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Abstract
Brain activity is organized by a variety of rhythms that correlate with cognitive func-
tions. During slow wave sleep or quiet rest, hippocampal activity is characterized by
sharp wave-ripples (SPW-Rs): transient (∼50–100 ms) periods of elevated neuronal ac-
tivity modulated by a fast oscillation — the ripple (∼140–220 Hz). SPW-Rs have been
linked to memory consolidation as they co-occur with the replay of behaviorally rel-
evant neuronal activity. Yet, the generation mechanism of ripple oscillations remains
unclear. Multiple potential mechanisms have been proposed, relying on excitation
and/or inhibition as the main pacemaker. A prominent model for ripple generation is
based on delayed inhibitory feedback in a population of interneurons. Recent support
for this model has come from the observation that it can reproduce the experimentally
observed intra-ripple frequency accommodation (IFA) — a decrease in the instanta-
neous ripple frequency over the course of a ripple event triggered by transient, sharp
wave-like stimulation. A mechanistic understanding of IFA could thus advance model
selection.

This thesis analyses ripple oscillations in inhibitory network models at micro-,
meso-, and macroscopic scales and elucidates how the ripple dynamics and IFA de-
pend on the excitatory drive, inhibitory coupling strength, and the noise model.

To this end, a theory for the oscillation dynamics in interneuron networks under
strong drive is developed, capturing drift-mediated spiking in the mean-field limit. For
constant drive, the ripple frequency and the amplitude of the subthreshold membrane
potential oscillation are approximated as a function of the drive, the coupling strength,
and the noise intensity. For a transient increase of the external drive, the theory
predicts a speed-dependent hysteresis in the membrane potential dynamics that leads
to an IFA-like decrease in oscillation frequency over time. IFA is thus a robust feature
of the model, relying solely on the sharp wave-induced change in the excitatory drive to
the interneurons. In contrast, numerical analysis shows that an alternative inhibitory
ripple model, based on a transient ringing effect in a weakly coupled population of
interneurons, can only account for IFA in response to an asymmetric input profile.
IFA can thus guide model selection and provides new support for delayed inhibitory
coupling as a mechanism for ripple generation. The speed-dependence of IFA is a novel
prediction that can be tested in optogenetic experiments.

Studying the propagation of ripples and replay across brain regions, requires larger-
scale models and thus poses a challenge to microscopic simulation schemes. A recently
proposed mesoscopic description of the population dynamics combines computational
efficiency with an account for finite size effects. This approach, however, requires a
switch of the noise model, from noisy input to stochastic output spiking mediated by
a hazard function. I demonstrate how the choice of hazard function affects the linear
response of single neurons, and therefore the ripple dynamics in a recurrent interneuron
network. In principle, a mesoscopic description of ripple oscillations is possible, and
approximates the microscopic dynamics under noisy input best, when the hazard takes
into account the slope of the membrane potential.

Altogether, this thesis presents a novel analysis of rhythmic neuronal activity paced
by inhibition, and outlines new ways towards understanding ripple oscillations and their
potential role in cognitive functions such as memory consolidation.
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Zusammenfassung

Die Aktivität unseres Gehirns ist geprägt von einer Vielzahl von Rhythmen, die mit
kognitiven Funktionen korrelieren. Ein charakteristisches Muster hippocampaler Ak-
tivität im Tiefschlaf sind Sharp Wave-Ripple Komplexe (SPW-R): kurze (∼50–100 ms)
Phasen mit erhöhter neuronaler Aktivität, moduliert durch eine schnelle Schwingung —
die Ripple Oszillation (∼140–220 Hz). SPW-R werden mit Gedächtniskonsolidierung
in Verbindung gebracht, da sie zusammen mit der Reaktivierung von verhaltensrele-
vanter neuronaler Aktivität auftreten. Dennoch bleibt weiterhin unklar, wie Ripples
erzeugt werden. Sowohl exzitatorische als auch inhibitorische Populationen könnten
die Oszillation generieren. Ein möglicher Mechanismus basiert auf verzögertem in-
hibitorischen Feedback in einer Interneuron-Population. Dieses Modell wurde neu
bestärkt durch die Beobachtung, dass es den experimentell beobachteten Effekt der
Intra-Ripple Frequency Accommodation (IFA) reproduziert — ein Abfall der instanta-
nen Ripple-Frequenz im Verlauf eines SPW-R Ereignisses, ausgelöst durch transiente,
Sharp Wave-artige Stimulation. Ein Verständnis des IFA Mechanismus könnte daher
die Modellauswahl vorantreiben.

Diese Arbeit analysiert Ripple-Oszillationen in inhibitorischen Netzwerkmodellen
auf mikro-, meso- und makroskopischer Ebene und zeigt auf, wie die Ripple-Dynamik
und IFA vom exzitatorischen Input, der inhibitorischen Kopplungsstärke, und dem
Rauschmodell abhängen.

Es wird eine Theorie entwickelt, die die Oszillationsdynamik in Interneuron Netzw-
erken unter starkem Input beschreibt, basierend auf der Drift-bedingten Feuerdynamik
im Mean-field Grenzfall. Für konstanten Input können die Ripple-Frequenz und die
Amplitude der unterschwelligen Oszillation im Membranpotential als Funktion des In-
puts, der Kopplungsstärke und der Stärke des Rauschens angenähert werden. Im Falle
eines transienten Anstiegs und Abfalls des Inputs, erklärt die Theorie den Abfall der
instantanen Ripple-Frequenz (IFA) durch eine geschwindigkeitsabhängige Hysterese
in der Dynamik des Membranpotentials. IFA ist daher eine weitgehend parameter-
unabhängige Eigenschaft des Modells, die allein von der Sharp Wave-abhängigen Än-
derung des Inputs abhängt. Im Gegensatz dazu zeigt eine numerische Analyse, dass ein
alternatives inhibitorisches Ripple-Modell, basierend auf einem transienten Störungsef-
fekt in einer schwach gekoppelten Interneuron Population, nur für asymmetrische In-
putverläufe IFA erzeugen kann. IFA kann somit zur Modellauswahl beitragen und
deutet auf verzögerte inhibitorische Kopplung als plausiblen Mechanismus hin. Die
Abhängigkeit der IFA von der Änderungsrate des Inputs ist eine neue Vorhersage und
kann experimentell mit Hilfe optogenetischer Techniken überprüft werden.

Eine Analyse der Ausbreitung von Ripple-Oszillationen und neuronalem replay über
mehrere Hirnregionen, erfordert Simulationen größeren Maßstabs, was eine Heraus-
forderung für mikroskopische Modelle darstellt. Eine kürzlich entwickelte mesoskopis-
che Beschreibung der Netzwerkaktivität ist effizienter und berücksichtigt gleichzeitig
die endliche Größe der Netzwerke. Dieser Ansatz erfordert allerdings einen Wech-
sel des Rauschmodells: das Rauschen wird nicht im Input der Neurone beschrieben,
sondern als stochastisches Feuern entsprechend einer Hazard Rate. Ich zeige, wie die
Wahl der Hazard Rate die dynamische Suszeptibilität einzelner Neurone, und damit die
Ripple-Dynamik in rekurrenten Interneuron Netzwerken beeinflusst. Eine mesoskopis-
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che Beschreibung von Ripple-Oszillationen ist grundsätzlich möglich und bildet die
mikroskopische Dynamik unter verrauschtem Input am besten ab, wenn die Hazard
Rate die momentane Änderung des Membranpotentials berücksichtigt.

Insgesamt stellt diese Arbeit eine neue Analyse von inhibitorisch verursachter,
rhythmischer neuronaler Aktivität vor, und zeigt neueWege auf um Ripple-Oszillationen
und ihre mögliche Rolle für kognitive Funktionen wie Gedächtniskonsolidierung zu ver-
stehen.
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1 | Overview

1.1 Motivation
The brain is a structure of great complexity. Billions of neurons — each a complex
structure in itself — interact within and across brain regions and on various time
scales. Yet, observing the brain we do not find pure chaos but a variety of rhythms
and patterns that seem to coordinate brain activity and have been shown to correlate
with cognitive functions such as memory consolidation. One of the rhythms for which
this link is particularly evident is the hippocampal sharp wave-ripple. This thesis aims
to contribute to our understanding of the generating mechanism of sharp wave-ripples,
focusing in particular on inhibitory interneurons as a potential pacemaker for ripple
oscillations.

1.2 Structure of the thesis
In Chapter 2 I will review the most important concepts that are necessary to motivate
and understand the work presented in this thesis. I begin with a short introduction
to the two hallmarks of computation and dynamics in the brain that I mentioned
above: The brain’s ability to support memory (Sec. 2.1), and the diversity of rhythms
that characterize its activity (Sec. 2.2). Section 2.3 then summarizes how the sharp
wave-ripple rhythm in particular may be linked to computational function, such as
memory consolidation. Section 2.4 provides an overview of the anatomy and neuronal
circuits of the hippocampus — the primary region of origin of sharp wave-ripples. I will
then introduce sharp wave-ripples in detail (Sec. 2.5) and summarize their dynamical
features. Section 2.6 introduces the variety of models that have been proposed to
explain the generation of the ripple oscillation in particular. In a discussion of the
current experimental evidence, I will point out the gaps in our understanding of the
sharp wave-ripple rhythm and summarize why there is still no consensus about its
generating mechanism (Sec. 2.7, 2.8). In light of this background, the research aims of
this thesis will be stated more precisely in Chapter 3.

The main body of this thesis then contains three chapters: In Chapter 4, I develop a
mean-field approximation for the ripple oscillation dynamics in an interneuron network
with strong, delayed coupling under strong drive. The theory uncovers new parameter
dependencies of the ripple frequency at strong, constant drive, and allows a mechanistic
understanding of the emergence of IFA under time-dependent drive. Chapter 5 studies
the alternative, inhibition-based ripple model based on an transient ringing effect in a
weakly coupled population of interneurons. I demonstrate that this model has different
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prerequisites for the emergence of IFA, and highlight further crucial differences between
the two inhibiton-first models that may advance model selection. Chapter 6 studies
the linear response of escape noise models that receive deterministic input but spike
stochastically according to a hazard function. I demonstrate that the choice of hazard
function affects the single neuron linear response, and thus the oscillation dynamics in
a network of such units with delayed inhibitory coupling. The mapping from input to
output noise on the microscopic, single neuron level, is then used to apply a recently
proposed mesoscopic integration scheme to efficiently simulate ripple oscillations on a
population level. I will conclude with an overall discussion and outlook in Chapter 7.



2 | Introduction and background

2.1 Memory

2.1.1 The engram
What is a “memory”? In principle this is an unresolved question. A basic assumption
in memory research is that the brain forms representations of the outside world (Se-
mon, 1921; Josselyn et al., 2017). We define these representations by observing brain
activity, often averaged over many trials, and correlating it with selected aspects of
the environment (a stimulus), from our perspective of an outside observer. This is a
dangerous concept since there is no inherent reason to assume that neural “representa-
tions” found in this way reflect how the brain actually represents, stores and processes
information (Buzsáki, 2019).

Nevertheless, tracing the activity of such neuronal representations (also called as-
semblies or engrams) has yielded interesting insights into the workings of the brain
(Tonegawa et al., 2015a; Barron et al., 2017; Josselyn and Tonegawa, 2020). The be-
havioral relevance of the engram has recently been demonstrated using transgenic and
optogenetic tools: When mice learn to associate a specific context (cage) with a fearful
experience (footshock) in a classical contextual fear conditioning task, the cells that
are activated during the experience can be tagged genetically. After training, an opto-
genetic reactivation of these “engram” cells in a neutral cage (i.e. without presentation
of the conditioned context) is sufficient to induce a fear response (Liu et al., 2012). It
thus appears that the activity of the engram cells does indeed carry memory content
and can support memory reactivation.

Current research is tracking engrams across brain regions and time to advance our
understanding of memory consolidation (Tonegawa et al., 2015b,a; Kitamura et al.,
2017; Tonegawa et al., 2018; Roy et al., 2022) (but see Lamothe-Molina et al., 2020).

2.1.1.1 Spatial memory in rodents

Memory studies in rodents are often based on spatial memory tasks for several reasons:
Animals can easily be trained to perform different tasks in space, there is a clear
readout of memory performance, and a lot is already known about how the brain,
and specifically the hippocampus, represents space. It has been shown that the firing
rate of pyramidal cells in the hippocampus can be tuned to a specific location in
space. These so called place cells fire spikes whenever the animal traverses a particular
region in space (the place field) (O’Keefe et al., 1971; O’Keefe, 1976). Place cells
are complemented by grid cells in entorhinal cortex (Hafting et al., 2005), that fire
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in regular, hexagonal patterns across space, and head direction cells in various brain
areas, such as the postsubiculum, thalamus and entorhinal cortex (Taube et al., 1990).
In spatial memory tasks the experimenter thus already knows “where to look for the
engram”.

2.1.2 Memory consolidation
The standard model for memory consolidation posits that new memories are first
formed in the hippocampus and then gradually transferred to the neocortex (McClel-
land et al., 1995; Squire, 2004). Such a separation into a fast and a slow learning
system is advantageous in that the hippocampus can capture newly incoming informa-
tion fast on a one-shot basis, while the cortex can integrate the new information into the
existing knowledge base in a slow, interleaved learning process avoiding catastrophic
interference (McClelland et al., 1995).

There is plenty of evidence that the standard model is too simplified: Some memo-
ries may never become hippocampus-independent (Sutherland et al., 2008; Sutherland
and Lehmann, 2011; Broadbent and Clark, 2013). On the other hand there are cer-
tain memories that can be newly acquired by the cortex alone, without hippocampal
contribution (Sharon et al., 2011; Merhav et al., 2015). Effects such as reconsolida-
tion (Nader, 2015; Kastner et al., 2016) and the formation of false episodic memories
(Straube, 2012) suggest that memory is most likely not a mere storage process of static
content but that each recall of an episodic memory also involves a generative compo-
nent, potentially relying on the hippocampus (“generative episodic memory”) (Bartlett
and Kintsch, 1995; Hemmer and Steyvers, 2009; Nagy et al., 2020; Fayyaz et al., 2022).
The mechanisms of memory consolidation are hence subject of ongoing research, the
review of which goes beyond the scope of this thesis (Nadel and Moscovitch, 1997;
Winocur and Moscovitch, 2011; Dudai et al., 2015; Klinzing et al., 2019).

In general, memory consolidation is studied on two levels: Synaptic consolidation
refers to the local stabilization and maintenance of previously formed assemblies by a
strengthening of individual synapses via long term potentiation (LTP) (Kandel et al.,
2014). Systems consolidation considers the transformation and relocation of memory
assemblies across brain areas (Dudai et al., 2015; Klinzing et al., 2019).

An equally important counterpart to these “active” consolidation processes is synap-
tic homeostasis (Crick and Mitchison, 1983; Tononi and Cirelli, 2003; Diekelmann
and Born, 2010). Pruning of irrelevant connections by a general decrease of synap-
tic strength can be just as beneficial for the signal-to-noise ratio of memory assemblies
as the active strengthening of the assembly synapses.

2.1.3 Replay
The active portion of memory consolidation described above requires some form of
rehearsal of previously learned information. Such replay can be readily observed in
experimental data (Carr et al., 2011; Foster, 2017; Ólafsdóttir et al., 2018): It was
first shown by Wilson and McNaughton (1994) that if hippocampal place cells were
active during a spatial behavioral task, they would be reactivated with a similar cor-
relation structure during subsequent sleep. When the behavioral task imposes a se-
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quential structure, such as the repeated traversal of a linear track, place cells activate
sequentially, with different place cells tuned to different locations along the track. The
same sequential activation (replay) can be observed during subsequent slow wave sleep
(Lee and Wilson, 2002) or periods of awake immobility (Diba and Buzsáki, 2007) (see
Fig. 2.1).

Replay can even be observed in human brain activity: either directly based on
spiking activity extracted from microelectrode array recordings in epileptic patients
(Vaz et al., 2020); or more indirectly based on a decoding of replay-like events from
fMRI data of healthy subjects (Schuck and Niv, 2019).

Figure 2.1: Replay. During awake exploration (left), the hippocampal LFP exhibits
theta oscillations and populations of place cells (1-4) encode the animal’s position in
space. During quiet rest periods or SWS (right), SPW-Rs appear in the LFP while
place cells are reactivated in the same order in which they fired during the prior ex-
perience (forward or reverse). Figure reprinted from Girardeau and Zugaro, 2011 with
permission from Elsevier.

There are several potential functions of such replay events:
(1) Memory consolidation: Compared to the real experience which unfolds on the

order of seconds, the reactivation of neuronal sequences during replay is compressed
in time (∼50-100 ms), which may be beneficial for a strengthening of the respective
synapses via spike-timing dependent plasticity (STDP) (Bi and Poo, 1998; Gerstner
et al., 1996; Kempter et al., 1999). Replay may thus support local synaptic consolida-
tion (King et al., 1999; Rosanova and Ulrich, 2005; Sadowski et al., 2016) (although
some studies have questioned whether the neuromodulator composition in the sleep
phases, during which replay occurs, can support LTP: Bramham and Srebro, 1989).

(2) Memory recall and planning: Replay goes beyond the mere rehearsal of re-
cent experience and can be modulated by novelty (Foster and Wilson, 2006; Diba and
Buzsáki, 2007), behavioral relevance (Terada et al., 2021) and the presence of rewards
(Singer and Frank, 2009; Ólafsdóttir et al., 2015; Ambrose et al., 2016; Michon et al.,
2019; Sterpenich et al., 2021). Awake replay can occur in both forward or reverse order
(Foster and Wilson, 2006; Diba and Buzsáki, 2007; Csicsvari et al., 2007; Gupta et al.,
2010). It does not require repetition but can occur after the first exposure to a novel
track (Foster and Wilson, 2006) or involve the reactivation of remote memory content
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(Karlsson and Frank, 2009). Awake replay (or preplay1) can also depict future paths
that an animal is about to take towards a planned goal location, even if this path has
never been taken before (Gupta et al., 2010; Pfeiffer and Foster, 2013; Ólafsdóttir et al.,
2015). This indicates a role for awake replay in the recall of previous experience and
planning of future behavior (Carr et al., 2011; Pfeiffer, 2020).

2.2 Rhythms in the brain
The investigation of memory consolidation is tightly linked to studying the various
rhythms of neuronal activity which are thought to pace brain activity and potentially
orchestrate cross-area communication and the transfer of information (Buzsáki, 2006).

Rhythms can be measured all over the brain, on different scales and depending
on various brain states (Buzsáki, 2006; Penttonen and Buzsáki, 2003). While the
macroscopic cortical rhythms can be picked up by EEG, subcortical and hippocam-
pal rhythms are typically quantified in the local field potential (LFP) measured by
intracranial electrodes. On the microscopic scale one can study the organization of the
spiking activity of various neuron types with respect to the local rhythms. The rhyth-
mic organization of the brain seems to be generally comparable across mammalian
species, including humans (Colgin, 2016).

2.2.1 Rhythms during awake exploration
In the awake brain, cortical activity is dominated by transient gamma oscillations (30–
100 Hz) (Adrian, 1942; Gray and Singer, 1989; Merker, 2013) and mostly desynchro-
nized neuronal spiking (Harris and Thiele, 2011; Poulet and Crochet, 2019), potentially
due to a balance of excitatory and inhibitory inputs (Van Vreeswijk and Sompolinsky,
1996; Brunel, 2000; Shu et al., 2003; Froemke, 2015; Zhou and Yu, 2018). The hip-
pocampus exhibits a theta rhythm (4–12 Hz) (Vanderwolf, 1969; Colgin, 2016) (but
see (Yartsev et al., 2011)) with nested gamma oscillations (Buzsáki et al., 1983; Bragin
et al., 1995; Colgin, 2016). Hippocampal theta and cortical gamma oscillations can
interact (Canolty et al., 2006; Sirota et al., 2008). During periods of quiet rest brain
activity can switch and exhibit a profile more similar to slow wave sleep which will be
discussed in the following.

2.2.2 Rhythms during offline states and sleep
Sleep is thought to play an important role in all aspects of memory consolidation (Born
et al., 2006; Diekelmann and Born, 2010; Girardeau and Lopes-dos Santos, 2021).
Sleep consists of rapid eye movement (REM) and non-REM phases that alternate
cyclically (Diekelmann and Born, 2010). Non-REM sleep can be further subdivided

1The existence of preplay (Dragoi and Tonegawa, 2012) also raises a more fundamental question
about hippocampal or brain activity in general: Is the hippocampus per se a “tabula rasa” (Buzsáki,
2019) that starts forming representations and connecting them sequentially once required by experi-
ence? Or is the hippocampus an intrinsic generator of assemblies and sequences which only acquire
meaning once inputs get mapped onto them? This is a very interesting discussion that is however
beyond the scope of this thesis (Grosmark and Buzsáki, 2016; Buzsáki, 2019; McKenzie et al., 2021).
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into periods of slow wave sleep (SWS) and light sleep stages. Sleep phases vary with
respect to neuromodulation and rhythmic organization. Brain activity during REM
sleep is similar to the awake state with prominent theta oscillations and a high level
of acetylcholine (ACh), which may promote synaptic plasticity (Diekelmann and Born,
2010). Slow wave sleep on the other hand has low cholinergic tone and is dominated
by three rhythms of vastly different speeds: slow cortical oscillations, thalamic spindles
and hippocampal sharp wave-ripples.

During slow oscillations (0.5–1 Hz) cortical areas alternate between UP states of
increased depolarization, and neuronal activity and short, intermittent DOWN states
of dominant hyperpolarization and neuronal silence (Steriade et al., 1993; Sirota and
Buzsáki, 2005). These UP/DOWN states are synchronized across brain areas (Volgu-
shev et al., 2006) and also occur in the entorhinal cortex (Kajikawa et al., 2021) —
one of the main input areas of the hippocampus.

Thalamo-cortical spindles are transient (≥ 500 ms) bouts of mid-range oscillations
(7–15 Hz) (Berger, 1933; Loomis et al., 1935; Steriade and Deschenes, 1984; Steriade
et al., 1987). They are thought to be generated by bursting neurons in the thalamic
reticular nucleus, but the spindle component is picked up even in the cortical EEG.

Hippocampal sharp wave-ripples (SPW-R) are short transient events (50–100 ms)
of elevated neuronal firing, modulated by a fast oscillation (140–220 Hz). They are the
main subject of this thesis and will thus be introduced in depth in Section 2.5.

Cortical, thalamic and hippocampal rhythms are intricately linked (Oyanedel et al.,
2020): Transitions from a DOWN to an UP state in the cortex are accompanied or
closely followed by an increase in hippocampal SPW-R incidence (Battaglia et al.,
2004; Isomura et al., 2006; Kajikawa et al., 2021). Hippocampal SPW-Rs propagate to
hippocampal output structures, such as the subiculum, retrosplenial cortex and deep
layers of entorhinal cortex (Chrobak and Buzsaki, 1996; Nitzan et al., 2020), and are
followed by thalamic spindles (Siapas andWilson, 1998; Peyrache et al., 2011). Spindles
and SPW-Rs can also co-occur in which case ripples tend to occur phase-locked to the
spindle trough (Sirota et al., 2003; Clemens et al., 2011; Staresina et al., 2015). On
the other hand, hippocampal ripples tend to be followed by an UP-DOWN transition
in the cortex (Sirota et al., 2003), thus closing the loop of the cortical slow oscillation
cycle.

It is worth mentioning that the classic view summarized here, with a strong sep-
aration between the rhythms during wake and sleep, is likely an oversimplification.
Recent evidence has found combinations of the rhythms of distinct brain states, such
as gamma oscillations during sharp wave-ripples (Carr et al., 2012) or ripples nested
in theta oscillations (Seenivasan et al., 2022).

2.3 A functional role for sharp wave-ripples in mem-
ory consolidation

The connection between brain dynamics and computation is particularly evident in the
case of the hippocampal sharp wave-ripple. SPW-Rs have been implicated in both the
active and the passive aspects of memory consolidation described above.
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2.3.1 Sharp wave-ripples for active memory consolidation

Whenever hippocampal cells “replay” previous experiences (Section 2.1.3), the local
field potential exhibits sharp wave-ripples (rodents: Nádasdy et al., 1999; Lee and
Wilson, 2002; Diba and Buzsáki, 2007, humans: Clemens et al., 2011; Jiang et al.,
2017; Cox et al., 2019; Vaz et al., 2019, 2020). It remains unclear whether the SPW-
R rhythm aids the emergence of replay and/or synaptic consolidation (Stark et al.,
2015; Roux et al., 2017; Sadowski et al., 2016), or whether both phenomena just co-
occur, potentially due to the same cause. A prolongation of SPW-Rs by optogenetic
stimulation has been shown to also prolong the replay event (Fernández-Ruiz et al.,
2019). Experiments on a particularly long linear track demonstrated that, vice versa,
replay of particularly long sequences does not extend the SPW-R arbitrarily. Instead,
long replay episodes span multiple SPW-R events, with SPW-R incidence strongly
increased during the replay period (Davidson et al., 2009).

Even if SPW-Rs do not cause replay, their co-occurence with the neuronal reacti-
vation may support systems memory consolidation, given that SPW-Rs are integrated
into a large system of brain-wide rhythms (Sec. 2.2.2) (Todorova and Zugaro, 2020).
Hippocampal SPW-Rs are followed by neuronal reactivations in deep entorhinal cortex,
medial prefrontal cortex (Siapas and Wilson, 1998; Wierzynski et al., 2009; Peyrache
et al., 2009; Jadhav et al., 2016) and even parietal cortex (Wilber et al., 2017). These
extra-hippocampal reactivations can be coherent with hippocampal replay in their con-
tent, as was shown in the case of CA1 place cells and deep EC grid cells replaying spa-
tially coherent trajectories (Ólafsdóttir et al., 2016, 2017, but see Kaefer et al., 2020).
Such cross-area communication may be mediated by the nested hippocampal, subcor-
tical and cortical rhythms (Todorova and Zugaro, 2020; Tukker et al., 2020; Girardeau
and Lopes-dos Santos, 2021). The flow of information during these rhythmic interac-
tions is largely unresolved. A common hypothesis, in line with the standard two-stage
model of memory consolidation (McClelland et al., 1995; Buzsáki, 1989) is the following
(Fig. 2.2): When the cortex transitions from a DOWN to an UP state, the resulting
depolarization triggers hippocampal SPW-Rs and a relay of hippocampal information
to the cortex (possibly gated by the spindle rhythm), which in turn reactivates rele-
vant cortical memory assemblies. The subsequent thalamic spindles support cortical
synaptic plasticity (Seibt et al., 2017) and hence an integration of the hippocampal
information into the existing cortical knowledge structure. Spindles might decouple
cortical regions from hippocampal inputs during these periods (Peyrache et al., 2011).
Maingret et al. (2016) demonstrated that artificial enhancement of cortico-hippocampal
coupling can indeed enhance memory performance. Theoretical work has investigated
in more detail the potential mechanisms for how oscillations could support the transfer
and storage of information (Varela et al., 2001; Fries, 2005, 2015; Kirst et al., 2016;
Droste and Lindner, 2017; Palmigiano et al., 2017).

There is a growing body of experimental evidence supporting a functional role
of SPW-R-associated replay in memory consolidation (Buzsáki, 1989; Hasselmo and
McClelland, 1999). If rats are trained on a hippocampus-dependent spatial memory
task and SPW-Rs during subsequent slow wave sleep are detected and disrupted in an
online-protocol, performance decreases markedly (Girardeau et al., 2009; Ego-Stengel
and Wilson, 2010). On the other hand, prolongation of SWP-Rs by optogenetic stim-
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ulation extends ongoing replay and is beneficial for memory (Fernández-Ruiz et al.,
2019). SWP-R incidence is increased during slow wave sleep following learning (Es-
chenko et al., 2008). It was shown that this upregulation is NMDA-dependent and
specific to episodes of novel learning, i.e. when new information needs to be consoli-
dated (Girardeau et al., 2014). Replay of assembly patterns representing specific goal
locations during SPW-R is associated with subsequent memory performance for the
respective locations (Dupret et al., 2010).

The possibilities for manipulating replay in humans to examine behavioral effects
are of course limited. There have been a number of elegant experiments, however,
suggesting a link between replay and memory performance: For example, providing
auditory cues for specific memory items during post-learning sleep (supposedly evoking
increased replay of these items) was shown to increase memory performance, selectively
for the cued compared to non-cued items (Rudoy et al., 2009). Furthermore, SPW-R
incidence in human rhinal cortex during post-learning sleep was shown to be correlated
with subsequent memory performance (Axmacher et al., 2008).

Since awake replay is equally coupled to SPW-Rs, SPW-R may by extension also
have a functional role in memory recall and planning. Disruption of awake SPW-Rs and
SPW-R-associated replay has been shown to impair performance in a spatial working
memory task (Jadhav et al., 2012).

Figure 2.2: Rhythmic cortico-hippocampal interactions and replay during
slow wave sleep. The hippocampal LFP exhibits sharp wave-ripples, while indi-
vidual neurons (here place cells) replay behaviorally relevant information (blue). The
occurrence of SPW-Rs is coordinated with neocortical activity (red) that alternates
between up states, with elevated neuronal activity and thalamic spindles, and silent
down states. From Girardeau and Lopes-dos Santos (2021)/Reprinted with permission
from AAAS.
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2.3.2 Sharp wave-ripples for synaptic homeostasis
The synaptic homeostasis hypothesis assumes that, after waking periods inducing a
net increase in synaptic strengths all over the brain (Vyazovskiy et al., 2008; Huber
et al., 2013), slow wave sleep might serve to downscale synaptic strengths (Crick and
Mitchison, 1983; Tononi and Cirelli, 2003). The fact that slow waves are strongest in
the early sleep phases and then progressively occur less over the course of sleep, fits
nicely into this picture (Borbély, 2001).

The neuromodulatory characteristics and neuronal firing patterns during cortical
slow oscillations have been suggested to favor long term synaptic depression (LTD)
(Czarnecki et al., 2007; Kemp and Bashir, 2001; Vyazovskiy et al., 2008). SPW-Rs on
the other hand were thought to promote LTP rather than LTD (Buzsáki et al., 1987;
King et al., 1999).

Recent evidence however has also implicated SPW-Rs into the downregulation of
synaptic strength (Norimoto et al., 2018): The authors disrupted hippocampal SPW-
Rs by activating SOM+ interneurons optogenetically, while probing repeatedly the
synaptic strength of the Schaffer Collateral synapses between CA3 and CA1. While
synaptic strength usually decreases over the course of slow wave sleep, consistent with
LTD and synaptic homeostasis, it remained constant when SPW-Rs were disrupted.
As a result of this lack of depression, the encoding of new memories was impaired
during subsequent waking episodes: consistent with the idea that homeostasis during
slow wave epochs is needed to maintain normal brain function.

Altogether, SPW-Rs have so far been implicated in memory consolidation and planning
by their association to the processes of replay and synaptic depression. All above
experimental manipulations affect not only SPW-Rs but also the associated process:
The silencing of SPW-Rs also prevents replay (Girardeau et al., 2009). It is thus difficult
to draw conclusions about the functional relevance of SPW-Rs per se for memory
consolidation/planning.

Are fast ripple oscillations beneficial for organizing the neuronal spiking activity
into short time windows (Buzsáki and Chrobak, 1995; Singer, 2018)? Or are SPW-
Rs a mere epiphenomenon of neuronal reactivations without any functional relevance?
A detailed understanding of the generating mechanism of SPW-Rs might enable the
design of more sophisticated experiments, that do not fully abolish both SPW-Rs and
replay but merely modify SPW-R dynamics and thus allow conclusions about their role
in replay, memory consolidation and the orchestration of cortical rhythms.

In the remainder of this introduction I will thus review in detail the dynamical
features of sharp wave-ripples, as well as the various models that have been proposed
to explain SPW-R generation, in light of current experimental evidence. I will focus
specifically on the ripple oscillation. Before diving into SPW-Rs (Section 2.5) it is
useful to give a short overview of the underlying circuits and cell types (Section 2.4).

2.4 Hippocampal anatomy
The hippocampus (named for its seahorse-like shape) lies in the medial temporal lobe
— one in each hemisphere (Fig. 2.3A). The hippocampus proper with its distinct
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Cornu Ammonis subfields CA1, CA2 and CA3, is embedded in the larger hippocampal
formation that also includes the dentate gyrus (DG) and the subiculum (Fig. 2.3A,B).

A B

C

Figure 2.3: Hippocampal anatomy. A, Hippocampal formation within the rat
brain. Zoom along the transverse axis shows DG, subiculum (S) and hippocampal
subfields CA1-3 (reproduced from Amaral and Witter, 1989, with permission from El-
sevier, top left: original image from Andersen et al., 1971). B, Horizontal cross section,
indicating the subfields and layers of the hippocampus proper and the parahippocampal
regions. DG: dentate gyrus; orange area: CA1; yellow: subiculum; PrS: presubiculum;
PaS: parasubiculum; MEA, LEA: medial, lateral entorhinal aspect; Brodmann areas
A35, A36: perirhinal cortex (adapted from van Strien et al., 2009, with permission from
Springer Nature). C, Simplified diagram of the (para)hippocampal circuit structure
(adapted from Llorens-Martín et al., 2014, CC BY 3.0).

The hippocampus is a complex structure that not only receives input from and
projects back to cortical and thalamic structures, but is also recurrently connected
to form a loop in itself (Fig. 2.3C). The entorhinal cortex (EC) is the main gateway
of cortical information into and out of the hippocampus. One can distinguish two
main streams of information from superficial EC via the perforant path towards CA1
(Tamamaki and Nojyo, 1993; Witter, 1993): EC layer III cells project directly onto
CA1 (Kiss et al., 1996; Naber et al., 2001; Takács et al., 2012). On the other hand,
EC layer II projects onto CA3, both directly and via the DG, and CA3 provides
feedforward input to CA1 via the Schaffer Collaterals. All hippocampal output goes
through CA1 which projects back to the deep EC layers (preferentially L5b), either
directly, or via the subiculum (Sürmeli et al., 2015). The deep EC layers project back to
the superficial layers, thus introducing a loop (Cajal, 1902; Dolorfo and Amaral, 1998;
Köhler, 1985; Witter and Groenewegen, 1986; Hamam et al., 2002; van Haeffen et al.,
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2003). Furthermore, deep EC relays hippocampal output towards cortical regions such
as prefrontal, parietal and retrosplenial cortex (Witter, 1993; Canto et al., 2008).

There are also direct projections from CA1 to the medial prefrontal cortex (Swan-
son, 1981; Jay and Witter, 1991), as well as multiple subcortical areas (Cenquizca and
Swanson, 2007). In turn CA1 receives direct mPFC input via the thalamic nucleus
reuniens (Wouterlood et al., 1990; Goswamee et al., 2021; Ferraris et al., 2021).

Being this highly interconnected in itself and with other cortical areas, the hip-
pocampus may perform complex computations, integrate information from a multitude
of brain areas, and broadcast its activity back to thalamic and cortical regions.

2.4.1 Circuitry and cell types of CA1
The hippocampal subfield CA1 is the most prominent site of ripple generation (see also
Section 2.5). In the following I will give a brief overview of the most important cell
types in CA1 and their connectivity (see also Wheeler et al., 2015).

The subareas of the hippocampal formation, as well as the entorhinal cortex, have
a laminar structure (Fig. 2.3B): The cell bodies of most pyramidal cells are arranged in
a dense layer, the stratum pyramidale. Their axons and basal dendrites extend into str.
oriens, while their apical dendrites branch out to str. radiatum and str. lacunosum-
moleculare (Andersen et al., 2006; Amaral and Witter, 1989). The various interneuron
types have a more variable distribution (Freund and Buzsáki, 1996).

Region CA1 contains a total of 350,000 cells in the rat hippocampus (Bezaire and
Soltesz, 2013). The cells can be subdivided into excitatory pyramidal cells, and in-
hibitory interneurons. The ratio of pyramidal cells to interneurons is approximately
10:1 (Bezaire and Soltesz, 2013; Traub and Miles, 1991; Andersen et al., 2006).

2.4.1.1 Pyramidal cells

The majority of CA1 cells are excitatory pyramidal cells (89-93% (Bezaire and Soltesz,
2013)). CA1 pyramids receive most of their excitatory input from ipsi- and contralat-
eral CA3 pyramidal cells via the Schaffer Collaterals that project onto pyramidal cell
dendrites in str. radiatum and str. oriens (Amaral and Witter, 1989; Bezaire and
Soltesz, 2013). At the distal apical dendrites in str. lacunosum-moleculare most glu-
tamatergic inputs come from lateral and medial entorhinal cortex layer III via the
temporoammonic pathway (Andersen et al., 2006). The thalamic nucleus reuniens
innervates the same region (Wouterlood et al., 1990). In constrast to this massive
feedforward innervation, the local excitation that a CA1 pyramidal cell receives from
its peers is very sparse. The connection probability between CA1 pyramids has been
estimated as low as ∼1% (∼200 synapses per neuron, Knowles and Schwartzkroin,
1981; Deuchars and Thomson, 1996; Andersen et al., 2006; Bezaire and Soltesz, 2013)
(but see additional longitudinal connections: Yang et al., 2014).

Disregarding ivy and neurogliaform cells, CA1 pyramidal cells receive inhibitory
input mainly from local basket and axo-axonic cells (Bezaire and Soltesz, 2013). Ad-
ditional inhibitory input comes from bistratified cells (at the proximal dendrites) and
neurogliaform and O-LM cells (at the distal apical dendrites), among others (Buhl
et al., 1994a; Megías et al., 2001; Klausberger and Somogyi, 2008; Bezaire and Soltesz,
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2013). The various interneuron types can thus gate the inputs to pyramidal cells and
potentially pace their spiking activity.

2.4.1.2 Interneurons

Around 7-11% of CA1 cells are GABAergic interneurons (Bezaire and Soltesz, 2013;
Woodson et al., 1989). One can distinguish at least 21 different classes of interneurons
based on their morphology, electrophysiological properties and sensitivity to neuro-
chemical markers (Klausberger and Somogyi, 2008; Freund and Buzsáki, 1996; Cut-
suridis et al., 2010). I will mention here only the most common interneuron types (see
also Fig. 2.6):

Neurogliaform and ivy cells Neurogliaform and ivy cells do not seem to be in-
volved in the generation of SPW-Rs, but shall be mentioned here since they form the
largest class of CA1 interneurons (32.2% Bezaire and Soltesz, 2013). They are thought
to be important for the maintenance of homeostasis via modulation of excitability
(Klausberger and Somogyi, 2008).

Basket cells Approximately 23.8% of CA1 interneurons are basket cells. Their so-
mata lie in str. pyramidale and their axonal arbor is confined to the same layer (or
proximal str. oriens/str. radiatum) (McBain et al., 1994; Sik et al., 1995; Klausberger
et al., 2003). The apical dendrites of basket cells extend to str. radiatum and str.
lacunosum-moleculare where they receive excitatory input from the Schaffer Collat-
erals. Their basal dendrites lie in str. oriens and the alveus and receive input from
local CA1 pyramidal cells and other interneurons (Pawelzik et al., 2002). Basket cells
form synapses onto the soma or proximal dendrites of their targets.

Basket cells can express either PV (14.4% of CA1 interneurons, i.e. ∼5,000 cells in
rat CA1) or CCK (9.4%, ∼ 3,500 cells, Bezaire and Soltesz, 2013): PV+ BCs are fast-
spiking cells that can fire up to ∼100 Hz without spike frequency adaptation (Pawelzik
et al., 2002). They project only to local CA1 neurons — pyramidal cells or interneurons
(Sik et al., 1995; Bezaire and Soltesz, 2013). It has been estimated that every CA1
PV+ BC is connected to ∼40 other CA1 PV+ BCs monosynaptically (Sik et al., 1995;
Bezaire and Soltesz, 2013). CCK+ BCs spike regularly with frequencies limited to
∼40-50 Hz (Freund, 2003). The axonal projections of CCK+ BCs are less well studied
but seem comparable to those of PV+ BCs (Bezaire and Soltesz, 2013).

Bistratified cells The somata of bistratified cells (5.7% of CA1 interneurons) are
located in str. pyramidale (Buhl et al., 1996; Halasy et al., 1996). Their dendrites
lie mainly in str. pyramidale and str. radiatum where they receive input from the
Schaffer collaterals (Halasy et al., 1996). Bistratified cells project onto the basal and
apical dendrites of other CA1 cells (mostly pyramids, sometimes interneurons) in str.
oriens and str. radiatum (Halasy et al., 1996; Maccaferri et al., 2000; Klausberger
et al., 2004; Klausberger, 2009). Bistratified cells express both PV and SOM (Baude
et al., 2007).
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Axo-axonic chandelier cells Axo-axonic cells (3.8% of CA1 interneurons) have
somata in str. pyramidale and str. oriens (Buhl et al., 1994a,b). They target
exclusively CA1 pyramidal cells, mostly onto their axon initial segment (Somogyi et al.,
1983; Li et al., 1992) and can thus gate their output (Dugladze et al., 2012). Axo-axonic
cells express PV (Baude et al., 2007).

Oriens-lacunosum moleculare (O-LM) cells As suggested by their name, O-LM
interneurons (4.3% of CA1 interneurons) have somata in str. oriens (Klausberger and
Somogyi, 2008) and dendrites in the same layer or the alveus (Sik et al., 1995; Mac-
caferri, 2005). They hence receive excitatory input mainly from local CA1 pyramidal
cells (Blasco-Ibáñez and Freund, 1995). O-LM axons mainly target the distal apical
dendrites of CA1 pyramidal cells in str. lacunosum-moleculare (Wouterlood et al.,
1990; Colbert and Levy, 1992; Empson and Heinemann, 1995), but can also extend to
str. oriens and project onto interneurons (Sik et al., 1995). 17% of the postsynaptic
targets of O-LM cells are unknown (Katona et al., 1999). O-LM cells express SOM,
mGluR1α (Ferraguti et al., 2004) and up to 33% of them express PV (Varga et al.,
2012, in mouse).

Inputs to CA1 interneurons To date there is not sufficient data to properly char-
acterize the inputs to each class of CA1 interneurons separately. Instead Bezaire and
Soltesz (2013) summarized the available data for different interneuron types to infer the
approximate inputs to an average CA1 interneuron. For any given interneuron type one
should hence expect significant variation from this hypothetical average interneuron.

In str. radiatum 7% of Schaffer Collateral synapses from CA3 are made onto
interneurons (Takács et al., 2012; Bezaire and Soltesz, 2013). In str. lacunosum-
moleculare 9% of the perforant path input arriving from entorhinal cortex targets
interneurons (Takács et al., 2012). In addition each interneuron receives excitatory
input from local CA1 pyramidal cells. Knowles and Schwartzkroin (1981) estimated
the connection probability between CA1 pyramidal cells and interneurons in str. pyra-
midale as ∼30%. Additional excitatory input can come from the alveus (Takács
et al., 2012), septum and raphe (Gulyás et al., 1999; Bezaire and Soltesz, 2013). CA1
interneurons receive inhibition both locally and from non-CA1 sources such as the en-
torhinal cortex and the septum (Freund and Antal, 1988; Bezaire and Soltesz, 2013).
The deviation of the input distributions of individual interneuron types from this av-
erage picture depends crucially on their lamiar position in CA1. For a review see also
(Chamberland and Topolnik, 2012).

2.5 Hippocampal sharp-wave ripple
Sharp wave-ripples (SPW-R) are transient (50-100 ms) events measured in the local
field potential (LFP) of the hippocampus during slow-wave sleep or episodes of quiet
wakefulness (Buzsáki, 1986, 2015; Maier and Kempter, 2017). They occur sponta-
neously at a rate of ∼1/sec and consist of a large amplitude deflection in the voltage
(the sharp wave) superimposed with a fast oscillation (the ripple, ∼140–220 Hz, see
Fig. 2.4A).
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SPW-Rs have been found in many mammalian species (rat, mouse, cat, monkey,
sheep etc), including humans (Bragin et al., 1999) (for a review see Buzsáki, 2015).
They occur not only in the hippocampus proper, but also in the amygdala (Pono-
marenko et al., 2003; Perumal et al., 2021), dentate gyrus (Swaminathan et al., 2018;
Meier et al., 2020) and hippocampal output structures such as the retrosplenial cor-
tex (Nitzan et al., 2020), the subiculum (Chrobak and Buzsaki, 1996; Imbrosci et al.,
2021), the entorhinal cortex (Chrobak and Buzsaki, 1996), and deep layers of pre- and
parasubiculum (Chrobak and Buzsaki, 1996). Recently, ripple oscillations have even
been observed in parietal, midline and prefrontal cortical areas (Khodagholy et al.,
2017).

SPW-Rs also occur in hippocampal slices in vitro (Fig. 2.4B), with features that
are generally comparable to in vivo SPW-Rs (for a comprehensive review see Maier
and Kempter, 2017). Ripple oscillations in vitro are slightly faster (∼210 ± 16 Hz,
Maier et al., 2003) than in vivo (150-250 Hz, Buzsáki et al., 1992). SPW-R incidence
and duration, and the recruitment of various cell types, however, are similar. It is thus
assumed that in vitro data can be used to understand SPW-R generation in vivo.

SPW-Rs appear coordinated with cortical and thalamic activity (Battaglia et al.,
2004; Logothetis et al., 2012) and can be modulated by extra-hippocampal activity
(Ishikawa et al., 2014; Vandecasteele et al., 2014). Yet, they persist after cortical
lesions in vivo (Buzsáki et al., 1983; Suzuki and Smith, 1988; Bragin et al., 1995) and
even occur spontaneously in isolated hippocampal slices in vitro (Wu et al., 2002; Maier
et al., 2002, 2003; Hájos et al., 2009; Maier and Kempter, 2017). SPW-Rs are thus
considered to originate in the hippocampus.

Ai Aii

Bi Bii

Figure 2.4: Sharp wave-
ripples in vivo and in vitro.
A, SPW-Rs in LFP of mouse
CA1 in vivo. Ai: recording
setup; Aii top: raw LFP trace
with 2 SPW-R events; bottom:
bandpass-filtered LFP (adapted
from Maier et al., 2011, with per-
mission from Elsevier). B, Lam-
inar profile of SPW-Rs in differ-
ent layers of CA1 in vitro. Bi:
hippocampal slice with reference
and recording electrode. Layers
marked as o: oriens, p: pyrami-
dale, r: radiatum, l: lacunosum-
moleculare. Bii: Average LFP
across CA1 layers. The SPW am-
plitude is positive in str. pyrami-
dale and negative in str. radia-
tum (adapted from Maier et al.,
2009, CC BY).
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2.5.1 Measuring sharp-wave ripples in the LFP
Typically, SPW-Rs are detected in the local field potential (LFP) measured in the
hippocampus. The LFP is generally thought to reflect local network activity. Its
detailed composition in a given brain area depends on the arrangement and morphology
of the local cells and their firing patterns (Buzsáki et al., 2016).

The amplitude and polarity of the sharp wave depend on the recording site along
the somato-dendritic layers and range from large negative values in str. radiatum and
lacunosum-moleculare to large positive values in str. pyramidale and str. oriens, as
can be seen in Fig. 2.4Bii (Buzsáki et al., 1983; Buzsáki, 1986; Sullivan et al., 2011).
In str. radiatum the sharp wave is thought to reflect a current sink due to increased
excitatory synaptic transmission from CA3 pyramidal cells to CA1 neurons via the
Schaffer Collaterals.

The ripple component is most prominent in the CA1 cell body layer str. pyrami-
dale (Buzsáki, 1986; Buzsáki et al., 1992). Traditionally the LFP in str. pyramidale is
thought to reflect synaptic transmembrane currents rather than spiking activity (Mitz-
dorf, 1985; Buzsáki et al., 2016; Chizhov et al., 2015). Excitatory connectivity in CA1
is sparse and pyramidal cell axons lie in str. oriens rather than str. pyramidale. There
are however various CA1 interneuron types that form their synapses in str. pyrami-
dale, such as basket cells and axo-axonic chandelier cells. Thus, inhibitory postsynaptic
currents are thought to be the main source of the LFP signal in CA1 str. pyramidale.

Recent modeling studies however suggested that excitatory action potentials also
contribute to the local field potential, when occuring phase-locked to the fast ripple
oscillation, (Schomburg et al., 2012; Ramirez-Villegas et al., 2018). If this is indeed
the case, it introduces a large confounding factor for experiments probing the role of
excitation in ripple generation. I will come back to this in the discussion of experimental
evidence in Section 2.8.

For now it is sufficient to keep in mind that understanding SPW-Rs observed in
the LFP requires answering two questions: What generates the SPW-R rhythm in the
neuronal circuit? And what constitutes the LFP signal? This thesis will contribute to
the former question, specifically the generation of the ripple rhythm.

2.5.2 Intra-ripple frequency accommodation
While ripple frequency is usually just reported as an average over time and across
many events, a few studies have quantified the instantaneous ripple frequency over
the course of individual ripple events (Ponomarenko et al., 2004; Nguyen et al., 2009;
Sullivan et al., 2011; Donoso et al., 2018). In most ripple events (∼75%, Nguyen et al.,
2009) the instantaneous ripple frequency decreases (by ∼20–60 Hz) from high towards
low frequencies over the course of the event (Fig. 2.5). This effect has been termed
intra-ripple frequency accommodation (IFA). The exact shape of the instantaneous
ripple frequency over time varies across events: the instantaneous ripple frequency can
decrease monotonically (Ponomarenko et al., 2004; Nguyen et al., 2009; Sullivan et al.,
2011; Hulse et al., 2016), have a peak during the first half of the ripple (Nguyen et al.,
2009; Donoso et al., 2018), or a minimum during the second half of the ripple, followed
by a short increase (Ponomarenko et al., 2004; Nguyen et al., 2009).
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IFA has been observed both in vivo (Ponomarenko et al., 2004; Nguyen et al., 2009;
Sullivan et al., 2011; Hulse et al., 2016) and in vitro (Donoso et al., 2018), in different
species (rat: Ponomarenko et al., 2004; Nguyen et al., 2009; Sullivan et al., 2011, mouse:
Donoso et al., 2018; Hulse et al., 2016), brain states (awake: Ponomarenko et al., 2004;
Sullivan et al., 2011; Hulse et al., 2016, sleep: Nguyen et al., 2009; Sullivan et al., 2011),
and both in the LFP (CA1: Ponomarenko et al., 2004; Nguyen et al., 2009; Sullivan
et al., 2011; Hulse et al., 2016, CA3, DG: Sullivan et al., 2011) as well as in inhibitory
postsynaptic currents of CA1 pyramidal cells (Donoso et al., 2018).

The IFA phenomenon will be a central topic of this thesis, since I propose that it
can be used as a marker for model selection (see Chapter 3).

A B Figure 2.5: Intra-ripple fre-
quency accommodation (IFA).
A, Average wavelet spectrogram of
ripple (top) or fast gamma oscil-
lation (bottom) measured in the
CA1 LFP of a freely moving rat.
Power is color coded, and the LFP
signal is overlaid in white. The fre-
quency of maximal power decays

over time (adapted from Sullivan et al., 2011, CC BY-NC-SA 3.0). B, Excitatory
(red, bottom) and inhibitory (blue, top) synaptic current during ripples, measured
intracellularly in pyramidal cells of mouse CA1 in vitro. The instantaneous frequency
of the ripple-modulated inhibitory current (grey) decreases over time (adapted from
Donoso et al., 2018, CC BY 4.0).

2.5.3 Recruitment of hippocampal cell types during SPW-Rs
The first step towards understanding the generation of SPW-Rs is an examination of
the activity of the distinct cell types that form the substrate underlying the measured
LFP signal. Approximately ∼10% of hippocampal neurons are active during SPW-Rs
(Ylinen et al., 1995; Csicsvari et al., 2000; Buzsáki, 2006; Mizuseki and Buzsáki, 2013,
see Fig. 2.6 for a summary). CA1 pyramidal cells increase their firing rate during SPW-
Rs ∼6-9-fold to an average of ∼5-40 Hz, which is still low compared to interneuronal
firing (Csicsvari et al., 1999b, 2000; Klausberger et al., 2003; English et al., 2014; Hulse
et al., 2016). Their discharge probability is highest when the ripple power in the LFP
reaches its peak (Klausberger et al., 2003). Pyramids fire phase-locked around the
trough of the LFP ripple oscillation (∼phase 0◦) (Buzsáki et al., 1992; Klausberger
et al., 2003). Recent studies have shown that superficial and deep CA1 pyramidal
cells are recruited differentially, since superficial cells receive net excitation while deep
pyramids receive net inhibitory input during SPW-Rs (Valero et al., 2015). Note
that CA1 pyramids fire at much lower rates during SPW-Rs in vitro compared to in
vivo (Bähner et al., 2011).

Approximately 70% of the GABAergic interneurons in the CA1 pyramidal layer
participate in SPW-Rs and increase their firing rate ∼4-fold (Csicsvari et al., 1999b,
2000). Different interneurons types are recruited differentially (Fig. 2.6):
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Bistratified cells

Pyramidal cells

PV basket cells

Axo-axonic cells

CCK expr. cells

O-LM cells

Figure 2.6: Differential recruitment of hippocampal cell types during SPW-
Rs. Left: simplified sketch of the CA1 circuit. Right: firing probability of pyramidal
cells and 5 different interneuron types during SPW-Rs (from Klausberger and Somogyi
(2008)/Adapted with permission from AAAS).

PV+ basket cells in both CA1 and CA3 increase their firing rate during SPW-R
∼3-fold up to 40-130 Hz (Csicsvari et al., 1999a; Somogyi et al., 2014; Klausberger
et al., 2003; Varga et al., 2012, 2014; Katona et al., 2014; Lapray et al., 2012). Their
firing probability follows a similar profile as the pyramids with the highest discharge
probability around the peak of the LFP ripple power (Klausberger et al., 2003). How-
ever, PV+ BCs already start to increase their firing rate ∼2 ms before the onset of the
LFP ripple (Klausberger et al., 2004). PV+ BCs fire phase-locked, and ∼1-2 ms after
the pyramids, during the ascending phase of each LFP ripple cycle (∼60-90◦, Csicsvari
et al., 1999b; Klausberger et al., 2003; Sullivan et al., 2011).

CA1 PV+ bistratified cells fire at ∼30-60Hz, at a similar phase as basket cells
(∼80◦ Klausberger et al., 2004). Their spike probability is approximately the same
throughout the event, less dependent on ripple power. Interestingly, bistratified cells
increase their firing already ∼64 ms before the LFP ripple begins (Klausberger et al.,
2004). Recent evidence has suggested that bistratified fire preferentially during fast,
compared to slow ripple events Varga et al. (2014).

CA1 axo-axonic interneurons briefly increase their rate at the beginning of a SPW-
R event and are then inhibited (Klausberger et al., 2003; Somogyi et al., 2014, but see:
Varga et al., 2014).

The remaining GABAergic cell types are only weakly modulated by SPW-Rs: CA1



2.6. Models of hippocampal ripple oscillations 19

O-LM cells are either silent during SPW-Rs (Klausberger et al., 2003; Pangalos et al.,
2013), or fire at low rates (Varga et al., 2012; Katona et al., 2014; Pangalos et al.,
2013). Spikes occur phase-locked ∼6 ms after the ripple trough (phase ∼39◦) since O-
LM cells receive ripple-mouldated excitatory input (Pangalos et al., 2013). Most CCK
expressing interneurons in CA1 and CA3 fire at low rates during SPW-R (Klausberger
et al., 2005; Lasztóczi et al., 2011; Somogyi et al., 2014). Ivy cells do not change their
firing during SPW-Rs (Somogyi et al., 2014; Lapray et al., 2012; Fuentealba et al.,
2008).

Recently, a new interneuron type has been discovered that fires selectively dur-
ing SPW-Rs, and not during theta epochs — hence termed “Theta-OFF-Ripple-ON
(TORO)” cell (Szabo et al., 2022). TORO cells fire at high rates up to ripple fre-
quency (∼173 Hz). Initial results suggest that TORO cells are parvalbumin-negative,
but instead express muscarinic type 2 receptors (M2Rs), SOM or, in one case, calbindin
(CB). Most TORO cells were found in CA1 with cell bodies scattered across different
layers and axons mostly in str. oriens, targeting other GABAergic cells. TORO cells
might also form long-range connections to the subiculum.

Rare depth electrode recordings of hippocampal spiking activity in humans (epilep-
tic patients) have suggested that the cell-type specific recruitment during SPW-Rs is
similar in humans and rodents (Le Van Quyen et al., 2008).

2.6 Models of hippocampal ripple oscillations

The generation of the sharp wave and the ripple are often studied separately, since
(a) ripples appear slightly later in development (second postnatal week vs. postnatal
day 3) (Leinekugel et al., 2002; Buhl and Buzsáki, 2005) and (b) ripples have been
observed in CA1 without a clear sharp wave signature in the LFP (Ramirez-Villegas
et al., 2015).

Sharp wave models typically focus on CA3 as the primary region of SPW genera-
tion and account for the spontaneous, transient build-up of excitatory spiking activity
(Evangelista et al., 2020; Levenstein et al., 2019; Ecker et al., 2022; Hunt et al., 2018).

Multiple models have been proposed for the generation of ripple oscillations. Most
of them focus on CA1 as the primary site of ripple generation, since ripples are most
prominent in the LFP of CA1 str. pyramidale (Buzsáki, 1986; Buzsáki et al., 1992)
and can be generated in isolated CA1 minislices in vitro (Maier et al., 2003; Nimmrich
et al., 2005; Maier et al., 2011). In the intact hippocampus, SPW-Rs often do occur
simultaneously in CA3 and CA1. CA3 basket cells spike phase-locked to the local CA3
ripple rhythm (Maier et al., 2003; Both et al., 2008; Tukker et al., 2013), so CA1 indeed
receives feedforward oscillatory input (Sullivan et al., 2011; Schönberger et al., 2014).
The ripple oscillation in CA1 is however typically faster than in CA3 (Maier et al.,
2003, 2011; Sullivan et al., 2011), and does not seem to be simply inherited (see also
Donoso et al., 2018).

Since ripple oscillations are coherent across large distances (∼2-5 mm in vivo (Buzsáki
et al., 1992; Chrobak and Buzsaki, 1996), but ∼120 µm in vitro (Draguhn et al., 1998)),
all models assume a network rather than a single unit mechanism (but see Fink et al.,
2015; Gliske et al., 2017). Both pyramidal cells and some interneuron classes (see Sec-
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tion 2.5.3) fire phase-locked to the ripple rhythm. Most ripple models assume that
either the excitatory or inhibitory population acts as the main pacemaker of ripples
that entrains the other population respectively. In the following I therefore divide the
ripple models into excitation-first and inhibition-first. A few “hybrid” models will be
discussed in the end.

2.6.1 Inhibition-first models

Inhibition-first models account only for the generation of the fast ripple oscillation, not
the sharp wave. They posit that the CA1 interneuron population generates a fast ripple
oscillation in response to excitatory feedforward drive (Ylinen et al., 1995). Such drive
could arise via the Schaffer Collaterals from CA3 during a sharp wave, or from other
sources (Nakashiba et al., 2009) such as subcortical areas (Logothetis et al., 2012) or
the entorhinal cortex, via the perforant path (Isomura et al., 2006). In experiments
the drive could also be replaced by an optogenetic light stimulation (Schlingloff et al.,
2014).

Of the many CA1 interneuron types PV+ basket cells are a likely candidate to
contribute to ripple generation: they increase their firing rate during SPW-Rs and fire
phase-locked to the ripple rhythm. Their axons are mostly confined to str. pyramidale,
hence their postsynaptic currents are likely reflected in the LFP. Projecting directly
onto somata or proximal basal dendrites, basket cells are in an optimal position to
entrain the firing of pyramidal cells to the ripple rhythm. Other synaptic terminals
in this layer stem from axo-axonic chandelier interneurons, which are mostly inhibited
during SPW-Rs, but have been implicated in SPW-R initiation in the basolateral
amygdala (Perumal et al., 2021). PV+ bistratified cells fire ripple-modulated but might
contribute less to the LFP signal in str. pyramidale, since their axons are more spread
out across layers (Halasy et al., 1996). Still, their involvement in ripple generation
cannot be excluded and it is important to keep in mind that any experiment targeting
PV+ CA1 cells targets not only basket cells (60% of CA1 PV+ interneurons), but also
bistratified (24%), axo-axonic (16%) and potentially O-LM cells (Bezaire and Soltesz,
2013; Baude et al., 2007; Varga et al., 2012).

Inhibition-first models are the main subject of this thesis and will be discussed at
length in Chapters 4 and 5, hence I will introduce the models here only briefly.

2.6.1.1 Bifurcation-based inhibition-first model

The bifurcation-based inhibition-first model assumes that the CA1 interneuron network
acts as a delayed negative feedback loop which can undergo a bifurcation into a state
of persistent oscillations when driven with sufficient excitation (Buzsáki et al., 1992;
Ylinen et al., 1995; Brunel and Hakim, 1999; Brunel and Wang, 2003; Taxidis et al.,
2012; Donoso et al., 2018). The resulting oscillations are fast, due to the short time
constants involved in inhibitory synaptic transmission, and can in theory last as long
as strong excitatory stimulation is provided. This model will be discussed in detail in
Chapter 4.
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2.6.1.2 Perturbation-based inhibition-first model

The perturbation-based inhibition-first model on the other hand (Malerba et al., 2016)
assumes that the CA1 interneurons are a heterogeneous population with only weak
synaptic coupling. Strong external drive (a perturbation) can elicit fast synchronized
spiking and thus a transient ripple oscillation of inherently finite length (Gerstner et al.,
2014). This model will be discussed in detail in Chapter 5.

2.6.1.3 Gap junctions between interneurons

CA1 basket cells are not only connected by chemical synapses but also via electrical
gap junctions (Fukuda and Kosaka, 2000; Tamás et al., 2000; Galarreta and Hestrin,
2001a,b; Bartos et al., 2002). Theoretical work has shown that GJ coupling alone can
lead to oscillations in interneuron networks (Ostojic et al., 2009). These oscillations
however are fully synchronized and would hence only have ripple frequency if the
underlying units fired at ripple frequency. For this reason gap junction coupling alone
is unlikely as the main ripple generator. Gap junctions can however increase synchrony
in the bifurcation-based inhibition-first model (Traub, 1995; Whittington et al., 1995;
Kopell and Ermentrout, 2004; Holzbecher and Kempter, 2018) and lower the critical
network size required to achieve ripple oscillations in that model (Holzbecher and
Kempter, 2018).

2.6.2 Excitation-first models
Excitation-first models account for ripple generation based on interactions among pyra-
midal cells. They differ in their assumption of whether it is the chemical or electrical
coupling that matters most.

2.6.2.1 Axo-axonic gap junctions and antidromic spikes

This model by Traub et al. (1999a) assumes that CA1 pyramidal cells are coupled
sparsely by electrical gap junctions on their axons and that spikes can propagate an-
tidromically from the gap junction coupling sites towards the somata, causing a somatic
spikelet or full-blown action potential (Draguhn et al., 1998; Traub et al., 1999a; Traub
and Bibbig, 2000; Traub et al., 2012). If there is at least one gap junction on each axon,
graph theory suggests that the majority of pyramidal cells are connected into one large
cluster (Erdös and Rényi, 1960; Traub et al., 1999a). Such a cluster can generate an
epileptiform burst of activity modulated by fast oscillations (ripple), when pyramidal
cells receive a background stimulation of ectopic spikes in their distal axons. The ripple
frequency depends on the average path length between any two pyramidal cells and
the gap junction transmission delay. The event is terminated by increasing afterhyper-
polarization of the pyramidal cell somata. The coherence of the ripple relies on large
network size (Traub et al., 1999a), which might pose a challenge to this network model
when it comes to explaining ripple generation in smaller networks in hippocampal
slices in vitro. Originally designed to account for ripple-modulated epileptiform activ-
ity (Traub et al., 1999a), this model was extended to account for non-pathological sharp
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wave-ripples by adding transient, feedforward input, local interneurons and chemical
coupling (Traub and Bibbig, 2000).

2.6.2.2 Supralinear dendritic integration

This model by Memmesheimer (2010) suggests that supralinear dendritic integration
in CA1 pyramidal cells (Kamondi et al., 1998; Ariav et al., 2003; Gasparini et al.,
2004; Gasparini and Magee, 2006) can lead to a propagation and amplification of
synchronized spiking activity at ripple frequency (Memmesheimer, 2010; Jahnke et al.,
2015). The frequency is given by the inverse of the summed propagation delays: (i) the
axonal delay, (ii) the synaptic delay, (iii) the propagation delay of the dendritic spike
to the soma, and (iv) the time from somatic response onset to spike. Memmesheimer
(2010) argues that the range of biologically plausible values for these delays yields an
overall frequency within the ripple range (∼ 200 Hz). This model accounts both for
ripple and sharp wave generation. SPW-Rs can be evoked by stimulation of pyramidal
cells or occur spontaneously due to fluctuations. They are terminated by the combined
effect of refractoriness of the pyramidal cells and strong feedback inhibition after a
characteristic duration of ∼ 50ms.

2.6.3 Mixed models
In addition to inhibition- and excitation-first models, some authors propose a third,
mixed model class taking into account coupling between pyramidal cells and interneu-
rons (E-I or E-I-I (Stark et al., 2014)).

2.6.3.1 Excitatory-inhibitory loop (E-I)

A large body of literature has studied oscillations in networks of mutually coupled
excitatory and inhibitory neurons (Kopell and Gwendal, 1994; Jefferys et al., 1996;
Xiao-Jing Wang and Buzsáki, 1996; Traub et al., 1996, 1997; Whittington et al., 2000;
Börgers and Kopell, 2003, 2005; Wang, 2010; Buzsáki and Wang, 2012; Viriyopase
et al., 2016, 2018; Montbrió and Pazó, 2018; Nguyen and Rubchinsky, 2021). Typically
such E-I circuits are considered as a model for gamma oscillations (PING: pyramidal-
interneuron gamma, Traub et al., 1999b), since a di-synaptic feedback loop as the main
pacemaker tends to produce oscillations that are slower than ripple-range (Brunel and
Wang, 2003). E-I network models producing ripple oscillations typically rely on the
interneuron population as the pacemaker and will thus be counted here as bifurcation-
based inhibition-first (Brunel and Wang, 2003; Taxidis et al., 2012; Stark et al., 2014).

2.6.3.2 GABAA-mediated excitatory feedback loop

A recently proposed model for SPW-Rs in the basolateral amygdala relies on GABAA-
mediated excitation from axo-axonic chandelier interneurons onto the axon initial seg-
ment of pyramidal cells (Perumal et al., 2021). According to this model, a single
action potential in a chandelier interneuron exciting at least two pyramidal cells can
trigger an excitatory feedback loop which leads to repeated bursts of action potentials
in chandelier interneurons and pyramidal cells at ripple frequency. The frequency is
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set by the disynaptic delay from chandelier interneurons to pyramids and back, which
was experimentally estimated at ∼ 4 ms (Perumal et al., 2021). The SPW-R event is
terminated by accumulated feedback inhibition from basket cells.

The authors suggest that chandelier interneurons might be involved in SPW-R
generation in CA1 as well, although the excitatory effect of GABAAon CA1 pyramidal
cells is debated (Somogyi, 1977; Traub et al., 2003; Szabadics et al., 2006; Glickfeld
et al., 2009; Woodruff et al., 2011; Bähner et al., 2011). Therefore, as a primarily
amygdala-focused model for ripple generation, I will exclude this model from the de-
tailed comparison below.

2.7 Basic ingredients of ripple models
Having introduced the various models for ripple generation I want to briefly review
the basic components of the neural network in CA1 that they are built on. I will start
with the most controversial such “basic ingredients”: axo-axonal gap junctions and
antidromic spike propagation in CA1 pyramidal cells.

2.7.1 Axo-axonic gap junctions between CA1 pyramidal cells
To date there is no direct anatomical evidence for the existence of axo-axonal gap
junctions between CA1 pyramidal cells. Dual recordings between CA1 pyramidal cells
have suggested electrical coupling (Mercer et al., 2006). Furthermore, dye-coupling
(Perez-Velazquez et al., 1994; Valiante et al., 1995; Schmitz et al., 2001), the existence of
gap junction protein mRNA in pyramidal cells (connexin-43: (Simbürger et al., 1997),
Cx-36: (Condorelli et al., 2000), Cx-47: (Teubner et al., 2001)), the pH-dependence of
CA1 pyramidal cell coupling (Church and Baimbridge, 1991), and the observation of
spikelets in CA1 pyramidal cells, even in calcium-free solutions in vitro (Valiante et al.,
1995; Draguhn et al., 1998; Schmitz et al., 2001) have been put forward as indirect
evidence for a potential gap junction coupling.

Outside of CA1, gap junctions have been found on the apical dendrite or soma of
CA3 pyramidal cells (Schmalbruch and Jahnsen, 1981; MacVicar and Dudek, 1981), on
hippocampal mossy fiber axons (Hamzei-Sichani et al., 2007; Nagy, 2012), and between
unidentified hippocampal neurons of the rat (Rash et al., 1997).

Gap junctions between axons in particular are known to exist in the mammalian
retina (Vaney, 1993) or the medullary pacemaker nucleus of weakly electric fish (Toku-
naga et al., 1980).

Multiple experiments have tried to address the role of gap junctions in SPW-R
generation by blocking gap junctions (Ylinen et al., 1995; Draguhn et al., 1998; Maier
et al., 2003; Pais et al., 2003; Traub et al., 2003; D’Antuono et al., 2005; Behrens
et al., 2011). The results are mostly inconclusive since all known gap junction blockers
(e.g. halothane, octanol, carbenoxolone, mefloquine) come with severe side effects
(Juszczak and Swiergiel, 2009). An alternative approach are Cx36 knockout mice that
are genetically modified not to express gap junctions (Hormuzdi et al., 2001; Maier
et al., 2002; Pais et al., 2003; Buhl et al., 2003). Here the confounding factors are
potential compensatory mechanisms during development.
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If axo-axonic gap junctions between CA1 pyramids indeed exist, their sparsity
(∼1/axon required for the excitation-based ripple model by Traub et al. (1999a)) might
be one reason why they continue to evade direct detection in electron microscopy or
freeze-fracture experiments (Schmitz et al., 2001).

2.7.2 Antidromic spikes and spikelets in CA1 pyramidal cells

Evoked or spontaneous antidromic spikes have been found in CA1 pyramidal cells in
vitro (Schmitz et al., 2001; Papatheodoropoulos, 2008; Bähner et al., 2011). On the
other hand, in vivo studies could not confirm these findings and found only orthodromic
action potential waveforms (English et al., 2014; Hulse et al., 2016). Since these action
potentials were recorded somatically however, it is possible that axonal spikes which
did not invade the soma were missed (Dugladze et al., 2012, see also Michalikova
et al., 2017, 2019). This isolation of the soma from axonic spikes might be mediated
by axo-axonic interneurons inhibiting the axon-initial segment of CA1 pyramidal cells
(Dugladze et al., 2012; Traub et al., 1999a). Furthermore, recent studies suggested
that a large fraction (30-70%) of CA1 pyramidal cells have their axon emerging from
a basal dendrite, therefore completely circumventing the soma (Thome et al., 2014).

Spikelets have been observed during epileptiform events (Valiante et al., 1995) and
SPW-Rs in vitro (Draguhn et al., 1998), as well as in vivo during active exploration
— a potential state of gamma oscillations (Epsztein et al., 2010).

2.7.3 Dendritic spikes in CA1 pyramidal cells

Spontaneous dendritic spikes during SPW-Rs have been observed in the apical dendrites
of CA1 pyramidal cells (Kamondi et al., 1998) and are likely the result of converging
excitatory inputs from CA3. The local synaptic connections between CA1 pyrami-
dal cells are typically formed between axons and the basal dendrites (Deuchars and
Thomson, 1996). Experiments using artificial stimulation have shown that also the
basal dendrites can generate dendritic spikes, when they receive inputs synchronously
in time and clustered in space (Ariav et al., 2003; Gasparini et al., 2004; Gasparini and
Magee, 2006).

An unresolved question is whether the sparse connectivity between CA1 pyrami-
dal cells (∼1%, Deuchars and Thomson, 1996) is sufficient to support dendritic spike
initiation. Locally clustered synaptic boutons, a spatial dependence of the connection
probability and the increased synchrony of excitatory spiking during SPW-Rs are some
of the factors that may enable dendritic spike generation despite sparse connectivity
(Memmesheimer, 2010; Deuchars and Thomson, 1996; Knowles and Schwartzkroin,
1981; Orman et al., 2008).

Dendritic spikes have also been observed in CA3 pyramidal cells (Kim et al., 2012;
Makara and Magee, 2013), suggesting that the excitation-first model by Memmesheimer
(2010) could in principle account for SPW-R generation in both CA1 and CA3.
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2.7.4 Properties of inhibitory synaptic coupling in CA1

CA1 PV+ basket cells are synaptically connected to about 40 other PV+ basket cells,
often with just a single bouton contact per target cell (Sik et al., 1995). Paired record-
ings from PV+ BCs in CA1 showed that the coupling is strong and fast: The average
peak amplitude of postsynaptic inhibitory currents (PSCs) was 208 pA. PSCs were
fitted by a delayed biexponential function with latency ∼0.68 ms, a 20-80% rise time
of ∼0.27 ms, and a short decay time constant of ∼1.7 ms (Bartos et al., 2002). PV+

BCs also target other PV+ interneurons, such as bistratified cells (Sik et al., 1995;
Cobb et al., 1997).

2.8 Experimental tests of model predictions

The previous section has shown that no ripple model can be generally discarded on
the basis of unrealistic assumptions about the local circuitry. The next step is thus
to examine the predictions that each individual model makes and evaluate their va-
lidity. Table 2.1 gives a rough overview of the model predictions with respect to the
spontaneous features of ripples, and the results of pharmacological and/or optogenetic
manipulations of the circuit. The validity of each prediction has been color-coded
(green: likely true, yellow: likely wrong), based on the known features of spontaneous
ripples summarized in Section 2.5, and the experimental evidence discussed below.
Such a binary rating needs to be taken with a grain of salt, since the interpretation of
the experimental findings is often controversial and hindered by confounding factors,
as will become clear in the following. The color-code does however serve to illustrate at
first sight, that, even after taking into account all the experimental evidence that I will
discuss in this section, there is no clear “winning” model with only correct predictions.

2.8.1 Pharmacology

2.8.1.1 Altering synaptic transmission delays

Most models predict that the ripple frequency depends primarily on the delays involved
in neuronal communication, be it via gap junctions or chemical synapses (an excep-
tion is the model by Malerba et al. (2016)). Testing these predictions experimentally
is hard since it requires changing the propagation delays. Multiple studies have ex-
amined the effect of altered GABAergic synaptic transmission and found that various
GABAA modulators (NNC-711, diazepam, zolpidem, thiopental, etc) do not change the
ripple frequency significantly (Whittington et al., 1996; Bähner et al., 2011; Koniaris
et al., 2011; Viereckel et al., 2013) (see (Buzsáki, 2015) for a detailed review). These
GABAA modulators however affect mainly the inhibitory synaptic peak conductance
and/or decay time constant. The bifurcation-based inhibition-first model predicts lit-
tle change in ripple frequency in response to such changes (Brunel and Wang, 2003;
Donoso et al., 2018). To dissociate this ripple model from the others one would need
to change the fast time constants of inhibitory synaptic transmission, i.e. the delay or
the rise time constant.
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Inhibition-first models Excitation-first models

Spontaneous ripple features

ripple frequency

● (inh coupling) ● exc drive ● synaptic 
● (exc drive) ● dendritic

ripple duration ● drive ● pyr AHP

interneuron firing ● sparse ● ripple frequency ● [ripple frequency] ● sparse

pyramidal firing ― ― ● sparse (soma) ● sparse
● ripple (axon)

Pharmacology (+ Optogenetics)

✘ ✔ ✔ (prolonged)✔
● AMPA ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✘
● gap junctions ✔ ✔ ✘ ✔

Optogenetics

● CA1 PV+ BC ✔ ✔ ✘ ✘
● CA1 pyramids [gamma] [ ]✔ ✔ ✔

● CA1 PV+ BC ✘ ✘ ✔ (prolonged)✔
● CA1 pyramids ✔ ✔ ✘ ✘

Bifurcation
based 

Perturbation
based 

Axo-axonal
gap junctions

Supralinear
dendrites 

● fast inhibitory
syn time const.

● interneuron
firing rate

● mean pyr-pyr
pathlength

exc delays:
● axonal

● noise
● heterogeneity

● refractoriness
● inhibition

ripples (sp/ev)
without 
● GABAA

ripples by 
stimulation of

ripples despite 
silencing of 

Table 2.1: Properties and predictions of ripple models.
Predictions of 4 models for CA1 ripple generation, regarding spontaneous ripple fea-
tures, and pharmacological and/or optogenetic manipulations. Each prediction is color-
coded based on the current experimental evidence discussed in the main text. Green:
most/all experiments confirm this prediction; yellow: most/all experiments contradict
this prediction. White: not tested/not testable. sp/ev: spontaneous or evoked by op-
togenetic stimulation; AHP : after-hyperpolarization, (·): weak parameter dependence,
[·]: prediction needs to be confirmed by further analysis of the model, see Discussion
Chapter 7 for a detailed comment.

Recent paired patch clamp experiments have shown that a (reversible) toxic de-
myelination of PV+ BC axons (using cuprizone) changes the precision of synaptic
release, prolonging only the synaptic delay while leaving the subsequent synaptic rise
and decay time constants unaltered (Vandael and Kole, 2022). This may be a promis-
ing method to test the dependence of ripple frequency on the inhibitory synaptic delay
— a key prediction of the bifurcation-based inhibition-first model.

2.8.1.2 Excitatory synaptic transmission

Many studies have shown that fast excitatory synaptic transmission via AMPA re-
ceptors is necessary for the emergence of spontaneous SPW-Rs (Papatheodoropoulos
and Kostopoulos, 2002; Wu et al., 2002; Maier et al., 2003; Ellender et al., 2010; Hofer
et al., 2015). This is in line with all models, since neither of the potential pacemakers is
stimulated in the absence of excitatory synaptic transmission. However, except for the
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excitation-based supralinear dendritic integration model (Memmesheimer, 2010), all
other models predict that ripples can still be evoked in the absence of excitatory synap-
tic transmission by stimulating the respective pacemaker optogenetically (interneurons
or pyramidal cells).

In vitro experiments in CA3 showed that SPW-Rs could indeed still be evoked by
optogenetic stimulation of PV+ interneurons, even when AMPA and NMDA receptors
were blocked (Schlingloff et al., 2014, but see Stark et al., 2014). This is in line with
inhibition-first ripple models.

The role of NMDA receptor-mediated excitation in SPW-R generation is not fully
resolved. Several studies find that a block of NMDA receptors has no significant effect
(Maier et al., 2003; Ellender et al., 2010; Hofer et al., 2015), while others find an in-
or decrease of SPW-R amplitude (Colgin et al., 2005; Pöschel et al., 2003). One in
vitro study even finds SPW-Rs supported exclusively by NMDAR-mediated excitation,
with all other receptors blocked (Papatheodoropoulos, 2007). Since none of the models
make specific predictions regarding the role of NMDA I omitted it in Table 2.1.

2.8.1.3 Inhibitory synaptic transmission

Generally, testing the role of inhibitory synaptic transmission is difficult since a com-
plete block of GABAergic receptors and the resulting disinhibition can lead to patholog-
ical, epileptic activity (Maier et al., 2003; Ellender et al., 2010). A block of GABAA re-
ceptors can thus only be done locally (Stark et al., 2014), partially with low doses
(Ellender et al., 2010) or in a minislice preparation of CA1, which contains only few
recurrent excitatory synapses (Maier et al., 2003; Nimmrich et al., 2005).

Multiple studies have found that GABAergic synaptic transmission is necessary for
spontaneous SPW-R generation (Ellender et al., 2010; Stark et al., 2014; Schlingloff
et al., 2014) and that SPW-Rs cannot be induced when GABAAreceptors are blocked
(CA1 in vivo: Stark et al., 2014, CA3 in vitro: Schlingloff et al., 2014).

There are however a few in vitro studies with contradictory results: Draguhn et al.
(1998) found that SPW-Rs in rat brain slices in vitro persisted, not only in the
presence of GABAAreceptor antagonists (bicuculline), but even in the complete absence
of chemical synaptic transmission in a calcium-free solution. Nimmrich et al. (2005)
found that SPW-Rs could still be evoked with a potassium chloride puff after wash-
in of GABAA receptor antagonist gabazine in CA1 minislices. One could speculate
whether the puff application of KCl led to a significant wash-out of gabazine, effectively
rendering inhibitory synaptic transmission intact (Holzbecher, 2018). Otherwise this
finding can only be explained by excitation-first models. Nimmrich et al. (2005) did
however also find that gabazine blocked spontaneously occuring SPW-Rs, which would
be in line with other experiments and inhibition-first models.

It is also worth noting that it is hard to draw conclusions about the excitation-based
ripple models based on experiments in minisclices, since the excitatory network in a
minislice may likely be too small to support ripple generation.

The role of GABAB for SPW-R generation is unresolved (Ellender et al., 2010;
Hollnagel et al., 2014).
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2.8.2 Optogenetics

Targeting selectively either pyramidal cells or PV+ interneurons in CA1 one can ask
two kinds of questions: Does optogenetic stimulation of a certain cell type evoke SPW-
Rs or terminate ongoing SPW-Rs? Can SPW-Rs occur despite a certain cell type being
optogenetically silenced? It seems like with such methods at hand it should be easy
to dissociate at least between inhibition- and excitation-based ripple models. Yet, the
summary in Table 2.1 already indicates that this is not the case, and the sections below
provide details for why.

2.8.2.1 Activating interneurons

The question whether optogenetic activation of (PV+ ) interneurons can elicit ripple
oscillations is still discussed controversially. I want to argue here that the existing
evidence suggests that interneuron activation can elicit ripples, and that the remaining
controversy may be attributable to the LFP confounding factor I pointed out earlier:
Most ripple experiments target two questions simultaneously, namely: What generates
the ripple rhythm in the neuronal circuitry? And under which conditions is this rhyth-
mic neuronal activity visible in the LFP signal? Thus, in experiments that observe
only the LFP signal, one needs to be careful with conclusions about ripple generation.

The controversy arises mainly from two studies with seemingly contradictory find-
ings: Schlingloff et al. (2014) found that optogenetic activation of CA3 PV+ interneu-
rons in vitro elicits ripple oscillations in the LFP signal (even in the absence of
excitatory synaptic transmission). Similar observations have been made in CA1 in
vitro [personal communication with Nikolaus Maier].

Stark et al. (2014) on the other hand found that optogenetic activation of CA1 PV+

interneurons in vivo could not induce a ripple event in the LFP. The authors did find
however that the neuronal spiking was coherent in the ripple frequency range (see Fig.
6B in Stark et al., 2014). In that sense, the PV+ stimulation in this experiment did in-
duce ripple oscillations, measurable in the interneuron population activity, as predicted
by inhibition-first models. In Section 2.5.1 I mentioned that the LFP likely reflects in-
hibitory synaptic currents, and potentially also rhythmic excitatory spiking activity.
There are hence two potential reasons why LFP ripple power may have been reduced
in the experiment by Stark et al. (2014), despite ripple-modulated neuronal activity:
(a) The local optogenetic stimulation activated a smaller population of interneurons
than is usually involved in ripple generation. Hence the inhibitory synaptic currents
underlying the LFP signal were weaker compared to spontaneous events. (b) Since
only interneurons were activated, pyramidal cells fired much fewer spikes than during
spontaneous events, hence reducing the LFP ripple power contributed by extracellular
action potentials (Schomburg et al., 2012).

My (tentative) rating in Table 2.1 (ripples by stimulation of PV+ BCs) is based
on this reasoning. Additional optogenetic experiments targeting interneurons in CA1,
both in vivo and in vitro, are needed to settle the above controversy. Measuring not
only the LFP, but also neuronal spiking activity or inhibitory synaptic currents, may
help resolve the LFP confounding factor described above.
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2.8.2.2 Activating pyramidal cells

Optogenetic activation of CA1 pyramidal cells can induce high-frequency oscillations
(Stark et al., 2014). Prolonged optogenetic stimulation can prolong SPW-R duration
(Fernández-Ruiz et al., 2019). For inhibition-based models a prediction of the network
activity in response to local stimulation of CA1 pyramidal cells is a complex question
that requires further study (hence marked with square brackets in Table 2.1). I will
revisit this question in the discussion (Chapter 7).

2.8.2.3 Silencing interneurons

Optogenetic silencing of PV+ interneurons has been shown to disrupt ongoing SPW-
Rs (Schlingloff et al., 2014; Stark et al., 2014) and even prevent the generation of
spontaneous SPW-Rs (Schlingloff et al., 2014).

2.8.2.4 Silencing pyramidal cells

Online silencing of pyramidal cells terminates ongoing SPW-R events in the LFP (Stark
et al., 2014). Again, the decrease in the potential contribution of excitatory spikes to
the LFP signature (Schomburg et al., 2012) might be a confounding factor here, and
future experiments should check ripple modulation of inhibitory spiking in addition to
the LFP signal.

2.8.3 Summary
Current experimental evidence remains inconclusive as to which is the most likely gen-
eration mechanism of ripples (Table 2.1). There are many predictions that cannot be
tested conclusively with current techniques (non-colored cells in Table 2.1, e.g. the role
of gap junctions). Some experimental results are contradictory or their interpretation is
controversial and subject to confounding factors. At this point, there is no model that
can be clearly rejected, or clearly accepted (all yellow, or all green rating in Table 2.1).



30 Chapter 2. Introduction and background



3 | Research aims

In this thesis I want to contribute to the understanding of the generating mechanism
of hippocampal ripple oscillations from a theoretical perspective. In Chapter 2 I have
introduced the most important features of ripples and the various models that have
been proposed to account for their generation. The field is currently facing a problem
of model selection. Experimental evidence has so far been inconclusive as to which is
the most likely mechanism. This is not only due to contradictory experimental results
or missing experiments that yet have to be performed, but also related to shortcomings
on the theoretical side. Although it seems at first sight (Table 2.1) that we should be
able to dissociate the different models based on the many diverging predictions derived
so far, many of these predictions are hard to test experimentally or require severe
manipulations of the circuit that come with many confounding factors.

An often overlooked feature of spontaneous ripple oscillations, which could guide
model selection, is intra-ripple frequency accommodation (IFA, Section 2.5.2). It was
recently shown in simulations that the bifurcation-based inhibition-first ripple model
can account for IFA (Donoso et al., 2018), yet the underlying mechanism remains
unclear. In Chapter 4 I therefore set out to answer the following questions:

1a. What is the mechanism of IFA in the bifurcation-based inhibition-first ripple
model?

1b. Is IFA a robust feature of the model or does it require parameter tuning?

Answering these questions requires a theoretical understanding of the oscillation fre-
quency in this network model, as a function of the external input. I will develop an
analytical approximation of the oscillation dynamics in the mean-field limit, that al-
lows an understanding of the emergence of IFA under strong, time-dependent input.

Since IFA is a promising marker for model selection, I then move on to the alternative
inhibition-first model by Malerba et al. (2016) and ask:

2a. Can the perturbation-based inhibition-first ripple model account for IFA as well?

2b. What separates the two inhibition-first models, and how can they be dissociated
experimentally?

These questions will be answered in Chapter 5.

The final chapter is inspired by the broader underlying question of a potential role
of sharp wave-ripples in memory consolidation. Studying the functional role of sharp
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wave-ripples will eventually require a larger scale modeling approach incorporating the
propagation of ripples across brain areas and their embedding into the larger system
of thalamo-cortical rhythms. Recently, a mesoscopic approach has been proposed for
an efficient simulation of the activity of multiple populations accounting for finite
size effects (Schwalger et al., 2017). The approach is only applicable to microscopic
networks of escape noise units that receive deterministic input and account for noise
phenomenologically, via stochastic spiking govererned by a hazard function. I therefore
ask the following questions:

3a. Can ripple oscillations be captured in an efficient, mesoscopic integration scheme?

3b. How does a phenomenological account for noise in an escape noise model affect
the single neuron linear response, and thus the ripple dynamics in the bifurcation-
based inhibition-first model?

The thesis will conclude with an overall summary of the results and an outlook in
Chapter 7.



4 | The bifurcation-based inhibitory
ripple model

4.1 Introduction

Negative feedback, when arriving with a delay, can introduce oscillations (Glass and
Mackey, 1988; Van Vreeswijk et al., 1994; Terman et al., 1998). The bifurcation-
based inhibitory ripple model is based on this principle, assuming that the synaptic
connections between CA1 interneurons form a delayed negative feedback loop. When
a sharp wave is generated in CA3 (Evangelista et al., 2020; Levenstein et al., 2019;
Ecker et al., 2022), CA3 pyramidal cells transiently increase their firing rates, which
leads to a transient increase in excitatory drive to CA1 via the Schaffer collaterals.
This external drive can lead to a bifurcation in the network dynamics of the CA1
interneuron population: the population activity becomes rhythmic, with periods of
increased spiking activity closely followed by reduced activity due to the self-generated,
inhibitory feedback current. Since the synaptic delay is short, these oscillations can
be fast — in the range of ripple frequencies (140–220 Hz) (Brunel and Hakim, 1999;
Brunel and Wang, 2003). Importantly, if the network is also subject to noise — due to
sparse connectivity or noisy background activity — the oscillations can be stochastic,
with individual neurons firing irregularly and at a mean firing rate that is much lower
than the frequency of the oscillation in the summed population activity (Brunel and
Hakim, 1999; Brunel, 2000; Brunel and Hansel, 2006). The bifurcation-based model
can thus account for ripple oscillations in a network of neurons that fire at much lower
rates (Csicsvari et al., 1999b; Klausberger et al., 2003; Lapray et al., 2012; Varga et al.,
2012, 2014).

Recently Donoso et al. (2018) showed that the bifurcation-based inhibitory ripple
model can reproduce the experimentally observed intra-ripple frequency accommoda-
tion (IFA) (see Section 2.5.2). Understanding the mechanism of IFA in this model,
and its robustness, is important to assess the plausibility of interneurons as the main
pacemaker of ripples. In this chapter I will develop a mean-field ansatz that allows an
analytical approximation of the ripple frequency for strong coupling and strong drive,
far beyond the bifurcation. The approximation works both for constant, and time-
dependent drive, and can be used to understand the mechanism of IFA. I show that
IFA is a robust feature of the bifurcation-based inhibition-first model that relies solely
on a fast change in the excitatory drive to the interneuron network.

The chapter is organized as follows: Section 4.2 presents results of numerical spik-
ing network simulations to illustrate the main dynamical features of ripples and IFA
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in the bifurcation-based model. I will start from the detailed version of the model
that was proposed by Donoso et al. (2018), and then introduce a reduced model that
is amenable to analytical analysis. Section 4.3 starts with a review of existing mean-
field approaches towards understanding oscillation dynamics in inhibitory networks,
and their limitations. Then a novel approximation of the mean-field dynamics under
strong drive is introduced which allows a systematic understanding of the parameter
dependencies of the model and a proof of the existence of IFA for a wide parameter
regime. Section 4.4 discusses open questions and directions for future work. Details
of the numerical simulations and analytical derivations are given in the Methods, Sec-
tion 4.5. The Appendix contains a numerical evaluation of the performance of the ana-
lytical approximation (Sec. 4.A), a derivation of an analog approximation for a network
of pulse-coupled oscillators (Sec. 4.B), auxiliary calculations used in the derivation of
the analytical approximation (Sec. 4.C), a background on Fokker-Planck equations and
linear response (Sec. 4.D), and supplementary figures (Sec. 4.E). All of the appendix
content will be referenced in the main text.

4.2 Simulation of ripple dynamics in a spiking net-
work

4.2.1 The detailed model
The bifurcation-based inhibitory model has been formulated many times, at different
levels of abstraction (Buzsáki, 1986; Buzsáki et al., 1992; Ylinen et al., 1995; Brunel
and Hakim, 1999; Brunel and Wang, 2003; Geisler et al., 2005; Taxidis et al., 2012;
Donoso et al., 2018). Donoso et al. (2018) formulated a biologically realistic version
with parameters fitted to experimental data, in order to mimick the network of CA1
PV+ basket cells as found in a hippocampal slice in vitro. I will hence refer to it here
as the detailed model.

The detailed model consists of N = 200 model interneurons, which are connected
sparsely among each other. The interneurons receive correlated, feedforward Poisson
spiking input from a putative CA3 pyramidal cell population. Synaptic coupling is
conductance-based and includes synaptic filtering such that each presynaptic spike
produces a pulse with a faster exponential rise and a slower exponential decay in the
postsynaptic conductance (see Methods Section 4.5.1.1 for details on model equations
and parameters).

In the following, I will summarize how the network dynamics depends on the total
excitatory (Poisson) drive Λ. Throughout this chapter I will distinguish two cases:
constant drive and time-dependent, sharp wave-like (SPW-like) drive that rises and
falls over a short time window (Eq. (4.22)). The network dynamics is quantified in
terms of the population rate rN(t) and the distribution of membrane potentials p(v, t).
The (empirical) population rate rN(t) in a time window [t,∆t] is defined as the number
of spikes nspk(t, t + ∆t) emitted by the population (Eq. (4.14)), divided by the size of
the population and the time step:

rN(t) := nspk(t, t+ ∆t)
N∆t . (4.1)
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In all figures rN is smoothed with a narrow Gaussian kernel (see Methods Eq. (4.15))
to facilitate visual assessment of its oscillatory modulation. An interneuron population
rate that oscillates at a ripple-range frequency is taken as a proxy for a ripple-modulated
LFP (see also Section 2.5.1, and Discussion).

4.2.1.1 Persistent ripple oscillations for constant drive

The dynamics of the detailed model for constant drive are illustrated in Fig. 4.1. At low
drive the network is in a steady-state with units firing asynchronously and irregularly
at an overall low rate funit (Fig. 4.1A, left). As the drive increases, the network begins
to exhibit coherent stochastic oscillations (Fig. 4.1A, middle, right). In the following
I will refer to the dominant frequency of this population oscillation as the network
frequency fnet (see Methods, Section 4.5.1.6). The network frequency lies within the
ripple-frequency range (140–220 Hz) for a large range of external drives (Fig. 4.1B,
black line, gray band). Importantly, the firing rate of individual units can be much
lower (Fig. 4.1B, blue line). This is because the unit spiking activity underlying the
network oscillation is sparse and irregular for most intermediate levels of the drive. This
type of network activity has been described before and will be referred to here as sparse
synchrony (following Donoso et al., 2018, other terms include stochastic oscillations,
Brunel and Hakim, 1999; Brunel and Hansel, 2006; or synchronous irregular state,
Brunel, 2000). Sparse synchrony is defined by a saturation s := funit/fnet that is well
below 1 and a coefficient of variation (CV) of the interspike intervals that is high
(Fig. 4.1B, bottom panels).
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Figure 4.1: Constant-drive dy-
namics of the detailed spik-
ing network. A, Three dynami-
cal regimes depending on the external
drive: asynchronous irregular state,
sparse synchrony, full synchrony. Top:
population rate; middle: histogram of
membrane potentials v (normalized as
density); bottom: power spectral den-
sity of the population rate. The loca-
tion of the first peak is defined as the
network frequency fnet. B, Top: net-
work frequency (fnet, black) and unit
firing rate (funit, blue, population av-
erage ± 1 SD) for a range of con-
stant external Poisson drives Λ. Grey
band: ripple-frequency range (∼140–
220 Hz). Middle: saturation s =
funit/fnet. Bottom: Coefficient of vari-
ation (CV) of interspike intervals.

For very strong drive, the network reaches a state of full synchrony (s ≈ 1 and
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low CV, e.g. Λ = 15000 spks/s in Fig. 4.1A, right) in which units fire regularly at
the network frequency, contributing on average one spike per cycle of the population
rhythm. If the drive increases beyond this level, the network desynchronizes and units
spike several times per cycle (s > 1), eventually dissolving the population rhythm (not
shown). Since the firing rates in that regime are too high to be biologically plausible,
I will focus in the following on the dynamical regime from the asynchronous irregular
state up to the point of full synchrony.

4.2.1.2 Transient ripple oscillations and IFA for time-dependent drive

Inhibition-first ripple models do not account for the generation of the external drive and
its transient variation that is associated with the sharp wave (SPW). The sharp wave
is assumed to be generated by a separate mechanism and in a separate region, e.g. in
region CA3 (Evangelista et al., 2020; Levenstein et al., 2019). Pyramidal cells in CA3
are known to transiently increase their firing rate during a sharp wave (Csicsvari et al.,
1999b; Stark et al., 2014), resulting in a transient increase of the feedforward excitatory
drive to CA1 via the Schaffer collaterals. The bifurcation-based inhibiton-first ripple
model assumes that this SPW-associated drive is sufficient to elicit oscillations in the
population activity of CA1 interneurons, triggering a transient ripple event.
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Figure 4.2: IFA in the detailed spiking network.
A, Ripple event with IFA. From bottom to top: SPW-like external drive Λ; density
of membrane potentials (normalized); raster plot; population rate; wavelet spectro-
gram indicating instantaneous power (blue-yellow colorbar) for a frequency range of
0–350 Hz. Solid curve: continuous estimate of instantaneous frequency, gray scale:
instantaneous ripple power. Dashed line: cutoff frequency fmin = 70Hz. Red line:
power threshold. White dots: discrete estimate of instantaneous frequency based on
peak-to-peak distances in population rate. B, Average transient dynamics (see Meth-
ods Section 4.5.1.6). Top: Grey dots: discrete instantaneous frequency estimates for
individual cycles of 50 independent simulations. Black line: linear regression line with
slope χIFA = −0.99 Hz/ms (see Methods Section 4.5.1.6). Bottom: The same double-
ramp drive was applied in all 50 simulations.
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I model SPW-like drive in its simplest form as a symmetric, piecewise linear double-
ramp, with a short plateau phase, describing the time-dependent intensity of the in-
homogeneous Poisson process used to generate the excitatory input spikes (Eq. (4.21),
Fig. 4.2A, bottom). The SPW-like drive elicits a transient ripple event in the network
(Fig. 4.2A).

The instantaneous frequency of the rhythmic population activity can be measured
either by taking the power spectrum over a sliding gaussian time window of standard
deviation 5 ms and finding the first peak above 0 Hz in each time step, or by taking the
inverse of the discrete peak-to-peak distances (see Methods Section 4.5.1.6, Fig. 4.2A,
top). The continuous estimation of instantaneous frequency involves a hyperparameter
(width of the sliding window) that can introduce unforeseen boundary effects at the
beginning and end of a ripple event. The discrete estimate depends on the minimal
height required for a peak in the population activity to be considered as an oscillatory
modulation. The effects of changes in this hyperparameter are more transparent. I thus
chose to base the analysis of instantaneous ripple frequency on the discrete estimate.

It is evident already in a single example simulation (Fig. 4.2A) that the instanta-
neous ripple frequency decays over time, i.e. the network exhibits intra-ripple frequency
accommodation (IFA) (Donoso et al., 2018). IFA can be quantified systematically by
repeating the same simulation for multiple, independent realizations of the Poisson
spike input and computing a linear regression line for the discrete frequency estimates
of all trials (Fig. 4.2B, Methods Section 4.5.1.6). A negative regression slope (here
χIFA = −0.99 Hz/ms) indicates IFA.

4.2.2 The reduced model
The detailed bifurcation-based inhibitory model has been very useful in demonstrating
that it can produce ripple oscillations and even IFA in a biologically realistic parame-
ter setting matched to the electrophysiological properties of PV+ basket cells in CA1
(Donoso et al., 2018). Depending on the reader’s scientific background the “detailed”
model may already seem fairly simplified (point-neuron assumption, no morphology,
no dendritic nonlinearities, no heterogeneity in the single-unit parameters etc). The
detailed model does, however, still contain several complexities, such as conductance-
based coupling, that make an analytical analysis of its dynamics difficult. I thus per-
formed a model reduction taking away ingredients that are not essential for the ripple
dynamics. I define the essential ripple dynamics as follows:

• the existence of a bifurcation from an asynchronous irregular regime to coherent
stochastic oscillations at a high, ripple-like frequency for a critical amount of
constant, excitatory drive

• a transition from sparse to full synchrony for increasing, constant drive

• IFA for SPW-like drive

A step-by-step description of the model reduction, describing the individual simplifying
assumptions and their implications in detail, can be found in Methods Section 4.5.1.2.
In the resulting reduced model the CA1 interneuron network is modeled as a homo-
geneous network of N leaky integrate-and-fire (LIF) units. Due to the increased level



38 Chapter 4. The bifurcation-based inhibitory ripple model

of abstraction I will no longer refer to the model interneurons as PV+ BCs. The goal
here is rather to show that IFA occurs largely independent of the details of the model
neuron. The membrane potential vi of a neuron i is given by the following stochastic
differential equation (SDE):

τmv̇i = −vi + Eleak + τm
C
Iext(t)−

J

N
τm

N∑
j=1

∑
k

δ(t−∆− tkj ) +
√

2τmσV ξi(t) (4.2)

with time constant τm, capacitance C, and resting potential Eleak. Whenever the
membrane potential crosses a spike threshold Vthr, a spike is emitted and the membrane
potential is reset instantaneously to a reset potential Vreset. For simplicity there is no
absolute refractory period. All interneurons receive the same external, excitatory drive
Iext and an independent Gaussian white noise input ξi scaled by the noise strength
parameter σV . The network is fully connected via inhibitory pulse coupling of strength
J and with a synaptic delay ∆ (see Methods Section 4.5.1.3 for details, Table Table 4.3
for default parameters).

In the following I briefly illustrate that the key ripple dynamics, as defined above
and illustrated in Section 4.2.1, are preserved in this reduced model, i.e., there are fast
oscillations in the ripple range and there is IFA. I will furthermore demonstrate that
the ripple dynamics are preserved in large networks and hence argue that IFA can be
described as a mean-field effect.

4.2.2.1 Persistent ripple oscillations for constant drive

For constant drive the reduced model exhibits a range of dynamics (Fig. 4.3) that is
qualitatively comparable to the detailed model (Fig. 4.1): For increasing drive the net-
work transitions from an asynchronous irregular state to coherent stochastic oscillations
that are first sparsely, and finally fully synchronised. Compared to the detailed model,
the network frequency depends more strongly on the external drive and is a mostly
decreasing function of the latter. Increasing the network size beyond N ∼ 10, 000
does not change the dynamics significantly (Fig. 4.3B). From here on I will thus use a
simulated network of size N = 10, 000 to compare to analytically estimated mean-field
dynamics.

4.2.2.2 Transient ripple oscillations and IFA for time-dependent drive

When stimulated with transient, SPW-like drive (Eq. (4.22)) the reduced spiking net-
work produces a transient ripple oscillation with IFA (Fig. 4.4A, B). The transient
dynamics is similar to the detailed model (Fig. 4.2) except that the IFA has a slightly
different shape with a small increase in frequency at the end of the event.

As I discussed in Section 2.5.2, there is no rigorous definition of IFA. The central
aspect of IFA is the decrease (accommodation) of the instantaneous frequency over the
course of a ripple event. We observe such a decrease in the central portion of this
simulated ripple event, where power in the ripple band is large (Fig. 4.4A, top). In the
reduced model this decay is not strictly monotonic over the entire event. The frequency
increases slightly at the end of the event, albeit with low power (the underlying peaks
in the population rate are small). Similar non-monotonicities have been observed in
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Figure 4.3: Constant-drive dy-
namics of the reduced spiking
network. A, Examplary dynamics:
asynchronous irregular state, sparse
synchrony, full synchrony (left to
right, N = 10, 000). Top: popula-
tion rate; middle: density of mem-
brane potentials; bottom: power
spectral density of the population
rate. B, Top: network frequency
fnet (black) and unit firing rate funit
(blue, average ± 1 SD) for a range
of constant external drives Iext. Grey
band: ripple frequency range (∼140–
220 Hz). Red markers: Hopf bifur-
cation (Icrit

ext ≈ 0.19 nA, see Meth-
ods Section 4.5.2.4). Middle: satu-
ration s = funit/fnet. Bottom: coeffi-
cient of variation of interspike inter-
vals. Linestyle indicates network size
(N ∈ [102, 103, 104]).

experimentally measured ripples and still termed IFA (Ponomarenko et al., 2004, see
Discussion). Hence I define IFA here not as a strictly monotonic decay, but a more
general trend from high towards lower frequencies over the course of an event.

In the model, the IFA asymmetry can be understood best by comparing the instan-
taneous frequencies to the asymptotic frequencies that the network would settle into
if the drive remained constant at any given level indefinitely (Fig. 4.4D, black lines).
Naturally, these asymptotic frequencies follow the same symmetry as the external drive
and thus provide a useful reference frame. For a double-ramp drive, we observe that
during the plateau phase (i.e. constant drive) the instantaneous frequency quickly ap-
proaches the asymptotic frequency. However, during the rising phase of the ramp-input
the instantaneous frequency is higher than the asymptotic reference. During the falling
phase it is lower, thus creating the overall IFA asymmetry.

Varying the slope of the external double-ramp drive one can see that the IFA asym-
metry is speed-dependent (Fig. 4.4C,D): If the external drive changes more slowly
(smaller slope), the network frequency response becomes more symmetric; for very
small slopes the instantaneous frequencies approach the symmetric, asymptotic refer-
ence frequencies.
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Figure 4.4: Transient dynamics and IFA in the reduced spiking network.
A, Example simulation showing a transient ripple with IFA. From bottom to top:
SPW-like drive (Eq. (4.22)); histogram of membrane potentials (normalized); raster
plot showing spike times of 10 example units; population rate exhibiting transient ripple
oscillation; wavelet spectrogram indicating instantaneous power (blue-yellow colorbar)
for a frequency range of 0–350 Hz. Solid curve: continuous estimate of instantaneous
frequency based on wavelet spectrogram with gray scale indicating maximal instanta-
neous power. Dotted line: cutoff frequency fmin = 70Hz. Red line: power threshold
(see Methods). White dots: discrete estimate of instantaneous frequency based on
peak-to-peak distance in population rate. Network size N = 10, 000. B, Average
transient dynamics (see Methods). Top: Grey dots: discrete instantaneous frequency
estimates from 50 independent simulations. Grey line: linear regression line with neg-
ative slope (χIFA = −3.01 Hz/ms) indicating IFA (see Methods, Eq. (4.23)). Bottom:
The same SPW-like drive was applied in all 50 simulations. Network size N = 10, 000.
C, Dependency of IFA slope χIFA on the slope of the external drive for different net-
work sizes (color coded, details see D). D, Instantaneous (dots) vs asymptotic (black
line) network frequencies (top) for piecewise linear drives (bottom) of decreasing slopes
(left to right). Color indicates network size N . Thin, colored linear regression lines
illustrate decreasing strength of IFA for shallower drive. The indicated IFA slope χIFA
refers to the largest network (N = 10, 000). With decreasing slope of the drive (from
left to right) the instantaneous network frequencies become more similar to the sym-
metric, asymptotic frequencies and IFA vanishes. Network size does not influence the
IFA slope significantly (see also C). Asymptotic network frequencies are derived via
interpolation of the constant-drive results shown in Fig. 4.3.
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4.3 Theory of ripple dynamics in the mean-field
limit

To understand the mechanism behind the network dynamics illustrated for constant
drive in Fig. 4.3 and time-dependent drive in Fig. 4.4, I will resort to a mean-field
ansatz. Simulations indicate that the network dynamics varies only little when the
network size is increased (Fig. 4.3B, Fig. 4.4C,D). I hence hypothesize that IFA is
preserved in the mean-field limit of an infinitely large network and will use a mean-
field ansatz to explain its generating mechanism.

To facilitate notation in the subsequent mathematical analysis of the network dy-
namics, I rescale all voltages in Eq. (4.2) to units of the distance between threshold
and rest such that the new spiking threshold is at VT = 1 and the resting potential at
EL = 0 (see Methods, Section 4.5.2.1). The single unit SDE then reads

τmV̇i = −Vi + IE(t)− Kτm
N

N∑
j=1

∑
k

δ(t− tkj −∆) +
√

2Dτmξi(t) , (4.3)

with rescaled external excitatory current IE, inhibitory synaptic strength K, and noise
intensity D. In the mean-field limit, N →∞, the dynamics of the density of membrane
potentials p(V, t) is described by the following Fokker-Planck equation (FPE):

τm∂tp(V, t) = −∂V
((
I(t)− V

)
p(V, t)

)
+D∂2

V p(V, t) (4.4)

I(t) = IE(t)− II(t) = IE(t)−Kτmr(t−∆) (4.5)

r(t) = −D
τm
∂V p(VT , t) (4.6)

(see Methods, Eqs. (4.27) for a complete list of boundary conditions).
The population rate r(t) is defined as the probability current through the absorbing

boundary at the threshold (Eq. (4.6)) and approximates the activity of the spiking
network in the mean-field limit (N → ∞). Compared to the classical application of
the FPE (Risken, 1989; Gardiner, 1985) there are two essential differences: First, due
to the fire-and-reset rule, there is an absorbing boundary condition at the threshold
(Eq. (4.27e)) and a source of probability at the reset point (Eq. (4.27g)); the latter
source can be imposed by a jump condition for the derivative of the density at the reset
point (see e.g. Abbott and van Vreeswijk, 1993; Brunel, 2000; Lindner and Schimansky-
Geier, 2001; Brunel et al., 2003). Secondly, the current I(t) (Eq. (4.5)) depends on the
population rate r(t), which itself depends on the probability density p(v, t) (Eq. (4.6)).
For such a nonlinear (or nonlocal) FPE only the stationary solution can be found
analytically, with asynchronous irregular spiking and a constant population rate given
low constant drive (Brunel and Hakim, 1999, Fig. 4.5). Oscillatory solutions cannot
be computed exactly.

In the following I will briefly review existing linear approaches towards understand-
ing the oscillatory regime, and their limitations. Then I will introduce a novel approx-
imation for the oscillation dynamics at strong drive, constant or time-dependent, that
allows an understanding of the IFA mechanism.
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4.3.1 Linear approaches and their limitations
In the stationary state the FPE can be solved exactly (Brunel and Hakim, 1999, ex-
plained in Methods Section 4.5.2.3), yielding analytical expressions for the (constant)
population rate r0 and the distribution of membrane potentials p0(V ) (Fig. 4.5).
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Figure 4.5: Stationary network dynamics in simulation and theory.
Stationary network dynamics in the asynchronous irregular firing regime for external
drive Iext = 0.1 nA (cf. Fig. 4.3A, left). A, Top: The population rate r(t) (solid line) in
a simulation of a finite spiking network (N = 10, 000) fluctuates around the constant
population rate r0 = 4.35 spikes/s (dashed line) that is estimated (semi-)analytically
from the FPE (Fig. 4.20, Methods Section 4.5.2.3). Middle: membrane potentials in the
spiking network simulation over time. Bottom: Standard deviation (SD) of membrane
potentials across units at each point in time. Dashed line marks the SD expected
without boundary conditions (σV = 2.62 mV, see also Table 4.3). B, The distribution
of membrane potentials observed in the spiking network simulation (grey histogram,
averaged over time) agrees well with the stationary solution p0(v) of the FPE (black
line, Eq. (4.30)). Note the small discontinuity in the derivative of p0(V ) at the reset
potential, and the absorbing boundary condition at threshold. The simulation results
are shown here in nA and mV (non-rescaled, cf. Eqs. (4.26)).

It has been shown that the stationary state loses stability via a supercritical Hopf
bifurcation when the external drive IE increases (Brunel and Hakim, 1999) (explained
in Methods Section 4.5.2.5). Alternatively, the bifurcation can also be reached by an
increase in inhibitory coupling strength or a decrease in noise strength (see Methods,
Eq. (4.38)). In the context of SPW-Rs however, the changing external drive is assumed
to act as the bifurcation parameter.

The location of the bifurcation (i.e. the critical drive Icrit
E ) and the associated net-

work frequency and the mean unit firing rate can be determined in a linear stability
analysis (Brunel and Hakim, 1999, explained in Methods Section 4.5.2.4). This analy-
sis involves the calculation of the linear response of a single neuron to weak oscillatory
input. A self-consistent solution is found for which the synaptic and neuronal phase
lags add up such that the oscillatory input and output rate of the recurrently connected
network match (see Fig. 4.22).
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For LIF neurons under Gaussian white noise, as in the reduced ripple model, the
linear response function is known analytically (Lindner and Schimansky-Geier, 2001;
Brunel et al., 2001) and the linear stability analysis thus yields accurate results: For a
spiking network large enough to approximate the mean-field dynamics (N ∼ 10, 000)
the simulated network frequency and the mean unit firing rate at the predicted critical
input level Icrit

E are close to the analytical approximation (Fig. 4.3B, red markers).
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Figure 4.6: Linear stability anal-
ysis for the detailed ripple model.
A, Oscillations in the detailed model,
same outline as Fig. 4.1. Red markers:
analytical estimate of bifurcation under
omission of neuronal phase lag (Brunel
and Wang, 2003). B, Power spectral
densities and network frequency esti-
mates (black vertical lines) of the simu-
lated population activities close to the
bifurcation (first 3 black triangles in
Aii).
The network simulation was ad-
justed to optimize comparability with
the mean-field result (Methods Sec-
tion 4.5.2.4). The small discrepancy
between the simulated and analytically
estimated frequency at oscillation on-
set (A) seems indeed due to an error in
the analytical estimate neglecting the
neuronal phase lag, and not an inac-
curate numerical estimate of the net-
work frequency (B). A definite state-
ment on this matter however, would
require a comparison of the analytical
result shown here, with the result ob-
tained when including a (numerically
estimated) neuronal phase lag.

If the neuron is subject to Gaussian colored noise, for example due to the presence
of synaptic filters as in the detailed ripple model, the linear response function is not
known analytically (but see Badel, 2011; Schwalger, 2021) (Methods Section 4.5.2.4).
The approximation of the frequency in the bifurcation point (Eq. (4.36)) is thus either
less exact (when the unknown neuronal phase lag is omitted, Fig. 4.6), or only semi-
analytical (when the neuronal phase lag is estimated numerically Geisler et al., 2005;
Richardson, 2007, 2008). If the synaptic decay time constant is large (compared to
the membrane time constant), the neuronal phase lag is small (Brunel et al., 2001)
(Methods Section 4.5.2.4). Thus it can be omitted in the linear stability analysis and
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still the network frequency at oscillation onset is predicted reasonably well (Fig. 4.6A,
∼237 Hz).

An important result of the analysis including synaptic filtering is that the fast
synaptic time constants of inhibition (delay ∆ and rise time constant τ rI ) are much
stronger determinants of the network frequency than the slow decay time constant τ dI
(Brunel and Wang, 2003). This is relevant for the interpretation of experiments that
pharmacologically alter inhibitory synaptic transmission.

Finally, linear stability analysis yields insights into how the choice of neuron model
affects the network dynamics (Methods Section 4.5.2.4). In the LIF neuron, spike ini-
tiation is instantaneous. Other neuron models that account for a finite spike initiation
time, such as the exponential integrate-and-fire (EIF) neuron, respond to oscillatory
input with a larger phase lag than the LIF neuron. Networks of EIF neurons thus os-
cillate at lower frequencies than LIF networks at comparable noise levels and coupling
strengths. This poses a potential constraint for the bifurcation-based ripple model,
which I will come back to in the discussion.

Generally, linear stability analysis can describe the oscillation dynamics only close
to the bifurcation where the oscillatory modulation of the population rate is quasi-
sinusoidal and has infinitesimal amplitude. In a weakly nonlinear analysis Brunel and
Hakim (1999) approximated the frequency and amplitude of the oscillation close at but
beyond the bifurcation (Methods Section 4.5.2.5). In the limit of short synaptic delay,
the network frequency decreases when the bifurcation parameter (here the external
drive) increases beyond its critical value (Eq. (4.42)). The oscillation amplitude grows
as the square root of the drive, as expected after a supercritical Hopf bifurcation
(Eq. (4.41)). Both results are confirmed in the numerical simulations of the reduced
ripple model (Fig. 4.3).

Further away from the bifurcation the population rate oscillation becomes strongly
non-sinusoidal with brief moments of silence (r(t) ≈ 0) inbetween population spikes
(Fig. 4.3A, middle and right). In that regime all of the above approaches break down.
Furthermore, all the above approaches consider constant external drive and do not allow
a straight-forward prediction of the transient dynamics that occur for time-dependent
(“SPW-like”) drive. Thus to address the mechanism of IFA a novel theoretical ap-
proximation of the network dynamics is required, that is valid even for strong and
time-dependent drive.

4.3.2 A drift-based approximation of oscillation dynamics un-
der strong drive

In this section I will introduce a simplified approach to approximate the network dy-
namics at strong drive beyond the bifurcation. The approach can be motivated by
two observations from the spiking network simulations: (a) In the relevant regime be-
tween sparse and full synchrony, units spike at most once per cycle of the population
rhythm (funit < fnet, Fig. 4.3B). Hence one can approximate the time course of a single
population spike using a first-passage-time ansatz, neglecting the reset mechanism. (b)
Inbetween population spikes, the bulk of the membrane potential distribution is pushed
significantly below threshold and the population rate approaches zero (see Fig. 4.3A).
In those periods the absorbing boundary condition at threshold does not have any
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significant impact on the dynamics of p(V, t).
These two observations motivate a considerable simplification: Without the bound-

ary conditions at threshold and reset, the FPE can be solved analytically. In the
long-time limit its solution becomes a simple Gaussian — independent of the initial
condition (see Methods, Eq. (4.43)). One can thus approximate the density of mem-
brane potentials p as

p(V, t) ≈ 1√
2πD

exp
[
−(V − µ(t))2

2D

]
. (4.7a)

The only time-dependent quantity is the mean membrane potential µ, which evolves
according to the single unit SDE (Eq. (4.3)) without the noise term:

µ̇(t) = 1
τm

(
I(t)− µ(t)

) (4.5)= 1
τm

(
IE(t)−Kτmr(t−∆)− µ(t)

)
. (4.7b)

The population rate can be redefined in this framework, based solely on the drift-
based spiking probability current, ignoring diffusion-mediated spiking (see Methods
Eqs. (4.48), (4.49), Goedeke and Diesmann, 2008; Plesser and Gerstner, 2000; Chizhov
and Graham, 2007):

r(t) = [µ̇(t)]+p(VT , t) = [µ̇(t)]+√
2πD

exp
[
−(VT − µ(t))2

2D

]
. (4.7c)

The rate r is given by the membrane potential density at threshold, p(VT , t), scaled
by the speed µ̇ at which the mean membrane potential approaches the threshold.
Whenever the mean membrane potential is decreasing, the rate is clipped to 0 ([x]+ :=
(x+ |x|)/2).

Taken together, Eqs. (4.7), which are coupled via the inhibitory feedback current
II(t) (see Eq. (4.7b)), are equivalent to a single delay differential equation (DDE)
describing the dynamics of the mean membrane potential and the resulting drift-based
population rate under the drift-based approximation (Methods Eq. (4.51)). This DDE
is of course not equivalent to the FPE (Eqs. (4.4)) with its orignal boundary conditions,
or the spiking network (Eq. (4.2)). The main discrepancies between the spiking network
dynamics and the drift-based approximation are illustrated in Fig. 4.7 for the case of
constant drive (A: spiking network vs B: drift-based approximation). A quantification
of the membrane potential density p(V, t) in the spiking network shows that it is not
strictly Gaussian (Fig. 4.7Aii-iii, Methods Section 4.5.1.7): Due to the fire-and-reset
mechanism, p(V, t) changes in shape during the oscillation cycle, becoming at times
almost bimodal. Still, we see that simplifying assumption (b) is justified: When the
membrane potential density is subthreshold inbetween population spikes, it becomes
indeed more Gaussian and its standard deviation approaches

√
D (Fig. 4.7 Aii, bottom,

Aiii, first 3 snapshots).
The advantage of the drift-based approximation is that its dynamics can be ap-

proximated analytically. In the following I will first consider the dynamics for constant
drive, then this ansatz is extended for time-dependent drive to allow an understanding
of transient frequency responses and hence the emergence of IFA.
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4.3.3 Oscillation dynamics for constant drive

A T -periodic solution of the Gaussian model (DDE (4.7b), Methods Eq. (4.51)) must
have a mean membrane potential µ(t) = µ(t + T ) that oscillates between two local
extrema µmin and µmax (Fig. 4.7Bi). Whenever the mean membrane potential increases,
a positive population rate is produced; when the mean membrane potential decreases
the population rate is clipped to 0 (Eq. (4.7c)). The moment when µ reaches its local
maximum µmax is thus of special importance as it marks the end of the population
spike. I will refer to this time as toff :

µ(toff) = µmax , r(toff) = 0 .

Since all inhibitory feedback arrives with a delay of ∆, it follows that the inhibitory
feedback ceases exactly ∆ after the end of the population spike, i.e. II(toff + ∆) = 0.
It is convenient to define this moment as the end of a cycle, i.e. the beginning of the
next one. The mean membrane potential at this time is close to its local minimum
(see Methods Section 4.5.4.2) and will be denoted as µmin := µ(toff + ∆). The period
T can then be split into the time toff needed for the mean membrane potential to
rise from µ(0) = µmin towards µ(toff) = µmax (the upstroke), plus a fixed interval ∆
during which the mean membrane potential is pushed back down to µ(T ) = µmin due
to the delayed inhibitory feedback (the downstroke) (Fig. 4.7Bii). In the Methods
I derive, through a series of heuristic approximations, analytical expressions for the
local extrema µmax (Eq. (4.58)) and µmin (Eq. (4.73)) of the mean membrane potential
oscillation as a function of the external drive IE. Using these expressions, I obtain an
analytical approximation for toff (Eq. (4.70)) and hence for the network frequency:

fnet = T−1 = (toff + ∆)−1 . (4.8)

Apart from the network frequency the drift-based approximation also allows an intu-
itive understanding of the mean unit firing rate. When the population spike ends at
time toff , the suprathreshold portion of the Gaussian density corresponds to the frac-
tion of units that have spiked in the given cycle (the saturation s, Methods Eq. (4.71)).
The mean unit firing rate can thus be inferred as:

funit = sfnet . (4.9)

The example in Fig. 4.7 (IE = 4.24) shows that the dynamics of the Gaussian model can
be very close to the dynamics of the spiking network: The population rate in the simu-
lated spiking network oscillates with a period T = 5.08 ms, corresponding to a network
frequency of fnet =196.9 Hz (Fig. 4.7A). The Gaussian model predicts an oscillation pe-
riod T = 5.11 ms, corresponding to a network frequency of fnet =195.7 Hz (Fig. 4.7B).
Such a good quantitative fit can only be achieved by including a phenomenological
account for the single unit reset mechanism in the drift-based approximation (yellow
marks in Fig. 4.7B, see Methods Section 4.5.4.3 for details). In the following the per-
formance of the drift-based approximation is compared systematically for a range of
external drives IE.
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Figure 4.7: Illustration of the drift-based approximation. Comparison of os-
cillation dynamics in the spiking network simulation (A) and the drift-based approxi-
mation (B) at constant drive (IE = 4.24). Ai, Spiking network simulation. Empirical
population rate rN (top), and density of membrane potentials (bottom), exhibiting
coherent stochastic oscillations with (weak) finite size fluctuations. Dotted line marks
spike threshold (VT = 1). Aii, The average oscillation cycle: Top: population rate;
middle: density of membrane potentials, orange marker: local minimum of mean mem-
brane potential; bottom: standard deviation of membrane potential distribution, dot-
ted line: theoretical asymptote

√
D in the absence of boundary conditions (Eq. (4.46)).

Aiii, Snapshots of the membrane potential density over the course of the average cycle
shown in (Aii). Dotted line marks spike threshold/absorbing boundary. Bi, Drift-
based approximation (Eqs. (4.7)). Top: population rate, bottom: Gaussian density of
membrane potentials p(V, t), both perfectly periodic. Bii, Zoom into one oscillation
cycle (black bar in Bi). Top: population rate r, middle: density of membrane poten-
tials p(V, t), bottom: constant standard deviation

√
D. The mean membrane potential

µ(t) (black line) starts each cycle in µmin (orange) and rises up until µmax (cyan) at
time toff , at which point the population spike ends. In a phenomenological account
for the single unit reset, µ is reset instantaneously to µreset (yellow, Eq. (4.72)). From
there µ declines back towards µmin. Biii, Snapshots of the membrane potential density
p(V, t) over the course of one cycle (Bii). Note that in the theoretical approximation
the spiking threshold VT = 1 (dotted line) is no longer an absorbing boundary.
(For an analog illustration of the drift-based approximation in the regime of full syn-
chrony, see Supplementary Fig. 4.41).

4.3.3.1 Evaluation of the performance of the theory

The drift-based approximation captures the dependence of network frequency fnet and
mean unit firing rate funit on the external drive IE, including the transition from sparse
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to full synchrony for increasing external drive (Fig. 4.8, top). The analytically derived
expression for the saturation s predicts this transition, since s is a monotonically in-
creasing function of µmax (Eq. (4.71)), which monotonically increases as a function of
the external drive IE (Eq. (4.58), Fig. 4.8, middle). The Gaussian model also allows an
analytical estimation of the point of full synchrony, i.e. the amount of external drive I full

E
that is required for single units to fire approximately at the frequency of the network
rhythm (Fig. 4.8, vertical dashed line, see Methods Section 4.5.4.4, Eq. (4.74)). The
Gaussian model slightly overestimates the point of full synchrony, but correctly pre-
dicts its parameter dependencies: For stronger coupling and/or larger noise, stronger
external drive is required to reach full synchrony (Fig. 4.28 in Appendix Section 4.A).
A detailed analysis of how the drift-based ripple oscillations in the Gaussian model
depend on network parameters, such as the coupling strength and the noise, can be
found in Appendix Section 4.A.

The theory shows that the amplitude µmax−µmin of the oscillatory mean membrane
potential grows with increasing drive (Fig. 4.8, bottom). This is mainly due to a strong
decrease of the periodic minimum µmin (Fig. 4.8, bottom, solid orange line), which is
also observed in the spiking network simulation (Fig. 4.8, bottom, dashed orange line).
The quantities µmax and µreset are pertinent to the drift-based approximation and have
no direct counterpart in the spiking neural network model. The strong, monotonic
increase of the oscillation amplitude for increasing drive will be of great importance in
the next section, where I study hysteresis effects caused by fast changes in the drive.
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Figure 4.8: Drift-based ap-
proximation of ripple dy-
namics for constant drive.
Theory vs spiking network sim-
ulation. Top: network fre-
quency (black) and mean unit
firing rate (blue). Red marker:
Hopf bifurcation. Vertical lines
indicate the range [Imin

E , Imax
E =

I full
E ] for which the theory ap-
plies. Middle: saturation s.
Bottom: local maximum µmax
(cyan, Eq. (4.58)), local mini-
mum µmin (orange, Eq. (4.73))
and population reset µreset (yel-
low, Eq. (4.72)) of mean mem-
brane potential. Default param-
eters (Table 4.3).

I will conclude this section with a few remarks on the limitations of the drift-based
approximation and its relation to other mean-field approaches:

The range of applicability of the theory is defined by the two assumptions motivated
in the beginning: (a) units should spike at most once per cycle (i.e. IE ≤ I full

E ), (b)
inbetween population spikes, the bulk of the membrane potential distribution should be
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subthreshold (i.e. µmin(IE)+3
√
D ≤ VT ). The resulting range [Imin

E , Imax
E ] (see Methods

Section 4.5.4.5) covers the large part of the regime of sparse synchrony up to the point
of full synchrony (Fig. 4.8, area between vertical dotted and dashed line). Numerical
simulations confirm that for strong enough drive, the drift-based approximation works
for a wide parameter regime w.r.t. noise, coupling strength, and synaptic delay (see
Appendix Section 4.A, Fig. 4.27, Fig. 4.28).

The parameter exploration in Appendix Section 4.A reveals that the network fre-
quency beyond the Hopf bifurcation depends strongly on the inhibitory coupling strength
(Fig. 4.27C). Previous studies focusing on linear stability analysis around the Hopf
bifurcation (Brunel and Hakim, 1999; Brunel and Wang, 2003) have suggested that
the network frequency is set primarily by the (fast) synaptic time constants and de-
pends only weakly on other parameters, which is confirmed by the spiking network
simulations shown in Fig. 4.27C (red markers). The drift-based approximation shows,
however, that further away from the bifurcation other parameter dependencies do play
a role. For strong coupling (K = 50, Fig. 4.27C, top row) one even observes a drop
in the network frequencies to slow gamma range. The drift-based approximation cap-
tures this dependency very well and thus complements previous work focusing on the
bifurcation point (Brunel and Hakim, 1999).

At low drive (IE < Imin
E ) the theory breaks down (see also Methods Section 4.5.3.1).

This is to be expected from a purely drift-based approximation. The dynamics of the
spiking network close to its supercritical Hopf bifurcation is largely fluctuation-driven.
Such dynamics cannot be captured by focusing only on the oscillation of the mean
membrane potential, which has infinitesimal amplitude as the drive approaches its
critical value. This limitation of the theory does not pose a problem, since (a) the
fluctuation-driven dynamics around the Hopf bifurcation has already been studied in
depth by Brunel and Hakim (1999) (see Methods Section 4.5.2.4) and (b) the main
goal here is to explain the IFA dynamics, which happens in the strongly mean-driven
regime IE(t)� Imin

E .
So far, I have considered the case of constant drive and described the asymptotic

oscillatory dynamics that are observed after initial conditions have been forgotten. I
will emphasize this from here on by adding a superscript “∞”. I will now study how
the transient dynamics, introduced either by a perturbation of the initial condition or
a time-dependent drive, deviate from these asymptotic constant-drive dynamics.

4.3.4 Oscillation dynamics and IFA for time-dependent drive

4.3.4.1 Piecewise constant drive

Even for constant drive, there is transient dynamics if the initial mean membrane
potential deviates from the asymptotic minimum µ∞min. Let’s assume that a cycle starts
with an initial mean membrane potential µmin 6= µ∞min(IE). We only require that µmin
is sufficiently subthreshold, such that the initial population rate is close to zero. What
will be the period of the first cycle and how long does it take until the asymptotic
dynamics is reached?

First I note that, independent of µmin, the mean membrane potential will rise to-
wards the asymptotic µ∞max(IE), which has been shown to be independent of the initial
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condition (Eq. (4.58)). Thus, only the duration of the first upstroke will be influenced
by the initial condition and the asymptotic dynamics is reached immediately thereafter.

The duration of the first upstroke depends on the distance that the mean membrane
potential has to travel, from its initial value µmin to the next peak µ∞max(IE). For µmin =
µ∞min(IE) the upstroke has length t∞off(IE) and the first cycle has the asymptotic period
T∞/ instantaneous frequency f∞net (Fig. 4.9A, middle). Trivially, the upstroke will take
less time, if the mean membrane potential starts at a higher value (µmin > µ∞min(IE))
and more otherwise (Fig. 4.9A, left vs right). Hence the period of the first cycle will be
either shorter or longer, which can be rephrased as an instantaneous frequency f inst

net that
is higher or lower than the asymptotic f∞net(IE). Fig. 4.9B illustrates the instantaneous
frequency of the first cycle for a range of combinations of (constant) drive IE and initial
conditions µmin (red: instantaneous frequency is higher than asymptotic frequency;
blue: instantaneous frequency is lower).

Once the mean membrane potential has reached its first peak µ∞max(IE), it will
follow the asymptotic dynamics, settling into µ∞min(IE) at the end of the first cycle, and
all subsequent cycles will come at the asymptotic frequency f∞net(IE) associated to the
external drive IE (convergence indicated by arrows in Fig. 4.9B). A change of initial
condition can thus only introduce a transient deviation from the asymptotic dynamics
in a single cycle.

What if we change the external drive after each cycle (green line in Fig. 4.9C)? Then
the initial mean membrane potential of each cycle i will be the asymptotic minimum
associated to the drive of the previous cycle:

µimin = µ∞min(I i−1
E )

i.e. the mean membrane potential dynamics exhibits a history dependence (or hys-
teresis, see Fig. 4.9C, orange marker vs orange line). Now recall that the asymptotic
minimum µ∞min(IE) is a monotonically decaying function of the drive (except for strong
drive close to I full

E , Fig. 4.9B, black line). Thus, if the external drive increases step-
wise, each cycle will start with an initial mean membrane potential above the asymp-
totic minimum associated to that cycle’s drive, hence the instantaneous frequency will
be above its asymptotic value in every cycle (Fig. 4.9B, trajectory through red area:
f inst,i

net > f∞net(I iE) ∀i, Fig. 4.9C, cycles 1-4). Vice versa, if the external drive decreases
stepwise, each cycle will start with an initial mean membrane potential below the
asymptotic minimum associated to that cycle’s drive, hence the instantaneous fre-
quency will be below its asymptotic value in every cycle (Fig. 4.9B, trajectory through
blue area: f inst,i

net < f∞net(I iE) ∀i, Fig. 4.9C, cycles 5-7). In summary:

I iE > I i−1
E ⇒ µimin = µ∞min

(
I i−1

E

)
> µ∞min

(
I iE
)

⇒ f inst,i
net > f∞net

(
I iE
)

I iE < I i−1
E ⇒ µimin = µ∞min

(
I i−1

E

)
< µ∞min

(
I iE
)

⇒ f inst,i
net < f∞net

(
I iE
)

Thus, if we approximate the transient change in drive during a sharp wave as a simple,
piecewise constant function that first increases after each cycle, and then decreases
(Fig. 4.9C, green line), we get IFA: The asymptotic network frequency associated to
the drive in each cycle describes a reference curve that follows the same symmetry
as the drive (Fig. 4.9C, top, solid black line). The instantaneous network frequency



4.3. Theory of ripple dynamics in the mean-field limit 51

(Fig. 4.9C, top, round markers) will be asymmetric over time, as it is above the asymp-
totic network frequencies during the rising phase of the external drive, and below during
the falling phase. The theory thus describes the relationship between instantaneous
and asymptotic frequencies that I already hinted at in the presentation of the spiking
network simulations in Fig. 4.4D.
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Figure 4.9: Transient dynamics and IFA for piecewise constant drive.
A, Dependence of the length of the oscillation cycle on the initial mean membrane
potential. Left: shorter period for µmin > µ∞min(IE) (cycle 2 in C). Middle: asymptotic
period for µmin = µ∞min(IE). Right: longer period for µmin < µ∞min(IE) (cycle 6 in C).
B, Difference between the instantaneous frequency of a cycle with constant drive IE
and initial condition µmin, and the asymptotic frequency f∞net(IE) for a range of external
drives IE and initial mean membrane potentials µmin. Black line: asymptotic µ∞min(IE)
(cf. Fig. 4.8, bottom, orange line). Markers show example cycles shown in A, C.
Arrows indicate convergence to the asymptotic dynamics after one cycle. If the drive
changes after each cycle (dotted lines), the 7 examples combine into the trajectory
shown in C. C, IFA for piecewise constant drive with symmetric step-heights. Shaded
areas mark oscillation cycles. Bottom: The external drive is increased step-wise, up
to the point of full synchrony I full

E ≈ 8.9 (green line). Lines in all panels indicate the
asymptotic dynamics associated to the external drive of the respective cycle. Markers
indicate transient behavior. Cyan: µmax. Orange: µmin. Top: the instantaneous
network frequency (markers) is first above and then below the resp. asymptotic network
frequencies (black line).

The piecewise constant shape of the drive may not be realistic, but serves to il-
lustrate the core mechanism of IFA: a hysteresis in the oscillation amplitude of the
mean membrane potential. A drawback is that this simple model for SPW-like drive
is not symmetric in time, since the drive changes after each cycle, and the cycle length
increases due to IFA. To show that the IFA asymmetry does not rely on an asymmetry
in the drive, I adapted the drift-based approximation to incorporate time-dependent,
linear drive (see Methods Section 4.5.5).
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4.3.4.2 Piecewise linear drive

Previously I compared each transient cycle to the asymptotic dynamics associated
to the (constant) external drive during that particular cycle. For a drive that changes
linearly within one cycle, one level of drive has to be chosen for the asymptotic reference.
Since all previous analytical approximations are anchored to the end of the population
spike toff , I decided to use the external drive reached at (the yet unknown!) time toff
as the reference drive, from here on referred to as ÎE := IE(toff) (see sketch in Methods
Section 4.5.5, Fig. 4.26 for a clarification of “inputs” and “outputs” of the analytical
approximation).

Following the same approach as before, I derive an approximation for the transient
dynamics of a cycle i that starts with a mean membrane potential µimin, given linear
external drive IE(t) = Î iE +m(t− tioff) with slope m and reference drive Î iE:(

Î iE, µ
i
min,m

)
7−→

(
f inst,i

net , tioff , µ
i
max, µ

i
reset, µ

i+1
min

)
(4.10)

The dynamics is quantified in terms of the peak of the mean membrane potential µimax,
its reset value µireset and the value µi+1

min that is reached at the end of cycle i (and may
thus be the initial membrane potential of the next cycle i + 1). Most importantly,
the duration of the upstroke tioff is inferred, and from that the instantaneous network
frequency f inst,i

net =
(
tioff + ∆

)−1
(see Methods Eqs. (4.79)-(4.87)).

The analysis is now a little more complex, since each cycle depends on three pa-
rameters (Î iE, µimin,m, see Fig. 4.26), in contrast to only two parameters (I iE, µimin)
for piecewise constant drive. I will demonstrate, however, that the essential findings
from the basic case of piecewise constant drive still hold, i.e. that IFA is generated
by the same hysteresis in the transient dynamics of the mean membrane potential
(Fig. 4.9 vs Fig. 4.10). To illustrate this in an example, I fix the slope of the linear
drive to m = ±0.4/ms. I then compare how the transient dynamics deviates from the
asymptotic dynamics depending on whether the drive is increasing (m = +0.4/ms) or
decreasing (m = −0.4/ms) (Fig. 4.10).

The principal idea still holds for most combinations of reference drive Î iE and initial
value µimin (Fig. 4.10A): If the drive is increasing (m = +0.4/ms) and the initial mean
membrane potential is well above the asymptotic reference (µimin � µ∞min(Î iE)), the
cycle’s period is shorter than the asymptotic reference, i.e. f inst,i

net > f∞net(Î iE) (Fig. 4.10A,
left). Vice versa, if the drive is decreasing (m = −0.4/ms) and the initial mean
membrane potential is well below the asymptotic reference (µimin � µ∞min(Î iE)), the
cycle’s period is longer than the asymptotic reference, i.e. f inst,i

net < f∞net(Î iE) (Fig. 4.10A,
right).

Exceptions from this “rule” can be seen in a systematic comparison of instantaneous
and asymptotic frequencies depending on initial condition µmin and reference drive ÎE,
which now yields two plots: one for positive slope (m = +0.4/ms, Fig. 4.10B, left)
and another one for negative slope (m = −0.4/ms, Fig. 4.10B, right). The white line
illustrates the initial condition for which the period of the transient cycle coincides with
the asymptotic period. For cycle-wise constant drive (Fig. 4.9B) the white line trivially
coincided with the asymptotic minimum µ∞min(ÎE) (black line), but in Fig. 4.10B the two
lines are different. They deviate because the drive changes linearly within a cycle. The
small space between the white and black lines indicates the exceptions from the above
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“rule”: if the initial mean membrane potential is close to the asymptotic reference, it
no longer predicts the sign of the deviation of the instantaneous from the asymptotic
frequency.
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Figure 4.10: Transient dynamics and IFA for piecewise linear drive.
A, Exemplary transients during rising vs. falling phase of the drive, green dot:
ÎE = IE(toff) = 5. Left: shorter period for m > 0 and µmin � µ∞min(ÎE); middle:
asymptotic period for constant drive (IE ≡ ÎE, m = 0) and µmin = µ∞min(ÎE); right:
longer period for m < 0 and µmin < µ∞min(ÎE). Dotted horizontal lines: reference drive
ÎE, threshold VT = 1, reset potential VR = 0 and the asymptotic µ∞min(ÎE). B, Dif-
ference between instantaneous and asymptotic frequency depending on ÎE and µmin.
Left: increasing drive (m = +0.4/ms); right: decreasing drive (m = −0.4/ms). Black
line: asymptotic µ∞min(ÎE). White line: initial µmin, for which f inst

net = f∞net(ÎE). Stars
mark examples shown in A for ÎE = 5. Round markers and arrows indicate trajectory
shown in C for piecewise linear drive, numbered by cycle. White space where either: no
asymptotic oscillations occur (IE < Imin

E , µmin > VT − 3
√
D), or (bottom left): no tran-

sient solution exists (Eq. (4.86)). C, IFA for piecewise linear (SPW-like) drive (green,
Eq. (4.22)). Shaded areas mark oscillation cycles. Lines: asymptotic dynamics. Mark-
ers: transient dynamics (numerical, Eqs. (4.7)). Bottom: µ(t) (grey line), µmax (cyan),
µmin (orange). Reset not shown for readability. Top: instantaneous network frequency
(markers),asymptotic network frequencies (black line). Dashed lines: arbitrary plateau
phase with IE ≡ I full

E IFA slope χIFA = −3.1 Hz/ms for 20 ms plateau.

Instead, the slope in the external drive is the determining factor: For increasing
drive (m > 0) the drive during the upstroke of the membrane potential is below the
reference ÎE, and thus the upstroke can take longer than in the constant-drive case
(IE ≡ ÎE) even if µmin is slightly above µ∞min(ÎE) (Fig. 4.10B, left, bluish color of region
between the black and white lines); in contrast, for decreasing drive (m < 0; Fig. 4.10B,
right, reddish color of region between the black and white lines), the drive during the
upstroke of the membrane potential is above the reference ÎE, and thus the upstroke
can be shorter than in the constant-drive case (IE ≡ ÎE) even if µmin is slightly below
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µ∞min(ÎE). These exceptions however occur only in a small portion of the parameter
space that is rarely visited in a given ripple event, as we will see in the following.

What can we say about the dynamics of consecutive cycles i, i + 1, . . . that occur
if the drive rises or falls continuously with slope m? At the end of each cycle the
mean membrane potential is close to the asymptotic reference µ∞min(ÎE) (see Methods,
Eq. (4.90)). Thus we observe the same hysteresis as before: if the drive increases
(m > 0, Fig. 4.10B, left), trajectories of consecutive cycles will lie in the upper right half
of the parameter space (µimin & µ∞min(Î i−1

E ) > µ∞min(Î iE)) where instantaneous frequencies
are mostly higher than their asymptotic reference (red color code). Vice versa, as the
drive decreases (m < 0, Fig. 4.10B, right), trajectories will lie in the lower left half
(µimin . µ∞min(Î i−1

E ) < µ∞min(Î iE)) where instantaneous frequencies are mostly lower than
their asymptotic reference (blue color code). Hence also a symmetric, piecewise linear
double-ramp drive (Eq. (4.22)), induces IFA (Fig. 4.10C) : During the rising phase
of the drive the instantantaneous frequencies are above the asymptotic reference, and
during the falling phase they lie below (Fig. 4.10C, top: markers vs black line). The
IFA asymmetry does not rely on asymmetry in the input. Linear regression over the
theoretically estimated instantaneous frequencies yields an IFA slope of -3.1 Hz/ms
which is very close to the spiking network simulation (Fig. 4.4B).

Interestingly, the last cycle i = 7 in Fig. 4.10C has a reference drive for which the
constant-drive theory no longer applies (Î7

E = 1.42 < 2.85 = Imin
E ), hence there is no

asymptotic reference for the network frequency (empty marker, Fig. 4.10C, top). This
means that at the end of the sharp wave the network can sustain one more ripple cycle
at a level of drive that in the beginning would be insufficient to trigger ripples (see cycle
1 in Fig. 4.10C). The transient ripple is thus not only asymmetric in its instantaneous
frequency (IFA), but also with respect to the level of drive at which it starts and ends.

The extension of the drift-based approximation for linear drive has thus established
that IFA does not depend on asymmetry in the drive, but occurs, even for a fully sym-
metric, double-ramp drive, due to a hysteresis effect in the amplitude of the oscillatory
mean membrane potential.

In a last step I will vary the slope m of the external drive and examine the ef-
fect on the transient dynamics (Fig. 4.11). I find that the hysteresis causing IFA
is speed-dependent, i.e. the transient dynamics approaches the asymptotic dynamics
and becomes symmetric if the external drive changes more slowly. This can be seen
(a) in the analytical expressions derived for the transient dynamics under linear drive
(|m| → 0 in Eqs. (4.79)–(4.87)), and (b) in a graphical illustration of the analytical
approximation (Fig. 4.11 A-C). The theory thus explains the speed-dependence of IFA
that we already observed in the spiking network simulations (Fig. 4.4D). The simu-
lated instantaneous network frequencies shown in Fig. 4.4D (grey: N = 10, 000) are
shown again in Fig. 4.11 (Aii-Cii) to enable a direct comparison between theory and
simulation. A quantitative comparison between the theory and simulations (Table 4.1,
Methods Section 4.5.5.3) shows that the IFA slopes predicted by the theory are close
to the IFA slopes observed in the spiking network. In both theory and simulation
the IFA slope decreases for a decreasing slope |m| of the external drive. The theoret-
ically predicted instantaneous network frequencies even match the simulation results
quantitatively, with an average relative error of ∼ 14%.
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Figure 4.11: IFA is speed-dependent.
Transient dynamics for SPW-like drive with slope m = ±0.4/ms (A, cf. Fig. 4.10),
m = ±0.2/ms (B), or m = ±0.1/ms (C). Top panel (i): difference between instan-
taneous and asymptotic network frequency for all possible combinations of external
reference drive ÎE and initial mean membrane potential µmin, shown separately for pos-
itive (top) and negative (bottom) slope of the drive. Numerical trajectories shown in
(ii) are overlaid. Bottom panel (ii): Example trajectories through the space shown
in (i) for SPW-like drive with slope ±m. Top: instantaneous (colored markers) vs
asymptotic (black) network frequency as predicted by the theory. Grey dots indicate
instantaneous frequencies in spiking network simulations (cf. Fig. 4.4D, N = 10, 000).
See Table 4.1 for a quantitative comparison of simulation and theory. Bottom: transient
vs asymptotic µmin (orange) and µmax (cyan). Green line shows SPW-like external drive
(Eq. (4.22)), green dots mark reference drive ÎE of each cycle. The difference between
instantaneous and asymptotic network frequencies (IFA) becomes less pronounced for
smaller slope (C vs A, see also Table 4.1).

slope of SPW-like drive [1/ms] m = ±0.4 m = ±0.2 m = ±0.1
IFA slope χIFA (Hz/ms, simulation) – 3.01 – 0.68 – 0.18
IFA slope χIFA (Hz/ms, theory) – 3.08 – 1.75 – 0.27
error ε in instantaneous frequency 14% 14% 13%

Table 4.1: IFA in theory and simulation. Quantification of the IFA slope
χIFA in the spiking network simulations and the theoretical approximations shown
in Fig. 4.11Aii-Cii for different slopes m of the external SPW-like drive. The error
ε (Eq. (4.92)) quantifies the average relative deviation of the theoretically predicted
instantaneous network frequencies (colored markers in Fig. 4.11) from the simulation
results (grey dots in Fig. 4.11).
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The speed-dependence of IFA is an important prediction of the bifurcation-based
inhibitory ripple model that can be tested in experiments: Optogenetic stimulation of
PV+ basket cells can trigger ripple oscillations (Schlingloff et al., 2014, but see Stark
et al., 2014). Increasing and decreasing the intensity of the light pulse over time could
mimick the piecewise linear, double-ramp drive studied here. The model predicts that
for shallower slopes the IFA asymmetry is reduced.

4.3.5 The role of the inhibitory reversal potential
I have shown that in the reduced bifurcation-based ripple model IFA occurs due to a
speed-dependent hysteresis effect in the mean membrane potential dynamics. A central
ingredient for this hysteresis effect is the strong increase in the oscillation amplitude
(µ∞max − µ∞min) of the mean membrane potential for increasing drive. In the reduced
model with current-based coupling, this increase in amplitude is mainly due to a strong
decay of µ∞min(IE), from close to threshold to very hyperpolarized values, for increasing
drive IE (shown here again in Fig. 4.12, left). The introduction of an inhibitory reversal
potential Ei = −75 mV limits the hyperpolarizing effect of the inhibitory feedback and
thus the range over which µmin can decay (Fig. 4.12, right). Thus, one might expect a
reduction in the hysteresis effect and hence less IFA. I want to argue here that this is
not the case, since the reversal potential also introduces a second effect: a compression
of the membrane potential density under feedback inhibition.

Fig. 4.12 shows a direct comparison between the ripple dynamics at constant drive
in the reduced model with current-based delta-pulse coupling (left), and in the same
network with conductance-based coupling and a double-exponential synaptic kernel
(right, variant of the detailed model, see Methods Section 4.5.1.4, Eqs. (4.20)). For
each level of constant drive the average oscillation cycle is extracted (Fig. 4.12A, Meth-
ods Section 4.5.1.7). The mean µ and standard deviation σ of the averaged distribution
of membrane potentials can be compared to the drift-based approximation at the be-
ginning of the cycle (t = 0, orange) and at the beginning of the population spike
(t = ton, light blue), which is approximated as the time when a significant portion of
the membrane potential distribution (mean + 3 SD, upper dashed line in Fig. 4.12A,
bottom panels) has crossed the spike threshold. Note that µ(0) corresponds to µmin in
the drift-based approximation, but µ(ton) is not equivalent to µmax, which has no coun-
terpart in the spiking network simulation. The time ton is simply the latest time point
we can use in the spiking network simulation to quantify the change of the (almost
Gaussian) membrane potential distribution during the upstroke of its mean. During
the population spike (t ≥ ton), the fire-and-reset rule destroys the unimodality of the
membrane potential distribution, and a quantification in terms of mean and standard
deviation is no longer meaningful.

In the network with current-based coupling (Fig. 4.12, left) the distance µ(ton) −
µ(0), covered by the mean membrane potential during its upstroke, increases signifi-
cantly for increasing drive. This is mainly due to a strong decrease of µ(0) = µmin for
increasing drive, over a total range of ∆µmin ≈ 60 mV. The standard deviation σ, on
the other hand, remains more or less constant and close to the asymptotic limit σV ,
both within a given cycle and across different levels of drive (Fig. 4.12B, left). The
amount of variation in σmin for different levels of drive is negligible, compared to the



4.3. Theory of ripple dynamics in the mean-field limit 57

large variation in µmin (∆σmin/∆µmin = 0.015). This justifies once again the drift-
based approximation above, that only takes into account the dynamics of the mean
membrane potential µ while keeping the standard deviation σ ≡ σV constant.
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Figure 4.12: The role of the inhibitory reversal potential.
Current-based (left) vs conductance-based coupling (right). A, Average oscillation
cycle for 3 example levels of the drive. B, Quantification of network dynamics for
a range of external drives Iext. Top: Network frequency (black) and unit firing rate
(blue). Middle: Mean membrane potential µ. Bottom: Standard deviation σ of the
membrane potential distribution. Both µ and σ are estimated once at the beginning
of the cycle (t = 0, orange) and once at the beginning of the population spike (t = ton,
blue), as shown in the examples in A. Left: Reduced model with current-based delta-
pulse coupling (Eq. (4.2)). Right: Reduced model with conductance-based coupling
and double-exponential synaptic filter (Eqs. (4.20)). Parameters as outlined in Methods
Section 4.5.1.4.

In the network with conductance-based coupling (Fig. 4.12, right) µmin still decays
monotonically with the drive, but over a much smaller range (∆µmin ≈ 8 mV), as pre-
dicted, due to the presence of an inhibitory reversal potential at EI = −75 mV. The
standard deviation σ now shows a clear trend — both within a cycle and across differ-
ent levels of drive. Within a cycle, the standard deviation increases from the beginning
of the cycle (orange) towards the beginning of the population spike (blue), due to diffu-
sion. The inhibitory feedback then compresses the distribution again (see examples in
Fig. 4.12A). The larger the external drive, the larger the amplitude of the population
spike and the resulting inhibitory feedback. Since an increase in inhibitory feedback
can no longer push the mean membrane potential beyond the inhibitory reversal poten-
tial, the distribution of membrane potentials is instead increasingly compressed: Both
σmin = σ(0) and σ(ton) decrease monotonically for increasing drive. The standard de-
viation thus exhibits a systematic change for increasing drive that is comparable in
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magnitude to the change in the mean µmin (∆σmin/∆µmin = 0.26). Capturing the dy-
namics of the conductance-based network thus requires an approximation of both the
mean µ and the standard deviation σ of the membrane potential distribution over the
course of a cycle and depending on the external drive.

This can be done in an extension of the Gaussian ansatz, which I outline in Ap-
pendix Section 4.B for a simplified network of pulse-coupled oscillators (PCO), that
accounts for the effect of an inhibitory reversal potential phenomenologically with a
linear phase response curve. The drift-based approximation for the PCO network can
capture the monotonic dependencies of both the mean and the standard deviation
of the membrane potential distribution on the external drive (Fig. 4.36). Together,
these two monotonic dependencies induce again a speed-dependent hysteresis effect
when the drive changes fast over time (Fig. 4.39). Thus, IFA also occurs in biologi-
cally more realistic networks incorporating an inhibitory reversal potential. Since the
speed-dependent hysteresis as the fundamental mechanism of IFA is unaffected by the
presence of reversal potentials, I chose to present the theory above for the simpler case
of an LIF network with current-based coupling. It allows a derivation of closed-form
expressions for the Gaussian dynamics (no self-consistent solution necessary) and does
not require the additional simplification from an LIF to a PCO neuron model (see
Appendix Section 4.B).

4.3.6 The role of the refractory period
Adding an absolute refractory period τref = 1 ms to the reduced model in its default
parametrization (Table 4.3) leads to the emergence of a period-2 oscillation in the
population rate (unless the external drive is very weak) (Fig. 4.13). This can be un-
derstood intuitively and is related to the somewhat artificial account for refractoriness
in simulations: When units that were active in a population spike are clamped to the
reset potential over a refractory period τref , there is effectively less time left for the
density of membrane potentials to diffuse back to a unimodal, gaussian shape before
the beginning of the next population spike. If the synaptic delay is short, the noise
low and/or the coupling is weak relative to a given τref , a history dependence develops
and units that were active in one population spike are less likely to spike in the next.
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Figure 4.13: Absolute refractori-
ness can induce period-2 oscilla-
tions. Population rate (top) and mem-
brane potential distribution (bottom)
of the reduced model (Table 4.3) with
an absolute refractory period of 1 ms
under constant drive Iext = 0.79 nA.

With sufficient noise and a long enough synaptic delay, diffusion can preserve the
approximate unimodality of the membrane potential distribution. In that case the
refractory period has a negligible effect on the ripple frequency (Fig. 4.14): For most
of the sparse synchrony regime the network frequency is virtually independent of the
refractory period. Without refractory period, the network reaches the point of full
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synchrony slightly earlier and is immediately desynchronized thereafter. When there is
a refractory period, full synchrony is reached slightly later and can be approximately
maintained, even for larger drives, since the refractory period counteracts an immediate
desynchronization of the network: Note how the network frequency remains close to
the mean unit firing rate even shortly after full synchrony was reached (solid black and
blue curve in Fig. 4.14).
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In conclusion, neglecting the refractory period in the approximation of the ripple
dynamics is justified. Instead of the artificial clamping of the membrane potential to the
reset, one could explore less pathological ways of accounting for absolute refractoriness
in the simulations, that would likely have a less drastic effect on the shape of the
membrane potential distribution.

4.4 Discussion
In this chapter I presented a novel approximation of the mean-field dynamics of the
bifurcation-based inhibitory ripple model in the regime of strong drive and strong cou-
pling. For constant drive, the theory (1) yields an approximation of the asymptotic
network frequencies and mean unit firing rates far beyond the Hopf bifurcation, (2)
captures the transition from sparse to full synchrony, and (3) reveals a monotonic de-
pendence of the mean membrane potential oscillation amplitude on the external drive.
For a fast changing, sharp wave-like drive I showed that a speed-dependent hysteresis
effect in the trajectory of the mean membrane potential produces an IFA-like asym-
metry of the instantaneous ripple frequency compared to the asymptotic frequencies
expected at constant drive. My derivation shows that IFA is an intrinsic feature of
the bifurcation-based inhibitory ripple model that occurs for any fast-enough, sharp
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wave-like drive, independent of other parameter choices. The speed-dependence of IFA
is a new prediction that can be tested experimentally.

Simplifying assumptions

To allow an analytical treatment of the spiking network dynamics, I made a number of
simplifying assumptions. The resulting reduced ripple model is similar to the network
studied by Brunel and Hakim (1999), except for its all-to-all connectivity, which makes
the Gaussian white noise input the only source of noise in the network. The ripple
dynamics in my reduced network model are qualitatively similar to a biologically more
realistic model (Donoso et al., 2018) that includes random sparse connectivity, cor-
relations in the background noise, synaptic filtering, refractoriness, and conductance-
based synapses. In Appendix Section 4.B I showed how the effect of conductance-based
coupling with an inhibitory reversal potential can be mimicked in a network of pulse-
coupled oscillators with linear phase response curve. IFA in the PCO network occurs
due to the same speed-dependent hysteresis uncovered in the reduced LIF network
with current-based coupling. However, both the mean and the standard deviation of
the membrane potential distribution need to be taken into account to describe the
dynamics accurately.

Phenomenological account for the reset

The reduced network model allows a drift-based approximation of the mean-field dy-
namics that can be treated analytically. I added a phenomenological account for the
reset mechanism on the population level, which improves the accuracy and range of
applicability of the drift-based approximation. I want to stress that this phenomeno-
logical reset is not necessary to capture the most important qualitative features of the
network, namely the transition from sparse to full synchrony for constant drive and
the hysteresis effect leading to IFA for time-dependent drive.

The shape of IFA

The drift-based approximation predicts that instantaneous ripple frequencies for a
changing drive are different from the asymptotic frequencies for constant drive: For a
double-ramp drive, the instantaneous ripple frequency is higher than the asymptotic
reference on the upstroke, and lower on the downstroke of the external drive. The
concrete shape of the resulting intra-ripple frequency curve over time thus depends on
the shape of the asymptotic frequency as a function of the external drive.

In the reduced model, the asymptotic frequencies decrease for increasing, constant
drive (Fig. 4.3B, in the vicinity of the Hopf bifurcation and in the limit of small synaptic
delay this decrease was already predicted by Brunel and Hakim (1999), see Methods
Section 4.5.2.5). Thus, it is possible for the instantaneous frequencies in the second
half of the ripple event (when the external drive decreases) to lie below the asymptotic
reference while actually increasing as a function of time (Fig. 4.4D).

In the detailed model, on the other hand, the asymptotic frequency is a mostly
increasing function of the external drive (Fig. 4.1B). Thus the above asymmetry of the
instantaneous frequency response w.r.t. the asymptotic reference frequencies implies
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a monotonic decrease of the instantaneous ripple frequency in response to a SPW-like
double-ramp drive. This is indeed what we observe in simulations (Fig. 4.2).

Experimental data suggest a similar variability in the shape of IFA. Some studies
reported a switch from decreasing to increasing frequency at the end of the ripple
event (Ponomarenko et al., 2004); others an almost monotonic decrease or even a small
peak in the beginning of the event (Nguyen et al., 2009; Sullivan et al., 2011; Donoso
et al., 2018). Generally, intra-ripple frequency accommodation is robust with respect
to the method used to estimate instantaneous frequencies (peak-to-peak distance vs.
wavelet spectrogram, choice of time windows and smoothing kernels), even though
there are quantitative differences in the instantaneous frequency estimates, especially
in the low power regime at the beginning and end of each event (Fig. 4.4A, discrete
vs. continuous estimate). The discrete frequency estimate was particularly useful for
the comparison between simulations and the theory, which is also based on a discrete,
cycle-wise approximation of period/frequency.

I used simple linear regression to quantify IFA, despite the fact that the instanta-
neous ripple frequency is not necessarily a linear function of time as explained above. I
want to stress that linear regression still provides an adequate measure of IFA, as long
as the underlying drive is symmetric: The drift-based approximation predicts that the
instantaneous ripple frequency in response to symmetric, SPW-like drive (Eq. (4.22))
can be decomposed into a symmetric part (the asymptotic reference frequencies ex-
pected under constant drive, or in the limit of vanishing slope), and an asymmetric
part (accounting for the speed-dependent hysteresis), which is positive as the drive
increases, and negative as it decreases (cf. Fig. 4.10B):

f inst
net (ti) ≈ f∞net(ti) + ∆fnet(ti)

The symmetric part does not influence the linear regression slope (except for small
effects of the finite, discrete sampling of the instantaneous frequencies at not fully
symmetric time points ti):

χIFA = Cov(f inst
net , t)

Var(t) = Cov(f∞net, t)
Var(t)︸ ︷︷ ︸
≈0

+Cov(∆fnet, t)
Var(t) ≈ Cov(f inst

net − f∞net, t)
Var(t)

In the particular case of symmetric drive, linear regression thus quantifies the decrease
in the difference between the instantaneous and the asymptotic ripple frequencies, from
positive to negative values. It is thus an adequate measure for the speed-dependent
hysteresis described by the theory, that works even for nonlinear instantaneous fre-
quency responses (under symmetric drive), and can be easily applied to experimental
data as well.

The shape of SPW-associated excitatory drive

I modeled the excitatory current input to CA1 during a sharp wave as a symmetric
double ramp (Eq. (4.22)) to highlight that IFA in the bifurcation-based inhibition-
first model does not depend on asymmetry in the input. My derivation emphasizes
that the only necessary requirement for the hysteresis causing IFA is an external drive
that changes sufficiently fast and first rises, then decays. Thus I predict that IFA in
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the bifurcation-based model will occur for any such external drive, even when it is
non-linear or asymmetric.

Ripples in the LFP

Finally, understanding ripple oscillations requires not only understanding their gen-
erating mechanism but also the origin of the signal that we use to detect them (see
also Section 2.5.1). The local field potential is traditionally believed to reflect synaptic
currents (Mitzdorf, 1985; Buzsáki et al., 2016), but modeling studies have suggested
that also extracellular action potentials of pyramidal cells can contribute in the range
of ripple frequencies (Schomburg et al., 2012; Ramirez-Villegas et al., 2018; Stark et al.,
2014). Here I used the population activity of interneurons as a proxy for the LFP sig-
nal. It is reasonable to assume that postsynaptic inhibitory currents would exhibit the
same frequency structure as the inhibitory population activity (Donoso et al., 2018).
Donoso et al. (2018) demonstrated in simulations that the inhibitory network can en-
train the local pyramidal cell network, such that pyramidal cell spikes would occur
phase-locked to the ripple rhythm set by the interneurons. A detailed model of the
CA1 LFP is needed to confirm whether any given generating mechanism yields a ripple
signature in the LFP that is consistent with experimental data.

In conclusion, the bifurcation-based inhibition-first ripple model can account for IFA
naturally without adding further parameter constraints. In Chapter 5 I will study the
prerequisites for IFA in the alternative, perturbation-based ripple model. Furthermore,
I will give a general overview of the key differences between the two inhibition-first
ripple models and discuss how they might be dissociated experimentally.

4.5 Methods

4.5.1 Spiking network simulations

4.5.1.1 The detailed model (Donoso et al., 2018)

Connectivity. The detailed model introduced by (Donoso et al., 2018) consists of
N = 200 CA1 PV+ basket cells. Every interneuron receives delayed inhibitory feedback
via recurrent synaptic connections within the network. I denote by ΓIi the set of
interneurons that project to interneuron i. The network is connected randomly with
probability pII = 20%, hence the inhibitory indegree is on average 〈|ΓIi |〉 = pII ·N = 40.
There are no autapses (i /∈ ΓIi ).

The interneuron population receives feedforward excitatory input from a population
of NE = 8200 CA3 pyramidal cells. The connection probability from pyramidal cells
to interneurons is pIE = 9.5% resulting in an average excitatory indegree of 〈|ΓEi |〉 =
pIE · NE ≈ 780. The neuronal dynamics of the pyramidal cells are not modeled in
detail. Instead their activity is modeled as Poisson spike trains, with the same rate λ
for all pyramidal cells. The average total excitatory drive to one interneuron is hence
given by Λ = 〈|ΓEi |〉 · λ ≈ 780 · λ.
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Model neuron. Every interneuron i is modeled as a leaky integrate-and-fire unit
(Tuckwell, 1988) with a membrane potential vi described by the following ordinary
differential equation (ODE):

v̇i(t) = 1
τm

(Eleak − vi(t)) + 1
C

(
Iext,i(t)− Iinh,i(t)

)
(4.11a)

When the membrane potential vi reaches the spike threshold Vthr, a spike is recorded
for unit i and vi is reset to Vreset where it remains clamped for an absolute refractory
period of τref . Both excitatory and inhibitory inputs are conductance-based:

Iext,i(t) = gexc,i(t)
(
EE − vi(t)

)
(4.11b)

Iinh,i(t) = −ginh,i(t)
(
EI − vi(t)

)
(4.11c)

The conductance in response to a single excitatory input spike at time t̂ is given by
a double-exponential pulse described by a rise time constant τ rE and a decay time
constant τ dE:

gpeak
E sE

exp
−t− t̂

τ dE

− exp
−t− t̂

τ rE


Θ(t− t̂)

with the normalizing factor sE chosen such that the peak conductance equals gpeak
E ,

and 0 < τ rE < τ dE.
Every interneuron receives excitatory input from a pool ΓEi of presynaptic pyramidal
cells firing Poisson spike trains at a rate λ (see Connectivity). The summed excitatory
Poisson spike train that an interneuron i receives can be denoted as

Sexc,i(t) :=
∑
j∈ΓEi

∑
k

δ(tkj − t) ,

summing over all presynaptic units j ∈ ΓEi and their spike times {tkj}k=1,2,....
The summed conductance in response to the excitatory input spike train can then be
written as a convolution

gexc,i(t) = gpeak
E

(
κ2exp ∗ Sexc,i(t)

)
(4.11d)

with the synaptic kernel

κ2exp(t) = sE

exp
[
− t

τ dE

]
− exp

[
− t

τ rE

]Θ(t) .

Likewise, the inhibitory conductance of unit i in response to recurrent spiking input

Sinh,i(t) :=
∑
j∈ΓIi

∑
k

δ(tkj − t)

from a pool of inhibitory, presynaptic units ΓIi is described by:

ginh,i(t) = gpeak
I κ2exp

∆ ∗ Sinh,i(t) (4.11e)
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with the synaptic kernel

κ2exp
∆ (t) = sI

exp
[
−t−∆

τ dI

]
− exp

[
−t−∆

τ rI

]Θ(t−∆) . (4.11f)

Note that the recurrent inhibitory input arrives with a synaptic delay ∆. All parameter
values are summarized in Table 4.2.

Population activity The spike times of a single interneuron i are denoted as {tki }k=1,2,....
The population activity is defined as the average single neuron spike train (written as
a sum over Dirac delta distributions):

AN(t) := 1
N

N∑
i=1

∑
k

δ
(
t− tki

)
(4.12)

(Gerstner et al., 2014). In simulations of the spiking network with a finite temporal
resolution (∆t = 0.01ms) the empirical population activity is estimated as

rN(t) = nspk(t, t+ ∆t)
N∆t (4.13)

where

nspk(t, t+ ∆t) =
∫ t+∆t

t

N∑
i=1

∑
k

δ
(
s− tki

)
ds (4.14)

denotes the total number of spikes that were emitted from the population in the time
interval [t, t+ ∆t]. rN has units of spikes per second and can also be interpreted as the
instantaneous firing rate of any given neuron in the homogeneous network (Gerstner
and Kistler, 2002). In the limit of an infinitely small time step one recovers:

lim
∆t→0

rN(t) = lim
∆t→0

∫ t+∆t
t

∑N
i=1

∑
k δ
(
s− tki

)
ds

N∆t = 1
N

N∑
i=1

∑
k

δ
(
t− tki

)
= AN(t) .

In all figures the empirical population activity is smoothed with a narrow Gaussian
window g of standard deviation σt = 0.3ms:

rplotN (t) = (g ∗ rN) (t) , g(t) = 1√
2πσt

exp
[
− t2

2σ2
t

]
. (4.15)

To facilitate notation I omit the superscript “plot”.

4.5.1.2 Model reduction

To allow an analytical treatment of its dynamics, the detailed version of the bifurcation-
based model is reduced. In the following I give a step-by-step overview of the simplifi-
cations I made.
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Parameter Value Definition
N 200 Number of interneurons
NE 8200 Number of pyramidal cells
pII 0.2 Connection probability between interneurons
pIE 0.095 Connection probability from pyramidals to interneurons
τm 10 ms Membrane time constant
Cm 100 pF Membrane capacitance
gL 10 nS Leak conductance
Eleak -65 mV Resting potential
Vthr -52 mV Spike threshold
Vreset - 67 mV Reset potential
EI -75 mV Reversal potential for inhibition
EE 0 mV Reversal potential for excitation
τref 1 ms Refractory period
∆ 1 ms Synaptic delay for inhibition
τ rI 0.45 ms Synaptic rise time constant for inhibition
τ dI 1.2 ms Synaptic decay time constant for inhibition
τ rE 0.5 ms Synaptic rise time constant for excitation
τ dE 2 ms Synaptic decay time constant for excitation
gpeak
I 5 nS Peak conductance for inhibition
gpeak
E 0.8 nS Peak conductance for excitation
dt 0.01 ms Simulation time step (Euler)
Ipeak
I 83 pA IPSC amplitude at Vhold = −58 mV
Ipeak
E 46 pA EPSC amplitude at Vhold = −58 mV
W IPSP 17.5 mVms IPSP magnitude (integral) at Vhold = −58 mV
WEPSP 14.6 mVms EPSP magnitude (integral) at Vhold = −58 mV

Table 4.2: Default parameters of the detailed spiking network. (Donoso et al.,
2018) The last four lines indicate the strength of inhibition and excitation at a holding
potential of Vhold = −58 mV, that were used to match the coupling strengths for
current-based coupling to the conductance-based model.

Feedforward excitation: Input correlations and noise. In the detailed model
the excitatory drive to the interneuron network is provided by a population of NE

pyramidal cells that fire Poisson spike trains, each at the same rate λ. Each interneuron
is targeted by a random subset of this population of average size 〈|ΓEi |〉 = pIE ·NE where
pIE is the (small) probability of a connection. Thus, each interneuron receives a total
drive of pIE ·NE · λ on average, refered to above as the external drive Λ (see Methods,
Section 4.5.1.1). Since all interneurons draw their inputs from the same population
of excitatory neurons, there are overlaps in the input sets of different interneurons,
which introduces correlations in the excitatory drive that the interneurons receive.
Since the feedforward connectivity is sparse, these overlaps are small (∼ pIE) and the
resulting correlations are weak. I thus hypothesize that these input correlations are
not crucial for the ripple dynamics (see Lindner et al., 2005, for a treatment of input
correlations). If I assume independent input sets, it is no longer relevant to model the
stream of excitatory input spikes arriving at one interneuron as stemming from several
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distinct pyramidal cells. Instead I can model the input to one interneuron i as a single,
independent Poisson process with rate Λ = pIENEλ:

Sexc,i(t) =
∑
j∈ΓEi

Sλj (t) =
∑
j∈ΓEi

∑
k

δ(tkj − t) 7−→ SΛ
i (t)

Note that this simplification also removes heterogeneity in the average excitatory input
across different interneurons.

Since the coupling in the detailed model is conductance-based, the amplitude of
excitatory postsynaptic potentials (EPSPs) caused by the incoming Poisson spikes
depends on the momentary membrane potential of the interneuron (Methods Sec-
tion 4.5.1.1, Eq. (4.11b)). I will omit this complexity and use current-based coupling
instead. I will also omit the double-exponential shape of the postsynaptic pulse and use
a simple delta-pulse coupling without synaptic filtering. Every excitatory input spike
thus causes an immediate upwards jump of the interneuron’s membrane potential of
amplitude JE = 1.46 mV:

v̇i(t) = 1
τm

(Eleak − vi(t)) + JES
Λ
i (t)− 1

C
Iinh,i(t)

The amplitude was fitted such that the magnitude of a single EPSP (integral over the
pulse in the postsynaptic membrane potential) is the same as in the conductance-based
setting at a holding potential close to threshold (Vhold = −58 mV, see Table 4.2).

I have now derived a setup where each interneuron receives many (τmΛ) Poisson
input spikes per membrane time constant, each causing a jump JE in the membrane
potential which is small compared to the distance from resting potential to spike thresh-
old that has to be bridged in order to elicit a spike. These conditions justify a diffusion
approximation (Tuckwell, 1988). I thus replace the Poisson spiking input by a Gaus-
sian white noise of matching mean and variance. The first two moments of the Poisson
process SΛ

i (t) of intensity Λ are:

〈SΛ
i (t)〉 = Λ , 〈SΛ

i (t)Sexc,i(t′)〉 = Λ δ(t− t′)

The Poisson spike train is thus approximated as

SΛ
i (t) ≈ Λ +

√
Λ ξi(t)

where ξi is Gaussian white noise with zero mean and unit variance: 〈ξi(t)〉 = 0, and
〈ξi(t)ξj(t′)〉 = δijδ(t − t′). The response of the neuron to the many excitatory input
spikes is thus modeled as a diffusion process:

v̇i(t) = 1
τm

(Eleak − vi(t)) + 1
C

(
Iext − Iinh(t)

)
+
√

2
τm
σV ξi(t) (4.16a)

with mean excitatory drive

Iext = JEΛC (nA) or µ = JEΛτm (mV) (4.16b)

and standard deviation of the noise

σV = JE

√
τmΛ

2 (mV) . (4.16c)
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Written in this form, the parameter σV expresses the expected spread of the membrane
potentials (standard deviation), if the spike threshold was moved to infinity. Note
that this simplification still implies that the noise (σV ) increases with the mean drive
(Fig. 4.15).

100

200

 [m
V]
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Figure 4.15: Approximating Poisson input
spikes by Gaussian white noise. Mean µ
and standard deviation σ of the Gaussian white
noise process for different levels of Poisson spik-
ing input Λ and fixed coupling strength JE =
1.46 mV. Dashed line marks constant noise level
σV = 5JE = 7.3 mV used in Fig. 4.16 (right),
corresponding to Poisson rate Λ = 5 kHz and
τm = 10 ms.
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Figure 4.16: Ripple dynamics after diffusion approximation in feedforward
input. Same outline as in Fig. 4.1 but correlated Poisson spiking input was replaced
by independent Gaussian white noise inputs (Eqs. (4.16)). A, Noise increases with the
mean as for Poisson spikes (see Fig. 4.15). B, Constant noise level corresponding to
Poisson rate Λ = 5 kHz (σV ≡ 7.3 mV).

The dynamics of the ripple network with this simplified account of the feedforward
excitatory drive as independent Gaussian white noise input (Eqs. (4.16)) is shown in
Fig. 4.16A There is no qualitative change of the dynamics compared to the original
detailed model (Fig. 4.1). The dynamics of population rate and membrane potential
distribution are more homogeneous across cycles (Fig. 4.16Ai) due to the removal of
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heterogeneity in the feedforward drive (all units receive the same average drive, there
are no input correlations).

The increase in noise strength with the mean drive is not a necessary requirement
for the generation of ripple oscillations. In a last simplification step I thus fix the
noise level to a constant value. The exact noise level is irrelevant, as long as it is
large enough to introduce some stochasticity in the network (in the limit σV → 0
the network behaves like a single unit or produces a pathological cluster state). An
example is shown in Fig. 4.16B for noise intensity σV ≡ 7.3 mV, corresponding to
a Poisson drive of Λ = 5 kHz. Naturally the distribution of membrane potentials
becomes relatively broader at drive levels < 5 kHz, and relatively narrower at drive
levels > 5 kHz (Fig. 4.16Ai vs Bi). The reduction of noise at high drive allows the
network to reach the state of full synchrony slightly earlier, with even more regular
unit spiking (Fig. 4.16Bii). Other than that I find no significant change of the ripple
dynamics (Fig. 4.16Bi vs Bii). I hence continue using a Gaussian white noise drive
of constant variance and vary only the mean. This last simplification step is however
not strictly necessary for the theory developed in Section 4.3.2, which could easily
incorporate a noise intensity that depends on the mean drive.

In the next section I describe simplifications regarding the inhibitory synaptic con-
nections. All changes are incremental, i.e. all subsequent simulations include the
simplification of the feedforward drive as independent Gaussian white noise processes
with fixed intensity, as it was described here.

Recurrent inhibition: Connectivity and synaptic filtering. CA1 PV+ BCs
are known to be connected sparsely (see Introduction), hence the recurrent connection
probability was assumed as pII = 0.2 in the detailed model (Donoso et al., 2018).
Computationally speaking, sparse connectivity, with a small indegree K such that
limN→∞K/N = 0 where N is the number of interneurons, ensures that correlations
in the feedforward input do not influence the network dynamics in the mean field
(Brunel and Hakim, 1999). Given that I have already assumed independent inputs
in the previous section, it should be possible to connect the network fully without
fundamentally changing the dynamics — as long as the synaptic connection strength
is scaled down accordingly. In a network with conductance-based synapses, however,
it is not obvious how to scale the coupling strength depending on the indegree in order
to keep the mean input constant. I thus replaced the conductance-based synapses by
current-based synapses such that the amplitude of IPSPs is independent of a unit’s
membrane potential:

v̇i(t) = 1
τm

(Eleak − vi(t)) + 1
C

(
Iext − Iinh,i(t)

)
+
√

2
τm
σV ξi(t) (4.17a)

Iinh,i(t) = Ipeak
I

(
κ2exp

∆ ∗ Sinh,i(t)
)

(4.17b)

(double-exponential synaptic kernel κ2exp
∆ with delay as before (Eq. (4.11f)). The peak

of the inhibitory postsynaptic current pulse (IPSC) Ipeak
I = 83 pA is chosen to match

the IPSC amplitude of the conductance-based synapse at a holding potential of Vhold =
−58 mV (Table 4.2).
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The ripple dynamics for current-based inhibitory synapses is shown in Fig. 4.17A.
When switching from conductance- to current-based synapses in a small, sparsely con-
nected network, the network frequencies remain similar but the underlying unit firing
rates become much more variable (Fig. 4.16Bii vs Fig. 4.17Aii, Aiii). In the absence of
an inhibitory reversal potential (Fig. 4.17A) the variability introduced by the random
sparse connectivity becomes visible in the increased variability of membrane potentials
(now even below the inhibitory reversal potential), which results in a spread of unit fir-
ing rates: units with an above-average inhibitory indegree get strongly hyperpolarized
and reach the spike threshold only rarely (see outlier voltage traces in Fig. 4.17Ai).
Similarly units receiving less inhibitory inputs remain closer to threshold and fire at
higher rates. This variability is quenched in the conductance-based model with an
inhibitory reversal potential.
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Figure 4.17: Ripple dynamics with current-based inhibitory coupling:
sparse vs. full connectivity. Same outline as in Fig. 4.1 (i-ii). Conductance-
based synapses are replaced by current-based coupling, still with a double-exponential
synaptic filter. A, The network is sparsely connected (pII = 0.2, Eqs. (4.17)). B, The
network is fully connected (pII = 1, Eqs. (4.17), (4.18)). Panel iii: Unit firing rates.

The network can be made homogeneous by connecting the interneurons all-to-
all: Every interneuron receives inhibitory feedback from the entire network (ΓIi =
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{1, . . . , N}), instead of just sampling a random subset of average size 〈|ΓIi |〉 = pIIN :

Sinh,i(t) 7−→ Sinh(t) =
N∑
j=1

∑
k

δ(tkj − t) . (4.18a)

To keep the mean inhibitory input constant, the synaptic coupling strength is scaled
down accordingly:

Ipeak 7−→ porig
II · I

peak
I = 0.2 · Ipeak

I . (4.18b)

In the fully connected, homogeneous network (Fig. 4.17B) the variability of mem-
brane potentials is strongly reduced (Fig. 4.17Bi vs Ai), and the individual units fire at
very similar rates (Fig. 4.17Biii). The core difference that remains, due to the switch
from conductance-based (Fig. 4.16) to current-based coupling, is that the oscillation
amplitude of the membrane potential distribution varies more strongly with the drive
(Fig. 4.17Bi). Without an inhibitory reversal potential the hyperpolarization of mem-
brane potentials in response to increasing inhibitory feedback is unbounded. This will
be discussed in more detail in Section 4.3.5.

It is known that synaptic filtering modulates the network frequency (Brunel and
Wang, 2003), but that a synaptic delay alone is sufficient to generate fast network os-
cillations (Brunel and Hakim, 1999). I thus replaced the double-exponential synaptic
filter by a simple delayed delta-pulse of amplitude JI = 1.75 mV, preserving the mag-
nitude of the IPSP of the conductance-based synapse at Vhold = −58 mV (Table 4.2).
For a fully-connected network of arbitrary size N the membrane potential of a single
unit is then described by:

v̇i(t) = 1
τm

(Eleak − vi(t)) + 1
C
Iext −

J

N

(
κδ∆ ∗ Sinh(t)

)
+
√

2
τm
σV ξi(t) (4.19a)

with inhibitory synaptic kernel

κδ∆(t) = δ(t−∆) . (4.19b)

Note that κδ∆ ∗ Sinh(t) is simply Sinh(t − ∆). When the network size is varied, the
synaptic strength is scaled by the new indegree to keep the mean feedback constant:
A new parameter for inhibitory coupling strength J is introduced with

J

Norig = porig
II JI ⇒ J = 200 · 0.2 · JI = 82.37 mV (4.19c)

In the fully connected network of original size Norig = 200 a single inhibitory input spike
thus causes a downward jump of the postsynaptic membrane potential of amplitude
J/Norig = 0.41 mV. If the network size is increased to N = 1000, the pulse amplitude
decreases to J/N = 0.082 mV.

For such “1/N”-scaling the fluctuations in the recurrent feedback decay as 1/
√
N

for increasing network size and vanish in the mean-field limit. This can be seen in a
diffusion approximation of the recurrent inputs: If the spike trains of all interneurons
are approximated as independent Poisson processes Sr(t)j (t) with the same rate r(t),
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their sum is again a Poisson process of rate Nr(t) that can be approximated as a
Gaussian white noise with mean and variance Nr(t):

Sinh(t) ≈
N∑
j=1

S
r(t)
j (t) = SNr(t)(t) ≈ Nr(t) +

√
Nr(t)ξ(t)

(〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′)). The inhibitory feedback is then given by:

J

N

(
κδ∆ ∗ Sinh(t)

)
≈ Jr(t−∆) +

J
√
r(t−∆)
√
N︸ ︷︷ ︸

−→0 as N→∞

ξ(t) .

A “1/
√
N”-scaling of the synaptic strength would keep the fluctuations constant but

lead to an effective increase in coupling strength for larger networks. Since the coupling
strength is one of the parameters that can influence the network oscillation frequency, I
chose the 1/N -scaling for constant mean in order to maintain the same ripple dynamics
independent of network size (see Fig. 4.3B). Fig. 4.18 shows the network dynamics for
delta pulse-coupling in a network of the default size N = 200. The removal of the
double-exponential synaptic filter
leads to a slight increase of the net-
work frequency around oscillation
onset and the point of full synchrony
is reached slightly earlier (Fig. 4.18ii
vs Fig. 4.17Bii). Qualitatively there
is no significant change of the ripple
dynamics.

Figure 4.18: Ripple dynamics
in fully connected network with
delta-pulse coupling. Same outline
as in Fig. 4.1. The interneurons are
coupled all-to-all via simple delayed
pulses (Eqs. (4.19)). The synaptic de-
lay was increased to ∆ = 1.8ms to
compensate for the absence of addi-
tional filter time constants and to keep
the network frequencies in ripple range.
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4.5.1.3 The reduced model

Taken together, all the above simplifications (Section 4.5.1.2) result in the reduced
model described by Eqs. (4.19) (cf. Eq. (4.2) in the Results). The parameters that will
be used as the default setting for the reduced model throughout the chapter are sum-
marized in Table 4.3. For the sake of simplicity I adjusted a few parameters compared
to the detailed model and its simplifications introduced above (marked with asterisks
in Table 4.3): Vreset is changed by 2 mV such that it is equal to the resting potential
(VR = 0). The coupling strength is slightly decreased such that its dimensionless value
is an integer (J = 65 mV ⇒ K = 5). The synaptic delay was chosen as 1.2 ms. Since
simulations of the reduced model will be compared with analytical results from a mean-
field ansatz, I increased the default network size to N = 10, 000. I found no significant
changes of the simulated network dynamics when increasing the network size further.
The absolute refractory period is neglected in the reduced model. I comment on the
role of the refractory period and its negligible effect on the oscillation dynamics in
Section 4.3.6.

The only meaningful adjustment is a reduction in noise strength (σV = 2.62 mV),
which will prove beneficial for the mean-driven theory that I will develop in the follow-
ing. All parameters will be explored systematically and their role will be discussed in
more detail in Appendix Section 4.A.

Parameter Value Definition
N 10,000 Number of interneurons∗
τm 10 ms Membrane time constant
Cm 100 pF Membrane capacitance
Eleak -65mV Resting potential
Vthr -52 mV Spike threshold
Vreset - 65 mV Reset potential∗
J 65 mV Inhibitory coupling strength∗
∆ 1.2 ms Synaptic delay∗
τref 0 ms No refractory period
σV 2.62 mV Standard deviation of Gaussian white noise input∗
VT 1 Spike threshold, dimensionless
VR 0 Reset potential, dimensionless
K 5 Inhibitory coupling strength, dimensionless
D 0.04 Variance of Gaussian white noise input, dimensionless

Table 4.3: Default parameters of the reduced spiking network.
Parameter values that deviate from the default values of the detailed model (Table 4.2)
or the model reduction described in Section 4.5.1.2 are marked with an asterisk. The
lower section indicates the main parameter values converted to dimensionless voltage.
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4.5.1.4 Hybrid model (current- vs conductance-based)

For a comparison of current- and conductance-based coupling a introduce two hybrid
models, derived from either the reduced or the detailed version of the bifurcation-based
ripple model. For the current-based network (Fig. 4.12, left) I use the reduced model
(Eq. (4.2)) with a few parameter adjustments to match it to the conductance-based
model as detailed in Table 4.4.

For the conductance-based network (Fig. 4.12, right) I use the detailed model after
the diffusion approximation in the feedforward input (see Eqs. (4.16)):

v̇i(t) = 1
τm

(Eleak − vi(t)) + 1
C

(
Iext − II(t)

)
+
√

2
τm
σV ξi(t) (4.20a)

Iext = CJEΛ (nA) (4.20b)
Iinh,i(t) = −ginh,i(t)

(
EI − vi(t)

)
(4.20c)

ginh,i(t) = gpeak
I κ2exp

∆ ∗ Sinh(t) (4.20d)

To match the reduced model setup the network is increased in size (N = 1000) and
connected all-to-all. The peak conductance is decreased accordingly by the factor
0.2/1000 (see Table 4.4). To get comparable network frequencies with the double
exponential filter the synaptic delay is decreased to ∆ = 0.5ms. There is no refractory
period and the reset potential is set to Eleak as in the reduced model.

Parameter Value Definition
N 1,000 Number of interneurons
pII 1 Connection probability
τm 10 ms Membrane time constant
Cm 100 pF Membrane capacitance
Eleak -65mV Resting potential
Vthr -52 mV Spike threshold
Vreset - 65 mV Reset potential (reduced model)
J 82.37 mV Coupling strength (κδ∆, detailed model)
gpeak
I 0.2 nS Coupling strength (κ2exp

∆ , detailed model rescaled)
∆ 1.2 / 0.5 ms Synaptic delay (current-based / conductance-based)
τref 0 ms No refractory period (reduced model)
σV 3.9 mV SD of Gaussian white noise (hybrid)
K 6.34 Coupling strength, dimensionless (detailed model)
D 0.09 Var. of Gaussian white noise, dimensionless (hybrid)

Table 4.4: Default parameters of the hybrid spiking networks.
Parameter values are taken either from the detailed model (Table 4.2) or from the
reduced model (Table 4.3) as indicated in the parameter description. Only the noise
strength was set at an intermediate level, close to the default of the detailed model
but small enough that the drift-based approximation would apply well to the hybrid
networks.
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4.5.1.5 Numerical implementation

Spiking network simulations were done using the Brian2 simulator (Goodman and
Brette, 2009). For large parameter explorations I used the Python toolkit pypet for
data storage and parallelization of simulations (Meyer and Obermayer, 2016).

To evaluate the oscillation dynamics for constant drive, the network activity is
numerically integrated over 5.05 s (time step ∆t = 0.01 ms). The initial 50 ms are
excluded from analysis, to make sure that initial transients do not influence my estimate
of the asymptotic network dynamics. The remaining 5 s are sufficient for a basic
spectral analysis.

For time-dependent drive, I first simulate the network for 200 ms with a constant
baseline drive, followed by the time-dependent stimulus. The drive that the interneuron
network receives via the Schaffer Collaterals during a sharp wave (“SPW-like drive”)
is modeled as a piecewise linear double-ramp of slope ±m with a plateau phase of
arbitrary length inbetween (here 20 ms). In the detailed model (Eqs. (4.11)) the SPW-
like drive is delivered via Poisson spikes of intensity

Λ(t) =



Λcrit/2, 0 ≤ t ≤ t1 = 200ms
Λcrit/2 +m(t− t1), t1 < t ≤ t2 = t1 + Λfull−Λcrit/2

m

Λfull, t2 < t ≤ t3 = t2 + 20ms
Λfull −m(t− t3), t3 < t ≤ t4 = t3 + Λfull−Λcrit/2

m

(4.21)

In the reduced model (Eq. (4.2)) the SPW-like drive is delivered as a time-dependent
current

Iext(t) =



Icrit
ext /2, 0 ≤ t ≤ t1 = 200ms
Icrit

ext /2 +m(t− t1), t1 < t ≤ t2 = t1 + Ifull
ext−Icrit

ext /2
m

I full
ext , t2 < t ≤ t3 = t2 + 20ms
I full

ext −m(t− t3), t3 < t ≤ t4 = t3 + Ifull
ext−Icrit

ext /2
m

(4.22)

During the baseline period the network receives a drive Λcrit/2 or Icrit
E /2, that is half

of the critical drive required for the bifurcation towards oscillations in the mean-field,
as estimated by linear stability analysis (see Methods Section 4.5.2.4). During the
plateau phase the drive is at the approximate point of full synchrony Λfull or I full

ext
of the respective spiking network, which is determined by a range of constant-drive
simulations beforehand.

4.5.1.6 Frequency analysis

The network frequency at constant drive is defined as the location of the dominant
peak in the power spectral density of the population activity rN(t). The saturation s
(average fraction of neurons firing in one cycle of the population rhythm) is computed
by dividing the mean unit firing rate by the network frequency. The point of full
synchrony in the spiking network is estimated by interpolating the simulated saturation
curve and estimating the level of drive for which it becomes 1.
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To define the instantaneous network frequency in response to time-dependent drive,
I use both a continuous and a discrete estimate. The continuous estimate is derived
from the wavelet spectrogram (windowed Fourier transform) of the population activity,
which indicates instantaneous power in the frequency band from 0 to 350Hz over
time; the instantaneous frequency at each point in time is defined as the frequency
above 70 Hz, that has maximal power. The lower limit is introduced to exclude the
low-frequency contribution due to the sharp wave. The instantaneous frequency is
considered significant, whenever it is strictly higher than 70Hz and the corresponding
instantaneous power exceeds a certain power threshold. The power threshold is chosen
as the average instantaneous power at 0Hz plus 4 standard deviations, computed over
the initial 200 ms baseline time window.

A straightforward discrete estimate of the instantaneous frequency is given by the
inverse of the peak-to-peak distances in the (smoothed) population activity rN . The
estimate is restricted to peaks that are more than 4 standard deviations above the
average population activity during baseline stimulation. I mostly rely on the discrete
estimate of instantaneous frequency since its parameter-dependencies (minimal height
of oscillation peaks) are more transparent than the ones of the continuous estimate
(size of time window for windowed Fourier transform, power threshold). Furthermore
it is better suited for comparison with the theory developed in Section 4.5.4, which
also describes instantaneous frequency as a discrete measure per cycle (see Eq. (4.87)).

To quantify the network’s instantaneous frequency response to a SPW-like drive
(Eq. (4.22)), I perform 50 independent simulations of the network model with the same
drive but different noise realizations. Linear regression over all discrete instantaneous
frequency estimates (ti, f inst

net,i) yields the average change of the instantaneous frequency
over time:

f inst
net (t) ≈ χIFA · t+ const. , χIFA = Cov(f inst

net , t)
Var(t) (4.23)

Covariance and variance are computed over discrete oscillation cycles i, pooled together
from all 50 simulations. A negative slope χIFA < 0 indicates IFA.

4.5.1.7 Extracting the average oscillation cycle

For constant drive, the dynamics of the spiking network can be averaged over many
cycles to obtain a good estimate of the average oscillation cycle. I split the spiking
network simulation into individual cycles based on the Hilbert transform of the mean
membrane potential. I take a sufficient number of equally spaced samples from each
cycle (here 21) and average them across cycles to derive the average trajectory of the
population rate and the membrane potential histogram over the course of a ripple cycle.
For each of the 21 sample times one can calculate the average membrane potential,
which will be used for comparison with the theory.
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Figure 4.19: Extracting the average oscillation cycle from the spiking net-
work simulation. A, Dynamics of the spiking network for constant drive. Top to
bottom: population rate rN , distribution of membrane potentials, standard deviation
of membrane potential distribution. The dashed line indicates the asymptotic standard
deviation σV = 2.62 mV expected in the absence of the absorbing boundary condition
at the spike threshold. Colored dots mark the 21 equally spaced samples taken from
each cycle. B, Distribution of membrane potentials shown for 21 sample times over
the course of a ripple cycle, averaged over many cycles (as indicated in A). Black lines
show the best gaussian fit of the membrane potential distribution (mean squared error
indicated in top right). C, The average ripple cycle in terms of population rate, and
membrane potential distribution.
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4.5.2 Mean-field dynamics for constant drive
4.5.2.1 Dimensionless equations

To facilitate notation in the theoretical part of this chapter, all voltages are shifted
and rescaled, such that the spiking threshold becomes VT = 1 and the resting potential
is EL = 0. This corresponds to measuring voltage in units of the distance from the
resting potential to the spike threshold. The single unit SDE then reads

τmV̇i = −Vi + I(t) +
√

2Dτm ξi(t) (4.24)
I(t) = IE(t)− II(t) (4.25)

where now

Vi = vi − Eleak

Vthr − Eleak

IE(t) = τm
C(Vthr − Eleak)Iext(t)

II(t) = Kτm
1
N

N∑
i=1

nj∑
k=1

δ(t−∆− tkj )

K = J

Vthr − Eleak√
D = σV

Vthr − Eleak

VR = Vreset − Eleak

Vthr − Eleak

(4.26)

are all dimensionless quantities.

4.5.2.2 Fokker-Planck equation for a network of LIF neurons under Gaus-
sian white noise

In the mean-field limit of an infinitely large interneuron population (N → ∞) the
evolution of the membrane potential density p(V, t) is desribed by the following Fokker-
Planck equation (FPE) (see e.g. Abbott and van Vreeswijk, 1993; Brunel and Hakim,
1999):

∂tp(V, t) = −∂V
(

1
τm

(
I(t)− V

)
p(V, t)

)
+ D

τm
∂2
V p(V, t) (4.27a)

I(t) = IE(t)− II(t) = IE(t)−Kτmr(t−∆) . (4.27b)

The FPE can also be written as a continuity equation

∂tp(V, t) = −∂V J(V, t) (4.27c)

with a probability current

J(V, t) = 1
τm

(
I(t)− V

)
p(V, t)− D

τm
∂V p(V, t) (4.27d)

Since units are instantaneously reset as soon as they reach the spiking threshold, the
FPE has an absorbing boundary condition at threshold:

p(VT , t) = 0 . (4.27e)
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The population rate r is given by the probability current through the threshold:

r(t) = J(VT , t)
(4.27e)= −D

τm
∂V p(V, t)|VT . (4.27f)

The fire-and-reset mechanism introduces a derivative discontinuity at the reset poten-
tial VR: [

∂V p(V, t)
]
VR

:= lim
ε→0

(
∂V p(VR + ε, t)− ∂V p(VR − ε, t)

)
= −τm

D
r(t) . (4.27g)

(Abbott and van Vreeswijk, 1993; Brunel, 2000; Lindner and Schimansky-Geier, 2001;
Brunel et al., 2003). Because a probability density like p(V, t) obeys the normalization
condition, we have∫ VT

−∞
p(V, t) dV = 1 ∀ t. (4.27h)

Finally, a solution of the FPE must decay to zero fast enough in the limit of V → −∞

lim
V→−∞

p(V, t) = lim
V→−∞

V p(V, t) = 0 (4.27i)

(Brunel and Hakim, 1999), see also Appendix Section 4.D.1, Eq. (4.111).

4.5.2.3 Stationary solution

In the stationary state the population rate is constant:

r(t) ≡ r0 (4.28)

and thus so is the total input current:

I(t) (4.27b)= IE −Kτmr(t)
(4.28)
≡ IE −Kτmr0 =: I0 . (4.29)

For constant input I(t) ≡ I0 the stationary solution p0(V ) of the FPE (Eq. (4.27a)) is
given by

p0(V ) = τmr0

D
e−

(V−I0)2

2D

∫ VT

V
e

(s−I0)2

2D Θ(s− VR) ds (4.30)

with population rate

r0(I0) =
√πτm ∫ I0−VR√

2D

I0−VT√
2D

ex2 erfc(x) dx
−1

(4.31)

(Brunel and Hakim, 1999), see Appendix Section 4.D.1.2 for the detailed derivation.
Note that in this recurrently coupled network the total input I0 depends on the

population rate r0 (Eq. (4.29)). The population rate r0 and total input I0 must thus
be determined self-consistently, solving Eqs. (4.31) and (4.29):
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Eq. (4.31) corresponds to the single-unit f-I curve (Holden, 1976) and describes the
rate as a monotonically increasing function1 of the current I0. On the other hand,
Eq. (4.29) can be rewritten as

r0(I0) (4.29)= IE − I0

Kτm
(K > 0) . (4.32)

Since the coupling is inhibitory, there is a negative correlation between rate and total
input current: The larger the rate, the larger the inhibitory feedback and thus the
smaller the total current I0. Hence there is a unique solution for I0 and r0 that satisfy
both Eq. (4.31) and Eq. (4.32) (intersection marked in Fig. 4.20). Note that for exci-
tatory coupling a stationary solution may not always exist (Abbott and van Vreeswijk,
1993).

The stationary solution of the FPE for the reduced inhibitory ripple network is
shown in Fig. 4.5.
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Figure 4.20: Self-consistent
solution for the population
rate r0 and the total drive I0
in steady-state. Graphical solu-
tion (red dot) of Eqs. (4.31) (solid
line) and (4.32) (dashed line) in the
reduced model (parameters see Ta-
ble 4.3, IE = 0.1 nA). See Fig. 4.5
for a complete illustration fo the
stationary solution of the FPE and
a comparison with spiking network
simulations.

4.5.2.4 Linear stability analysis

The stationary solution computed above loses stability if either (i) the external drive
increases, (ii) the synaptic coupling strength increases, or (iii) the noise intensity de-
creases (Brunel and Hakim, 1999). In the context of SPW-Rs, and hence throughout
this thesis, it is assumed that the external drive acts as the bifurcation parameter, while
noise and coupling strength remain fixed. If the external drive, as the bifurcation pa-
rameter, exceeds a critical value Icrit

E , an oscillatory solution of the FPE emerges with a
T -periodic density p(V, t) = p(V, t+ T ) and a periodic population rate r(t) = r(t+ T ).
In simulations of a finite spiking network this manifests itself as coherent stochastic

1One can easily see that:

d
dI0

r0(I0) (4.31)= −

√πτm

∫ I0−VR√
2D

I0−VT√
2D

ex2
erfc(x) dx

−2

·
√
πτm√
2D

[
ex2

erfc(x)
](I0−VR)/

√
2D

(I0−VT )/
√

2D
> 0

since VT > VR and ex2 erfc(x) ≥ 0, d/dx(ex2 erfc(x)) ≤ 0 ∀x ∈ R.
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oscillations in the population activity rN(t). The autocorrelation of these oscillations
in the finite network is dampened due to phase diffusion (Brunel and Hakim, 1999) 2.

In the mean-field limit, the bifurcation point Icrit
E and the frequency ω of the emerg-

ing oscillation can be approximated self-consistently based on the linear response of
a single unit to weakly oscillatory input. I will first summarize the procedure for a
general network of integrate-and-fire-type neurons, fully coupled with synaptic weight
J and filter κ. In the end I show the specific result for the reduced bifurcation-based
inhibitory ripple model (Eqs. (4.24)) and comment on how different model parameters
affect the linear stability of the network.

At first order, the oscillatory modulation of the population rate can be approxi-
mated as a weak sinusoidal perturbation r1 around its stationary value r0:

r(t) = r0 + εr1(t) = r0 + ε eiωt+λt , (ε > 0 small) . (4.33)

For λ < 0 the oscillation is damped and the rate returns to its stationary value. For
λ > 0 the oscillation amplitude increases over time. Hence the bifurcation corresponds
to λ = 0.
In a recurrently coupled network such a perturbation of the (output) rate translates
into a perturbation of the input current:

I(t) = IE + Jr0︸ ︷︷ ︸
=I0

+ε J
(
κ ∗ r1

)
(t)︸ ︷︷ ︸

=I1(t)

(4.34)

To keep the derivation general, no assumptions are made yet about the synaptic filter
κ, and synaptic weight J . Inhibitory coupling corresponds to J < 0 (see below).
The linear response of a single neuron to the weakly modulated drive I(t) is given by
convolution with a linear response function G:

r(t) = r0 + ε
∫ ∞

0
G(s, IE)I1(t− s) ds (4.35)

I emphasize here the dependence of G on the external drive IE, since its critical value is
one of the unknowns that we want to determine. In the recurrent network this output
rate r(t) must match the initially assumed oscillatory rate (Eq. (4.33)) in phase and
amplitude. Together, Eqs. (4.33) – (4.35) yield a self-consistent equation for the first
order rate modulation r1:

r1(t) =
∫ ∞

0
G(s, IE)I1(t− s) ds (4.34)= J

∫ ∞
0

G(s, IE)(κ ∗ r1)(t− s) ds

In the bifurcation (λ = 0 ⇒ r1(t) = eiωt, Eq. (4.33)) this self-consistent condition is
equivalent to

eiωt = J
∫ ∞

0
G(s, IE)(κ ∗ eiω(t−s)) ds

⇔ 1 = J
∫ ∞
−∞

G(s, IE)
∫ ∞
−∞

κ(x) e−iω(s+x) dx ds .

2Hence, throughout this thesis, when I talk about oscillations in the population rate, I refer to
the rate rN (t), averaged over a small time step, for a given noise realization (Eq. (4.13)), but not to
an average over many noise realizations. Due to the phase diffusion mentioned above, averaging over
many noise realizations would always yield a rate that is constant over time.
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Since G is a causal filter (G(s) = 0 ∀ s < 0), the lower integration boundary can be
extended to −∞. Now substitute s := y − x:

⇔ 1 = J
∫ ∞
−∞

∫ ∞
−∞

κ(x)G(y − x, IE) dx︸ ︷︷ ︸
=(κ∗G)(y)

e−iωy dy

Note that the outer integral is a Fourier transformation. According to the convolution
theorem the Fourier transform of a convolution can be written as a product:

⇔ 1 = JG̃(ω, IE)κ̃(ω)

G̃ and κ̃ indicate the (complex) Fourier transforms of the linear response function
(susceptibility) and of the synaptic kernel respectively. The complex equation can be
reformulated in terms of an amplitude- and phase-condition, i.e. a set of two equations
determining the two unknowns Icrit

E and ω:

⇔

1 = |J ||G̃(ω, IE)||κ̃(ω)| , amplitude condition
0 = arg(J) + arg(G̃(ω, IE)) + arg

(
κ̃(ω)

)
mod 2π , phase condition

(4.36)

Let’s return to the concrete case of the reduced bifurcation-based inhibitory ripple
model (Eqs. (4.24)): The coupling is inhibitory (J = −Kτm) with a synaptic filter
κδ∆(t) = δ(t − ∆) that has Fourier transform κ̃δ∆(ω) = e−iω∆. For an LIF unit un-
der Gaussian white noise the susceptibility G̃ can be computed analytically (Lindner
and Schimansky-Geier, 2001; Brunel et al., 2001, see Eq. (4.145) and Appendix Sec-
tion 4.D.3 for full derivation). The amplitude- and phase-condition can thus be solved
numerically to find the critical drive Icrit

E at which the stationary state loses stability,
and the frequency ω of the emerging oscillation (Fig. 4.21). The network frequency
and mean unit firing rate in the point of bifurcation are then given by f crit

net = ω/2π
and f crit

unit = r0(Icrit
E ) (Eq. (4.31)). These analytical approximations match the results of

a spiking network simulation very well (see red markers in Fig. 4.3B).
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Note: The self-consistent phase condition can be understood intuitively: in the
recurrent network the population rate is both input and output signal. The population
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rate goes through a synaptic filter introducing a phase lag arg
(
κ̃(ω)

)
, is then sign-

flipped due to the inhibitory nature of the synapses (phase lag arg(J) = π) and then
fed back into the same units which will respond with a neuronal phase lag arg(G̃(ω)).
To close the cycle, the phase lags must thus add up to zero (modulo 2π). This was
illustrated nicely in (Geisler et al., 2005) (see Fig. 4.22A).

Though conceptually equivalent, the ansatz described here (Brunel and Hansel,
2006; Lindner and Schimansky-Geier, 2001) is formally different from the linear stabil-
ity analysis as it is presented in (Brunel and Hakim, 1999). I comment on the differences
in Appendix Section 4.D.4 and confirm in a direct calculation that, in the context of
the fully connected network of the reduced ripple model (Eqs. (4.24)), the results of
both approaches are indeed mathematically equivalent (Eq. (4.36) shown here and Eq.
(A.29) in (Brunel and Hakim, 1999)).

The amplitude and phase condition Eq. (4.36) clearly shows that the linear response
properties of a single unit determine the linear stability of the network. In the following
I briefly review how the noise, synaptic filtering or the choice of neuron model can affect
the linear response of a single unit and thus the network dynamics.

+

Figure 4.22: Illustration of the self-consistent phase condition. A, Conceptual
sketch: Any given neuron in the network spikes with instantaneous rate r(t), which is
assumed to be weakly sinusoidally modulated in vicinity of the bifurcation. This rate is
fed back to the network due to the recurrent inhibitory coupling: The synaptic filtering
produces a phase lag arg(κ̃). Since the synapses are inhibitory, the sign in the current
is flipped, which corresponds to an additional phase lag of −π. The oscillatory current
is received as an input signal and every unit responds with a neuronal phase lag arg(G̃).
Since these are the very same units that produced the input rate in the first place, the
signals in the top and bottom row must be identical (0 phase lag as indicated by dotted
line), which leads to the self-consistent phase- and amplitude-condition (Eq. (4.36)).
B, Solution of the phase-condition with or without accounting for the neuronal phase
lag arg(G̃) (intersection of solid or dashed line with -180◦). Ignoring the neuronal phase
lag leads to an overestimation of the oscillation frequency. Figure adapted from Geisler
et al., 2005 with permission from The American Physiological Society.
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Noise correlation time constant (white vs colored noise). It has been shown
that the nature of the noise influences the linear response properties of LIF units:
Under Gaussian white noise, an LIF unit behaves as a low-pass filter with an amplitude
|G̃(ω)| approaching 0, and a neuronal phase lag arg[G̃(ω)] approaching 45◦in the high-
frequency limit (Lindner and Schimansky-Geier, 2001; Brunel et al., 2001). The linear
response under Gaussian white noise can be calculated analytically as explained in
Methods Section 4.D.3.1 (Lindner and Schimansky-Geier, 2001).

Under colored noise, the LIF linear response can no longer be calculated analytically.
In the limit of a small noise time constant (small compared to the membrane time
constant) the high-frequency limit can be estimated: The amplitude remains finite
(|G̃(ω)| > 0) and the phase lag arg[G̃(ω)] approaches 0 for high frequencies (Brunel
et al., 2001). Thus, under colored noise, an LIF unit can track oscillatory inputs
even at arbitrarily high frequencies. Numerical simulations suggest that the linear
response under colored noise generally depends both on the mean unit firing rate and
on the noise time constant (Brunel et al., 2001; Geisler et al., 2005). The larger the
noise time constant, the smaller the phase lag and hence the LIF unit can track an
oscillatory input better. For noise correlation times on the order of the membrane
time constant, the neuronal phase lag can thus be neglected in the solution of the
phase-amplitude-condition (Brunel and Wang, 2003). This will however always lead to
a (slight) overestimation of the oscillation frequency (see sketch in Fig. 4.22B, example
for the detailed ripple model in Fig. 4.6).

Noise strength. For low noise, the neuronal phase lag arg(G̃(ω)) exhibits peaks
close to multiples of the neuron’s mean firing rate (Brunel and Hansel, 2006). The
solution of the phase-condition (Eq. (4.36)), and hence the frequency of the collective
oscillation that emerges when the stationary state in the network loses stability, may
thus be close to a multiple (n) of the mean unit firing rate r0. This corresponds to a
clustering state in the spiking network, where distinct groups of neurons spike rather
regularly in every n-th cycle of the population rhythm (Brunel and Hansel, 2006). Due
to the low noise level units rarely switch between clusters.

Since the first peaks of the neuronal phase lag (n = 1, 2) of an LIF neuron are
low (| arg(G̃(ω))| � 2π for ω < 3r0), the lowest frequency solutions of the phase
condition Eq. (4.36) for LIF networks appear at a higher multiple of the unit firing
rate (n > 1) (unless the added synaptic phase lag is unrealistically large). This explains
the observation of sparse synchrony at oscillation onset, with a population rhythm that
is faster than the average mean unit firing rate (Fig. 4.3).

As the noise level increases, the peaks in the neuronal phase lag smoothen out until
the phase lag becomes a monotonically increasing function of the input frequency (see
Fig. 2B in Brunel and Hansel, 2006). The clusters thus dissolve and neurons fire
sparse and irregularly (see Fig. 4.3).

Accounting for synaptic filtering. The synaptic filter κ influences both the phase-
and amplitude-condition Eq. (4.36) (see also Fig. 4.22A). Different synaptic filters have
different synaptic phase lags, e.g. for the reduced ripple model (Eqs. (4.2)):

arg(κ̃δ∆(ω)) = −ω∆
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For the detailed ripple model (Eqs. (4.11)):

arg(κ̃2exp
∆ (ω)) = −

(
ω∆ + arctan(ωτ rI ) + arctan(ωτ dI )

)
(4.37)

(cf. Eq. (8) in (Brunel and Wang, 2003)). Note that the arctangent function has the
strongest slope in 0. Hence changes in the small synaptic rise time constant τ rI have
a much stronger effect on the synaptic phase lag, and hence the oscillation frequency,
than changes in the larger synaptic decay time constant τ dI (Brunel and Wang, 2003).

The role of the neuron model. The choice of the neuron model influences the
linear response of a single neuron and hence the linear stability of a network of such
neurons when they are synaptically coupled (Geisler et al., 2005; Brunel and Hansel,
2006).

A popular alternative to the LIF neuron model is the exponential integrate-and-fire
(EIF) neuron. The ODE describing the membrane potential of an EIF neuron contains
an exponential non-linearity mimicking spike initiation by fast sodium currents:

τmV̇ = −V + ∆thr exp
[
V − Vt
∆thr

]
+ I(t) .

The potential Vt determines the onset of fast spike initiation. A spike is fired and
the membrane potential is reset, when V crosses a threshold Vthr. The softness of
the threshold is determined by ∆thr. Simple Hodgkin-Huxley-type neuron models
(Hodgkin and Huxley, 1952), such as the Wang-Buzsáki neuron (Xiao-Jing Wang and
Buzsáki, 1996), can be mapped onto the EIF model (Fourcaud-Trocmé et al., 2003).
EIF units are thus considered a good compromise between biological realism and ana-
lytical tractability.

The linear response of EIF units to oscillatory input has been approximated an-
alytically in the low- and high-frequency limit (Fourcaud-Trocmé et al., 2003): The
EIF unit acts as a low-pass filter with an amplitude attenuating as ∼ 1/f in the high-
frequency limit. For high frequencies, the phase lag of the EIF neuron approaches 90◦,
independent of the noise time constant, and is thus twice as large as the neuronal phase
lag of an LIF neuron under Gaussian white noise (Fourcaud-Trocmé et al., 2003).

The linear response of EIF units is hard to study analytically for arbitrary frequen-
cies but has been estimated numerically (Geisler et al., 2005; Brunel and Hansel, 2006;
Richardson, 2007, 2008): As for LIF units, the neuronal phase lag of EIF units exhibits
peaks close to (n-)multiples of the mean unit rate, that are more pronounced at low
noise levels. Just like the asymptotic phase lag for high frequencies, these peaks are
much larger than for an LIF unit. Solutions of the phase-condition (Eq. (4.36)) for an
EIF network can thus appear close to the mean unit firing rate (n = 1). The frequency
of the emerging oscillation is thus lower, and stronger noise is needed to bring the
network out of the clustering state towards an oscillatory regime in which individual
units fire irregularly (Brunel and Hansel, 2006, see also Fig. 5.10 in Chapter 5).

In summary, EIF units respond to oscillatory input with a larger phase lag than LIF
units and thus produce slower oscillations when connected with inhibitory synapses.
This is due to the fact that spikes are not elicited instantaneously, as in the LIF neuron,
but have a finite initiation time set by the parameter ∆. In the limit ∆ → 0 spike
initiation becomes instantaneous and the EIF effectively becomes the LIF model.
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Comparison with spiking network simulations. Comparing the result of the
analytical linear stability analysis (Eq. (4.36)) with simulations of a spiking network
comes with several difficulties. The analytical approximation is valid in the mean-
field limit (N → ∞). A simulated spiking network, however, can only have finitely
many units. Apart from making the simulated network as large as possible, one can
further counteract unwanted finite size effects by making the feedforward inputs fully
independent and by fixing the indegree in the recurrent connectivity matrix. Thus
input correlations or heterogeneity in the network will not influence the frequency of
the simulated population oscillation. A second difficulty is the fact that one attempts
to approximate the frequency in a supercritical Hopf bifurcation, i.e. of an oscillation
that has infinitesimal amplitude. The peak in the power spectral density is therefore
very small and hard to detect accurately. Increasing the bifurcation parameter (here
the drive) slightly beyond the critical value should slightly increase the amplitude of the
simulated oscillation and facilitate the frequency analysis. It is advisable to increase
the simulation time and split the simulated time series into many shorter snippets, the
Fourier transforms of which are averaged, to obtain a smooth estimate of the power
spectral density (Methods Section 4.5.1.6). In Fig. 4.6, for example, I simulated a
network of N = 5000 units with independent inputs and fixed indegree pIIN = 1000
over 20 s. The simulated network frequencies around oscillation onset are much closer
to the analytical estimate (237 Hz) than in the un-adjusted network (200-214 Hz in
Fig. 4.6 vs. 175 Hz in Fig. 4.1). Still, a small discrepancy remains, which is likely due
to the omission of the neuronal phase lag in the analytical estimate (see Main text,
Section 4.3.1, Fig. 4.6).

4.5.2.5 Weakly nonlinear analysis.

The dynamics of the (small amplitude) oscillations shortly after the bifurcation can be
studied in a weakly nonlinear analysis (Brunel and Hakim, 1999).

A note on network architecture. Before I summarize the main results of this analysis
by Brunel and Hakim (1999), a quick note on their network architecture: The network
considered in (Brunel and Hakim, 1999) is almost the same as the reduced ripple
model studied here (Eq. (4.2)), except for one additional complexity: the recurrent
connectivity between the interneurons is assumed to be random and sparse and the
resulting fluctuations in the inhibitory feedback are taken into account. In steady state,
both the feedforward and the feedback input are approximated as white-noise processes
the means and variances of which add up. Two dimensionless parameters, G and H,
are introduced to quantify the strength of the mean and the variance of the inhibitory
feedback relative to the overall noise. The network dynamics are analyzed with respect
to G and H as the bifurcation parameters. The reduced ripple model studied here thus
represents a special case, where the network is fully connected (inhibitory indegree =
N) and the variance of the inhibitory feedback vanishes (H = 0). The relative strength
of the inhibitory feedback G is given by

G = Kτmr0(IE)√
2D

(cf. Eq. (3.16) in Brunel and Hakim, 1999). (4.38)

Recall that the stationary rate r0 depends on all the network parameters (Eq. (4.31),
Eq. (4.32)) including also the external drive IE, which I highlighted here specifically.
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We thus see that the bifurcation (at G = Gc) can be reached in several ways: an
increase in external drive IE, an increase in coupling strength K, or a decrease in noise
D. In the context of sharp wave-ripples I assume that the external excitatory drive IE
serves as the bifurcation parameter.

Weakly nonlinear analysis. Brunel and Hakim (1999) analyze the network dynamics
around the bifurcation by expanding the solution of the FPE around its steady-state
solution (see also Appendix Section 4.D.4). The population rate is expanded as

r(t) = r0
(
1 + n̂1e

iωt/τm + n̂2e
i2ωt/τm + · · ·+ c.c.

)
(4.39)

(frequency ω is denoted in units of 1/τm, time t is given in seconds).
If the network undergoes a supercritical Hopf bifurcation in G = Gc, the first order

oscillation amplitude n̂1 is expected to grow as the square root of the distance of the
bifurcation parameter from its critical value (G − Gc). Under this assumption the
distance of the bifurcation parameter from its critical value appears for the first time
in a third order term of the FPE for the expanded solution (n̂1 · (G − Gc) ∼ O(n̂3

1)
in Eq. (A.42) in Brunel and Hakim, 1999). Hence the authors push the development
up to third order and show that such a solution of the FPE exists if the first order
amplitude n̂1 exhibits a slow time-dependence described by the Hopf normal form:

τm
dn̂1

dt = An̂1 − B|n̂1|2n̂1 (Eq. (3.20) in Brunel and Hakim, 1999) .

If Re(A) > 0, the solution is a stable limit cycle:

n̂1(t) = R ei∆ωt/τm (4.40)

with amplitude

R =

√√√√Re(A)
Re(B)

and (slow) frequency

∆ω = Im(A)− Im(B)Re(A)
Re(B) .

What is formulated here as a slow modulation of the amplitude can simply be rephrased
as a small change in the frequency of the population rate oscillation:

r(t)
(4.39)
≈ r0

(
1 + n̂1e

iωt/τm + c.c.
) (4.40)= r0

(
1 + R ei∆ωt/τm eiωt/τm + c.c.

)
= r0

(
1 + R ei(ω+∆ω)t/τm +c.c.

)
Brunel and Hakim (1999) have thus derived an analytical expression for the change

in frequency and the amplitude of the oscillation shortly after the Hopf bifurcation.
The expressions for the complex numbers A and B are rather complicated (Eqs.

(A.54), (A.55) in Brunel and Hakim, 1999). In the limit of small synaptic delay
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(∆/τm → 0) and for H = 0 the authors show that the expressions simplify and become
interpretable:

A ≈ τm
∆ (1.35 + 0.29i)G−Gc

Gc

B ≈ τm
∆ (0.53 + 0.30i) (Eq. (3.21) in Brunel and Hakim, 1999)

We can see several things here: As expected, the distance of the bifurcation parameter
G from its critical value Gc determines the sign of Re(A) and hence whether or not an
oscillation develops: If G < Gc, Re(A) < 0 and any oscillatory rate modulation decays
to zero — the network is in steady-state. If G > Gc, Re(A) > 0 and a stable limit
cycle develops.
The amplitude in the above limit simplifies to

R =

√√√√Re(A)
Re(B) ≈

√
2.55G−Gc

Gc

If the bifurcation parameter is the external drive, as assumed in this thesis, this corre-
sponds to

R
(4.38)
≈

√
2.55r − r0

r0
(4.41)

where r is the mean unit firing rate at the given drive and r0 is the mean unit rate at
the critical drive in the Hopf bifurcation. Since the mean unit rate rises quasi-linearly
with the external drive (Fig. 4.3B), this expression implies that the amplitude increases
proportionally to the square root of the drive — as expected after a supercritical Hopf
bifurcation and as observed in the spiking network simulations.
The change in network frequency shortly after the bifurcation can also be understood
in the limit ∆/τm → 0:

∆ω = Im(A)− Im(B)Re(A)
Re(B) ≈ −0.47τm∆

G−Gc

Gc︸ ︷︷ ︸
>0

< 0 (4.42)

After the bifurcation the frequency decreases approximately linearly. Again, this
matches the simulation results (Fig. 4.3).

4.5.3 Derivation of drift-based approximation of oscillation
dynamics

If we ignore the absorbing boundary at threshold and the reset mechanism, the FPE
has only natural boundary conditions and can be solved analytically. Its solution p, for
an initial Dirac delta distribution p(V, 0) = δ(V −µ0), is a Gaussian density with time-
dependent mean µ(t) and variance σ2(t) (Uhlenbeck and Ornstein, 1930, see Appendix
Section 4.D.1.1):

p(V, t) = 1√
2πσ(t)

exp
[
−(V − µ(t))2

2σ2(t)

]
(4.43)
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The mean membrane potential µ evolves according to the single unit ODE (Eq. (4.24))
without the noise term:

µ̇(t) = 1
τm

(
I(t)− µ(t)

)
, µ(0) = µ0 . (4.44)

Again, the total current I is given as the sum of the excitatory external drive and the
inhibitory recurrent feedback (cf. Eq. (4.27b)):

I(t) = IE −Kτmr(t−∆) (4.45)

(The population rate r will be redefined below for the drift-based approximation with-
out absorbing boundary condition (Eq. (4.49)).) The variance σ(t)2 of the membrane
potential distribution approaches D with a time constant of τm/2:

σ2(t) := D
(
1− e−2t/τm

)
t→∞−→ D . (4.46)

The solution for an arbitrary initial condition can be found by convolution of the initial
condition with this Gaussian solution for initial Dirac delta distributin. Hence in the
long time limit (t → ∞) all solutions of the FPE with natural boundary conditions
tend towards a Gaussian with variance D— independent of the initial condition p(V, 0)
(which has to satisfy the boundary conditions Eqs. (4.27), see Appendix Section 4.D.1.1
for a few examples).
I will hence assume that in the ripple network, inbetween population spikes, the bulk of
the membrane potential distribution spends enough time subthreshold (i.e. unaffected
by the absorbing boundary condition) to become “sufficiently Gaussia” again. Thus,
when the next population spike begins, the membrane potential density is approxi-
mately Gaussian with fixed variance D (see also Fig. 4.19):

p(V, t) ≈ 1√
2πD

exp
[
−(V − µ(t))2

2D

]
(4.47)

This Gaussian approximation allows me to derive a simple expression for the population
rate (Plesser and Gerstner, 2000; Chizhov and Graham, 2007; Goedeke and Diesmann,
2008):

r(t) = J(VT , t)
(4.27i)=

∫ VT

−∞
∂V J(V, t) dV (4.27c)= −∂t

∫ VT

−∞
p(V, t) dV (4.47)= µ̇(t) p(VT , t) .

(4.48)

In the last step I used the Gaussian solution of the FPE with the assumption of
constant variance D to solve the integral explicitly. The rate is given by the value of
the Gaussian density at threshold, scaled by the speed at which the mean membrane
potential approaches the threshold. Since only upwards-crossings of the threshold
should be counted as spikes, add a sign-dependence is added:

r(t) = [µ̇(t)]+p(VT , t) (4.49)

clipping the rate to 0 whenever the mean membrane potential decays: [µ̇(t)]+ :=
max(0, µ̇(t)) (Plesser and Gerstner, 2000; Chizhov and Graham, 2007; Goedeke and
Diesmann, 2008).
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4.5.3.1 Numerical analysis of drift-based oscillation dynamics

In its derivation above, I formulated the drift-based approximation in several equations,
describing the membrane potential density p (Eq. (4.47)), mean membrane potential
µ (Eq. (4.44)) and population rate r (Eq. (4.49)) separately. Note however that the
mean membrane potential is the only independent variable and thus the drift-based
approximation can be rephrased as a single delay differential equation (DDE) describing
the dynamics of µ:

µ̇(t) (4.44)= 1
τm

(
I(t)− µ(t)

) (4.45)= 1
τm

(
IE − τmKr(t−∆)− µ(t)

)
(4.50)

(4.49)= 1
τm

(
IE − τmK[µ̇(t−∆)]+p(VT , t−∆)− µ(t)

)
(4.47)= 1

τm

IE − τmK[µ̇(t−∆)]+
1√

2πD
exp

[
−(VT − µ(t−∆))2

2D

]
− µ(t)

 (4.51)

Since the population rate is the main variable of interest I will nevertheless look at
the solutions in terms of both µ(t) and r(t). Using a simple forward Euler method and
initial conditions µ(0) � VT such that r(t) ≈ 0 ∀t ≤ 0, we can numerically integrate
the DDE and find a range of potential dynamics for constant drive IE (see Fig. 4.23).

There is a large regime of sufficiently strong drive, in which the solution µ exhibits
persistent period-1 oscillations (Fig. 4.23, green). This is the regime of interest, the
dynamics of which will be approximated analytically in the following.

At lower levels of drive there are three additional dynamical regimes that will be
excluded from analysis: At low drive, the system has a stable fixed point (µ̇ = 0) in
(µ(t), r(t)) ≡ (IE, 0) (Eq. (4.50), Fig. 4.23, blue). The bifurcation at which the fixed
point loses stability can be determined numerically. Immediately after the bifurcation
the DDE solution exhibits very fast oscillations at (2∆)−1 ∼ 417Hz (Fig. 4.23, red).
The oscillation amplitude of the mean membrane potential is very small and a large
portion of the Gaussian potential density is suprathreshold at all times. I refer to
this oscillation as pathological since it is a direct result of the artificial clipping of the
rate to 0 whenever the mean membrane potential decays (Eq. (4.49)). Increasing the
drive further brings the system into a state of period-2 oscillations where the Gaussian
density gets pushed below threshold only every other cycle (Fig. 4.23, yellow).

These regimes of pathological high frequency or period-2 oscillations exist due to
the simplifying assumptions capturing only the mean-driven aspects of the network
dynamics. Both regimes occur either shortly before or after the level of drive Icrit

E at
which the original spiking network undergoes a supercritical Hopf bifurcation (see tick
mark in Fig. 4.23). In the vicinity of that bifurcation the spiking network dynamics
are fluctuation-driven with either no (IE < Icrit

E ) or only small-amplitude (IE > Icrit
E )

oscillations in the mean membrane potential and population rate. These cannot be
captured without taking into account the absorbing boundary at threshold and the non-
Gaussian shape of the density of membrane potentials. These pathological dynamics
will be excluded from analysis by introducing a lower bound Imin

E for the theoretical
approximations developed in the following (see tick mark in Fig. 4.23).
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Figure 4.23: Numerical analysis of the drift-based approximation. Numer-
ical integration of the DDE system demonstrating 4 distinct dynamical regimes for
increasing external drive IE (bottom axis). Blue: Stable fixed point with zero rate.
Red: Pathological, fast oscillations. Yellow: Period-2 oscillations. Green: Regular
period-1 oscillations. Top: Numerically integrated trajectories of population rate r
and mean membrane potential µ over time. Note the changes in scale for the pop-
ulation rate. Bottom: Phase space showing the trajectory (µ(t), r(t)) and the fixed
point (IE, 0), which is only stable in the first case (black circle) and unstable otherwise
(empty circle). X-axis shows the full range of (relevant) drives from 0 to the point
of full synchrony I full

E . Black triangles mark the levels, for which the above example
dynamics are shown. Extra ticks indicate: critical drive Icrit

E ≈ 1.28, for which the
spiking network undergoes a Hopf bifurcation (see Methods Section 4.5.2.4); lower
bound Imin

E introduced for the theory to exclude pathological dynamics (see Methods
Section 4.5.4.5).
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4.5.4 Analytical approximation of drift-based oscillations for
constant drive

For large enough drive the mean membrane potential µ under the drift-based approx-
imation oscillates periodically between two local extrema µmin and µmax (orange and
cyan marker in Fig. 4.24A, green regime in Fig. 4.23). The population rate r oscillates
at the same frequency and is positive while the mean membrane potential increases
(µ̇ ≥ 0) and 0 otherwise (Eq. (4.49), Fig. 4.24A, top). The time when the mean
membrane potential reaches its local maximum µmax marks the end of the population
spike and will be denoted as toff . The inhibitory feedback (Eq. (4.45)) thus ends at
time toff + ∆ and I define µmin := µ(toff + ∆) as the end of a cycle. This allows an
approximation of the overall period as

T = toff(µmin, µmax) + ∆ , (4.52)

where toff is the duration of the “upstroke”, i.e. the time it takes for the mean mem-
brane potential to rise from µmin to µmax, and ∆ is the duration of the subsequent
“downstroke” back to µmin (Fig. 4.24A, top, gray bars). In the following I will approx-
imate µmax (Step 1) and µmin (Step 2) and thus derive the network frequency as the
inverse of the period:

fnet = T−1 =
(
toff(µmin, µmax) + ∆

)−1
. (4.53)

4.5.4.1 Step 1: approximating µmax

To find the local maximum µmax = µ(toff) (Fig. 4.24A, cyan marker) one needs to solve

0 = µ̇(toff) . (4.54)

Since the dynamics of the mean membrane potential are given by a delay differential
equation, the term on the right-hand side is recurrent:

µ̇(toff) (4.44)= 1
τm

(
I(toff)− µ(toff)

)
From the yet unknown time toff we have to look back in time (in windows with length
of the delay ∆, Fig. 4.24A, vertical dotted lines) at the history of the population rate
r(t):

(4.45)= 1
τm

(
IE − τmKr(toff −∆)− µ(toff)

)
,

which in turn depends on µ(t) and µ̇(t):

(4.49)= 1
τm

(
IE − τmK

[
µ̇(toff −∆)

]
+ p(VT , toff −∆)− µ(toff)

)
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Since Eq. (4.44) is a delay differential equation, the last three steps can be repeated
indefinitely:

(4.44)= 1
τm

(
IE −K

[
I(toff −∆)− µ(toff −∆)

]
+ p(VT , toff −∆)− µ(toff)

)
(4.45)= 1

τm

(
IE −K

[
IE − τmKr(toff − 2∆)− µ(toff −∆)

]
+
p(VT , toff −∆)− µ(toff)

)
(4.55)

(4.49)= . . .

We can resolve the recurrence by taking into account that the past time windows,
during which the population rate is significantly above 0 and the network receives
delayed feedback inhibition II = τmKr, are finite. In the first time window [toff−∆, toff ],
right before the end of the upstroke, inhibition must be taken into account, since this
is what stops the upstroke. In the second time window [toff − 2∆, toff −∆], further into
the past, I will assume that the inhibitory feedback is negligible, i.e.

I(t) ≈ IE ∀ 0 ≤ t ≤ toff −∆ ,

which implies the assumption that the population rate was negligible in the previous
time window, i.e.

r(t) ≈ 0 ∀ 0 ≤ t ≤ toff − 2∆ (A1)

(Eq. (4.45), arrows in Fig. 4.24A). Note that t here refers to time since the beginning
of the cycle (t = 0). Since the population spike ends at time toff , (A1) is equivalent
to the assumption that the population spike lasts at most 2∆. Adding the subsequent
downstroke time of ∆ this amounts to a maximal oscillation period of around 3∆
plus any additional upstroke time with r ≈ 0, which is a reasonable assumption for a
feedback loop with delay ∆ as argued already by Brunel and Hakim (1999).
Under this assumption, I set r(toff − 2∆) = 0 in Eq. (4.55), and only a finite amount
of terms remains:

0 = µ̇(toff)
(A1)
≈ 1

τm

(
IE − µ(toff)−K

(
IE − µ(toff −∆)

)
p(VT , toff −∆)

)
(4.56)

The rectification [·]+ could be dropped since the mean membrane potential can never
be larger than the external drive. I approximate the past µ(toff−∆) during the upstroke
based on the trajectory of µ as exponential relaxation towards only the excitatory drive
(solution of Eq. (4.44) for I(t) ≡ IE):

µ(t) ≈ IE − (IE − µmin) e−t/τm ∀ 0 ≤ t ≤ toff

Looking backwards from time toff , we can reformulate this assumption as:

µ(toff − x) ≈ IE − (IE − µmax) ex/τm ∀ x ≥ 0 (A2)

The resulting error is small since the exponential relaxation of the mean membrane
potential towards the total drive I(t) is governed by the membrane time constant
(τm = 10ms). The population spike on the other hand is quite synchronized (I assumed
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that it lasts less than 2∆� τm, (A1)). The time window right before toff , during which
the units receive inhibitory feedback and the total drive deviates from IE, is thus small
compared to the membrane time constant and alters the trajectory of µ only slightly
(Fig. 4.24A, full vs dotted line in zoom).
Eq. (4.56) thus simplifies to:

0 = 1
τm

(
IE − µmax −K(IE − µmax) e∆/τm p(VT , toff −∆)

)
⇔ 0 = 1−K e∆/τm p(VT , toff −∆) (4.57)

⇔ 0 (4.47)= 1−K e∆/τm 1√
2πD

exp

−
(
VT − IE − (µmax − IE) e∆/τm

)2

2D


The simplified equation can be readily solved for µmax:

µmax =
(
1− e−∆/τm

)
IE + e−∆/τm

VT −
√√√√2D ln

[
K√
2πD

e∆/τm

]  . (4.58)

Note that µmax does not depend on the initial voltage µmin. This makes sense intuitively
for any µmin that is sufficiently smaller than µmax, since the “turning point” of the
mean membrane potential depends only on the feedback inhibition resulting from the
immediate history shortly before µmax is reached (t ∈ [toff − 2∆, toff ]). To ensure that
the argument of the logarithm in Eq. (4.58) is larger than 1, the coupling must be
sufficiently strong: K ≥

√
2πD e−∆/τm .

4.5.4.2 Step 2: approximating µmin

I will now approximate the trajectory of the mean membrane potential during its
inhibition-induced downstroke and infer µmin = µ(toff + ∆), which constitutes both the
end and the starting value of each cycle due to the periodic nature of the dynamics for
constant drive (Fig. 4.24A, orange marker).

Note that while µmin is close to the periodic local minimum of the mean membrane
potential, it is a slight overestimation: The local extrema of the mean membrane
potential µ occur at its intersections with the total drive I(t) (see Eq. (4.54), Fig. 4.24A,
solid grey vs dashed black line). At time toff the mean membrane potential reaches
its local maximum and becomes larger than the total drive I(t). Since the population
spike ends at time toff , the delayed inhibitory feedback II(t) will stop at time toff + ∆:
The total drive at this point will equal the external drive (I(toff + ∆) = IE); note
that the mean membrane potential µ can never be larger than the external drive IE.
Hence, if µ becomes larger than I at time toff and is smaller than I at time toff + ∆, µ
must intersect with I(t) and reach its local minimum slightly before time toff + ∆ (see
Fig. 4.24A, inset; even clearer in Fig. 4.42A, inset). What I define as the initial/final
membrane potential of a cycle (µmin := µ(toff + ∆)) is thus close but slightly larger
than the periodic local minimum. This does not affect the estimate of the period.

The definition of a fixed downstroke duration ∆ is convenient as it allows us to find
µmin directly by integrating the mean membrane potential ODE Eq. (4.44) up to time
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toff + ∆, starting from the initial value µ(toff) = µmax that we have derived in Step 1
(instead of first finding the precise time point when the true local minimum is reached,
which leads to a complicated equation that would require numerical evaluation).

The solution to ODE Eq. (4.44) with given intial value µ(toff) = µmax and given
input I(t) is well known:

µ(t) = µmax e−(t−toff)/τm + 1
τm

∫ t

toff
I(s) e−(t−s)/τm ds for t ≥ toff . (4.59)

It follows

µmin := µ(toff + ∆) given intial value µ(toff) = µmax (4.60)
(4.59)= µmax e−∆/τm + 1

τm

∫ toff+∆

toff
I(s) e−(toff+∆−s)/τm ds (4.61)

The recurrence in the expression for the total current I is resolved using the same
simplification as before in Step 1. To increase readability the value of the Gaussian
density at threshold is abbreviated as: p(t) := p(VT , t).

I(s) (4.45)= IE −Kτmr
(
s−∆

)
, s ∈ [toff , toff + ∆]

(4.49)= IE −Kτm
[
µ̇(s−∆)

]
+ p (s−∆)

(4.44)= IE −K
(
I(s−∆)− µ(s−∆)

)
p (s−∆)

(4.45)= IE −K
(
IE −Kτmr(s− 2∆)− µ(s−∆)

)
p (s−∆)

(4.49)= IE −K
(
IE −Kτm

[
µ̇(s− 2∆)

]
+ p (s− 2∆)− µ(s−∆)

)
p (s−∆)

(4.44)= IE −K
(
IE −K

[
I(s− 2∆)− µ(s− 2∆)

]
p (s− 2∆)− µ(s−∆)

)
p (s−∆)

Note that all times s−k∆ = toff +τ−k∆ = toff−(k∆−τ) < toff for τ ∈ [0,∆], k ∈ [1, 2]
refer to times during the upstroke before time toff , hence I could omit all rectifications
above ([µ̇(s−k∆)]+ = µ̇(s−k∆)). I switch notation of time accordingly. For τ ∈ [0,∆]:

I(toff + τ) = IE −Kp
(
toff − (∆− τ)

) (
IE − µ

(
toff − (∆− τ)

)
−K

[
I
(
toff − (2∆− τ)

)
− µ

(
toff − (2∆− τ)

)]
p
(
toff − (2∆− τ)

))

As before, I assume that the current I at time toff − (2∆ − τ) ≤ toff − ∆ is given
exclusively by the excitatory drive (A1):

I(toff + τ)
(A1)
≈ IE −Kp

(
toff − (∆− τ)

) (
IE − µ(toff − (∆− τ))

−K
(
IE − µ(toff − (2∆− τ))

)
p
(
toff − (2∆− τ)

))
(4.62)
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We are left with a finite number of terms that depend on the trajectory of µ during
the upstroke. Again, we approximate µ(toff − x), x ≥ 0 assuming exponential relax-
ation towards only the external drive, i.e. ignoring inhibition (A2). This abolishes all
dependencies on the yet unknown time toff of the end of the population spike:

I(toff + τ)
(A2)
≈ IE −K(IE − µmax) e(∆−τ)/τm p

(
toff − (∆− τ)

)
+K2(IE − µmax) e(2∆−τ)/τm p

(
toff − (2∆− τ)

)
p
(
toff − (∆− τ)

)
(4.63)

Inserting this approximation into the expression for µmin yields:

µmin
(4.61)= µmax e−∆/τm + 1

τm
e−∆/τm

∫ ∆

0
I(toff + τ) eτ/τm dτ

(4.63)
≈ µmax e−∆/τm + 1

τm
e−∆/τm IE

∫ ∆

0
eτ/τm dτ

− 1
τm
K(IE − µmax)

∫ ∆

0
p
(
VT , toff − (∆− τ)

)
dτ

+ 1
τm
K2(IE − µmax) e∆/τm

∫ ∆

0
p
(
VT , toff − (2∆− τ)

)
p
(
VT , toff − (∆− τ)

)
dτ

(4.64)
The integrals over the Gaussians p can be solved analytically, if the past trajectory of
the mean µ is approximated linearly (Fig. 4.24A, inset, solid vs dotted gray line):

µ(toff − x)
(A2)
/ µmax − (IE − µmax) x

τm
, for small 0 ≤ x ≤ 2∆� τm (4.65)

⇒ p
(
VT , toff − (k∆− τ)

)
≈ 1√

2πD
exp

−
(
VT − µmax + (IE − µmax)k∆−τ

τm

)2

2D


The solution of Eq. (4.64) is then

µmin = µmax e−∆/τm︸ ︷︷ ︸
initial condition

+ IE(1− e−
∆
τm )︸ ︷︷ ︸

excitatory drive

−1
2K

erf
(
φ(0)

)
− erf

(
φ(∆)

)
− K√

2πD
e− c

2D
e

∆
τm√

e
2∆
τm +1

[
erf

(
ψ(∆)

)
− erf

(
ψ(0)

)]
︸ ︷︷ ︸

inhibitory feedback
(4.66)

where:

φ(t) =
VT − µmax + (IE − µmax)∆−t

τm√
2D

(4.67)

ψ(t) =
−(IE − µmax)

(
e

2∆
τm +1

)
(τm + ∆− t) + τm(IE − VT )

(
e

∆
τm +1

)
√

2D
(

e
2∆
τm +1

)
τm

(4.68)

c =
(VT − IE)2

(
1− e

∆
τm

)2

e
2∆
τm +1

(4.69)
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Although lengthy, this expression can be easily evaluated numerically.
With µmin I have not only determined the mean membrane potential at the end

of a cycle, but also at its beginning. Hence I can now approximate the length of the
upstroke toff as the time it takes for the mean membrane potential to rise from µmin to
µmax, based on exponential relaxation towards only the excitatory drive IE (A2):

toff
(A2)
≈ τm ln

(
IE − µmin

IE − µmax

)
(4.70)

Together with the assumed downstroke duration of ∆ I arrive at an analytical estimate
for the oscillation period T and hence the network frequency fnet = T−1 = (toff + ∆)−1

(see Eq. (4.53)). Overall, I have derived an analytical mapping from the external drive
to various features of the oscillatory dynamics:

IE 7→ [µmax, µmin, toff , fnet]

To evaluate the accuracy of the analytical approximation, the DDE is integrated nu-
merically (Eq. (4.51), Fig. 4.23, green regime of period-1 oscillations) to determine
µmax, µmin and fnet. I find that the errors introduced by the simplifying assumptions
(A1)-(4.65) are small (Fig. 4.25, dashed lines vs square markers).
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Figure 4.24: Illustration of
analytical approximations.
A, One cycle of the oscillatory
solution of the DDE Eq. (4.51).
Grey dotted lines: numerical
solution for rate (top, Eq. (4.49))
and mean membrane potential
(bottom, Eq. (4.51)). All other
lines are analytical results (equa-
tion numbers in brackets): top:
population rate r(t) (black). Bot-
tom: mean membrane potential
µ(t) (gray, (A2), (4.59)), gray
area marks µ(t) ± 3

√
D; external

drive IE (green); total input
I(t) = IE − II(t) (black dashed
line, (4.63)); local maximum
µmax (cyan, (4.58)); µmin (orange,
(4.66)); vertical lines mark end of
population spike toff , and inter-
vals toff + k∆, k ∈ {−2,−1, 1}
before and after; arrows illustrate
(A1); beginning of the cycle
(orange dotted line, ton = 0) is
determined by µmin; grey hori-
zontal bars mark upstroke and
downstroke length, yielding a pe-

riod of toff +∆ = T = 3.44ms (4.70), so fnet = 291 Hz (4.53). Zoom: Due to assumption
(A2), µmax is slightly overestimated. The true local minimum (2nd intersection of µ
and I) occurs shortly before toff + ∆ (see also Fig. 4.42). B, Same as A, but with
an account for the reset on the population level. At the end of the population spike,
µ is reset instantaneously from µmax to µreset (yellow, Eq. (4.72)). This leads to a
lower µmin (orange, Eq. (4.73)) and hence a slightly longer period (T=4.24ms), i.e.
slower network frequency (fnet = 235.8Hz). C, Illustration of phenomenological reset.
Cyan: density of membrane potentials p(V, toff) at the end of the population spike,
centered at µmax (before reset); cyan hatched area: fraction of active units (saturation,
(4.71)); gray hatched area: resetting the superthreshold portion of p; yellow: p(V, toff)
after reset, centered at µreset. The reset value µreset is calculated as the average of
the density that results from summing the grey-dashed (active units), and cyan-non-
hatched (silent units) density portions (4.72). Default parameters (see Table 4.3),
IE = 3.6. See Supplementary Fig. 4.42 for the same figure with different parameter
settings, for which the difference between µmin and the true local minimum is more
visible.
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4.5.4.3 Accounting for the reset mechanism

To increase the quantitative accuracy of the drift-based approximation w.r.t. the origi-
nal spiking network, I add a phenomenological account for the single unit fire-and-reset
mechanism on the population level. During the population spike (t < toff) the single
unit reset has little influence on the population rate dynamics, since units typically
spike at most once per cycle. At time toff the population spike ends and the integral
over the suprathreshold portion of the Gaussian potential density corresponds to the
fraction of units that have spiked (the saturation):

s :=
∫ ∞
VT

p(v, toff) dv (4.47)= 1
2

1− erf
(
VT − µmax√

2D

) (4.71)

(see Fig. 4.24C, cyan hatched area). Taking into account the reset mechanism at
this point would mean shifting the suprathreshold portion of p(V, toff) downwards by
an amount VT − VR (Fig. 4.24C, gray hatched area), essentially splitting the voltage
distribution into two pieces, corresponding to silent units (Fig. 4.24C, non-hatched
area under cyan Gauss) and units that have spiked and been reset (Fig. 4.24C, gray
hatched area). To preserve the simplified framework of a unimodal, Gaussian voltage
distribution, I will instead assume that the Gaussian voltage distribution is reset as
a whole, to a new mean membrane potential µreset given by the average of the two
distribution pieces (“silent” and “spike+reset”):

µreset :=
∫ VT

−∞
vp(v, toff) dv +

∫ ∞
VT

(v − (VT − VR))p(v, toff) dv

=
∫ ∞
−∞

vp(v, toff) dv − (VT − VR)
∫ ∞
VT

p(v, toff) dv

= µmax − (VT − VR)s (4.72)

(see Fig. 4.24C, yellow density). This phenomenological account for the reset contains
the implicit assumption that inbetween population spikes the membrane potential dis-
tribution “spends enough time” subthreshold that the bimodality created by the reset
mechanism vanishes due to diffusion and the distribution becomes roughly Gaussian
again. This assumption is satisfied for a relatively large portion of the parameter space
spanned by noise intensity, coupling strength, and reset potential (see Results).
The introduction of the population-reset requires an adjustment of the definition of µmin
(Eq. (4.60)): Instead of using µmax as the initial value when integrating the feedback
inhibition during the downstroke, I will now use the reset potential µreset:

µmin = µ(toff + ∆) given intial value µ(toff) = µreset
(4.66)= µreset e−∆/τm︸ ︷︷ ︸

initial condition

+ IE(1− e−
∆
τm )︸ ︷︷ ︸

excitatory drive

−1
2K

erf
(
φ(0)

)
− erf

(
φ(∆)

)
− K√

2πD
e− c

2D
e

∆
τm√

e
2∆
τm +1

[
erf

(
ψ(∆)

)
− erf

(
ψ(0)

)]
︸ ︷︷ ︸

inhibitory feedback
(4.73)
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Except for the initial condition term all other terms remain unchanged (cf. Eq. (4.66)).
Since µreset < µmax (Eq. (4.72)), the introduction of the reset decreases the estimate of
the local minimum µmin. This leads to an increase of the upstroke time toff required for
the mean membrane potential to rise from µmin to µmax (Eq. (4.70)), and hence to an
increase in the overall period T = toff + ∆, corresponding to a decrease in the network
frequency (Eq. (4.53), see Fig. 4.25, solid vs. dashed lines).
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Figure 4.25: Analytical vs nu-
merical analysis of the drift-based
approximation. Network frequency
(top) and dynamics of the mean mem-
brane potential for different levels of
external drive IE, calculated with or
without reset (yellow: µreset). Ana-
lytical approximations (lines) are very
close to the results of numerical in-
tegration of the DDE (4.51) (mark-
ers). Including the reset does not af-
fect µmax but decreases µmin (Eq. (4.73)
vs (4.66)) and thus the network fre-
quency. Results are shown in the rele-
vant range of drives [Imin

E , I full
E ] (dotted

and dashed vertical lines). Parameters
see Table 4.3.

4.5.4.4 The point of full synchrony

The drift-based approximation allows for a straightforward prediction of the point of
full synchrony and its parameter dependencies. As mentioned before, the integral
over the suprathreshold-portion of the membrane potential density at the end of the
population spike corresponds to the fraction s of active units (saturation, Eq. (4.71),
see Fig. 4.24C). Strictly speaking, full synchrony would correspond to

s =
∫ ∞
VT

p(V, toff) dV = 1

which obviously can never be true, since the Gaussian probability density approaches
zero only in the limit V → ±∞. We can however define approximate full synchrony
as the state where the spike threshold marks the 0.13th percentile of the membrane
potential distribution at the end of the population spike, i.e. ∼99.87% of the neurons
have fired:

s =
∫ ∞
VT

p(V, toff) dV = 0.9987 ⇔ µmax − 3
√
D = VT

Having derived µmax(IE) as a function of the external drive (Eq. (4.58)), it is straight-
forward to derive a closed-form expression for the external drive that is required to
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achieve full synchrony:

I full
E = VT +

√
D

3 + e−∆/τm
√

2 ln
[

K√
2πD e∆/τm

]
1− e−∆/τm

. (4.74)

4.5.4.5 Range of applicability of the drift-based approximation

There are two main constraints on the applicability of the drift-based approximation:
(a) Since I assume that units spike at most once per cycle, the theory is only valid up
to the point of full synchrony I full

E where network frequency and mean unit firing rate
coincide. (b) The assumption of a unimodal distribution of membrane potentials is only
valid if, inbetween population spikes, the bulk of the membrane potential distribution
is pushed sufficiently below threshold such that it can diffuse back to approximately
Gaussian shape. I will thus require that, at its lowest point, the Gaussian density is
almost entirely subthreshold:

∫ VT

−∞
p(V, ton) dV = 0.9987 ⇔ µmin(IE) + 3

√
D

!
≤ VT (4.75)

Criteria (a) and (b) yield a finite range [Imin
E , Imax

E ] of external drives for which the
theory applies. Since for most parameter settings µmin is an almost monotonically de-
caying function of the drive (see Fig. 4.25, Fig. 4.27), constraint (b) is usually only
relevant for the lower boundary Imin

E of the drive, while the upper boundary is deter-
mined by constraint (a): Imax

E = I full
E (Fig. 4.25, see Fig. 4.27D for exceptions at high

noise and weak coupling).

4.5.4.6 Quantifying performance

For a given parameter setting (D,∆, K, VR) I quantify the performance of the drift-
based approximation across the range of drives for which

(a) the theory applies (IE ∈ [Imin
E , Imax

E ])

(b) the spiking network has not crossed the point of full synchrony (IE ≤ I full,sim
E )

The size of this regime varies for different parameter settings (see Fig. 4.27). To ensure
comparability I interpolate the results of all spiking network simulations to the same
fine resolution:

I iE = Imin
E + 0.1i i = 1, 2, . . . n, , I iE ∈

[
Imin

E ,min
(
Imax

E , I full,sim
E

)]
.

I then compute the average relative error of the estimated network frequencies for each
parameter setting:

χerr := 1
n

∑
i

∣∣∣f sim
net (I iE)− f theory

net (I iE)
∣∣∣

f sim
net (I iE) ∈ [0, 1] . (4.76)
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A second score is introduced to quantify what portion of the relevant range of spiking
network dynamics (from the Hopf bifurcation Icrit,sim

E , to the point of full synchrony
I full,sim

E ) is covered by the theory:

χappl :=
min

(
Imax

E , I full,sim
E

)
− Imin

E

I full,sim
E − Icrit,sim

E
∈ [0, 1] (4.77)

I define an overall performance index as

χp := χappl (1− χerr) ∈ [0, 1] . (4.78)

The larger the performance index χp the better the drift-based approximation captures
the spiking network dynamics.

4.5.5 Analytical approximation of drift-based oscillations for
linear drive

To characterize the transient dynamics of a cycle i with initial mean membrane poten-
tial µimin and linear drive IE(t) = ÎE +m(t− tioff) I deriving a mapping

(
Î iE, µ

i
min,m

)
7−→

(
f inst,i

net , tioff , µ
i
max, µ

i
reset, µ

i+1
min

)
. (4.79)

(see Fig. 4.26, 3 inputs in blue, outputs in black/gray). Here µi+1
min refers to the mean

membrane potential reached at the end of cycle i, which potentially serves as the initial
condition for the next cycle.
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Figure 4.26: Sketch of drift-based
approximation for linear drive.
One hypothetical oscillation cycle i un-
der linear drive IE(t) = m(t− tioff)+ ÎE.
Blue: the known “inputs”: initial mem-
brane potential µimin, slope of the lin-
ear drive m, and one value of the drive
during the cycle, here chosen as ÎE =
IE(tioff). Note that the time tioff between
the yet undefined time 0 and the end of
the population spike is not known, but
will be one of the results of the map-
ping. All “unknown” quantities are
marked in black/grey and will be the
result of the analytical approximation
for piecewise linear drive.
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4.5.5.1 Step 1: approximating µmax

The local maximum of the mean membrane potential µimax can be found with the same
ansatz used for constant drive:

0 = µ̇(tioff) = 1
τm

(
I(tioff)− µ(tioff)

)
= 1
τm

(
Î iE −Kτmr(tioff −∆)− µmax

)
(4.49)= 1

τm

(
Î iE − µmax −Kτm

[
µ̇(tioff −∆)

]
+
p(VT , tioff −∆)

)
(4.44)= 1

τm

(
Î iE − µmax

−K
[
IE(tioff −∆)−Kτm r(tioff − 2∆)︸ ︷︷ ︸

≈0, (A1)

−µ(tioff −∆)
]

+
p(VT , tioff −∆)

)

Again, the recurrent expression for the total current I is truncated two ∆-time windows
before the end of the population spike (A1):

(A1)
≈ 1

τm

(
Î iE − µmax −K

(
Î iE −m∆− µ(tioff −∆)

)
p(VT , tioff −∆)

)
. (4.80)

Again, the trajectory of µ during the upstroke is approximated based on relaxation
towards only the excitatory drive, which is now a linear function of time (cf. (A2)):

µ(t)
(4.44)
≈ µimin e−t/τm + 1

τm

∫ t

0
e−(t−t̄)/τm IE(t̄) dt̄

= µimin e−t/τm +mt+
(
IE(0)−mτm

) [
1− e−t/τm

]
= IE(t)−mτm +

(
mτm + µimin − IE(0)

)
e−t/τm (4.81)

Under this approximation µmax can be written as

µmax = µ(tioff)
(4.81)
≈ Î iE −mτm +

(
mτm + µimin − IE(0)

)
e−tioff/τm (4.82)

and the trajectory before time tioff is approximated linearly as:

µ(tioff − x) (4.81)= IE(tioff − x)−mτm +
(
mτm + µimin − IE(0)

)
e−(tioff−x)/τm , (x ≥ 0)

(4.82)=
(
µmax − Î iE +mτm

)
ex/τm + IE(tioff − x)︸ ︷︷ ︸

=ÎiE−mx

−mτm

= µmax ex/τm +
(
1− ex/τm

)
Î iE + mτm ex/τm︸ ︷︷ ︸

≈mτm
(

1+ x
τm

)−mx−mτm
≈ µmax ex/τm +

(
1− ex/τm

)
Î iE . (4.83)
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Inserting this expression in the local maximum condition (Eq. (4.80)) yields:

0 ≈ Î iE − µmax −K
(
Î iE −m∆−

(
µmax e∆/τm +

(
1− e∆/τm

)
Î iE

))
p(VT , tioff −∆)

= Î iE − µmax −K
(
(Î iE − µmax) e∆/τm −m∆

)
p(VT , tioff −∆)

= Î iE − µmax −K(Î iE − µmax) e∆/τm p(VT , tioff −∆) +Km∆p(VT , tioff −∆)

⇔ m∆Kp(VT , tioff −∆)
Î iE − µmax

= K e∆/τm p(VT , tioff −∆)− 1 (4.84)

For constant drive (m = 0, IE(t) ≡ ÎE) the left-hand side of Eq. (4.84) becomes zero and
we recover Eq. (4.57). For m 6= 0 Eq. (4.84) can be solved numerically and its solution
µmax is close to the asymptotic µ∞max(Î iE) (see Appendix Section 4.C.1, Fig. 4.40). Since
the reset mechanism remains unchanged (Eq. (4.72)), this implies that also µireset is
close to µ∞reset(ÎE).

The duration of the upstroke tioff is inferred as the time it takes for the mean
membrane potential to travel from µimin to µimax, again ignoring inhibition and only
considering exponential relaxation towards the external drive (Eq. (4.82)):

µ(tioff) != µimax
(4.44)⇔ tioff = τm ln

 Î iE −mτm − µimin −mtioff

Î iE −mτm − µimax


For m = 0 we recover Eq. (4.70), for m 6= 0 we get:

tioff = −τm W

 Î iE −mτm − µimax
mτm

exp
−1 + Î iE − µimin

mτm


+ Î iE −mτm − µimin

m

(4.85)

where W is the Lambert W function, which has solutions for arguments > − exp(−1).
For positive slope m > 0 and low drive (Î iE−µimax < mτm) this introduces a constraint
on the initial value:

µimin
!
> Î iE −mτm log

− mτm

Î iE −mτm − µimax

 . (4.86)

(seen in Fig. 4.10B, Fig. 4.11Ai, detailed derivation in Appendix Section 4.C.2).
The instantaneous frequency of cycle i follows as

f inst,i
net =

(
tioff + ∆

)−1
. (4.87)

4.5.5.2 Step 2: approximating µmin

The mean membrane potential µi+1
min at the end of cycle i is found by integrating the

total current I during the downstroke (cf. Eq. (4.60)):

µi+1
min = µireset e−∆/τm + 1

τm

∫ ∆

0
I(s+ tioff) e−(∆−s)/τm ds (4.88)
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The total current I can be split into two parts: Istat, which is approximately equal to
the feedback current for constant drive IE ≡ ÎE (Eq. (4.62), except for slight deviations
in µimax), and an additive new term Im caused by the linear change in the external
drive:

I(t+ tioff) = Istat(t+ tioff) + Im(t+ tioff) (4.89)
Istat(t+ tioff) = ÎE −Kp(VT , tioff − (∆− t))

(
ÎE − µimax

)
e(∆−t)/τm

+K2p(VT , tioff − (∆− t))p(VT , tioff − (2∆− t))
(
ÎE − µimax

)
e(2∆−t)/τm

Im(t+ tioff) = m
(
t+Kp(VT , tioff − (∆− t))(∆− t)

−K2p(VT , tioff − (∆− t))p(VT , tioff − (2∆− t))(2∆− t)
)

(see derivation in Appendix Section 4.C.3). Eq. (4.88) can be integrated numerically
to find that µi+1

min is close to the asymptotic solution for constant drive:

µi+1
min

' µmin(ÎE), m > 0
/ µmin(ÎE), m < 0

(4.90)

The mean membrane potential µi+1
min at the end of cycle i would be the initial mean

membrane potential for the next cycle, but does not influence the estimate of the cur-
rent cycle’s period T i = tioff + ∆.

Note that the transient mapping (Eq. (4.79)) cannot be applied iteratively to infer the
mean membrane potential trajectories over multiple, consecutive cycles under linear
drive of slope m. For every cycle, an assumption has to be made about the reference
drive Î iE at the end of the population spike tioff , which is not known a priori (see
Fig. 4.26, blue inputs vs black outputs of the mapping).

One could easily derive a forward mapping by anchoring the reference drive to the
beginning of the cycle (Î iE = IE(0)) and following the same steps as above:(

Î iE, µ
i
min,m

)
7−→

(
f inst,i

net , tioff , µ
i
max, µ

i
reset, µ

i+1
min, Î

i+1
E

)
. (4.91)

(derivation not shown here). I chose to present here the mapping for reference drive
Î iE = IE(tioff), since the drive at time tioff is a better representative of the range of drives
[IE(0), IE(T )] covered in a cycle, than the (minimal/maximal) drive at the beginning.

4.5.5.3 Comparing theory and simulation for piecewise linear drive

Since the theory provides a cycle-wise estimate of the instantaneous network frequency,
I also use a discrete estimate of instantaneous frequency for the simulation results,
based on the inverse of the distances between consecutive peaks in the oscillatory
population rate (see Methods Section 4.5.1.6). In the spiking network, SPW-like drive
is modeled as a piecewise linear double-ramp with an intermediate plateau phase of
20 ms (Eq. (4.22)). The drift-based approximation is used to estimate the instantaneous
network frequencies separately for the upstroke of the drive (linear increase with slope
m > 0) and the downstroke of the drive (linear decrease with slopem < 0). The plateau



4.5. Methods 105

phase is ignored, since the network frequencies rapidly converge to the asymptotic
frequency associated to the drive during the plateau phase. In both simulation and
theory IFA is quantified by computing a linear regression slope over the instantaneous
frequencies. The theoretically estimated instantaneous frequencies are shifted in time
to account for a hypothetical plateau phase of 20 ms inbetween up- and downstroke
and allow full comparability with the simulation results.

For every theoretical instantaneous frequency estimate (ti, f inst
theory(ti)) an error is

calculated compared to the average instantaneous frequencies observed in the spiking
simulation around the same time point (ti ± 1.5 ms):

f inst
sim (ti) ≈

〈
{f inst

sim (t)}t∈[ti−1.5,ti+1.5]
〉

ε := 1
n

∑
i

∣∣∣f inst
theory(ti)− f inst

sim (ti)
∣∣∣

f inst
sim (ti)

∈ [0, 1] (4.92)

(see Table 4.1).



106 Chapter 4. The bifurcation-based inhibitory ripple model

4.A Parameter-dependencies of drift-based oscilla-
tion dynamics

In this section I confirm with numerical simulations that the drift-based approximation
works for a wide parameter regime and captures the parameter dependencies of ripple
oscillation in the spiking network. The reduced spiking network model (Eq. (4.3)) has
only four parameters: the noise intensity D, the inhibitory coupling strength K, the
synaptic delay ∆, and the reset potential VR. Since time can be rescaled to units
of the membrane time constant, I do not count the membrane time constant as an
independent parameter. I will first show a two-dimensional parameter exploration
covarying the noise intensity D and the inhibitory coupling strength K (Fig. 4.27).
Subsequently I will briefly comment on the role of the synaptic delay and the reset
potential.

4.A.1 The role of noise and coupling strength
To quantify the performance of the drift-based approximation, a performance index is
introduced that takes into account the error in the estimate of the network frequency
and the proportion of the relevant range of external drives (from the Hopf bifurcation
up to the point of full synchrony) that is covered by the theory (Methods, Fig. 4.27B).

The performance of the drift-based approximation is good for a wide range of pa-
rameters (Fig. 4.27B). As expected from a drift-based approximation, the performance
decreases for larger noise intensity (Fig. 4.27, large

√
D). At high noise and weak cou-

pling, the range of external drives, for which the theory applies, decreases markedly.
The wider the Gaussian density and the weaker the inhibitory feedback, the harder
it is to satisfy requirement (b) of the bulk of the membrane potential density being
pushed subthreshold inbetween population spikes (Fig. 4.27D). In the extreme case of√
D = 0.4, K = 2 this criterion is never fulfilled (Fig. 4.27B-D, bottom right). Captur-

ing the network dynamics in the high noise regime would require taking into account
diffusion-mediated spiking.

Figure 4.27: Performance of drift-based approximation depending on noise
and coupling strength. Covariation of noise intensity D and coupling strength K.
A, Width of the Gaussian voltage density p(V, t) depending on noise D. B, Evalua-
tion of drift-based approximation of spiking network dynamics for different parameter
combinations

√
D,K shown in C. Left to right: error in network frequency approxima-

tion, applicability of the approximation, and resulting performance index (Eq. (4.78)).
C, Network frequencies (black) and unit firing rates (blue) in theory (line) and simula-
tion (markers). Red markers: Hopf bifurcation. Blue triangle: point of full synchrony in
simulation. All theory curves shown for range [Imin

E , Imax
E ] (see Methods Section 4.5.4.5).

D, Local extrema µmax, µmin, and reset µreset of the mean membrane potential. Full
colored lines: theory applies (IE ∈ [Imin

E , I full
E ]); dashed colored lines: theory does not

apply. Orange markers: estimate of µmin in simulation (µmax, µreset have no counterpart
in the spiking network). Note that µmin is an almost monotonically decaying function
of the drive for most parameter settings, except for very weak coupling.
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Figure 4.27: Performance of drift-based approximation depending on noise
and coupling strength. Caption on previous page.
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One can also observe a dip in performance for low noise and low coupling strength
(Fig. 4.27B-D, bottom left). This, however, does not reflect a shortcoming of the
drift-based approximation but rather a change of dynamics in the spiking network
towards clustered activity, which is not our regime of interest. In Section 4.A.2 I will
demonstrate how the emergence of clusters is mediated by a third parameter — the
reset potential — and how a change in reset potential can recover high performance of
the drift-based approximation, also at low noise and low coupling.

The point of full synchrony is predicted well for most parameter combinations
shown in Fig. 4.27C. I evaluated its parameter dependencies in more detail in Fig. 4.28:
while quantitatively the theoretical estimate produces an error that becomes larger for
stronger noise (error shown in Fig. 4.28), the qualitative dependency of the point of
full synchrony on the noise and coupling strength is captured well (Fig. 4.28, theory vs
simulation). The theory predicts that stronger external drive is required to achieve full
synchrony, if the noise is stronger, which is confirmed in simulations (Fig. 4.28 bottom).
A similar, albeit weaker, dependence can be found for the inhibitory coupling strength:
If the network is coupled more strongly, stronger external drive is required to achieve
full synchrony.
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Figure 4.28: Parameter dependencies of the point of full synchrony. External
drive I full

E at which full synchrony is reached (bottom) and the corresponding network
frequency f full

net (top), as predicted by theory (left, Eq.(4.74)) vs. as observed in spik-
ing network simulation (middle). The right panel shows the relative deviation of the
theoretical prediction from the simulation result. Same parameter exploration as in
Fig. 4.27. Crosses mark the parameter settings for which the point of full synchrony
lies outside the regime of applicability of the theory (I full

E > Imax
E , cf. Fig. 4.27D).

Fig. 4.34 shows the same parameter exploration as Fig. 4.27C, including a numerical
estimate of the oscillation dynamics under the drift-based approximation, derived from
numerical integration of the DDE (4.51) (magenta lines). The analytical estimates are
close to the numerical results for all parameter combinations (magenta vs black/blue
lines). This confirms that the observed differences between drift-based approximation
and spiking network dynamics (markers) are indeed due to the conceptual simplifi-
cations (neglecting diffusion-mediated spiking and the single-unit reset), and not to
errors introduced by the analytical approximations in Methods Section 4.5.4.
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Figure 4.29: Performance of drift-based approximation — analytical vs nu-
merical solution. Same as Fig. 4.27C, but incl. numerical evaluation of the drift-
based approximation (magenta lines, dashed: network frequency, dotted: unit firing
rate). The error introduced by the heuristic approximations in the analytical expres-
sions (solid black, blue lines), compared to the numerical evaluation of DDE (4.51) is
small.

4.A.2 The role of the reset potential
What about the remaining two parameters, the synaptic delay ∆ and the reset potential
VR? Let’s revisit the low performance region observed above for low noise and low
coupling strength (Fig. 4.27B-D bottom left). In the above parameter exploration the
reset potential was fixed to its default value VR = 0, i.e. Vreset = −65 mV. If the noise
is very low relative to the distance between threshold and reset, the portion of active
units in a given cycle is reset far below the portion of silent units, which remain just
below threshold. If, in addition, the synaptic coupling is also weak, these disjoint pieces
will not merge back together before the previously silent portion hits the threshold and
starts the next population spike. This leads to a membrane potential distribution that
is multimodal at all times, since units that have spiked in one cycle are less likely to
spike in the next (Fig. 4.30). Such a “clustered” activity does not correspond to our
regime of interest and cannot be captured by the drift-based approximation, hence the
low performance index in (Fig. 4.27B, bottom left). The unimodality of the membrane
potential density can be restored by either increasing the reset potential (Fig. 4.31) or
the inhibitory coupling strength, in which case the drift-based approximation performs
well also at low noise (Fig. 4.32). As long as approximate unimodality is ensured, the
reset potential does not influence the performance of the approximation much.
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Figure 4.30: Multimodal membrane potential density for low noise, weak
coupling, low reset potential. A, Spiking network simulation for

√
D = 0.1, K =

2, VR = 0, Iext = 0.28 nA, N = 1000, otherwise default parameters (Table 4.3). Top:
population rate; middle: density of membrane potentials; bottom: standard deviation
of membrane potentials, dashed line: theoretical asymptote

√
D without boundary

conditions. B, Snapshots of average density of membrane potentials p(v, t) over the
course of a cycle (see color code in A). The density is multimodal at all times: a
Gaussian approximation (black line) is never a good fit. C, Average cycle dynamics.
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Figure 4.31: Unimodal membrane potential density for low noise, weak
coupling, and increased reset potential. Same parameters and outline as Fig. 4.30,
but with increased reset potential VR = 0.7 (Vreset = −56 mV).
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Figure 4.32: Drift-based approximation at low noise, depending on coupling
strength and reset potential. Same outline as Fig. 4.27C. Bottom left: Same
network configuration as bottom left in Fig. 4.27C: weak noise (

√
D = 0.1) and weak

coupling (K = 2), otherwise default parameters (Table 4.3). Increasing either the reset
potential VR (vertical axis) or the coupling strength K (horizontal axis) enhances the
fit between the drift-based approximation and the spiking network simulations. It is
mainly the simulated network dynamics that changes qualitatively (see black triangles),
due to a decrease of the reset-induced multimodality of the membrane potential density
(see examples shown in Fig. 4.30 vs Fig. 4.31 for increasing VR).

4.A.3 The role of the synaptic delay

I covaried the synaptic delay (∆ ∈ [0.5, 2] ms) with either the noise intensity or the
coupling strength (Fig. 4.33, 4.33). The performance of the drift-based approximation
is largely unaffected by the synaptic delay, which merely shifts the overall network
frequencies to higher or lower values as predicted by Brunel and Hakim (1999).

Figure 4.33: Performance of drift-based approximation depending on synap-
tic delay and coupling strength. Same outline as Fig. 4.27. Covariation of K
(vertical axis) and ∆ (horizontal axis), all other parameters are at their default value
(Table 4.3). Performance depends only weakly on the synaptic delay. The quantitative
approximation of the network frequency slightly improves for larger delay. Figure on
next page.
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Figure 4.33: Performance of drift-based approximation depending on synap-
tic delay and coupling strength. Caption on previous page.
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Figure 4.34: Performance of drift-based approximation depending on synap-
tic delay and noise intensity. Same outline as Fig. 4.27. Covariation of ∆ (vertical
axis) and

√
D (horizontal axis), all other parameters are at their default value (Ta-

ble 4.3). Performance depends only weakly on the synaptic delay. The quantitative
approximation of the network frequency slightly improves for larger delay. The noise
strength is however a larger determinant of performance.
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4.B Drift-based approximation in a network of pulse-
coupled oscillators (PCO)

In this section I want to outline how the drift-based approximation introduced in
Section 4.3.2 can be used to approximate the oscillation dynamics in a network of
pulse-coupled oscillators with a linear phase response curve mimicking the effect of an
inhibitory reversal potential.

4.B.1 Ripples in a PCO network with linear phase response
curve

The analysis in Section 4.3.4 has shown that IFA occurs for a range of external drives
that are strongly superthreshold: For any such level of drive IE individual units would
fire regularly with an intrinsic frequency ω(IE) if they were uncoupled. Instead of
representing each neuron by its membrane potential, one can thus use a more abstract
model and describe the state of each neuron i by a phase variable θi ∈ [0, 2π) that rises
linearly with speed ω.

θ̇i(t) = ω

(Mirollo and Strogatz, 1990; Abbott and van Vreeswijk, 1993; Memmesheimer and
Timme, 2006). Whenever the phase variable reaches a spike threshold of 2π a spike is
recorded and the phase is reset to 0. A Gaussian white noise is added to account for
the stochasticitiy of spiking due to background noise:

θ̇i(t) = ω +
√

2Dξi(t)

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δi,jδ(t − t′) for neurons i and j. When noise is included,
phases can become negative (θ ∈ (−∞, 2π), see zero-crossings in Fig. 4.36A, bottom).
One could also think of the oscillator phase θ as the membrane potential of a perfect
integrate-and-fire (PIF) unit. Consider a network of phase oscillators coupled via
delayed inhibitory pulses:

θ̇i(t) = ω − K

N
Z(θi(t))

∑
j

∑
k

δ(t−∆− tkj ) +
√

2Dξi(t) .

The effect of presynaptic spikes onto a postsynap-
tic unit i is scaled by a linear phase response curve
(PRC)

Z(θ) = θ − θR , θR = π/2 .

The choice of reversal phase θR is arbitrary and cho-
sen here as a small positive phase. The phase re-
sponse curve reverses the sign of the input depend-
ing on the state of the postsynaptic neuron and is Figure 4.35: Linear phase

response curve (PRC).
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intended to mimick the effect of an inhibitory reversal potential EI in the detailed ripple
model (Eq. (4.11)): For most of the phase space ([θR, 2π)) the effect of incoming spikes
is inhibitory (−KZ(θi) < 0). The closer the neuron is to crossing the spike threshold
itself (large phase θi corresponding to a membrane potential v � EI), the stronger the
inhibitory feedback. If, however, the neuron’s phase is small (θi < θR corresponding to
v < EI) the effect of incoming spikes becomes excitatory (−KZ(θi) > 0, see Fig. 4.35).

Varying the external drive in the detailed ripple model corresponds to varying
the intrinsic unit firing rate ω in the network of pulse-coupled oscillators (PCO). For
increasing intrinsic rate ω the PCO network exhibits a similar range of dynamics as the
detailed ripple model, including a transition from sparse to full synchrony (Fig. 4.36A).
The (empirical) population rate in a small time interval [t, t+ ∆t] is defined as before
as rN(t) = nspk([t,t+∆t])

N∆t (cf. Eq. (4.13)).
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Top: population rate, bot-
tom: distribution of phases
over time. Dotted lines mark
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network frequency fnet and
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middle: periodic maximum
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dard deviation of phases σ. Both µmax and σmax are theoretical quantities based on
a first passage time-approach. They were estimated in the spiking network based on
a (circular) Gaussian fit of the distribution of phases θ mod 2π. Parameters see Ta-
ble 4.5.

Instead of considering the distribution of membrane potentials over time, we can
now look at the distribution of phases p(θ, t). The average phase µ oscillates with an
amplitude defined by the two extrema µmin, µmax, that becomes larger for larger ω
(Fig. 4.36B, middle). The standard deviation of the phase distribution exhibits a clear
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trend as well: For fixed ω the standard deviation increases in each cycle, from σmin
to σmax, as the mean phase rises from µmin to µmax. For increasing ω, both σmin and
σmax decrease, corresponding to a compression of the phase distribution (Fig. 4.36B,
bottom).

The PCO network with linear PRC can thus phenomenologically account for the
network dynamics observed in an LIF network with inhibitory reversal potential (Fig. 4.12,
right).

Parameter Value Definition
N 1000 Number of oscillators
∆ 2 ms Coupling delay
K 5 Coupling strength
D 20 π2/sec Noise strength
θR π/2 Reversal phase

Table 4.5: Default parameters for the PCO network.

4.B.2 Mean-field dynamics of the PCO network
In the mean-field limit (N → ∞) the dynamics of the density of phases p(θ, t) is
described by the following Fokker-Planck equation (see also Abbott and van Vreeswijk,
1993):

∂tp(θ, t) = −∂θJ(θ, t) = −∂θ
([
ω −KZ(θ)r(t−∆)

]
p(θ, t)

)
+D∂2

θp(θ, t) .
(4.93a)

Since phases that cross the spike threshold of 2π are instantaneously reset to 0, there
is an absorbing boundary condition at threshold:

p(2π, t) = 0 . (4.93b)

The population rate is defined as the probability current through the threshold:

r(t) = J(2π, t) (4.93b)= −D∂θp(2π, t) . (4.93c)
The fire-and-reset rule introduces a discontinuity of the derivative of p at the reset
value 0:[

∂θp(θ, t)
]
0 = lim

ε→0

[
∂θp(ε, t)− ∂θp(−ε, t)

] (4.93c)= − 1
D
r(t) .

As for the LIF network, we require that the density of phases decays to zero sufficiently
fast as θ → −∞:

lim
θ→−∞

p(θ, t) = lim
θ→−∞

∂θp(θ, t) = 0 (4.93d)

Since p is a probability density, it is normalized:∫ 2π

−∞
p(θ, t) dθ = 1 ∀ t .

The stationary solution for such a network of pulse-coupled oscillators was derived by
Abbott and van Vreeswijk (1993).
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Gaussian solutions for natural boundary conditions. Let’s neglect the absorb-
ing boundary condition and the derivative discontinuity imposed by the fire-and-reset
rule and only assume natural boundary conditions (limθ→±∞ p(θ, t) = limθ→±∞ ∂θp(θ, t) =
0). Assume further that at time 0, the phases are either all identical to, or Gaussian
distributed around an initial phase θ0. The time-dependent solution of the FPE for an
uncoupled population (K = 0)

∂tp(θ, t) = −∂θ
(
ωp(θ, t)

)
+D∂2

θp(θ, t)

is then a Gaussian

p(θ, t) = 1√
2πΣ(t)

exp
−(θ − [θ0 + ωt]

)2
2Σ2(t)


with a variance

Σ(t) :=


√

2Dt , p(θ, 0) = δ(θ − θ0)√
σ2

0 + 2Dt , p(θ, 0) = 1√
2πσ0

exp
[
− (θ−θ0)2

2σ2
0

] (4.94)

that diverges to infinity in the long-time limit (Risken, 1989; Gardiner, 1985). A
stationary solution does not exist.

Now assume that the uncoupled population receives a constant amount of (feedfor-
ward) inhibition r0 > 0:

∂tp(θ, t) = −∂θ
([
ω −KZ(θ)r0

]
p(θ, t)

)
+D∂2

θp(θ, t)

In this case a stationary solution of the FPE exists and is given by a Gaussian

p(θ) = 1√
2πΣ∞

exp

−
(
θ −

[
θR + ω

Kr0

])2

2Σ2
∞

 , Σ∞ =
√

D

Kr0
.

(see Appendix Section 4.D.2). The variance Σ∞ of the Gaussian density is now finite,
due to the opposing effects of noise-induced diffusion, and inhibition-induced compres-
sion, brought about by the PRC Z with sign change. This should provide an intuition
why, in the recurrently coupled network with feedback inhibition, it is reasonable to
assume a Gaussian phase distribution.

4.B.3 Drift-based approximation of ripples and IFA in the
PCO network

Based on the same assumptions as in Section 4.5.3, I will approximate the density of
phases in the mean-field limit (N →∞) as a Gaussian

p(θ, t) = 1√
2πσ(t)

exp
−(θ − µ(t)

)2
2σ2(t)

 . (4.95a)
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The mean phase µ moves depending on the intrinsic firing rate ω and the inhibitory
feedback:

µ̇ = ω −KZ(µ)r(t−∆) (4.95b)

The standard deviation σ(t) changes over time depending on the balance between
noise-induced diffusion, and inhibition-induced compression. This is an important
difference to the drift-based approximation for the LIF network in Section 4.5.3 where
the Gaussian density had fixed width at all times. If the network exhibits oscillations
for a constant intrinsic firing rate ω, the mean phase oscillates periodically between two
local extrema µmin and µmax. For simplicity I will assume that the standard deviation
reaches its local extrema at the same time, i.e. noise-induced diffusion dominates while
the mean phase µ increases, and inhibition-induced compression dominates as the mean
phase decreases. Thus, the Gaussian density oscillates periodically between a narrow
Gauss centered around µmin:

pmin(θ) = 1√
2πσ2

min

exp
[
−(θ − µmin)2

2σ2
min

]

and a wide Gauss (σmax > σmin) centered around µmax:

pmax(θ) = 1√
2πσ2

max

exp
[
−(θ − µmax)2

2σ2
max

]

with a standard deviation evolving as

σ̇(t) =


D
σ
, if µ̇ ≥ 0 (diffusion)
−Kr(t−∆)σ , if µ̇ < 0 (compression) .

(4.95c)

The diffusion-mediated increase of the standard deviation during the upstroke of the
mean phase is a direct result of the FPE when the absorbing boundary is neglected
(see Eq. (4.94)). The ODE describing inhibition-mediated compression will be derived
in detail in Step 4 below. The drift-based population rate is derived as before for the
LIF network (cf. Eq. (4.48)):

r(t) = J(2π, t) (4.93d)=
∫ 2π

−∞
∂θJ(θ, t) dθ (4.93a)= −∂t

∫ 2π

−∞
p(θ, t) dθ

(4.95a)= −∂t
∫ 2π

−∞

1√
2πσ(t)

exp
−(θ − µ(t)

)2
2σ2(t)

 dθ

Substitute z := θ−µ(t)√
2σ(t) ,

d
dθz = 1√

2σ(t)

r(t) = −∂t
∫ 2π−µ(t)√

2σ(t)

−∞
exp

[
−z2

]
dz = −∂t

√
π

2
[
erf(z)

] 2π−µ(t)√
2σ(t)

−∞

= ∂t

√
π

2

− erf
2π − µ(t)√

2σ(t)

− 1


= exp

−(2π − µ(t)
)2

2σ2(t)

 µ̇(t)
√

2σ(t)− (2π − µ(t))
√

2σ̇(t)
2σ2(t)
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Since a rate shall only be produced during the upstroke of the mean phase, we can
assume that the standard deviation is increasing due to diffusion (Eq. (4.95c)):

r(t) = exp
−(2π − µ(t)

)2
2σ2(t)

  µ̇(t)√
2σ(t)

− (2π − µ(t))D√
2σ3(t)


The second term in the second bracket represents diffusion-mediated spiking (Plesser
and Gerstner, 2000) and will be neglected, since the mean phase during ripple oscilla-
tions undergoes strong transients such that the drift-based term O(µ̇) dominates over
the small concurrent changes in the width σ(t) of the phase density. The rate is thus
approximated as

r(t) ≈ [µ̇(t)]+√
2πσ(t)

exp
[
−(2π − µ(t))2

2σ(t)

]
. (4.95d)

A periodic solution can be found using the same steps that were described in Methods
Section 4.5.4, hence I will keep their description short. Since here both the mean and
the standard deviation of the Gaussian density are unknown, the solution has to be
found self-consistently by repeating these steps iteratively for various potential choices
for the maximal width σmax:
For every σmax:

Step 1: Find the periodic maximum µmax = µ(toff).

Step 2: Find µmin = µ(toff + ∆).

Step 3: Infer toff and the network frequency fnet.

Step 4: Infer the standard deviation at the beginning and end of the cycle and check
if they are the same (self-consistent condition).

Step 1: Approximating µmax. The time toff at which the mean phase reaches its
maximum, marks the end of the population spike. We find µmax by solving the local
extremum condition:

0 = µ̇(toff) = ω −KZ(µmax)µ̇(toff −∆) 1√
2πσmax

exp
−(2π − µ(toff −∆)

)2
2σ2

max


Again, I approximate the trajectory of µ shortly before the local maximum, taking into
account only the excitatory drive/the intrinsic firing rate (cf. Eq. (A1)):
µ̇(toff −∆) ≈ ω, and µ(toff −∆) ≈ µmax − ω∆.
The resulting equation can be solved numerically for µmax:

⇔ 1
K(µmax − θR) = 1√

2πσmax
exp

[
−(µmax − (2π + ω∆))2

2σ2
max

]
(4.96)

(see Fig. 4.37). As for the LIF network we see that µmax grows with the intrinsic firing
rate ω (previously external drive), which predicts the transition from sparse to full
synchrony.
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Figure 4.37: Numerical solution
for µmax in PCO network. Numer-
ical solution of Eq. (4.96). Black line:
left-hand side of Eq. (4.96). Colored
lines: right-hand side of Eq. (4.96) for
various intrinsic firing rates ω. Mark-
ers indicate intersections, i.e. solu-
tions µmax(ω). Vertical gray lines: re-
versal phase ΘR and spike threshold
2π. (RHS curves are shown for self-
consistently determined σmax(ω) (see
Step 4, Fig. 4.38).)

Step 2: Approximating µmin. Using the local maximum µmax as initial condition,
ODE Eq. (4.95b) is integrated over one delay period ∆, taking into account the feedback
inhibition, in order to find the approximate local minimum

µmin := µ(toff + ∆)

≈ θR + (µmax − θR) exp(φ(∆)− φ(0)) + ω exp(φ(∆))
∫ ∆

0
exp

(
−φ(t̄)

)
dt̄ (4.97)

with

φ(t) := K

2 erf
(

2π − µmax + ω(∆− t)√
2σmax

)
.

The integration of the inhibitory feedback was simplified by approximating the width
of the Gaussian density during the population spike as constant (σmax). One could
also take into account its widening due to diffusion, and solve the integrals for the
inhibitory feedback numerically.

Step 3: Inferring the network frequency. As for the LIF network, the period of
the network oscillation is estimated as the sum of the upstroke time, required for the
mean phase to rise from µmin to µmax, and the imposed downstroke time of ∆:

fnet = (toff + ∆)−1 (4.98)

with

toff ≈
µmax − µmin

ω
(cf. Eq. (A1)) .

The saturation and mean unit firing rate can be inferred as before:

funit = s · fnet , s =
∫ ∞

2π
pmax(θ) dθ = 1

2

1− erf
[

2π − µmax√
2σmax

]
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Step 4. Inferring σmin. At time toff the Gaussian density has reached its maximal
width σmax. We can now infer the width of the Gaussian density at the beginning and
end of the cycle. For a periodic solution these widths should be identical (σmin):

Gaussian width at the end of the cycle. Thinking forward in time, we can calculate
the compression of the density due to the inhibitory feedback. Consider the upper and
lower “edges” of the Gaussian density σu(t) = µ(t) + 3σ(t) and σl(t) = µ(t) − 3σ(t).
If we ignore diffusion during the downstroke of the mean phase, the trajectory of the
edges is described by the same ODE as the mean phase µ (Eq. (4.95b)):

σ̇u(t) = ω −KZ(σu)r(t−∆) , σu(toff) = µmax + 3σmax

σ̇l(t) = ω −KZ(σl)r(t−∆) , σl(toff) = µmax − 3σmax

The standard deviation of the Gaussian during the downstroke is then given by
σ(t) = (σu(t)− σl(t))/6 and is described by the following ODE (cf. Eq. (4.95c)):

σ̇(t) = 1
6

d
dt
(
σu(t)− σl(t)

)
= −1

6Kr(t−∆)
(
Z(σu)− Z(σl)

)
= −KZ(σ)r(t−∆)

due to the linearity of the PRC Z. We can thus integrate the trajectory of the standard
deviation during the downstroke, starting from the initial value σ(toff) = σmax and find
the compressed width of the Gaussian density at the end of the cycle:

σ(toff + ∆) = σmax exp
[
φ(∆)− φ(0)

]
. (4.99)

Gaussian width at the beginning of the cycle. Thinking backwards in time, we
can calculate how narrow the Gaussian density must have been at the beginning of the
cycle (time 0), in order for it to diffuse precisely to width σmax over the time toff of the
upstroke:

σmax
!=
√
σ2(0) + 2Dtoff (see Eq. (4.95c))

⇔ σ(0) =
√
σ2

max − 2Dµmax − µmin

ω
(4.100)

A self-consistent solution must fulfill

σ(toff + ∆) != σ(0) =: σmin . (4.101)

Steps 1-4 are thus repeated for various choices of σmax, until a self-consistent solution
is found (Fig. 4.38).
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Figure 4.38: Self-consistent solu-
tion for the PCO oscillation dy-
namics. Solid lines: Gaussian width
σ(toff + ∆) at the end of the cycle
(Eq. (4.99)). Dashed lines: Gaus-
sian width σ(0) at the beginning of
the cycle (Eq. (4.100)). Both shown
for a range of intrinsic firing rates ω
and widths σmax. Intersections (round
markers) indicate self-consistent solu-
tions

(
σmin(ω), σmax(ω)

)
(Eq. (4.101)).

The self-consistent periodic solutions (µmax, µmin, σmax, σmin, fnet, funit) for various
intrinsic firing rates ω are shown in Fig. 4.36 (solid lines). As in the LIF case, the
match with the PCO spiking network simulations is not perfect, due to the simplifica-
tion of only considering drift-mediated spiking. The qualitative dynamics are however
captured well: Both the mean and the standard deviation of the phase density exhibit
a clear trend for increasing intrinsic firing rates ω. We can thus expect a similar speed-
dependent hysteresis in the PCO network, when the intrinsic firing rate is changed over
time (corresponding to transient SPW-like input).

As for the LIF network, the core mechanism of IFA in the PCO network can be
illustrated for the case of piecewise constant drive (now: intrinsic rate ω, Fig. 4.39).
Since both the mean µmin and standard deviation σmin are decreasing functions of the
intrinsic rate ω (Fig. 4.36), a hysteresis emerges in both variables, when ω changes after
each cycle. A typical cycle during the upstroke of ω begins with a phase distribution of
slightly increased mean and standard deviation (compared to the asymptotic dynamics,
Fig. 4.39A, left, orange markers vs lines), and is thus shorter (f inst

net = 192.9 Hz vs
180.8 Hz). Vice versa, a cycle during the downstroke is slightly longer, since it begins
with a phase distribution of lower mean and standard deviation (Fig. 4.39A, right,
orange markers vs lines, f inst

net = 168.6 Hz vs 180.8 Hz). A SPW-like drive, that first
increases and then decreases the intrinsic rate ω over a short period of time (Fig. 4.39B,
bottom), thus induces IFA (Fig. 4.39B, top).

In summary, the drift-based approximation, presented in Section 4.3.2 for a current-
based LIF network, can be applied in an analogous way for a PCO network that
accounts for inhibitory reversal potentials phenomenologically with a linear phase re-
sponse curve. The theory predicts the emergence of IFA due to the same, speed-
dependent hysteresis, here however in two variables, namely the mean and standard
deviation of the phase distribution. I chose to present the LIF network in the main
text, as it allows the derivation of closed-form expressions for the network frequency,
and membrane potential oscillation amplitude, whereas the PCO network requires a
self-consistent solution scheme. The analysis shows that inhibitory reversal potentials
are not a necessary ingredient for IFA (see current-based LIF network), but can be
incorporated in the theory by taking into account both the mean and the standard
deviation of the phase distribution over time and for different levels of drive (PCO
network).
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Figure 4.39: Drift-based ap-
proximation of IFA in the
PCO network. A, Depen-
dence of the length of the oscil-
lation cycle on the initial mean
and standard deviation of the
Gaussian phase distribution (cf.
Fig. 4.9A). Top: population rate;
middle: Gaussian phase distri-
bution with mean µ(t) (black);
bottom: standard deviation σ(t)
of the gaussian density shown
above (grey area). Note the
small differences in the initial
phase distributions (time 0):
Left: shorter period for µmin >
µ∞min(ω), σmin > σ∞min(ω) (orange
marker vs. dashed line). Middle:
asymptotic period for µmin =
µ∞min(ω), σmin = σ∞min(ω). Right:
longer period for µmin < µ∞min(ω),
σmin < σ∞min(ω). In all exam-
ples the intrinsic firing rate was
ω = 170 Hz. Traces were inte-
grated numerically (Eqs. (4.95)).
B, IFA for piecewise constant in-
trinsic firing rate ω with symmet-
ric step height (cf. Fig. 4.9C).
Top to bottom: network fre-
quency, mean phase, standard
deviation of Gaussian phase dis-
tribution, intrinsic firing rate.
Shaded areas mark oscillation cy-
cles. Solid lines indicate asymp-
totic dynamics associated to the
intrinsic firing rate ω of the re-
spective cycle. Markers indicate
transient behavior. Cyan: µmax;

orange: µmin. Top: the instantaneous network frequency (markers) is first above and
then below the resp. asymptotic network frequencies (black line). All quantities are
the result of the (semi-) analytical approximation described above.
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4.C Auxiliary calculations for piecewise linear drive

4.C.1 Comparison of µmax for constant and linear drive
The transient µmax for piecewise linear drive is found numerically by solving Eq. (4.84)
(Fig. 4.40). The solution µmax(ÎE,m, µ

i
min) does not deviate much from the asymptotic

µ∞max(Î iE), since the left- and right-hand side of Eq. (4.84) are both Gaussian functions
centered around the same mean. The solution can be approximated by noting that the
denominator of the left-hand side is generally large, if we assume that the network is
somewhere between sparse and full synchrony (s ≤ 1, i.e. µmax ≤ VT + 3

√
D � Î iE.

Hence we can approximate Î iE − µmax as a constant C ≥ Î iE − VT − 3
√
D. Eq. (4.84)

can then be solved analytically:

m∆Kp(VT , tioff −∆)
C

= K e
∆
τm p(VT , tioff −∆)− 1

⇔ 1 =
(

e
∆
τm −m∆

C

)
Kp(VT , tioff −∆)

(4.83)⇔ 0 = ln
(

e
∆
τm −m∆

C

)
+ ln

(
K√
2πD

)
− (VT − IE(1− e∆/τm)− µmax e∆/τm)2

2D

⇔ µmax =
(

1− e−
∆
τm

)
IE + e−

∆
τm

VT −
√√√√√2D

ln
(

e
∆
τm −m∆

C

)
+ ln

(
K√
2πD

)



= µ∞max(IE), m = 0 (cf. Eq. (4.58))
& µ∞max(IE), m > 0
. µ∞max(IE), m < 0

The slope-dependent term appears in the logarithm and thus generally introduces only
a small deviation of µmax from the asymptotic µ∞max(IE). An upper bound of the
deviation from µ∞max(IE) can be calculated by using C = IE − VT − 3

√
D (Fig. 4.40,

blue line).
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Figure 4.40: Numerical solu-
tion for µmax under linear drive.
RHS/LHS: right- and left-hand side of
Eq. (4.84). Default parameters (Ta-
ble 4.3), IE = 5,m = 0.4/ms. Devia-
tion of transient µmax(Î iE,m, µimin) from
the asymptotic µ∞max(Î iE) depends on
sgn(m): For positive slope m > 0, µmax
is slightly larger (as shown here), for
negative slope µmax is slightly smaller.
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4.C.2 A solvability condition for the initial mean membrane
potential

The expression Eq. (4.85) for the length of the upstroke toff in a cycle i with initial value
µmin, local maximum µmax, and linear drive IE(t) = ÎE +m(t− toff) (superscript i was
dropped for readability) contains the Lambert W function, which only has solutions
for arguments larger than − exp(−1). Thus, the following condition must be satisfied
(see Eq. (4.85)):

− e−1 !
<
ÎE −mτm − µmax

mτm
exp

−1 + ÎE − µmin

mτm


For any reference drive ÎE we can distinguish multiple cases.
Case 1: m > 0
1a: If mτm < ÎE − µmax, the above condition is equivalent to

−1 !
<

 ÎE − µmax

mτm
− 1


︸ ︷︷ ︸

>0

e
ÎE−µmin
mτm > 0 so solutions exist for all µmin.

1b: If mτm > ÎE − µmax:

−1 !
<
ÎE −mτm − µmax

mτm︸ ︷︷ ︸
<0

e
ÎE−µmin
mτm ⇔ − mτm

ÎE −mτm − µmax︸ ︷︷ ︸
>0

!
> e

ÎE−µmin
mτm

⇔ µmin
!
> ÎE −mτm log

− mτm

ÎE −mτm − µmax


(cf. solvability condition Eq. (4.86) for the initial mean membrane potential µmin).
Case 2: m < 0

−1 !
<

 ÎE − µmax

mτm
− 1


︸ ︷︷ ︸

<0

e
ÎE−µmin
mτm ⇔ − mτm

ÎE −mτm − µmax︸ ︷︷ ︸
>0

!
> e

ÎE−µmin
mτm

⇔ µmin
!
< ÎE−mτm log

− mτm

ÎE −mτm − µmax


︸ ︷︷ ︸

>0

> ÎE

So solutions exist for all initial values µmin < ÎE (this condition is always satisfied).

4.C.3 Decomposition of total input current under linear drive
Here I derive the seperation of the total current I during the membrane potential
downstroke into a stationary part, and a part arising from the linearly changing drive
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(Eq. (4.89)). Again p(VT , t) is abbreviated as p(t) for readability.

I(t+ toff) (4.45)= IE(t+ toff)−Kτmr(t+ toff −∆) , 0 ≤ t ≤ ∆
(4.49)= IE(t+ toff)−Kτm[µ̇(toff − (∆− t))︸ ︷︷ ︸

≥0 ∀ t∈[0,∆]

]+p(toff − (∆− t))

(4.44)= IE(t+ toff)−Kτm
1
τm

[I(toff − (∆− t))− µ(toff − (∆− t))]p(toff − (∆− t))

(4.45)= IE(t+ toff)−Kp(toff − (∆− t))
·
[
IE(toff − (∆− t))−Kτmr(toff − (2∆− t))− µ(toff − (∆− t))

]
(4.102)

For the times toff − (2∆− t) ∈ [toff − 2∆, toff −∆] the rate is approximated as

r(toff − (2∆− t)) =
[
µ̇(toff − (2∆− t))

]
+ p

(
VT , toff − (2∆− t)

)
(A1)
≈ 1

τm

[
IE(toff − (2∆− t))− µ(toff − (2∆− t))

]
p(toff − (2∆− t)) .

Inserting this approximation in Eq. (4.102) yields:

I(t+ toff) ≈ IE(t+ toff)−Kp(toff − (∆− t))
[
IE(toff − (∆− t))− µ(toff − (∆− t))

−Kp(toff − (2∆− t))
[
IE(toff − (2∆− t))− µ(toff − (2∆− t))

]]
(4.103)

We already approximated the trajectory of µ during the upstroke in Step 1 (Eq. (4.83)):

⇒ IE(toff − x)− µ(toff − x)
(4.83)
≈

(
IE(toff)− µmax

)
ex/τm −mx

Using this approximation in Eq. (4.103) (and abbreviating p(·) as p(·) for readability)
yields:

I(t+ toff) ≈ IE(toff) +mt−Kp(toff − (∆− t))
[ (
IE(toff)− µmax

)
e(∆−t)/τm −m(∆− t)

−Kp(toff − (2∆− t))
[ (
IE(toff)− µmax

)
e(2∆−t)/τm −m(2∆− t)

]]
= Istat(t+ toff) + Im(t+ toff) (4.104)

where

Istat(t+ toff) = ÎE −Kp(toff − (∆− t))
(
ÎE − µmax

)
e(∆−t)/τm

+K2p(toff − (∆− t))p(toff − (2∆− t))
(
ÎE − µmax

)
e(2∆−t)/τm

Im(t+ toff) = mt+Kp(toff − (∆− t))m(∆− t)
−K2p(toff − (∆− t))p(toff − (2∆− t))m(2∆− t) .
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4.D Background on Fokker-Planck Equations and
linear response

4.D.1 The Fokker-Planck Equation for leaky integrate-and-
fire (LIF) neurons

The Langevin Equation

τmẋi = −xi + I(t) +
√

2Dτmξi(t) (4.105)

has the associated Fokker-Planck Equation (FPE)

τm∂tp(x, t) = −∂x
((
I(t)− x

)
p(x, t)

)
+D∂2

xp(x, t) . (4.106)

The FPE can also be written as a continuity equation

⇔ ∂tp(x, t) = −∂xJ(x, t) (4.107)

with the probability current

J(x, t) :=
( 1
τm

(
I(t)− x

)
p(x, t)

)
− D

τm
∂xp(x, t) . (4.108)

4.D.1.1 Natural boundary conditions

First, I will solve the FPE Eq. (4.106) with natural boundary conditions

p(±∞, t) = ∂xp(x, t)|±∞ = 0 (4.109)

given either a Dirac Delta or a Gaussian distribution as initial condition:

p(x, 0) = δ(x− x0) ∨ p(x, 0) = 1√
2πσ0

exp
[
−(x− x0)2

2σ2
0

]
.

Steady-state solution. The steady-state solution of the FPE Eq. (4.106) with nat-
ural boundary conditions is given by:

p(x) = 1√
2πσ∞

exp
(
−(x− I)2

2σ2
∞

)
with σ2

∞ := D . (4.110)

Proof
Setting ∂tp(x, t) = 0 yields

∂x

(
−
(
I − x

)
p(x) +D∂xp(x)

)
= 0

⇒ −
(
I − x

)
p(x) +D∂xp(x) = const. = 0 , since p(±∞) = ∂xp(x)|±∞ = 0

(4.111)



128 Chapter 4. The bifurcation-based inhibitory ripple model

The solution of this ODE is found as∫ 1
p
dp = 1

D

∫ (
I − x

)
dx

⇒ ln(p) = 1
D

(
Ix− 1

2x
2
)

+ const.

⇒ p(x) = exp
(
−x

2 − 2Ix+ const.
2D

)
= c exp

(
−(x− I)2

2D

)
Using the normalization condition of p as a probability density and substituting
τ := x−I√

2D , dτ/ dx = 1√
2D , we can find the constant c:∫ ∞

−∞
p(x) dx = c

√
2D

∫ ∞
−∞

exp(−τ 2) dτ = c
√

2πD != 1 ⇒ c = 1√
2πD

⇒ p(x) = 1√
2πσ∞

exp
(
−(x− I)2

2σ2
∞

)
, σ∞ =

√
D �

Time-dependent solution. If the initial condition is either a Dirac Delta distribu-
tion or a Gaussian, the time-dependent solution of the FPE Eq. (4.106) with natural
boundary conditions is given by:

p(x, t) = 1√
2πσ(t)

exp
[
−(x− xav(t))2

2σ2(t)

]
(4.112)

where

xav(t) :=
(
x0 e−t/τm + 1

τm

∫ t

0
e−(t−t̄)/τm I(t̄) dt̄

)

σ2(t) :=


D
(
1− e−2t/τm

)
, p(x, 0) = δ(x− x0)

σ2
0 e−2t/τm +D

(
1− e−2t/τm

)
, p(x, 0) = 1√

2πσ0
exp

[
− (x−x0)2

2σ2
0

]
(Uhlenbeck and Ornstein, 1930, see also Eqs. (5.22)ff in Risken, 1989, 3.8.4 in Gardiner,
1985).
Proof
At first we will make no assumption on the initial condition p(x, 0). We take the Fourier
transform on both sides of the FPE:

p̃(ω, t) :=
∫ ∞
−∞

e−iωx p(x, t) dx , initial condition: p̃(ω, 0) =
∫ ∞
−∞

e−iωx p(x, 0) dx

τm∂tp̃(ω, t) =
∫ ∞
−∞

e−iωx ∂tp(x, t) dx (4.107)= −
∫ ∞
−∞

e−iωx ∂xJ(x, t) dx

= −
[
e−iωx J(x, t)

]∞
−∞︸ ︷︷ ︸

=0 (bc)

−iω
∫ ∞
−∞

e−iωx J(x, t) dx

= iω
(
− I(t)

∫ ∞
−∞

e−iωx p dx︸ ︷︷ ︸
=p̃

+
∫ ∞
−∞

e−iωx xp dx︸ ︷︷ ︸
=i∂ω p̃ (4.113)

+D
∫ ∞
−∞

e−iωx ∂xp dx︸ ︷︷ ︸
=iωp̃ (4.114)

)

= −iωI(t)p̃− ω∂ωp̃− ω2Dp̃ = −
(
ω2D + iωI(t)

)
p̃− ω∂ωp̃
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The following auxiliary calculations have been used above:

∂ωp̃(ω, t) = −i
∫ ∞
−∞

e−iωx xp(x, t) dx (4.113)∫ ∞
−∞

e−iωx ∂xp dx = [e−iωx p]︸ ︷︷ ︸
=0

+iω
∫ ∞
−∞

e−iωx p dx︸ ︷︷ ︸
=p̃

= iωp̃ (4.114)

The PDE in Fourier space is only first order and can be solved by the method of
characteristics:

τm∂tp̃(ω, t) + ω∂ωp̃(ω, t) = −
(
ω2D + iωI(t)

)
p̃ (4.115)

For a parametrisation (t(s), ω(s)) = (τms, ω0 es), such that
dt
ds = τm ,

dω
ds = ω

a characteristic ODE can be inferred from the PDE as
d

dsp̃(ω(s), t(s)) = dt
ds∂tp̃(ω(s), t(s)) + dω

ds ∂ωp̃(ω(s), t(s))

= τm∂tp̃(ω(s), t(s)) + ω∂ωp̃(ω(s), t(s))
(4.115)= −

(
ω2(s)D + iω(s)I(τms)

)
p̃(ω(s), t(s))

This ODE can be solved via variation of the constant:

⇒ ln(p̃) = −D
∫
ω2(s)ds− i

∫
ω(s)I(τms)ds

= −Dω
2
0

2 e2s−iω0

∫
ezI(τmz) dz + const.

⇒ p̃(s) = c exp
[
−Dω

2
0

2 e2s−iω0

∫ s

0
ezI(τmz) dz

]

We find the constant c using the initial condition:

p̃(0) = c exp
[
−Dω

2
0

2

]
!= p̃(ω0, 0) ⇒ c = p̃(ω0, 0) exp

[
Dω2

0
2

]

⇒ p̃(s) = p̃(ω0, 0) exp
[
Dω2

0
2

(
1− e2s

)
− iω0

∫ s

0
ez I(τmz) dz

]

Resubstitute s = t/τm, ω0 = ω e−t/τm :

p̃(ω, t) = p̃(ω e−t/τm , 0) exp
[
Dω2

2
(
e−2t/τm −1

)
− iω 1

τm

∫ t

0
e−(t−t̄)/τm I(t̄) dt̄︸ ︷︷ ︸

=:κ∗I

]

with membrane filter κ(t) := 1/τm e−t/τm . Taking the inverse Fourier transform yields

p(x, t) = 1
2π

∫ ∞
−∞

eiωx p̃(ω, t) dω

= 1
2π

∫ ∞
−∞

p̃(ω e−t/τm , 0) exp
[
iωx+ Dω2

2
(
e−2t/τm −1

)
− iωκ ∗ I(t)

]
dω
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One can now distinguish different initial conditions:
1: Dirac Delta

p(x, 0) = δ(x− x0)

⇒ p̃(ω, 0) =
∫ ∞
−∞

e−iωx p(x, 0) dx = e−iωx0

It follows:

p(x, t) = 1
2π

∫ ∞
−∞

p̃(ω e−t/τm , 0) exp
[
iωx+ Dω2

2
(
e−2t/τm −1

)
− iωκ ∗ I(t)

]
dω

= 1
2π

∫ ∞
−∞

exp

iωx+ Dω2

2
(
e−2t/τm −1

)
− iω

(
x0 e−t/τm +κ ∗ I(t)

)
︸ ︷︷ ︸

=:xav(t)

 dω

= 1
2π

∫ ∞
−∞

exp
[
iωx+ Dω2

2
(
e−2t/τm −1

)
− iωxav(t)

]
dω

= 1
2π

∫ ∞
−∞

exp

− D2
(
1− e−2t/τm

)
︸ ︷︷ ︸

a

ω2 + iω (x− xav(t))︸ ︷︷ ︸
b

 dω

Use:
∫∞
−∞ e

−aω2+iωb dω =
√
π/ae−b

2/4a:

= 1
√

2π
√
D
(
1− e−2t/τm

) exp

− (x− xav(t))2

2D
(
1− e−2t/τm

)


= 1√
2πσ(t)

exp
[
−(x− xav(t))2

2σ2(t)

]
, σ2(t) = D

(
1− e−2t/τm

)
(4.116)

2: Gaussian

p(x, 0) = 1√
2πσ0

exp
[
−(x− x0)2

2σ2
0

]

⇒ p̃(ω, 0) =
∫ ∞
−∞

e−iωx 1√
2πσ0

exp
[
−(x− x0)2

2σ2
0

]
dx

= 1√
2πσ0

∫ ∞
−∞

exp
[
−iωx− 1

2σ2
0
x2 + 2x0x

2σ2
0
− x2

0
2σ2

0

]
dx

= 1√
2πσ0

e
−
x2
0

2σ2
0

∫ ∞
−∞

exp
[
− 1

2σ2
0
x2 + ix(−ω − ix0

σ2
0
)
]

dx

= 1√
2πσ0

e
−
x2
0

2σ2
0

√
π2σ2

0 exp
−(ω + ix0

σ2
0
)2

4 2σ2
0


= exp

− x2
0

2σ2
0
− σ2

0
2

(
ω2 + 2iω x0

σ2
0
− x2

0
σ4

0

)
= exp

[
−σ

2
0

2 ω
2 − iωx0

]
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It follows:

p(x, t) = 1
2π

∫ ∞
−∞

p̃(ω e−t/τm , 0) exp
[
iωx+ Dω2

2
(
e−2t/τm −1

)
− iωκ ∗ I(t)

]
dω

= 1
2π

∫ ∞
−∞

eiωx exp
[
−
(
σ2

0
2 e−2t/τm +D2

(
1− e−2t/τm

))
︸ ︷︷ ︸

=: 1
2σ

2(t)

ω2

− iω
(
x0 e−t/τm +κ ∗ I(t)

)
︸ ︷︷ ︸

=:xav(t)

]
dω

= 1
2π

∫ ∞
−∞

exp
[
−1

2σ
2(t)ω2 + iω(x− xav(t))

]
dω

Use:
∫∞
−∞ e

−aω2+iωb dω =
√
π/ae−b

2/4a:

= 1
2π

√
2π
σ2(t) exp

[
−(x− xav(t))2

2σ2(t)

]
= 1√

2πσ(t)
exp

[
−(x− xav(t))2

2σ2(t)

]
�

General initial condition
The solution for an arbitrary initial condition p0(x) (that satisfies the normalization
condition

∫∞
−∞ p0(x) dx = 1) can be found by convolution with the solution pδ(x, t|x0)

for initial Dirac delta distribution δ(x− x0) (Eq. (4.116)):

p(x, t) =
∫ ∞
−∞

p0(x0)pδ(x, t|x0) dx0 (4.117)

=
∫ ∞
−∞

p0(x0) 1√
2πσ(t)

exp
[
−(x− xav(t))2

2σ2(t)

]
dx0

Since x∞av := limt→∞ xav(t) is independent of the initial condition x0, we get the long-
time limit:

lim
t→∞

p(x, t) = 1√
2πD

exp
[
−(x− x∞av)2

2D

] ∫ ∞
−∞

p0(x0) dx0︸ ︷︷ ︸
=1

(4.118)

So for any “well-behaved” initial condition the solution will become Gaussian density
with fixed variance D in the long time limit t→∞.
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4.D.1.2 Absorbing boundary condition and source term

If units are reset to xR when they reach a threshold xT (fire-and-reset rule), the fol-
lowing combination of boundary conditions arises for the FPE (4.106):

lim
x→−∞

p(x, t) = lim
x→−∞

∂xp(x, t) = 0 natural boundary (4.119a)

p(xT , t) = 0 absorbing boundary
(4.119b)

∂xp(xT , t) = −τm
D
r(t) rate (4.119c)[

∂xp(x, t)
]
xR

:= lim
ε→0

(
∂xp(xR + ε, t)− ∂xp(xR − ε, t)

)
= −τm

D
r(t) source term in xR (4.119d)∫ xT

−∞
p(x, t) dx = 1 ∀ t , normalization (4.119e)

The population rate is defined as the probability current through the threshold:

r(t) := J(xT , t) (4.119f)

I assume here that there is no refractory period.

Steady-state solution The steady-state solution of the FPE Eq. (4.106) with con-
stant current I(t) ≡ I and boundary conditions Eqs. (4.119) is given by:

p(x) = τmr0

D
e−

(x−I)2
2D

∫ xT

x
e

(s−I)2
2D Θ(s− xR) ds (4.120)

=


τmr0
D

e−
(x−I)2

2D
∫ xT
xR

e
(s−I)2

2D ds, x < xR
τmr0
D

e−
(x−I)2

2D
∫ xT
x e

(s−I)2
2D ds, x > xR

with stationary rate

r0 =
√πτm ∫ I−xR√

2D

I−xT√
2D

ey2 erfc(y) dy
−1

(4.121)

(Brunel and Hakim, 1999).

Proof
In the stationary state the population rate r is constant over time:

r(t) ≡ r0

To find the stationary solution of the FPE we set the time-derivative of the density of
membrane potentials p to zero:

∂tp(x, t) = −∂xJ(x) = 0
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It follows that the probability current J must be constant (with a discontinuous jump
at xR due to the source term, Eq. (4.119d)):

J(x) (4.108)=
( 1
τm

(
I − x

)
p(x)

)
− D

τm
∂xp(x) = const.

(4.119f)
(4.119d)=

r0 , x > xR

0 , x < xR

The FPE in the steady state is thus reduced to an ODE (from here on I denote the
derivative w.r.t. x by ′):

⇔ p′ − 1
D

(
I − x

)
p =

−
τm
D
r0 , x > xR

0 , x < xR

which can be rewritten using the heaviside function Θ:

⇔ p′ − 1
D

(
I − x

)
p = −τm

D
r0Θ(x− xR)

The ODE can be solved by the method of integrating factors: Both sides are multiplied
by an integrating factor u(x) which is chosen such that the left hand side of the ODE
is equal to d

dx(up).

⇔ up′ + u
1
D

(
x− I

)
p︸ ︷︷ ︸

!= d
d x (up)=u′p+up′

= −τm
D
r0Θ(x− xR)u

⇒ u′ = u
1
D

(
x− I

)
u(x) = c exp

(x− I)2

2D

 (The constant is chosen as c = 1.)

The ODE now has the form
d

dx(up) = −τm
D
r0Θ(x− xR)u

which can be integrated to find p:

⇔ p(x) = −1
u

τm
D
r0

(∫ x

0
u(s)Θ(s− xR) ds+ C

)

= −τm
D
r0 exp

−(x− I)2

2D

(∫ x

0
u(s)Θ(s− xR) ds+ C

)
The integration constant C is determined by the absorbing boundary condition at
threshold, Eq. (4.119b):

p(xT ) = −τm
D
r0 exp

−(xT − I)2

2D

(∫ xT

0
u(s)Θ(s− xR) ds+ C

)
(4.119b)= 0

⇔ C = −
∫ xT

0
u(s)Θ(s− xR) ds

⇔ p(x) = τm
D
r0 exp

−(x− I)2

2D

 ∫ xT

x
u(s)Θ(s− xR) ds �
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(cf. Eq. (3.10) in Brunel and Hakim, 1999).
The stationary rate r0 is found using the normalization condition (4.119e):

1 !=
∫ xT

−∞
p(x) dx

=
∫ xT

−∞

τm
D
r0 exp

−(I − x)2

2D

(∫ xT

x
u(s)Θ(s− xR) ds

)
dx

Substitute v := (x− I)/
√

2D, dv/ dx = 1/
√

2D :

=
√

2 τm√
D
r0

∫ xT−I√
2D

−∞
e−v2

∫ xT−I√
2D

√
2Dv+I

exp
(I − s)2

2D

Θ(s− xR) ds dv

Substitute y := (s− I)/
√

2D, dy/ ds = 1/
√

2D:

= 2τmr0

∫ xT−I√
2D

−∞

∫ xT−I√
2D

v
ey2−v2 Θ

(
y − xR − I√

2D

)
dy dv

The integration boundaries can be exchanged as shown in Eq. (4.122):

= 2τmr0

∫ xT−I√
2D

xR−I√
2D

∫ y

−∞
ey2−v2 dv dy = 2τmr0

∫ I−xR√
2D

I−xT√
2D

ey2
∫ ∞
y

e−v2 dv dy

⇔ r0 =
√πτm ∫ I−xR√

2D

I−xT√
2D

ey2 erfc(y) dy
−1

�

Auxiliary calculation: exchange of integration boundaries∫ XT

−∞

∫ XT

v
f(y, v)Θ (y −XR) dy dv =

∫ XT

XR

∫ y

−∞
f(y, v) dv dy (4.122)

4.D.2 The Fokker-Planck Equation for pulse-coupled oscilla-
tors with linear phase response curve

The Langevin Equation

ẋ = ω −KZ(x)r0 +
√

2Dξ(t)

with constant (external) inhibition r0, scaled by a linear PRC Z(x) = x − θR has the
associated Fokker-Planck Equation (FPE)

∂tp(x, t) = −∂x
( [
ω −KZ(x)r0

]
p(x, t)

)
+D∂2

xp(x, t) . (4.123)

Steady-state solution for natural boundary conditions. The steady-state so-
lution of the FPE (4.123) with natural boundary conditions

lim
x→±∞

p(x, t) = ∂xp(x, t) = 0 (4.124)
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and normalization condition
∫∞
−∞ p(x, t) dx = 1, is given by:

p(x) = 1√
2πΣ∞

exp

−
(
x− ω+θ0Kr0

Kr0

)2

2Σ2
∞

 , Σ∞ =
√

D

Kr0
. (4.125)

Proof Abbreviating the drift term as A(x) := ω −KZ(x)r0 and setting ∂tp(x, t) = 0
yields:

∂x
(
−A(x)p(x) +D∂xp(x)

)
= 0

⇔ −A(x)p(x) +D∂xp(x) = const. (4.124)= 0 ⇔ ln(p) = 1
D

∫ x

0
A(x̄) dx̄+ const.

p(x) = c exp
[

1
D

∫ x

0
A(x̄) dx̄

]
= c exp

[
1
D

∫ x

0
(ω −KZ(x̄)r0) dx̄

]

= c exp
[

1
D

(
ωx−Kr0

∫ x

0
Z(x̄) dx̄

)]
= c exp

 1
D

ωx−Kr0

(
1
2x

2 − θRx
)



= c exp

−x2 − 2
(

ω
Kr0

+ θR
)
x

2D/Kr0

 = c exp

−
(
x− ω+θRKr0

Kr0

)2
−
(
ω+θRKr0
Kr0

)2

2D/Kr0



=: c̃ exp

−
(
x− ω+θRKr0

Kr0

)2

2D/Kr0


The constant c̃ is determined by the normalization condition:

p(x) = 1√
2πΣ∞

exp

−
(
x− ω+θRKr0

Kr0

)2

2Σ2
∞

 , Σ∞ =
√

D

Kr0

4.D.3 Linear response
This section follows the derivation in the lecture notes “Neural Noise and Neural Sig-
nals” by Benjamin Lindner (2018, Section 6.2). Following their notation, the Fourier
transform is defined with a sign change compared to the rest of the dissertation (and
Brunel and Hakim (1999)):

f̃(ω) :=
∫ ∞
−∞

f(t)e+iωt dt (4.126)

Time and frequency are denoted in units of the membrane time constant and its inverse
respectively.

Consider a general integrate-and-fire (IF) unit with an unspecified nonlinearity f ,
that is subject to Gaussian white noise of intensity D, a mean drive µ, and a weak
periodic perturbation s(t) := ε e−iωt of angular frequency ω (ε > 0 small):

V̇ = f(V ) + µ+ ε e−iωt +
√

2Dξ(t)
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The nonlinearity f and the mean drive µ define a potential U(v) that determines the
unit’s subthreshold dynamics:

= −U ′(V ) + ε e−iωt +
√

2Dξ(t)

The associated Fokker-Planck Equation reads:

∂tP (V, t) = ∂V
[ (
U ′(V )− ε e−iωt +D∂V

)
P (V, t)

]
︸ ︷︷ ︸

=:−J(V,t)

+r(t− τref)δ(V − VR)

= LP (V, t)− ε e−iωt ∂V P (V, t) + r(t− τref)δ(V − VR) (4.127)

with the operator

L[·] := ∂V

( (
U ′(V ) +D∂V

)
[·]
)

(4.128)

The boundary conditions are given by:

P (VT , t) = 0 (4.129a)

r(t) = J(VT , t) = −D ∂P

∂V

∣∣∣∣∣
VT

(4.129b)

lim
V→−∞

P (V, t) = 0 (4.129c)

As a probability density P (V, t) is normalized:
∫ ∞
−∞

P (V, t) dV =
∫ VT

−∞
P (V, t) dV = 1 ∀ t (4.129d)

The jump discontinuity at the reset potential has been incorporated directly into the
FPE as a source term.

Given the periodic drive, both the density P and the rate r will settle into periodic
solutions (after initial conditions have been forgotten). Such periodic solutions of
angular frequency ω must satisfy:

P

(
V, t+ 2π

ω

)
= P (V, t), r

(
t+ 2π

ω

)
= r(t)

Since the drive is weak (∼ O(ε)) one can expand both the rate and the voltage density
in ε and consider only the terms up to first order.

Expanding r: For the rate we assume there is an (unknown) function G that de-
scribes the linear response to a weak periodic drive s:

r(t) ≈ r0 +G ∗ s(t) = r0 +
∫ t

−∞
G(t− t′)s(t′)dt′ = r0 + ε

∫ t

−∞
G(t− t′) e−iωt′ dt′

= r0 + ε
∫ t

−∞
G(t− t′) eiω(t−t′) dt′ e−iωt = r0 + ε

∫ ∞
0

G(s) eiωs ds e−iωt
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G should be a causal filter (G(t < 0) = 0), hence one can extend the lower integration
boundary to −∞:

= r0 + ε
∫ ∞
−∞

G(s) eiωs ds e−iωt

= r0 + εG̃(ω) e−iωt

Expanding P : The first order linear expansion of the solution of the FPE will in general
be given by the stationary solution P0 plus a term of order ε that is ω-periodic in time
and has an unknown voltage-dependence:

P (V, t) ≈ P0(V ) + ε e−iωt e−
U(V )−U(VR)

2D︸ ︷︷ ︸
=:e−(V )

q(V )

For convenience the voltage-dependent factor is split into an unknown q(V ) and a
prefactor e−(V ), which will simplify the ODE derived for q in the following.
Inserting the linear expansion into the FPE (Eq. (4.127)) yields:

−εiω e−iωt e−q = LP0 + r0δ(V − VR)
+ ε e−iωt L (e−q)− ε e−iωt ∂V P0 + εG̃(ω) e−iω(t−τref) δ(V − VR) +O(ε2)

(4.130)

Comparing linear terms ∼ O(ε) on both sides leads to an ODE for q(V ):

iωe−q = −L (e−q) + ∂V P0 − G̃(ω) eiωτref δ(V − VR)
(L+ iω)

(
e−(V )q(V )

)︸ ︷︷ ︸
=:(∗)

= ∂V P0(V )− G̃(ω) eiωτref δ(V − VR) (4.131)

Let’s write out the left-hand side (∗):

(∗) (4.128)= U ′′ (e−q) + U ′
(
e′−q + e−q

′
)

+D (e−q)′′ + iωe−q

= U ′′ (e−q) + U ′
(
e′−q + e−q

′
)

+D
(
e′′−q + 2e′−q′ + e−q

′′
)

+ iωe−q

Sort by order of q:

= De−q
′′ +

(
U ′e− + 2De′−

)
q′ +

(
U ′′e− + U ′e′− +De′′− + iωe−

)
q

We use e′− = − U ′

2De− and e′′− = −U ′′

2De− + (U ′)2

4D2 e− and multiply by e+ := 1/e−.

⇔ e+(∗) = Dq′′ +
(
U ′ − U ′

)
q′ +

(
U ′′ − (U ′)2

2D − U ′′

2 + (U ′)2

4D + iω

)
q

= Dq′′ −
(

(U ′)2

4D − U ′′

2 − iω
)

︸ ︷︷ ︸
=:F (V )

q (4.132)
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Eq. (4.131) is thus equivalent to the following ODE for q:

Dq′′ − F (V )q = e+(V )
(
P ′0(V )− G̃(ω) eiωτref δ(V − VR)

)
= H(V )− e+(V )G̃(ω) eiωτref δ(V − VR)

⇔ Dq′′ − F (V )q = H(V )− G̃(ω) eiωτref δ(V − VR) , since e+(VR) = 1 (4.133)

and where

H(V ) := e+(V )P ′0(V ) .

Boundary conditions: The boundary conditions of this ODE are inferred from the
boundary conditions of the original FPE:

lim
V→−∞

q(V ) = 0 (4.134)

q(VT ) = 0
[q(V )]VR = 0

q′(VT ) = −G̃(ω)
D

e+(VT ) (4.135)

Eq. (4.135) is derived as follows:

∂V P (V, t)
∣∣
VT

= P ′0(VT ) + ε e−iωt

e′−(VT ) q(VT )︸ ︷︷ ︸
=0

+e−(VT )q′(VT )


= P ′0(VT ) + ε e−iωt e−(VT )q′(VT )

The original boundary condition, given the expansion of r, reads:

∂V P (V, t)
∣∣
VT

= −r(t)
D

= −r0

D
− εG̃(ω)

D
e−iωt

Comparing equal powers of ε yields Eq. (4.135).
Solving the ODE Eq. (4.133): First the Green’s function is determined, i.e. the solution
for a simple delta-source term:

Dq′′ − F (V )q = −δ(V − Vs) (4.136)

which is equivalent to a homogeneous ODE in the separate regimes V ≶ Vs and a jump
condition for the derivative q′ in Vs:

Dq′′ − F (V )q = 0 for V < Vs and V > Vs resp.

and [q′]Vs = − 1
D

, where [q′]Vs := lim
ε→0

(
q′(Vs + ε)− q′(VS − ε)

)
(4.137)

Assume we know two independent solutions q1, q2 of the homogeneous ODE Dq′′ −
F (V )q = 0. Then

Q := q1q
′
2 − q′1q2

∗= const. ∗∗= 1



4.D. Background on Fokker-Planck Equations and linear response 139

∗since: Q′ = q1q
′′
2 − q′′1q2 = −q1

F (V )
D
q2 + F (V )

D
q1q2 = 0.

∗∗ with appropriate scaling
A general solution of Eq. (4.136) can be constructed as:

qG(V, Vs) := A

(q1sq2T − q1T q2s)q1(V ), V < Vs

(q1(V )q2T − q1T q2(V ))q1s, V > Vs
(4.138)

where

qiT = qi(VT ), qis = qi(Vs)

q1 is chosen such that limV→−∞ q1(V ) = 0 to ensure that boundary condition Eq. (4.134)
is met. The prefactor A is chosen such that the jump condition at reset is satisfied
(Eq. (4.137)):

1
A

[q′G]Vs
(4.137)= − 1

AD
(4.139)

1
A

[q′G]Vs = 1
A
q′G(V +

s )− 1
A
q′G(V −s )

(4.138)= (q′1sq2T − q1T q
′
2s)q1s − (q1sq2T − q1T q2s)q′1s = −q1T q

′
2sq1s + q1T q2sq

′
1s

= −q1T
(
q1sq

′
2s − q′1sq2s

)
︸ ︷︷ ︸

=Q=1

(4.139)=⇒ A = 1
Dq1T

A particular solution for the ODE Eq. (4.133) is found by convolution of the original
source term with the Green’s function:

q(V ) = −
∫ VT

−∞
qG(V, Vs)

(
H(Vs)− G̃(ω) eiωτref δ(Vs − VR)

)
dVs

= −
∫ VT

−∞
qG(V, Vs)H(Vs) dVs + qG(V, VR)G̃(ω) eiωτref

= qG(V, VR)G̃(ω) eiωτref −
∫ VT

−∞
qG(V, Vs)H(Vs) dVs (4.140)

Using the boundary condition at the threshold (Eq. (4.135)) one obtains a closed
expression for the susceptibility G̃(ω):

q′(VT ) = q′G(VT , VR)︸ ︷︷ ︸
=− q1R

Dq1T

G̃(ω) eiωτref −
∫ VT

−∞
q′G(VT , Vs)︸ ︷︷ ︸

=− q1s
Dq1T

H(Vs) dVs
(4.135)= −G̃(ω)

D
e+(VT )

(4.141)

where we have used the derivative of the Green’s function:

q′G(VT , Vs) = A (q′1T q2T − q1T q
′
2T )︸ ︷︷ ︸

=−Q=−1

q1s = − q1s

Dq1T
.
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Eq. (4.141) is thus equivalent to:(
q1R

q1T
eiωτref −e+(VT )

)
G̃(ω) = 1

q1T

∫ VT

−∞
q1(Vs)e+(Vs)P ′0(Vs) dVs

⇔ eiωτref e−(VT )q1R − q1T

q1T e−(VT ) G̃(ω) = 1
q1T

∫ VT

−∞
q1(Vs)e+(Vs)P ′0(Vs) dVs

⇔ G̃(ω) = −e−(VT )
∫ VT
−∞ q1(v)e+(v)P ′0(v) dv

q1T − eiωτref e−(VT )q1R
(4.142)

This is the general susceptibility for any IF unit under Gaussian white noise and still
needs to be evaluated for a concrete potential U(V ). In the following I will derive the
susceptibility specifically for the LIF unit with potential U(V ) = 1

2V
2 − µV .

4.D.3.1 Linear response of the LIF unit under Gaussian white noise

The LIF unit has potential U(V ) = 1
2V

2−µV and hence the membrane potential under
periodic drive is described by the following ODE:

V̇ = −U ′(V ) + ε e−iωt +
√

2Dξ(t)
= −V + µ+ ε e−iωt +

√
2Dξ(t)

Again time is given in units of the membrane time constant and the voltage has been
shifted such that the leak potential is at 0 (V (t) 7→ V (τmt)− EL).
The homogeneous ODE Dq′′ − F (V )q = 0 for

F (V ) = (U ′)2

4D − U ′′

2 − iω = (V − µ)2

4D − 1
2 − iω

becomes

0 = Dq′′ −
(

(V − µ)2

4D − 1
2 − iω

)
q (4.143)

We subtract the mean drive from the membrane potential and rescale w.r.t. the noise
standard deviation:

x(V ) := V − µ√
D

For this rescaled voltage x we get:

F (V ) = F̄ (x) = 1
4x

2 + a , a := −1
2 − iω

q(V ) = q̄(x(V ))

q′ = dq
dV = dq̄

dx
dx
dV = dq̄

dx
1√
D

= 1√
D
q̄′ (now ′ denotes d

dx )

q′′ = d
dV

dq̄
dV = d

dV

(
1√
D

dq̄
dx

)
= 1√

D

d2q̄
dx2

dx
dV = 1

D

d2q̄

dx2 = 1
D
q̄′′
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The ODE Eq. (4.143) in terms of q̄(x) reads:

0 = q̄′′(x)− F̄ (x)q̄(x) = q̄′′(x)−
[

1
4x

2 + a

]
q̄(x)

The solutions of this ODE can be expressed in terms of parabolic cyclinder functions
(Abramowitz and Stegun (1965)(19.1.2)):

q̄1(x) = U(a,−x) = D−a− 1
2
(−x) = Diω(−x)

q̄2(x) = U(a, x) = Diω(x)

The notations U (used in Abramowitz and Stegun (1965) and auxiliary calculation 1)
and D (used in Lindner and Schimansky-Geier (2001)) are interchangeable. The two
independent solutions of the original ODE in terms of V are:

q1(V ) = U
(
−iω − 1

2 ,
µ− V√

D

)
= Diω

(
µ− V√

D

)
(4.144)

q2(V ) = U
(
−iω − 1

2 ,
V − µ√

D

)
= Diω

(
V − µ√

D

)

The solution q1 was chosen such that limV→−∞ q1(V ) = 0 as required above. The
expression for the susceptibility derived above for a general IF unit (Eq. (4.142)) can
now be evaluated specifically for the LIF unit:

G̃(ω) (4.142)= −
e−(VT )

∫ VT
−∞ q1(v)e+(v)P ′0(v) dv

q1T − eiωτref e−(VT )q1R

First the integral is solved with integration by parts (see auxiliary calculation 1):

G̃(ω) (4.153)= −
e−(VT ) r0√

D
iω
iω−1

[
q̂1(VR)− e+(VT )q̂1(VT )

]
q1T − eiωτref e−(VT )q1R

= r0√
D

iω

iω − 1
q̂1(VT )− e−(VT )q̂1(VR)
q1T − eiωτref e−(VT )q1R

For the LIF potential U the factor e−(V ) can be evaluated explicitly (see auxiliary
calculation 2). Following the notation in Lindner et al. (2005) I abbreviate e−(VT ) =: eδ

where δ = V 2
R−V

2
T+2µ(VT−VR)

4D .

G̃(ω) = r0√
D

iω

iω − 1
q̂1(VT )− eδ q̂1(VR)
q1T − eiωτref eδq1R

Recalling that both q1 and q̂1 are parabolic cylinder functions (Eqs. (4.144), (4.148)),
we get:

G̃(ω) = r0√
D

iω

iω − 1
Diω−1

(
µ−VT√

D

)
− eδDiω−1

(
µ−VR√

D

)
Diω

(
µ−VT√

D

)
− eδ eiωτref Diω

(
µ−VR√

D

) (4.145)
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(cf. Lindner and Schimansky-Geier (2001), Eq. (5), Lindner et al. (2005), Eq.(41)).
Since the rest of this thesis uses the opposite sign convention for the Fourier transform
(cf. Eq. (4.126)), the complex argument of the LIF susceptibility under Gaussian white
noise will be reported as − arg

(
G̃(ω)

)
(see for example Fig. 6.4).

Auxiliary calculation 1: The integral is solved with integration by parts:∫ VT

−∞
q1(v)e+(v)P ′0(v) dv =

[
P0(v)e+(v)q1(v)

]VT
−∞︸ ︷︷ ︸

=0 (Eqs. (4.129a), (4.129c))

−
∫ VT

−∞
P0(v)

[
e+(v)q1(v)

]′︸ ︷︷ ︸
(∗)

dv (4.146)

The term (∗) can be evaluated as follows:

[
e+(v)q1(v)

]′ (4.144)= v − µ
2D e+(v)q1(v) + e+(v) d

dvU
(
−iω − 1

2 ,
µ− v√
D

)

= v − µ
2D e+(v)q1(v)− e+(v)√

D

d
dxU

(
−iω − 1

2 , x
)∣∣∣∣∣∣µ−v√

D

(4.144)= −e+(v)√
D

1
2xU

(
−iω − 1

2 , x
)

+ d
dxU

(
−iω − 1

2 , x
)

x=µ−v√
D

Use the following recurrence relation from Abramowitz and Stegun (1965) Eq. (19.6.1):
1
2xU(a, x) + d

dxU(a, x) = −(a+ 1
2)U(a+ 1, x)

= −iωe+(v)√
D
U
(

1
2 − iω,

µ− v√
D

)
= −iωe+(v)√

D
q̂1 (4.147)

where function

q̂1 := U
(

1
2 − iω,

µ− v√
D

)
(4.148)

solves the ODE:

Dq̂′′1 − F̂ (V )q̂1 = 0 , with F̂ (V ) = 1
4

(V − µ)2

D
− iω + 1

2

Adding −(iω − 1)q̂1 to both sides the ODE can be rewritten as:

Dq̂′′1 − F0(V )q̂1 = −(iω − 1)q̂1 , with F̂0(V ) := F̂ω=0(V ) = 1
4

(V − µ)2

D
− 1

2
(4.149)

which will be useful in the following.
So far we have simplified the integral as follows:

∫ VT

−∞
q1(v)e+(v)P ′0(v) dv

(4.146)
(4.147)= iω√

D

∫ VT

−∞
P0(v)e+(v)︸ ︷︷ ︸

=:q0(v)

q̂1(v) dv (4.150)
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Starting from the ODE for the stationary solution P0 = e−(v)q0(v) of the FPE (cf.
Eq. (4.130)), we can infer an ODE for the rescaled function q0:

−r0δ(v − VR) (4.130)= LP0(v) = L
[
e−(v)q0(v)

]
Applying the operator L to e−(v)q0(v) as before (see Eq. (4.132)) yields:

= e−(v)
Dq′′0 −

(
(U ′)2

4D − U ′′

2

)
q0

 (4.149)= e−(v)
(
Dq′′0 − F̂0(v)q0

)
⇔ Dq′′0 − F0(v)q0 = −r0δ(v − VR) (4.151)
The boundary conditions are easily inferred from P0

q0(VT ) = 0 (4.152a)

q′0(VT ) = −r0

D
e+(VT ) (4.152b)

lim
v→−∞

q0(v) = lim
v→−∞

q′0(v) = 0 (4.152c)

Now solve the integral:∫ VT

−∞
q1(v)e+(v)P ′0(v) dv

(4.150)= iω√
D

∫ VT

−∞
q0(v)q̂1(v) dv (4.149)= − iω√

D(iω − 1)

∫ VT

−∞
q0(v)

[
Dq̂′′1 − F0(v)q̂1

]
dv

Integration by parts for the first summand yields:

= − iω√
D(iω − 1)

[ [
Dq0(v)q̂′1

]VT
−∞︸ ︷︷ ︸

=0
((4.152a), (4.152c))

−
∫ VT

−∞
Dq′0(v)q̂′1 + F0(v)q0(v)q̂1 dv

]

Another integration by parts resolves the integral:

= − iω√
D(iω − 1)

[
−
[
Dq′0(v)q̂1

]VT
−∞︸ ︷︷ ︸

=−r0e+(VT )q̂1(VT )
((4.152b), (4.152c))

+
∫ VT

−∞

[
Dq′′0(v)− F0(v)q0(v)

]
︸ ︷︷ ︸
=−r0δ(v−VR) (Eq. (4.151))

q̂1 dv
]

= − iω√
D(iω − 1)

[
r0e+(VT )q̂1(VT )− r0q̂1(VR)

]
= r0√

D

iω

iω − 1
[
q̂1(VR)− e+(VT )q̂1(VT )

]
(4.153)

Auxiliary calculation 2:
For the LIF potential U the factor e−(V ) can be evaluated as follows:

e−(V ) = e−
U(V )−U(VR)

2D = e−
1
2V

2−µV− 1
2V

2
R

+µVR
2D = e

V 2
R
−V 2+2µ(V−VR)

4D

⇒ e−(VT ) = eδ

where

δ = V 2
R − V 2

T + 2µ(VT − VR)
4D (4.154)

(cf. Eq. (40) in Lindner et al., 2005).
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4.D.4 Two “flavors” of linear stability analysis
In this section I want to briefly comment on two slightly different ways of formulating
the linear stability analysis, that can be found in the literature. I will refer to them
here as the single unit perspective (Eq. (4.36) in Section 4.5.2.4 (see also Brunel and
Hansel, 2006)), and the network perspective (Eq. (A.29) in Brunel and Hakim, 1999).
I will show their equivalence explicitly for the case of a fully connected network. In
short, the equivalence follows from the relation Eq. (4.161) between confluent hyper-
geometric functions and parabolic cylinder functions.

The single unit perspective
(Brunel and Hansel, 2006; Lindner and Schimansky-Geier, 2001)
The linear response ansatz that I described in Section 4.5.2.4 starts from the perspective
of a single unit. The linear response of a single LIF unit under Gaussian white noise
is calculated for a weakly sinusoidally modulated drive by solving the FPE for an
uncoupled population (which can be thought of as many realizations of the same single
unit stimulation). The resulting Fourier transform of the linear response function
("susceptibility") is expressed in terms of parabolic cylinder functions (cf. Eq. (4.145)):

G̃(ω) = τmr0√
D

iω

iω − 1
Diω−1

(
I0−VT√

D

)
− eδDiω−1

(
I0−VR√

D

)
Diω

(
I0−VT√

D

)
− eδ eiωτref Diω

(
I0−VR√

D

)
δ := V 2

R − V 2
T + 2I0(VT − VR)

4D

(Lindner and Schimansky-Geier, 2001, cf. Brunel et al. (2001)). The delayed inhibitory
feedback is only taken into account later, by noting that in the recurrent network the
rate resulting from linear response determines the input drive and vice versa, which
leads to a self-consistent condition.

1 = −KG̃(ω) eiω∆/τm (see Eq. (4.36))

⇔ 1 = −Kτmr0√
D

iω

iω − 1
Diω−1

(
I0−VT√

D

)
− eδDiω−1

(
I0−VR√

D

)
Diω

(
I0−VT√

D

)
− eδ eiωτref Diω

(
I0−VR√

D

) eiω∆/τm (4.155)

(time t and frequency ω are given in units of τm and 1/τm respectively.)

The network perspective (Brunel and Hakim, 1999)
Brunel and Hakim (1999) analyze the FPE for the complete network, including the de-
layed inhibitory coupling. Thus the population rate, defined as the probability current
through the threshold, appears also in the drift-term (and in the diffusion term in case
of sparse coupling, H � 0)3. Conceptually the ansatz is the same: they search for a
solution of the FPE with a rate and a membrane potential density that are weakly sinu-
soidally modulated. Both the rate and the membrane potential density are expanded
linearly around their steady state and the FPE is then solved in Fourier space, which

3Please refer to the Note on network architecture in Section 4.5.2.5 for a quick introduction into
the notation used in (Brunel and Hakim, 1999).
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leads to a solvability condition in terms of confluent hypergeometric functions (Eq.
(A.29) in (Brunel and Hakim, 1999)). In the case of all-to-all connectivity (H = 0),
this solvability condition is indeed equivalent to the phase-/amplitude-condition result-
ing from the self-consistent linear response ansatz (Eq. (4.36)/Eq. (4.155) above).

In Brunel and Hakim (1999) the linear stability analysis is done from the network
perspective and a solvability condition for the FPE is derived in terms of confluent
hypergeometric functions (contained in φ1,2 as shown below):

(
φ̃2(yΘ)− φ̃2(yr)

)
(1−H e−λδ/τ ) = W̃2[Q̂p

1](yΘ)−
[
W̃2[Q̂p

1](y)
]y+
r

y−r
(4.156)

(Eq. (A.29) in Brunel and Hakim (1999)). Individual terms will be explained below.

Proof of equivalence
I will start from Brunel and Hakim’s solvability condition Eq. (4.156) and demonstrate
that for my reduced ripple model network (H = 0) it is equivalent to (4.155). Auxiliary
calculations are summarized in Section 4.D.4.1 and will be referenced along the way.
Note that the solvability condition Eq. (4.156) is given in the original notation from
Brunel and Hakim (1999), while Eq. (4.155) follows the notation of this thesis. To
facilitate comparison with the original paper I will start the derivation in the notation
of Brunel and Hakim (1999) and only switch to my notation in the final step towards
recovering Eq. (4.155). The switch of notation is summarized in Section 4.D.4.2. I
start by writing out all the abbreviated terms in Eq. (4.156) explicitly:

The functions φ1, φ2 are (combinations of) confluent hypergeometric functions (Eq.
(A.17) and (A.22) in Brunel and Hakim (1999)) that arise from the linear stability
analysis: They are two independent solutions of the homogeneous part of the ODE
that is derived for the linearly expanded FPE solution in Fourier space (Eq. (A.14)
in Brunel and Hakim (1999)). φ̃1,2 denotes the scaling of these functions φ1,2 by their
Wronskian

φ̃1,2 = φ1,2

Wr

Wr = φ1φ
′
2 − φ′1φ2 = 2

√
π

Γ(λ/2) exp(−y2) (Eq. (A.25) in Brunel and Hakim (1999)).

Q̂p
1 is the particular solution of the complete, inhomogeneous ODE (Eq. (A.14) Brunel

and Hakim (1999)). Its Wronskian with one of the homogeneous solutions φj (j ∈
{1, 2}), normalized by Wr, is denoted as

W̃j[Q̂p
1] =

Q̂p
1φ
′
j −

(
Q̂p

1

)′
φj

Wr .
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Inserting these expressions in Eq. (4.156) yields:

Γ(λ/2)
2
√
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φ2(yΘ) ey2

Θ −φ2(yr) ey2
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)
(1−H e−λδ/τ )
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⇔
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· eλδ/τ⇔
(
φ2(yΘ) ey2

Θ −φ2(yr) ey2
r

)
(eλδ/τ −H)

= eλδ/τ ey2
Θ

(
Q̂p

1φ
′
2 −
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+H
(
φ2(yΘ) ey2

Θ −φ2(yr) ey2
r

)
(4.157)

For the sake of readability the left- and right-hand side will be treated separately:

Left-hand side of Eq. (4.157)
The combination of confluent hypergeometric functions φ2 can be expressed in terms
of parabolic cylinder functions as shown in auxiliary calculation Eq. (4.162):

LHS =
(
φ2(yΘ) ey2

Θ −φ2(yr) ey2
r

)
eλδ/τ

(4.162)= 2λ
2

 e 1
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2
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(
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2yΘ
)
− e 1
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2
r D−λ

(
−
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2yr
) eλδ/τ
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2 e 1

2y
2
Θ

D−λ (−√2yΘ
)
− e 1

2 (y2
r−y2

Θ)D−λ
(
−
√

2yr
) eλδ/τ (4.158)

Right-hand side of Eq. (4.157)

RHS = eλδ/τ ey2
Θ

(
Q̂p

1φ
′
2 −

(
Q̂p

1

)′
φ2

)
(yΘ)− eλδ/τ ey2

r

[
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1φ
′
2 −

(
Q̂p

1

)′
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]y+
r

y−r

+H
(
φ2(yΘ) ey2

Θ −φ2(yr) ey2
r

)
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First I insert the explicit terms for the particular solution Q̂p
1 and its derivatives (see

auxiliary calculations Eqs. (4.166), (4.167), (4.171)):

RHS = ey2
Θ

(− G

1 + λ
+ H

(2 + λ)yΘ

)
φ′2(yΘ)− 2
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)
The terms depending on threshold yΘ and reset yr can be separated as

= T (yΘ)− T (yr)

with:
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(4.165)= H
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(4.159)

The right-hand side can thus be written in terms of parabolic cylinder functions:

RHS = T (yΘ)− T (yr)
(4.159)= λ2λ
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(4.160)
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Back to Eq. (4.157)
Going back to Eq. (4.157) I equate the left-hand side and right-hand side terms:

LHS (4.157)= RHS
(4.158)
(4.160)⇔ 2λ
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In my fully connected network with synaptic strength scaled as 1/N the fluctuations
of the inhibitory feedback vanish in the mean-field limit (H → 0 as N → ∞), hence
the last term can be neglected. Rewriting also the remaining terms in the notation of
this thesis (see Section 4.D.4.2), the above equation becomes:

1 = −K τmr0√
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�

I have thus recovered the solvability condition Eq. (4.155) in terms of parabolic cylin-
der functions as it results from the self-consistent linear response approach to linear
stability analysis.

4.D.4.1 Auxiliary calculations

Relating parabolic cylinder and confluent hypergeometric functions
The following relation holds between parabolic cylinder functions U and confluent
hypergeometric functionsM (Abramowitz and Stegun, 1965, Eq. 19.12.3):

U(a,±x)

=
√
π2− 1

4−
1
2a e− 1

4x
2

Γ(3
4 + 1

2a) M
(

1
2a+ 1

4 ,
1
2 ,

1
2x

2
)
∓
√
π2 1

4−
1
2ax e− 1

4x
2

Γ(1
4 + 1

2a) M
(

1
2a+ 3

4 ,
3
2 ,

1
2x

2
)

=
√
π e− 1

4x
2

 2− 1
4−

1
2a

Γ(3
4 + 1

2a)M
(

1
2a+ 1

4 ,
1
2 ,

1
2x

2
)
∓ 2 1

4−
1
2a

Γ(1
4 + 1

2a)xM
(

1
2a+ 3

4 ,
3
2 ,

1
2x

2
)



4.D. Background on Fokker-Planck Equations and linear response 149

Set A := 1
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Brunel and Hakim’s φ2 in terms of the parabolic cylinder function U :
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I use the relation ezM(b − a, b,−z) = M(a, b, z) (Eq. (13.1.27) in Abramowitz and
Stegun (1965)):
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Derivative of Brunel and Hakim’s φ2 in terms of the parabolic cylinder
function U :
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RHS auxiliary calculation 1:
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RHS auxiliary calculation 2:
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According to Abramowitz and Stegun (1965) Eq. (19.6.4):
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Brunel and Hakim’s particular solution Q̂p
1-terms written out fully:

Equation references (A.xx) refer to Brunel and Hakim (1999). For brevity I write f ′
instead of ∂yf .
The particular solution at threshold is given by:

Q̂p
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(∗) The first derivative of the stationary solution at threshold Q′0(yΘ) = −1 is given as
a boundary condition (A.7). The second derivative is computed using the recurrence
relation (A.9): Q′′0(yΘ) = −2yΘQ

′
0(yΘ)− 2Q0(yΘ) = 2yΘ.
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At threshold the boundary conditions yield:

(
Q̂p

1

)′
(yΘ) = 2 e−λδ/τ

(
G

1 + λ
yΘ + H

2 + λ

(
1− y2

Θ

))
(4.167)

Next I evaluate the following discontinuities at the reset potential:
[
Q′′0
]y+
r

y−r
= [−2Q0]y

+
r

y−r︸ ︷︷ ︸
0

−2yr
[
Q′0
]y+
r

y−r

(A.7)= 2yr (4.168)

[
Q̂p

1

]y+
r

y−r
= e−λδ/τ

(
G

1 + λ

[
Q′0
]y+
r

y−r
+ H

2(2 + λ)
[
Q′′0
]y+
r

y−r

)
(A.7)
(4.168)= e−λδ/τ

(
− G

1 + λ
+ H

(2 + λ)yr
)

(4.169)
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1

)′]y+
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=
2 e−λδ/τ
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(
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)
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(
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))y
+
r

y−r
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The above results are used to infer:[
Q̂p

1φ
′
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(
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1

)′
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4.D.4.2 Notation

Time t and frequency ω/λ are denoted in units of τm and 1/τm resp. in both Eqs. (4.156)
and (4.155), hence I keep this notation. To stay consistent with the notation in the rest
of the thesis I still denote the average population rate r0 in units of spks/s. Due to the
different sign convention for the Fourier transform used for the linear response function
Eq. (4.126) (Lindner and Schimansky-Geier, 2001), the frequency mapping between
Brunel and Hakim (1999) and the linear response ansatz I described in Section 4.D.3
is as follows:

λ 7→ −iω

The synaptic delay is

δ 7→ ∆

Brunel and Hakim used a rescaled voltage variable

y 7→ V − I0√
2D

where I0 = IE −Kτmr0 is the total average input.
It follows:

1
2(y2

r − y2
Θ) 7→ V 2

R − V 2
T + 2I0(VT − VR)

4D = δ

Note: δ is now not the synaptic delay in the Brunel and Hakim (1999) notation, but the
auxiliary constant introduced in the calculation of the LIF susceptibiltity Eq. (4.154)
Lindner et al. (2005)!
The relative strength of the average inhibitory feedback is given by

G 7→ Kτmr0√
2D

(r0 in units of Hz!)

The fluctuations in the recurrent inhibitory input vanish in the mean-field limit of my
fully connected network in which the synaptic strength scales as K/N :

H 7→ N(K/N)2τmr0√
2D

= K2τmr0√
2DN

N→∞−→ 0 .
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4.E Supplementary figures
This section contains supplementary figures that are referenced in the main text.
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√
D = 0.3, weaker coupling K = 3, strong drive IE = 11, otherwise default

parameters (Table 4.3). Here the difference between µmin = µ(toff + ∆) and the real
local minimum of the trajectory µ, occuring at the second intersection of µ and I, is
more obvious (see Zoom in A and B). This only happens at strong drive, close to the
point of full synchrony (note the high saturation in C). The estimate of the period T
is not affected, since µmin determines both the end and the beginning of each cycle.
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ripple model

5.1 Introduction

There is one alternative “inhibition-first” ripple model that also relies on interneurons
as the main pacemaker (Malerba et al., 2016). It is based on a transient synchroniza-
tion (“ringing”) effect that can be induced in a heterogeneous population of oscillators
(CA1 interneurons) by a strong common external drive (sharp wave-associated input
from CA3) (Gerstner, 2000; Fourcaud-Trocmé and Brunel, 2005; Gerstner et al., 2014).
The main difference to the bifurcation-based inhibition-first ripple model discussed in
Chapter 4 is that the network does not undergo a bifurcation into a state of persis-
tent oscillations. Instead, the external perturbation merely moves the stable focus in
state space and the population rate relaxes towards the new focus in transient oscilla-
tions. I thus distinguish the two inhibition-first ripple models as bifurcation-based and
perturbation-based.

In this chapter I replicate and analyze the perturbation-based model (Malerba et al.,
2016) to understand the role of the various parameters and their influence on the ripple
oscillation (Section 5.2). I will then study the instantaneous frequencies within a ripple
event and demonstrate that, in the perturbation-based model, an IFA asymmetry only
occurs for asymmetric external drive (Section 5.3). Finally I will delineate the bound-
ary between the two inhibition-first models and highlight experimental possibilities to
dissociate them (Section 5.4).

5.2 Analysis of the perturbation-based inhibitory
ripple model

The perturbation-based model (Malerba et al., 2016) consists of 160 putative CA1
interneurons that are modeled as adaptive exponential integrate-and-fire units (aEIF).
The units are all-to-all connected by inhibitory synapses and driven by independent
colored noise as well as a common (sharp wave-associated) drive. The network is
heterogeneous w.r.t. the excitability of individual cells and the inhibitory coupling
strengths between them. A detailed model description and summary of all parameters
is given in Methods Section 5.6.1. A note on the replication of the results from the
original publication (Malerba et al., 2016) can be found in Appendix Section 5.A.
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5.2.1 The default ripple event
If the network is stimulated with a strong step current, a “ringing effect” is triggered
and the units transiently synchronize while settling into their new stationary firing rate
associated to the amplitude of the step current (here Imax = 700 pA, Fig. 5.1).
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Figure 5.1: Ripples in the perturbation-based inhibitory model: single trial
vs. average. A, Illustration of a single trial. (1) wavelet spectrogram quantifying
instantaneous frequency and power of the population rate; (2) instantaneous unit firing
rates derived from interspike intervals. Dashed lines indicate the asymptotic (constant)
population rate r∞ = 104 · P∞spk that is reached after a ripple event (red), and the
average network frequency as determined in B (black); (3) population rate; (4) raster
plot (30/160 interneurons); (5) membrane potentials vi, traces of two example units
(orange, blue); (6) adaptation current wi; (7) the total current Ii (sum of panels 8-10,
Eq.(5.5)); (8) inhibitory synaptic feedback current Isyn

i (t); (9) excitatory background
current IEi = IDC

i +σβηi(t); (10) step current of 700 pA turned on after an initialization
period of 1 s. B, Average over 200 trials. Bottom to top: (4) step current (cf. A10);
(3) average spike probability Pspk in bins of 0.1 ms (see Fig. 5.16 for original result
from Malerba et al., 2016). Red dashed line: asymptotic spike probability P∞spk. Grey
dashed line: peak significance threshold Pthr; (2) discrete estimates of instantaneous
ripple frequency (black marker). Averaging yields network frequency (black dashed
line). (1) saturation, cyclewise and averaged over trials, errorbars indicate ±1 SD.
C, Spike statistics. (1) total number of spikes during a ripple event (histogram over all
units of all trials). Most units fire 5 spikes, i.e. one spike per cycle; (2) low coefficient
of variation of interspike intervals illustrates that unit firing is regular.
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Fig. 5.1A illustrates the network dynamics in a single trial. After an initialization
period of 1 second, during which the units receive only colored noise and their respective
bias currents (see Methods Section 5.6.1), a strong step current of amplitude Imax =
700 pA is applied to the whole network. This brings all units to the spike threshold
within a narrow time window. Subsequent spikes happen synchronously as well, leading
to an oscillatory population rate or “ripple” (Fig. 5.1 A1,3). This ripple oscillation is
inherently transient, since the noise and heterogeneity desynchronize the network over
time.

The properties of the transient ripple oscillation are characterized by averaging
over many events (Fig. 5.1B,C). I followed the analysis described in (Malerba et al.,
2016), see also Methods Section 5.6.2. The transient ripple event has an average ripple
frequency of ∼184 Hz and a duration of ∼25.45 ms (∼5 cycles) (Fig. 5.1 B2,3). A
discrete estimate of instantaneous ripple frequency per cycle, based on the inverse
of the peak-to-peak distance in the population rate, indicates that there is no IFA:
the instantaneous frequencies of all cycles are close to the mean network frequency,
with only a small jitter and no clear trend over the course of the event (Fig. 5.1 B2,
black circular markers). The saturation is computed as the integral over the average
population rate in each cycle. It decays slightly over the course of the event but is
always close to 1, indicating that in every ripple cycle there are approx. as many
spikes as cells in the network (Fig. 5.1 B1). The spike statistics shown in Fig. 5.1C
confirm that every cell contributes about one spike per cycle: The average number
of spikes per cell and ripple event equals the number of ripple cycles (C1) and the
interspike intervals are highly regular (low CV, (C2)).

5.2.2 Parameter dependencies
The model by Malerba et al. (2016) contains a lot of biologically-inspired detail, not all
of which seems necessary for the core mechanism of ripple generation. In the following,
I will analyse the role of the various parameters separately and derive the maximally
reduced form of the perturbation-based inhibitory ripple model.

5.2.2.1 The role of adaptation

The adaptive EIF neuron model can exhibit a range of different firing patterns de-
pending on the three parameters describing the adaptation current (Eq. (5.4)): the
conductance a, the spike-triggered increase in adaptation current b, and the adapta-
tion time constant τw (Gerstner et al., 2014). Malerba et al. (2016) chose the adaptation
parameters such that the interneurons are in a tonic firing regime with only negligible
adaptation (see Table 5.3, Fig. 5.2). This matches the behavior of PV+ basket cells,
which are known to fire regularly without much adaptation (Pawelzik et al., 2002).

Most likely, Malerba et al. (2016) only chose the adaptive EIF neuron model because
their full model also included pyramidal cells, which do exhibit adaptation. In the
reduced interneuron-only model, on which I focus here, it seems unnecessary to include
adaptation. In Supplementary Fig. 5.23 this is confirmed in a simulation of the network
without adaptation. As expected, the ripple dynamics are qualitatively unaltered. The
network frequency is slightly higher than in the reference simulation with adaptation
(193 vs. 184 Hz, see Fig.5.1). Without adaptation the network frequency coincides
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Figure 5.2: f-I curve of an uncoupled aEIF unit under colored noise. A, Top:
firing rate of an aEIF unit under colored noise (Table 5.3) for a range of constant
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interspike interval. The asymptotic firing rate f∞ was estimated over a time window
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B, Example voltage traces for a step current I applied at time 200ms. Step current
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with the asymptotic firing rate into which the network settles after the initial transient
(Supplementary Fig. 5.23 A2,B2, black vs red dashed line). This will be discussed in
more detail in Section 5.2.3.1.

5.2.2.2 The role of heterogeneity

There are two sources of heterogeneity in this model: The normally distributed bias
currents impose a different level of excitability for each cell (Eq. (5.6)). The normally
distributed peak conductances, 6% of which are clipped to 0, introduce heterogeneity
in the network connectivity with some connections effectively missing (Eq. (5.10)).

I simulated the network without adaptation (a = 0 nS, b = 0 pA) and without het-
erogeneity (gpeak

cv = 0, IDC
cv = 0) and find that neither are crucial ingredients (Fig. 5.3).

The homogeneous network still exhibits a transient ripple. The ripple event is slightly
longer in the absence of heterogeneity (7 cycles, Fig. 5.3 B2 vs. 5 cycles, Fig. 5.1 B2),
but is eventually terminated by noise-induced desynchronization (Fig. 5.3A,B).

Figure 5.3: Ripple dynamics without adaptation and without heterogeneity.
Network simulation without heterogeneity (gpeak

cv = 0, IDC
cv = 0) and without adaptation

(a = 0 nS, b = 0 pA), all other parameters as in Fig. 5.1, Table 5.3. There are only
minor changes in the ripple dynamics: Due to the omission of adaptation the network
frequency coincides with the asymptotic rate (black vs red dashed line in A2, B2). The
ripple event is longer, but still finite (note that the network activity is shown here over
100 ms). For a detailed description of all panels see Fig. 5.1.
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Figure 5.3: Ripple dynamics without adaptation and without heterogeneity.
Caption on previous page.

5.2.2.3 The role of inhibitory synaptic coupling

The role of the inhibitory synaptic coupling was already investigated by Malerba et al.
(2016) who varied the inhibitory coupling strength by changing either the scaling fac-
tor α of the synaptic peak conductance or the synaptic decay time constant τD (see
Eq. (5.9)). In both cases an increase in inhibitory strength leads to a decrease in
the network frequency. Interestingly, ripple oscillations persist even in the absence of
synaptic coupling (α = 0), which is an important prediction of the perturbation-based
inhibitory ripple model. I replicated this parameter exploration as part of the control
of my model implementation (see Fig. 5.19).

Note that the parameter exploration by Malerba et al. (2016) only covers a small
range of peak conductances (αgpeak ∈ [0, 0.2] nS). This is true even after accounting
for the fact that synaptic strength was likely downscaled in the perturbation-based
model due to the full connectivity of the network: If the peak conductance for full
connectivity (indegree of 160) was set to gpeak = 0.0234 nS, the peak conductance in
a sparsely connected network of indegree 40 (as estimated for CA1 PV+ basket cells
in vitro, Sik et al., 1995; Bezaire and Soltesz, 2013; Donoso et al., 2018), would be
gpeak = 4 · 0.0234 nS = 0.0936 nS. This is still orders of magnitude lower than the
experimentally measured coupling strength between CA1 PV+ basket cells (∼5 nS in
Bartos et al., 2002). For strong coupling with a peak conductance of 5 nS (1.25 nS in
the fully connected network), the network frequency in the perturbation-based model
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drops below ripple range. I thus conclude:

To account for ripple-range oscillations the perturbation-based model re-
quires weak (or no) inhibitory coupling.

5.2.2.4 The role of noise

A reduction of noise has no effect on the network frequency but prolongs the ripple
event (shown in Malerba et al., 2016, and replicated here in Fig. 5.21). This is intuitive
since noise facilitates the desychronization of the network, which ultimately terminates
the transient oscillation.
In summary, the perturbation-based inhibitory ripple model can be reduced to a ho-
mogeneous, uncoupled population of non-adapting integrate-and-fire neurons receiving
a small amount of noise and a strong, common external drive.

5.2.3 Ripple properties summarized
I will now summarize the parameter dependencies of the most important ripple prop-
erties in this model, i.e. ripple frequency and duration.

5.2.3.1 The ripple frequency

The fact that ripples occur even in the absence of synaptic coupling (α = 0 in Fig. 5.19)
shows that ripples in the perturbation-based model are not a network phenomenon.
Instead, the “network” here can be thought of as a (weakly coupled) group of (adapting)
oscillators, each with a slightly different intrinsic frequency due to the heterogeneity
in the bias currents IDC

i . The spikes of these oscillators are transiently synchronized
due to a strong common excitatory drive I inp. The frequency of the resulting transient
in the population activity directly reflects the firing rate of the underlying units (see
network frequency (black dashed line) vs. instantaneous unit firing rates (grey dots)
in Fig. 5.1A(2)).

One can hence infer the network frequency from the single unit firing rates: Using
the numerically estimated f-I curve of a single neuron (Fig. 5.4A) the distribution
of total currents that the neurons receive (including the average inhibitory feedback,
Fig. 5.4B, left) can be mapped onto a distribution of intrinsic firing rates (Fig. 5.4B,
right). Due to adaptation, one can define two distributions of intrinsic firing rates:
the instantaneous rates, based on the first interspike interval (Fig. 5.4, grey curve in
A, grey histogram in B), and the asymptotic rates, into which the units settle after
a few spikes (Fig. 5.4, yellow curve in A, yellow histogram in B). Since adaptation in
this model is weak, the two distributions are not far apart. The network frequency
(black dashed line in Fig. 5.1, Fig. 5.4B), which is measured during the transient event
right after stimulus onset (i.e. while the single units are still adapting) lies between
the average instantaneous and asymptotic single unit rates. This is true for any step
current amplitude Imax (Fig. 5.4B,C). Since the unit firing rates increase for increasing
drive, so does the network frequency (Fig. 5.4C, cf. Fig. S4c in (Malerba et al., 2016)).
This implies two important predictions of the perturbation-based inhibitory model:
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The ripple frequency reflects the single unit firing rate.

The ripple frequency is proportional to the amplitude of the external drive.
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of intensity β = 45 pA (cf.
Fig. 5.2). Grey: inverse of
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i (t)〉t, that units re-
ceive 500 ms after the onset
of the step stimulus, shown for
various step current amplitudes
Imax (Imax = 0.7 nA corresponds
to the default simulation shown
in Fig. 5.1). Right: Corre-
sponding distribution of intrin-
sic firing rates (grey: instan-
taneous, yellow: asymptotic,
as in A). Vertical lines mark
the asymptotic population rate
(red) and the network frequency
(black). C, Summary compar-
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rate. Grey and yellow errorbars indicate ± 1 SD of the single unit rate distributions
shown in B (mostly too small to see).

We can now understand the earlier finding that the network frequency decreases
with increasing inhibitory coupling strength (Section 5.2.2.3): Since adaptation is weak,
the ripple frequency (black line in Fig. 5.4C) is close to the steady-state firing rate r∞
associated to the external drive Imax (yellow line in Fig. 5.4C). This steady-state firing
rate can be inferred analytically (see also Chapter 4, Section 4.5.2.3):

Ignoring the conductance-based nature of the synapses, we can approximate the
total current that a unit in the recurrent network receives as

I0 ≈ Imax − Jr∞
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with constant synaptic weight J > 0.
Rearranging the terms one sees that the steady-state firing rate must be a linearly
decreasing function of the total current I0, due to the inhibitory nature of the synapses:

r∞(I0) = Imax − I0

J
(5.1)

On the other hand, the firing rate of a single, uncoupled unit is a monotonically
increasing function of the current I0, described by the f-I curve (Fig. 5.4A):

r∞(I0) = fEIF(I0) (5.2)

The steady-state rate r∞ is thus given by the intersection of Eqs. (5.1) and (5.2).
Clearly the intersection appears at lower firing rates if the inhibitory coupling J is
stronger (see sketch in Fig. 5.5).
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J = 2.33 nAms
J = 3.50 nAms
J = 7.00 nAms

Figure 5.5: Strong inhibition de-
creases unit firing rate and hence rip-
ple frequency. Sketch of the analytical so-
lution for the mean unit firing rate in a net-
work with inhibitory coupling of strength
J . Black line: asymptotic firing rate of
EIF unit fEIF(I0) (numerical estimate, cf.
Fig. 5.2A). Solid colored lines: Eq. (5.1)
for increasing synaptic strength J . Dashed
colored lines mark the resp. solutions r∞
given by the intersection of Eqs. (5.1) and
(5.2). Note that r∞ decreases as the cou-
pling strength increases.

5.2.3.2 The ripple duration

The parameter explorations above have uncovered two distinct causes for the termina-
tion of the ripple event: the network can desynchronize either due to noise or due to
heterogeneity. In a network without noise the heterogeneity causes desynchronization
and effectively ends the ripple event (finite durations in Fig. 5.21 for σ = 0). Vice
versa, in a network without heterogeneity it is the noise that terminates the ripple
event (Fig. 5.3).

In either case, the duration of the ripple oscillation is inherently finite, even though
the step stimulus remains “on” indefinitely. This is an important difference to the
bifurcation-based model.

If there is neither heterogeneity nor noise, the network enters a pathological state
where all units are essentially identical after the random initial conditions have been
forgotten. The “network” then exhibits pathological persistent oscillatory activity, with
all neurons firing the same tonic spike train. This can be considered a transition from
the perturbation-based to the bifurcation-based model, albeit to a pathological form
of the latter (Supplementary Fig. 5.24, see also Section 5.4).
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5.3 IFA in the perturbation-based model
We have seen above that in its default configuration (Fig. 5.1) the perturbation-based
inhibitory ripple model does not exhibit intra-ripple frequency accommodation. The
discrete, cycle-wise estimates of instantaneous frequency are all close to the average
network frequency and show no clear trend (de- or increasing) (Fig. 5.1 B2).

5.3.1 IFA for asymmetric ramp input
I showed in Section 5.2.3.1 and Fig. 5.4 that the network frequency is proportional
to the amplitude of the external step current. One can thus predict that given an
external drive that changes over time, the instantaneous network frequency will follow
this drive, i.e. increases as the drive increases and decreases as the drive decreases.
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Figure 5.6: IFA in response to asymmetric drive.
The external drive I inp jumps up to 700pA and then linearly decreases back to 0 over a
time of 100 ms. The instantaneous network frequency decreases in an IFA-like manner,
which can be seen in the wavelet spectrogram of a single trial (A1), as well as in the
discrete, instantaneous frequency estimated for the average ripple event (B2). For a
detailed description of all panels see Fig. 5.1.

Thus, to achieve an IFA-like decrease in the instantaneous frequency, one would
need to apply an asymmetric external drive that first jumps up to a high value and
then decreases monotonically from there. I confirmed in a network simulation with an
asymmetric ramp current, that this is indeed the case (Fig. 5.6).
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5.3.2 “Anti-IFA” for symmetric input
For symmetric drive (here a double-ramp, as in Chapter 4), the instantaneous fre-
quency is symmetric as expected (Fig. 5.7 B2). The instantaneous power, however, is
asymmetric and decreases monotonically, since the network progressively desynchro-
nizes over the course of the event (Fig. 5.7 A1). Thus the initial period of increasing
frequency is the one with the highest power, and we observe “anti-IFA” (Fig. 5.7 A1).
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Figure 5.7: No IFA (or “anti-IFA”) in response to symmetric drive.
The instantaneous frequency of the average event follows the same symmetry as the
input (B2). The single trial wavelet spectrogram however reveals an asymmetry in the
power giving most weight to the initial period of increasing frequency (A1).

Overall I have derived a new testable prediction:

The perturbation-based inhibitory ripple model can only generate IFA in
response to asymmetric external drive. Symmetric drive leads to anti-IFA.
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5.3.3 IFA via adaptation
In principle, the perturbation-based inhibitory ripple model could also account for
IFA based on spike frequency adaptation. If individual units exhibit significant spike
frequency adaptation (e.g. b = 100 pA, τw = 100 ms), the default step current
stimulation evokes IFA (Fig. 5.8). However, such strong adaptation is an unrealis-
tic assumption for CA1 PV+ basket cells, which are known to fire tonically without
significant adaptation (Pawelzik et al., 2002).
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Figure 5.8: IFA via adaptation.
Same default network as in Fig. 5.1 but with significant adaptation (b = 100 pA,
τw = 100 ms, see A6). The default step current of amplitude 700 pA is applied
(A10/B4). The adapting firing pattern of individual units (A5) leads to a transient
ripple oscillation in the population rate (example in A3, average in B3) with a strongly
decreasing instantaneous frequency (IFA, example in A1, average in B2).
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5.4 Differentiation of inhibition-first ripple models
In this section I want to delineate the boundary between the two inhibition-first rip-
ple models: perturbation-based (Chapter 5) and bifurcation-based (Chapter 4). Both
models assume that the CA1 interneuron network generates ripples, still they differ sig-
nificantly in their predictions about multiple features of ripple oscillations (Table 5.1).
So what are the defining differences between the two models and are they mutually
exclusive?

Perturbation-based model Bifurcation-based model
ripple frequency
set by

• unit firing rate, drive
• (coupling strength)

• synaptic time constants
• (drive, noise intensity,

coupling strength)

interneuron
firing

• at ripple frequency • sparse irregular
or up to ripple frequency

ripple duration • always finite
• indep. of stimulation length
• set by noise, heterogeneity

• could be infinite in theory
• set by stimulation length

IFA • only for asymmetric drive • for any fast “up/down”
drive

ripples despite
GABA block?

• yes • no

Table 5.1: Properties and predictions of the perturbation-based and the
bifurcation-based inhibitory model. Short overview of the model predictions re-
garding the following questions (top to bottom): What determines the ripple frequency;
At what rate do individual interneurons fire; What determines ripple duration; Under
which assumptions can the model account for IFA; Does ripple generation rely on in-
hibitory synaptic coupling or could ripples persist when GABAAreceptors are blocked.
Parentheses indicate weak parameter dependencies.

The parameter space of potential network configurations spanned by the degree of
heterogeneity, the coupling strength, the noise level and the shape and amplitude of the
external drive is large. Thus, in general, the transient ringing effect described by the
perturbation-based ripple model (Malerba et al., 2016), and the persistent oscillations
described by the bifurcation-based ripple model (Brunel and Hakim, 1999; Donoso
et al., 2018) may likely coexist in some portions of this parameter space; especially
when considering the network dynamics purely qualitatively (transient vs. persistent
oscillation), regardless of whether a given oscillation has ripple frequency or not. It is
beyond the scope of this thesis to explore this vast parameter space.

In the context of SPW-Rs, the question can be narrowed down by assuming that
the CA1 interneuron network during SPW-R states is characterized by a fixed amount
of heterogeneity, coupling strength, and background noise. One can then ask if the
typical amount of excitatory drive generated by a CA3 sharp wave triggers a transient
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ringing at ripple frequency, as described by the perturbation-based model, or a per-
sistent oscillation at ripple frequency, as posited by the bifurcation-based model. In
the following, I will delineate a number of changes in network configuration that trans-
form the perturbation-based model by Malerba et al. (2016) into the bifurcation-based
model. Finally, I summarize these changes in Table 5.2.

5.4.1 No persistent oscillations in the perturbation-based rip-
ple model.

The first step from the perturbation-based towards the bifurcation-based model is the
removal of adaptation and heterogeneity. The analysis in Section 5.2 has already shown
that neither adaptation, nor heterogeneity are crucial ingredients of the perturbation-
based model. Their removal thus yields a reduced version of the perturbation-based
models, in which ripples can still be triggered as a transient ringing effect that is
terminated by noise (second column in Table 5.2).

The reduced perturbation-based model, without adaptation and without hetero-
geneity, does not exhibit persistent oscillations. In order to confirm this in simulations,
I need to modify the analysis as it was done so far. The ripple analysis by Malerba
et al. (2016) (Fig. 5.3B) is based on an average of the population activity over many
noise realizations and is thus not suitable to detect the presence of persistent oscilla-
tions: Since these oscillations are stochastic and subject to phase diffusion due to the
finite size of the network, an average over many noise realizations would always yield
a constant, non-oscillatory population activity in the long-time limit, even if coherent
stochastic oscillations were present in single trials. I thus repeat the single trial sim-
ulation shown in Fig. 5.3A for a longer simulation time, and with an input current
that ramps up slowly in order to avoid the transient ringing effect and let the network
settle into steady-state quickly (Fig. 5.9A). The steady-state behavior of the reduced
perturbation-based model is then quantified by computing the power spectral density
of the population activity over the course of this single, long simulation (Fig. 5.9A).
The population rate exhibits no coherent oscillation, but only transient periods of “ac-
cidental” synchrony due to the finite size of the network (Fig. 5.9 B1,3). These finite
size fluctuations cause the weak peak in the power spectral density of the population
rate (Fig. 5.9C), which is located precisely at the mean unit firing rate.

We can conclude that the perturbation-based model does not exhibit persistent
stochastic oscillations, even in its reduced form and for strong drive.

5.4.2 From perturbation- to bifurcation-based ripples
So what prevents the emergence of persistent stochastic oscillations? In the non-
reduced perturbation-based model (column 1 in Table 5.2) it is the heterogeneity that
ensures the stability of the asynchronous irregular state: persistent oscillations cannot
be maintained if the heterogeneity in the network is too large (Brunel and Hakim, 1999).
For a homogeneous EIF network — such as the reduced perturbation-based model
(column 2 in Table 5.2) — a linear stability analysis by Brunel and Hansel (2006)
has shown that a bifurcation towards persistent oscillations exists in the parameter
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space, spanned by coupling strength, noise intensity and excitatory input (“n=1” line
separating the “asynchronous stable state” from “fast oscillation” regime in Fig. 5.10B).
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Figure 5.9: No persistent oscillations in the perturbation-based model net-
work without heterogeneity and adaptation for default parameters.
Same network as in Fig. 5.3. A, : Population rate (top) of the default network without
heterogeneity and without adaptation (for remaining parameters, see Table 5.3) when
driven by constant external drive (700 pA, bottom) over 5 seconds. During an initial-
ization period of 1 second the drive was ramped up slowly to prevent strong transients.
Horizontal bar marks zoom shown in B. B, : Zoom into the network activity shown in
A (same outline as Fig. 5.1A, except for adaptation current (w ≡ 0) and the detailed
composition of the total current I, which have been removed here). Units fire very
regularly at ∼193 Hz (panel 5, membrane potentials of two example units are marked
in blue and orange). There are transient periods of (accidental) synchrony (panels 3–5)
with increased power in the population rate around the mean unit firing rate (panel
1), but there is no collective oscillation. The inhibitory feedback is weak and the total
current thus excitatory at all times (panel 6). C, : The power spectral density of the
population rate (panel 1) exhibits a weak peak at the mean unit firing rate (panel 2).
The unit firing is highly regular (panels 3 and 4, average coefficient of variation (CV)
of ISIs: 0.06).

However, the default parameter setting of Malerba et al. (2016) (Table 5.3) with
weak noise and weak coupling puts the network into the regime where the asynchronous
irregular state is stable (mark (1) in Fig. 5.10B).
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Figure 5.10: Bifurcation diagram of
an EIF network with inhibitory cou-
pling.
(adapted from Brunel and Hansel, 2006,
with permission from MIT Press). Bi-
furcation diagram based on a numerical
linear stability analysis (see Chapter 4,
Section 4.5.2.4 for background on linear
response and linear stability). A, Fre-
quency of the emerging oscillation, B, Lo-
cation of bifurcations (lines) w.r.t. noise
and synaptic strength. Note that the pa-
rameter exploration shown here is in fact
three-dimensional, since for every com-
bination of noise and synaptic strength
the external drive was adjusted to keep
the average unit firing rate constant (here
r0 ≡ 30 spks/s). Lines indicate solutions
of the phase- and amplitude-condition
(Eq. (4.36)) and are based on a numer-
ical estimate of the EIF linear response.
Solutions at low noise occur close to n-
multiples of the mean unit firing rate.
Here the n = 1 branch marks the bifurca-

tion between the stable asynchronousstate and the regime of persistent oscillations.
The network oscillation frequency is thus close to the mean unit firing rate, unless the
noise is very strong (see n = 1 branch in A). Branches with n > 1 mark clustering insta-
bilites. I added the markers to illustrate symbolically the dynamical regimes discussed
below and the parameter changes required to get there: (1) the asynchronous irregular
state is stable (Fig. 5.9); (2) persistent, stochastic oscillations with highly synchronized
unit firing (Supplementary Fig. 5.25); (3) persistent, stochastic oscillations comparable
to sparse synchrony state in Chapter 4 (Fig. 5.11); (4) persistent oscillations with two
distinct clusters (Supplementary Fig. 5.26). There is no 1:1 correspondence between
this bifurcation diagram and my network simulations, since my network has different
parameters, and I only varied noise and coupling strength, while keeping the external
drive constant (700 pA).

How can the reduced perturbation-based model be changed such that a realistic amount
of SPW-associated drive moves the network across the bifurcation towards persistent
oscillations? In fact, a single parameter change can “do the trick”, as suggested by
the bifurcation diagram by Brunel and Hansel (2006) (mark (2) in Fig. 5.10): If the
inhibitory coupling strength is increased, an external drive of Imax = 700 pA can
induce persistent stochastic oscillations (see Supplementary Fig. 5.25). The resulting
oscillations however are overly synchronized due to the then comparably low noise level.

If both noise and coupling strength are increased (mark (3) in Fig. 5.10), the EIF
network exhibits persistent, yet sparsely synchronized oscillations with irregular unit
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firing in response to a drive of 700 pA (Fig. 5.11). This dynamics closely resembles the
dynamics of the LIF network of the bifurcation-based model (Chapter 4, Fig. 4.3). I
hence refer to the homogeneous EIF network with increased noise and coupling strength
as the EIF-version of the bifurcation-based model (column 3 in Table 5.2).

0

200

ra
te

 
 [s

pk
s/

s]

0 1000 2000 3000 4000 5000 6000
time [ms]

0
500Iin

p

 [p
A]

100

200

300

fre
q 

[H
z]

A

B
(1)

50

100

un
it 

fre
q

[s
pk

s/
s]

(2)
fnet
r

0

100

ra
te

 
[s

pk
s/

s]

(3)

0

25

un
it(4)

50

0

v 
[m

V]

(5)

5500 5525 5550 5575 5600 5625 5650 5675 5700
time [ms]

2000

0

I [
pA

]

(6)

0

20

po
we

r 
[a

.u
.]

10 2

10 1

p(
v,

t)

0 50 100 150 200 250 300
frequency [Hz]

10 1

101

po
we

r [
a.

u.
]

C

0 50 100 150 200 250 300
unit firing rate [spks/s]

0

20

# 
un

its

0 20 40 60 80
ISI [ms]

100
101
102
103

#

0.0 0.5 1.0 1.5
CV(ISI)

0

50

# 
un

its CV=0.80

Figure 5.11: Sparse synchrony in a homogeneous EIF network with in-
creased noise and coupling strength. Same network and outline as in Fig. 5.9,
but with increased noise (σ = 1.5, σβ = 67.5 pA) and coupling strength (α = 100,
αgpeak

i = 2.34 nS). A, Oscillation amplitude fluctuates over time, but the oscilla-
tions are persistent. B, Units fire sparsely (4) and the membrane potentials display
subthreshold oscillations locked to the population rhythm (5). C, The power spectral
density of the population rate has a significant peak at ∼146 Hz. In contrast to the
peak in Fig. 5.9C, this peak will not decrease when the network size is increased, i.e. it
is not a result of finite size effects. Units fire at a much lower rate (∼21 spks/s) and
irregularly (CV=0.8).

Note that the network in Fig. 5.11 has no synaptic delay (Table 5.3). The finite rise
time τR = 0.3 ms of the postsynaptic potentials (Eq. (5.9)) is sufficient to introduce
delayed negative-feedback oscillations (Brunel and Hansel, 2006). Adding a synaptic
delay leads to more pronounced oscillations (Fig. 5.12), but also reduces the network
frequency to the gamma rather than ripple range (∼82 Hz, Fig. 5.12C). The network
frequency can be slightly raised by increasing the noise level (Supplementary Fig. 5.27)
or by increasing the sharpness of spike initiation (∆thr), but it is difficult to achieve
ripple range frequencies with realistic synaptic delays in a network of EIF units (but
see Taxidis et al., 2012).
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Figure 5.12: Sparse synchrony in gamma range in the homogeneous EIF net-
work with increased noise and coupling strength and finite synaptic delay.
Same network as in Fig. 5.11, but a synaptic delay of 0.5 ms was introduced. Oscillatory
power increases since units fire more synchronously, but the network frequency drops
to ∼82 Hz (C). Increasing the noise in this network can raise the network frequency
(Supplementary Fig. 5.27). For a detailed description of all panels see Fig. 5.9.

PI default PI reduced BI EIF (γ) BI reduced
Fig. 5.1 Fig. 5.9 Fig. 5.11 / 5.12 Fig. 4.3

heterogeneity 3 7 7 7

inh coupling weak weak strong strong
noise weak weak strong strong
neuron model EIF EIF EIF LIF
adaptation (3) 7 7 7

synaptic
delay 7 7 7/ 3 3

perturbation-based bifurcation-based

Table 5.2: From perturbation- to bifurcation-based ripple generation. Sum-
mary of how the model parameters (heterogeneity, coupling, noise) affect the occur-
rence of ripple oscillations (transient ringing or persistent oscillation). All networks
were stimulated by the same external drive (Imax = 700 pA). PI default: original
perturbation-based model (Malerba et al., 2016). BI reduced: reduced bifurcation-
based model (Chapter 4). The model transition (PI to BI) is primarily mediated by
the removal of heterogeneity and an increase in noise and coupling strength. The neu-
ron model, adaptation and the synaptic delay are only listed as modulatory factors.
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Apart from the difference in oscillation frequency, the EIF-version of the bifurcation-
based model (column 3 in Table 5.2) exhibits the same dynamics as the LIF model
(column 4 in Table 5.2) analyzed in Chapter 4: For increasing external drive there is
a transition from sparse to full synchrony (Fig. 5.13). Note that for a synaptic delay
of 0.5 ms and an EIF threshold sharpness of ∆ = 2 mV the network frequencies are
consistently below ripple range (Fig. 5.13B, black line vs grey area).
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Figure 5.13: Ripple dynam-
ics of the homogeneous EIF
network with increased cou-
pling strength, noise level and
synaptic delay. Same panel out-
line as Fig. 4.3. Dynamics of
the EIF version of the bifurcation-
based model with a synaptic delay
0.5 ms for various levels of exter-
nal drive (otherwise same param-
eters as in Fig. 5.12: no hetero-
geneity, no adaptation, increased
noise: σ = 1.5, σβ = 67.5 pA,
and increased coupling strength:
α = 100, αgpeak

i = 2.34 nS).
For increasing drive the EIF net-
work exhibits the same transition
from sparse to full synchrony as
the LIF bifurcation-based model
(Chapter 4 Fig. 4.3, Donoso et al.,
2018).

In summary, the perturbation-based ripple model can be transformed into the
bifurcation-based setting by removing heterogeneity from the network and increasing
noise and coupling strength (Table 5.2).

5.5 Discussion
In this chapter I analyzed the perturbation-based inhibition-first ripple model by
Malerba et al. (2016). I outlined its parameter dependencies and demonstrated how
one can transition from the perturbation-based to the bifurcation-based model. In the
following, I will summarize the main differences between the two inhibition-first model
classes and relate them to experimental data:

Ripple duration. In the perturbation-based model the ripple is inherently transient,
while the bifurcation-based model produces ripple oscillations that persist for as long as
the drive is above the critical bifurcation level. Although fundamental, this difference
is difficult to test experimentally. Long optogenetic stimulation of CA1 PV+ basket
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cells is problematic because of side effects such as opsin desensitization (Chater et al.,
2010). Schlingloff et al. (2014) varied the length of an optogenetic drive to PV+ basket
cells in CA3 in a small range between 5–50 ms and found indeed that ripple duration
correlates with stimulus duration, when all other synaptic excitation is blocked. This is
in support of the bifurcation-based model. A prolongation of SPW-Rs by stimulation
was also shown by Fernández-Ruiz et al. (2019), albeit using optogenetic stimulation of
pyramidal cells. It would be interesting to quantify a possible correlation between sharp
wave and ripple duration in spontaneous SPW-R events. This may be challenging, since
both the sharp wave and the ripple have stereotypical durations with small variability
(Malerba et al., 2016; Sullivan et al., 2011), and an assessment of their duration depends
heavily on the choice of filters and thresholding.

Ripple frequency. The ripple frequency in the perturbation-based model equals the
single unit firing rate and is thus proportional to the external drive. Some studies have
indeed shown that the ripple frequency correlates with the amplitude of the sharp wave,
which is an indicator for the magnitude of excitatory input reaching CA1 (Sullivan
et al., 2011; Stark et al., 2014). The bifurcation-based model, however, has been shown
to account for this finding as well, when the indirect drive to CA1 interneurons via
local CA1 pyramidal cells dominates over the direct drive via the Schaffer collaterals
(Donoso et al., 2018).

Interneuron firing rate. The perturbation-based ripple model is not truly “inhibition-
based”, in the sense that its mechanism relies on synaptic inhibition. On the contrary:
The model works in the absence of synaptic coupling, and strong inhibitory coupling
is even detrimental, as it decreases the mean firing rate of neurons and thus the ripple
frequency. The ripple frequency is set by the mean unit firing rate, hence this model
requires a cell population that is able to fire spikes at ripple frequency. The only CA1
cells that may satisfy this assumption are interneurons, and it is only in this sense
that the perturbation-based model is inhibition-based. The bifurcation-based model,
on the other hand, can account for a ripple-range oscillation in the population rate,
even when individual interneurons fire sparsely at lower rates (sparse synchrony).

There have been reports of CA1 interneurons spiking at ripple frequency (Ylinen
et al., 1995, TORO cells: Szabo et al., 2022, bistratified cells: Katona et al., 2014,
PV+ BCs: Lapray et al., 2012). The number of such neurons, relative to the overall
CA1 interneuron population, and hence their influence on the LFP signal remains
to be determined. Many studies have reported interneuron firing rates below ripple
frequency, in line with the bifurcation-based model (Csicsvari et al., 1999b; Klausberger
et al., 2003; Lapray et al., 2012; Varga et al., 2012, 2014; Stark et al., 2015).

Inhibitory coupling strength. My analysis in Sections 5.2.2.3 and 5.4 highlighted
the importance of the inhibitory synaptic strength as a separating factor between the
two inhibition-first models: Strong inhibitory coupling lowers the oscillation frequency
in the perturbation-based model below ripple range, and can even lead to a transition
towards the bifurcation-based model when heterogeneity is omitted.

Paired recordings between PV+ basket cells in CA1 (Bartos et al., 2002) suggest
that the inhibitory synaptic connections are much stronger than assumed by Malerba
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et al. (2016). The bifurcation-based model is further supported by the finding that
ripple oscillations do not persist, when inhibitory synaptic transmission is blocked by
GABAA-receptor antagonists (Ellender et al., 2010; Schlingloff et al., 2014; Stark et al.,
2014) — unlike what is predicted by the perturbation-based model.

Heterogeneity. I pointed out that adaptation and heterogeneity are not crucial
ingredients of the perturbation-based model. It is worth noting however, that the
perturbation-based model can work in a heterogeneous network, while heterogeneity
can pose a challenge to the bifurcation-based model. In the perturbation-based model
heterogeneity was incorporated in the synaptic coupling strengths and the neuronal
excitability. There are various other sources for heterogeneity in the brain, such as
non-random connectivity patterns or variability in the various time constants govern-
ing neuronal dynamics. Exactly how much and what kind of heterogeneity characterizes
the CA1 population of PV+ interneurons, and whether it prevents the emergence of per-
sistent oscillations as posited by the bifurcation-based model, should be investigated
in future research. Previous work has shown for example that heterogeneity in the
synaptic delays can strongly reduce or even completely abolish the parameter regime
for which persistent oscillations emerge (Brunel and Hakim, 1999). If heterogeneity
merely limits the duration of the otherwise persistent oscillations, the bifurcation-based
model could still account for biological ripples, which are naturally transient.

Intra-ripple frequency accommodation. The analysis of the instantaneous ripple
frequency in the perturbation-based model is novel and yields promising new insights
that might advance model selection: I established that the perturbation-based model
in its default configuration with step-current input does not exhibit IFA. If the input
changes over time, the instantaneous ripple frequency follows these changes, since it
is entirely determined by the single unit firing rate. Thus, the perturbation-based
model can only account for IFA in response to a strongly asymmetric drive — such
as a sudden step followed by a monotonic decrease. The bifurcation-based model, on
the other hand, produces IFA for any input that rises and falls with sufficient speed,
regardless of its symmetry (see Chapter 4).

Excitatory currents measured during spontaneous SPW-Rs can exhibit some asym-
metry due to synaptic filtering (Maier et al., 2011), but generally have a non-zero rise
time (CA1 pyramidal cell: Maier et al., 2011; Donoso et al., 2018, CA3 PV+ BC: Hajos
et al., 2013; Schlingloff et al., 2014). This provides strong evidence for the bifurcation-
based model, which can account for IFA independent of the exact (a)symmetry of
the SPW-associated drive, whereas the perturbation-based model predicts “anti-IFA”
during the rising phase of the external drive.
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5.6 Methods

5.6.1 Model summary
In its reduced (interneuron-only) form the perturbation-based inhibitory ripple model
consists of a heterogeneous network of 160 interneurons (Malerba et al., 2016). The
interneurons are modeled as adaptive exponential integrate-and-fire (aEIF) units with
the voltage vi of neuron i given by:

Cmv̇i = −gL(vi − EL) + gL∆ exp
[
vi − Vt

∆

]
− wi + Ii(t) . (5.3)

All model parameters are summarized in Table 5.3. The exponential term mimicks the
nonlinear spike generation due to fast sodium currents. Its sharpness is regulated by
the parameter ∆. Whenever the voltage vi reaches the threshold Vthr = 0 mV, it is
reset to Vreset = −58 mV and the adaptation current wi is increased by b = 10 pA. The
adaptation current obeys the differential equation

τwẇi = a(vi − EL)− wi . (5.4)
The total input current to cell i is given by

Ii(t) = IDC
i + σηi(t)− Isyn

i (t) + I inp(t) . (5.5)

Every cell receives a constant bias current IDC
i drawn from a normal distribution with

mean ĪDC = 180 pA and a standard deviation of 10% of the mean (IDC
cv = 0.1):

IDC
i ∼ N

(
ĪDC, IDC

cv ĪDC
)
. (5.6)

To model background noise, each cell receives an input ηi generated by an independent
Ornstein-Uhlenbeck process

τη
d
d tηi(t) = −ηi +

√
2τηβξi(t) , with 〈ξi〉 = 0, 〈ξi(t)ξj(t′)〉 = δijδ(t− t′) (5.7)

with standard deviation β that can be scaled with the scaling factor σ (see Eq. (5.5)).
The synaptic current is given by

Isyn
i (t) = gIi (t)(vi − EI) (5.8)

with a double-exponential inhibitory conductance

gIi (t) = α
N∑
j=1

nj∑
k

gpeak
ij s

exp
−t− tkj

τD

− exp
−t− tkj

τR


Θ

(
t− tkj

)
(5.9)

with heaviside function Θ(·). The sum here is taken over all presynaptic units j and
their spike times {tkj}k∈[1,nj ]. The normalizing factor s is chosen such that the inhibitory
conductance resulting from a single presynaptic spike at a synapse from unit j to unit
i has a peak of gpeak

ij . The peak conductances are drawn randomly from a normal
distribution with mean ḡpeak = 0.0234 nS and a standard deviation of 65% of the mean
(gpeak

cv = 0.65) (see Appendix Section 5.A.1.1). Negative conductances are clipped to
0:

gpeak
ij ∼ max

[
N
(
ḡpeak, ḡpeakgpeak

cv

)
, 0
]
nS . (5.10)
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The synaptic coupling strength can be scaled with the scaling factor α.
The input current I inp is the same for all neurons and typically consists of a step
current, jumping up from 0 to Imax after an initialization period of 1 second:

I inp(t) = ImaxΘ(t− 1 sec) . (5.11)

Further parameter definitions and all default parameter values are summarized in Table
5.3. Note that compared to the parameters reported in (Malerba et al., 2016) I made
two adjustments: larger variability of coupling strength (gpeak

cv = 0.65) and lower noise
intensity (β = 45 pA) (marked in Table 5.3 and explained in Appendix Section 5.A).
Based on the evidence presented in Appendix Section 5.A I assume that my implemen-
tation of the perturbation-based ripple model including these parameter corrections
faithfully replicates the findings presented in (Malerba et al., 2016).

Parameter Value Definition
N 160 Number of interneurons
τm 20 ms Membrane time constant
Cm 200 pF Membrane capacitance
gL 10 nS Leak conductance
Eleak -70 mV Resting potential
Vthr 0 mV Spike threshold
Vt -50 mV Rheobase threshold
∆ 2 mV Sharpness of threshold
Vreset - 58 mV Reset potential
EI -80 mV Reversal potential for inhibition
a 2 nS Subthreshold adaptive coupling
b 10 pA Spike-triggered adaptation current
τw 30 ms Adaptation time constant
τη 10 ms Noise correlation time constant
β 45 pA Standard deviation of colored noise input (*)
τR 0.3 ms Synaptic rise time constant
τD 2 ms Synaptic decay time constant
ḡpeak 0.0234 nS Average inhibitory peak conductance
gpeak

cv 0.65 Coefficient of variation of peak conductances (**)
ĪDC 180 nA Average DC input current
IDC

cv 0.1 Coefficient of variation of DC input currents
Imax 700 pA Amplitude of step current
α 2 Scaling factor for synaptic strength
σ 1 Scaling factor for noise

Table 5.3: Default parameters of the perturbation-based inhibition-first
ripple model. All parameters as in (Malerba et al., 2016), except for: (*) corrected
as described in Section 5.A.1.2, (**) corrected as described in Section 5.A.1.1.
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5.6.2 Simulation and analysis

I implemented the network using the spiking network simulator Brian2 (Goodman and
Brette, 2009). All simulations were done with a time step of 0.01 ms (after confirming
that decreasing the time step to 0.001 ms did not change the results in any significant
way).

To assure full comparability, the analysis of network dynamics is done as described
in (Malerba et al., 2016): For any given parameter setting, 100–200 independent real-
izations of the network are simulated and the resulting population activities averaged
across trials and in bins of 0.1 ms. In accordance with (Malerba et al., 2016) I trans-
late the average binned population rate (in units of spikes/s) into a spike probability
Pspk (∈ [0, 1]) by multiplying with the width of the time bin (Fig. 5.17B). Peaks are
detected after smoothing Pspk slightly with a gaussian window of standard deviation
0.3 ms. The asymptotic spike probability P∞spk (∼ r∞), which the network reaches after
the end of the transient ripple, is found by taking the average over the time window
[1500, 2000] ms, i.e. 500 ms after the onset of the step current stimulus. A significance
threshold for ripple peaks was defined by Malerba et al. (2016) as

Pthr := P∞spk + 0.2
(
p1 − P∞spk

)

where p1 is the first (and highest) of the peaks detected in the spike probability. All
peaks above this threshold are considered significant, and the number of significant
peaks equals the number Ncyc of cycles of a given ripple event. The inverse of the
peak-to-peak distances yields Ncyc − 1 discrete estimates of the instantaneous ripple
frequency. The average of these instantaneous estimates is defined as the network
frequency. The duration of a ripple event is defined as the time from stimulus onset
(1 s) until the location of the last significant peak1.

Up to this point my analysis is exactly the same as described in (Malerba et al.,
2016). I introduced a few additional measures to get a better insight into the network
dynamics. From each unit’s interspike interval I derive a discrete measure of instanta-
neous unit firing rate (Fig.5.17A2). I define the boundaries of an oscillation cycle as the
location of the valleys between the significant peaks of the spike probability. In every
cycle I count the number of spikes that each interneuron emitted. Thus I can estimate
the saturation in each cycle, i.e. the fraction of cells that have spiked (averaged over
trials, Fig. 5.17B1). Also I show the distribution of the total number of spikes that
cells have fired over the course of an entire ripple event (Fig. 5.17C1), as well as the
distribution of the coefficients of variation of the interspike intervals of all units in all
trials (Fig. 5.17C1). For time-dependent stimuli (see Sec.5.3) I define a time-dependent
significance-threshold Pthr(t) based on a piecewise-linear fit of the (oscillatory) spike
probability (see Figs. 5.6, 5.7).

1This seems to be what the authors did in (Malerba et al., 2016), so I adopted it to enable direct
comparison. Conceptually, since one starts counting ripple cycles in a “valley” at stimulus onset, it
seems more reasonable to define the end of the ripple event as the valley after the last significant peak.
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5.A Appendix: Replicating (Malerba et al., 2016)

5.A.1 Parameter corrections
5.A.1.1 Variability of peak conductances (gpeak

cv )

According to Materials and Methods in (Malerba et al., 2016) the synaptic peak con-
ductances are distributed normally with a mean ḡpeak = 0.0234 nS and a standard
deviation of 10% of the mean, corresponding to a coefficient of variation gpeak

cv = 0.1.
All negative conductances are clipped to 0. I argue here that, probably due to a coding
error, the actual coefficient of variation used in the simulations underlying the distri-
bution of peak conductances shown in Fig. 2c of (Malerba et al., 2016) (reprinted here
as Fig. 5.14) was gpeak

cv = 0.65.
In the following I will omit the superscript "peak" to enhance readability. For

a normal distribution N (ḡ, ḡ · gcv) with mean ḡ and standard deviation ḡ · gcv the
fraction of negative values can be expressed in terms of the cumulative distribution
function Φ of the standard normal distribution:

P (g ≤ 0) = 1√
2πgcvḡ

∫ 0

−∞
exp

−(g − ḡ)2

(2gcvḡ)2

 dg = Φ
(

0− ḡ
gcvḡ

)
= Φ

(
− 1
gcv

)

= 1
2

1 + erf
(
− 1√

2gcv

) (5.12)

(see Fig. 5.15A). We see that the fraction of negative conductances that will be clipped
to 0 depends exclusively on the coefficient of variation gCV and not the mean ḡ. For
a CV of 10% we would expect Φ(−10) ∼ O(10−24) ≈ 0 negative conductances. This
clearly does not match the original distribution of peak conductances used by Malerba
et al. (2016) (see Fig. 5.14), which shows a significant portion of conductances clipped
to 0.

Parts of the code by Malerba et al. (2016) are published on ModelDB (McDougal
et al., 2017, accession number 188977). I found a presumable typo that explains the
inconsistency: When generating the random synaptic peak conductances the authors
set the variance to gvar = g2

CV · ḡ instead of gvar = g2
CV · ḡ2 (file NetworkRunSeqt.m, line

108). This means that effectively they were using a CV of ĝCV = √gvar/ḡ = gCV/
√
ḡ =

0.1/
√

0.0234 ≈ 0.65.
For a CV of 65% we know analytically that 6.2% of the conductances should be

negative and hence clipped to 0 (Eq. (5.12): Φ(−1/0.65) ≈ 0.062). Fig. 5.15 shows
the distribution of synaptic conductances for a CV of 65%, after clipping negative
conductances to 0. It seems to match the distribution shown in (Malerba et al., 2016)
Fig. 2c (here Fig. 5.14) very well.

Note that the code published on ModelDB is an implementation of the full net-
work model including both inhibitory and excitatory cells. The code for the reduced,
inhibition-only model is not available (personal communication with Malerba et al.
(2016)). Hence we can only assume that the same parameters were used for the re-
duced model and the same coding error occured, introducing the effectively higher
variability of the peak conductances.
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Figure 5.14: Distribution
of peak conductances in
the perturbation-based
inhibition-first model.
(adapted from Malerba
et al., 2016, CC BY 4.0).
Light red histogram shows
the distribution of peak con-
ductances for the synapses
between inhibitory neurons.
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Figure 5.15: Distribution of peak conductances for different coefficients of
variations. A, Fraction of peak conductances that will be clipped to 0 depending on
the CV (Eq. (5.12)). Vertical lines mark CV 0.1 and 0.65 respectively. B, Distribution
of peak conductances for CV = 0.1, which was reported by Malerba et al. (2016).
C, Distribution of peak conductances for CV = 0.65, which seems to be the value that
was actually used in (Malerba et al., 2016) (cf. Fig. 5.14). Black: Normal distribution
with mean ḡpeak = 0.0234 and standard deviation ḡpeak · CV. Red: Same distribution
with negative peak conductances mapped to 0.

5.A.1.2 Noise intensity (β)

When adjusting only gpeak
cv as described in the previous section, my network simulation

still does not yield the same quantitative results that were shown in Fig. 5b of the
original paper (here Fig. 5.16). In the following I will discuss the differences and
demonstrate how the disparity might be due to an error in the reported noise intensity.

For a synaptic strength scaling of α = 2 and a synaptic decay time constant of
τD = 2 ms Malerba et al. (2016) reported a transient ripple event with 6 cycles at a
frequency of ∼180 Hz, amounting to an overall duration of ∼32 ms (Fig. 5b, top left
in Malerba et al., 2016, reprinted here as Fig. 5.16).
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Figure 5.16: Original reference simulation.
(Fig. 5b, top left, adapted from Malerba et al., 2016,
CC BY 4.0). Red: spike probability averaged over mul-
tiple trials. Blue: step current stimuluation of amplitude
700 pA.
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Figure 5.17: Weak ripple in my implementation with original parameters.
Parameters as reported by Malerba et al. (2016), see Table 5.3. Same outline as
Fig. 5.1. A, Single trial. (10) step current of 700 pA (9) excitatory background current
IEi = IDC

i + σβηi(t); (8) inhibitory feedback current Isyn
i (t); (7) the total current

Ii (sum of the bottom 3 panels, Eq. (5.5)); (6) adaptation current wi; (5) membrane
potentials; (4) raster plot (30/160 interneurons); (3) population rate; (2) instantaneous
unit firing rates (1/ISI). (1) wavelet spectrogram quantifying instantaneous frequency
and power of the population rate. B, Average over 100 trials. (4) step current I inp.
(3) spike probability Pspk in bins of 0.1 ms with significant peaks marked (black stars).
(2) discrete estimates of instantaneous ripple frequency (black marker), and average
frequency (black dashed line). (1) saturation, ±1 SD. C, Spike statistics. (1) total
number of spikes per unit per event. (2) coefficient of variation of interspike intervals.
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In my implementation the network does exhibit a transient oscillation as well, with
a frequency in ripple range (195 Hz). However the event is much shorter (14.25 ms)
with only 3 cycles (Fig. 5.17B). Visual comparison of the averaged spike probabilities
(Fig. 5.17B vs Fig. 5.16) shows that the activity of my network is much noisier. This is
not surprising given the strong colored noise input that every unit receives. Looking at
the excitatory background current IEi = IDC

i +σηi of individual cells (Fig. 5.17A, panel
9), we see that it spans up to 500 pA, which is comparable to the incoming "signal",
i.e. the step current I inp of amplitude 700 pA.

Malerba et al. (2016) showed that the oscillatory modulation of the spike probability
gets more pronounced for lower noise intensities (smaller noise scaling factor σ, their
Fig. 6c–d, reprinted here as Fig. 5.22). I hence hypothesized that maybe the noise
intensity used for the simulations of the reduced model in Figs. 5 and 6 of (Malerba
et al., 2016) was different from the one reported in the Methods section, which was
written for the complete model which also includes pyramidal cells.

Further support for this hypothesis comes from the observation that the asymptotic
spike probability into which the network settles after the ripple event, matches the
published result quite well (P∞spk ≈ 0.02, Fig. 5.17B, second panel). This means that
the average currents that the cells receive are comparable. Only the fluctuations around
this mean are too strong.

When I reduce the noise amplitude by a factor of 1/2, i.e. β = 45 pA, my network
simulation matches the originally published results very well (Fig. 5.1B vs. Fig. 5.16).
The averaged spike probability exhibits a pronounced ripple oscillation with 5 cycles
at 184 Hz over a total of 25.45 ms.

I demonstrate in the next section that the slight deviation in ripple duration com-
pared to the original (5 instead of 6 cycles, with the 6th peak just below threshold)
might be due to the significance criterion for ripple peaks, which is highly sensitive
to the details of the averaging procedure (number of trials, presence or absence of
quenched variability in the network connectivity.).

5.A.2 The role of random connectivity

Since it was not clear from the original publication whether the network architecture
had been fixed or varied across trials, I briefly investigated the effect of random con-
nectivity on the average network dynamics. The network architecture is determined
by the distribution of peak conductances (Eq.(5.10)). Not only do peak conductances
vary across synapses, but around 6% of them are clipped to 0 (see 5.A.1.1), effectively
introducing structural heterogeneity to the network with some synapses missing.

In Fig. 5.18 I averaged 100 trials of the default ripple network simulation (shown
in Fig. 5.1), once keeping the network architecture the same across trials (i) and once
using a new random connectivity matrix in each trial (ii). I observe that although both
cases produce very similar results, keeping the network architecture constant increases
the estimated ripple duration by 1 cycle (∼ 6 ms) (see Fig. 5.18 C, i vs. ii). This
discrepancy disappears if I average more trials (200), in which case both cases yield an
average of 5 ripple cycles (not shown).
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Figure 5.18: Fixed vs variable network architecture.
A, Ripple dynamics in a single trial. B, Distribution of peak conductances across
trials: fixed (i) or random (ii). For visibility only the connections between the first 10
interneurons are shown here. C, Ripple dynamics averaged over 100 trials with either
fixed (i) or variable (ii) network architecture. Note the difference in detected ripple
duration. D, Spiking statistics for both cases.

If the previous parameter adjustments indeed brought us to the exact same point
in parameter space used by Malerba et al. (2016) (which we cannot safely assume of
course), this could be one possible explanation for why I find 5 instead of their 6 ripple
cycles (Fig. 5.1).

If I average 100 trials for a fixed network architecture I recover quite precisely the
results shown in the original Fig. 5b, top left, i.e. a ripple at 181 Hz with 6 cycles and
an overall duration of 31 ms (Fig. 5.18 Ci). Another potential source for discrepancies
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in estimated ripple duration could be the method used for peak detection. The average
spike probability over 100-200 trials in bins of 0.1 ms is still noisy, so I applied a narrow
gaussian smoothing window before detecting peaks. If Malerba et al. (2016) used a
slightly different method for peak detection this might explain why they find one more
peak that passes the significance threshold.

For my further simulations shown in the main text I decided to average not only
over noise realizations but also network architectures. This should yield the most
meaningful quantification of the ripple dynamics of this model, given that we are not
interested in the (small) effect that a particularity in any given connectivity matrix
might have. Also I will get better averaging results already at lower trial numbers.

The most important take-away from this section is that the estimate of the duration
and number of cycles of a ripple event in this model is highly sensitive to noise and
the somewhat arbitrary choice of the significance threshold for the peaks in the spike
probability. This should be kept in mind when evaluating the comparisons with the
original paper.

5.A.3 Parameter explorations

To further probe my implementation of the model I replicated parts of the parameter
exploration shown in (Malerba et al., 2016).

5.A.3.1 Variation of inhibitory coupling strength

Malerba et al. (2016) varied the strength of the inhibitory synapses by changing either
the peak conductance, using the scaling factor α, or the synaptic decay time constant
τD (their Fig. 5, reprinted here as Fig. 5.20). They found that both parameters have
similar effects: Increasing either α or τD increases the overall amount of inhibitory
feedback, which leads to a decrease of the network frequency. They also observe a
decrease in ripple cycles. The resulting duration is a combination of both frequency
and number of cycles and hence shows mixed trends. Most importantly, ripples in this
model occur even in the absence of synaptic coupling (α = 0).

My implementation of the network model replicates all of these qualitative findings
and also fits the results quantitatively (see Fig. 5.19 vs. Fig. 5.20).

5.A.3.2 Variation of noise strength

Malerba et al. (2016) varied the amplitude of the colored noise input that the interneu-
rons receive using the scaling factor σ (their Fig. 6c-d, reprinted here as Fig. 5.22).
Note that based on the arguments presented in Section 5.A.1.2 I assume here that the
baseline of σ = 100% corresponds to a noise standard deviation of β = 45 pA. Malerba
et al. (2016) find that a reduction of the noise has no effect on the network frequency
but prolongs the ripple event (Fig. 5.22).

My implementation of the network replicates the same qualitative findings (Fig. 5.21
vs. Fig. 5.22).
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Figure 5.19: Parameter ex-
ploration: inhibitory coupling
strength.
Synaptic strength was varied via the
scaling factor α and/or the decay time
constant τD. The resulting ripple dy-
namics are quantified in terms of net-
work frequency, number of ripple cy-
cles and duration of the ripple event
(from top to bottom). The deviations
across different τD values for α = 0
are due to the beforementioned noise-
sensitivity of the measure for ripple du-
ration. All results are in agreement
with Fig. 5c-e in (Malerba et al., 2016)
(Fig. 5.20)

transient duration (ms)

Figure 5.20: Original parameter
exploration: inhibitory coupling
strength. Same layout as Fig. 5.19
(adapted from Malerba et al., 2016, CC
BY 4.0).

A direct quantitative comparison between Fig. 5.21 and Fig. 5.22 is not possible
due to an inconsistency in the original paper between their Figs. 5 and 6d. According
to Malerba et al. (2016) the noise strength was kept constant at σ = 100% when α and
τD were varied in their Fig. 5. In their Fig. 6 on the other hand σ and α were varied,
while τD was supposedly at its default value of 2 ms. Hence the network frequency for
α = 2, τD = 2ms in their Fig. 5d (here Fig. 5.20, light red bar, ∼180 Hz) should be the
same as the network frequency for α = 2, σ = 100% in their Fig. 6d (here Fig. 5.22,
dark green bar, ∼225 Hz), which is however not the case. This seems to suggest that
either τD or other parameters were varied in the simulations for their Fig. 6 compared
to their Fig. 5. I decided not to pursue this further, since it does not affect the overall
qualitative finding.



5.A. Appendix: Replicating (Malerba et al., 2016) 185

0

100

200

300

fre
q 

[H
z] 0

1
2

0

5

10

N c
yc

0
1
2

100 50 0
0

20

40

60

du
ra

tio
n 

[m
s]

0
1
2

Figure 5.21: Parameter ex-
ploration: inhibitory coupling
strength and noise intensity. Synap-
tic strength and the amplitude of the
colored noise input are scaled by α and
σ resp. The resulting ripple dynamics
are quantified in terms of network
frequency, number of ripple cycles and
duration of the ripple event (from top
to bottom). Results agree qualitatively
with Fig. 5.22.

Figure 5.22: Original parameter
exploration: inhibitory coupling
strength and noise intensity.
Top: number of cycles, bottom: network
frequency. Note that the default bars
here (σ = 100) do not match the default
bars of Fig. 5.20 (τ = 2ms) (adapted
from Malerba et al., 2016, CC BY 4.0).

Overall, the above parameter explorations demonstrate that my parameter choice
of gpeak

cv = 0.65 and β = 45 pA brings me very close to the point in parameter space that
must have been used in the original publication by Malerba et al. (2016). My network
exhibits the same ripple dynamics in terms of frequency and duration, quantitatively
and qualitatively.
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Figure 5.23: Ripple dynamics without adaptation. Same outline as Fig. 5.1.
Network simulation without adaptation (a = 0 nS, b = 0 pA, hence no adaptation
current w (A6), all other parameters as in Fig. 5.1). Qualitatively the same ripple
dynamics as in Fig. 5.1. Here the network frequency coincides with the asymptotic
rate (black vs red dashed line in A2, B2).
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Figure 5.24: Patho-
logical persistent
ripple without adap-
tation, heterogeneity
and noise. Same
outline as Fig. 5.1.
Network simulation
without adaptation,
heterogeneity or noise
(gpeak

cv = 0, IDC
cv = 0,

a = 0 nS, b = 0 pA, σ =
0, hence no adapta-
tion current w (A), all
other parameters as in
Fig. 5.1). The network
behaves like a single
unit.
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Figure 5.25: Intro-
ducing persistent
oscillations with a
single parameter
change. Same outline
as Fig. 5.9, only the
coupling strength is in-
creased (here α = 200,
αgpeak

i = 4.58 nS).
Spikes occur highly
synchronized (B4) due
to the strong inhibitory
feedback (B7) compared
to the noise.
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Figure 5.26: Clustering instability in the homogeneous EIF network.
Same outline as in Fig. 5.9. At low noise (here σ = 0.1 σβ = 4.5 pA) the homogeneous
EIF network undergoes a clustering instability when the synaptic coupling strength is
increased (here α = 20, αgpeak

i = 0.458 nS) (Brunel and Hansel, 2006, cf. mark (4) in
Fig. 5.10B). The network splits into two clusters of units that fire regularly in every
second cycle resp. (see orange vs blue unit in B(5)). The network frequency is thus
exactly twice the unit firing rate.
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Figure 5.27:
Network fre-
quency in-
creases with
noise strength.
Same as
Fig. 5.12,
but with in-
creased noise
strength (σ = 3,
σβ = 135 pA).
CV(ISI) and
network fre-
quency increase
(110.6 Hz).
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Figure 5.28: No transient ringing effect with strong coupling and noise.
Same network as Fig. 5.11. A step current stimulation does not trigger a transient
ringing effect. Instead the network enters the same persistent oscillations described in
Fig. 5.11.
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6.1 Introduction

Current evidence suggests that sharp wave-ripples can be generated in local networks
of regions like CA3, CA1, the subiculum or the amygdala (Buzsáki, 1986; Pono-
marenko et al., 2003; Imbrosci et al., 2021), but also propagate within and across
regions (Csicsvari et al., 2000; Maier et al., 2003; Both et al., 2008; Nitzan et al., 2020;
Oliva et al., 2016),(but see Ellender et al., 2010). This may be relevant for the transfer
of information across regions. Understanding such potential function in the future will
likely require a larger-scale model of sharp wave-ripple dynamics (and replay) across
multiple regions.

In Chapter 4 I studied the bifurcation-based inhibitory ripple model on micro- and
on macroscopic scale. The gap between the two levels of description is large: Simulating
the activity of a spiking neural network on a microscopic scale requires an integration of
the membrane potential dynamics of a large number of neurons over many small time
steps. This can become computationally expensive when studying very large networks,
multiple coupled networks, or the evolution of the dynamics over longer time windows.
On the other hand, I have shown that the most important qualitative features of the
interneuron-generated ripples, such as the transition from sparse to full synchrony
or IFA, are preserved on a macroscopic, mean-field scale. While such a macroscopic
approach is very efficient in determining the population rate expected in the mean-field
limit, it completely neglects finite-size effects. Real interneuron networks are of course
finite (∼200 PV+ basket cells in a mouse hippocampal slice, ∼5530 PV+ BCs in the
entire hippocampus; Bezaire and Soltesz, 2013; Donoso et al., 2018) and the resulting
finite-size effects (e.g. fluctuations) can influence the ripple dynamics quantitatively,
in terms of frequency and synchrony (Holzbecher and Kempter, 2018), and are needed
to eventually account for the spontaneous emergence of SPW-Rs (Evangelista et al.,
2020).

Recently an intermediatemesoscopic modeling approach has been developed (Schwal-
ger et al., 2017). It combines efficient integration of the population dynamics on a
macroscopic scale with a correction factor that accounts for finite-size effects. An im-
portant prerequisite for the mesoscopic ansatz is a switch from a neuron model with
noisy input to an escape-noise model with stochastic spiking (i.e. „noisy output“). This
switch involves the choice of a hazard function governing stochastic spiking. In this
chapter I will show that in a recurrently coupled network, such as the bifurcation-based
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inhibitory ripple model, the choice of hazard function has a significant impact on the
network dynamics, not only at the mesoscopic level but already on the microscopic
level.

The chapter is organized as follows: First I briefly introduce a microscopic reference
network of LIF neurons exhibiting ripple oscillations (Section 6.2). It is the goal of
this chapter to model the ripple dynamics of this network on a mesoscopic scale. In
Section 6.3 I briefly introduce escape-noise models and two potential hazard functions
(Section 6.3.1) that I will compare throughout the chapter. I derive a high-frequency
limit for the linear response of escape-noise models depending on the hazard function
(Section 6.3.2). Simulations of networks of escape-noise models on the microscopic level
will illustrate how the differences in linear response due to the hazard function translate
into different ripple oscillation frequencies in a recurrent network (Section 6.3.3). In
Section 6.4 the mesoscopic scheme by Schwalger et al. (2017) is introduced and applied
to the LIF ripple network. The resulting dynamics are compared to the microscopic
simulations of the LIF reference network and the network of escape-noise units.

6.2 Microscopic reference model with noisy input

It will be the goal of this chapter to approximate the dynamics of the bifurcation-based
inhibitory ripple model discussed in Chapter 4 on a mesoscopic scale. Thus, one of
the network configurations discussed in Chapter 4 is chosen as a microscopic reference
model and will be briefly reviewed here (cf. Fig. 4.17B). The membrane potential vi of
an LIF neuron i is described by a stochastic differential equation:

v̇i(t) = 1
τm

(Eleak − vi(t)) + 1
C

(
Iext − Iinh(t)

)
+
√

2
τm
σV ξi(t) (6.1a)

Iinh(t) = Ipeak
I

κ2exp
∆ ∗

NI∑
j=1

∑
k

δ(tkj − t)
 (6.1b)

with membrane time constant τm, leak potential Eleak, and capacitance C. When-
ever the membrane potential vi reaches a spike thresold Vthr, a spike is fired and the
membrane potential is reset to Vreset where it remains for an absolute refractory period
of τref . The network is fully connected with current-based, inhibitory synapses. The
postsynaptic response to an input spike begins after a delay ∆ and is modeled as the
difference of two exponential functions (filter κ2exp

∆ , Eq. (4.11f)). The peak synaptic cur-
rent is scaled down to account for the increased indegree in the fully connected network:
Ipeak
I = 0.2 · 83 pA. All neurons receive an independent Gaussian white noise ξi with
〈ξi〉 = 0, 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). The noise intensity is fixed to σV = 7.3 mV. All
other parameters are taken from the detailed ripple model (see Table 4.2 and Donoso
et al., 2018).

As discussed in Chapter 4, this network exhibits ripple oscillations when driven by
sufficient excitatory input Iext (Fig. 6.1). For increasing drive we observe a transition
from sparse to full synchrony.
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Figure 6.1: Ripple dynamics in a mi-
croscopic LIF network under Gaussian
white noise input. Network frequency fnet
and mean unit firing rate funit; saturation
s = funit/fnet; coefficient of variation (CV)
of interspike intervals; and average amplitude
of population rate depending on the constant,
excitatory drive Iext. All measures were intro-
duced in Chapter 4, Methods Section 4.5.1.
Red crosses: network frequency and the mean
unit rate at oscillation onset (see Linear sta-
bility analysis in Chapter 4, Methods Sec-
tion 4.5.2.4 Brunel and Hakim, 1999). Empty
triangles mark the (small) peak in the power
spectral density of the population rate before
the bifurcation.
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It is the goal of this chapter to investigate whether this range of dynamics in a
microscopic simulation of a network of LIF units under Gaussian white noise can be
captured in a mesoscopic simulation (Schwalger et al., 2017). In a first step this requires
replacing the LIF neuron model with noisy input by an escape-noise model.

6.3 Escape-noise models: Mapping input to output
noise

There are many sources of noise in the brain, such as stochastic ion channels, noisy
background activity from other cells or stochasticity in synaptic transmission. Standard
integrate-and-fire models of neuronal activity, such as the LIF neuron introduced above
(Eq. (6.1a)), account for such noise by adding a noisy input current (e.g.Gaussian white
noise). The membrane potential inbetween spike times is thus described by an Ornstein-
Uhlenbeck process. The noisy trajectory of the membrane potential is compared to a
deterministic spike threshold Vthr in order to determine when the neuron fires a spike.

Instead of incorporating noise in the input, one can also account for noise in the
output of a neuron. In the following I will refer to such neuron models as generalized
integrate-and-fire (GIF) neurons (following the nomenclature in Schwalger et al., 2017;
Gerstner et al., 2014; Pozzorini et al., 2015)1. The membrane potential u of a GIF
neuron is described by an ordinary differential equation (ODE):

∂

∂t
u(t, t̂) = 1

τm

(
Eleak − u(t, t̂)

)
+ I(t) , u(t̂, t̂) = Vreset (6.2)

1In the literature GIF often denotes a wider class of neuron models that can have a dynamic,
history-dependent firing threshold. In that sense I refer here to a subclass of GIF neurons with static
threshold.
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and, given some input current I(t), is a deterministic function of time t and the neuron’s
last spike time t̂ at which u was set to the reset potential Vreset. The GIF neuron fires
spikes stochastically according to a hazard rate

H(t, t̂) = f
(
u(t, t̂), u̇(t, t̂)

)
Θ(t− t̂− τref) . (6.3)

The probability that a neuron fires a spike in a small2 time window [t, t+ ∆t] is given
by H(t, t̂)∆t. If a spike is fired, the membrane potential is reset. If there is an absolute
refractory period τref , the hazard rate remains zero for the time τref after the last
spike. The hazard function f typically depends on the distance of the momentary
membrane potential u from the spike threshold. Additionally it might depend on the
time-derivative u̇ (more details in the next section).

The hazard rate H can be understood as the conditional probability density for
firing a spike at time t, given that no spike was fired since the last spike at time t̂. The
probability of not firing, or survival probability, is described by

S(t, t̂) = P
(
no spike in [t̂, t]

)
= exp

[
−
∫ t

t̂
H(s, t̂) dsΘ(t− t̂)

]
. (6.4)

Thus, the survival probability decreases exponentially over time according to the hazard
rate:

∂

∂t
S(t, t̂) = −H(t, t̂)S(t, t̂) (6.5)

The first-passage-time (FPT) density of a GIF unit is thus given by

P (t, t̂) = S(t, t̂)H(t, t̂) . (6.6)

6.3.1 Hazard functions
An ideal mapping from an LIF neuron model with noisy input to a GIF escape-noise
model would require a hazard function that preserves the first-passage-time (FPT)
density. Unfortunately the FPT density of an LIF neuron under Gaussian white noise
for general, time-dependent input I(t) is not known. Instead, hazard functions have
been chosen either purely phenomenologically or based on various approximations of the
LIF FPT density (Plesser and Gerstner, 2000; Goedeke and Diesmann, 2008; Chizhov
and Graham, 2007, 2008; Schwalger, 2021).

In the following I will compare two hazard functions: the common, phenomeno-
logical exponential hazard, and the Chizhov-Graham hazard, which is based on an
approximate solution of the LIF FPT problem and depends not only on the membrane
potential but also on its slope (Chizhov and Graham, 2007, 2008).

2In a simulation with finite time step ∆t the spike probability is instead defined as
Pspk(t, t̂) = 1 − exp

[
−
∫ t+∆t

t
H(s, t̂) dsΘ(t− t̂)

]
≤ 1 ∀∆t to ensure that it never exceeds 1, even

for larger time steps. For small H(t, t̂)∆t this is approximately equal to the simpler definition above
(Pspk(t, t̂) ≈ H(t, t̂)∆t).
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6.3.1.1 The exponential hazard

The exponential hazard is based on a simple exponential function of the distance of
the momentary membrane potential u from the spike threshold Vthr:

f(u) = r exp
[
u− Vthr

∆thr

]
. (6.7)

It is independent of the the derivative u̇, and it has two parameters: the threshold-
softness parameter ∆thr and the instantaneous firing rate at threshold r, which can be
fitted to experimental data or to the spike train of a neuron model with noisy input
(Gerstner and Naud, 2009; Mensi et al., 2012; Pozzorini et al., 2015; Jolivet et al.,
2006).

I fitted r and ∆thr such that the mean firing rate of the GIF unit matches the mean
firing rate of the LIF unit under Gaussian white noise (Eq. (6.1a), see Fig. 6.2). The
fit was restricted to the input range of 0–0.3 nA (see inset in Fig. 6.2), for which the
LIF unit fires at up to ∼150 spikes/s, which is the range of unit firing rates observed
during ripple oscillations (Fig. 6.1, top). For higher input currents the firing rate of the
GIF unit is lower than the LIF rate (Fig. 6.2). The GIF neuron fires more regularly
than the LIF neuron at low inputs, and slightly less at high input (Fig. 6.2, bottom).
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Figure 6.2: Firing properties of a GIF
neuron with exponential hazard fitted
to match the f-I curve of an LIF neu-
ron.
Mean firing rate (top) and coefficient of
variation of the interspike intervals (bot-
tom) as a function of input current for
an LIF neuron under Gaussian white noise
(black) and for a GIF neuron with expo-
nential hazard (green, r = 409.96 spikes/s,
∆thr = 3.45 mV). Inset shows the fitted
range. Solid lines: analytical f-I curves
(LIF: Eq. (6.28), GIF: Eq. (6.29)). Markers:
numerical estimates from a spiking network
simulation.

6.3.1.2 The Chizhov-Graham hazard

Chizhov and Graham (2007) defined a hazard based on the FPT density of an LIF
neuron under Gaussian white noise in the two limiting cases of subthreshold input
(hazard A) and strong suprathreshold input (hazard B). They approximate the hazard
f for general input as the sum of the two independent limit cases:

f
(
u(t, t̂), u̇(t, t̂)

)
= A

(
T (t, t̂)

)
+B

(
T (t, t̂), Ṫ (t, t̂)

)
. (6.8a)
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On the right-hand side I am following the original notation from Chizhov and Graham
(2007). Their function

T (t, t̂) = Vthr − u(t, t̂)√
2σV

(6.8b)

is a moving threshold that arises from a rescaling of the LIF FPT problem. For a
detailed derivation please refer to Appendix Section 6.A. For the moment it is sufficient
to note, that by inserting the expression for T , both hazards A and B can be rewritten
as functions of the mean membrane potential u (and its slope).
Hazard A was derived by Chizhov and Graham (2007) as the purely diffusion-mediated
firing rate of an LIF unit under Gaussian white noise in the limit of a slowly changing
mean membrane potential for subthreshold input (slow changes in T ):

A(T ) ≈ 1
τm

exp(6.1× 10−3 − 1.12T − 0.257T 2 − 0.072T 3 − 0.0117T 4).

(6.8c)

Hazard B describes drift-mediated spiking in the limit of fast transients in the mean
membrane potential due to suprathreshold input (fast changes in T ):

B(T, Ṫ ) = − 2√
π

exp
[
−T 2

]
1 + erf(T )

[
Ṫ
]
−

=


2√
π

exp[−T 2]
1+erf(T ) |Ṫ | > 0 , if Ṫ < 0 ⇔ u̇ > 0

0, if Ṫ ≥ 0 ⇔ u̇ ≤ 0
(6.8d)

Hazard B depends on Ṫ , and thus the slope u̇ of the mean membrane potential. When-
ever the mean membrane potential decays (T increases), the hazard rate is clipped to
zero by virtue of the linear rectifier function [x]− := (x− |x|)/2 (see also Goedeke and
Diesmann, 2008, and Chapter 4). For a detailed derivation of the Chizhov-Graham
hazard see Appendix Section 6.A.

The Chizhov-Graham hazard has interesting parallels to the Gaussian approxima-
tion of the mean-field ripple dynamics developed in Chapter 4. Note that the rate
definition in the Gaussian approximation in Chapter 4 is equivalent to the Chizhov-
Graham hazard B (Eq. (6.8d)) derived for the limit of fast transients in the membrane
potential due to strong suprathreshold input. The Chizhov-Graham hazard

B(t) = − 2√
π

exp(−T (t)2)
1 + erf(T (t))

[
Ṫ
]
−

corresponds to a survival probability

S(t) = 1
2
(
1 + erf

[
T (t)

] )
(see Eq. (6.27)), and yields a first passage time density

P (t) (6.6)= B(t)S(t) = − 1√
π

exp(−T (t)2)
[
Ṫ (t)

]
−

(6.8b)= − 1√
π

exp
[
−(Vthr − u(t))2

2σ2
V

] [
− u̇(t)√

2σV

]
−

=
[
u̇(t)

]
+

1√
2πσV

exp
[
−(Vthr − u(t))2

2σ2
V

]
.

P (t) is equivalent to the rate r defined in Eq. (4.7c) of Chapter 4.
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6.3.1.3 Non-stationary extension of the Chizhov-Graham hazard

The hazard function estimated by Chizhov and Graham (2007) is based on the assump-
tion that the membrane potential v of the LIF reference unit is distributed around its
expected value u according to the stationary Gaussian distribution of fixed variance σ2

V

(see Appendix Section 6.A). This assumption can be justified if the average interspike
interval is large such that the stationary distribution is reached before the next spike
is elicited.

Schwalger (2021) recently proposed a straight-forward extension of the Chizhov-
Graham hazard that takes into account the non-stationarity of the membrane potential
fluctuations around the mean. After the last spike at time t̂ the membrane potential
is deterministic during the absolute refractory period: v(t) ≡ Vreset ∀ t ∈ [t̂, t̂ + τref ].
When released from absolute refractoriness the membrane potentials for different noise
realizations diffuse into a Gaussian distribution around the mean with a time-dependent
variance σ2(t, t̂) approaching σ2

V exponentially:

σ2(t, t̂) = σ2
V

1− exp
−2t− t̂− τref

τm


Θ(t− t̂− τref) (6.9a)

(see also Eq. (4.46) in Chapter 4). The time-dependent variance is taken into account
in the definition of the rescaled threshold

T (t, t̂) = Vthr − u(t, t̂)√
2σ2(t, t̂)

. (6.9b)

The hazard thus depends not only on the momentary membrane potential and its slope,
but also directly on the time t− t̂ since the last spike:

f
(
u(t, t̂), u̇(t, t̂), t− t̂

)
= A

(
T (t, t̂)

)
+B

(
T (t, t̂), Ṫ (t, t̂)

)
. (6.9c)

Note that, unlike the exponential hazard, the Chizhov-Graham hazards do not contain
any parameters that need to be chosen arbitrarily. The firing statistics of a GIF neuron
with Chizhov-Graham hazard match the LIF firing statistics much better and across
a large range of input currents (Fig. 6.3). The non-stationary extension by Schwalger
(2021) enhances the fit of the spike regularity (see red vs. blue CV of interspike intervals
in Fig. 6.3).
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Figure 6.3: Firing properties of a GIF
neuron with Chizhov-Graham hazard.
Mean firing rate (top panel) and coefficient
of variation of the interspike intervals (bot-
tom panel) as a function of input current
for an LIF neuron under Gaussian white
noise (black), and a GIF neuron with ei-
ther the original Chizhov-Graham hazard
(C-G, blue), or the non-stationary exten-
sion (C-G-ns, red). Solid black line shows
the analytical solution for the LIF firing
rate (Eq. (6.28)). Markers are numerical
estimates from spiking network simulations
(LIF and GIF).

6.3.2 Dependence of the linear response on the hazard
The linear response of a single unit to weak oscillatory input largely determines the
dynamics of a network of such units, when they are coupled by delayed inhibition — at
least around the onset of collective oscillations (Brunel and Hakim, 1999; Lindner and
Schimansky-Geier, 2001; Brunel et al., 2001; Fourcaud-Trocmé et al., 2003; Brunel and
Hansel, 2006, see also Chapter 4). Since it is the goal of this chapter to approximate
the oscillation dynamics of an inhibitory LIF network using a network of GIF units, it
is relevant to study the linear response of GIF units and how it depends on the choice
of hazard function.

The linear response of an integrate-and-fire-type neuron to weakly sinusoidal input
I(t) = I0 + I1 cos (ωt), I1 > 0 small, can be approximated as

rN(t) = r0 + |G̃(ω)|I1 cos
(
ωt+ arg

(
G̃(ω)

))
with a phase lag arg

(
G̃(ω)

)
≤ 0 and amplitude |G̃(ω)| given by the complex argument

and absolute value of the susceptibility G̃ respectively (see also Chapter 4, Appendix
Section 4.D.3).

The susceptibility of an LIF neuron under Gaussian white noise is known analyt-
ically (Lindner and Schimansky-Geier, 2001; Brunel et al., 2001, see Eq. (4.145) in
Chapter 4, Appendix Section 4.D.3). The amplitude |G̃(ω)| and phase lag arg

(
G̃(ω)

)
of the LIF linear response for a range of input frequencies ω are shown in Fig. 6.4
(black lines in Ai, Aii). The susceptibility of a GIF neuron can be derived for a general
hazard f(u, u̇) (Gerstner et al., 2014, see Appendix Section 6.C, Eq. (6.38)). For the
exponential hazard the resulting closed form expression can be evaluated numerically
(Eqs. (6.46), green lines in Fig. 6.4, Ai, Aii). Numerical estimates of the linear re-
sponse based on a spiking network simulation (Methods Section 6.6.1) agree well with
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the analytical expressions — both for the LIF unit under Gaussian white noise and
the GIF unit with exponential hazard (markers vs lines in Fig. 6.4A). For the more
involved Chizhov-Graham hazard even a numerical evaluation of the analytical expres-
sion for the susceptibility (Eq. (6.38)) becomes a difficult task. In Fig. 6.4 I am hence
just showing the numerical estimates from a spiking network simulation (blue and red
markers in Fig. 6.4A).
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Figure 6.4: Linear response of LIF vs GIF neurons.
A, Linear response r(t) = r0 + |G̃(ω)|I1 cos(ωt + arg(G̃(ω)) of a single neuron to
sinusoidal input I(t) = I0 + I1 cos(ωt) (with (I0 = Icrit

0 ∼ 122 pA, Section 4.5.2.4, I1 =
I0/10). Ai, amplitude |G̃(ω)|; Aii, phase lag arg(G̃(ω)). Solid lines: (semi-)analytical
solutions: Eq. (4.145) for LIF, Eq. (6.46) for GIF with exponential hazard. Dots:
numerical estimates (see Methods Section 6.6.1). Dotted lines: high frequency limits.
B, Amplitude (i) and phase condition (ii) (Chapter 4, Eq. (4.36)) determining linear
stability of the stationary state in a network of the respective LIF or GIF neurons,
synaptically coupled via the filter κ2exp

∆ (see Eqs. (6.1), (6.10)). The dotted vertical
line indicates the network frequency ωcrit/2π = 172 Hz of the LIF network in its mean-
field bifurcation. Since the linear response was computed for the mean input level in
the LIF bifurcation point, the LIF linear response satisfies both the phase condition
(phase(Icrit

0 , ωcrit) = 0 mod 2π) and the amplitude condition (amplitude(Icrit
0 , ωcrit) =

1). The bifurcations of the GIF networks are closeby, hence the amplitude and phase
conditions are almost satisfied for the GIF neurons as well.

Fig. 6.4A illustrates that the linear response changes drastically when input noise (in
LIF neurons) is mapped to output noise (in GIF neurons) and that the linear response
depends strongly on the choice of the hazard function. The GIF with exponential
hazard has a much larger phase lag at high frequencies than the LIF unit, while the
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opposite is the case for the Chizhov-Graham hazard (Fig. 6.4Aii). These differences
in linear response already suggest that, when connected into an inhibitory network,
the “slowly reacting” GIF units with an exponential hazard will produce a slower
population rhythm than LIFs, while the “fast reacting” GIFs with a Chizhov-Graham
hazard produce faster oscillations.

The linear responses shown in Fig. 6.4A were calculated for an input I(t) = I0 +
I0
10 cos(ωt). The drive I0 was chosen as the analytically calculated mean drive that
units in the LIF network (Eqs. (6.1)) receive in the mean-field bifurcation (I0 = (Icrit

ext −
Icrit

inh )/gleak = 10 mV). Recall that the frequency of the network oscillation emerging
in the bifurcation point can be estimated by solving a phase and amplitude condition
derived self-consistently from the single unit linear response (see Chapter 4, Methods
Section 4.5.2.4, Eq. (4.36)). Fig. 6.4B illustrates the amplitude and phase terms for
the linear response at mean drive I0. A solution of the phase and amplitude condition
is found when both the amplitude and the phase term intersect with the respectively
indicated horizontal lines at a common frequency ωcrit. The mean drive I0 was chosen
such that the phase and amplitude condition for the LIF network (black lines) have
a joint solution, indicated by the vertical dotted line (ωcrit/2π = 172 Hz). Since
the bifurcation in the GIF networks occurs at a slightly different total drive I0, the
GIF neurons do not have a joint solution for amplitude and phase condition for mean
drive I0. One can guess that the solution appears at a lower frequency for the GIF
neuron with exponential hazard due to its consistently larger phase lag. Vice versa,
the network of GIF neurons with the Chizhov-Graham hazard generates oscillations
at a higher frequency than the LIF network due to the smaller phase lag of the single
neuron response.

In the following section this prediction will be confirmed in numerical simulations
of spiking networks of LIF and GIF neurons.

6.3.3 Ripple oscillations in networks of escape-noise units at
microscopic level

In this section I will demonstate how the mapping from input to output noise in a single
unit (i.e. the choice of the hazard function) influences the dynamics in a recurrently
coupled network. I will compare the dynamics of the LIF reference network (Section 6.2,
Eq. (6.1)) to the dynamics of a GIF network. The dynamics of the membrane potentials
ui of the GIF neurons is described by an ODE (same as Eq. (6.1) for vi but without
the noise term):

u̇i(t) = 1
τm

(Eleak − ui(t)) + 1
C

(
Iext − Iinh(t)

)
(6.10a)

Iinh(t) = Ipeak
I

κ2exp
∆ ∗

NI∑
j=1

∑
k

δ(tkj − t)
 (6.10b)

All parameters are set as described for the LIF reference network in Section 6.2. Spikes
are fired stochastically according to a hazard function f [ui(t), u̇i(t)] (see Eq. (6.3)).
When unit i fires a spike, its membrane potential is reset.
In Fig. 6.5 the GIF network dynamics are compared to the LIF reference, depending
on the different hazard functions introduced in Section 6.3.1. The dynamics of the
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recurrently coupled network depends strongly on the choice of hazard function. As
predicted by the analysis of the linear response (Section 6.3.2), the network of GIF
units with exponential hazard (green, Fig. 6.5) oscillates at a much lower frequency
than the LIF reference network and reaches full synchrony earlier (I full

ext ∼ 1 nA vs
∼ 2 nA for LIF). On the other hand, the network of GIF units with the Chizhov-
Graham hazard (red and blue symbols in Fig. 6.5) oscillates at higher frequencies than
the LIF reference. The non-stationary extension (red symbols) leads to a better match
with the LIF reference at strong drive, close to the point of full synchrony, but not in
the regime of sparse synchrony (red vs blue). Nevertheless, the non-stationary Chizhov-
Graham hazard yields an overall much better fit of the oscillation dynamics than the
exponential hazard, capturing quite accurately both the onset of oscillations, and the
point of full synchrony. In the sparse-synchrony regime inbetween, the (ir)regularity
of the single unit spike trains is very similar to the LIF reference (see CV of ISIs in
Fig. 6.5). Since a linear stability analysis for the complex Chizhov-Graham hazard is
numerically challenging, the onset of oscillations was simply estimated here from the
increase in amplitude (Fig. 6.5, bottom), and the peak in the power spectral density
of the population activity (not shown).

Figure 6.5: Ripple dynamics de-
pending on hazard function. Net-
work frequency fnet, mean unit firing
rate funit, saturation (s = funit/fnet),
average CV of interspike intervals, and
average amplitude of population activ-
ity depending on drive IE. Black lines:
LIF network under Gaussian white noise
(cf. Fig. 6.1). Colored lines: networks
of GIF neurons with: exponential haz-
ard (Eq. (6.7), r = 409.96 Hz, ∆thr =
3.45 mV, green), Chizhov-Graham haz-
ard (Eq. (6.8), blue), or non-stationary
Chizhov-Graham hazard (Eq. (6.9), red).
Crosses (top): analytical estimate of bi-
furcation (black: LIF, green: GIF with
exponential hazard).
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I confirmed that fitting the parameters r and ∆thr of the exponential hazard (Eq. (6.7))
to a wider range of the LIF f-I curve does not bring the dynamics of the GIF network
with exponential hazard closer to the LIF dynamics (Supplementary Fig. 6.8). The
bifurcation of the GIF network with exponential hazard can be determined (semi-) ana-
lytically in a linear stability analysis as described in Chapter 4, Methods Section 4.5.2.4
(using Eqs. (6.30) and (6.46) for the stationary firing rate and the susceptibility of the
GIF unit respectively). The numerical simulations are in close agreement with the
predicted location of the bifurcation and the respective network frequency and mean
unit firing rate at oscillation onset (green crosses in Fig. 6.5, top).
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6.4 Mesoscopic models of network dynamics
Schwalger et al. (2017) developed a mesoscopic ansatz that allows an efficient integra-
tion of the network activity of one or several populations of neurons, accounting for
finite-size effects. I want to give here only a short account for how the mesoscopic
integration of the network dynamics works. For a detailed derivation please refer to
(Schwalger et al., 2017).

We start by considering the activity A(t) = limN→∞
1
N

∑
i

∑
k δ(t − tki ) of a popu-

lation of GIF neurons i with spike times {tki }k=1,2,... in the mean-field limit (N → ∞,
Fig. 6.6A,B). Thanks to the mapping from input to output noise discussed in Sec-
tion 6.3 each neuron’s firing probability at any given time t is entirely determined by
its last spike time t̂ (quasi-renewal approximation, Naud and Gerstner, 2012, see hazard
function sketched in Fig. 6.6A). The state of the population can thus be completely
described by the refractory density ρ(t, t̂), i.e. the distribution of last spike times t̂ of
all the neurons in the network, at a given time t (Fig. 6.6B, curve above blue area).
The refractory density is given by the product of the (past) population activity A and
the corresponding survival probability S:

ρ(t, t̂) = S(t, t̂)A(t̂) (6.11)
The refractory density is normalized:∫ t

−∞
ρ(t, t̂) dt̂ =

∫ t

−∞
S(t, t̂)A(t̂) dt̂ = 1 . (6.12)

Differentiation of the normalization condition with respect to time t (and using Eq. (6.5)
as well as S(t, t) = 1) yields an integral equation describing the network activity A:

A(t) =
∫ t

−∞
H(t, t̂)ρ(t̂) dt̂ =

∫ t

−∞
H(t, t̂)S(t, t̂)A(t̂) dt̂ . (6.13)

This integral equation can be understood intuitively (see Fig. 6.6B): The fraction of
neurons that fired a spike in a small past time bin [t̂, t̂ + ∆t̂] is approximately given
by A(t̂)∆t̂. Of these cells, a fraction S(t, t̂) has “survived”, i.e. not fired another spike
up to the present time t. The fraction S(t, t̂)A(t̂)∆t̂ of units that had their last spike
time in the history bin [t̂, t̂+ ∆t̂] all have the same membrane potential at time t, and
will thus fire with the same rate H(t, t̂). The population activity at time t can thus be
inferred by integrating the spike contributions H(t, t̂)S(t, t̂)A(t̂) over the entire history
of last spike times t̂. The integral equation Eq. (6.13), together with the ODE (6.5)
describing the survival probability, can be solved in an iterative scheme forward in time
to infer the mean-field network activity A for arbitrary external drive.

In a finite network (N <∞) the population activity AN(t) = 1
N

∑
i

∑
k δ(t− tki ) and

survival probability SN exhibit finite-size fluctuations due to the stochasticity of spike
emission (Fig. 6.6C). Schwalger et al. (2017) assume that the total number of spikes in
a time bin [t, t+ ∆t] is Poisson distributed with mean n̄(t) = Ā(t)N∆t where

Ā(t) =
∫ t

−∞
H(t, t̂)SN(t, t̂)AN(t̂) dt̂

=
∫ t

−∞
H(t, t̂)S(t, t̂)AN(t̂) dt̂︸ ︷︷ ︸

mesoscopic

+
∫ t

−∞
H(t, t̂)δS(t, t̂)AN(t̂) dt̂︸ ︷︷ ︸

microscopic
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denotes the expected population activity. Here the survival probability was split into its
expected value and the microscopic fluctuations around it (SN(t, t̂) = S(t, t̂) + δS(t, t̂))
to emphasize that the expected population activity Ā still depends on microscopic
fluctuations. Schwalger et al. (2017) replace the microscopic terms by introducing a
mesoscopic correction factor Λ(t):

Ā(t) ≈
∫ t

−∞
H(t, t̂)S(t, t̂)AN(t̂) dt̂+ Λ(t)

∫ t

−∞
δS(t, t̂)AN(t̂) dt̂

=
∫ t

−∞
H(t, t̂)S(t, t̂)AN(t̂) dt̂+ Λ(t)

(
1−

∫ t

−∞
S(t, t̂)AN(t̂) dt̂

)
︸ ︷︷ ︸

mesoscopic

. (6.14)

In the last step the normalization condition

1 =
∫ t

−∞
SN(t, t̂)AN(t̂) dt̂ =

∫ t

−∞
[S(t, t̂) + δS(t, t̂)]AN(t̂) dt̂ (6.15)

was used to eliminate the dependence on the microscopic fluctuations. The correction
factor

Λ(t) =
∫ t
−∞H(t, t̂)v(t, t̂) dt̂∫ t
−∞ v(t, t̂) dt̂

(6.16)

is found as an “effective hazard rate” accounting for the average effect of the past
microscopic fluctuations in the survival probability on the present population activity.
It results from a weighting of the hazard function with a “variance function” v that
evolves as

∂tv(t, t̂) = −2H(t, t̂)v +H(t, t̂)S(t, t̂)AN(t̂) , v(t̂, t̂) = 0 . (6.17)

The variance v accounts for the magnitude of the microscopic fluctuations in the sur-
vival probability in the past (see Schwalger et al., 2017, and Fig. 6.6C).
Together, the mesoscopic Eqs. (6.14), (6.16), (6.17), (6.5) can be used to efficiently
integrate the finite size population activity forward in time, without tracking the mi-
croscopic fluctuations in the activity of individual units. In every time step the activity
of the finite network is inferred as

AN(t) = n(t)
N∆t , n(t) ∼ Poi

(
ĀN∆t

)
. (6.18)
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Figure 6.6: Illustration of the
mesoscopic integration scheme by
Schwalger et al. (2017).
A, Hazard rate H as a function of last
spike time t̂, given fixed time t. B, Il-
lustration of the forward integration of
the population activity A using the in-
tegral equation Eq. (6.13), which is ex-
act in the mean-field limit. C, Forward
integration of the population activity
including finite size fluctuations. Red
line shows the expected refractory den-
sity based on the past, fluctuating ac-
tivity AN and the mean-field survival
probability S. Blue area/black line
shows the actual refractory density re-
sulting from finite size fluctuations in
the survival probability SN . The de-
viations from the expected refractory
density are quantified by the variance
function v (bottom). Figure adapted
from Schwalger et al., 2017, CC BY 4.0.

6.4.1 Ripples in networks of escape-noise units on mesocopic
level

I implemented the mesoscopic model by Schwalger et al. (2017) and used it to integrate
the activity of the GIF networks that were already analyzed on a microscopic level
in Section 6.3.3, Fig. 6.5. In Fig. 6.7 I compare the dynamics of the GIF networks
at mesoscopic level to the GIF network dynamics at microscopic level, as well as to
the dynamics of the microscopic LIF reference network with Gaussian white noise
input. For any choice of hazard function the mesoscopic dynamics closely matches the
dynamics of the microscopic GIF network (exponential hazard: dark vs light green in
Fig. 6.7A; Chizhov-Graham hazard: dark vs light blue/red in Fig. 6.7B). The difference
between the mesoscopic population activity and the dynamics of the LIF network is
significant, but entirely due to the imperfect mapping from input to output noise via
a hazard function that has been discussed in the previous chapters.

Figure 6.7: Ripple dynamics on micro- and mesoscopic levels.
Ripples in a GIF network, simulated at micro- or mesoscopic level (light dashed, vs dark
dotted lines), for the exponential hazard (A, green), and the Chizhov-Graham hazards
(B, blue and red). Same panel outline as in Fig. 6.1 and Fig. 6.5. The microscopic
LIF simulations (black, Fig. 6.5) are repeated here for comparison. Note that the CV
of interspike intervals cannot be estimated on the mesoscopic level.
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Figure 6.7: Ripple dynamics on micro- and mesoscopic levels.
Caption on previous page.

6.4.2 A note on computational efficiency
In a microscopic simulation of length Tsim the membrane potential of N individual
neurons is integrated over Tsim/∆t time steps, resulting in a total of N ·Tsim/∆t updates.
Furthermore, in every time step N random numbers have to be drawn to model either
the Gaussian white noise input, or the stochastic spiking in case of GIF neurons.

In the mesoscopic simulation, the hazard rate needs to be computed as a function
of last spike time (see Fig. 6.6A), which requires knowledge of the membrane potential
depending on last spike time. It is sufficient to track a finite history of potential
last spike times of length Thist. For each potential last spike time t̂ ∈ [t − Thist, t], a
representative membrane potential is integrated in every time step. I used a history
buffer of Thist = 50 ms. In the above ripple oscillation regimes (Fig. 6.7), where units
spike at a mean rate of ∼20 Hz or more, it is a reasonable assumption that 50 ms
after its last spike time, a unit’s membrane potential is no longer affected by that last
reset event3. The membrane potential of units with last spike times further in the past
(t̂ < t−Thist) are assumed to follow the free membrane potential, which is also updated
iteratively. Thus, in every time step, 1 + Thist/∆t updates are computed, resulting in
a total of

(
1 + Thist/∆t

)
· Tsim/∆t updates. The mesoscopic integration scheme allows

for a larger numerical time step, which can speed up simulation time, especially in
combination with a short history buffer. For small networks however, in a dynamical
regime that requires keeping track of a long history buffer, the mesoscopic scheme
may not be much faster than the microscopic integration. A general advantage of the
mesoscopic scheme comes from the fact that only one random number (not N) has to

3I confirmed that the mesoscopic simulation results do not change if I increase the length of the
history buffer.
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be drawn per time step, in order to determine the population activity in the next time
step.

For a simulation of ripple oscillations in a single network, the increase in efficiency
due to the mesoscopic integration scheme is limited. Since ripples are fast and governed
by short time constants (τr = 0.45 ms in Fig. 6.7), the mesoscopic integration time
step cannot be chosen as large as in other use cases. In fact I had to use a time
step as small as ∆t = 0.1 ms in the mesoscopic simulation with exponential hazard
shown in Fig. 6.7A, in order to achieve a good match between meso- and microscopic
dynamics of the GIF network. Efficiency can be increased by decreasing the length
of the history buffer, and will be more prominent in larger scale simulations involving
several populations.

6.5 Discussion

In this chapter I investigated the applicability of a recently proposed mesoscopic in-
tegration scheme (Schwalger et al., 2017) for the efficient simulation of ripple oscil-
lation dynamics in a recurrent inhibitory network. The mesoscopic theory is based
on a refractory density approach and thus requires a microscopic reference network of
homogeneous units with membrane potentials uniquely determined by the last spike
time. Applying the mesoscopic theory to the bifurcation-based ripple model discussed
in Chapter 4 thus requires an initial mapping from Gaussian white noise input to es-
cape noise, mediated by a hazard function. I showed that the choice of this hazard
function can affect the network dynamics significantly.

My results can be taken as a note of caution regarding modeling the effect of noisy
input by a phenomenological hazard function. The performance of hazard functions
as a mapping from input to output noise is often assessed in simulations of uncoupled
populations receiving feedforward input (Plesser and Gerstner, 2000; Chizhov and Gra-
ham, 2007). Here I demonstrate that the dynamics of recurrently coupled networks
can be strongly altered when noisy input is replaced by stochastic output.

The exponential hazard is already challenged by approximating the mean firing rate
of an uncoupled unit over a larger range of drives. With parameters fitted to match
the mean firing rate of an LIF unit under Gaussian white noise, a GIF unit with an
exponential hazard can approximate the mean firing rate of an LIF unit in a limited
regime, but produces spike trains that are more regular than the LIF reference (lower
CV of ISIs in Fig. 6.2).

The Chizhov-Graham hazard performs much better and can closely approximate
both the mean rate and the regularity of the spike train of an uncoupled unit under
constant drive (Fig. 6.3). Importantly, the Chizhov-Graham hazard can be entirely
derived from the reference LIF model and requires no arbitrary parameter choices.

Nevertheless, neither of the two hazards provides an accurate approximation of the
ripple oscillation dynamics in a recurrently coupled network of LIF neurons with noisy
input: A GIF network with exponential hazard oscillates at much lower frequencies
and reaches full synchrony earlier. A GIF network with Chizhov-Graham hazard fits
the LIF dynamics qualitatively, but oscillates at higher frequencies. This is due to
differences in the linear response of a single GIF neuron, depending on its hazard. We
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have seen that the high frequency limit of the neuronal phase lag changes drastically
when input noise is replaced by output noise (0 for Chizhov-Graham hazard, −π/2 for
exponential hazard, instead of −π/4 for LIF reference model). I outlined in Chapter 4
how the single neuron linear response determines the oscillation frequency in a recurrent
network (Methods Section 4.5.2.4). Of course we cannot draw precise conclusions based
only on the high frequency limit. For high noise however, we could assume that the
phase lag decreases rather smoothly from 0 towards the respective high frequency limit.
In this case, the neuronal phase lag would be consistently larger for GIF neurons with
exponential hazard than for LIF neurons under white noise, even for input signals of
finite frequency. That explains the onset of network oscillations at a lower frequency
than in the LIF network. Vice versa, networks of GIF neurons with Chizhov-Graham
hazard, that respond to oscillatory input with a much shorter phase lag, can oscillate
at higher frequencies than LIF networks.

It is not surprising that the network dynamics are affected by a switch from input to
output noise. Neither of the hazard functions preserves the first passage time density
of an LIF neuron under Gaussian white noise perfectly. The exponential hazard is
purely phenomenological. The Chizhov-Graham hazard is based on exact derivations
of the FPT density in the two limiting cases of constant or infinitely fast changing
input, but makes an approximation by assuming that the hazards of the two limiting
cases can simply be added to account for the spiking activity under arbitrary time-
dependent input. Recently, a novel hazard function was proposed, based on a level-
crossing approach, taking into account correlations of interspike intervals under colored
noise input Schwalger (2021). It would be interesting to compare its performance in
approximating ripple oscillations under Gaussian noise with the hazards studied here.

It is worth noting that, despite the quantitative differences in oscillation frequency
w.r.t. the LIF reference, the GIF network with Chizhov-Graham hazard can account
for ripple oscillations, including a transition from sparse to full synchrony, and IFA (not
shown here), at micro- and mesoscopic level. If the goal is to model ripple oscillations
efficiently, and phenomenologically, this can be achieved with the Chizhov-Graham
hazard. The oscillation frequency can easily be tuned by adjusting the synaptic time
constants. It is interesting that a population level description of fast ripple oscilla-
tions, with a large regime of sparse synchrony, requires a hazard function that takes
into account the slope with which the membrane potential approaches the threshold
(such as the Chizhov-Graham hazard). This finding is in line with the mean-field ap-
proximations in Chapter 4, which captured ripple dynamics in an approximation of the
drift-based population activity, that also depends on the speed with which the mean
membrane potential approaches the spike threshold (see comment in Section 6.3.1.2).
The analytical expression for the susceptibility of a GIF unit with arbitrary hazard
(Eq. (6.38), Gerstner et al., 2014) should allow a systematic analysis of the neuronal
phase lag depending on whether or not a given hazard function contains a dependence
of the slope (see function β = ∂f/∂U̇ in Eq. (6.37)). In future work, I would like
to derive an analytical approximation of the GIF neuronal phase lag in the limit of
high frequencies, in order to substantiate the numerical observation shown here, that
hazard functions with slope-dependence provide a more accurate approximation of the
oscillation dynamics in recurrent networks under noisy input.
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6.6 Methods

6.6.1 Numerical estimate of linear response
To estimate the linear response of a neuron model numerically, an uncoupled population
of N identical units is stimulated with a weak sinusoidal current I(t) = I0 + I1 cos(ωt)
where I1 > 0 is small. The linear response is expected to be sinusoidal as well:

rN(t) = r0 + |G̃(ω)|I1 cos
(
ωt+ arg

(
G̃(ω)

))

with a phase lag arg
(
G̃(ω)

)
and an amplitude modulation |G̃(ω)| corresponding to the

complex argument and the absolute value of the susceptibility G̃, respectively. Recall
that the Fourier transform of a cosine s(t) = a cos(ωt+ φ) is given by

s̃(Ω) = a

2 eiφ δ(Ω− ω) + c.c.

The phase lag and the amplitude modulation of the population activity rN(t) can thus
be estimated by taking the Fourier transform (after subtracting the mean r0) at the
input-frequency ω:

arg
(
G̃(ω)

)
= arg

(
r̃N(ω)

)
|G̃(ω)| = 2

∣∣r̃N(ω)
∣∣ /I1 .

(see markers in Fig. 6.4).

6.A Derivation of Chizhov-Graham hazard
Consider an LIF neuron under Gaussian white noise:

v̇(t) = 1
τm

(Eleak − v(t)) + 1
C
I(t) +

√
2
τm
σV ξ(t) (6.19)

For a given initial membrane potential v(0) < Vthr and a realization of the Gaussian
white noise ξ one can integrate the SDE Eq. (6.19) and determine the neuron’s first
spike time, i.e. the time when v reaches the threshold Vthr. Repeating this process
for infinitely many noise realizations yields the first-passage-time density P (t). In the
mean-field limit of infinitely many noise realizations (or an infinitely large population
of identical, uncoupled neurons) the dynamics of the probability density of membrane
potentials p(v, t) is described by a Fokker-Planck equation

∂tp(v, t) = −∂v
(

1
τm

(
Eleak + τm

C
I(t)− v

)
p(v, t)

)
︸ ︷︷ ︸

drift

+ σ2
V

τm
∂2
vp(v, t)︸ ︷︷ ︸

diffusion

= −∂vJ(v, t)

(6.20)
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with boundary conditions limv→−∞ p(v, t) = p(Vthr, t) = 0 ∀t. The membrane potentials
can cross the threshold either due to the drift set by the input I(t) or due to noise-
induced diffusion. When a unit’s membrane potential crosses the threshold, the unit
is taken out of the population. Hence there is an absorbing boundary condition at
threshold and the integral over the (pseudo-)density p decreases over time:

S(t) =
∫ Vthr

−∞
p(v, t) dv

= 1 , t = 0
< 1 , t > 0

It is denoted as S, since it represents the survival probability, i.e. the probability of a
unit not having crossed the threshold up to time t. The probability current through
the threshold corresponds to the first-passage-time density and is often denoted as a
rate

P (t) = r(t) = J(Vthr, t) = −σ
2
V

τm

∂p

∂v

∣∣∣∣∣
v=Vthr

.

Note the time-dependence in the drift-term of the FPE Eq. (6.20) due to the time-
dependent input. This problem can be reformulated as an FPE with moving absorbing
boundary:
Consider the dynamics of the fluctuations x(t) := (v(t)−u(t))/

√
2σV of the membrane

potential v around its expected value u, relative to the noise level. The mean mem-
brane potential evolves according to the ODE u̇ = (Eleak − u)/τm + I(t)/C, hence the
fluctuations are described by a simple Langevin Equation:

τmẋ = −x+
√

2τmσV ξ(t) .

The dynamics of the probability density ρ̃(x, t) is described by the FPE

∂tρ̃ = −∂x
1
τm

(
−xρ̃− 1

2∂xρ̃
)

= −∂xJ(x, t) (6.21)

with boundary conditions limx→−∞ ρ̃(x, t) = ρ̃(T (t), t) = 0 ∀t. Note that the drift-term
is now independent of time. Instead the absorbing boundary moves, since the rescaled
threshold for the fluctuations is time-dependent:

T (t) = Vthr − u(t)√
2σV

(6.22)

The rate/FPT density and survival probability are redefined as

P (t) = J(T (t), t) = − 1
2τm

∂ρ̃

∂x

∣∣∣∣∣
x=T (t)

(6.23)

and S(t) =
∫ T (t)

−∞
ρ̃(x, t) dx

respectively. Rescaling ρ̃ by the survival probability yields a probability density

p(x, t) := ρ̃(x, t)
S(t) (6.24)
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that is normalized at all times. Chizhov and Graham (2007) refer to p as the shape
of the probability density ρ̃. The FPE for p is derived from Eq. (6.21) and has an
additional source term, proportional to the hazard H(t), ensuring the normalization:

∂tp(x, t) + ∂x
1
τm

(
−xp(x, t)− 1

2∂xp(x, t)
)

= − Ṡ(t)
S(t)p(x, t)

(6.5)= H(t)p(x, t) (6.25)

Note that

H(t) = P (t)
S(t)

(6.23)= − 1
2τm

1
S(t)

∂ρ̃

∂x

∣∣∣∣∣
x=T (t)

(6.24)= − 1
2τm

∂p

∂x

∣∣∣∣∣
x=T (t)

i.e. p is the only unknown in the above PDE and the hazard could be infered from the
solution p.

Solving this FPE with moving boundary exactly is difficult (Bulsara et al., 1996;
Schindler et al., 2004; Lindner, 2004). Instead Chizhov and Graham (2007) solved the
problem in two limiting cases.

6.A.1 Subthreshold regime (H = A)
If the neuron receives subthreshold input, the distance T between mean membrane
potential and threshold, relative to the noise, changes only slowly. In the limit case
T (t) ≡ T , the shape p of the distribution ρ̃(x, t) remains constant and a rate P (t) is
produced solely due to diffusion-mediated flux through the threshold. The stationary
solution p0(x) of the FPE Eq. (6.25) can be found analytically and expressed in terms
of confluent hypergeometric functions. Chizhov and Graham (2008) approximated the
lengthy analytical expression for the resulting hazard as

A(T ) = − 1
2τm

∂p0

∂x

∣∣∣∣∣
x=T (t)

≈ 1
τm

exp(6.1 · 10−3 − 1.12T − 0.257T 2 − 0.072T 3 − 0.0117T 4) .

6.A.2 Subthreshold regime (H = B)
If the input is strongly superthreshold, the mean membrane potential rises towards
the threshold fast. The concurrent change in the shape of the fluctuations around this
fast changing mean due to noise is negligible. In the rescaled system this corresponds
to a sudden drop of the threshold T towards the distribution ρ̃(x, 0). The survival
probability can be directly inferred as the portion of the initial distribution ρ̃(x, 0)
that remains subthreshold:

S(t) =
∫ T (t)

−∞
ρ̃(x, 0) dx

Chizhov and Graham (2007) assume as intitial condition the stationary (Gaussian)
solution of the FPE Eq. (6.21) without the absorbing boundary condition:

ρ̃(x, 0) = 1√
π

exp
[
−x2

]
(6.26)
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This implies the assumption that the average interspike interval is long enough such
that the fluctuations x of the membrane potentials around the average trajectory have
reached their stationary, Gaussian distribution before the next spike is elicited. This
assumption has been relaxed in the non-stationary extension by Schwalger (2021).
Under the stationary assumption the survival probability is given by

S(t) =
∫ T (t)

−∞
ρ̃(x, 0) dx (6.26)= 1

2
(
1 + erf

[
T (t)

] )
(6.27)

and the hazard can be inferred directly as

B
(6.5)= − 1

S

dS

dt
= − 2√

π

exp(−T 2)
1 + erf(T )

dT

dt

Note that an upwards movement of the mean membrane potential u towards the
threshold Vthr corresponds to a downwards movement of the rescaled threshold T (t)
(Eq. (6.22)). Since only upwards-crossings of the threshold (Ṫ < 0) should contribute
to the rate, a sign dependence [X]− := (X − |X|)/2 is added:

B(T, Ṫ ) = − 2√
π

exp(−T (t)2)
1 + erf(T (t))

[
dT

dt

]
−

This hazard function was also derived by Goedeke and Diesmann (2008).

6.B f-I curves

6.B.1 f-I curve for LIF units
Consider an LIF unit with membrane potential V described by the SDE

τmV̇ (t) = −V (t) + I +
√

2Dτmξ(t)

with membrane time constant τm and Gaussian white noise ξ with 〈ξ〉 = 0, 〈ξ(t)ξ(t′)〉 =
δ(t− t′) and intensity D. The neuron fires a spike whenever V reaches a threshold VT .
It is then reset to a reset potential VR where it remains for an absolute refractory period
τref . The firing rate in response to constant drive I is given by

r(I) =
√πτm ∫ I−VR√

2D

I−VT√
2D

ex2 erfc(x) dx+ τref

−1

(6.28)

(Holden, 1976, see also Chapter 4, Appendix Section 4.D.1.2).

6.B.2 f-I curve for GIF neurons
Consider a GIF unit with membrane potential U described by the ODE

τmU̇(t) = −U(t) + I
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with membrane time constant τm, that fires stochastically according to a hazard func-
tion

H(t, t̂) = f(U, U̇)Θ(t− t̂− τref)

and is reset to VR after each spike. Its mean firing rate is given by

r0 = 1
〈P0(τ)〉 = 1∫∞

0 S0(τ) dτ (6.29)

where P0(τ) = H0(τ)S0(τ) denotes the stationary interval distribution (τ = t − t̂:
age, time since last spike). This can be easily seen via integration of parts in the
normalization condition, using that Ṡ0 = −H0S0 = −P0:

1 = r0

∫ ∞
0

S0(τ) dτ = r0

(
[sS0(s)]∞0︸ ︷︷ ︸

=0

+
∫ ∞

0
sP0(s)ds

)
= r0〈P0(t)〉

6.B.2.1 f-I curve for a GIF neuron with exponential hazard

Consider as an example the exponential hazard function

f(U) = r exp
(
U − VT

∆

)
.

Under constant input I the trajectory of the membrane potential at time τ = t− t̂ ≥ 0
is given by

U0(τ) = I − (I − VR) exp
[
− τ

τm
Θ(τ)

]
.

Hence the hazard H0 and survival probability S0 evolve over time as:

H0(τ) = f(U0(τ))Θ(τ) = r exp
(
U0(τ)− VT

∆

)
Θ(τ)

= r exp

I − (I − VR) exp
[
− τ
τm

Θ(τ)
]
− VT

∆

Θ(τ)

S0(τ) = exp
[
−
∫ τ

0
H0(s) dsΘ(τ)

]
The firing rate can be computed as:

r0(I) (6.29)=
(∫ ∞

0
S0(τ) dτ

)−1
=
(∫ ∞

0
exp

[
−
∫ τ

0
H(s) ds

]
dτ
)−1

=


∫ ∞

0
exp

− ∫ τ

0
r exp

I − (I − VR) exp
[
− s
τm

]
− VT

∆

 ds

 dτ


−1

(6.30)
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6.C Susceptibility for GIF units
Consider a GIF neuron with membrane potential U that is uniquely determined by the
unit’s last spike time t̂ and the current time t:

τm∂tU(t, t̂) = −U(t, t̂) + I(t) , U(t̂, t̂) = VR (6.31)

The GIF unit fires spikes stochastically according to a hazard rate

H(t, t̂) = f
(
U(t), U̇(t)

)
Θ(t− t̂− τref)

with an arbitrary hazard function f(U, U̇), that may depend on the momentary mem-
brane potential U , and/or on its slope U̇ . After each spike the membrane potential
is reset to VR, where it remains for an absolute refractory period of τref . The linear
response of the GIF unit to a weak perturbation

I(t) = I0 + εI1(t)

is given by convolution with the linear response function G:

A(t) = (G ∗ I)(t) = A0 + ε
∫ ∞

0
G(s)I1(t− s) ds =: A0 + εA1(t) . (6.32)

(The stationary firing rate A0 is given by Eq. (6.29).)
Fourier transformation on both sides yields

Ã(ω) = εÃ1(ω) = εG̃(ω) · Ĩ1(ω) (6.33)

In the following I will derive the Fourier transform of the linear response function,
or susceptibility, G̃(ω) starting from the integral equation Eq. (6.14) as described in
(Gerstner, 2000; Gerstner et al., 2014, Chapter 14). Alternatively it can also be derived
starting from the continuity equation for the refractory density.
Recall the normalization condition of the refractory density:

1 =
∫ t

−∞
S(t, t̂)A(t̂) dt̂ =

∫ t−τref

−∞
S(t, t̂)A(t̂) dt̂+

∫ t

t−τref
A(t̂) dt̂ ,

The second equality holds because the survival probability is one during the absolute
refractory period: S(t, t̂) = 1 ∀ t̂ ∈ [t− τref , t].
Taking the derivative w.r.t. time on both sides yields:

0 = d
dt

∫ t−τref

−∞
S(t, t̂)A(t̂) dt̂+ A(t)− A(t− τref) (6.34)

The hazard and survival probability can be expanded linearly in ε as:

H(t) = H0(t− t̂) + εH1(t, t̂)
S(t) = S0(t− t̂) + εS1(t, t̂) (6.35)
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For constant drive I0, the hazard H0 and survival probability S0 depend only on the
neuron’s age, i.e. the time τ := t− t̂ since its last spike, which uniquely determines the
membrane potential:

U0(τ) = I0 − (I0 − VR) exp
[
−τ − τref

τm
Θ(τ − τref)

]
H0(τ) = f

(
U0(τ), U̇0(τ)

)
Θ(τ − τref)

S0(τ) = exp
[
−
∫ τ

0
H0(s) ds

]
= exp

[
−
∫ τ

τref
f
(
U0(s), U̇0(s)

)
ds Θ(τ − τref)

]
Inserting the linear expansions Eqs. (6.32), (6.35) in Eq. (6.34) yields:

0 = d
dtA0

∫ t−τref

−∞
S0(t− t̂) dt̂︸ ︷︷ ︸

= d
dt (1−A0τref)=0

+ε d
dt

∫ t−τref

−∞
S0(t− t̂)A1(t̂) dt̂+ εA0

d
dt

[∫ t−τref

−∞
S1(t, t̂) dt̂

]

+ ε2
d
dt

[∫ t−τref

−∞
S1(t, t̂)A1(t̂) dt̂

]
︸ ︷︷ ︸

∼O(ε2)

+ε(A1(t)− A1(t− τref))

⇔ 0 = d
dt

∫ t−τref

−∞
S0(t− t̂)A1(t̂) dt̂+ A0

d
dt

[∫ t−τref

−∞
S1(t, t̂) dt̂

]
+ A1(t)− A1(t− τref)

Using: ∂w
∫ b(w)
a(w) f(x, w) dx =

∫ b(w)
a(w) ∂wf(x, w) dx+f(b(w), w) d

dwb(w)−f(a(w), w) d
dwa(w)

yields

⇔ 0 =
∫ t−τref

−∞

d
dtS0(t− t̂)︸ ︷︷ ︸

=−P0(t−t̂)

A1(t̂) dt̂+ S0(τref)︸ ︷︷ ︸
=1

A1(t− τref) + A0
d
dt

[∫ t−τref

−∞
S1(t, t̂) dt̂

]

+ A1(t)− A1(t− τref)
Rearranging the terms yields a self-consistent integral equation for the first order mod-
ulation A1 of the population activity:

A1(t) =
∫ t−τref

−∞
P0(t− t̂)A1(t̂) dt̂− A0

d
dt

[∫ t−τref

−∞
S1(t, t̂) dt̂

]
The second integral can be rewritten as a convolution of the current I1 with a kernel
L (see Section 6.C.1):

A1(t) (6.41)=
∫ t−τref

−∞
P0(t− t̂)A1(t̂) dt̂+ A0

d
dt

[∫ ∞
−∞
L(x)I1(t− x) dx

]
(6.36)

where
L(x) = −Θ(x)

∫ ∞
τref

χ(x+ y, y) dy (6.37)

χ(t, s) = − 1
τm
S0(t)

∫ t

s

(
α(x)− 1

τm
β(x)

)
exp

[
−x− s

τm

]
dx+ β(s)


α(t) = ∂f

∂U

∣∣∣∣∣
(U0(t),U̇0(t))

, β(t) = ∂f

∂U̇

∣∣∣∣∣
(U0(t),U̇0(t))
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Taking the Fourier transform on both sides of Eq. (6.36) yields:

Ã1(ω) = P̃0(ω)Ã1(ω) + A0iωL̃(ω)Ĩ1(ω)

⇔ Ã1(ω) = iωA0L̃(ω)
1− P̃0(ω)

Ĩ1(ω)

By comparison with Eq. (6.33) the susceptibility is inferred as:

G̃(ω) = iωA0L̃(ω)
1− P̃0(ω)

(6.38)

6.C.1 Derivation of kernel L
Here I derive the kernel L used above. Auxiliary calculations are listed in 6.C.1.1 and
will be referenced where needed.

The survival probability can be thought of as a functional on the set of all possible
input potentials I(x):

S : I(x) 7→ SI(x)(t, t̂)

We define a current pulse at time s as:

Iδ(s) : x 7→ δ(x− s)

The functional derivative of the survival probability w.r.t. a delta-pulse of small am-
plitude ε > 0, delivered at time s, in addition to a constant input I0, is given by:

δS(t, t̂)
δIδ(s)

∣∣∣∣∣∣
I0

= lim
ε→0

1
ε

(
SI0+εIδ(s)(t, t̂)− S0(t, t̂)

)

where S0(t, t̂) (= S0(t− t̂) in notation above) refers to the survival probability of a unit
receiving only constant input I0 and SI0+εIδ(s)(t, t̂) refers to the survival probability of
a unit receiving the additional, weak delta-pulse at time s.

The first order term of the linear expansion of the survival probability (Eq. (6.35))
can then be written as

S1(t, t̂) =
∫ t

t̂+τref

δS(t, t̂)
δIδ(s)

∣∣∣∣∣∣
I0

I1(s) ds =
∫ t

t̂+τref

δS(t− t̂, 0)
δIδ(s− t̂)

∣∣∣∣∣∣
I0

I1(s) ds

=
∫ t

t̂+τref
χ(t− t̂, s− t̂)I1(s) ds (6.39)

for

χ(t, s) := δS(t, 0)
δIδ(s)

∣∣∣∣∣
I0

= lim
ε→0

1
ε

(
SI0+εIδ(s)(t, 0)− S0(t, 0)

)
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Linear expansion of the disturbed survival probability ((6.45)) yields

χ(t, s) ≈ lim
ε→0

1
ε

(
S0(t, 0)− εS0(t, 0)

∫ t

0
H1(x− s) dx+O(ε2)− S0(t, 0)

)

= lim
ε→0

(
−S0(t, 0)

∫ t

0
H1(x− s) dx+O(ε)

)

= −S0(t, 0)
∫ t

0
H1(x− s) dx

(6.42)= −S0(t, 0)
∫ t

0

[
α(x)U1(x− s) + β(x)U̇1(x− s)

]
dx

(6.44)= −S0(t, 0)
∫ t

0

[
α(x)U1(x− s) + β(x) 1

τm

(
δ(x− s)− U1(x− s)

)]
dx

= − 1
τm
S0(t, 0)

[∫ t

0
(τmα(x)− β(x))U1(x− s) dx+

∫ t

0
β(x)δ(x− s) dx

]
(6.43)= − 1

τm
S0(t, 0)

[∫ t

0
(τmα(x)− β(x)) 1

τm
e−

x−s
τm Θ(x− s) dx+ β(s)

]

= − 1
τm
S0(t, 0)

∫ t

s

(
α(x)− 1

τm
β(x)

)
e−

x−s
τm dx+ β(s)

 (6.40)

We can thus write the integral over the first order term of the survival probability as∫ t−τref

−∞
S1(t, t̂) dt̂ (6.39)=

∫ t−τref

−∞

∫ t

t̂+τref
χ(t− t̂, s− t̂)I1(s) ds dt̂

=
∫ t

−∞

∫ t

−∞
χ(t− t̂, s− t̂)I1(s)Θ(s− t̂− τref) ds dt̂

=
∫ t

−∞

∫ t

−∞
χ(t− t̂, s− t̂)Θ(s− t̂− τref) dt̂ I1(s) ds

Substitute x := t− s:

=
∫ ∞

0

∫ t

−∞
χ(t− t̂, t− x− t̂)Θ(t− x− t̂− τref) dt̂ I1(t− x) dx

Substitute y = t− x− t̂:

=
∫ ∞

0

∫ ∞
−x

χ(x+ y, y)Θ(y − τref) dy I1(t− x) dx

=
∫ ∞

0

∫ ∞
τref

χ(x+ y, y) dy︸ ︷︷ ︸
=:−L(x)

I1(t− x) dx

= −
∫ ∞

0
L(x)I1(t− x) dx

which can be written as as convolution

= −
∫ ∞
−∞
L(x)I1(t− x) dx = −(L ∗ I1)(t) (6.41)

with the kernel

L(x) := −Θ(x)
∫ ∞
τref

χ(x+ y, y) dy
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6.C.1.1 Auxiliary calculations:

Assume the GIF neuron with membrane potential described by Eq. (6.31) has fired its
last spike at time t̂ = 0 and receives an input I(t) = I0 + εIδ(s), s ≥ τref . Its membrane
potential is given by:

Us(t) = I0 − (I0 − Vr) e−
t−τref
τm

Θ(t−τref) + ε

τm

∫ t

τref
Iδ(s)(x)︸ ︷︷ ︸
δ(x−s)

e−
t−x
τm dxΘ(t− τref)

=: U0(t) + εU1(t− s) (6.42)

with

U0(t) := I0 − (I0 − Vr) e−
t−τref
τm

Θ(t−τref)

U1(t− s) := 1
τm

e−
t−s
τm Θ(t− s)Θ(t− τref)

(∗)= 1
τm

e−
t−s
τm Θ(t− s) (6.43)

(∗) since s ≥ τref .
The derivative of the membrane potential can be split similarly:

U̇s(t) = 1
τm

(
−Us(t) + I0 + εIδ(s)(t)

)
= U̇0(t) + εU̇1(t− s)

with

U̇0(t) = 1
τm

(
−U0(t) + I0

)
U̇1(t− s) = 1

τm

(
δ(t− s)− U1(t− s)

)
(6.44)

The hazard function for this neuron can be expanded linearly in ε:

Hs(t) = f(U0(t), U̇0(t))Θ(t− τref)

+ ε

 ∂f
∂u

∣∣∣∣∣
(U0(t),U̇0(t))

U1(t− s) + ∂f

∂U̇

∣∣∣∣∣
(U0(t),U̇0(t))

U̇1(t− s)
Θ(t− τref)

The second heaviside function can be dropped, since we assumed s ≥ τref and the U1
and U̇1 terms are only non-zero for t ≥ s. We thus arrive at

Hs(t) = H0(t) + εH1(t− s)

where

H0(t) = f(U0(t), U̇0(t))Θ(t− τref)
H1(t− s) = α(t)U1(t− s) + β(t)U̇1(t− s)

α(t) = ∂f

∂U

∣∣∣∣∣
(U0(t),U̇0(t))

, β(t) = ∂f

∂U̇

∣∣∣∣∣
(U0(t),U̇0(t))
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The linear expansion of the hazard yields a linear approximation of the survival prob-
ability:

S0(t, 0) = exp
[
−
∫ t

0
H0(x) dx

]

SI0+εIδ(s)(t, 0) = exp
[
−
∫ t

0
H0(x) + εH1(x− s) dx

]
= S0(t, 0) exp

[
−ε

∫ t

0
H1(x− s) dx

]

≈ S0(t, 0)
(

1− ε
∫ t

0
H1(x− s) dx+O(ε2)

)

= S0(t, 0)− εS0(t, 0)
∫ t

0
H1(x− s) dx+O(ε2) (6.45)

6.C.2 Susceptibility for exponential hazard
For a GIF neuron with exponential hazard function

f(U) = r exp
[
U − VT

∆

]

we can evaluate the individual components of the susceptibility

G̃(ω) = iωA0L̃(ω)
1− P̃0(ω)

(Eq. (6.38)) derived above for general hazard. The kernel L(x) is given by

L(x) = −Θ(x)
∫ ∞
τref

χ(x+ y, y) dy

= r

I0 − Vr

∫ ∞
τref

exp
−r ∫ x+y

τref
exp

[
U0(t)− VT

∆

]
dt
 e

y−τref
τm

·

exp
[
U0(x+ y)− VT

∆

]
− exp

[
U0(y)− VT

∆

] dy . (6.46a)

L̃(ω) =
∫ ∞

0
e−iωx L(x) dx

and the interval distribution as

P0(t) = r exp
[
U0(t)− VT

∆

]
exp

−r ∫ t

0
exp

[
U0(x)− VT

∆

]
dx
Θ(t− τref) (6.46b)

P̃0(ω) =
∫ ∞

0
e−iωx P0(x) dx

(see auxiliary calculations below). The mean firing rate A0 is given by Eq. (6.30). All
expressions can be evaluated numerically.
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Auxiliary calculations Let τ = t − t̂ denote the time since the neuron’s last spike.
The undisturbed membrane potential and its derivative are given by

U0(τ) = I0 − (I0 − Vr) e−
τ−τref
τm

Θ(τ−τref)

U̇0(τ) = 1
τm

(I0 − VR) e−
τ−τref
τm

Θ(τ−τref) Θ(τ − τref) only defined for τ > 0 (6.47)

For any hazard function that does not depend on the slope of the membrane potential
(β = ∂f/∂U̇ ≡ 0) one can first derive a simplified expression for the integrand χ of
kernel L:

χ(t, s) = − 1
τm
S0(t)

∫ t

s
(α(x)− 1

τm
β(x)) exp

[
−x− s

τm

]
dx+ β(s)


= − 1

τm
S0(t)

∫ t

s
α(x) exp

[
−x− s

τm

]
dx , since β(x) = ∂f

∂U̇

∣∣∣∣∣
(U0(x),U̇0(x))

= 0

Function α = ∂f
∂U

∣∣∣
(U0(x),U̇0(x))

can be thought of as a function on U0(x). So instead
of integrating over time, we can integrate directly over the mean membrane potential
trajectory U0(x) (x ≥ s ≥ τref):

χ(t, s) (6.47)= − 1
τm
S0(t)

∫ U0(t)

U0(s)
α̃(U0) exp

[
−x− s

τm

]
τm

I0 − VR
e
x−τref
τm dU0

= − 1
I0 − VR

S0(t) e
s−τref
τm

∫ U0(t)

U0(s)
α̃(U0) dU0

= − 1
I0 − VR

S0(t) e
s−τref
τm

[
f
(
U0(t)

)
− f

(
U0(s)

)]
= − 1

I0 − VR
S0(t) e

s−τref
τm

[
H0(t)−H0(s)

]
for t ≥ s ≥ τref (6.48)

For the exponential hazard in particular, the hazard, survival probability, and interval
distribution for constant drive are given as:

H0(τ) = f(U0(τ))Θ(τ − τref) = r exp
[
U0(τ)− VT

∆

]
Θ(τ − τref)

S0(τ) = exp
[
−
∫ τ

0
H0(x) dxΘ(τ)

]
= exp

−r ∫ τ

0
exp

[
U0(x)− VT

∆

]
dxΘ(τ − τref)


P0(τ) = H0(τ)S0(τ)

= r exp
[
U0(τ)− VT

∆

]
exp

−r ∫ τ

0
exp

[
U0(x)− VT

∆

]
dx
Θ(τ − τref)

α(τ) = ∂f

∂U

∣∣∣∣∣
(U0(τ),U̇0(τ))

= r

∆ exp
[
U0(τ)− VT

∆

]
= 1

∆H0(τ) if τ ≥ τref
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So the kernel L is given by:

L(x) = −Θ(x)
∫ ∞
τref

χ(x+ y, y) dy

(6.48)= r

I0 − Vr

∫ ∞
τref

exp
−r ∫ x+y

τref
exp

[
U0(t)− VT

∆

]
dt
 e

y−τref
τm

·

exp
[
U0(x+ y)− VT

∆

]
− exp

[
U0(y)− VT

∆

] dy .
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Figure 6.8: Firing properties of a GIF neuron with exponential hazard fitted
to match the f-I curve of an LIF neuron (wider fitting range).
A, Mean firing rate (top panel) and coefficient of variation of the interspike intervals
(bottom panel) as a function of input current for an LIF neuron under white noise
(black), and a GIF neuron with exponential hazard (green). Inset shows the range of
the LIF f-I curve used to fit the exponential hazard parameters (r = 2648 Hz,∆ =
1.37 mV). For higher inputs the firing rate of the GIF unit differs from the LIF rate.
Note that for the large fitting range the smooth onset of firing close to I = 0 nA
could not be captured by the GIF neuron. The GIF unit fires much more regular than
the LIF unit (see low CV of interspike intervals in bottom panel). Solid lines show the
analytical solution for the firing rate of an LIF (Eq. (6.28)) or a GIF neuron (Eq. (6.29)).
Markers are numerical estimates from a spiking network simulation. B, Dynamics of
the respective inhibitory networks of LIF or GIF neurons. The different hazard fit does
not yield a closer match of the GIF dynamics with the LIF reference.
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7.1 Summary of the thesis

The goal of this thesis was to enhance our understanding of the generation of ripple
oscillations — an important hippocampal rhythm that has been implicated in cog-
nitive functions such as memory consolidation. In Chapter 2 I summarized current
literature regarding brain rhythms and memory consolidation in general, highlighting
in particular the potential functional role of sharp wave-ripples. I then introduced in
detail the dynamical features of sharp wave-ripples, and the anatomy and neuronal
circuitry of the hippocampus as the main site of origin of this rhythm. After intro-
ducing the various models that have been put forward to explain the emergence of
the ripple oscillation I discussed current experimental evidence and why it has so far
been inconclusive regarding which is the most like generating mechanism. Intra-ripple
frequency accommodation (IFA) was introduced as a promising feature of the transient
ripple events that may advance model selection.

In Chapter 4 I set out to explain the recent observation of IFA in the bifurcation-
based inhibition-first model (Donoso et al., 2018). I developed an analytical approx-
imation of the drift-based oscillation dynamics in the mean-field limit under strong
drive. The theory provides an estimate of the ripple frequency, mean unit firing rate,
and oscillation amplitude of the mean membrane potential as a function of the (con-
stant or time-dependent) external drive. For constant drive, the oscillation amplitude
of the mean membrane potential increases monotonically with the level of drive. Thus
for fast, time-dependent drive, mimicking transient excitatory input to CA1 due to a
sharp wave event in CA3, a speed-dependent hysteresis occurs in the mean membrane
potential dynamics, leading to instantaneous ripple frequencies that decay over the
course of the event (IFA). The speed-dependence of IFA is a novel prediction that can
be tested in optogenetic experiments. My analysis demonstrates that a fast changing
drive is the only prerequisite for IFA in the bifurcation-based inhibition-first model.
Since spontaneously occurring sharp waves are always short events (∼50–100 ms), gen-
erating a fast changing excitatory drive to CA1, IFA can thus be regarded an intrinsic
feature of the bifurcation-based model.

In Chapter 5 I showed that the alternative, perturbation-based inhibition-first
model by Malerba et al. (2016) requires an asymmetric drive to account for IFA: ideally
a sudden onset of excitatory input followed by a decay over ∼50–100 ms. Experimental
measurements of the LFP or excitatory postsynaptic currents during a sharp wave sug-
gests that the SPW-associated drive to CA1 has a finite rise time (Maier et al., 2011;
Donoso et al., 2018), in which case the perturbation-based model would predict an
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initial increase in ripple frequency (“anti-IFA”). The analysis of the mechanism of IFA
can thus advance model selection and provides new evidence in favor of the bifurcation-
based inhibition-first model. In Section 5.5 I discussed additional factors that can be
used to dissociate the two inhibition-first ripple models, such as the inhibitory coupling
strength, the dependence of the ripple duration on the length of external stimulation,
a detailed quantification of the heterogeneity of the CA1 interneuron network active
during ripples, or the spike-initiation current/action potential waveform of a single
interneuron.

In Chapter 6 I analyzed how a switch of the noise model — from a Gaussian white
noise input, to stochastic spiking according to a hazard function — affects the ripple
dynamics in the bifurcation-based inhibition-first model. I compared two potential
choices of hazard functions, that depend either only on the momentary membrane po-
tential, or also on its slope. While neither of the hazard functions provides a perfect fit
of the network dynamics to the reference network under Gaussian white noise input, a
slope-dependence of the hazard clearly enhances the fit of the network dynamics quali-
tatively. This finding is in agreement with the theoretical approach in Chapter 4, where
the key ripple dynamics were captured in a redefined population rate that depends not
only on the distance of the mean membrane potential from threshold, but also on the
slope with which it approaches the threshold. Finding a mapping from input to out-
put noise, that preserves the core aspects of the ripple dynamics, is a prerequisite for
modeling ripple oscillations on a mesoscopic scale (Schwalger et al., 2017).

7.2 Outlook and future research

7.2.1 Understanding ripple generation

7.2.1.1 IFA in other ripple models

Having demonstrated that IFA can be used to dissociate inhibition-first ripple models,
a natural next step is an analysis of the transient dynamics and IFA in excitation-first
ripple models. In both excitation-based ripple models, the ripple frequency depends
on the average spike propagation delay among pyramids — either orthodromically via
supralinear dendrites (Memmesheimer, 2010; Jahnke et al., 2015) or antidromically via
axo-axonal gap junctions (Traub et al., 1999a; Traub and Bibbig, 2000). A prelimi-
nary analysis of the model by Memmesheimer (2010), based on supralinear dendritic
integration, suggests that the instantaneous ripple frequency is rather stable, but may
exhibit a weak IFA or anti-IFA depending on a variety of factors, such as dendritic re-
fractoriness (Nunez del Toro, 2022). The axonal GJ model (Traub et al., 1999a; Traub
and Bibbig, 2000) may be able to account for IFA by assuming an increase in the spike
propagation delay over the course of a ripple event. Such an increase in latency might
occur due to increasing somatic depolarization, which has been shown to decrease the
action potential amplitude (Shu et al., 2006, 2007). Future work should investigate in
more depth whether and under which conditions excitation-first models can generate
IFA.
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7.2.1.2 Further evaluation of the bifurcation-based inhibition-first model

My analysis of IFA in inhibition-first models supports the bifurcation-based inhibition-
first model as a likely candidate for ripple generation. It is worth noting that, in
general, this model faces less severe contradictory evidence than the other ripple models
(Table 2.1, yellow highlights). The perturbation-based inhibition-first model crucially
relies on weak inhibitory coupling and high interneuron firing rates, for which there
is no or limited experimental support (Bartos et al., 2002; Csicsvari et al., 1999b;
Klausberger et al., 2003; Lapray et al., 2012; Varga et al., 2012, 2014, but see Szabo
et al., 2022). Supralinear dendritic integration is challenged by the seemingly sparse
connectivity between CA1 pyramidal cells and the fact that ripples can still be evoked
when AMPA excitatory synaptic transmission is blocked (Deuchars and Thomson,
1996; Schlingloff et al., 2014). The very existence of gap junctions and antidromic spike
propagation between CA1 pyramidal cell axons is still debated (see Section 2.7.1). The
bifurcation-based inhibition-first model has been challenged by the ongoing debate of
whether interneuron stimulation can evoke ripples (Schlingloff et al., 2014, but see
Stark et al., 2014), and by CA1 pyramidal cell activity as an apparently necessary
condition for ripples (Stark et al., 2014). Both these challenges may be resolved by
taking into account the potential confounding factor arising from the interpretation of
the LFP signal (see Section 2.5.1): I argued in Section 2.8 that current experimental
evidence can be interpreted in favor of ripple generation by interneuron stimulation,
when ripple modulation is not only quantified in the LFP, but also in the spiking
activity. Future experiments should clearly establish whether or not a stimulation of
interneurons (potentially PV+ BCs) can indeed evoke ripple oscillations in the neuronal
circuit. To avoid the confounding factor arising from the LFP interpretation, it would
be helpful to record intracellular inhibitory currents or large scale inhibitory spiking
activity as an additional signal that can be analyzed for ripple modulation. The same
goes for experiments probing the role of pyramidal cells in ripple generation.

A combined effort of theoretical and experimental analysis of the bifurcation-based
inhibition-first model will be needed, to make more precise predictions about the ripple
dynamics in the real CA1 circuit, including local CA1 pyramidal cells, heterogeneity,
and realistic spike initiation:

Local CA1 pyramidal cells. Throughout this thesis, I analyzed the inhibition-
first ripple models in their core form, i.e. in a purely inhibitory network, neglecting
the local pyramidal cell population in CA1. Including an excitatory population in the
bifurcation-based model introduces a competition between two potential oscillation
generators: the ripple generating delayed inhibitory feedback loop among the interneu-
rons, and the gamma generating disynaptic feedback loop between pyramidal cells and
interneurons (PING, Traub et al., 1996). The resulting network dynamics has been
shown to depend on many factors: the relative coupling strengths within and across
populations, local E/I balance in each population, the synaptic time scales, the sparsity
of synaptic connections between pyramidal cells, and the balance between the excita-
tory feedforward drive to the two populations (Brunel and Wang, 2003; Melonakos
et al., 2018; Donoso et al., 2018; Braun and Memmesheimer, 2022). Predicting the re-
sult of optogenetic experiments that activate or silence local CA1 pyramidal cells thus
requires a careful analysis of the model, combined with precise experimental estimates
of the factors listed above.
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Heterogeneity. Heterogeneity can decrease the parameter regime for which the
bifurcation-based model exhibits persistent stochastic oscillations (Brunel and Hakim,
1999). Future work could study whether the bifurcation-based model can still produce
persistent oscillations, or at least account for transient ripple oscillations in the presence
of heterogeneity. Heterogeneity in different model parameters may affect the stability
of oscillations differentially. A general, experimental quantification of the heterogeneity
of the CA1 interneuron population is difficult as long as it has not been clarified which
interneuron types are involved in ripple generation. Inhibition-first models have so
far focused on PV+ basket cells as the main pacemaker of ripple oscillations. PV+

bistratified cells are also known to increase their firing rate during ripples and are
connected to basket cells (Fig. 2.6; Klausberger et al., 2004; Varga et al., 2014). Hence,
as a first step, one could investigate how the heterogeneity in a mixed network of basket
and bistratified cells affects the ripple dynamics.

Single neuron spike generation mechanism. The comparison of the two
inhibition-first models in Section 5.4 has once again highlighted the importance of the
single neuron spike generation mechanism for the ripple frequency (Fourcaud-Trocmé
et al., 2003; Geisler et al., 2005). The increased phase lag of the linear response of
EIF neurons, compared to LIF neurons, leads to slower network oscillations in EIF
compared to LIF networks (Fig. 5.13). It would thus be of interest to quantify the
spike generation mechanism of CA1 PV+ basket cells in detail, in order to estimate
whether a realistic single neuron model for CA1 interneurons can account for ripple-
range oscillations in the bifurcation-based inhibitory network model.

7.2.1.3 Towards finding the true mechanism of ripple generation

It may seem counterintuitive, that a detail such as IFA may be necessary to dissociate
inhibition- and excitation-first ripple models, that rely on so vastly different assump-
tions. In Section 2.8 I summarized a number of optogenetic and pharmacological ex-
periments that tried to dissociate the two model classes based on their core differences
regarding excitatory and inhibitory contributions to ripple generation. There are two
main reasons why these experiments have so far remained inconclusive: One is our
incomplete understanding of the LFP signal as discussed above. The other is a more
fundamental, conceptual problem: We have seen in Section 2.7 that the basic ingredi-
ents of all ripple models seem to be present in CA1 (with the potential exception of
axonal gap junctions). Let’s assume for a moment that all proposed mechanisms can,
in principle, work and generate ripple oscillations. This means that if an experimental
manipulation takes out one potential ripple generator, another mechanism might take
over. Whatever mechanism generates a ripple-like event in the manipulated circuit
may not be the same mechanism that causes ripples in the intact brain. Optogenetic
and pharmacological manipulations of the circuit may therefore never allow a clear
conclusion about ripple generation in the healthy brain.

For this reason, IFA may be a promising marker for model selection. It is a feature
that can be observed in spontaneous ripple events and it may be possible to study its
properties, such as a dependence on the time course of sharp wave-associated excitation,
without severe manipulations of the circuit.

Ultimately, the real question is of course: If we combine all potential ripple genera-
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tors into one complex network, which mechanism “wins”? Unfortunately, it is hard to
address this question from a modeling perspective, since the multitude of parameter
dependencies of all models combined makes a meaningful analysis very difficult. It is
also possible that there is no single, true generation mechanism of ripples, but that dif-
ferent classes of (sharp wave-)ripples originate in different circuits and brain states by
different mechanisms (Ramirez-Villegas et al., 2015; Yamamoto and Tonegawa, 2017;
Oliva et al., 2016, 2020; Navas-Olive et al., 2022).

7.2.2 Mesoscopic models of ripple oscillations
The analysis in Chapter 6 has demonstrated that ripples can, in principle, be mod-
eled on a mesoscopic scale. The efficient mesoscopic integration scheme by Schwalger
et al. (2017) could facilitate setting up larger scale models to study the propagation
of sharp wave-ripples within and across brain regions, and their coordination with
other thalamo-cortical rhythms. An extension of the mesoscopic approach incorporat-
ing short-term synaptic plasticity (Schmutz et al., 2020) was recently used to model
hippocampal replay on a mesoscopic level (Pietras et al., 2022). Combining models of
replay and ripple generation may be the next step towards understanding the potential
functional role of the sharp wave-ripple rhythm for cognitive processes such as memory
consolidation.
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