4,176 research outputs found

    Improvements in Hardware Transactional Memory for GPU Architectures

    Get PDF
    In the multi-core CPU world, transactional memory (TM)has emerged as an alternative to lock-based programming for thread synchronization. Recent research proposes the use of TM in GPU architectures, where a high number of computing threads, organized in SIMT fashion, requires an effective synchronization method. In contrast to CPUs, GPUs offer two memory spaces: global memory and local memory. The local memory space serves as a shared scratch-pad for a subset of the computing threads, and it is used by programmers to speed-up their applications thanks to its low latency. Prior work from the authors proposed a lightweight hardware TM (HTM) support based in the local memory, modifying the SIMT execution model and adding a conflict detection mechanism. An efficient implementation of these features is key in order to provide an effective synchronization mechanism at the local memory level. After a quick description of the main features of our HTM design for GPU local memory, in this work we gather together a number of proposals designed with the aim of improving those mechanisms with high impact on performance. Firstly, the SIMT execution model is modified to increase the parallelism of the application when transactions must be serialized in order to make forward progress. Secondly, the conflict detection mechanism is optimized depending on application characteristics, such us the read/write sets, the probability of conflict between transactions and the existence of read-only transactions. As these features can be present in hardware simultaneously, it is a task of the compiler and runtime to determine which ones are more important for a given application. This work includes a discussion on the analysis to be done in order to choose the best configuration solution.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    TMbarrier: speculative barriers using hardware transactional memory

    Get PDF
    Barrier is a very common synchronization method used in parallel programming. Barriers are used typically to enforce a partial thread execution order, since there may be dependences between code sections before and after the barrier. This work proposes TMbarrier, a new design of a barrier intended to be used in transactional applications. TMbarrier allows threads to continue executing speculatively after the barrier assuming that there are not dependences with safe threads that have not yet reached the barrier. Our design leverages transactional memory (TM) (specifically, the implementation offered by the IBM POWER8 processor) to hold the speculative updates and to detect possible conflicts between speculative and safe threads. Despite the limitations of the best-effort hardware TM implementation present in current processors, experiments show a reduction in wasted time due to synchronization compared to standard barriers.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    HeTM: Transactional Memory for Heterogeneous Systems

    Full text link
    Modern heterogeneous computing architectures, which couple multi-core CPUs with discrete many-core GPUs (or other specialized hardware accelerators), enable unprecedented peak performance and energy efficiency levels. Unfortunately, though, developing applications that can take full advantage of the potential of heterogeneous systems is a notoriously hard task. This work takes a step towards reducing the complexity of programming heterogeneous systems by introducing the abstraction of Heterogeneous Transactional Memory (HeTM). HeTM provides programmers with the illusion of a single memory region, shared among the CPUs and the (discrete) GPU(s) of a heterogeneous system, with support for atomic transactions. Besides introducing the abstract semantics and programming model of HeTM, we present the design and evaluation of a concrete implementation of the proposed abstraction, which we named Speculative HeTM (SHeTM). SHeTM makes use of a novel design that leverages on speculative techniques and aims at hiding the inherently large communication latency between CPUs and discrete GPUs and at minimizing inter-device synchronization overhead. SHeTM is based on a modular and extensible design that allows for easily integrating alternative TM implementations on the CPU's and GPU's sides, which allows the flexibility to adopt, on either side, the TM implementation (e.g., in hardware or software) that best fits the applications' workload and the architectural characteristics of the processing unit. We demonstrate the efficiency of the SHeTM via an extensive quantitative study based both on synthetic benchmarks and on a porting of a popular object caching system.Comment: The current work was accepted in the 28th International Conference on Parallel Architectures and Compilation Techniques (PACT'19

    A Comparative Analysis of STM Approaches to Reduction Operations in Irregular Applications

    Get PDF
    As a recently consolidated paradigm for optimistic concurrency in modern multicore architectures, Transactional Memory (TM) can help to the exploitation of parallelism in irregular applications when data dependence information is not available up to run- time. This paper presents and discusses how to leverage TM to exploit parallelism in an important class of irregular applications, the class that exhibits irregular reduction patterns. In order to test and compare our techniques with other solutions, they were implemented in a software TM system called ReduxSTM, that acts as a proof of concept. Basically, ReduxSTM combines two major ideas: a sequential-equivalent ordering of transaction commits that assures the correct result, and an extension of the underlying TM privatization mechanism to reduce unnecessary overhead due to reduction memory updates as well as unnecesary aborts and rollbacks. A comparative study of STM solutions, including ReduxSTM, and other more classical approaches to the parallelization of reduction operations is presented in terms of time, memory and overhead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Transactional memory on heterogeneous architectures

    Get PDF
    Tesis Leida el 9 de Marzo de 2018.Si observamos las necesidades computacionales de hoy, y tratamos de predecir las necesidades del mañana, podemos concluir que el procesamiento heterogéneo estará presente en muchos dispositivos y aplicaciones. El motivo es lógico: algoritmos diferentes y datos de naturaleza diferente encajan mejor en unos dispositivos de cómputo que en otros. Pongamos como ejemplo una tecnología de vanguardia como son los vehículos inteligentes. En este tipo de aplicaciones la computación heterogénea no es una opción, sino un requisito. En este tipo de vehículos se recolectan y analizan imágenes, tarea para la cual los procesadores gráficos (GPUs) son muy eficientes. Muchos de estos vehículos utilizan algoritmos sencillos, pero con grandes requerimientos de tiempo real, que deben implementarse directamente en hardware utilizando FPGAs. Y, por supuesto, los procesadores multinúcleo tienen un papel fundamental en estos sistemas, tanto organizando el trabajo de otros coprocesadores como ejecutando tareas en las que ningún otro procesador es más eficiente. No obstante, los procesadores tampoco siguen siendo dispositivos homogéneos. Los diferentes núcleos de un procesador pueden ofrecer diferentes características en términos de potencia y consumo energético que se adapten a las necesidades de cómputo de la aplicación. Programar este conjunto de dispositivos es una tarea compleja, especialmente en su sincronización. Habitualmente, esta sincronización se basa en operaciones atómicas, ejecución y terminación de kernels, barreras y señales. Con estas primitivas de sincronización básicas se pueden construir otras estructuras más complejas. Sin embargo, la programación de estos mecanismos es tediosa y propensa a fallos. La memoria transaccional (TM por sus siglas en inglés) se ha propuesto como un mecanismo avanzado a la vez que simple para garantizar la exclusión mutua

    Enhancing the efficiency and practicality of software transactional memory on massively multithreaded systems

    Get PDF
    Chip Multithreading (CMT) processors promise to deliver higher performance by running more than one stream of instructions in parallel. To exploit CMT's capabilities, programmers have to parallelize their applications, which is not a trivial task. Transactional Memory (TM) is one of parallel programming models that aims at simplifying synchronization by raising the level of abstraction between semantic atomicity and the means by which that atomicity is achieved. TM is a promising programming model but there are still important challenges that must be addressed to make it more practical and efficient in mainstream parallel programming. The first challenge addressed in this dissertation is that of making the evaluation of TM proposals more solid with realistic TM benchmarks and being able to run the same benchmarks on different STM systems. We first introduce a benchmark suite, RMS-TM, a comprehensive benchmark suite to evaluate HTMs and STMs. RMS-TM consists of seven applications from the Recognition, Mining and Synthesis (RMS) domain that are representative of future workloads. RMS-TM features current TM research issues such as nesting and I/O inside transactions, while also providing various TM characteristics. Most STM systems are implemented as user-level libraries: the programmer is expected to manually instrument not only transaction boundaries, but also individual loads and stores within transactions. This library-based approach is increasingly tedious and error prone and also makes it difficult to make reliable performance comparisons. To enable an "apples-to-apples" performance comparison, we then develop a software layer that allows researchers to test the same applications with interchangeable STM back ends. The second challenge addressed is that of enhancing performance and scalability of TM applications running on aggressive multi-core/multi-threaded processors. Performance and scalability of current TM designs, in particular STM desings, do not always meet the programmer's expectation, especially at scale. To overcome this limitation, we propose a new STM design, STM2, based on an assisted execution model in which time-consuming TM operations are offloaded to auxiliary threads while application threads optimistically perform computation. Surprisingly, our results show that STM2 provides, on average, speedups between 1.8x and 5.2x over state-of-the-art STM systems. On the other hand, we notice that assisted-execution systems may show low processor utilization. To alleviate this problem and to increase the efficiency of STM2, we enriched STM2 with a runtime mechanism that automatically and adaptively detects application and auxiliary threads' computing demands and dynamically partition hardware resources between the pair through the hardware thread prioritization mechanism implemented in POWER machines. The third challenge is to define a notion of what it means for a TM program to be correctly synchronized. The current definition of transactional data race requires all transactions to be totally ordered "as if'' serialized by a global lock, which limits the scalability of TM designs. To remove this constraint, we first propose to relax the current definition of transactional data race to allow a higher level of concurrency. Based on this definition we propose the first practical race detection algorithm for C/C++ applications (TRADE) and implement the corresponding race detection tool. Then, we introduce a new definition of transactional data race that is more intuitive, transparent to the underlying TM implementation, can be used for a broad set of C/C++ TM programs. Based on this new definition, we proposed T-Rex, an efficient and scalable race detection tool for C/C++ TM applications. Using TRADE and T-Rex, we have discovered subtle transactional data races in widely-used STAMP applications which have not been reported in the past

    Design and Implementation of Real-Time Transactional Memory

    Get PDF
    Abstract—Transactional memory is a promising, optimistic synchronization mechanism for chip-multiprocessor systems. The simplicity of atomic sections, instead of using explicit locks, is also appealing for real-time systems. In this paper an implementation of real-time transactional memory (RTTM) in the context of a real-time Java chip-multiprocessor (CMP) is presented. To provide a predictable and analyzable solution of transactional memory, the transaction buffer is organized fully associative. Evaluation in an FPGA shows that an associativity of up to 64-way is possible without degrading the overall system performance. The paper presents synthesis results for different RTTM configurations and different number of processor cores in the CMP system. A CMP system with up to 8 processor cores with RTTM support is feasible in an Altera Cyclone-II FPGA

    Performance Optimization Strategies for Transactional Memory Applications

    Get PDF
    This thesis presents tools for Transactional Memory (TM) applications that cover multiple TM systems (Software, Hardware, and hybrid TM) and use information of all different layers of the TM software stack. Therefore, this thesis addresses a number of challenges to extract static information, information about the run time behavior, and expert-level knowledge to develop these new methods and strategies for the optimization of TM applications
    corecore