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 
Abstract—A detailed investigation of cycle slips in injection-

locked oscillators and analog frequency dividers is presented. 
This nonlinear phenomenon gives rise to a temporal 
desynchronization between the injected oscillator and the input 
source due to noise perturbations. It involves very different time 
scales, so even envelope-transient based Monte Carlo analyses 
may suffer from high computational cost. The analysis method is 
based on an initial extraction of a reduced-order nonlinear model 
of the injected oscillator, based on harmonic-balance simulations. 
This model has been improved with a more accurate description 
of oscillation dependence on the input source either at the 
fundamental frequency or at a given harmonic frequency, in the 
case of a frequency divider. The reduced order model enables an 
efficient stochastic analysis of the system, based on the use of the 
associated Fokker-Planck equation in the phase probability 
density function. Several methods for the solution of the 
associated Fokker-Planck equation are compared, with one of 
them being applicable under a wider range of system 
specifications. The analysis enables the prediction of the 
parameter-space regions that are best protected against cycle 
slips. The technique has been applied to two microwave injection-
locked oscillators and has been validated through commercial 
software envelope simulations, in situations where the 
computational cost of the envelope simulations was acceptable, 
and through measurements. The measurement procedure of the 
cycle slipping phenomenon has been significantly improved with 
respect to previous work.  
 

Index Terms— Cycle slips, injection-locked oscillators, 
nonlinear stochastic analysis, synchronization. 
 

I. INTRODUCTION 

YCLE slipping is a statistical nonlinear phenomenon 
that takes place in synchronized systems under the 

influence of noise. During cycle slips the oscillating system 
becomes unlocked from the reference source, which can cause 
a loss of data integrity in data communication systems, 
reducing the ability of the system to provide communications 
with an acceptable error rate. In the literature, this 
phenomenon has been extensively analyzed in phase-locked 
loops (PLL) [1]-[5]. However, cycle slipping also takes place 
in injection-locked oscillators (ILO) [6], used at microwave 
frequencies for oscillator stabilization, amplification, phase 
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shifting, quadrature generation, frequency division and other 
applications [7]-[21]. In the case of superharmonic ILO 
operating as a frequency divider [14] in a phase-locked loop, 
the random jumps would prevent the frequency division and 
give rise to an undesired phase modulation effect, disrupting 
the PLL response and leading to an undesired modulation of 
the VCO frequency. This anomalous behavior can extend over 
thousands of cycles of the VCO output signal. Other examples 
regard the injection locked active antennas, where the ILO is 
used to generate RF/microwave phase modulated signals 
through variation of the oscillator bias [15]-[17]. Indeed, a 
good number of low cost, low consume and small size 
transmitter and demodulators based on ILO have been 
presented in the literature [15]-[20]. During the random jumps 
the oscillator phase gets unlocked from the input signal, losing 
the modulation information during the time needed to recover 
phase-lock. This time can be of the order of thousands of 
reference cycles. In an ordinary application of the ILO as a 
local oscillator in a microwave transmitter/receiver, the 
oscillator phase excursion due to the phase slip would 
contaminate the phase of the IF output signal of the mixer, 
producing data loss. The ILO can also be used, for instance, 
for dual phase generation, achieved by means of an injection 
locked frequency divider by two [21] applied for quadrature 
modulation and quadrature down-conversion, among other. 
The random jumps would prevent the frequency division and 
disrupt the delivered signals. 

The aim of this work is to investigate the impact of the 
cycle slipping phenomenon in injection-locked oscillators and 
develop a realistic and efficient methodology for its prediction 
at the design stage. 

 In an injection-locked oscillator, the self-oscillation gets 
synchronized to an input source, most usually corresponding 
to a single-tone signal at the frequency fin, close to a given 
harmonic component mf0 of the free-running oscillation. The 
oscillation frequency becomes commensurable with fin and 
there is a time-constant phase shift between the oscillation and 
the input source. The injection-locked state will be perturbed 
by noise associated with the input signal and by the noise 
sources of the oscillator circuit, giving rise to certain phase 
and amplitude noise spectral densities. However, due to the 
strong system nonlinearity in the phase variable, noise can 
also give rise to dynamic effects in the form of cycle slips. 
These take place during jumps in the oscillator perturbed 
phase occurring at random times. Since the phase-locking 
condition remains invariant under these jumps in the oscillator 
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phase, the system will recover phase lock after each jump. 
However, during the jumps, the oscillator is unlocked from the 
injection source, with the number of reference cycles slipped 
being determined by the transition time length. 

Since the occurrence of two jumps in a single stochastic 
realization can be separated in time by many thousands of 
reference cycles, the computational cost, even with envelope 
transient-based Monte Carlo analyses, would generally be 
very high. In the case of PLLs, this problem was solved in the 
seminal works [1]-[2] with the Fokker-Planck equation, used 
to predict the cycle slip probability by means of eigenfunction 
expansion methods [24]. In first and second-order PLL 
systems, the practical analysis [1]-[2] was very efficient 
thanks to the reduced number n of state variables involved 
(usually n<3). In the case of free-running oscillators, the 
stochastic characterization of the oscillator phase variable has 
also been performed in previous works [25]-[27]. Although 
these systems do not present coexisting synchronized solutions 
and therefore no random jumps are produced, the stochastic 
techniques proposed in these works have influenced the 
present analysis. 

In the case of the microwave injection-locked oscillators, a 
Fokker-Planck equation directly obtained from the differential 
equation system is unmanageable in practice, due to the high 
number of state variables involved. To circumvent this 
problem, here the Fokker-Planck equation associated with the 
phase variable will be derived from a reduced-order semi-
analytical model of the injected oscillator. The reduced-order 
differential equation system is obtained from magnitudes 
extracted from Harmonic Balance (HB) simulations. This 
model is similar to the one used in [12]-[22] to describe the 
deterministic transient dynamics of an injected oscillator. 
However, the model will be improved here with a more 
accurate description of oscillator dependence on the input 
source, which will increase the model reliability and 
applicability. Unlike previous works [12]-[22], here a 
stochastic analysis will be carried out. A nonlinear stochastic 
differential equation will be derived, able to predict nonlinear 
phenomena associated with noise perturbations. 

The reduced order of the semi-analytical differential 
equations will enable the extraction of a simple Fokker-Planck 
equation. Note that the structure of this equation is different 
from the Fokker-Planck equation associated with the phase 
deviation in a free-running oscillator [26]. On the one hand, it 
corresponds to an injection-locked oscillator and not to a free-
running one. On the other hand, the resolution procedure will 
be particularized in order to stochastically characterize the 
jumps between adjacent synchronized solutions. 

This equation will be analyzed in terms of eigenfunctions 
and eigenvalues of the Fokker-Planck operator. The technique 
permits an efficient analysis of the oscillator circuit 
performance in the presence of stochastic signals. It allows the 
oscillator transient dynamics to be studied under noise 
perturbations and can be efficiently solved to predict the 
probability of the phase jumps. The proposed methodology 
allows and an insightful study of the influence of the circuit 
parameters on the cycle slipping phenomenon. 

Two major new contributions with respect to the previous 
work [23] are the modification of the semi-analytical model to 
increase accuracy and broaden applicability and its extension 
to enable the analysis of cycle slips frequency dividers. In the 
present work, several methods for the solution of the Fokker-
Planck equation are provided. A comparison of various 
analysis methods is presented, with one of these methods 
being applicable under a wider range of specifications of the 
system, unlike the situation in [15]. Finally, the measurement 
procedure of the cycle slipping phenomenon has also been 
improved, allowing the measurement of time-domain 
realizations containing random jumps. In this manner it will be 
possible to characterize experimentally the mean time between 
phase jumps. 

The paper is organized as follows. Section II introduces the 
analytical formulation for the analysis of fundamentally-
synchronized oscillators and analog frequency dividers both in 
the steady state and noise-perturbed regimes. The obtained 
semi-analytical model is proved to explain and predict the 
cycle slipping phenomenon. In Section III the Fokker-Planck 
equation associated with the semi-analytical model is solved 
following the methods proposed in [1],[24]. The resulting 
expressions are applied to analyze the influence of the circuit 
parameters on the probability of random jumps. In Section IV, 
the comparison of the technique predictions with experimental 
results in an injection-locked oscillator at 1 GHz is provided. 

II. SEMI-ANALYTICAL MODEL 

A. Steady-state analysis 

The system composed of an oscillator synchronized with an 
external source will be called in general injection-locked 
oscillator (ILO). Depending on the harmonic relationship 
between the oscillator free-running frequency and the external 
source, the system can be a fundamentally-synchronized 
oscillator or a frequency divider. In the absence of the 
synchronizing source, the free-running oscillator frequency 
will be denoted by 0 02 f  . Without loss of generality, we 

will assume that the synchronizing source (reference) is a 
small-amplitude single-tone voltage generator: 

 ( ) , ,   
   

in in inj t j t j
in m m mv t U e U e      U =Ue   U   (1) 

with  0in m     . The parameter m   has been 

introduced to include the case of a frequency divider, whereas  
  is assumed to be small enough to maintain the input 

frequency 2in inf   within the ILO synchronization range. 

In the synchronized state, the steady state solution is periodic 
with the fundamental frequency /in m  , where 1m   in 

the case of fundamentally synchronized oscillator. For better 
insight into the reduced-order model derivation, the circuit 
level harmonic balance formulation of the ILO will be 
considered first, with n state variables and N harmonic terms. 
Using the modified nodal harmonic-balance formulation, this 
can be expressed in matrix form as [12]: 
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       ( ) 0F X j Q X H j X G       (2) 

where X , F , Q  and G  are the vectors containing the 

harmonic components of the node voltages and inductor 
currents ( )x t , the harmonic terms of resistive currents and 

loop voltages ( )f t , the harmonics of the linear and nonlinear 

charges and fluxes ( )q t , and the independent input sources, 

respectively. Matrix H contains the transfer functions of the 
distributed elements.  

An auxiliary generator (AG) [12]-[22] of voltage type will 
be used here for the ILO analysis. The AG operates at the 
fundamental frequency /in m   with an amplitude 1V  and 

phase 1 . It must fulfill a non-perturbation condition, 

corresponding to the zero value of the AG current-to-voltage 
ratio, that is [12]-[22]: 

 
1

1

1

0
p

p j

I
Y

V e    (3) 

where p is the analysis node at which the AG is connected. 
Then, the vector G  in (2) will contain, together with the bias 
sources, the input periodic source and the AG, which behaves 
in system (2) as an independent source. Using (2) as an inner 

tier to solve X  in terms of the independent sources, the 

equation associated with current 1
pI  can be expressed as: 

  1 1 1, , , , 0p
m mI V U U    (4) 

where the dependence of 1
pI  on mU  is indicated explicitly. 

Actually, the nonlinearities depend on the full set of harmonic 

components kX  of the state variables, where k goes from –N to 

N. The vector mX   will be affected by mU  through the linear 

embedding network and this dependence will, in general, be 

transferred to 1
pI . The dependence on mU , which had not 

been considered in previous works [12]-[23], will be taken 
into account when developing the model of the ILO. Equation 
(4) can be expressed in terms of the admittance function as: 

 

    1
1 1 1 1 1 1, , , , , , , , 0jp

m m p m mI V U U Y V U U V e        (5) 

where Yp is the first harmonic total admittance at node p. 
Provided the input source amplitude is small enough, (5) can 
be approached by a first-order Taylor series about the free-
running values of the voltage and frequency variables as: 

 
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 

 

 
 

 



                            

     

     

 (6) 

where 0
1V  is the first harmonic amplitude at the analysis node 

p under free-running conditions, B-m, Bm are injection 
sensitivity terms and 0/in m      is the frequency shift. 

Equation (6) constitutes a semi-analytical model of the ILO, 
where the admittance derivatives can be numerically obtained 
through finite differences, introducing an auxiliary generator 
in commercial Harmonic Balance software as explained in 
[12]-[23]. In these previous works, the term mB  was not 

considered, which reduced the validity of the model to those 
analysis nodes where this term vanishes. At those nodes the 

implicit dependence of the current 1
pI  on mU  must be 

negligible or zero. This condition is usually difficult to attain 
when the input generator and the analysis node are placed at 
different sides of an active element, such as a transistor, which 
reduces the applicability of the model.  

In the following, the effect of the inclusion of the term B-m 
in the semi-analytical model will be analyzed. First, (6) will be 
rewritten explicitly showing the dependence on the input 
generator phase: 

 
 1 1, , , ,

0in in

p in

j j
V m m

Y V U

Y V Y B Ue B Ue 


  

 




                     
 (7) 

In the synchronized state, the steady-state condition (7) 
must be preserved under an arbitrary time shift in the whole 
system of state variables, including the input source: 

 
 

   
1 10 , , , ,

,in in

p in

j m j m
V m m

Y V U m

Y V Y B Ue B Ue   


    

   


   

      

 

   =  
(8) 

In order for (8) to be fulfilled for any phase shift value , 
the coefficients B-m and Bm must be phase-dependent with the 
form: 

 
 

1 1

1 1

0 0
1 1

, , , ,
0,

( ) , ( )

 p in

jm jm
m m m m

Y V U m
  

B B e    B B e 

    



 

 

  
  


  

 
(9)

 

where 0
mB , 0

mB  are complex numbers depending on the circuit 

topology and the free-running solution. The components YV, 
Y are phase independent. In previous works [12]-[23], the 
phase dependence (9) was not derived. Here, as will be shown 
in the Section II.B, the expression of B-m and Bm as phase-
dependent functions will provide a powerful formulation for 
analyzing the ILO dynamics in the presence of noise sources. 
Introducing expressions (9) in (7), the steady-state semi-
analytical model is obtained: 

 1 1( ) ( )0 0 0in inj m j m
V m mY V Y B Ue B Ue   

    
       (10) 

Equation (10) can be applied to obtain the ILO 
synchronization range. For this purpose, it is more convenient 
to use the derivatives: 
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  
    

= + 

= - 

(11) 

By substituting B-m and Bm in terms of Qr and Qi into (11), 
we arrive to: 

 
1

cos sin 0,V R I

in

Y V Y Q U m Q U m

m

   
 

     

 
 (12) 

Complex equation (12) leads to the following expression for 
the frequency shift: 

 
cos sinR V I V

V

Q Y m Q Y m
U

Y Y

    
 


 (13) 

In (13) the following simplifying relation has been applied: 
r i i ra b a b a b   , where the super-indexes (r,i)  mean real 

and imaginary parts. Equation (13) provides the frequency 
shift variation as a function of the phase difference  . 

Equation (13) describes a periodic frequency shift variation in 
the interval [0, 2 / ]m  . The synchronization frequency 

limits can be obtained by numerically calculating the 
maximum and minimum values of function (13) in that 
interval. 

Note that, in the particular case B-m=0, the admittance 
function at the analysis node fulfills: 

 
   1 1 1 1, , , , , , ,

,

inj
p in p

r i r i
R I I R

Y V U Y V Ue

Q Q Q Q

     

            
 (14) 

where the super-indexes (r,i)  mean real and imaginary parts. 
Equations (14) show that the Cauchy-Riemann equations 
associated with the first harmonic U1 of the voltage source are 
fulfilled. In previous works [12]-[23], only analysis nodes 
fulfilling (14) were considered. Formulation (10) allows the 
semi-analytical model to be extended to the general case in 
which the term B-m does not vanish at the analysis node. 

As an example, the term B-m has been calculated at two 
different nodes in the FET-based injection-locked oscillator of 
Fig. 1. The circuit has been simulated in commercial software. 
The case m=1 has been selected. Both terms have been 
represented in Fig. 2 as the phase 1 is varied in the range 
[0,2]. As can be seen in the figure, for the analysis node p1 
situated at the transistor gate we find 1 0B  . On the other 

hand, for the analysis node   p2 (transistor drain) the term B-1 
does not vanish and fulfills relation (9). When selecting this 
node for the analysis, the term B-1 must be taken into account 
in the semi-analytical model. Note that, in this case, the 
transistor device is in the circuit path connecting both the 
input generator and the analysis node. 

  

Fig. 1. Schematic of the FET-based injection-locked oscillator. The 
free-running frequency is f0=5.185 GHz.  

 

Fig. 2. Phase dependence of the injection sensitivity 1 1( )B  . For the 
analysis node p1 (transistor gate), the semi-analytical model fulfills 

1 1( ) 0B    and Cauchy-Riemann conditions (14) hold. On the 
contrary, for the analysis node p2 (transistor drain), the semi-
analytical model must take into account the sensitivity term 1 1( )B  . 

B. Analysis in the presence of noise sources 

Using the technique in [13], the effect of all the noise 
sources existing in the oscillator circuit can be modeled with 
an equivalent current generator connected in parallel at the 
analysis node. This current generator is a narrow-band signal, 
which can be expressed as: 

  ( ) 2 ( ) , ( ) ( )
BW

j t j t
n n n n

BW

i t Re I t e     I t I e d 



     (15) 

where 2BW is the noise source frequency bandwidth. On the 
other hand, the phase noise of the injection source will be 
modelled as: 

 ( ) 0( ) , ( ) ( )inj t
m in inU t U e t t             (16) 

where ( )t  is the phase noise process of the input source. The 

effect of these sources is to perturb the amplitude and phase of 
the solution harmonics. In order to obtain the equation that 
determines the dynamics of the perturbed amplitude and phase 
variables, a similar procedure to the one described in [12], 
[28] will be carried out. In particular, the first harmonic term 
of the voltage signal vp at the analysis node becomes: 

 1 ( )0
1 1( ) ( ) j tpX t V V t e       (17) 
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Then, in the presence of the noisy current generator, the 
admittance equation at node p becomes: 

1 ( )0
1

0
1 1 0

( ) ( ) ( ),

( ) ( ), ( ), ( ), ( ),

j t
p n

p p m m

Y t V V t e I t

s
Y t Y V V t t U t U t

j



  

    
 

      
 

(18) 

where s is the complex frequency increment, acting as a time 
derivative operator. Now, expanding the admittance function 
Yp(t) as in (6) and neglecting quadratic terms in the 
perturbation variables we finally obtain:  

 
   1 1

1 0
1

( ) ( ) ( ) ( )0 0
0

1

( )
( ) ( )

( )
in in

V

j t m t j t m t n
m m

V t
Y V t Y t j

V

I t
B Ue B Ue

V



   

 

  


 
      

 

  



                

(19) 

In the following, the time derivative of the amplitude 
increment ( )V t   will be neglected in (19) as, due to the 

amplitude-limiting property of nonlinear elements [12], the 
magnitude of 0

1( ) /V t V   is usually much smaller than that of 

1( )t . Equation (19) is the dynamic semi-analytical model of 

the ILO in the presence of noise sources. In the absence of 
noise sources, the synchronized oscillator circuit is phase 
locked to the injection source as predicted by the steady-state 
model (10). In this state, the phase difference 1/in m     

remains constant in time, at the value fulfilling equation (12). 
When noise sources are introduced in the circuit, the phase 
difference ( )t  becomes perturbed. In order to analyze the 

dynamics of the perturbed phase-locked state, we perform the 
change of variable 1( ) ( ) / ( )int t m t     in equation (19), 

obtaining: 

 ( ) sin cosS Ct K m K m H n
m

         
  (20)  

The coefficients of differential equation (20) are: 

 

   0 0 0 0

0
1

,

( ) 1
,

m m V m m V

S C
V V

ri r
nV V
i

V n

U B B Y U B B Y
K   K

Y Y Y Y

IY Y
H            n

Y Y V I

 



 



   
   

 

 
     

(21) 

where the simplifying relation r r i ia b a b a b    has been 
introduced. Note that the coefficients of (20) are determined 
by the admittance derivatives (6), extracted from circuit-level 
Harmonic Balance simulations performed on commercial 
software.  

In most cases, it will suffice to consider only Gaussian 
white noise sources for the following reason. As derived in 

[13], the oscillator phase noise spectral density 
2

1( )   will 

follow that of the reference source 
2 2( ) /in m   up to a 

certain frequency value 1 , which is generally above the 

region of flicker noise influence. As a consequence, the phase 
difference variable 1/in m    , which is the relevant one 

for the present analysis, will not generally be affected by the 

flicker noise sources. The value of 
2

( )   will only 

become significant for 1   , where the dominant 

contribution usually comes from the oscillator noise sources. 
For this reason, the flicker noise sources have not been 
included in the analysis. For completeness, the component of 
the source phase noise due to white noise sources will also be 
included in the analysis, since it may have influence for 

1   , especially around 1 . As derived in [29], this 

component can be modelled as a Wiener process: 

 ( ) ( )g gt H n t   (22) 

where ng is the combined effect of the white noise sources 
affecting the injection source and Hg is a constant term 
providing the sensitivity to this source. Then, system (20) can 
be rewritten in terms of the white noise sources as: 

( ) ( ), ( ), ( ) ,

( , , ) sin cos

g

g
S C g

t f t n t n t

H
f n K m K m H n n

m

 

     

   

     




(23) 

where the function ( , , )gf n n  will be called the restoring 

term, since it is responsible for recovering the steady-state 
when the system is perturbed by the noise sources. Equation 
(23) provides a nonlinear model of the ILO, which will be 
used hereafter to analyze the random jumps producing cycle 
slips. The noise sources included in model (23) fulfill:  

 

0
( ) ( ) ( ),

0

( ) ( ) ( )g g g

n t n t

n t n t

  

   





 
    

 

  (24) 

The values  and g will be extracted from the phase noise 
measurement of the free-running oscillator, according to the 
methodology proposed in [13]. As a result of the introduction 
of the noise sources in the formulation, the phase variable 

1( ) ( ) / ( )int t m t     becomes a stochastic process, whose 

dynamics is ruled by the stochastic differential equation (SDE) 
(23). 

C. Cycle slipping phenomenon 

In the absence of noise sources, the steady-state solutions of 
(23) are time-constant synchronized solutions that repeat 
periodically in the phase variable as: 

 0 0

2 2
, ,                 sk s uk uk k   k

m m

          (25) 

with 0 0, [0,2 / ] s u m   . The solutions ,sk uk   are stable 

and unstable, respectively. As 
 
approaches any of the two 

boundaries of the synchronization band, both types of 
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solutions get closer, eventually colliding at  sk uk  . The 

solutions 0 0,s u   corresponding to the ILO in Fig. 1 have 

been represented throughout the synchronization band in Fig. 
3, for the case m=1. 

 

Fig. 3. Steady-state solutions 0 0,  s u   throughout the synchronization 
frequency interval, for the ILO in Fig. 1. The case m=1 has been 
selected. 

In Fig. 4, several stable and unstable solutions have been 
represented throughout the phase variable axis. This axis can 
be divided into intervals kM , each one corresponding to the 

attracting manifold of a stable solution sk . In the absence of 

noise sources, for any initial condition of system (23) fulfilling 

(0) kM  , the restoring term ( , 0,0)f   pushes the trajectory 

towards the stable solution sk . The discretization of this 

trajectory has been schematized in Fig. 4 by the black arrows 
in each manifold. 

When noise sources are introduced into the circuit, the 
system trajectory fluctuates about a given stable steady-state 
solution sk . At each time value, if the restoring term satisfies 

( , , ) ( , 0,0)gsign f n n sign f  , we will say that it is 

naturally polarized. In this case, the phase step of the 
discretized trajectory at that time value will agree in sign with 
the black arrows in Fig. 4. Cycle slips will take place when the 
noise sources invert the polarity of the restoring term, such 

that ( , , ) ( , 0,0)gsign f n n sign f   . If the polarity 

inversion extends over a long enough time interval, the 
trajectory can be pushed towards the closest unstable solution 

uk  or , 1u k   throughout the interval ( , )sk uk   or , 1( , )u k sk    

(see Fig. 4). If the unstable solution is surpassed, the trajectory 
enters the stable manifold 1kM  , associated with , 1s k  , 

evolving to this new solution. During the transient towards 

, 1s k   the oscillator will be unlocked from the reference for a 

number of cycles determined by the transient time length. This 
transition time between two solutions is determined by the 
stability margin of the stable solution, which can be 
approximated through perturbation analysis, linearizing (23) 
about the stable solution sk : 

 

 

( ) ( ),

( , 0,0)
( ) ( ), 0,0 ( )

( ) ( ) ,

cos sin

 

nk

nk
nk

t

S nk C nk

t t

f
t f t t

         t t e

m K m K m



  

   


  
  

  


        

    

 

 
(26) 

The stable pole 0   determines the transient length, 

which is inversely proportional to the magnitude  . Then, as 

the synchronization boundaries are approached, the magnitude 
| |  decreases, increasing the transition time and the number 

of reference cycles slipped.  
This is a nonlinear phenomenon, which requires the 

consideration of both the stable and unstable steady state 
solutions. For this reason, it cannot be predicted by any linear 
model, obtained from the linearization of ILO equations about 
the stable solution. Although such a linear model can predict 
other effects of the noise sources, such as the phase noise 
characteristic [13], it is unable to predict the cycle slipping 
phenomenon. 

 

Fig. 4. Schematic of the cycle slipping mechanism. The time-
discretized phase trajectory has been represented. Continuous arrows 
represent the trajectory in absence of noise, while dotted arrows 
represent the trajectory when noise inverts the restoring term polarity. 

The capability of model (23) to predict the cycle slipping is 
shown in Fig. 5, where a time realization of the simulated 
phase process ( )t

 
is represented. In this simulation, the 

model coefficients (6) have been extracted from the ILO in 
Fig. 1. The case m=1 has been selected. For comparison, the 
envelope transient simulation of this circuit in commercial 
Harmonic Balance has been superimposed. Both techniques 
predict a similar pattern of cycle slips in the time interval 
considered. The jumps take place at random times. The 
differences in the jump times between both analyses can be 
explained in the following way: on the one hand, the 
envelope-transient model used in commercial software works 
with a system of q(2NH+1) state variables, where q is the 
number of independent variables and NH is the number of 
harmonic components used for each variable. On the other 
hand, the semi-analytical model (23) contains only one state 
variable. In [22] the transient dynamical behavior of the semi-
analytical model in absence of noise has been analyzed, 
verifying that it agrees with the envelope-transient results in 
commercial software for any time realization. This is because 
the transient dynamics in absence of noise is structurally 
stable [30], that is, the inaccuracies associated with the model 
reduction produce small changes in the time paths. In the 
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analysis of the random jumps, the situation is different. A 
phase jump in a single time realization is produced by specific 
sequences of consecutive values of the noise sources that alter 
the state variables in a particular way [1]. This dynamics is not 
structurally stable, since under any slight change in the model 
a given jump-producing sequence may stop generating a jump. 
As a consequence, a sequence of values in a noise realization 
producing a phase jump in the envelope-transient model may 
not affect in the same way the semi-analytical model. In spite 
of this mismatch, the statistical results of both models will 
approximately agree, since the white noise sources cover all 
the possible combination of sequences of values. 

As can be seen in the figure, during each jump the oscillator 
loses phase lock and slips about one thousand reference 
periods. 

 

Fig. 5. Time realization of the phase process. Cycle slipping 
phenomenon for the ILO in Fig. 1, with fin=in/(2)=1/Tin=5.18 GHz. 

The objective of this work is to obtain the stochastic 
properties of the phase shift variable ( )t

 
in the presence of 

noise sources. The knowledge of these properties will enable 
the determination of the influence of the ILO parameters on 
the stochastic behavior of the system, in particular the cycle 
slipping phenomenon. Note that the computational cost of the 
commercial software simulation in Fig. 5 is very high. This is 
because, in this case, the required time step for the envelope 
transient to converge was int T  , with 2 /in inT   , 

whereas the time length is 52 10 inT . The envelope simulation 

in Fig. 5 in commercial software took about 2 hours (Intel 
Xeon X5450 @ 3 GHz / 16 GB RAM), whereas the simulation 
of the semi-analytical model took about 0.6 seconds. The 
integration time step of the semi-analytical model has been set 
to 1/ (4 | |)  t . Note that the envelope formulation makes 

use of the models of the distributed elements in the circuit. As 
a consequence, a Monte-Carlo type analysis of ( )t

 
based on 

envelope transient simulation would require a very high 
computational cost, rendering it inefficient. In the next 
Section, an alternative technique will be proposed for the 
stochastic analysis of the ILO.  

III. STOCHASTIC ANALYSIS OF THE INJECTED OSCILLATOR 

In this section, the stochastic properties of the phase process 
( )t

 
will be analyzed with the Fokker-Planck equation [1][24] 

associated with the stochastic differential equation (23): 

 
2

2
1 2

( , )
( ) ( , ) ( , )

2
  

kp t
k p t L p t

t

   
 

   
       

 (27) 

where ( , )p t  is the time-varying probability density function 

(PDF) of the phase process and L is the so-called Fokker-
Planck operator. The terms k1 and k2 are extracted from the 
SDE (20) [24]: 

 
1

2
2

2 2

( ) sin cos ,

 

S S

g
g

k K m K m  

H
k H

m

   



   

  
 (28) 

Equation (27) is a partial differential equation that can be 
efficiently solved due to the reduced number of independent 
variables ( , )t . In order to solve equation (27) it is necessary 

to fix a set of boundary conditions on the PDF function 
( , )p t . The method of resolution will depend on the kind of 

boundary conditions imposed. In the following, two different 
kinds of boundary conditions will be proposed, applying the 
resulting PDFs to the analysis of the cycle slipping 
probability. 

A. Periodic boundary conditions 

In this approach, the probability space is reduced to the 
interval 2 [0,4 / ]S m   , by mapping the realizations of 

the stochastic process ( )t  to the space S2 through the modulo 

4m function. As a consequence, the PDF of the process ( )t  

fulfills: 

 
( 0, ) ( 4 / , ),

( , ) 0, [0,4 / ]

p t p m t

p t     m

  
  
  
 

 (29)  

In this probability space, the stable solutions ,2s k  and 

,2 1s k   are respectively mapped to the solutions 0 1 2,s s S   . 

Then, the function ( , )p t  determines the transitions between 

the two attractors s0 and s1. Considering the boundary 
conditions (29), the PDF ( , )p t  can be calculated by solving 

(27) for a phase-periodic function ( , )q t  fulfilling:  

 

4 /

0

( , ) ( 4 / , ), ( , ) 1,

( , ) ( , ), [0,4 / ]

m

q t q m t     q t d    t

p t q t     m



    

   

   

 

  (30) 

As can be seen in equation (30), the PDF ( , )p t  agrees 

with the periodic function ( , )q t  within the interval S2. In 

order to calculate ( , )q t , an expansion of this function in a 

basis of linearly independent functions will be considered, as 
proposed in [1],[24]: 
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 ( , ) ( , )k k
k

q t b q t   (31) 

where bk are coefficients determined by the initial condition 
( ,0)q  . In order for ( , )q t  to fulfill (27) and conditions (30), 

the following properties are required for the functions ( , )kq t
: 

 
( , )

( , ) ( )

( , ) ( 4 / , ) ( )

k
k

k k

q t
Lq t        a

t
q t q m t     b

 

  





 

 (32) 

To solve the functions ( , )kq t , the method of separation of 

variables [31] will be applied, using the decomposition: 

 ( , ) ( ) ( )k k kq t h t q   (33) 

Applying condition (32)(a) to expression (33) we obtain 

 
( ) ( )

( ) ( )

 k k
k

k k

h t Lq

h t q

 


  


  (34) 

where k  is the required separation constant [31]. 

Expression (34) provides the relations: 

 ( ) , ( ) ( )k t
k k k kh t e      Lq q       (35) 

where the second equation in (35) indicates that k  and ( )kq   

are respectively the eigenvalues and the eigenfunctions of the 
operator L. Since, by condition (32)(b) the eigenfunctions 

( )kq   are periodic, they can be expanded in a Fourier series 

as: 

 ( ) ( ), ( ) exp
2

M

k lk l l
l M

m
q c     jl

  


      
 

  (36) 

where M is the number of harmonics considered. Introducing 
expansion (36) into equation (35), the following algebraic 
system is obtained: 

    ,      k k k rlAc c A A   (37) 

where each vector kc  contains the 2M+1 coefficients lkc  of 

the Fourier expansion (36). The matrix A contains
(2 1 2 1)M M    components given by the coefficients of 

the endomorphism L in the basis  ( )
M

l l M



 : 

    
 

*
2, 2,

2 2
, 2

( ) ( ),

/ 4 1 / 2 , / 4 1/ 2 ,

( 4 ) / 8,

 

  

M

l rl r
r M

l l T l l T

l l T S C

L A

A K l    A K l

A j ml m l k     K m K jK

 





 

  

    

     


(38) 

where only the components 2, ,,l l l lA A  are non-zero. From (37)

, once the components of the matrix A are obtained, the 
stochastic analysis reduces to the simple calculation of the 
eigenvalues and eigenvectors of the matrix A. Finally, the PDF 
p(,t) associated with system (20) is expressed as: 

 
2 1

1

( , ) exp , [0,4 / ]
2

k

M M
t

k lk
k l M

m
p t b e c jl    m   




 

   
 

   (39) 

The coefficients bk depend on the initial condition ( ,0)p  , 

which can be expressed in the periodic Fourier basis as: 

 ( ,0) ( )
M

l l
l M

p u 


   (40) 

On the other hand, expansion (39) for t=0 provides: 

 
2 1

1

( ,0) ( )
M M

k lk l
k l M

p b c 


 

    (41) 

Then, equating expressions (40) and (41), and considering 

that  ( )
M

l l M



  is a complete basis, we arrive at: 

  1
1 2 1, Mb C u     C c   c

    (42) 

where b  is the vector containing the 2M+1 coefficients kb   

and u  contains the 2M+1 harmonic components of expansion 
(40). Equation (39) enables the time evolution of the 
stochastic properties of process ( )t  to be obtained. It can be 

applied to several analyses, such as the study of the influence 
of the noise sources on the locking transient length. To 
summarize, the technique to obtain analytical expression (39) 
for the PDF p(,t) is based on four steps: 

1- Calculate the coefficients of the semi-analytical model (20) 
through commercial Harmonic Balance simulation of the 
ILO circuit. This simulation is carried out in the absence of 
noise sources. 

2- Obtain matrix A using equations (38) by means of the 
coefficients calculated in Step 1. 

3- Calculate the set of eigenvalues k  and eigenvectors kc  of 

matrix A. 
4- Calculate the coefficients kb  utilizing equation (42), by 

making use of the harmonic components of the initial 
condition function ( ,0)p  .  

Here, expression (39) will be used to analyze the cycle 
slipping phenomenon. For this purpose, a Gaussian-type initial 
distribution ( ,0)p   centered at s0 has been chosen. The 

analysis has been applied to the ILO in Fig. 1. After obtaining 
expression (39) by following Steps 1-4, the time evolution of 
the PDF p(,t) has been represented in Fig. 6. As time 
evolves, there is a probability flow between s0 and 

1 0 2 /s s m     due to random jumps, until the steady state 

distribution ( , )p t  
 

is reached. In this state, all the 

functions ( , )kq t  in expansion (31) vanish except 1( , )q t , 

associated with the eigenvalue 1 0  . Then, the steady state 

is given by: 

 1 1( , ) ( , ) ( )p p t b q        (43) 
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Fig. 6. Time evolution of the probability density function for fin=5.18 
GHz, with =10-18 S2, Hg

2g=39.48 Hz-2. The case m=1 has been 
selected. 

Let us arrange the set of eigenvalues as: 

 1 2 2 10 r r
M         (44) 

where the super-index r means real part. The probability of 
jumps is inversely proportional to the time ts needed to reach 
the steady state ( , )p   . By inspection of expansion (39), it is 

seen that ts decreases with r
k , making the probability of 

jumps proportional to 2
r . To analyze this probability, 

expansion (39) will be approximated by: 

 2
1 1 2 2( , ) ( ) ( ), [0,4 ]tp t b q b e q            (45) 

It must be noted that approach (45) is based on the 

assumption that 2   and 2 3
r  . In the cases where this 

condition is not fulfilled, the following analysis is not valid 
and the method in Section III.B must be applied. The 
probability space can be divided into two non-intersecting 
regions I and II, each one containing one of the stable 
solutions s0, s1, fulfilling: 

 
1

( , ) ( , )
2I II

p d p d          (46) 

Applying approach (45), the time-varying probability of 
each region is given by: 

 

2

2

2

1 1 2 2( ) ( , ) ( ) ( )

,

( ) ( , ) ,

( ) ( ) 1,

t
I

I I

t
I I

t
II II II

II

I II

p t p t d b q b e q d

        A B e

p t p t d A B e

p t p t   t







    

 







    

 

  

  

 





 (47) 

 Starting from the initial condition 0(0) s  , we define Ts 

as the time at which the first jump is produced. Once the 
adjacent attractor 1s  is reached, the time until the next jump 

can be simulated in system (20) by resetting the time variable 
to t=0 and using the initial condition 0(0) s   again. Then, 

Ts is a stochastic variable that provides the time between two 
consecutive jumps. This variable can be analyzed by means of 
system (47). At time t=0 all the probability is concentrated at 
the stable solution s0, providing: 

 0( ,0) ( ) (0) 1, (0) 0s I IIp p   p         (48) 

Combining expressions (46)-(48), we arrive at: 

 
12 21

12 21

2 2
12 21

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ), ( ) ( )
2 2

I

II

I II

p t J t J t

p t J t J t

J t p t    J t p t
 

  
 

 


  (49) 

where ( )ijJ t  provides the time rate of the probability of 

leaving region i towards region j at time t. Then, the 
probability of a jump occurring at a given time t is: 

 

12 2 2

12
0

( )
( ) exp

2 2( )

( )

 

 s
J t dt

P t T t dt t dt
J t dt

t dt

 




       
 


 (50) 

where ( )t  is the PDF of the stochastic variable Ts. 

Expression (50) can be applied to calculate the mean value of 
the time between two consecutive jumps: 

 
0 2

2
[ ] ( ) sE T t t dt




 

 
(51) 

This result will be applied in Section III.C to analyze the 
influence of the ILO parameters on the mean time between 
jumps. 

B. Absorbing boundaries 

In this approach, the probability space is reduced to the 
interval , 1 ,1 0 0[ , ] [ 2 / , 2 / ]s s s sm m          . It is 

assumed that when a realization of the phase process reaches 
one of the boundaries , 1 ,1,s s   it is absorbed and therefore 

eliminated from the ensemble. The fluctuating nature of the 
realizations increases the probability of being absorbed as the 
boundaries are approached. In the limit, the PDF of the phase 
process ( )t  fulfills the boundary conditions: 

 0 0( 2 / , ) ( 2 / , ) 0s sp m t p m t        (52)  

In this approach, the function ( , )p t  provides the amount 

of probability remaining in the interval 

0 0[ 2 / , 2 / ]s sm m      at a given time t. The function 

( , )p t reduces with time due to the random jumps, until all 

the probability abandons the interval. This behavior provides 
the limit ( , ) 0p t    . 

In order to calculate ( , )p t , it will be expanded in a basis 

of linearly independent functions: 

 ( , ) ( )  

k t
k k

k

p t b p e      (53) 
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where bk are coefficients determined by the initial condition 
( ,0)p  . Inserting (52) in the Fokker Planck equation (27) we 

obtain the following system: 

  
2

2
12

0 0

( ) ( ) 0

( )
( ) ( ) ( ) 0,

2

( 2 / ) ( 2 / ) 0

k k k

k
k k k

k s k s
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 (54) 

System (54) can be transformed into a Sturm-Liouville two-
point boundary value problem by means of the change of 
variable [1]: 
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By transformation (55), equation (54) becomes: 
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 (56) 

System (56) is a Sturm-Liouville in the self-adjoint form, 

providing a discrete set of solutions  ( ),k ku    [31]. The set 

of eigenvalues can be arranged as [31]: 

 1 20 k           (57) 

where k  are real numbers. The analysis performed with 

periodic boundary conditions is usually less demanding than 
the one using absorbing boundaries. This is because the 
former reduces to a simple eigenvalue problem, approaching 
the jumping rate by the eigenvalue 2 .  When using absorbing 

boundaries, the values k  must be calculated through 

numerical resolution of equation (56) by shooting, finite 
differences or other numerical techniques [32], which can be 
more involved than the method of periodic boundaries. 

As demonstrated in the involved derivations of seminal 
work [1], when extracting the coefficients of Sturm-Liouville 
system (54) from a SDE with the structure (23), the first 
eigenvalue 1  is in general several orders of magnitude 

smaller than the rest. Then, the probability in the interval 

0 0[ 2 / , 2 / ]s sm m      at a given time t can be 

approximated as: 
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 (58) 

Note that, in contrast to the previous method using periodic 
boundaries, equation (58) can be used in a wider range of 
specifications, since 1 2   is generally fulfilled. Using (58), 

the probability of a jump occurring at a given time t is: 

 1
1

0

( )
( ) ( )

( )
 

t
s

p t dt
P t T t dt e dt t dt

p t dt
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
 (59) 

where ( )t  is the PDF of the stochastic variable Ts. 

Expression (59) can be applied to calculate the mean value of 
the time between two consecutive jumps: 

 
0 1

1
[ ] ( ) sE T t t dt




    (60) 

If the approach in Section III.A holds, the mean time 
between jumps provided by expressions (51) and (60) must 
agree. The results of the analyses in Sections III.A-B will be 
compared in Section III.C. 

 

C. Influence of the ILO parameters on the cycle slipping 
phenomenon 

In Fig. 7, a schematic of the restoring term ( , 0,0)f   in 

equation (23) for 0   is shown. As was indicated in 
Section II, the random jumps are produced when the noise 
component in (23) inverts the polarity of the restoring term in 

the interval [ , ]uk sk  . The maximum value of ( , 0,0)f   in 

that interval is marked in the figure as ( ) 0Mf   . By 

performing a similar analysis for 0  , a value 
( ) ( ) 0m Mf f       is obtained. As can be seen in the 

figure, if   is decreased towards the limit of the band, both 
the stable and unstable solutions get closer and the maximum 
value Mf  is decreased. As a consequence, the probability that 

the noise component inverts the polarity of the restoring term 
increases.  

 

Fig. 7. The restoring term versus the phase difference variable. A 
phase jump will take place when the polarity of ( , 0,0)f   is inverted 
in the interval [ , ]uk sk  . In that case, the noise component must 
exceed the boundary ( )Mf  . 

In practice, the amplitude of the noise component is 
bounded. Here, the following approach will be applied: 

 
2

22
2

( ) ( ) , ,g g
g w w B g B

H H
H n t n t t    H

m m
          (61) 
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where 2
w  is the variance of the white noise term and B  is 

the noise bandwidth. Since the noise component is bounded by 
relation (61), the jumps are possible up to a given frequency 
distance from the border of the synchronization band. The 
region of the frequency shift interval where jumps are possible 
will be called the jump region. This region is composed by 
two intervals max[ , ]l    and max[ , ]r   , where 

max max2  f      are the left and right limits of the 

synchronization band calculated by means of equation (13). 
The limits of the jump region can be derived from (61) as: 

 ( ) ( )M l m r wf f        (62) 

In order to show the capabilities of the simulation 
techniques in Sections II.A-B, the probability of random 
jumps has been analyzed throughout the synchronization 
interval. For this analysis, the fundamentally-synchronized 
BJT-based oscillator in Fig. 8 with free-running frequency 
f0=1 GHz has been chosen. The results have been validated 
through three different simulations. According to expressions 
(51) and (60), the jump rate or the mean value of the number 
of jumps per unit of time is given by 2 / 2tN   or 1tN  , 

depending on the analysis applied. In Fig. 9(a), the jump rates 
predicted by the approaches in Sections II.A-B have been 
shown. As predicted by the qualitative analysis of Fig. 7, the 
jump rate becomes reduced when entering the center of the 
synchronization band, where the ILO is more protected against 
random jumps. In order to consider the cycle slipping 
phenomenon throughout the whole synchronization band, the 
power spectral density of the noise sources has been chosen 
such that the jump region covers the whole range 

max max[ , ]   . In the same figure, the jump rate obtained 

through Monte-Carlo analysis of system (20) has been 
superimposed.  

In Fig. 9(b) the simulation time of the three methods has 
been represented versus the injection frequency offset. For a 
better comparison, the logarithm of the simulation time has 
been represented. The CPU time for the Fokker-Planck 
methods remains steady along the synchronization band. As 
can be seen, the method using periodic boundaries is in 
general faster than the rest. For the analysis using absorbing 
boundaries a method based on the shooting technique has been 
used. The Monte Carlo analysis of the semi-analytical model 
is faster that the method of absorbing boundaries near the 
border of the synchronization band. Nevertheless, the 
simulation time of the Monte Carlo analysis grows 
exponentially as the injection frequency is moved towards the 
center of the band, and the method of absorbing boundaries 
becomes more efficient. For that reason, only Monte Carlo 
simulations up to 50% of the synchronization band have been 
performed. 

 

(a)  

 

(b) 

Fig. 8. BJT-based injection-locked oscillator. The free-running 
frequency is f0=1 GHz (a) Schematic. (b) Picture. 
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(b) 

Fig. 9. (a) Evolution of the jump rate throughout the synchronization 
band, for =10-14 S2, Hg

2g=39.48 Hz-2. The probability of jump 
increases as / 2f      approaches the borders of the 
synchronization band. (b) Comparison of the CPU time required to 
obtain the three sets of results. 

  
 

IV. EXPERIMENTAL RESULTS 

A. Time domain measurements 

Fig. 10 shows the measurement setup used for experimental 
validation. The phase shift between the two signal generators, 
SG1 and SG2, which are connected to the same 10 MHz 
reference clock, can be adjusted in order to improve the output 
response of the phase detector. The output of the phase 
detector is connected to a digital oscilloscope (Agilent 
Infiniium DSO90804A) after passing through a low–pass 
filter. A directional coupler is also connected to the output of 
the oscillator in order to allow the connection a spectrum 
analyzer. The spectrum analyzer is used to verify injection-
locked operation and to monitor the output of the ILO to 
adjust the output power of SG2 at each input frequency value. 
The output of SG1 is used to synchronize / injection-lock the 
oscillator circuit. Note that the frequency of the second 
generator is set equal to the frequency of SG1, while its 
amplitude is adjusted to match the output of the oscillator.  
The two inputs of the phase detector (PD) correspond to 
signals with phase shift (t) and same frequency and 
amplitude. If no phase jumps are produced the output of the 
phase detector is constant. In case a phase jump takes place, 
the variation of (t) triggers the oscilloscope. 

 

(a) 

 

(b) 

Fig. 10. Measurement setup used for experimental validation. (a) 
Schematic. (b) Picture. 

The measurements have been carried out in the 
fundamentally-synchronized BJT-based oscillator in Fig. 8. In 
Fig. 11, several time-domain measurements of the PD output 
have been shown. As can be seen in Figs. 11(a,b), as the 
frequency shift approaches the border or the synchronization 
band the number of phase jumps increases, in agreement with 
the previous theoretical results. Note that, as a difference from 
the case when the ILO operates out of the synchronization 
band, the jumps do not repeat periodically. This can be 
observed in Fig. 11(c), where a zoom of Fig. 11(b) has been 
performed to show two consecutive jumps close in time. 

In Fig. 12 the mean time between jumps [ ]sE T  has been 

measured throughout the synchronization band. For this 
purpose, a group of N=10 measurements, corresponding to a 
time interval of 50 ms have been obtained. As can be seen in 
the figure, the value [ ]sE T  increases as the frequency shift is 

reduced. This is in agreement with both the theoretical and 
simulation results of the stochastic simulation technique, 
which have been superimposed in the figure. The higher value 



TMTT-2014-07-0737 13

of the measured [ ]sE T  near the synchronization border is 

attributed to the fact that some phase jumps might not be 
detected by the measurement technique, increasing the 
expected value of the measured time between jumps. In 
addition, the discrepancies occur near the borders of the 
synchronization band. These borders correspond to saddle-
node bifurcation points of the ILO system, where the phase 
difference between the stable and unstable synchronized 
solutions is very sensitive to small changes in the system 
parameters. This is due to the infinite slope of the phase shift 
with respect to the injection frequency (Fig. 3). As a 
consequence, in this region the probability of jumps predicted 
by the semi-analytical model can exhibit additional 
discrepancies with respect to the measurement. 

 

Fig. 11. Time-domain measurements of the PD output. (a) 

max/ 82%f f    (b) max/ 83%f f    The number of jumps 

increases as the frequency shift approaches the border or the 
synchronization band. (c) Two consecutive jumps of case (b) close in 
time, showing that the jumps do not repeat periodically. 

 

Fig. 12. Measured mean time between jumps. In order to calculate the 
mean value [ ]sE T , a group of N=10 measurements, corresponding to 

a time interval of 50 ms have been obtained. The value [ ]sE T  

increases as the frequency shift is reduced. The results of the 
stochastic simulation technique have been superimposed. 

The evolution of the synchronized solution in the phase 
space has also been measured. The analysis has been carried 
out in the FET-based ILO at 5 GHz, with the schematic shown 
in Fig. 1, and with max 5  f MHz . In this representation, the 

ILO state variables ( )inv t  and ( )outv t  have been chosen, 

representing the voltages at the ILO input and output nodes, 

respectively. In Figs. 13(a,b), the points  ( ), ( )k in k out kP v t v t  

with , kt k t  0,1,2,...k  have been represented in the plane 

 ,in outv v . For this analysis, both signals ( )inv t  and ( )outv t  

have been analyzed in the oscilloscope in the (X-Y) mode. 
The period Tin of the input reference is not a multiple of the 
sampling step t . As a consequence, in the absence of noise, 
the points Pk fill a closed curve in the plane, or limit cycle. 
The noise sources affect this figure in two different ways. On 
the one hand, they give rise to small phase and amplitude 
perturbations in the state variables, making the points Pk shift 
slightly from the limit cycle. This phenomenon leads to the 
thick closed curve of Figs. 13(a,b). In the oscilloscope 
representation, the lightest colors correspond to the most 
crowded pixels. On the other hand, as the locking frequency is 
moved from the center to the edge of the synchronization 
band, random jumps begin to occur. During each jump, the 
oscillator is unlocked and the system trajectory abandons the 
limit cycle, producing points Pk both outside and inside the 
thick closed curve (see Fig. 13(a)). As the edge of the 
synchronization band is approached, the number of random 
jumps grows, increasing the number of samples outside and 
inside the cycle. This phenomenon can be observed in Fig. 
13(b). Note that, in both measurements, most of the samples 
are on the noisy limit cycle, since the mean time between 
jumps [ ]sE T  is much bigger than the period of the input 

reference. 
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Fig.  13. Time domain measurements. Measuring time Tm = 10 s. (a) 
max/ 40%f f    (b) max/ 95%f f    

B. Frequency domain measurements 

Using a measurement set-up based on the reference [33], a 
frequency domain representation of the injection-locked 
solution of the oscillator in Fig. 8 has been carried out. This 
set-up is presented in Fig. 14. Here, an Agilent’s N5242A 
PNA-X Microwave Network Analyzer has been used instead 
of the setup proposed in [33]. Port 1 of the PNA is used as an 
injection source to synchronize the oscillator. Fig. 15(a) shows 
the polar diagram of the parameter S21 obtained by sweeping 
the frequency of the injection port at Pin = –10 dBm. The 
resulting plot, shown in Fig. 15(a), is in agreement with the 
injection-locking diagram presented in [33]. The section of the 
diagram with similar magnitude values corresponds to the 
injection-locked frequency range, with a phase variation 
between the two synchronization edges of about 180º [33]. 
The remaining two sections, through which the magnitude 
decays significantly, correspond to frequency intervals for 
which the oscillator is not synchronized to the input signal. 
Fig. 15(b) shows the polar diagram obtained by sweeping the 
injection input power from Pin = -15 dBm to 10 dBm, for a 
constant frequency value. For the lower range of input power, 
in the neighborhood of the synchronization edge, an erratic 
variation of the phase can be observed, though there is a 
limited capability to capture the cycle slips. In this set-up and 
that in [33], the detection of the cycle slips is mostly limited 
by the sweep time required by the PNA (in the order of 
milliseconds).  

 

Fig. 14. Frequency domain measurement setup. The measurements 
were obtained using an Agilent’s N5242A PNA-X Microwave 
Network Analyzer. 

 
  (a)                                             (b) 

Fig. 15. Measured polar diagrams of the parameter S21. (a) Polar 
diagram obtained sweeping the injection port frequency. (b) Polar 
diagram obtained sweeping the input power. 

V. CONCLUSION 

A technique has been presented for the analysis of the cycle 
slipping phenomenon in fundamentally synchronized 
oscillators and frequency dividers. It relies on an improved 
semi-analytical formulation of the injection-locked oscillator, 
which describes accurately the dependence on the 
synchronizing source. A detailed analysis of the Fokker-
Planck equation associated with this semi-analytical model is 
carried out using two different resolution methods. Both 
methods provide expressions for the mean time between 
jumps in terms of eigenvalues that can be efficiently 
determined. The technique has enabled the investigation of the 
influence of the circuit parameters on the probability of 
random jumps and the possible limitation of the usable 
synchronization band. The experimental characterization setup 
allows the measurement of time-domain realizations 
containing random jumps. In this manner has been possible to 
characterize experimentally the mean time between phase 
jumps. It has been applied to a FET-based ILO at 5 GHz (Fig. 
1) and to a BJT-based ILO at 1 GHz (Fig. 8) obtaining good 
agreement with envelope-transient simulations and 
measurements.  
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