471 research outputs found

    Stochastic analysis of cycle slips in injection-locked oscillators and analog frequency dividers

    Get PDF
    A detailed investigation of cycle slips in injection-locked oscillators (ILOs) and analog frequency dividers is presented. This nonlinear phenomenon gives rise to a temporal desynchronization between the injected oscillator and the input source due to noise perturbations. It involves very different time scales so even envelope-transient-based Monte Carlo analyses may suffer from high computational cost. The analysis method is based on an initial extraction of a reduced-order nonlinear model of the injected oscillator based on harmonic-balance simulations. This model has been improved with a more accurate description of oscillation dependence on the input source either at the fundamental frequency or, in the case of a frequency divider, at a given harmonic frequency. The reduced-order model enables an efficient stochastic analysis of the system based on the use of the associated Fokker-Planck equation in the phase probability density function. Several methods for the solution of the associated Fokker-Planck equation are compared with one of them being applicable under a wider range of system specifications. The analysis enables the prediction of the parameter-space regions that are best protected against cycle slips. The technique has been applied to two microwave ILOs and has been validated through commercial software envelope simulations in situations where the computational cost of the envelope simulations was acceptable, and through measurements. The measurement procedure of the cycle slipping phenomenon has been significantly improved with respect to previous work.This work was supported by the Spanish Ministry of Economy and Competitiveness under Contract TEC2011-29264-C03-01

    Threshold Study of Phase Lock Loop Systems Interim Technical Report

    Get PDF
    Threshold studies of phase lock loop systems - effect of phase comparator on overall performance and threshold phenomen

    Analyses at microscopic, mesoscopic, and mean-field scales

    Get PDF
    Die Aktivität des Hippocampus im Tiefschlaf ist geprägt durch sharp wave-ripple Komplexe (SPW-R): kurze (50–100 ms) Phasen mit erhöhter neuronaler Aktivität, moduliert durch eine schnelle “Ripple”-Oszillation (140–220 Hz). SPW-R werden mit Gedächtniskonsolidierung in Verbindung gebracht, aber ihr Ursprung ist unklar. Sowohl exzitatorische als auch inhibitorische Neuronpopulationen könnten die Oszillation generieren. Diese Arbeit analysiert Ripple-Oszillationen in inhibitorischen Netzwerkmodellen auf mikro-, meso- und makroskopischer Ebene und zeigt auf, wie die Ripple-Dynamik von exzitatorischem Input, inhibitorischer Kopplungsstärke und dem Rauschmodell abhängt. Zuerst wird ein stark getriebenes Interneuron-Netzwerk mit starker, verzögerter Kopplung analysiert. Es wird eine Theorie entwickelt, die die Drift-bedingte Feuerdynamik im Mean-field Grenzfall beschreibt. Die Ripple-Frequenz und die Dynamik der Membranpotentiale werden analytisch als Funktion des Inputs und der Netzwerkparameter angenähert. Die Theorie erklärt, warum die Ripple-Frequenz im Verlauf eines SPW-R-Ereignisses sinkt (intra-ripple frequency accommodation, IFA). Weiterhin zeigt eine numerische Analyse, dass ein alternatives Modell, basierend auf einem transienten Störungseffekt in einer schwach gekoppelten Interneuron-Population, unter biologisch plausiblen Annahmen keine IFA erzeugen kann. IFA kann somit zur Modellauswahl beitragen und deutet auf starke, verzögerte inhibitorische Kopplung als plausiblen Mechanismus hin. Schließlich wird die Anwendbarkeit eines kürzlich entwickelten mesoskopischen Ansatzes für die effiziente Simulation von Ripples in endlich großen Netzwerken geprüft. Dabei wird das Rauschen nicht im Input der Neurone beschrieben, sondern als stochastisches Feuern entsprechend einer Hazard-Rate. Es wird untersucht, wie die Wahl des Hazards die dynamische Suszeptibilität einzelner Neurone, und damit die Ripple-Dynamik in rekurrenten Interneuron-Netzwerken beeinflusst.Hippocampal activity during sleep or rest is characterized by sharp wave-ripples (SPW-Rs): transient (50–100 ms) periods of elevated neuronal activity modulated by a fast oscillation — the ripple (140–220 Hz). SPW-Rs have been linked to memory consolidation, but their generation mechanism remains unclear. Multiple potential mechanisms have been proposed, relying on excitation and/or inhibition as the main pacemaker. This thesis analyzes ripple oscillations in inhibitory network models at micro-, meso-, and macroscopic scales and elucidates how the ripple dynamics depends on the excitatory drive, inhibitory coupling strength, and the noise model. First, an interneuron network under strong drive and strong coupling with delay is analyzed. A theory is developed that captures the drift-mediated spiking dynamics in the mean-field limit. The ripple frequency as well as the underlying dynamics of the membrane potential distribution are approximated analytically as a function of the external drive and network parameters. The theory explains why the ripple frequency decreases over the course of an event (intra-ripple frequency accommodation, IFA). Furthermore, numerical analysis shows that an alternative inhibitory ripple model, based on a transient ringing effect in a weakly coupled interneuron population, cannot account for IFA under biologically realistic assumptions. IFA can thus guide model selection and provides new support for strong, delayed inhibitory coupling as a mechanism for ripple generation. Finally, a recently proposed mesoscopic integration scheme is tested as a potential tool for the efficient numerical simulation of ripple dynamics in networks of finite size. This approach requires a switch of the noise model, from noisy input to stochastic output spiking mediated by a hazard function. It is demonstrated how the choice of a hazard function affects the linear response of single neurons and therefore the ripple dynamics in a recurrent interneuron network

    A design study for an optimal non-linear receiver/demodulator Final report

    Get PDF
    Design study for optimal nonlinear receiver demodulato

    Many faces of nonequilibrium: anomalous transport phenomena in driven periodic systems

    Get PDF
    We consider a generic system operating under non-equilibrium conditions. Explicitly, we consider an inertial classical Brownian particle dwelling a periodic structure with a spatially broken reflection symmetry. The particle is coupled to a bath at the temperature TT and is driven by an unbiased time-periodic force. In the asymptotic long time regime the particle operates as a Brownian motor exhibiting finite directed transport although no net biasing force acts on the system. Here we review and interpret in further detail recent own research on the peculiar transport behaviour for this setup. The main focus is put on those different emerging Brownian diffusion anomalies. Particularly, within the transient, time-dependent domain the particle is able to exhibit anomalous diffusive motion which eventually crosses over into normal diffusion only in the asymptotic long-time limit. In the latter limit this normal diffusion coefficient may even show a non-monotonic temperature dependence, meaning that it is not monotonically increasing with increasing temperature, but may exhibit instead an extended, intermediate minimum before growing again with increasing temperature.Comment: in press in the special issue of Acta Physica Polonica

    A compilation of results pertaining to the behavior of phase locked loops

    Get PDF
    State-of-the art on phase locked loops PLL is reported by summarizing some specific results. Following a statement of the overall analysis and design objectives, results are presented in a format identifying working terminology, inherent assumptions, and references for each result. The use of PLL in tracking, synchronization, and demodulation is reemphasized, as well as the mathematical challenge involved in solving nonlinear stochastic differential equations

    Theory of phaselock techniques as applied to aerospace transponders

    Get PDF
    Phaselock techniques as applied to aerospace transponder

    Signal processing with frequency and phase shift keying modulation in telecommunications

    Get PDF
    In this paper represents research improving effectiveness of signal processing in telecommunication devices especially for its part, which relates to providing its noise resistance in conditions of noise and interference. This objective has been achieved through development of methods and means for optimization of filtering devices and semigraphical interpretation of clock synchronization systems in telecommunications with frequency shift keying on the base of stochastic models what determines relevance of the subject. Separately, in an article considered the urgent task is using of modified synchronization methods based on the interference influence of adjacent symbols on the phase criterion tract, in particular the use of the modified synchronization scheme, in order to get a formalized outlook representation of the synchronization schemas based on the polyphase structures with using a bank of filters, that allows to improve the characteristics of digital telecommunication channels. This work is devoted to the examination and modeling of these ways. The proposed ideas and results for the construction of synchronization systems can be used in modern means of telecommunication

    Exact Results for the Kuramoto Model with a Bimodal Frequency Distribution

    Full text link
    We analyze a large system of globally coupled phase oscillators whose natural frequencies are bimodally distributed. The dynamics of this system has been the subject of long-standing interest. In 1984 Kuramoto proposed several conjectures about its behavior; ten years later, Crawford obtained the first analytical results by means of a local center manifold calculation. Nevertheless, many questions have remained open, especially about the possibility of global bifurcations. Here we derive the system's complete stability diagram for the special case where the bimodal distribution consists of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence, where all the oscillators are desynchronized; partial synchrony, where a macroscopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented for the bifurcation boundaries between these states. Similar results are also obtained for the case in which the bimodal distribution is given by the sum of two Gaussians.Comment: 28 pages, 7 figures; submitted to Phys. Rev. E Added comment
    corecore