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Abstract: Despite the need for quality land cover information, large-area, high spatial resolution land
cover mapping has proven to be a difficult task for a variety of reasons including large data volumes,
complexity of developing training and validation datasets, data availability, and heterogeneity in
data and landscape conditions. We investigate the use of geographic object-based image analysis
(GEOBIA), random forest (RF) machine learning, and National Agriculture Imagery Program (NAIP)
orthophotography for mapping general land cover across the entire state of West Virginia, USA,
an area of roughly 62,000 km2. We obtained an overall accuracy of 96.7% and a Kappa statistic of
0.886 using a combination of NAIP orthophotography and ancillary data. Despite the high overall
classification accuracy, some classes were difficult to differentiate, as highlight by the low user’s and
producer’s accuracies for the barren, impervious, and mixed developed classes. In contrast, forest,
low vegetation, and water were generally mapped with accuracy. The inclusion of ancillary data
and first- and second-order textural measures generally improved classification accuracy whereas
band indices and object geometric measures were less valuable. Including super-object attributes
improved the classification slightly; however, this increased the computational time and complexity.
From the findings of this research and previous studies, recommendations are provided for mapping
large spatial extents.

Keywords: land cover; land cover mapping; object-based image analysis; GEOBIA; machine learning;
random forests; National Agriculture Imagery Program; NAIP

1. Introduction

Supervised classification of land cover at a high spatial resolution (1–5 m) over large areas
can be challenging due to large data volumes, computational load, processing time, complexity of
developing training and validation datasets, data availability, and heterogeneity in data and landscape
conditions [1–6]. High spatial resolution land cover datasets are not commonly available over large
spatial extents, such as entire continents or countries, in contrast to moderate spatial resolution
land cover data such as the National Land Cover Database (NLCD) in the United States [7] or the
Coordination of Information on the Environment (CORINE) Land Cover data in Europe [8]. Land
cover and land use data are often cited as important information sources for monitoring and modeling
ecological systems [9], biodiversity [10], landscape alterations [11], and climate change [12], highlighting
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the need for continued research on supervised image classification methods applicable to large datasets
and for use at more local scales.

Some high resolution and large-area mapping projects have already been undertaken. For example,
Basu et al. [1] mapped the extent of tree canopy cover across the entire state of California using 1 m aerial
imagery and suggested that the proposed method could be applied to the entirety of the contiguous
United States (CONUS). O’Neil-Dunne et al. [4] used geographic object-based image analysis (GEOBIA)
methods and a variety of high spatial resolution datasets to map urban and suburban tree canopy
cover in more than 70 cities and counties in the United States. In contrast, high spatial resolution
products that differentiate multiple classes are rarer; however, there are exceptions. For example,
the Chesapeake Conservancy and partners produced a 1 m land cover dataset for all counties that
intersect the Chesapeake Bay drainage basin, an area of approximately 250,000 km2 [13]. These data are
currently being used to train a deep neural network model implemented by Microsoft Azure AI [14].

The goal of this paper is to highlight findings and provide recommendations for high spatial
resolution, large-area land cover mapping. The results pertain to a land cover mapping project
covering the full extent of the state of West Virginia, USA, an area of roughly 62,000 km2. Using a
combination of random forests (RF) machine learning and GEOBIA, a 1 m resolution, six-class land
cover classification is generated. The input data are four-band, color infrared (CIR) orthophotography
from the National Agriculture Imagery Program (NAIP) and ancillary data. We investigate the impact
of training sample size and predictor variable feature selection. Additionally, we experiment with
including measures derived from super-objects, or larger objects that contain the object being classified,
and measures of object geometry and texture, or measures of spatial variability. The following findings
and recommendations are discussed:

1. How is classification accuracy of RF impacted by training data sample size and feature selection
over a large spatial extent?

2. Does incorporating GEOBIA super-object information improve classification accuracy?
3. Does the addition of geometric measures, first-order textural measures, or second-order textural

measures improve classification accuracy? If so, what variables are most important?
4. Does the incorporation of ancillary data improve classification accuracy? If so, what variables are

most important?
5. What practical techniques are useful for processing this large data volume?

1.1. Machine Learning and Training Data

The RF algorithm is used to perform all land cover classification experiments in this study. This
algorithm is a nonparametric machine learning method based upon an ensemble of decision trees
(DTs) [15–17]. DTs use recursive splitting rules to divide the input data into more homogenous groups,
a process that produces a set of decision rules based on the input predictor variables or image bands
that can be used to classify new data [18]. RF expands upon single DTs by producing multiple trees as
an ensemble. Each tree in the ensemble is generated using a subset of the training data produced using
bagging, or random sampling with replacement. Each tree is also provided with a random subset of the
predictor variables. Because each tree does not use the entire training set, the withheld samples from
each tree, known as out-of-bag (OOB) samples, can be used to assess model performance [15–17]. RF
has been applied to a variety of image classification tasks including mapping urban land cover [19,20],
surface mines [21], agriculture [17], and general land cover [3,6,16,22]. Although they caution against
using RF for all classification tasks, Lawrence et al. [23] found that it provided the highest overall
accuracy when averaged across a variety of experiments when compared against boosted DTs, support
vector machines (SVMs), and other methods. Ma et al. [24] suggested that RF generally provides
the best performance for the classification of image objects when using GEOBIA methods. Its many
strengths include ease of optimization, ability to assess predictor variable importance, robustness
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to noisy input data and mislabeled training samples, and the ability to accept a complex and high
dimensional feature space [3,6,15–17,25–27].

Training data size and quality can have large impacts on classification accuracy [3]. For example,
Huang et al. [28] found that sample size had a larger impact on training data quality than the
algorithm used. Studies have repeatedly shown that increasing the sample size improves classification
accuracy [28]. In comparison to single DTs, RF has been found to be more robust to reduce training
sample size and mislabeled training samples. For example, Ghimire et al. [29] found that RF was
more robust to smaller training datasets and mislabeled training samples than single DTs. They also
reported only a slight decrease in classification accuracy for RF when up to 20% of the training samples
were intentionally mislabeled. Additionally, for RF, Rodriguez-Galiano et al. [26] found only a 5%
reduction in classification accuracy when the training sample size decreased by 70%. Collecting a large
number of quality samples over a large spatial extent can be complex and time consuming [3]; as a
result, we investigate the impact of training data size in this study.

Another consideration in regard to training samples is imbalance between classes. If a purely
random sample is used to collect samples, the proportion of samples in the training set will be roughly
equivalent to the proportion on the landscape. Class imbalance can be an issue when the proportion of
each class on the landscape varies greatly or some classes make up a small proportion of the landscape.
Using an imbalanced training dataset often results in an under prediction of land area for the less
common classes and an over prediction of land area of more common classes [25,30,31]. RF has been
shown to not be immune to this issue. For example, Blagus et al. [30] found that RF and SVM were
both negatively impacted by imbalanced data, and Stumpf et al. [32] found that RF underestimated
landslide occurrence when provided with a training sample containing more examples of non-landslide
locations than landslide examples. Although overall accuracy may not decease substantially as a
result of imbalanced training data, the accuracy of rare classes, as measured using producer’s and
user’s accuracy, may suffer as noted by Waske et al. [33]. Since the impact of class imbalance has been
documented, we make us of a training strategy that allows us to mitigate imbalanced training data, as
will be described below.

1.2. GEOBIA and Feature Space

In contrast to pixel-based classification, GEOBIA does not classify each pixel separately. Instead,
the image is segmented into homogenous objects that are then used as the units to be classified or
labelled. These methods are especially applicable to high spatial resolution data where pixels are
generally smaller than the features being mapped [6,24,34–41]. GEOBIA has been described as a
paradigm shift in remote sensing image analysis [35,36]. [24] provides a review of GEOBIA combined
with supervised classification and noted a need to verify the applicability of GEOBIA methods over
larger study areas, as 95.6% of the studies reviewed mapped areas smaller than 300 ha. This point was
also made by Ramezan et al. [6] who argued for the need to assess the impact of training data selection
on GEOBIA classification over large extents. One goal of this study is to explore the complexity of
using GEOBIA methods to map entire states.

As noted by Maxwell et al. [39], one of the benefits of GEOBIA is the ability to derive a variety
of statistical attributes for each object including spectral means, spectral variability and texture, and
object geometric measures. Several studies have investigated the value of such measures. For example,
Guo et al. [42] noted the value of using object geometric measures for mapping tree mortality. [43]
suggested that second-order textural measures calculated from the gray-level co-occurrence matrix
(GLCM) can improve GEOBIA classification accuracy for classifying forest types. Different textural
measures can be calculated from the GLCM. First-order measures, such as standard deviation, are
calculated using all pixels in a kernel or moving window. In contrast, second-order measures from the
GLCM will only use pixels that are separate by a defined distance and direction for greater control over
how the spatial associations are defined. This information is then stored in a matrix that summarizes
the combination of digital numbers (DNs) for pairs of pixels, and a variety of measures can be calculated
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from this matrix [11,44–46]. O’Neil-Dunne et al. [4] specifically noted the value of GLCM homogeneity
for urban and suburban tree canopy mapping. In contrast to these examples, Maxwell et al. [39] found
that incorporating band standard deviation, GLCM textural measures, and geometric measures did
not improve the classification accuracy for mapping mining and mine reclamation. For GLCM textural
measures specifically and based on a review of previous studies, Warner [46] suggested that the value
of these measures is case-specific, as studies have shown contradictory results.

Other than deriving measures from imagery, it is also possible to summarize other datasets relative
to image objects to potentially improve classification accuracy, including attributes derived from parcel
boundaries [2], topographic characteristics produced from digital elevation models (DEMs) [47], or
measures calculated from light detection and ranging (LiDAR) data, such as return intensity and
normalized digital surface models (nDSMs) [4,6,21,39,48–50]. Unfortunately, in this case, LiDAR
data are currently not available for the entire state, so these data were not investigated in this study.
The ability to calculate a variety of measures and integrate disparate data are attractive characteristics
of GEOBIA in comparison to pixel-based classification. However, there is a computational cost in
generating and summarizing input data [4,39]. As a result, one goal of this study is to explore the
value of common measures for general land cover mapping over large areas.

Additional context information can be made available by attributing the summary statistics
calculated for larger objects on the smaller objects that are contained within them [51,52]. Here,
these larger objects that contain smaller objects will be called super-objects. Such techniques were
explored by Johnson [51] and Johnson et al. [52] for GEOBIA-based classification of urban land cover
using high spatial resolution imagery, and in both cases classification improvements were reported.
Specifically, Johnson et al. [52] found an improvement in the Kappa statistic from 0.727 to 0.804 with
the inclusion of super-object attributes. Including super-object attributes is appealing, as this allows
for the calculation of additional variables that could potentially improve the classification without the
need for collecting or processing additional input data, such as LiDAR, and is theoretically attractive as
it captures the context of the object. Therefore, this technique is investigated in this study for mapping
large spatial extents.

Understanding what predictor variables are important in a classification and for mapping specific
classes can be of value. Further, if key predictor variables can be identified prior to performing a
classification over a large spatial extent, this can minimize the time and computational demand of
creating features that may be of limited importance. As a result, feature selection is explored in
this study as a means to potentially improve classification accuracy and decrease model complexity.
According to the Hughes phenomenon or “curse of dimensionality”, increasing the dimensionality of
the feature space will also lead to increased complexity. Therefore, although more information is being
provided to separate the classes, the increased complexity may actually result in decreased performance.
This is especially true when the number of training samples are not sufficient to characterize the
feature space [53]. This issue has been well documented with parametric classifiers, such as maximum
likelihood (ML); however, this issue is less understood for nonparametric methods such as RF [53,54].
For RF specifically, Chan et al. [55] documented only a 0.2% increase in accuracy for classifying ecotopes
when feature selection was used to select 53 bands from a 126 band hyperspectral image. Generally,
RF has been found to be robust to complex and high dimensional feature space [15,55–57]. However,
even if accuracy is not improved or is only slightly reduced by feature selection, it may still be of value
as a means to simplify the model and decrease processing time [3,57]. For example, Duro et al. [57]
were able to reduce the number of features by 60% with only a small loss in classification accuracy. We
argue that reducing complexity is of greater concern with larger mapping extents since processing and
working with a large number of inputs can be very cumbersome.

Feature selection is used in our study to assess the most important variables for mapping and
differentiating our defined land cover classes. We also make use of the conditional variable importance
measures produced using the random forests algorithm [58,59]. The objective here is to evaluate the
value of different variables for mapping our defined classes.
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1.3. NAIP Orthophotography

Since high spatial resolution imagery that covers the full spatial extent of a state with limited
cloud contamination is not common, we use publicly available and low cost NAIP orthophotography
in this study [60]. The NAIP program is administered by the Aerial Photography Field Office (APFO)
of the United States Department of Agriculture (USDA). Recently, data have been provided at an
8-bit radiometric resolution and a 0.5 to 1 m spatial resolution with four spectral bands: red, green,
blue, and near infrared (NIR). Cloud cover is stipulated to be less than 10% for each United States
Geologic Survey (USGS) quarter quad; however, based on the authors’ experiences using these data,
cloud cover is generally much lower than 10%. The data are generally collected in the growing season
during the leaf-on period [60]. Given that this imagery is collected for entire states every two to three
years throughout CONUS, the methods described here could potentially be applied to other states or
geographic extents within the United States.

NAIP imagery have been applied to a variety of tasks including mapping urban landscapes [2],
impervious surface [61], forest cover [1,6,34], and mining and mine reclamation [47,62]. Some
complexities of working with high spatial resolution data over large extents, including NAIP
orthophotography, are large data volumes, complex class signatures associated with within class
heterogeneity, low spectral resolution, and frequent shadow contamination [1,6,22,34,40,48,62–65].
NAIP data are often acquired by multiple sensors over an extended period of time with variable
viewing geometry and illumination, resulting in complexity and heterogeneity across geographic
extents. Further, NAIP data are not available over multiple seasons, as is common with satellite data
with fixed return intervals, so seasonal patterns cannot be used to further differentiate classes without
incorporation additional image data sources. It is also difficult to convert these data to reflectance
as radiometric response information is generally not available [6,22,34,60,62,66–68]. However, NAIP
data do have many positive attributes including availability over large spatial extents, high spatial
resolution, low cost to the end-user, low cloud cover, and repeat collection [1,4,6,40,60,62,67,69–71],
so there is value in exploring these data as input for large-area, high spatial resolution land cover
mapping tasks. For a full review of NAIP data for land cover classification and feature extraction,
please see [60].

2. Materials and Methods

2.1. Study Area

This mapping project was conducted for the entire state of West Virginia, USA (see Figure 1),
which covers a land area of roughly 62,000 km2. The state has a humid continental climate with an
average winter temperature of 1◦C and an average summer temperature of 22◦C. It ranges in latitude
from 37◦N to 41◦N and in elevation from 150 m to 1500 m. Rainfall varies from an average 64 cm
per year in the eastern panhandle to an average 160 cm per year on west-facing slopes in the highest
elevations of the Allegheny Mountains physiographic section. The state is dominated by forested land
cover, including mixed, oak dominant, northern hardwood, and northern evergreen forests [72]. Based
on the 2011 NLCD land cover, the state is roughly 80% forested, 11% hay/pasture/herbaceous/cultivated
crop, and 7% developed. It is topographically rugged, with variable elevation. The western portion of
the state has moderate to strong relief within a mature plateau dissected by a dendritic stream network.
The eastern portion of the state occurs predominately within the Ridge and Valley physiographic
province, which is characterized by linear ridges and valleys with a trellis stream network [72].



Remote Sens. 2019, 11, 1409 6 of 27Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 27 

 

 

Figure 1. Land cover classification result example. Regions were selected to highlight results for areas 
with different land cover conditions and so that the result could be viewed at different scales and 
spatial extents. 

2.2. Data and Pre-Processing 

NAIP orthophotography was acquired from the APFO as uncompressed quarter quads in 
GeoTIFF format. The quarter quads were then color balanced using the Mosaic Pro Tool in Erdas 
Imagine [73]. Due to data volume, it was not possible to mosaic all the imagery into a single file. 
Instead, the color-balanced data were written to tiles using the quarter quad extents with 600 m 
overlap between adjacent tiles in an attempt to reduce edge effects in the segmentation process. A 
total of 1830 image tiles were produced. 

Due to the large mapping extent, few ancillary data layers were available that were consistent 
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Figure 1. Land cover classification result example. Regions were selected to highlight results for areas
with different land cover conditions and so that the result could be viewed at different scales and
spatial extents.

2.2. Data and Pre-Processing

NAIP orthophotography was acquired from the APFO as uncompressed quarter quads in GeoTIFF
format. The quarter quads were then color balanced using the Mosaic Pro Tool in Erdas Imagine [73].
Due to data volume, it was not possible to mosaic all the imagery into a single file. Instead, the
color-balanced data were written to tiles using the quarter quad extents with 600 m overlap between
adjacent tiles in an attempt to reduce edge effects in the segmentation process. A total of 1830 image
tiles were produced.

Due to the large mapping extent, few ancillary data layers were available that were consistent
across the entire state. For example, the state does not yet have a complete LiDAR coverage. However,
we were able to summarize some data layers that were available, consistent, and public. First, the 2010
US Census blocks were acquired and converted to points using the Feature to Point tool in ArcGIS Pro
2.2, which calculates the center of gravity or centroid for each input polygon [74]. From these point
measurements, we estimated the density of US Census blocks, houses, and population using a kernel
density calculation in ArcGIS Pro with a radius of 250 m and a cell size of 5 m [74]. The search radius
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was determined based on experimentation with multiple window sizes, and a 250 m radius window
size was deemed adequate to represent the density distribution at the scale of interest. Using the same
method, we also calculated road density using the 2010 US Census road data as input. Only primary
roads, secondary roads, local neighborhood roads, and highway entrance ramps were used. The road
network was then converted to points with a point occurring every 5 m along the line segments. Kernel
density was derived from these points using a cell size of 5 m and a search radius of 250 m. From the
10 m National Elevation Dataset (NED) DEM, topographic slope was calculated in degrees using the
Slope Tool in ArcGIS Pro [74]. Lastly, building density was estimated using the building footprint data
made available by Microsoft [75]. We employed the same process used to produce the derivatives from
the US Census blocks: first, the polygons were converted to points, then kernel density was estimated.

Although the ancillary data used here are imperfect as they do not temporally align with the
orthophotography and vary in regard to spatial resolution, they were included to assess the value of
incorporating additional ancillary variable into the classification process. Further, these data layers are
available for the entirety of CONUS, similar to NAIP, so similar techniques could be applied to other
states or geographic extents within the United States.

2.3. Image Segmentation

Image segmentation was performed using eCognition Developer 9.3 [76]. Only the NAIP
orthophotography was used in the segmentation process; the ancillary variables were not included.
The multi-resolution segmentation (MRS) algorithm was used, which is a bottom-up region growing
segmentation approach. This algorithm requires several user-defined parameters including relative
weights of input bands, scale, shape, and compactness. The scale parameter controls the size of image
objects; larger values produce larger objects. The shape parameter controls the relative weight between
the shape of the object and the spectral properties, and smaller values result in less influence of shape
in comparison to spectral properties. Compactness controls the balance between the form and edge
length of the object, and larger values will cause objects to be more rounded or less elongated or
irregular [6,39,43,77–79].

Prior research suggests that the scale parameter has the largest impact on classification
accuracy [6,39,43,78,79]. Therefore, the value for this parameter was determined using the Estimation
of Scale Parameter (ESP2) tool [80], combined with analyst best-judgement. The ESP2 tool tests multiple
scale values and calculates the local variance at each scale. The rate of change of local variance is
then plotted against the scale values tested, and peaks in this graph indicate optimal scale parameters.
Due to the high processing demands of the ESP2 tool, using the tool on the entire study area was
impractical, thus five small study sites were selected across the state that represent different land cover
patterns including development, forest-dominated, mining, and agricultural, for assessment. Based on
these results, a scale value of 140 was selected for the smallest image objects in this study. The band
weights were set to 1 for all four image bands so that they were equally weighted. The shape and
compactness parameters were left at their default values: 0.1 and 0.5, respectively.

Two additional segmentations were performed in order to produce two sets of super-objects.
Instead of producing the objects from the image pixels, the objects were generated from the prior
segmentation. First, the original objects were segmented using the same parameter values and weights
specified above, except with a scale value of 300. This segmentation will be referred to as SO1. A third
segmentation was performed using the SO1 segmentation as input and all the same parameters as
used in the other two segmentations but with a scale value of 500. This segmentation will be referred
to as SO2. This method resulted in perfectly nested objects such that the original objects are nested
within the first set of super-objects, and the first and second set of objects are nested perfectly within
the third set.

Given the large spatial extent used in this study and the heterogeneity of the NAIP data, choosing
optimal segmentation parameters was difficult. Nevertheless, we would argue that the combination of
the quantitative ESP2 tool and analyst judgement offered the best available means to make the selection.
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Once the segmentation parameters were determined, all 1830 image tiles were segmented at all
three segmentation levels using five instances of eCognition Server (Sunnyvale, CA, USA) installed on
a local machine with an Intel Core i7–6700K processor with 4 cores and 32 GB of RAM. It took nearly a
week to complete all the segmentations.

2.4. Variables and Feature Space

A variety of input features were calculated for each image object as described in Table 1. The
abbreviations defined in this table will be used in all remaining tables and figures. Since all features
had to be calculated across all 1830 image tiles, it was not possible to produce all features made
available in the eCognition software due to computational constraints. As a result, it was necessary
to make decisions as to the best subset of variables to include in the experiment. Spectral brightness
(average of the four spectral means), all four spectral means, and all four spectral standard deviations
were calculated at all three segmentation scales. We found that calculating GLCM measures after
Haralick [44,81] was very time consuming, so a subset of these features were selected. Hall-Beyer [45]
and Warner [46] suggest that many GLCM measures are similar and that at least one measure of
contrast, one measure of orderliness, and two or three descriptive statistics be calculated. Following
this advice, at the first segmentation level we calculated homogeneity as a measure of contrast, entropy
as a measure of orderliness, and mean, standard deviation, and correlation as descriptive statistics.
All of these measures were calculated using all directions, for both the red and NIR bands, and
using the quick 8/11 methods available in eCognition [76]. At the second and third levels, we only
calculated homogeneity and entropy from the red and NIR bands using the method described for the
first segmentation level.

Table 1. Input features used. !indicates that the variable was calculated for the image band or object
level. X indicates that it was not calculated. NA indicates not applicable.

Group Variable Name Abbreviation Band Used? Calculated at Object Scale?

Blue Green Red NIR Objects SO1 SO2

Spectral

Brightness B NA NA NA NA ! ! !

Mean Mn ! ! ! ! ! ! !

NDVI NDVI NA NA NA NA ! ! !

NDWI NDWI NA NA NA NA ! ! !

First-Order
Texture Standard Deviation SD ! ! ! ! ! ! !

Second-Order
Texture
(GLCM)

Mean GLCM Mn X X ! ! ! X X
Standard Deviation GLCM SD X X ! ! ! X X

Correlation GLCM Corr X X ! ! ! X X
Homogeneity GLCM Hom X X ! ! ! ! !

Entropy GLCM Ent X X ! ! ! ! !

Geometry
(Geom)

Border Index BI NA NA NA NA ! X X
Compactness Comp NA NA NA NA ! X X
Roundness RndI NA NA NA NA ! X X

Shape Index SI NA NA NA NA ! X X

Ancillary

Mean topographic Slope Slp NA NA NA NA ! X X
Mean Census Block

Density Blk NA NA NA NA ! X X

Mean Census Block House
Density H NA NA NA NA ! X X

Mean Census Block
population Density P NA NA NA NA ! X X

Mean Road Density Rd NA NA NA NA ! X X
Mean structure Density

(Microsoft) Str NA NA NA NA ! X X

NDVI = Normalized Difference Vegetation Index, NDWI = Normalized Difference Water Index, GLCM = Gray-Level
Co-Occurrence Matrix.

From the red and NIR spectral means for each object, we calculated the normalized difference
vegetation index (NDVI) at all three segmentation levels. We also calculated the normalized difference
water index (NDWI) after McFeeters [82] from the green and NIR bands at all levels. Lastly, we
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generated measures of object geometry as border index, compactness, roundness, and shape index at
the first segmentation level.

The variables calculated at both super-object scales were then associated with the smallest objects
using a spatial intersection in ArcGIS Pro. A Python script containing a loop was generated to complete
these operations on all 1830 data tiles. The mean value from the raster cells occurring within each of the
smallest level objects for each of the raster grids created from the ancillary data were calculated using spatial
summarization methods and ModelBuilder in ArcGIS Pro [74]. A total of 61 variables were generated.

2.5. Training Data and Validation Data

Table 2 describes the classes that were mapped. Our goal was to map general land cover
categories across the state. Given the limited spectral resolution of the NAIP orthophotography and
the heterogeneity of the data, we found that a large number of classes could not be accurately separated
due to spectral confusion. These six classes were selected because they represent broad categories
that were deemed to be important to map and differentiate. Here we are differentiating vegetation as
forest and low vegetation. Developed areas are being mapped as mixed developed and impervious
while barren areas not associated with development, such as mines and quarries, are being mapped as
barren. Rivers, lakes, and other waterbodies are mapped as water.

Training data as vector polygons were created by manual photograph interpretation of the NAIP
orthophotography across the entire state. Once training polygons were generated by the analysts, the
polygons were converted to points using the Feature to Point tool in ArcGIS Pro 2.2 [74]. We then
selected the image objects that intersected these point locations. We only included the object that
intersected each point as opposed to all objects that intersected the digitized polygon extent to reduce
spatial autocorrelation in our training samples. Since a 600 m overlap between image tiles was used
to reduce edge effects, multiple objects occurred within these overlapping areas. To select only one
object at each location, the largest object was selected. Table 2 provides a summary of the number of
training objects in each class. A total of 31,081 training sample objects were selected using this manual
photointerpretation method.

Since validation data must be randomized in order to produce an unbiased assessment of map
accuracy [83–91], we could not use a manual digitizing method to produce these samples. Instead,
random points were generated across the mapping extent. The largest object that intersected each of
these points was then selected. This resulted in 24,998 objects, which were then manually labelled
by two analysts. Specifically, the analyst interpreted the object based on the best membership to the
defined classes. Table 2 also summarizes the number of validation samples for each of the mapped
classes. Any training object that intersected a validation object was removed from the training set and
were not included in the totals presented in Table 2 so that the validation was not biased by overlap
between training and validation data.

Table 2. Mapped classes and training and validation object summary.

Class Description Number of Training
Objects

Number of Validation
Objects

Forest Areas dominated by tall, woody vegetation and mature
forests. This class includes forest and woodlands. 13,347 20,561

Low Vegetation Low vegetation such as grasslands, pastureland,
agricultural fields, and croplands. 13,353 3146

Barren
Non-vegetated areas not associated with impervious
surface. This class includes bare soil, quarries, and

surface mine features.
1056 162

Water All standing water, including rivers, streams, ponds,
lakes, and impoundments. 1098 188

Impervious
All areas dominated by impervious surface, such as

road surfaces, parking lots, airport runways,
and buildings.

1205 424

Mixed Developed
Areas dominated by mixed development and mixed

land cover, such as residential areas, yards,
and development.

1022 517

Total 31,081 24,998
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2.6. Classification

The randomForest [92] and caret [93] packages within the free and open-source statistical software
package R [94] were used to perform the classification. Since an imbalanced training dataset was
produced, a method was implemented to make use of the large training set to provide the classifier
with a balanced sample. Instead of producing a single random forest model, ten separate models were
produced using a subset of the data. These ten models were then combined to a single model. In each of
the ten models, 1000 random samples of each class were provided for a total of 6000 samples. Due to a
limited number of samples in the barren, water, impervious, and mixed developed classes, the random
sampling was performed with replacement such that each training object could potentially be used in
more than one of the ten models. For the more abundant forest and low vegetation classes, random
sampling without replacement was used so that a unique set of samples were used in each of the ten
models. The goal here was to make full use of the large number of forest and low vegetation samples
without potentially biasing the model with imbalanced training data. For experiments involving a
reduction in sample size, this method was not used. Instead, a balanced sample was provided with the
specified number of samples per class.

All experiments were optimized separately so as not to bias the comparisons. A total of 200
trees were used in each model, or 2000 trees when the ten models were combined. The number of
random variables available for splitting (mtry) parameter was optimized using 10-fold cross validation
in which the data were split into ten folds. The model was then executed ten times, each time leaving
out one of the folds for assessment. The best model was evaluated as the one that provided the highest
average Kappa statistic.

Once a model was produced, it was used to classify all image objects in all 1830 tiles using a loop
within the R software. The tiles were converted to raster grids at a 1 m cell size and merged to county
extents. To produce a coarser mosaic for the entire state at a 5 m cell size, the data were resampling
using the nearest neighbor resampling method then mosaicked.

2.7. Variable Importance and Accuracy Assessment

We used a RF-based variable selection method in this study after Evans et al. [95] as implemented
in the rfUtilities package in R [95]. This method uses variable importance as estimated by the OOB
error rate to rank variables. Specifically, we created models with the top 10%, 25%, 35%, 50%, 75%, and
100% of the variables for comparison. RF has the ability to produce measures of variable importance
by measuring the decrease in accuracy for classifying the OOB data based on models that exclude a
particular variable, a measure termed mean decrease in OOB accuracy [15]. However, this measure
has been shown to be biased when correlated predictor variables are used [58,59,96]. To alleviate this
issue, we used the conditional variable importance measure as implemented in the party package in
R [59,96,97]. Overall variable importance was assessed using all six classes. To assess the importance
of variables for separating one class from all the others, separate models were run in which one class
was separated and all other classes were coded to the same value to compare one class to the rest.

Accuracy was assessed using overall accuracy, the Kappa statistic, and class user’s and producer’s
accuracies. Based on the recommendation of Pontius et al. [98], we also calculated quantity and
allocation disagreement. Quantity disagreement measures error associated with incorrect proportions
of classes while allocation disagreement assesses error resulting from incorrect spatial allocation of
classes. They sum to overall error [98,99]. All measures were derived from the error matrix. Since
objects were used as the accuracy assessment unit as opposed to pixels, each object was weighted by
its area to produce error matrices, as suggested by Congalton et al. [100] and MacLean et al. [101].

To assess statistical difference between classification results, McNemar’s test was used [83,102].
This test provides a nonparametric assessment of the difference between a pair of classifications. From
the multi-class error matrix, a 2-by-2 matrix is produced that summarizes which samples were classified
correctly by both classifiers, which were classified incorrectly by both classifiers, and which were
classified correctly by one classifier but not the other. If the z-score for this one-tailed test is greater
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than 1.645 then one classification is suggested to be more accurate than the other at a 95% confidence
interval (p-value = 0.05) [83,102].

It should be noted that accuracy assessment of GEOBIA classifications is an ongoing research
topic in which there is still an active debate regarding optimal methods [100,101,103–107]. For example,
Ye et al. [107] in a review of 209 GEOBIA research articles published between 2003 and 2017 noted
that 93 articles used objects as the validation unit, 107 used pixels as the validation unit, and 9 used
both. Further, 24% of the articles used simple random sampling, 23% used stratified random, 6%
used systematic sampling, 13% used the entire population, and 34% did not adequately report how
sampling was conducted. Based on this review, Ye et al. [107] suggests that the profession needs more
methodological developments to resolve the conceptual challenges of assessing GEOBIA classifications.
Accuracy assessment was one of the most challenging aspects of this study, especially given the large
spatial extent. Limitations in this study include the lack of assessment of the segmentation quality
and the need to label each object to a single class. However, we would argue that the simple random
sampling, area-weighted, and polygon-based methods used here were adequate to rigorously compare
the results in regard to the impact of sample size and feature space and to gain an understanding of the
relative performance of different models and the quality of the thematic outputs.

3. Results

3.1. Classificaton Results

Figure 1 shows the results for the entire state and for subsets of the mapped area at different scales.
This result was generated using the ten models, trained using balanced training samples, and then
combined to a single model. Additionally, all image-derived variables, object geometry, and ancillary
data were used. Table 3 shows the error matrix for this classification. Each cell is populated with
the percent of the validated land area corresponding to that specific reference data and classification
combination. The total table sums to 100%. The overall accuracy was assessed as 96.7% and the Kappa
statistic was 0.886, suggesting good performance in regard to overall accuracy.

The forest, low vegetation, and water classes were generally mapped with user’s and producer’s
accuracies above 85% and were generally more spectrally distinct from the other classes. In contrast,
barren, impervious, and mixed developed cover proved more difficult to map. Confusion exists between
the barren and impervious classes, which we attribute to similar spectral signatures. The mixed developed
class was commonly confused with the low vegetation and impervious classes, which we also attribute to
similar spectral signatures and resulting from mixed land cover conditions. Classes that were inherently
difficult to define or were easily confused with other classes, such as impervious and barren, proved to
be challenging to separate and to manually label for the accuracy assessment. High spatial resolution
imagery did not solve class fuzziness and definition issues. Therefore, analysts should be cautious when
using high spatial resolution land cover to assess or validate spatially coarser products.

One other common issue observed was the misclassification of steep and shadowed forested
slopes as water. If LiDAR-derived canopy height data were available, this issue would likely have
been greatly minimized. Some agricultural fields that were sparsely vegetated or spectrally bright
were misclassified as barren cover. This highlights the complexity of defining and mapping classes
that are impacted by land use, such as agriculture, as opposed to broader and more spectrally distinct
land cover categories, such as vegetation and barren lands.
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Table 3. Error matrix for classification using all variables. Value in cell represents the percentage of land area.

Reference

Barren Forest Low Vegetation Impervious Mixed Developed Water Row Total User’s Accuracy

Barren 0.198 0.007 0.163 0.151 0.002 0.007 0.527 37.6%

Forest 0.014 82.283 1.442 0.055 0.194 0.015 84.003 98.0%

Low Vegetation 0.201 0.339 11.005 0.023 0.141 0.000 11.710 94.0%

Impervious 0.024 0.005 0.050 0.456 0.020 0.023 0.578 78.9%

Mixed Developed 0.001 0.089 0.149 0.113 0.568 0.001 0.920 61.7%C
la

ss
ifi

ca
ti

on

Water 0.001 0.063 0.011 0.004 0.001 2.181 2.262 96.4%

Column Total 0.439 82.786 12.820 0.803 0.925 2.227 Overall Accuracy: 96.7%

Producer’s Accuracy 45.1% 99.4% 85.8% 56.8% 61.4% 97.9% Kappa: 0.886
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3.2. Feature Space Comparison

Table 4 and Figures 2 and 3 provide comparisons of different feature space combinations using a
variety of metrics. We will begin with a discussion of the models that did not incorporate super-object
attributes or ancillary data by making comparisons to the model that just used spectral brightness
and band means. Incorporating measures of object geometry decreased overall accuracy by 0.8% and
Kappa by 0.003, which was found to be statistically significant using McNemar’s test (z-score = 3.081).
This suggests that geometric measures were not of value for differentiating these land cover classes.
Similar findings were noted by Maxwell et al. [39], who found measures of object geometry did
not improve GEOBIA classification of mining and mine reclamation. Incorporating the NDVI and
NDWI measures provided a 0.001 increase in the Kappa statistic but no increase in overall accuracy.
Incorporating measures of first-order texture as band standard deviations increased the classification
accuracy by 1.0% and Kappa by 0.024, which was statistically significant (z-score = 6.320). Similarly,
incorporating GLCM textural measures increased the classification accuracy by 0.9% and the Kappa
statistic by 0.024, which was statistically significant (z-score = 6.710). These results generally suggest
textural measures are of value, in contrast to Maxwell et al. [39] who found that these measures did
not improve classification accuracy for mapping mining and mine reclamation land cover. However,
O’Neil-Dunne et al. [4] found that homogeneity was of value for urban and suburban tree canopy
mapping, especially when LiDAR data were not available. As suggested by Warner [46], the value of
textural measures may be case-specific.

In comparing the result using spectral brightness and band means from just the objects with
that when brightness and means were incorporated from the super-objects, a 0.4% decrease in overall
accuracy and a 0.003 decrease in Kappa were observed; however, this difference was not found to
be statistically significant (z-score = 0.070). In comparison to using just the object brightness, band
means, and standard deviation, accuracy increased by 0.5% and Kappa increased by 0.018 when
adding in these measures from the super-objects, which was statistically significant (z-score = 4.152).
Similarly, overall accuracy increased by 1.0% and Kappa increased by 0.029 when brightness, band
means, and GLCM super-object measures were incorporated in comparison to just using those at the
object-level, which was found to be statistically significant (z-score = 9.487). Using all image-derived
variables, including measures of central tendency, texture, and object geometry, provided an overall
accuracy of 95.5% and a Kappa statistic of 0.848. Once the super-object features were added in, accuracy
increased by 0.2% and Kappa increased by 0.006, which was found to not be statistically significant
(z-score = 1.338). In general, although the overall accuracy did not increase substantially, this research
suggests that incorporating super-object attributes were of value, especially textural measures, similar
to the findings of Johnson [51] and Johnson et al. [52].

An overall accuracy of 95.7% and a Kappa statistic of 0.854 were obtained when using all the
image-derived measures, including brightness, band means, standard deviation, and GLCM textural
measures, the super-object measures, and the object geometric measures. When the ancillary variables
were incorporated, the overall accuracy and Kappa statistic increased to 96.7% and 0.886, respectively.
Additionally, this difference was statistically significant (z-score = 14.406). Although there were
some limitations in regards to the ancillary data used, such as temporal misalignment with the
imagery and different spatial resolutions, these features were of value in this classification task. The
highest classification accuracy and Kappa statistic (Figure 2) and quantity disagreement (Figure 3)
were obtained using all variables. The best model varied in regard to class user’s and producer’s
accuracy. Therefore, even given the limitations, this research supports prior research (for example,
References [2,6,19,21,39,49]) that suggests ancillary data can improve classification results.
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Table 4. Comparison of different feature spaces.

No Super-Object Variables With Super-Object Variables With
Ancillary

Measure B +Mn
B +Mn +
NDVI +
NDWI

B +Mn +
Geom

B +Mn +
SD

B +Mn +
GLCM

All
Image-

Derived
B +Mn

B +Mn +
NDVI +
NDWI

B +Mn +
SD

B +Mn +
GLCM

All
Image-

Derived
All

OA (%) 93.8 93.8 93.0 94.8 94.7 95.5 93.4 93.7 95.3 95.7 95.7 96.7
Kappa 0.801 0.802 0.778 0.825 0.825 0.848 0.788 0.798 0.843 0.854 0.854 0.886
AD (%) 3.77 3.77 4.62 2.41 2.20 1.87 3.96 3.88 2.56 2.02 2.09 1.97
QD (%) 2.44 2.41 2.34 2.80 3.12 2.66 2.68 2.43 2.10 2.31 2.22 1.34

UA B (%) 26.1 26.6 27.6 30.6 45.1 41.3 29.0 27.6 37.3 45.3 36.2 45.1
UA F (%) 96.3 96.4 96.0 98.4 98.0 98.9 95.8 96.2 98.5 98.8 98.9 99.4

UA LV (%) 86.7 86.5 80.7 78.6 78.5 78.9 86.3 86.5 82.0 81.8 81.7 85.8
UA I (%) 33.6 33.5 48.2 31.6 34.7 44.1 32.3 33.9 38.8 33.4 37.6 56.8

UA MD (%) 44.0 44.8 53.4 73.1 85.8 82.4 43.2 42.0 68.2 80.1 79.1 61.3
UA W (%) 97.3 97.2 98.3 98.4 98.3 98.3 97.4 97.7 97.8 97.4 97.7 97.9

PA B (%) 21.3 22.6 25.2 25.0 28.9 33.2 22.8 23.8 28.2 29.7 29.4 37.6
PA F (%) 98.6 98.7 98.4 98.0 98.5 98.4 98.5 98.6 97.9 98.4 98.3 98.0

PA LV (%) 79.6 80.1 79.4 96.2 95.1 95.9 76.0 77.6 94.8 95.6 95.1 94.0
PA I (%) 82.7 80.4 86.0 70.3 80.0 84.6 74.9 70.3 71.3 78.5 76.5 79.0

PA MD (%) 21.2 19.6 17.5 21.6 21.5 26.1 24.3 23.3 27.6 28.5 29.2 61.7
PA W (%) 89.0 92.0 91.0 92.7 93.9 93.9 92.5 91.6 93.1 95.6 94.3 96.4

OA = Overall accuracy, AD = Allocation disagreement, QD = Quantity disagreement, UA =User’s Accuracy, PA = Producer’s Accuracy, B = Barren, F = Forest, LV = Low Vegetation,
I = Impervious, MD = Mixed Developed, W = Water.
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3.3. Training Sample Size

Figure 4 shows how the RF model using all variables responded to decreases in training data sample
size in terms of overall accuracy, the Kappa statistic, allocation disagreement, quantity disagreement,



Remote Sens. 2019, 11, 1409 16 of 27

and class user’s and producer’s accuracy. We replicated this experiment ten times at each sample size
in order to obtain the standard deviation, represented in Figure 4 as error bars. Generally, accuracy
performance stabilized when roughly 500 samples of each class were used, suggesting that a large
number of samples may not be necessary to differentiate the classes. Further, variability tended to
be much higher with smaller sample sizes, which suggests that the samples used can have a larger
impact on the output. Using a larger sample size tended to stabilize the results. Overall accuracy and
Kappa values were 94.6% and 0.821 when using only 10 samples per class in comparison to 96.7%
and 0.886 when using 1000 samples per class. Therefore, even though performance decreased with a
smaller sample size, overall accuracy was still above 90% and Kappa was above 0.80. This suggests
that RF is generally robust to reduced sample size, as previously suggested by Ghimire et al. [29]
and Rodriguez-Galiano et al. [26]. Additionally, increasing the number of samples past 500 did not
substantially improve the classification accuracy of the difficult to map classes, barren, impervious,
and mixed developed, as the user’s and producer’s accuracies stabilized.
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3.4. Feature Selection

Figure 5 shows the impact of variable selection as measured using overall accuracy, the Kappa
statistic, quantity disagreement, allocation disagreement, and class user’s and producer’s accuracy.
The results generally suggest that RF is robust to a large feature space, as performance tended to
not change or decreased as the number of features was reduced. For example, the overall accuracy
and Kappa statistics were 96.5% and 0.879, respectively, when using the top 25% of the variables in
comparison to 96.7% and 0.886 when using all variables. Although this difference was statistically
significant (z-score = 6.353), adding the additional variable only increased the accuracy by 0.2%. This
study supports prior research that suggests that RF is robust to a complex and high dimensional feature
space [15,55–57]. This research suggests that RF would be a good algorithm choice if many features
will be used and no feature selection will be applied.
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3.5. Variable Importance

Figure 6 provides the conditional variable importance of the top ten variables for the entire model
(Figure 6a) and for each individual class (Figure 6b–g) using all input features. For mapping all six
classes, many ancillary measures were found to be important, including mean structure density (Str),
topographic slope (slp), Census block density (Blk), and road density (Rd), highlighting the value
of incorporating ancillary variables. Further, mean structure density and mean topographic slope
were found to be the most important variables. Important spectral variables include NDVI and Mean
NIR (Mn NIR). Additionally, measures calculated at super-object levels were found to be important,
including NDVI and NDWI, suggesting that incorporating super-object measures was of value. It is
interesting that NDVI and NDWI were found to be important variables; however, as discussed above,
the incorporation of these variables did not statistically significantly improve the classification accuracy.
A possible reason for this is that the algorithm may be able to obtain the comparable information from
the bands used to calculate the indices.

Many variables were found to be of particular importance for specific classes. For example,
topographic slope (Slp) and mean road density (Rd) were valuable for mapping impervious surfaces.
Generally, classes that were more spectrally distinct did not show high importance for the ancillary
data; for example, the only ancillary variable in the top ten for the water class was mean topographic
slope, and no ancillary variable were in the top ten for forest. This highlights the value of including
ancillary variable when classes that may be spectrally confused, such as impervious surfaces and
barren areas, are to be mapped.

Figure 7 shows conditional variable importance when the ancillary variables were excluded. Once
the ancillary measures were removed, textural measures became more important in the model. For
example, NIR GLCM correlation (GLCM Corr NIR) was found to be the most important variable. This
suggests that textural measures may be of value if ancillary data are not available and classes that
are spectrally confused are to be separated. GLCM correlation, entropy, homogeneity, and standard
deviation were all found to be of value. Measures from super-objects were also found to be important,
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including band indices, band means, and textural measures. No measures of object geometry were
included in the top list of variables for any class, supporting our previous finding that geometric
measures did not improve classification accuracy.
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4. Discussion

Land cover classification was performed for the entire state of West Virginia using a combination
of GEOBIA, RF machine learning, and publicly available orthophotography and ancillary data. The
best classification accuracy obtained was 96.7% (Kappa = 0.886) using a balanced training dataset and
all variables. Forest, low vegetation, and water were mapped with user’s and producer’s accuracies
above 85%. In contrast, the barren, impervious, and mixed developed classes were more difficult to
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map. In this section, we will make some recommendations regarding general land cover classification
over large spatial extents as highlighted by our findings and in the context of previous studies.

4.1. Sample Size and Feature Selection

The number and quality of training samples have been shown to have a large impact on
classification accuracy [3,28]; however, RF has been found to be more robust to both reduced training
data size and quality in comparison to other algorithms [3,29]. In this study, we found that classification
accuracy stabilized fairly rapidly. If abundant training data are an issue in a mapping project, we suggest
experimenting with the available data to determine if an adequate output is obtained. If adequate
results are not obtained, then additional data may need to be collected. Although data and landscape
heterogeneity can complicate mapping tasks over large spatial extent [1–6], large areas offer the benefit
that large training datasets can be produced. Although time-consuming to collect, these data could be
reused in later mapping projects. For example, available training datasets could be assessed for change
and used to classify different imagery to assess landscape change or update the land cover product on
a regular basis. As quality training data are important, we recommend investing resources to create a
quality training set, as this is one of the most important factors in obtaining an accurate classification.

This study supports previous research that suggests that the RF algorithm is robust to complex
and high dimensional feature spaces [3,26,29]. Feature selection did not improve the classification
performance, and accuracy tended to decrease with substantial variable reduction. Overall accuracy
only dropped by 0.2% when 25% of the variables were used, so, even if feature selection does not
improve the classification accuracy, it may still be worth pursuing as a means to simplify the model.
This may be especially appealing for large-area mapping projects so that a large number of variables
do not need to be generated across a large spatial extent for a large number of image objects. If variable
selection will be undertaken, we suggest assessing important features over smaller study areas so that
only the important features will need to be generated for the entire mapping extent.

4.2. Value of Super-Object Variables

We obtained mixed results when incorporating super-object attributes, in contrast to Johnson [51]
and Johnson et al. [52]. Although incorporating these measures only increased accuracy slightly, some
super-group measures were found to be of high importance in the classification based on RF-derived
conditional variable importance. There is a large computational demand when multiple segmentations
must be performed for a large mapping extent, so it is questionable whether this added complexity and
processing time justifies only a slight increase in accuracy. However, super-objects may be considered
as a means to potentially improve classification accuracy if the image used offers few bands or no
ancillary data are available.

4.3. Value of Measures of Texture and Object Geometry

This study suggests the value of including a wide variety of variables. Both first-order texture, as
standard deviation, and second-order texture, in terms of GLCM measures, were found to improve
classification accuracy in this study whereas object geometry and band indices did not provide an
improvement. Textural measures may be particularly appealing when no ancillary data are available,
such as LiDAR, as suggested by O’Neil-Dunne et. al. [4]. As noted by Warner [46], the value of
textural measures may be case-specific; however, we suggest that they be explored as an option if
classification accuracy does not prove to be adequate using only the central tendency measures or
when ancillary data are limited. Image object geometric measures were found to be of little value in
this classification task.

4.4. Value of Ancillary Data

Many studies have found improved classification accuracy when ancillary data are
included [2–4,19,21,39,47,49,57], which this research also supports. Further, this appears to be



Remote Sens. 2019, 11, 1409 21 of 27

especially true if spectrally similar classes are to be mapped. Although the ancillary data used here
were limited, we still observed a 1.0% increase in the classification accuracy in comparison to using
only the image-derived variables and object geometric measures. Unfortunately, quality ancillary data,
such as LiDAR or parcel boundaries, may be incomplete or inconsistent over large mapping extents or
expensive to acquire. We suggest an inventory of available data be completed prior to undertaking
a classification task. One of the benefits of using GEOBIA is the ability to summarize a variety of
disparate datasets relative to image objects [39].

4.5. Practical Recommendations for Mapping Large Areas

Many challenges arose while attempting to complete this mapping project over a large spatial
extent. First, due to spectral and landscape heterogeneity, we found it necessary to collect a large
number of training and validation samples, which required several hundred analyst hours. It was
not possible to mosaic the entire NAIP image dataset; instead segmentation, attribute calculation, and
classification had to be performed separately for each of the 1830 tiles. We found that providing a
600 m overlap between adjacent tiles helped reduce any edge effects, as no edges or tile boundaries are
observable in the final dataset.

This process was simplified greatly using scripts and loops to perform the feature summarization
in ArcGIS Pro and the classification in R. Access to eCognition Server was necessary to apply the
segmentation and variable calculation processes to all image tiles. We were able to run this on a
personal computer in under a week. However, access to parallel computing architecture would be
necessary if this type of mapping was to be undertaken across a larger geospatial extent, such as the
entirety of CONUS. Making use of Google Earth Engine or other cloud computing platforms may
prove to be necessary to scale such an analysis.

5. Conclusions

Land cover mapping at a high spatial resolution and over large spatial extents can be challenging
for a variety of reasons including large data volumes, computational load, processing time, complexity
of developing training and validation datasets, data availability, and heterogeneity in data and
landscape conditions. Fortunately, modern machine learning algorithms, such as RF, are generally
robust to this complexity. In this study, we were able to obtain an overall accuracy of 96.7% and a
Kappa statistic of 0.886 using a combination of GEOBIA, RF machine learning, and public imagery and
ancillary data. The forest, low vegetation, and water classes were mapped with accuracy whereas the
barren, impervious, and mixed developed classes proved more difficult to map, as suggested by the
lower user’s and producer’s accuracies for these classes. There is complexity in defining and mapping
classes that are impacted by land use, such as agriculture, as opposed to broader and more spectrally
distinct land cover categories. Further, this highlights the need to investigate class-level accuracy as
opposed to only overall accuracy.

This research suggests many additional questions that should be explored in order to further
the use of high spatial resolution data to map large extents. There is a need to explore the impact of
using training data and models produced in one location to map other areas, as training data creation
is a time-consuming process. West Virginia is a landscape dominated by forest. There is a need to
explore the mapping of other environments from data such as NAIP, such as arid environments and
agricultural areas, and compare and assess challenges inherent to mapping land cover in different
landscapes. Additionally, there is a need to further explore computational processes for processing
large volumes of geospatial data efficiently. Specifically, future work should explore methods that rely
solely on open-source software, such as R, QGIS, Orfeo Toolbox, and Python scripting, for large-area
mapping to expand upon this work. Open-source technologies should specifically be explored in the
context of cloud-based processing and parallel computing.

One complexity in this study was the variability in the input NAIP orthophotography over this
large spatial extent. Although all images were leaf-on and represented similar phenological conditions,
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there were inconsistencies resulting from collection date and illuminating conditions. This is a major
challenge in working with high spatial resolution aerial imagery over large spatial extents, and there is
still a need to investigate means to combat this issue.

Accuracy assessment over this large spatial extent was also a challenge. Appropriate accuracy
assessment methods for GEOBIA classifications are still being actively debated. There is a need for
additional research to define standard GEOBIA accuracy assessment methods and offer guidance for
more applied studies, and these methods should be robust to large study area extents and classifications
schemes in which some classes make up a small proportion of the landscape.

Given the importance of land cover data for a variety of mapping, assessment, and modeling
tasks, it is important to continue to pursue advanced methods—such as deep learning—for extracting
information from high resolution imagery. Specifically, there should be a focus on processes that are
robust and scalable to large spatial extents.
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