social and economic environments of an urban area can 

also be positively influenced.  These influences can range from enhanced aesthetics and 

property values to the creation of a strong connection between the public and the natural 

environment (Dwyer et al., 2000).   

 

Despite growing recognition as a significant natural resource, well-established methods 

for accurately estimating urban tree canopy cover extent and change over time are 

lacking.  Previous remote sensing research has evaluated the utility of statistical 

classification approaches [e.g. maximum-likelihood, ISODATA, expert system 

approaches] applied to moderate spatial resolution satellite imagery, (e.g., 10 – 30m) for 

mapping urban landscapes.  However, due to the spatially heterogeneous composition 

of urban areas, moderate spatial resolution data have proved less than adequate 

(Hodgson et al., 2003).  One of the primary problems is the presence of multiple land 

cover types within each pixel, commonly referred to as the mixed pixel problem (Lu and 

Weng, 2005).  In order to address the mixed pixel problem, high spatial resolution data 

are needed. Historically, these data were primarily acquired by time consuming and 
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expensive aerial survey, but high-resolution commercial satellite data have recently 

become available that offer potential for improved urban tree canopy mapping (Davis 

and Wang, 2002).   

 

Even high spatial resolution satellite or aerial imagery may not be adequate for mapping 

urban tree canopy with traditional spectral classification approaches.  High spatial 

resolution imagery captures greater variation in spectral response within a given land-

cover class.  Greater variation in spectral response within a given land-cover class can 

contribute to decreased classification accuracy (Lu and Weng, 2005).   Shading, caused 

by topography, tall buildings, or trees, is also more prevalent in high resolution imagery 

which, in turn, presents problems in the selection of suitable image processing 

approaches over large areas (Asner and Warner, 2003).  New forms of spatial data, 

such as light detection and ranging (LIDAR), provide potential for addressing urban tree 

canopy mapping problems inherent in image-based approaches by providing three 

dimensional information on urban landscapes that aid in separation of trees from other 

vegetated land cover types (Hodgson et al., 2003).   

 

The purpose of this study is to evaluate new methods and data sources for mapping 

urban tree canopy cover.  We assess the potential for increased accuracy in urban tree 

canopy mapping by integrating high resolution imagery and 3D data derived from LIDAR 

and stereoscopic sensors.  3D data serves as an enhancement to the imagery by 

providing additional information on surface height to compliment spectral information 

captured by imaging sensors.  The results of urban tree canopy classifications derived 

from imagery, 3D data, and vegetation index data are compared across multiple urban 

land use types in the City of Indianapolis, Indiana.   
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CHAPTER 2:  BACKGROUND 

 

Moderate Spatial Resolution Satellite Imagery 

Considerable research has been focused on the accurate mapping of urban areas.  Until 

recently, statistical pattern recognition algorithms applied to moderate resolution satellite 

imagery have been the primary approach utilized (Hodgson et al., 2003).  Lu and Weng 

(2005), for example, utilized a maximum likelihood algorithm to compare different image 

processing routines to identify suitable remote sensing variables for urban classification 

by incorporating spectral reflectance, texture, surface temperature, and data fusion 

techniques with 30m resolution Landsat ETM+ imagery.  The best overall classification 

accuracy of 78% was achieved when textures from a higher resolution panchromatic 

image were incorporated with the 30m image data.   Average producer’s and user’s 

accuracies for the urban forest class were 88% and 81% respectively.   

 

Hale and Rock (2003) processed Landsat ETM+ imagery using band ratios, the Minnaert 

Correction, aspect partitioning, and combinations of these three treatments.  Image 

combinations were classified using the minimum-distance decision rule.  Resulting 

overall classification accuracies ranged from 59% to 63% and no treatment proved to be 

significantly more accurate than another.  Average producer’s accuracies for all forest 

classes ranged from 63% to 79% while average user’s accuracies for all forest classes 

ranged from 53% to 61%.   

 

Yuan et al. (2005) utilized a three-stage hybrid classification method for regional-scale 

multi-level land cover mapping using three Landsat TM/ETM+ images of the Twin Cities 

Metropolitan Area of Minnesota representing Spring, Summer, and Fall conditions, which 

were combined into a “stacked” 21-band image.  Resulting images at each stage were 
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classified into one of three levels of the Minnesota Land Cover Classification System 

(MLCCS), with each level increasing in specificity.  The first stage involved an 

unsupervised classification and stratification, resulting in a MLCCS Level 1 classification. 

The second stage included supervised classification of forest types, rule-based 

clustering of non-forested vegetation, and estimation of percent impervious area using a 

regression model, resulting in a MLCCS Level 2 classification. The third stage combined 

the results from the first and second stages for final map generation.  Post processing 

was performed to remove single, isolated pixels from the classification by merging the 

isolated pixel with the predominant surrounding class.  Resulting images were classified 

into three levels of the MLCCS.  Overall accuracies for Level-1 and Level-2 classes were 

95% and 89%, respectively.  Producer’s accuracy and user’s accuracy for the Level-2 

coniferous forest class were 63% and 40%, respectively, while producer’s accuracy and 

user’s accuracy for the Level-2 deciduous forest class were 96% and 82%, respectively.   

Accuracies for Level-3 classification were not reported. 

 

Regardless of classification accuracy, the inability of moderate resolution sensors to 

resolve finer-scale variation in tree canopy cover precludes their application to inform 

policy and management decisions within individual urban areas.  Planners and urban 

foresters are often interested in canopy cover variation between individual 

neighborhoods, parks, or other districts that may be represented by only a few pixels in 

moderate resolution imagery. The research on moderate resolution imagery is 

informative, however, suggesting that incorporation of ancillary data may improve the 

delineation of urban tree canopy cover at finer scales. 

 



5 

 

High Spatial Resolution Multi-Spectral Satellite Imagery  

Previous research has explored the application of high resolution multispectral imagery 

for urban land cover mapping.  Davis and Wang (2002), for example, examined the 

generation of urban land cover maps using pan-sharpened 1m IKONOS satellite 

imagery.  A parallelepiped supervised classification algorithm was used to obtain urban 

land cover classifications unless there was a tie (overlap), which was resolved by the 

use of a maximum-likelihood decision rule.  Each image was classified twice: once using 

a 3-band R/G/B combination and once using a 4-band R/G/B/NIR combination.  The 4-

band 11-bit 1m pan-sharpened image yielded the highest overall accuracy of 83%.  No 

accuracy for the tree canopy class was given for the random sample sites, but the 

classification yielded a 99.8% accuracy for tree canopy class at each training site 

location. 

 

Herold et al. (2003) evaluated how spectral resolution of high spatial resolution remote 

sensing data can influence accuracy in mapping of urban land cover.  The study used 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired at a spatial 

resolution of approximately 4m.  The authors concluded that the optimal spectral setting 

for urban mapping was derived using the B-distance separability analysis, resulting in a 

subset of 14 bands.  Performance of this spectral setting was evaluated and compared 

against common multi-spectral sensors, such as IKONOS, by assessing the accuracy for 

26 urban land cover classes.  The AVIRIS data yielded the highest overall classification 

accuracy (73.5%) in comparison with IKONOS data (61.8%) and Landsat TM data 

(68.9%).  Herold et al. attributed the relatively low accuracy to spectral similarities of 

urban materials and the high degree of within-class variability.  However, the “green 

vegetation” class, which is assumed to contain tree canopy, yielded a 95% producer’s 

accuracy and an 80.5% user’s accuracy.  These results suggest that high spatial 
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resolution imagery can be used to separate vegetation from other land cover types in 

urban landscapes. 

    

Shackleford and Davis (2003) investigated the usefulness of high resolution IKONOS 

multispectral (MS) satellite imagery for classification of urban areas and the effects of 

applying a fuzzy logic methodology in order to improve classification accuracy.  Imagery 

was first classified using a traditional maximum-likelihood decision rule, yielding 

accuracies between 79% and 87%.  Several texture measures utilizing different pixel 

window sizes were investigated and added to the four bands of the IKONOS MS image 

data as an extra channel.  Inclusion of texture measures yielded varied results.  Entropy 

texture measures increased the average classification accuracy of the Grass and Tree 

classes by 10%, while decreasing the average classification accuracy of the Building 

and Road classes by 1.5%.  Length-width contextual measures decreased average 

classification accuracy of Grass and Tree classes by 9%, while increasing the 

classification accuracy of the Building and Road layers by 5%.  The incorporation of a 

hierarchical fuzzy classification scheme also proved to be effective, increasing 

discrimination between urban land cover classes with similar spectral signatures.  

Resulting overall classification accuracies of 8% to 11% higher than those using a 

traditional maximum-likelihood approach were reported.   

 

Dell’Acqua et al. (2004) examined spectral and spatial analysis of high spatial resolution 

hyperspectral imagery to provide detailed land cover maps of urban areas.  The aim of 

the research was to determine if the combination of spectral classifiers and local 

anomaly detectors could fully exploit the spectral and spatial datasets.  Local anomaly 

detectors, based on joint spectral and spatial analysis of a small window surrounding 

each considered pixel, were chosen over global anomaly detectors, where the local 
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analysis is linked to overall segmentation of the imagery.  The research suggested 

global anomaly detectors provide higher classification accuracies, but are 

computationally expensive and therefore not cost effective.  In the context of urban tree 

canopy mapping, the inclusion of local anomaly detectors had no effect on the Tree 

class, yielding an accuracy of 61% in both the original imagery and the enhanced 

imagery. 

  

Thomas et al. (2003) compared three different classification approaches applied to 1m 

4-band (R/G/B/NIR) imagery captured using the Airborne Data Acquisition and 

Registration (ADAR) 5500 platform.  Imagery was collected over an urban setting.  

Approach 1, an unsupervised classification of all four ADAR bands, yielded an overall 

classification accuracy of 45% and an accuracy of 93% for the urban vegetation class, 

including tree canopy.  Approach 2 used raster-based spatial modeling incorporating 

ancillary GIS layers and reflexive modeling derived from contextual pixel relationships 

based on the results of Approach 1.  The raster-based spatial modeling approach 

yielded the highest overall classification accuracy at 79% and an urban vegetation class 

accuracy of 92%.  Approach 3 dealt with developing a way of summarizing information 

from a contiguous cluster of homogeneous pixels that is lost when higher resolution 

imagery is used.  Overall classification accuracy for Approach 3 was 70% while yielding 

an accuracy of 80% for the urban vegetation class.   

 

Myeong et al. (2001) utilized high-spatial resolution digital aerial imagery to test effective 

methods for the development of land cover classifications in urban areas.  An initial 

classification of the original imagery yielded an overall classification accuracy of 58%.  

This low classification accuracy was attributed to confusion between classes with similar 

spectral signatures.  In order to improve the classification accuracy, texture and NDVI 
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were incorporated with the original imagery.  The incorporation of texture resulted in 

increased separability between tree canopy and grass in urban areas, while NDVI 

provided increased separability between vegetation classes and all other classes.  The 

incorporation of these ancillary data improved overall accuracy to 81.75% and yielded an 

accuracy of 86.2% for the Tree/Shrub class.   

 

High spatial resolution satellite or aerial imagery addresses the need for analysis of 

canopy cover variation between individual neighborhoods, parks, or other districts that 

may be represented by only a few pixels in moderate resolution imagery.  However, 

these data sources may still not be entirely adequate for mapping urban tree canopy 

using a traditional spectral classification approach.  High spatial resolution imagery 

captures greater variation in spectral response within a given land-cover class and 

increased occurrences of shading in high resolution imagery can present problems in the 

selection of suitable image classification techniques.  The incorporation of ancillary data 

such as LIDAR may further improve the delineation of urban tree canopy cover at finer 

scales by providing three dimensional information on urban landscapes that aid in 

separation of trees from other vegetated land cover types.  

 

The Emerging Use of LIDAR  

Hodgson et al. (2003) mapped urban parcel imperviousness using high spatial resolution 

digitized color orthophotography and surface-cover height extracted from multiple-return 

LIDAR data.  Triangulated irregular networks (TINs) were created for LIDAR datasets 

representing ground and surface cover.  The three color channels from the aerial 

photography, combined with the surface-cover height model, were processed to derive 

land cover at both the pixel level and for homogeneous segments within the aerial 

photography.  At the per-pixel classification level, a maximum-likelihood algorithm, the 
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ISODATA algorithm, and See5-generated rules were utilized.  Segment-level 

classification was performed utilizing only See5-generated rules.  These algorithms were 

applied to the natural color imagery and the surface-cover height data individually, and 

also to a combination of both layers.  The results showed that the addition of the LIDAR-

derived cover-height information improved modeled imperviousness results for all 

classification approaches.  R2 values increased by 2% to 25% depending on which 

approach was utilized and the standard error when using the combination of both the 

color imagery and the surface-cover height data was lower than when using any single 

data type.     

 

The isolation of individual tree crowns and the relevant information extracted from tree 

structures can have significant implications in a variety of applications including urban 

tree canopy mapping.  Chen et al. (2006) notes that intensive research has been done 

on isolating individual tree crowns using remotely sensed data, such as large-scale 

aerial photography and high spatial resolution satellite imagery.  Recently, applications 

of LIDAR data to individual tree detection and canopy information extraction have been 

applied to direct measurement of geometric three-dimensional coordinates of tree 

canopies (Brandtberg et al., 2003).  Chen et al. (2006) and Koch et al. (2006) utilized 

canopy height models (CHM) in conjunction with additional algorithms to isolate 

individual tree crowns, yielding 63% and 64% overall accuracy, respectively.  These 

canopy height models are similar to the surface height model approach of Hodgson et al. 

(2003), as they were calculated by subtracting the height value of the bare-earth digital 

elevation model (DEM) from the height value of the digital surface model (DSM).   

 

Haala and Walter (1999) combined Digital Surface Models (DSM) resulting from airborne 

laser scanning (LIDAR) and color aerial imagery (NIR/R/G) for land cover classification 
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in an urban environment. The study examined the difference between first response (first 

echo measurement) and last response (last echo measurement) data collected using a 

pulsed laser scanning system.  Haala and Walter (1999) determined that the difference 

between first echo and last echo DSMs could be useful in the detection of urban tree 

canopy and building footprints.  Geometric information derived from the DSMs was 

combined with multispectral information provided from high resolution color aerial 

imagery.  Both types of information were integrated in a pixel-based classification, 

integrating height above terrain into the classification approach.  Though the authors did 

not present quantitative results of their analysis, they were able to demonstrate that this 

approach considerably improved the classification of urban scenes.    
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CHAPTER 3:  METHODOLOGY 

 

Study Area 

The study area is defined by an 800m buffer surrounding the Indianapolis Parks (Indy 

Parks) Urban Greenway Trail System in Center Township, Marion County, Indiana.  The 

greenway corridor covers an area of approximately 27 km2 (Fig. 1).  Land use within the 

greenway corridor is diverse and spatially heterogeneous.  This diversity provides an 

opportunity for comparison and evaluation of the classification methods developed in this 

research by land use class.  Table 1 lists the area and percentage of major land use 

classes within the entire greenway corridor and within each individual greenway corridor 

in Center Township. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Monon Trail 
 
 
 Pleasant Run Trail 
 
 
 White River Trail 
 
 
 
 
Fig. 1.  Half mile buffers surrounding Indy Parks Greenway Trails (green polygons) overlain on satellite imagery 
of Center Township, Indianapolis (DigitalGlobe QuickBird sensor); R=4, G=3, B=2. 
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Table 1.  Land use statistics for Indy Parks Greenway Corridors within Center Township, Marion County, 
Indianapolis, IN.  Land use dataset was compiled using 2004 zoning data and provided by the Indianapolis 
Mapping and Geographic Infrastructure System (IMAGIS). 

 
 Table 1a.  Land Use Statistics - Entire Greenway Corridor 

Land Use Class Area (km2) Percent

Commercial/Central Business District 3.13 11.38%

Industrial 5.12 18.61%

Public Use 4.48 16.28%

Residential 12.26 44.57%

Special Use/University Quarter 2.52 9.16%

Totals 27.51 100.00%

 Table 1b.  Land Use Statistics - Monon Trail Greenway Corridor 

Land Use Class Area (km2) Percent

Commercial/Central Business District 0.73 9.76%

Industrial 1.71 22.86%

Public Use 0.91 12.17%

Residential 3.74 50.00%

Special Use/University Quarter 0.39 5.21%

Totals 7.48 100.00%

 Table 1c.  Land Use Statistics - Pleasant Run Trail Greenway Corridor 

Land Use Class Area (km2) Percent

Commercial/Central Business District 1.06 10.01%

Industrial 2.17 20.49%

Public Use 1.12 10.58%

Residential 5.97 56.37%

Special Use/University Quarter 0.27 2.55%

Totals 10.59 100.00%

 Table 1d.  Land Use Statistics - White River Trail Greenway Corridor 

Land Use Class Area (km2) Percent

Commercial/Central Business District 1.34 14.19%

Industrial 1.24 13.14%

Public Use 2.45 25.95%

Residential 2.55 27.01%

Special Use/University Quarter 1.86 19.70%

Totals 9.44 100.00% 
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Imagery 

QuickBird satellite imagery was captured in two overpasses of the study area on April 

25, 2005 and June 23, 2005.  The QuickBird sensor collects four band multispectral 

imagery (RGB and NIR), with a spatial resolution of 2.4m at nadir.  Spectral variation, 

especially predominant in vegetated areas because of seasonal differences, occurs 

between the two images.  The April 25, 2005 imagery, containing the White River Trail 

greenway corridor, was collected under mostly clear conditions, with only trace amounts 

of precipitation recorded on the day of acquisition.  However, 6.45cm of precipitation 

were recorded in the Indianapolis area in a 24-hour period from April 22-23.  The June 

23, 2005 imagery, containing the Pleasant Run Trail and Monon Trail greenway 

corridors, was collected under clear conditions with no precipitation events recorded in 

the week preceding data collection.  Each image dataset was processed independently 

to control for variation in algorithm performance due to time of image acquisition. 

 

Elevation Data 

Two sources of elevation data were used in the current study: 1) airborne LIDAR 

measurements and 2) surface height measurements generated from stereoscopic aerial 

imagery.  LIDAR data were collected in March and April of 2003 for the City of 

Indianapolis using the Optech Airborne Laser Terrain Mapper (ALTM) 2033 sensor.  

Specifications provided by the data vendor indicate each LIDAR point has a final 

accuracy, or root mean square error, of 6-inch vertical and 1-foot horizontal.   The LIDAR 

data were delivered in post-processed format consisting of two data layers: a digital 

surface model (DSM) including non-terrain features, and a “bald earth” digital elevation 

model (DEM).  The LIDAR data were provided by the Indianapolis Mapping and 

Geographic Infrastructure System (IMAGIS) 

 (http://www.indiana.edu/~gisdata/metadata/marion2003_lidar_metadata.html).   
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A digital surface model (DSM) was generated from data collected under leaf-off 

conditions from December 2004 to March 2005, by the State of Indiana using two Leica 

black and white Airborne Digital Sensors (ADS40).  The DSM was generated by auto-

correlation of stereoscopic aerial imagery using a processing system developed by 

ISTAR, resulting in a 1.5m spacing full surface model with “leaf-off” trees and buildings 

(http://www.in.gov/igic/projects/elevation.html).  This dataset was obtained through 

Indiana University Spatial Data Services.   

 

Elevation datasets were re-sampled to a resolution of 2.4m, matching that of the 

QuickBird imagery.  All data sources were re-projected to Universal Transverse 

Mercator, North American Datum 1983, Zone 16, with meters as units.  For this study, 

the LIDAR data will be referred to as DSM LIDAR (Fig. 2) and the stereo-generated data 

will be referred to as DSM Stereo (Fig. 3).    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Subset of DSM LIDAR dataset along Pleasant Run Trail (PRT) at left.  Three-dimensional rendering of the 
Pleasant Run sample site (right). 
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Fig. 3.  The image on the left represents the same site as Fig. 2.  However, this subset represents DSM Stereo 
along the Pleasant Run Trail (PRT) within the Indy Parks Greenway Corridor.  The image on the right represents a 
three-dimensional rendering of the Pleasant Run site. 

 

Height Differential Layer 

A height differential layer was created by subtracting DSM Stereo from DSM LIDAR.  

Both DSM datasets capture aboveground surface features such as buildings, but the 

stereo-generated data were collected during leaf-off conditions, resulting in little or no 

deciduous tree canopy detected by the airborne sensor.  Conceptually, the difference 

between the two sources should remove building features in the resultant image, leaving 

only a representation of tree canopy elevation data (Fig. 4).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 4.  Two-dimensional and three-dimensional rendering of the height differential layer for the Pleasant Run 
Trail (PRT) sample site.  The height differential layer was generated by subtracting DSM Stereo from DSM LIDAR. 
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Creation of Vegetation Indices 

A normalized difference vegetation index (NDVI) was created for the study area from the 

QuickBird multispectral imagery.  The NDVI was developed as a method for estimating 

vegetation characteristics from remotely sensed imagery and results in an index image 

with a possible range of -1 to +1 (Rouse et al., 1974).  The goal of vegetation indices is 

to reduce multiple bands to a single band that provides information on variables such as 

biomass or leaf-area index (LAI).  NDVI values have been shown to correlate 

significantly with vegetation characteristics including percent ground cover (Jensen, 

2005), biomass and LAI (Running et al., 1994).  NDVI is calculated as: 

 

 

Classification Treatments 

Two classification treatments were evaluated to assess their performance in urban tree 

canopy delineation: an unsupervised classification using the ISODATA algorithm and a 

spatial modeling approach.  Unsupervised classification was applied to the QuickBird 

imagery, height differential layer, and NDVI data individually and in combination as 

summarized in Table 2.  A separate classification was performed on the height 

differential layer using a spatial model generated in ERDAS Imagine.  Two classes, Tree 

and Other, were generated in all classification treatments.   
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Table 2.  Representation of classification treatment applied to each individual image or image combination 

Image Alias ISODATA 
Algorithm 

Spatial 
Model 

QuickBird Satellite Image 
 

Method 1 X  

Satellite Image + Height Differential 
 

Method 2 X  

NDVI Method 3 X  

Satellite Image + NDVI 
 

Method 4 X  

Satellite Image + Height Differential + NDVI 
 

Method 5 X  

Reclassified Height Differential Method 6  X 

 

Traditional Spectral Classification:  Unsupervised per-pixel classification was performed 

using the ISODATA algorithm, separating the resultant image into twenty-five 

homogeneous clusters.  The algorithm was limited to a maximum of fifty iterations with a 

convergence threshold of 0.980.  The number of iterations required to meet the 

convergence threshold of 0.980 for the study area are summarized in Table 3. The 

resulting twenty-five clusters were assigned to either the Tree or Other information class 

based on visual interpretation of the satellite imagery and high resolution aerial 

photography. 

 
Table 3.  Summary of iterations run by the ISODATA algorithm for each treatment 
method in each greenway corridor needed to meet the required convergance 
threshold of 0.980. 

 

 
 
 
 
 

 

 

Treatment Monon Pleasant Run White River

Method 1 16 16 16

Method 2 18 18 19

Method 3 40 40 40

Method 4 16 16 16

Method 5 18 18 18

Number of Iterations (Per Greenway Corridor)
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Spatial Modeling:  Spatial modeling was utilized to divide the height differential image 

into two separate classes, Tree or Other, for comparison with the results of the 

ISODATA classification treatments.  The following is an example of the logic used for the 

spatial model: 

FOR EACH [pixel in the map] 

 IF [pixel is ≥ 3m] 

 THEN [pixel is classified as Tree (1)]  

 IF [pixel is < 3m] 

 THEN [pixel is classified as Other (0)] 

 

Elevation data is the only data source being analyzed by the spatial modeling process.  

Therefore, the most practical way to model tree canopy was to set a standard height for 

defining a pixel as tree canopy.  Conceptually, this should work because buildings and 

other structures have been removed by the subtraction of DSM Stereo from DSM 

LIDAR.  The current National Land Cover Data standard for defining the Forested 

Upland land cover class is a canopy height of 6m.  Due to the urban setting of the 

Indianapolis area, it was decided that a height of 3m would be an appropriate 

conservative estimate.   

 

Reference Data    

Reference data were created from visual interpretation of digital orthophotography 

collected in the winter of 2005 as part of a project by the State of Indiana.  The spatial 

resolution for the area including Marion County and the City of Indianapolis was 0.15m.    

A traditional random sampling approach was used to determine the location of each 

reference sample site.  The number of reference sites was determined by using the 

formula associated with the binomial probability theory (Fitzpatrick-Lins, 1981): 
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Where: 

p = expected accuracy of entire map 

q = 100 – p 

E = allowable error 

Z = 2 from the standard normal deviate of 1.96 for the 95% two-sided confidence interval 

 

This study used the U.S. Geological Survey (USGS) accuracy specification of 85% 

(Anderson et al., 1976) with an allowable error of 5%, resulting in the generation of 203 

reference sites within each greenway corridor (609 total) to be compared with the results 

of each classification.  Table 4 summarizes the distribution of the resulting randomly 

generated reference data points by land use class. 

Table 4.  Summary of Reference Data Distribution by Land Use Class Designation 

Land Use Class

Sample 

Points Percent

Sample 

Points Percent

Sample 

Points Percent

Sample 

Points Percent

Commercial 68 11.17% 19 9.36% 16 7.88% 33 16.26%

Industrial 103 16.91% 37 18.23% 41 20.20% 25 12.32%

Public Use 104 17.08% 30 14.78% 22 10.84% 52 25.62%

Residential 280 45.98% 107 52.71% 119 58.62% 54 26.60%

Special Use 54 8.87% 10 4.93% 5 2.46% 39 19.21%

Totals 609 100.00% 203 100.00% 203 100.00% 203 100.00%

Monon Pleasant Run White RiverAll Trails

 

Statistical Analysis 

Accuracy associated with classification maps is commonly presented through several 

statistics, including user’s accuracy, producer’s accuracy, overall accuracy, and the 

Kappa statistic.  These estimates help determine the success of the classification.  

Following the methods of Burt and Barber (1996), the Kappa statistics resulting from 

each classification treatment at each site were compared using a two-sample, two-sided 

difference-of-proportions test to determine if there was significant statistical difference 
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between classification results.  The following hypotheses at the 0.05 significance level 

were considered: 

H0: |π1 - π2| ≤ D0    HA: |π1 - π2| > D0  D0 = 0 

Where: 

π1  = Population proportion 1 

π2  = Population proportion 2 

D0 = Difference of proportions 

 

 

For this study, the Kappa statistic served as the population proportion statistic, with the 

reference data sample population serving as n.  The reference data sample population 

and the resulting Kappa statistics were used to calculate an observed z statistic, using 

the following equation: 

 

Where: 

P1  = Sample population proportion 1 

P2  = Sample population proportion 2 

D0 = Difference of proportions 

 = Standard deviation estimate of D0 

 

The z statistic was used to determine if the comparisons of difference in Kappa statistics 

were statistically significant.   
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CHAPTER 4:  RESULTS 

 

Each classification result was compared to the reference data in order to assess the 

accuracy of the six different treatment methods.  The results were compared at three 

different levels:  the entire study area, each individual greenway corridor and by land use 

type.  Table 5 summarizes the resulting classification accuracies.   

 

Entire Study Area 

When comparing results of each treatment method over the entire study area, the best 

overall accuracy was achieved by Method 4, a combination of QuickBird satellite 

imagery and NDVI.  The overall accuracy was 89.66%, with a Kappa statistic of 0.7803, 

or 78.03%.  Method 3, NDVI only, resulted in the poorest overall accuracy of 78.33% 

and an overall Kappa statistic of 51.36%.  Method 6, the reclassified height-differential 

layer, also yielded an overall accuracy of 78.33%, but yielded a higher overall Kappa 

statistic.  Complete accuracy assessments of the entire study area for each treatment 

method are presented  in Appendix A. 

 

Individual Greenway Corridor 

As previously stated, satellite imagery for the study area was captured in two separate 

overpasses, allowing for a comparison of results by individual greenway corridor and 

date of capture.  Results produced using imagery captured on June 23, 2005, included 

both the Pleasant Run Trail and Monon Trail greenway corridors, and yielded similar 

best overall accuracies (92.61% and 91.63%, respectively) and Kappa statistics (82.43% 

and 84.51%), respectively.  Results produced using imagery captured on April 25, 2005, 

containing the White River Trail greenway corridor yielded a best overall accuracy of 
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91.13% and Kappa statistic of 80.61%.  Resulting accuracies and Kappa statistics for 

each classification treatment per individual greenway corridor are presented below.   

 

Monon Trail 

Method 5, a combination of all image sources, produced the best overall accuracy for 

the Monon Trail greenway corridor.  The overall accuracy was 91.63%, with an overall 

Kappa statistic of 82.43%.  Method 6, the reclassified height-differential layer, produced 

the lowest overall accuracy and Kappa statistic at 72.91% and 39.09%, respectively.  

Complete accuracy assessments for each treatment method result within the Monon 

Trail greenway corridor are presented in Appendix B under Table B-1. 

 

Pleasant Run Trail  

Method 2, a combination of QuickBird satellite imagery and the height-differential layer, 

produced the best overall accuracy for the Pleasant Run Trail greenway corridor.  The 

overall accuracy was 92.61%, with an overall Kappa statistic of 84.51%.  Method 3, 

consisting of only NDVI values, produced the lowest overall accuracy and Kappa 

statistic, 77.34% and 48.95%, respectively.  Method 6, the reclassified height differential 

layer, also produced an overall classification accuracy of 77.34%, but produced an 

overall Kappa statistic of 51.13%.  Accuracy assessments for the treatment methods 

within the Pleasant Run Trail greenway corridor are presented in Appendix B under 

Table B-2.   

 

White River Trail 

Methods 1, 2, 4, and 5 all produced identical overall classification accuracies and Kappa 

statistics.  The overall accuracy for these methods was 91.13% with an overall Kappa 

statistic of 80.61%.  Method 3 produced the lowest overall accuracy at 73.89%% with an 



23 

 

overall kappa statistic of 38.45%.  It should be noted that Method 6 generated results 

with the highest amount of success in comparison with the performance of Method 6 in 

the other greenway corridors, yielding an overall accuracy of 84.73% and an overall 

Kappa statistic of 66.35%.  Accuracy assessments for the treatment methods within the 

White River Trail greenway corridor are presented in Appendix B under Table B-3.   

 

Land Use Class 

Commercial/Central Business District  

Method 4 produced the best overall accuracy of 95.59% and overall Kappa statistic of 

85.34% for areas zoned as Commercial/Central Business District.  Method 6 produced 

the lowest overall classification accuracy at 86.76%, with an overall Kappa statistic of 

56.03%.  Areas zoned for commercial land use generally had the highest overall 

accuracy, regardless of classification methods, in comparison to areas zoned for other 

land use classes.  Complete accuracy assessments for each treatment method result 

within commercial land use zones are presented in Appendix C under Table C-1. 

 

Industrial 

When comparing results of each treatment method within areas zoned for industrial use, 

Method 2 produced the best overall accuracy.  The overall classification accuracy was 

93.20% and the overall Kappa statistic was 84.04%.  Of note, Method 6 produced the 

lowest overall classification accuracy at 76.70%, but did not produce the lowest overall 

Kappa statistic (43.07%).  Method 3 produced a higher overall classification accuracy of 

78.64% than Method 6, but produced the lowest overall Kappa statistic at 42.22%.  

Complete accuracy assessments for each treatment method result within industrial land 

use zones are presented in Appendix C under Table C-2. 
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Public Parks 

Method 1, QuickBird satellite imagery only, produced the best overall classification 

accuracy results for each treatment method within areas zoned for public parks. The  

overall classification accuracy was 89.42% with an overall Kappa statistic of 78.62%.  

Method 3 produced the lowest overall accuracy at 75.96% and the lowest overall Kappa 

statistic 49.30%.  Complete accuracy assessments for each treatment method result 

within public park land use zones are presented in Appendix C under Table C-3. 

 

Residential 

Method 4 produced the best overall classification accuracy when comparing results for 

each treatment method within areas zoned for residential use. Overall classification 

accuracy was 87.86% with an overall Kappa statistic of 75.26%.  Method 6 produced the 

lowest overall accuracy and overall Kappa statistic, 75.00% and 48.36%, respectively.    

Areas zoned for residential land use generated produced the lowest overall accuracy, 

regardless of classification method, in comparison to areas zoned for other land use 

classes.  Complete accuracy assessments for each treatment method result within 

residential land use zones are presented in Appendix C under Table C-4. 

 

Special Use/University Quarter 

Methods 1, 2, and 5 each generated the highest overall accuracies (92.59%) and overall 

Kappa statistics (83.86%) when comparing results for each treatment method within 

areas zoned for university and special use.  Method 3 produced the lowest overall 

accuracy of 70.37% and overall Kappa statistic of 30.43%.  Method 4 produced an 

overall accuracy of 90.74% and an overall Kappa statistic of 79.64%.  Method 6 

produced an overall accuracy of 81.48% and an overall Kappa statistic of 58.90%.  
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Complete accuracy assessments for each treatment method result within special land 

use zones are presented in Appendix C under Table C-5. 

Table 5.  Accuracy Assessment Comparison of Different Treatment Methods 

OCA OKS OCA OKS OCA OKS

Entire Study Area 88.34% 0.7508 89.00% 0.7645 78.33% 0.5136

Per Greenway Corridor

Monon Trail 83.74% 0.6456 83.25% 0.6341 83.74% 0.6441

Pleasant Run Trail 90.15% 0.7939 92.61% 0.8451 77.34% 0.4895

White River Trail 91.13% 0.8061 91.13% 0.8061 73.89% 0.3845

Per Land Use Type

Commercial/Central Business District 94.12% 0.7988 92.65% 0.7409 91.18% 0.6792

Industrial 91.26% 0.7915 93.20% 0.8404 78.64% 0.4222

Public Park 89.42% 0.7862 88.46% 0.7662 75.96% 0.4930

Residential 84.29% 0.6774 85.71% 0.7064 77.86% 0.5379

Special Use/University Quarter 92.59% 0.8386 92.59% 0.8386 70.37% 0.3043

OCA OKS OCA OKS OCA OKS

Entire Study Area 89.66% 0.7803 89.49% 0.7767 78.33% 0.5259

Per Greenway Corridor

Monon Trail 87.68% 0.7372 91.63% 0.8243 72.91% 0.3909

Pleasant Run Trail 90.15% 0.7939 85.71% 0.6960 77.34% 0.5113

White River Trail 91.13% 0.8061 91.13% 0.8061 84.73% 0.6635

Per Land Use Type

Commercial/Central Business District 95.59% 0.8534 95.59% 0.8534 86.76% 0.5603

Industrial 92.23% 0.8162 91.26% 0.7948 76.70% 0.4307

Public Park 86.54% 0.7258 88.46% 0.7662 81.73% 0.6125

Residential 87.86% 0.7526 86.79% 0.7299 75.00% 0.4836

Special Use/University Quarter 90.74% 0.7964 92.59% 0.8386 81.48% 0.5890

Note:  OCA - Overall Classification Accuracy; OKS - Overall Kappa Statistic

Method 5 Method 6

Method 1 Method 2 Method 3

All Sources

Height Differential 

Reclass

QuickBird Only

QuickBird + Height 

Differential NDVI

NDVI + QuickBird

Method 4
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Statistical Significance Analysis 

Kappa statistics resulting from each classification treatment for the entire study area 

were compared using a two-sample, two-sided difference-of-proportions test to 

determine if there was significant statistical difference between classification results.  

Results indicate that there was no statistically significant difference between Methods 1, 

2, 4, and 5.  However, there was a significant difference between each of these methods 

and Methods 3 and 6.  A cross tabulation of the results is summarized in Table 6.  

Complete results for the difference-of-proportions statistical tests for each classification 

method are presented in Appendix D under Table D-1. 

 

Table 6.  Statistically Significant Difference of Kappa Values Between Treatment Methods  

Method 1 2 3 4 5 6

1 -- No Yes No No Yes

2 No -- Yes No No Yes

3 Yes Yes -- Yes Yes No

4 No No Yes -- No Yes

5 No No Yes No -- Yes

6 Yes Yes No Yes Yes --

 

Using the classification treatment producing the highest overall classification accuracy 

(Method 4), the same test was run to compare kappa statistics by land use class.  Table 

7 contains a summarization of the results.  Complete results for the difference-of-

proportions statistical tests per land use class are presented in Appendix D under Table 

D-2. 

Table 7.  Statistically Significant Difference of Kappa Statistic per Land Use Class (Treatment Method 4) 

Land Use Class Com Ind Pub Use Res Sp Use

Commercial/CBD -- No Yes Yes Yes

Industrial No -- Yes Yes No

Public Use Yes Yes -- No Yes

Residential Yes Yes No -- Yes

Special Use/Uni Qtr Yes No Yes No --
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CHAPTER 5:  DISCUSSION 

 

This study evaluated the relative contribution of 3D data from LIDAR and airborne 

stereoscopic imagery in combination with high resolution multispectral imagery as a new 

method for mapping urban tree canopy cover.   Based on prior research, it was expected 

that the addition of 3D data would generate significantly higher overall classification 

accuracy compared to the use of high resolution satellite imagery alone (Hodgson et al., 

2003).  For the entire study area, the differences in overall accuracy between 

classification methods were relatively small in range (78.33 to 89.66 percent).  In 

particular, when 3D data was utilized in combination with Quickbird satellite imagery 

(Methods 2 and 5), overall classification accuracy only increased between 0.66% and 

1.15%.  Statistically significant differences in the accuracy occurred only when Quickbird 

satellite imagery was not included in the classification treatment (Methods 3 and 6).   

 

Image-based methods (Methods 1, 2, 4, and 5) produced overall classification 

accuracies ranging from 88.34% to 89.66%, exceeding the expected 85% USGS 

accuracy standard.  High classification accuracies could be attributed to the small 

number of land cover classes used in this study.  Using only two (2) classes, Tree or 

Other, allows for an equal percent chance of success (50%) or failure (50%) in terms of 

classification accuracy, as opposed to five (5) classes, which yields a lower percent 

chance of success (20%) and a higher percent chance of failure (80%).  Previous 

studies have demonstrated that, all else equal, more detailed land cover classification 

with a higher number of land cover classes produces lower overall classification 

accuracies (Lu and Weng, 2005).   
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Satellite imagery was captured in two separate overpasses of the study area, allowing 

for an examination of variation in classification results by date of capture.  Despite 

similarities in classification accuracies between dates, results within the White River Trail 

greenway corridor (April 2005 imagery) were more consistent between classification 

treatments than classification results within both the Monon and Pleasant Run greenway 

corridors (June 2005 imagery).   Examination of NDVI values provides insight into the 

differences in accuracy consistency between classification treatments within the study 

area.  NDVI values for tree canopy derived from imagery captured in April 2005 were 

consistently lower than NDVI values for tree canopy derived from imagery captured in 

June 2005.  Date of capture played a significant role in the difference.  Forest inventory 

data collected in 2003 indicated that deciduous species constitute approximately 90% of 

forested areas in Marion County, Indiana (Woodall et al., 2006).  Due to the high 

percentage of deciduous species in the study area, tree canopy examined from imagery 

captured in April 2005 consisted of more sparsely populated leaf layers, resulting in 

lower NDVI values and a higher discrepancy between tree canopy and other vegetation 

(Fig. 5).  Tree canopy present in imagery captured in June 2005 consisted of a multiple 

leaf layer canopy resulting in higher NDVI values (Fig. 6), due to a phenomenon referred 

to as leaf additive reflectance, in which multiple leaf layers in a healthy, mature canopy 

can result in greater near infrared reflectance (Jensen, 2005).  NDVI values for tree 

canopy and other vegetation were more similar in the June 2005 imagery, indicating the 

possibility for spectral confusion between tree canopy and herbaceous plants.     

 

Overlap in NDVI values between trees and herbaceous plants were especially prominent 

in residential areas in the June 2005 imagery.  Due to differing lawn care practices (i.e. 

heavily fertilized lawns with appropriate levels of sunlight and shade versus non-fertilized 

lawns in poor soils and direct sunlight with little or no shade), environmental stressors, 
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and the leafing out of deciduous tree canopy within the period of April to June, these 

factors could explain the inconsistencies in overall classification accuracy success rate 

for June 2005 imagery in comparison with overall classification accuracy success rate 

for April 2005 imagery. 

 

       

 

 

 

 

 

 
Fig. 5.  Left – Quickbird satellite imagery of the Indiana State Capital and Government Center, 
captured on April 25, 2005.  Right – NDVI of same image.  Areas of interest in the red boxes display 
the clear distinction between tree canopy and other vegetation in the April imagery.       

 

 

 

  

 

 

 

 
Fig. 6.  Left – Quickbird satellite imagery of the Indiana State Capital and Government Center, 
captured on June 23, 2005.  Right – NDVI of same image.  Areas of interest in the red boxes display 
a noticeably reduced distinction between tree canopy and other vegetation.       

 

Comparison of NDVI values for tree canopy and other vegetation by date of capture 

helped to explain the most glaring misclassification of tree canopy within the study area.  

An examination of two golf courses, South Grove Golf Course within the White River 

Corridor (imagery date of capture:  April 25, 2005), and Douglass Golf Course within the 
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Monon Trail Corridor (imagery date of capture:  June 23, 2005), reveals further how date 

of capture can affect infrared reflectance of tree canopy and other vegetation, therefore 

having an effect on classification results (Figs. 7 and 8).  April NDVI values within the 

South Grove Golf Course site for turfgrass ranged approximately from 0.70 to 0.78, 

whereas NDVI values for tree canopy ranged approximately from 0.50 to 0.65.  

Conversely, June NDVI values within the Douglass Golf Course site for turfgrass ranged 

approximately from 0.65 to 0.73, whereas NDVI values for tree canopy ranged 

approximately from 0.64 to 0.75.  The inconsistency of these NDVI values indicates how 

the phenological difference between grass and tree can affect classification results when 

multi-temporal imagery is used.    Examination of the distribution of these values reveals 

why confusion between tree canopy and turfgrass occurred in five of the six 

classification treatment methods at the Douglass Golf Course site within the Monon Trail 

greenway corridor.  The only treatment method to correctly classify the Douglass site 

was Method 6, the reclassified height differential layer, which relies solely on elevation 

data. 

 

 

 

 

   

 

 

 
Fig. 7.  Left – Quickbird Satellite Imagery, South Grove Golf Course, April 2005.  Center – NDVI 
image of South Grove GC.  Right – Resultant classification of tree canopy (Treatment Method 5).   
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Fig. 8.  Left – Quickbird Satellite Imagery, Douglass Golf Course, June 2005.  Center – NDVI image 
of Douglass GC.  Right – Resultant classification of tree canopy (Treatment Method 2).   

 

A possible explanation for the consistent results within the White River Trail greenway 

corridor could be the percentage breakdown of land use classes within the corridor.  

Forty seven percent of the land use in the White River Trail greenway corridor was 

composed of land use classes that had significantly higher classification accuracies 

(Appendix D, Table D-2), and the lowest percentage (27%) of areas zoned as 

residential, the land use class that consistently yielded the lowest overall accuracy.  The 

Monon Trail and Pleasant Run Trail greenway corridors contain only 33% and 31% of 

land use classes with significantly higher classification accuracies, respectively, while 

consisting of substantially higher percentages of areas zoned as residential (53% and 

59%, respectively).  Areas zoned for residential land use are important because the 

residential land use class consistently yielded the lowest classification accuracies of the 

five (5) land use classes used in this study.  Residential areas tend to have more 

spatially heterogeneous land cover and when coupled with the inherent variation in 

reflectance values within individual features in high resolution imagery, classification 

success within these areas can prove difficult to achieve (Hodgson et al., 2003).  Within 

both the Monon Trail and Pleasant Run Trail greenway corridors, changes in overall 
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classification accuracy were directly correlated to overall classification accuracy within 

areas zoned for residential land use.      

 

Prior research suggested that the addition of 3D data would generate significantly higher 

overall classification accuracy than the use of high resolution satellite imagery alone 

(Hodgson et al., 2003).  Based on the results of this study, the addition of 3D data 

produced no statistically significant improvement in overall classification accuracy.  An 

examination of the elevation data and height differential layer generated from these data 

and how it was utilized in the classification process could offer an explanation as to why 

it did not significantly improve accuracy.  In this study, 3D data was used as a image 

layer in conjunction with high resolution satellite imagery for classification of urban tree 

canopy.  The ISODATA algorithm identifies or defines clusters based on statistics of 

each cluster, making it very likely that 3D data or height information will not be given 

much weight in defining a cluster because trees in an urban setting are often not 

statistically significant compared to non-tree features.  This may explain why the 

inclusion of 3D data did not present significant improvement over classification 

treatments with no 3D data.  From a data quality standpoint, the elevation datasets used 

in this study were collected using different sensors with different specifications, 

producing different accuracies and undergoing different quality control measures.  In the 

future, it would be best to ensure that these datasets are collected using the same 

sensor and quality control measures, if possible.  Finally, evergreen trees in both 

datasets will be negated in the height differential layer, reducing accuracy if using the 

height differential layer solely to model tree canopy cover.   

 

The parameters for classification in this study allowed for a higher chance for success 

than in previous studies.  However, improvements to the process can be made.  The 
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incorporation of spatial enhancements such as texture information could possibly 

increase overall classification accuracy and though the increase in accuracy may not be 

that significant overall, the incorporation of these data may serve to inhibit the variation 

in classification accuracies of urban tree canopy between land use classes.  The 

incorporation of vegetation species data in the study area allows for further refinement of 

vegetation classification, possibly accounting for more distinct and significant differences 

(high or low) in classification accuracy between datasets.  Moving away from the 

unsupervised ISODATA algorithm as an image classifier to a hierarchical rules-based 

expert classifier could also improve performance.  However, the use of an expert 

classification system is more labor intensive and is more time consuming than the 

ISODATA algorithm.  The question becomes whether or not an improvement in accuracy 

from 90 percent to approximately 93 to 95 percent is worth the time and effort spent to 

attain it.   
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CHAPTER 6:  CONCLUSIONS 

 

The growing recognition of the urban forest as a natural resource underscores the need 

for a well-established method of accurately estimating urban tree canopy cover extent 

and change over time.  The purpose of this study was to evaluate new methods and 

data sources for mapping urban tree canopy cover in the City of Indianapolis, Indiana.  

Assessed was the potential for increased accuracy in urban tree canopy mapping by 

integrating high resolution imagery and 3D data derived from LIDAR and stereoscopic 

sensors.  The research presented in this paper represents an important first step in 

utilizing high resolution satellite imagery and digital surface models to accurately classify 

urban tree canopy.   

 

Statistical analysis of the results indicated that no significant increase in classification 

accuracy occurred when elevation data were incorporated with satellite imagery, either 

singularly or in conjunction with a Normalize Difference Vegetation Index.  Image-based 

methods (Methods 1, 2, 4, and 5) produced overall classification accuracies ranging 

from 88.34% to 89.66% and overall Kappa statistics ranging from 75.08% to 78.03%.  

Results of the spatial model applied to the height differential layer yielded an accuracy of 

78.33%, significantly lower than the accuracies of the other treatment methods in this 

study.  However, results for the height differential layer produced an overall accuracy for 

tree canopy similar or higher than results in previous studies using moderate spatial 

resolution.   

 

Comparison of classification accuracies in this study with previous urban classification 

mapping studies (Thomas et al., 2003) indicates that urban tree canopy may be easier to 
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accurately classify than other urban land cover classes such as impervious surface.  

Despite high classification accuracies resulting in this study, further improvements can 

be made.  The incorporation of textures derived from high resolution satellite imagery 

(Lu and Weng, 2005) and exploring the use of an expert classification system (Hodgson 

et al., 2003) could help reduce inconsistencies in results, especially within residential 

areas, thus increasing overall classification accuracy. 

   

 



36 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix A 



37 

 

Table A-1.  Accuracy Assessments of Different Treatment Methods for the Entire Greenway Corridor Study Area 

        

Method 1:  QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 189 15 204 92.65%  Overall Accuracy 88.34% 

Other 56 349 405 86.17%  Kappa Statistic 0.7508 

Totals 245 364 609     

Producer's Accuracy 77.14% 95.88% 538     

        

Method 2:  QuickBird + LIDAR 

        

 Tree Other Totals User’s Accuracy    

Tree 190 12 202 94.06%  Overall Accuracy 89.00% 

Other 55 352 424 86.49%  Kappa Statistic 0.7645 

Totals 245 364 609     

Producer's Accuracy 77.55% 96.70% 542     

        

Method 3:  NDVI 

        

 Tree Other Totals User’s Accuracy    

Tree 124 11 128 91.85%  Overall Accuracy 78.33% 

Other 121 353 481 74.47%  Kappa Statistic 0.5136 

Totals 245 364 609     

Producer's Accuracy 50.61% 96.98% 477     

        

Method 4:  NDVI + QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 198 16 214 92.52%  Overall Accuracy 89.66% 

Other 47 348 395 88.10%  Kappa Statistic 0.7803 

Totals 245 364 609     

Producer's Accuracy 80.82% 95.60% 546     

        

Method 5:  All Image Sources 

        

 Tree Other Totals User’s Accuracy    

Tree 197 16 213 92.49%  Overall Accuracy 89.49% 

Other 48 348 396 87.88%  Kappa Statistic 0.7767 

Totals 245 364 609     

Producer's Accuracy 80.41% 95.60% 545     

        

Method 6:  Height Differential Layer 

        

 Tree Other Totals User’s Accuracy    

Tree 142 29 171 83.04%  Overall Accuracy 78.33% 

Other 103 335 438 76.48%  Kappa Statistic 0.5259 

Totals 245 364 609     

Producer's Accuracy 57.96% 92.03% 477     
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Table B-1.  Accuracy Assessments of Different Treatment Methods for the Monon Trail Greenway Corridor 

        

Method 1:  QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 54 6 60 90.00%  Overall Accuracy 83.74% 

Other 27 116 143 81.12%  Kappa Statistic 0.6456 

Totals 81 122 203     

Producer's Accuracy 66.67% 95.08% 170     

        

Method 2:  QuickBird + LIDAR 

        

 Tree Other Totals User’s Accuracy    

Tree 53 6 59 89.83%  Overall Accuracy 83.25% 

Other 28 116 144 80.56%  Kappa Statistic 0.6341 

Totals 81 122 203     

Producer's Accuracy 65.43% 95.08% 169     

        

Method 3:  NDVI 

        

 Tree Other Totals User’s Accuracy    

Tree 53 5 58 91.38%  Overall Accuracy 83.74% 

Other 28 117 145 80.69%  Kappa Statistic 0.6441 

Totals 81 122 203     

Producer's Accuracy 65.43% 95.90% 170     

        

Method 4:  NDVI + QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 63 7 70 90.00%  Overall Accuracy 87.68% 

Other 18 115 133 86.47%  Kappa Statistic 0.7372 

Totals 81 122 203     

Producer's Accuracy 77.78% 94.26% 178     

        

Method 5:  All Image Sources 

        

 Tree Other Totals User’s Accuracy    

Tree 71 7 78 91.03%  Overall Accuracy 91.63% 

Other 10 115 125 92.00%  Kappa Statistic 0.8243 

Totals 81 122 203     

Producer's Accuracy 87.65% 94.26% 186     

        

Method 6:  Height Differential Layer 

        

 Tree Other Totals User’s Accuracy    

Tree 36 10 46 78.26%  Overall Accuracy 72.91% 

Other 45 112 157 71.34%  Kappa Statistic 0.3909 

Totals 81 122 203     

Producer's Accuracy 44.44% 91.80% 148     
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Table B-2.  Accuracy Assessments of Different Treatment Methods for the Pleasant Run Trail Greenway Corridor 

        

Method 1:  QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 70 7 77 90.91%  Overall Accuracy 90.15% 

Other 13 113 126 89.68%  Kappa Statistic 0.7939 

Totals 83 120 203     

Producer's Accuracy 84.34% 94.17% 183     

        

Method 2:  QuickBird + LIDAR 

        

 Tree Other Totals User’s Accuracy    

Tree 72 4 76 94.74%  Overall Accuracy 92.61% 

Other 11 116 127 91.34%  Kappa Statistic 0.8451 

Totals 83 120 203     

Producer's Accuracy 86.75% 96.67% 188     

        

Method 3:  NDVI 

        

 Tree Other Totals User’s Accuracy    

Tree 38 1 39 97.44%  Overall Accuracy 77.34% 

Other 45 119 164 72.56%  Kappa Statistic 0.4895 

Totals 83 120 203     

Producer's Accuracy 45.78% 99.17% 157     

        

Method 4:  NDVI + QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 70 7 77 90.91%  Overall Accuracy 90.15% 

Other 13 113 126 89.68%  Kappa Statistic 0.7939 

Totals 83 120 203     

Producer's Accuracy 84.34% 94.17% 183     

        

Method 5:  All Image Sources 

        

 Tree Other Totals User’s Accuracy    

Tree 61 7 68 89.71%  Overall Accuracy 85.71% 

Other 22 113 135 83.70%  Kappa Statistic 0.6960 

Totals 83 120 203     

Producer's Accuracy 73.49% 94.17% 174     

        

Method 6:  Height Differential Layer 

        

 Tree Other Totals User’s Accuracy    

Tree 49 12 61 80.33%  Overall Accuracy 77.34% 

Other 34 108 142 76.06%  Kappa Statistic 0.5113 

Totals 83 120 203     

Producer's Accuracy 59.04% 90.00% 157     
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Table B-3.  Accuracy Assessments of Different Treatment Methods for the White River Trail Greenway Corridor 

        

Method 1:  QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 62 2 64 96.88%  Overall Accuracy 91.13% 

Other 16 123 139 88.49%  Kappa Statistic 0.8061 

Totals 78 125 203     

Producer's Accuracy 79.49% 98.40% 185     

        

Method 2:  QuickBird + LIDAR 

        

 Tree Other Totals User’s Accuracy    

Tree 62 2 64 96.88%  Overall Accuracy 91.13% 

Other 16 123 139 88.49%  Kappa Statistic 0.8061 

Totals 78 125 203     

Producer's Accuracy 79.49% 98.40% 185     

        

Method 3:  NDVI 

        

 Tree Other Totals User’s Accuracy    

Tree 30 5 35 85.71%  Overall Accuracy 73.89% 

Other 48 120 168 71.43%  Kappa Statistic 0.3845 

Totals 78 125 203     

Producer's Accuracy 38.46% 96.00% 150     

        

Method 4:  NDVI + QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 62 2 64 96.88%  Overall Accuracy 91.13% 

Other 16 123 139 88.49%  Kappa Statistic 0.8061 

Totals 78 125 203     

Producer's Accuracy 79.49% 98.40% 185     

        

Method 5:  All Image Sources 

        

 Tree Other Totals User’s Accuracy    

Tree 62 2 64 96.88%  Overall Accuracy 91.13% 

Other 16 123 139 88.49%  Kappa Statistic 0.8061 

Totals 78 125 203     

Producer's Accuracy 79.49% 98.40% 185     

        

Method 6:  Height Differential Layer 

        

 Tree Other Totals User’s Accuracy    

Tree 54 7 61 88.52%  Overall Accuracy 84.73% 

Other 24 118 142 83.10%  Kappa Statistic 0.6635 

Totals 78 125 203     

Producer's Accuracy 69.23% 94.40% 172     
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Table C-1.  Accuracy Assessments of Different Treatment Methods by Commercial Land Use 

        

Method 1:  QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 10 0 10 100.00%  Overall Accuracy 94.12% 

Other 4 54 58 93.10%  Kappa Statistic 0.7988 

Totals 14 54 68     

Producer's Accuracy 71.43% 100.00% 64     

        

Method 2:  QuickBird + LIDAR 

        

 Tree Other Totals User’s Accuracy    

Tree 9 0 9 100.00%  Overall Accuracy 92.65% 

Other 5 54 59 91.53%  Kappa Statistic 0.7409 

Totals 14 54 68     

Producer's Accuracy 64.29% 100.00% 63     

        

Method 3:  NDVI 

        

 Tree Other Totals User’s Accuracy    

Tree 8 0 8 100.00%  Overall Accuracy 91.18% 

Other 6 54 60 90.00%  Kappa Statistic 0.6792 

Totals 14 54 68     

Producer's Accuracy 57.14 100.00% 62     

        

Method 4:  NDVI + QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 11 0 11 100.00%  Overall Accuracy 95.59% 

Other 3 54 57 94.74%  Kappa Statistic 0.8534 

Totals 14 54 68     

Producer's Accuracy 78.57% 100.00% 65     

        

Method 5:  All Image Sources 

        

 Tree Other Totals User’s Accuracy    

Tree 11 0 11 100.00%  Overall Accuracy 95.59% 

Other 3 54 57 94.74%  Kappa Statistic 0.8534 

Totals 14 54 68     

Producer's Accuracy 78.57% 100.00% 65     

        

Method 6:  Height Differential Layer 

        

 Tree Other Totals User’s Accuracy    

Tree 8 3 11 72.73%  Overall Accuracy 86.76% 

Other 6 51 57 89.47%  Kappa Statistic 0.5603 

Totals 14 54 68     

Producer's Accuracy 57.14% 94.44% 59     
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Table C-2.  Accuracy Assessments of Different Treatment Methods by Industrial Land Use 

        

Method 1:  QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 26 1 27 96.30%  Overall Accuracy 91.26% 

Other 8 68 76 89.47%  Kappa Statistic 0.7915 

Totals 34 69 103     

Producer's Accuracy 76.47% 98.55% 94     

        

Method 2:  QuickBird + LIDAR 

        

 Tree Other Totals User’s Accuracy    

Tree 28 1 29 96.55%  Overall Accuracy 93.20% 

Other 6 68 74 91.89%  Kappa Statistic 0.8404 

Totals 34 69 103     

Producer's Accuracy 82.35% 98.55% 96     

        

Method 3:  NDVI 

        

 Tree Other Totals User’s Accuracy    

Tree 12 0 12 100.00%  Overall Accuracy 78.64% 

Other 22 69 91 75.82%  Kappa Statistic 0.4222 

Totals 34 69 103     

Producer's Accuracy 35.29% 100.00% 81     

        

Method 4:  NDVI + QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 27 1 28 96.43%  Overall Accuracy 92.23% 

Other 7 68 75 90.67%  Kappa Statistic 0.8612 

Totals 34 69 103     

Producer's Accuracy 79.41% 98.55% 95     

        

Method 5:  All Image Sources 

        

 Tree Other Totals User’s Accuracy    

Tree 27 2 29 93.10%  Overall Accuracy 91.26% 

Other 7 67 74 90.54%  Kappa Statistic 0.7948 

Totals 34 69 103     

Producer's Accuracy 79.41% 97.10% 94     

        

Method 6:  Height Differential Layer 

        

 Tree Other Totals User’s Accuracy    

Tree 17 7 24 70.83%  Overall Accuracy 76.70% 

Other 17 62 79 78.48%  Kappa Statistic 0.4307 

Totals 34 69 103     

Producer's Accuracy 50.00% 89.86% 79     
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Table C-3.  Accuracy Assessments of Different Treatment Methods by Public Park Land Use 

        

Method 1:  QuickBird        

        

 Tree Other Totals User’s Accuracy    

Tree 41 7 48 85.42%  Overall Accuracy 89.42% 

Other 4 52 56 92.86%  Kappa Statistic 0.7862 

Totals 45 59 104     

Producer's Accuracy 91.11% 88.14% 93     

        

Method 2:  QuickBird + LIDAR 

        

 Tree Other Totals User’s Accuracy    

Tree 40 7 47 85.11%  Overall Accuracy 88.46% 

Other 5 52 57 91.23%  Kappa Statistic 0.7662 

Totals 45 59 104     

Producer's Accuracy 88.89% 88.14% 92     

        

Method 3:  NDVI        

        

 Tree Other Totals User’s Accuracy    

Tree 26 6 32 81.25%  Overall Accuracy 75.96% 

Other 19 53 72 73.61%  Kappa Statistic 0.4930 

Totals 45 59 104     

Producer's Accuracy 57.78% 89.83% 79     

        

Method 4:  NDVI + QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 38 7 45 84.44%  Overall Accuracy 86.54% 

Other 7 52 59 88.14%  Kappa Statistic 0.7258 

Totals 45 59 104     

Producer's Accuracy 84.44% 88.14% 90     

        

Method 5:  All Image Sources 

        

 Tree Other Totals User’s Accuracy    

Tree 40 7 47 85.11%  Overall Accuracy 88.46% 

Other 5 52 57 91.23%  Kappa Statistic 0.7662 

Totals 45 59 104     

Producer's Accuracy 88.89% 88.14% 92     

        

Method 6:  Height Differential Layer 

        

 Tree Other Totals User’s Accuracy    

Tree 28 2 30 93.33%  Overall Accuracy 81.73% 

Other 17 57 74 77.03%  Kappa Statistic 0.6125 

Totals 45 59 104     

Producer's Accuracy 62.22% 96.61% 85     
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Table C-4.  Accuracy Assessments of Different Treatment Methods by Residential Land Use 

        

Method 1:  QuickBird        

        

 Tree Other Totals User’s Accuracy    

Tree 91 7 98 92.86%  Overall Accuracy 84.29% 

Other 37 145 182 79.67%  Kappa Statistic 0.6774 

Totals 128 152 280     

Producer's Accuracy 71.09% 95.39% 236     

        

Method 2:  QuickBird + LIDAR 

        

 Tree Other Totals User’s Accuracy    

Tree 92 4 96 95.83%  Overall Accuracy 85.71% 

Other 36 148 184 80.43%  Kappa Statistic 0.7064 

Totals 128 152 280     

Producer's Accuracy 71.88% 97.37% 240     

        

Method 3:  NDVI        

        

 Tree Other Totals User’s Accuracy    

Tree 69 3 72 95.83%  Overall Accuracy 77.86% 

Other 59 149 208 71.63%  Kappa Statistic 0.5379 

Totals 128 152 280     

Producer's Accuracy 53.91% 98.03% 218     

        

Method 4:  NDVI + QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 102 8 110 92.73%  Overall Accuracy 87.86% 

Other 26 144 170 84.71%  Kappa Statistic 0.7526 

Totals 128 152 280     

Producer's Accuracy 77.34% 94.08% 246     

        

Method 5:  All Image Sources 

        

 Tree Other Totals User’s Accuracy    

Tree 98 7 105 93.33%  Overall Accuracy 86.79% 

Other 30 145 175 82.86%  Kappa Statistic 0.7299 

Totals 128 152 280     

Producer's Accuracy 76.56% 95.39% 243     

        

Method 6:  Height Differential Layer 

        

 Tree Other Totals User’s Accuracy    

Tree 73 15 88 82.95%  Overall Accuracy 75.00% 

Other 55 137 192 71.35%  Kappa Statistic 0.4836 

Totals 128 152 280     

Producer's Accuracy 57.03% 90.13% 210     
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Table C-5.  Accuracy Assessments of Different Treatment Methods Special Land Use/University Quarter 

        

Method 1:  QuickBird        

        

 Tree Other Totals User’s Accuracy    

Tree 17 0 17 100.00%  Overall Accuracy 92.59% 

Other 4 33 37 89.19%  Kappa Statistic 0.8386 

Totals 21 33 54     

Producer's Accuracy 80.95% 100.00% 50     

        

Method 2:  QuickBird + LIDAR 

        

 Tree Other Totals User’s Accuracy    

Tree 17 0 17 100.00%  Overall Accuracy 92.59% 

Other 4 33 37 89.19%  Kappa Statistic 0.8386 

Totals 21 33 54     

Producer's Accuracy 80.95% 100.00% 50     

        

Method 3:  NDVI        

        

 Tree Other Totals User’s Accuracy    

Tree 7 2 9 77.78%  Overall Accuracy 70.37% 

Other 14 31 45 68.89%  Kappa Statistic 0.3043 

Totals 21 33 54     

Producer's Accuracy 33.33% 93.94% 38     

        

Method 4:  NDVI + QuickBird 

        

 Tree Other Totals User’s Accuracy    

Tree 16 0 16 100.00%  Overall Accuracy 90.74 

Other 5 33 38 86.84%  Kappa Statistic 0.7964 

Totals 21 33 54     

Producer's Accuracy 76.19% 100.00% 49     

        

Method 5:  All Image Sources 

        

 Tree Other Totals User’s Accuracy    

Tree 17 0 17 100.00%  Overall Accuracy 92.59% 

Other 4 33 37 89.19%  Kappa Statistic 0.8386 

Totals 21 33 54     

Producer's Accuracy 80.95% 100.00% 50     

        

Method 6:  Height Differential Layer 

        

 Tree Other Totals User’s Accuracy    

Tree 13 2 15 86.67%  Overall Accuracy 81.48% 

Other 8 31 39 79.49%  Kappa Statistic 0.5890 

Totals 21 33 54     

Producer's Accuracy 61.90% 93.94% 44     
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Table D-1.  Complete Results for Difference-of-Proportions Statistical Test

Method 1:  Kappa Value: 0.7508

QuickBird Only

P Value

Method of Comparison Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

QuickBird + HTDF 0.7645 0.0137 0.02455 0.5580 0.5768 No

NDVI 0.5136 0.2372 0.02678 8.8557 <0.0001 Yes

NDVI + QuickBird 0.7803 0.0295 0.02426 1.2158 0.2241 No

All Sources 0.7767 0.0259 0.02433 1.0645 0.2871 No

HTDF Reclass 0.5259 0.2249 0.02677 8.4012 <0.0001 Yes

Method 2: Kappa Value: 0.7645

QuickBird + Height Differential

P Value

Method of Comparison Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

QuickBird 0.7508 0.0137 0.02455 0.5580 0.5768 No

NDVI 0.5136 0.2509 0.02657 9.4438 <0.0001 Yes

NDVI + QuickBird 0.7803 0.0158 0.02402 0.6577 0.5107 No

All Sources 0.7767 0.0122 0.02409 0.5064 0.6126 No

HTDF Reclass 0.5259 0.2386 0.02655 8.9859 <0.0001 Yes

Method 3: Kappa Value: 0.5136

NDVI

P Value

Method of Comparison Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

QuickBird 0.7508 0.2372 0.02678 8.8557 <0.0001 Yes

QuickBird + HTDF 0.7645 0.2509 0.02657 9.4438 <0.0001 Yes

NDVI + QuickBird 0.7803 0.2667 0.02630 10.1406 <0.0001 Yes

All Sources 0.7767 0.2631 0.02636 9.9800 <0.0001 Yes

HTDF Reclass 0.5259 0.0123 0.02863 0.4296 0.6675 No

Method 4: Kappa Value: 0.7803

NDVI + QuickBird

P Value

Kappa Value: Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

QuickBird 0.7508 0.0295 0.02426 1.2158 0.2241 No

QuickBird + HTDF 0.7645 0.0158 0.02402 0.6577 0.5107 No

NDVI 0.5136 0.2667 0.02630 10.1406 <0.0001 Yes

All Sources 0.7767 0.0036 0.02380 0.1513 0.8797 No

HTDF Reclass 0.5259 0.2544 0.02629 9.6785 <0.0001 No

Method 5: Kappa Value: 0.7767

All Image Sources

P Value

Method of Comparison Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

QuickBird 0.7508 0.0259 0.02433 1.0645 0.2871 No

QuickBird + HTDF 0.7645 0.0122 0.02409 0.5064 0.6126 No

NDVI 0.5136 0.2631 0.02636 9.9800 <0.0001 Yes

NDVI + QuickBird 0.7803 0.0036 0.02380 0.1513 0.8797 No

HTDF Reclass 0.5259 0.2508 0.02635 9.5189 <0.0001 Yes

Method 6: Kappa Value: 0.5259

Height Differential Reclassification

P Value

Method of Comparison Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

QuickBird 0.7508 0.2249 0.02677 8.4012 <0.0001 Yes

QuickBird + HTDF 0.7645 0.2386 0.02655 8.9859 <0.0001 Yes

NDVI 0.5136 0.0123 0.02863 0.4296 0.6675 No

NDVI + QuickBird 0.7803 0.2544 0.02629 9.6785 <0.0001 Yes

All Sources 0.7767 0.2508 0.02635 9.5189 <0.0001 Yes
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Table D-2.  Results for Difference-of-Proportions Test per Land Use Class (Treatment Method 4) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Commercial: 0.8534

P Value

Land Use Class Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

Commercial/CBD 0.8534 0.0000 0.02027 0.0000 -- --

Industrial 0.8162 0.0372 0.02125 1.7502 0.0801 No

Public Use 0.7258 0.1276 0.02307 5.5310 <0.0001 Yes

Residential 0.7526 0.1008 0.02261 4.4584 <0.0001 Yes

Special Use/Uni Qtr 0.7964 0.0570 0.02172 2.6245 0.0087 Yes

Industrial: 0.8162

P Value

Land Use Class Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

Commercial/CBD 0.8534 0.0372 0.02027 1.8352 0.0665 No

Industrial 0.8162 0.0000 0.02125 0.0000 -- --

Public Use 0.7258 0.0904 0.02307 3.9185 <0.0001 Yes

Residential 0.7526 0.0636 0.02261 2.8130 0.0049 Yes

Special Use/Uni Qtr 0.7964 0.0198 0.02172 0.9117 0.3619 No

Public Use: 0.7258

P Value

Land Use Class Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

Commercial/CBD 0.8534 0.1276 0.02027 6.2951 <0.0001 Yes

Industrial 0.8162 0.0904 0.02125 4.2532 <0.0001 Yes

Public Use 0.7258 0.0000 0.02307 0.0000 -- --

Residential 0.7526 0.0268 0.02261 1.1854 0.2359 No

Special Use/Uni Qtr 0.7964 0.0706 0.02172 3.2507 0.0012 Yes

Residential: 0.7526

P Value

Land Use Class Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

Commercial/CBD 0.8534 0.1008 0.02027 4.9729 <0.0001 Yes

Industrial 0.8162 0.0636 0.02125 2.9923 0.0028 Yes

Public Use 0.7258 0.0268 0.02307 1.1617 0.2454 No

Residential 0.7526 0.0000 0.02261 0.0000 -- --

Special Use/Uni Qtr 0.7964 0.0438 0.02172 2.0167 0.0437 Yes

Special Use: 0.7964

P Value

Land Use Class Kappa Value P 1 - P 2 - D 0 Z Value (2-Sided) Reject H0?

Commercial/CBD 0.8534 0.0570 0.02027 2.8121 0.0049 Yes

Industrial 0.8162 0.0198 0.02125 0.9316 0.3515 No

Public Use 0.7258 0.0706 0.02307 3.0603 0.0022 Yes

Residential 0.7526 0.0438 0.02261 1.9373 0.0527 No

Special Use/Uni Qtr 0.7964 0.0000 0.02172 0.0000 -- --
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