

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/19933971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Enhancing the Efficiency and Practicality of Software

Transactional Memory on Massively Multithreaded

Systems

Gökçen Kestor

Department of Computer Architecture

Universitat Politècnica de Catalunya

A thesis submitted for the degree of

Doctor of Philosophy

February, 2013

mailto:gokcen.kestor@bsc.es
http://docencia.ac.upc.edu/
http://www.upc.edu

Yesterday is history. Tomorrow is a mystery. Today is a gift. That’s why we

call it “The Present”.
— Alice Morse Earle

Our greatest glory is not in never falling, but in rising every time we fall..

— Confucius

Abstract

Chip Multithreading (CMT) processors promise to deliver higher perfor-

mance by running more than one stream of instructions in parallel rather

than by increasing the processor’s frequency. CMT processors come with

different architectures: Chip Multi-Processor (CMP), Simultaneous Multi-

Threading (SMT), or a combination of them. To exploit CMT’s capabilities,

users have to parallelize their applications. Unfortunately, the complexity

of parallel programming and the difficulty of writing efficient and correct

code limit the effective use of these systems.

Transactional Memory (TM) is one of programming models that aims at

simplifying synchronization by raising the level of abstraction, breaking the

connection between semantic atomicity and the means by which that atom-

icity is achieved. Programmers indicate atomic section in the source code

without explicitly locking individual shared memory locations. An underly-

ing TM system executes such transactions concurrently whenever possible,

generally by means of speculation – optimistic but checked execution, roll-

backing when conflicts arise. While TM is a promising programming model

to simplify synchronization among parallel threads, there are still impor-

tant challenges that must be addressed to make TM more practical and

efficient in mainstream parallel programming. This dissertation presents

work towards improving the practicality of TM across three dimensions.

The first challenge addressed is that of making the evaluation of TM pro-

posals more solid with realistic TM benchmarks and being able to run the

same benchmarks on different STM systems. As researchers work to de-

velop robust, mature STM, it becomes increasingly important to be able

to effectively and fairly compare STM designs with benchmarks that are

representative of real-world applications. To address this challenge, we first

introduce a benchmark suite, RMS-TM, a comprehensive benchmark suite

to evaluate hardware and software TM implementations. RMS-TM consists

of seven applications from the Recognition, Mining and Synthesis (RMS)

domain that are considered representative of future workloads for multi-core

systems. RMS-TM features current TM research issues such as nesting, I/O

and system calls inside transactions, while also providing a mix of short

and long transactions with small/large read and write sets with low/medi-

um/high contention rates. On the other hand, most STM systems were

implemented as user-level libraries: the programmer was expected to man-

ually instrument not only transaction boundaries, but also individual loads

and stores within transactions. This library-based approach was adequate

for early experiments with micro-benchmarks, but it becomes increasingly

tedious and error prone for larger applications. The use of different library

interfaces in different research groups has also made it difficult to share ap-

plications across groups, or to make reliable performance comparisons. To

enable researches to perform an “apples-to-apples” comparison, we then de-

velop a software layer that allows researchers to test the same applications

with interchangeable STM back ends.

The second challenge addressed is that of enhancing performance and scal-

ability of TM applications running on aggressive multi-core/multi-threaded

processors. Performance and scalability of current TM designs do not always

meet the programmer’s expectation, especially at scale. This is especially

true for STM designs, where the overhead of instrumentation and transac-

tions’ management severely limits application’s performance at large scale.

To overcome this limitation, we propose a new STM design, STM 2, based on

an assisted execution model in which time-consuming TM operations are of-

floaded to auxiliary threads while application threads optimistically perform

computation. Surprisingly, our results show that is often more convenient to

use additional processing elements to support computation rather than per-

formance computation: STM 2 provides, on average, speedups between 1.8x

and 5.2x (and up to 12.8x) over state-of-the-art STM systems. Moreover, we

notice that assisted-execution systems may show low processor utilization.

In order to alleviate this problem and to increase the efficiency of STM 2, we

enriched STM 2 with a runtime mechanism that automatically and adap-

tively detects application and auxiliary threads’ computing demands and

dynamically partition hardware resources between the pair. In order to

bias the allocation of hardware resources in favor of computing intensive

application threads or overloaded auxiliary threads, we leverage the hard-

ware thread prioritization mechanism implemented in POWER machines.

This dynamic mechanism further improves STM 2’s performance (up to 85%

over the standard STM 2 design) and efficiency.

The third challenge addressed is that of defining a notion of what it means

for a TM program to be correctly synchronized. Since TM has reached a

maturity level and several STM and HTM implementations are available, it

is important to provide debugging tools that automatically check the cor-

rectness of C/C++ TM programs. The current definition of transactional

data race requires all transactions to be totally ordered “as if” serialized

by a global lock, which limits scalability of TM designs. To remove this

constraint, we first propose to relax the current definition of transactional

data race to allow a higher level of concurrency. Based on this relaxed def-

inition, we propose the first practical race detection algorithm for C/C++

applications, namely TRADE, and implement the corresponding race de-

tection tool. Then, we introduce a new definition of transactional data race

that is more intuitive, transparent to the underlying TM implementation,

can be used for a broad set of C/C++ TM programs, enables a wide range

of implementation techniques to be used. Based on this new definition, we

proposed T-Rex, an efficient and scalable race detection tool for C/C++

TM applications. Using TRADE and T-Rex , we have discovered subtle

transactional data races in widely-used STAMP applications which have

not been reported in the past. Our experiments also show that T-Rex is

order or magnitude faster than TRADE, which increase programmer pro-

ductivity.

Acknowledgements

I would like to thank my advisors, Osman Unsal, Adrian Cristal and Mateo

Valero, for their sincere help and support during my graduate studies. They

are not only technically solid researchers but also kind advisors.

I would also like to thank other professors who have been greatly influential

to me during my Ph.D study. First, I am truly grateful to Tim Harris and

Serdar Tasiran who have helped and advised me during a very decisive part

of this work. I am also sincerely thankful to Michael L. Scott who guided

me in the dark and taught me a lot about research and working discipline.

Without the love and support of my family, this would have been a very

hard journey. They have guided me with their priceless wisdom and have

always prayed for me with their heartfelt love. I thank my sister, Gokben,

for giving me strength when I felt hopeless and disappointed and my mother,

Serpil, without whom I would not be the person that I am today.

I would also like to thank my great friend Gulay for many years of true

friendship, and for believing in me and encouraging me in this winding

road. We exchanged ideas about technical problems and shared a fun time

while having awesome coffees. I only regret that I did not spend more time

with her.

It is the luck of my lifetime to meet Ilker and Justine and to have them

as my friends. Many thanks for loyal friendship and all the unforgettable

times we have spent together.

My love, my heart, my husband Roberto. Ever since I met him, my life

has changed to be better, happier and brighter. I promise that I will do

whatever it takes to protect a blessed life of ours. Thank him so much to

support me each step of the way during my graduate studies.

Contents

I Introduction 1

1 Introduction 3

1.1 The Difficulty of Parallel Programming 3

1.2 Transactional Memory and Challenges 4

1.3 Contributions . 6

1.4 Organization . 8

1.5 Publications . 8

2 Transactional Memory 11

2.1 TM Programming Model . 11

2.1.1 Semantics . 12

2.1.2 Programming . 13

2.2 Implementation Options . 16

2.2.1 Eager and Lazy Data Versioning 16

2.2.2 Eager and Lazy Conflict Detection 17

2.2.3 Software and Hardware . 19

2.2.4 Commonly Used STMs . 21

II Comprehensive Evaluation of TM Systems 25

3 RMS-TM Benchmark Suite 27

3.1 Introduction . 27

3.2 The Transactification Process . 29

3.2.1 Pre-Transactification Phase . 29

3.2.1.1 Static Pre-Transactification 30

i

Contents

3.2.1.2 Dynamic Pre-Transactification 32

3.2.2 Transactification Phase . 33

3.2.2.1 STM Implementation 33

3.2.2.2 HTM Implementations 34

3.3 RMS-TM Overview . 35

3.4 Evaluation . 36

3.4.1 Intel STM Results . 36

3.4.1.1 Transactional Behavior 37

3.4.1.2 Performance Analysis 38

3.4.2 EazyHTM Results . 40

3.4.2.1 Transactional Behavior 41

3.4.2.2 Performance Analysis 42

3.4.3 ScalableTCC Results . 43

3.4.3.1 Transactional Behavior 43

3.4.4 Comparison of RMS-TM and STAMP 44

3.5 Related Work . 46

3.6 Conclusions . 48

4 Interchangeable Back Ends for STM Compilers 49

4.1 Introduction . 49

4.2 Design and Implementation . 51

4.2.1 Draft Specification for TM in C++ 51

4.2.2 Intel ABI Overview . 52

4.2.3 Design Details . 54

4.3 Experimental Setup . 55

4.4 Experimental Results . 57

4.4.1 Overhead Analysis of Automatic Instrumentation 57

4.4.2 Back-end Comparisons . 59

4.5 Related Work . 64

4.6 Conclusions . 65

ii

Contents

III Design and Implementation of a High Performance STM 67

5 STM2: A Parallel STM for High Performance SMT Systems 69

5.1 Introduction . 69

5.2 Motivation . 72

5.3 STM2 Design and Implementation . 73

5.3.1 Application/Auxiliary Thread Synchronization 76

5.3.2 Writing to a shared memory location 77

5.3.3 Reading from a shared memory location 79

5.4 Experimental Setup . 80

5.5 Experimental Results . 81

5.6 Related Work . 87

5.7 Conclusion . 88

6 Enhancing the Performance of Assisted Execution Runtime Systems

through Hardware/Software Techniques 91

6.1 Introduction . 91

6.2 Hardware resource partitioning . 93

6.3 Static Fine-Grained resource partitioning 95

6.3.1 Embarrassingly parallel phases 96

6.3.2 Load imbalance inside transactions 99

6.3.2.1 Overloaded application threads 100

6.3.2.2 Overloaded auxiliary threads 102

6.4 Adaptive Fine-Grained resource partitioning 106

6.5 Experimental results . 112

6.5.1 Eigenbench . 113

6.5.2 STAMP applications . 114

6.6 Related work . 119

6.7 Conclusions . 120

iii

Contents

IV Correctness Semantics for TM applications 123

7 TRADE: Precise Dynamic Race Detection for Scalable Transactional

Memory Systems 125

7.1 Introduction . 125

7.2 Background . 128

7.3 Preliminaries . 130

7.3.1 Strict Transactional Happens-Before Relation 130

7.3.2 Relaxed Transactional Happens-Before Relation 131

7.4 Transactional Race Detection Algorithms 135

7.4.1 s-TRADE Race Detection Algorithm 136

7.4.2 TRADE Race Detection Algorithm 138

7.4.3 Extensions . 142

7.5 Design and Implementation . 143

7.5.1 Binary instrumentation Framework 143

7.5.2 TRADE Instrumentation State and Code 143

7.6 Evaluation . 146

7.7 Related Work . 152

7.8 Conclusions . 153

8 T-Rex: A Dynamic Race Detection Tool for C/C++ Transactional

Memory Applications 155

8.1 Introduction . 155

8.2 Motivation . 157

8.3 Preliminaries . 160

8.4 Design and Implementation . 164

8.4.1 Threads Data Access Table . 164

8.4.2 Non-Transactional Memory Accesses 165

8.4.3 Transactional Memory Accesses 166

8.4.4 T-Rex Race Detection . 167

8.5 Experimental results . 170

8.5.1 T-Rex Race Detection Coverage 170

8.5.2 Overhead analysis . 173

8.6 Conclusions . 175

iv

Contents

V Conclusions 177

9 Conclusions 179

A TRADE correctness proofs 185

v

Contents

vi

List of Figures

2.1 Lock-based vs. TM-based Programming 13

2.2 Nesting: The transaction within swap() is nested within the outer trans-

action by the program control flow . 14

2.3 Example code for the use of “retry” primitive: If the retry statement is

reached, the transaction is aborted and re-executed. 16

2.4 Type of Used Transactions in Programming Languages 19

3.1 Scalability of the lock-based applications, with the largest data sets,

normalized to single-threaded lock execution time. 32

3.2 Scalability of the lock-based and TM-based applications, with the largest

data sets, normalized to single-threaded lock and TM execution time,

respectively, with Intel STM. 39

3.3 Runtime overhead of TM-Fluidanimate and TM-UtilityMine 40

3.4 Scalability of the lock-based and TM-Based applications normalized to

single-threaded lock and TM execution time, respectively, using EazyHTM. 42

3.5 Scalability of the lock-based and TM-based applications normalized to

single-threaded lock and TM execution time, respectively, with Scal-

ableTCC. 44

3.6 Scalability of the STAMP applications normalized to single-threaded TM

execution time. 45

4.1 Automatic read/write instrumentation of a simple TM program 53

4.2 Execution time of compiler-instrumented code, relative to manually in-

strumented code, for single-threaded STAMP applications. 58

vii

List of Figures

4.3 Throughput results for the microbenchmarks. Y axis shows total number

of transactions per second: higher is better. 60

4.4 Scalability results for STAMP and RMS-TM. 62

5.1 TinySTM per-transaction overhead breakdown for STAMP applications

with respect to instrumented single thread version. 72

5.2 STM 2 offloads time-consuming STM operations to sibling hardware threads. 74

5.3 Pseudo-code for application and auxiliary thread STM write 78

5.4 Pseudo-code for application and auxiliary thread STM read 79

5.5 Performance comparison of different STMs with STAMP benchmarks. . 82

5.6 Speedups of STM 2over tested STMs for STAMP applications using the

same amount of hardware resources (32 hardware threads). 83

6.1 Performance impact of reducing the priority of auxiliary threads when

varying the percentage of time spent performing embarrassingly parallel

computation and the value of ∆p. 97

6.2 Frequently idle auxiliary threads within a transaction. 99

6.3 Performance impact of reducing the priority of auxiliary threads in pres-

ence of load imbalance within transactions (overloaded application threads).101

6.4 Execution trace of overloaded auxiliary threads. 102

6.5 Performance impact of increasing the priority of overloaded auxiliary

threads when varying the number of read-set validations per transac-

tional operation and ∆p. 105

6.6 Irregular transactions with bursts of transactional operations. In this

example Eigenbench executes a burst of transactional operations in the

middle of the transaction. 106

6.7 The adaptive solution automatically changes the value of AxTp accord-

ing to the structure of the transaction and the computing demand of

application and auxiliary threads. 111

6.8 Performance of static (best values among all combinations) and adap-

tive solutions for application with not-uniform transaction structure and

varying size/position of burst of shared accesses. 114

6.9 Performance impact of static (best values among all combinations) and

adaptive solutions for STAMP applications. 115

viii

List of Figures

6.10 Labyrinth’s transactions: alternation of a large local computation phase

(white in the figure) with a burst of transactional operations (colored

bars) at the end. 117

7.1 Does ready=true imply that Thread 2 sees data=42? 129

7.2 Speedup of STAMP applications with various STMs. 132

7.3 This program has a transactional data race, as Thread1 and Thread2

may access x concurrently. 133

7.4 Example trace for the program in Figure 7.3 running on an STM that

implements SGLA. No strict transactional data races detected. 138

7.5 Example trace for the program in Figure 7.3 running on an STM that

does not implement SGLA semantics. HB detects a transactional data

race in a given execution. 141

7.6 Implementation of the TRADE algorithm. 144

7.7 SSCA2 code snapshot. 147

7.8 TRADE runtime overhead over s-TRADE. 148

8.1 This program is intuitively racy but a race detection tool based on re-

laxed transactional data race definition produces different results accord-

ing to thread interleaving: if Thread 2 fully executes before Thread 1

then the tool does not detect any transactional data races in a given

execution. 158

8.2 Initially shared = true and x = 0. This program is intuitively correct

but may result in incorrect behavior, depending on the underlying STM

implementation. 159

8.3 T-Rex bookkeeping data structures: a) per-thread DAT; b) entry in the

per-thread DAT. 165

8.4 T-Rex overall overhead and overhead breakdown for STAMP applications.172

8.5 Comparing TRADE and T-Rex execution overhead over native execu-

tion with TL2. 174

ix

List of Figures

x

List of Tables

3.1 Applications that pass the Static Pre-Transactification step. 30

3.2 Percentage of time spent inside critical sections with respect to total

parallel time for the lock-based applications. The data sets used are

appended to the application name. 31

3.3 Basic TM characteristics (with eight threads) of the RMS-TM applica-

tions, with Intel STM. 37

3.4 Percentage of time spent inside atomic blocks with respect to total par-

allel time for RMS-TM applications. 38

3.5 Configuration of the simulated system. 41

3.6 Transactional behavior of the RMS-TM applications with eight threads,

with EazyHTM. 41

3.7 Transactional behavior of the RMS-TM applications with eight threads,

with ScalableTCC. 43

4.1 Abort Rates (percentage of all dynamic transaction instances that abort)

for 2, 4 and 8 threads. 59

6.1 Hardware thread priority levels in the IBM POWER7 processor. 94

7.1 Number of transactional data races detected by TRADE and s-TRADE

without and with bug-injection. ∗Intruder crashed because of the in-

jected bug. 146

7.2 STAMP applications’ characteristics. 150

7.3 Performance comparison between TRADE running on LLT and s-TRADE

running on Pipeline. Time in seconds. 151

xi

List of Tables

8.1 Number of detected transactional data races for STAMP applications for

the original version and a version with synthetic bugs injected. ∗Intruder

crashed because of the injected bug. 170

8.2 STAMP applications’ characteristics. 173

xii

Part I

Introduction

Multi-core systems have the potential for significant performance improvements, but

the complexity of parallel programming and the difficulty of writing efficient and correct

code limit the effective use of these systems. New programming models have been pro-

posed to ease the development of parallel applications that perform well on multi-core

architectures. Transactional Memory (TM) is one of such programming models that

enables programmers to perform multiple memory operations atomically without wor-

rying about the complexity issues associated with other programming models such as

locks. Chapter 1 summarizes the thesis’ contributions by highlighting the new research

directions taken and the main results. Chapter 2 provides the necessary background

on transactional memory: its definition, properties, implementation details and design

trade-offs.

1

2

Chapter 1

Introduction

The performance of microprocessors has been continuously improving over the years

thanks to advances in manufacturing technologies. In recent years, however, conven-

tional techniques for improving single-threaded performance have begun hitting funda-

mental challenges such as the limited amount of instruction-level parallelism (ILP) [159]

and the undesirable levels of power consumption caused by increasing clock frequen-

cies [7].

In response, processor manufactures have shifted to Chip Multi-threading proces-

sors (CMTs) [56, 90, 107]. Multiple simpler processor cores in CMT systems promise

to deliver higher performance by running more than one stream of instructions in paral-

lel (thread-level parallelism (TLP)) in a power-efficient manner [124]. CMT processors

may come with different architectures: Chip Multi-Processor (CMP), Simultaneous

Multi-Threading (SMT), or a combination of them. With wide availability of CMTs,

the burden of achieving scalable performance on CMTs has now been placed on pro-

grammers who must deal with the complexity of parallel programming to take the

advantages of multiprocessors/multithreading.

1.1 The Difficulty of Parallel Programming

To increase parallelism on CMTs, programmers should create and synchronize several

parallel tasks. For shared memory systems, the synchronization of parallel tasks is

commonly handled by lock-level synchronization primitives. These primitives guarantee

mutually exclusive shared memory accesses among all parallel tasks in the system.

3

1.2. Transactional Memory and Challenges

Unfortunately, parallel programming with locks is quite difficult due to the trade-

off between programming simplicity and scalability of the performance [72]. While

adding coarse-grained locks to a program is relatively straightforward, it may drasti-

cally degrade performance since it introduces unnecessary serialization points during

the execution. On the other hand, while fine-grained locking permits greater concur-

rency, its programming complexity is significantly higher, which even not result in a

better performance than an equivalent coarse-grained version. The higher programming

complexity may also cause various problems such as deadlock, convoying, or priority

inversion [96].

1.2 Transactional Memory and Challenges

Transactional Memory [72] (TM) is a programming model to simplify synchronization

by raising the level of abstraction, breaking the connection between semantic atomicity

and the means by which that atomicity is achieved. Programmers indicate atomic sec-

tions in the source code (e.g., using language constructs such as atomic blocks, or using

macros such as BEGIN TRANSACTION and END TRANSACTION) without explicitly locking

individual shared memory locations. An underlying TM system executes such trans-

actions concurrently whenever possible, generally by means of speculation—optimistic

but checked execution, with rollback and retry when conflicts arise. There have been

significant efforts to develop hardware (HTM) [42, 63], software (STM) [39, 43, 133] or

hybrid TM systems [40, 91, 114].

While TM is a promising programming model to simplify the synchronization among

parallel threads, there are still main important challenges that must be addressed to

make TM more practical and efficient in mainstream parallel programming. First, real-

istic TM benchmarks and additional auxiliary software should be provided to make the

evaluation of TM proposals more solid. Current benchmarks used to analyze the TM

proposals do not include realistic applications that address ongoing TM research issues

such as handling nested transactions, I/O operations, system and library calls inside

transactions, and that provide the potential for straightforward comparison against

locks. Thus, it is important to understand performance bottlenecks of TM on real

applications and enable TM researchers to conduct their research by using changeling

benchmarks. Moreover, most STM systems were implemented as user-level libraries:

4

1.2. Transactional Memory and Challenges

the programmer was expected to manually instrument not only the transaction bound-

aries, but also individual loads and stores within the transactions. This library-based

approach was adequate for early experiments with micro-benchmarks, but it becomes

increasingly tedious and error prone for larger applications [37]. The use of different

library interfaces in different research groups has also made it difficult to share ap-

plications across groups, or to make reliable performance comparisons: experiments

with different versions of the application source code inevitably raise the questions of

fairness and confidence. For C++ on the x86 architectures, significant steps in this

direction have been made by compilers from Intel, the University of Dresden, and the

GNU Project, which aim to accept the same application programming interface (API)

and target the same runtime application binary interface (ABI). Unfortunately, these

three compilers currently connect to only two main STM libraries (SkySTM [95] and

TinySTM [133]). In the interest of greater interoperability, it is important to make

works on STM systems compatible with recent compilers.

Second, it is essential to design a TM system for high performance, aggressive multi-

threading systems. Most STM systems, so far, suffer from poor performance because

the overhead introduced by the STM runtime system outweighs the performance gain

achieved by the parallelism [24]. Some authors report drastic slow-downs when using

STM (e.g., only breaking even with optimized sequential code after using 8 cores [24]).

Even state-of-the-art TM systems typically require at least two threads to achieve

performance that matches the performance of the optimized sequential code [39, 68].

To achieve the best possible performance on systems with the increasing number of

cores/threads, it is significantly important to reduce STM runtime overhead and use

all available resources effectively.

Third, TM should be supported with software development tools and integrated en-

vironment to help programmers debug and analyze TM applications. Perhaps the most

important among these is race detection tools. A race condition occurs when a pro-

gram’s execution contains concurrent two accesses to the same memory location where

at least one of the accesses is a write. Race conditions are particularly problematic

because they typically cause problems only on certain rare interleavings, making them

extremely difficult to detect, reproduce, and eliminate. Thus, it is crucial to support

TM programmers by providing race detection tools.

5

1.3. Contributions

1.3 Contributions

In this dissertation, we present studies conducted towards improving the efficiency and

practicality of STM across three dimensions that we explain below. Specifically, this

dissertation makes the following contributions:

1. Comprehensive evaluation of TM systems

First, we introduce RMS-TM, a Transactional Memory benchmark suite com-

posed of seven real-world applications from the Recognition, Mining and Synthe-

sis (RMS) domain [86, 87]. In addition to featuring current TM research issues

such as nesting and I/O and system calls inside transactions, the RMS-TM ap-

plications also provide a mix of short and long transactions with small/large read

and write sets with low/medium/high contention rates. These characteristics, as

well as providing lock-based versions of the applications, make RMS-TM a useful

TM benchmark suite. Our experiments show that RMS-TM is scalable, which

is useful for evaluating TM designs on high core counts. Second, to allow TM

research groups to run each other’s code and to perform apples-to-apples compar-

isons of implementation alternatives, we have implemented a “shim” library [81],

which adapts the word-based “back end” libraries of the Rochester STM suite

to the common ABI. This work makes the Rochester STM back ends available,

for the first time, to programs written with language-level transactions. We also

describe experience at both the ABI and API levels, and present performance

comparisons relative to the Intel standard back end.

2. Design and Implementation of a high performance STM

We have designed a novel parallel STM implementation, namely Software Trans-

actional Memory for Simultaneous Multi-threading systems (STM 2) pronounced

as STM-squared [82]. STM 2 reduces the runtime overheads by offloading read-set

validation, bookkeeping, transaction state management and conflict detection to

an auxiliary thread running on a sibling core/hardware thread, i.e., a processing

element that shares some levels of hardware resource (like the L1 or L2 cache) with

the application thread. Application threads optimistically perform their computa-

tion with minimal support from the underlying STM system. All synchronization

and STM management operations are performed by the paired auxiliary threads.

6

1.3. Contributions

This means that application threads experience minimal overhead. Auxiliary

threads, instead, validate read-sets, maintain transaction states and detect con-

flicts in parallel with the application threads’ computation. We exploit the fact

that, on modern multi-core processors, sets of cores can share L1 or L2 caches.

This lets us achieve closer coupling between the application thread and the aux-

iliary thread (when compared with a traditional multi-processor systems). We

show that our approach outperforms several well-known STM implementations

for various TM applications. In particular, STM 2 shows speedups between, on

average, 1.8x and 5.2x over the tested STM systems with peaks up to 12.8x. Fi-

nally, we propose an approach to effectively partition processor resources between

application and auxiliary threads in STM 2 [83, 84]. In order to bias the alloca-

tion of hardware resources in favor of computing intensive application threads

or overloaded auxiliary threads, we leverage the hardware thread prioritization

mechanism implemented in POWER machines. Our experiments show that effec-

tive hardware resource partitioning performs, in general, better than the original

STM 2, up to 86% performance improvement.

3. Providing Correctness Semantics for TM applications

We propose a novel and precise race detection algorithm for TM applications,

namely TRADE that is based on a weakened definition of the happens-before

relation and does not pose design constraints on the underlying STM system [88].

As a result, our algorithm can be used with a broader set of high-performance,

scalable TM systems. Based on this definition, we implement a race detection

tool for C/C++ TM applications. Our experiments reveal that TRADE precisely

detects transactional data races. However, tools based on happens-before come

with different kinds of issues such as high overhead, sensitivity to compiler and

hardware optimizations and high dependency on the thread interleaving produced

by the scheduler. In order to deal with those problems, we refine the definition of

transactional data race and propose T-Rex [85]. T-Rex presents a new definition

of transactional data race that follows the programmer’s intuition of racy accesses,

is independent of thread interleaving, can accommodate popular STM designs,

and allows common programming idioms. We also compared T-Rex runtime

7

1.4. Organization

overhead to a race detection tool based on happens-before algorithm. Our results

show that T-Rex is considerably faster than TRADE.

1.4 Organization

The rest of this thesis is organized as follows: Chapter 2 briefly reviews Transactional

Memory. Chapter 3 presents RMS-TM benchmark suite and our methodology to choose

candidate TM benchmarks from a set of real-world applications. Chapter 4 describes

our “shim” library implementation which targets a fair comparison among several pro-

posed STM systems. Chapter 5 describes the design of STM 2 and provides in-depth

details of our current implementation. Moreover, it shows the performance numbers

of STM 2 over tested STMs. Chapter 6 details our adaptive resource partitioning pro-

posal with the POWER7 hardware thread priority mechanism and its impact on STM 2.

Chapter 7 and Chapter 8 describes our transactional race detection algorithms based

on a weakened definition of the happens-before relation and the definition that follows

the programmers intuition of racy accesses, respectively. Finally, Chapter 9 concludes

this dissertation.

1.5 Publications

1. G. Kestor, O. Unsal, A. Cristal and M. Valero, Transactifying Lock-Based RMS

Applications, HiPEAC International Summer School on Advanced Computer Ar-

chitecture and Compilation for Embedded Systems (ACACES), Poster Section,

July, 2008, L’Aquila, Italy.

2. G. Kestor, S. Stipic, O. Unsal, A. Cristal and M. Valero, RMS-TM: A Transac-

tional Memory Benchmark for Recognition, Mining and Synthesis Applications,

The 4th ACM SIGPLAN Workshop on Transactional Computing (TRANSACT),

February 2009, Raleigh, NC.

3. G. Kestor, V. Karakostas, O. Unsal, A. Cristal, I. Hur and M. Valero, RMS-TM:

A Comprehensive Benchmark Suite for Transactional Memory Systems (Best

Paper Award), The 2nd ACM International Conference on Performance Engi-

neering (ICPE), March 2011, Karlsruhe, Germany.

8

1.5. Publications

4. G. Kestor, L. Dalessandro, A. Cristal, M. L. Scott and O. Unsal, Interchangeable

Back Ends for STM Compilers, The 6th ACM SIGPLAN Workshop on Transac-

tional Computing (TRANSACT), June 2011, San Jose, CA.

5. G. Kestor, R. Gioiosa, T. Harris, A. Cristal, O. Unsal, M. Valero and I. Hur,

STM2: A Parallel STM for High Performance Simultaneous Multi-Threading

Systems, The 20th IEEE International Conference on Parallel Architectures and

Compilation Techniques (PACT), October 2011, Galveston Island, TX.

6. G. Kestor, R. Gioiosa, O. Unsal, A. Cristal and M. Valero, Enhancing the Perfor-

mance of Assisted Execution Runtime Systems., The 17th Architectural Support

for Programming Languages and Operating Systems (ASPLOS), Poster Section,

March 2012, London, UK.

7. G. Kestor, R. Gioiosa, O. Unsal, A. Cristal and M. Valero, Hardware/Soft-

ware Techniques for Assisted Execution Runtime Systems, The 2nd Workshop on

Runtime Environments, Systems, Layering and Virtualized Environments (RE-

SoLVE), March 2012, London, UK.

8. G. Kestor, R. Gioiosa, O. Unsal, A. Cristal and M. Valero, Enhancing the Per-

formance of Assisted Execution Runtime Systems through Hardware/Software

Techniques, 26th ACM/SIGARCH International Conference on Supercomputing

(ICS), June 2012, Venice, Italy.

9. I. Kuru, H. S. Matar, A. Cristal, G. Kestor and O. S. Unsal, PaRV: Parallelizing

Runtime Detection and Prevention of Concurrency Errors, The 3th International

Conference on Runtime Verification (RV), Sep 2012, Istanbul, Turkey.

9

1.5. Publications

10

Chapter 2

Transactional Memory

In this chapter we first describe the Transactional Memory programming model and

then we compare TM to classical lock-based programming model, highlighting pros and

cons of each. Finally, we conclude the chapter by reviewing the implementation options

of TM systems.

2.1 TM Programming Model

While innovations in process technology increase the number of transistors on a die,

the performance gains achieved from more complex cores and larger caches diminish.

Therefore, chips with multiple cores have quickly become a de-facto standard. Multi-

core systems have the potential for significant performance improvements, but the

complexity of parallel programming and the difficulty of writing efficient and correct

code limit the effective use of these systems.

New programming models have been proposed to ease the development of paral-

lel applications that perform well on multi-core architectures. Transactional Memory

(TM) [46, 66, 72] allows programmers to mark compound statements in parallel pro-

grams as atomic (in C++, transaction), with the expectation that the underlying

run-time implementation will execute such transactions concurrently whenever possi-

ble, generally by means of speculation—optimistic but checked execution, with rollback

and retry when conflicts arise. The principal goal of TM is to simplify synchronization

by raising the level of abstraction, breaking the connection between semantic atomicity

and the means by which that atomicity is achieved. Secondarily, TM has the potential

11

2.1. TM Programming Model

to improve performance, most notably when the practical alternative is coarse-grained

locking.

2.1.1 Semantics

Transactions have been used in database systems for a long time [51, 127]. In the

database world, a transaction consists of a list of operations on the database explic-

itly declared by the programmer. These operations can be performed in an arbitrary

order and do not take permanent effects until the transaction is committed. If there

are conflicts caused by other transactions that are concurrently modifying the same

data sets, the transaction may be aborted (rolling back its effects) and restarted. TM

programming model is based on the same principles and aims to abstract away the

complexity of parallel programming from the programmer.

TM systems provide the following properties, which are also referred as ACI prop-

erties:

• Atomicity: A transaction encloses a group of instructions to be executed in an

atomic way, which means that transactions either complete these instructions in

their entirety or behave as if they had never happened.

• Consistency: Transactions may execute in unpredictable orders, which may lead

to an incorrect program execution. A TM system should schedule transactions

logically so that their final effect is equivalent to performing transactions serially.

• Isolation: The execution of transactions performed on shared data does not

affect the result of transactions executed concurrently.

Blundell et al. [15, 106] introduced the terms “weak isolation” and “strong isola-

tion”. TM systems with weak isolation guarantee transactional atomicity only among

transactions, i.e., accesses to shared memory locations within transactions appear as

atomic operations to other transactions. TM systems with support for strong isola-

tion, instead, also guarantee transactional semantics between transactional and non-

transactional code, hence normal non-transactional accesses are serialized by the TM

with any concurrent transactions. Many Hardware TM implementations naturally pro-

vide strong isolation, and there has been substantial progress in developing STMs that

support strong isolation [2, 140, 143]. Strong isolation facilitates parallel programming

12

2.1. TM Programming Model

HashTable htA , htB;

void move(int key)

{

int r;

mutex_lock ();

// acquire the lock

r = HashTableRemove(htA ,key);

HashTableInsert (htB ,key ,r);

mutex_unlock ();

// release the lock

}

(a) Lock-based programming

HashTable htA , htB;

void move(int key)

{

int r;

atomic

{ //start the transaction

r = HashTableRemove(htA ,key);

HashTableInsert(htB ,key ,r);

}

//end the transaction

}

(b) TM-based programming

Figure 2.1: Lock-based vs. TM-based Programming

for programmers by shifting the management of transactional and non-transactional

memory accesses from the programmer to the system: non-transactional accesses are

ordered with transactional accesses in a sequential schedule. However, strong isolation

requires extra instrumentation barriers that introduce large runtime overhead, espe-

cially on STM designs.

2.1.2 Programming

When using TM, programmers replace locks with new language constructs such as

transaction{A}: this construct executes the statements included in the block of in-

structions labeled as A, as a single transaction. Figure 2.1 illustrates how the atomic

constructs can be used in pseudocode. The code in Figure 2.1a shows a possible lock-

based implementation of a program that attempts to remove a key from a hash table

and add the key to another hash table. Using locks, the programmer explicitly forces

all threads to execute any operation between acquiring and releasing the lock serially.

Only one thread at a time is allowed to perform any operation on the hash tables.

Writing a parallel program as shown in Figure 2.1a is straightforward since the kind of

locking used is a coarse-grained lock (we will see later that the price to pay in order to

obtain this simplicity is low speedup and, thus, poor scalability).

In Figure 2.1b shows the same algorithm but this time the program uses the

aforementioned atomic statement instead of explicit locking. The function calls to

13

2.1. TM Programming Model

HashTable htA , htB; \\ shared Hash tables

int swap(HashTable ht , int key , int newVal)

{

atomic

{

int r = HashTableRemove(ht ,key);

HashTableInsert (ht ,key ,newVal);

}

return r;

}

...

atomic

{

int x = swap(htA , key , y);

HashTableInsert (htB , key , x);

}

Figure 2.2: Nesting: The transaction within swap() is nested within the outer transac-

tion by the program control flow. All modifications performed by swap and the outer

transaction are executed as one larger transaction; When the transaction in swap()

commits, its changes appear in the outer transaction and not globally visible until the

outer transaction commits.

HashTableRemove() and HashTableInsert() in the transaction should be performed

atomically with respect to other threads, as if they were done in a single execution

step. Unlike the lock-based implementation, the transactional implementation lets all

the threads call the functions concurrently as long as they work on different entries

of the HashTable but any updates on the hash tables become visible only when the

transaction commits.

Moreover, transactions provide better scalability than the equivalent lock-based im-

plementation as long as the data-access patterns allow transactions to execute concur-

rently. Firstly, transactions let two or more threads read the same variable concurrently

while basic locking mechanisms do not. This problem can be solved with special read-

/write locks which allow multiple concurrent readers at the same time. However, the

cost of this improvement is completely on the programmer, who has to make more effort

while implementing the algorithm. Secondly, transactions allow concurrent read and

write operations to different variables. This is equivalent to write a lock-based program

using fine grained locking and provide concurrent accesses to disjoint variables. Again,

14

2.1. TM Programming Model

with locks, the burden is completely on the programmers. Moreover, beside being a

difficult task, the risk of introducing bugs, such as deadlocks, increases.

Summarizing, transactions enable concurrent read accesses to the same memory

location and concurrent read and write accesses to disjoint variables while providing the

simplicity of coarse-grained locking and achieving the performance that can be obtained

by fine-grained locking. The example in Figure 2.1b illustrates these properties: two

threads can read the hash-table buckets concurrently and perform a move operation

concurrently from different hash-table buckets.

Besides the basic TM primitives intended to start and stop transactions and to

annotate memory accesses as transactional accesses, there are advanced TM primitives

provided by some TM systems. Nested transactions (see Figure 2.2) allow programmers

to create a transaction inside another transaction. The simplest way to support trans-

actional nesting is the flattening model which encloses all transactions in the outermost

transaction. With flat nesting a conflict in an inner transaction forces all its ances-

tors to abort. Closed and open nesting transaction models try to solve this problem.

With the closed nesting model [116], nested transactions commit or abort on exit: if a

nested transaction commits, its effects become visible only to its parent transaction. If

the transaction aborts, its effects are discarded but the parent transaction stays alive.

After that, the aborted nested transaction can be re-executed independently from its

parent. Open nesting models [120] have more concurrency as compared to closed nest-

ing models: when an open nested transaction commits, all the other transactions can

see its updates immediately and continue their work with the new data earlier, with-

out delaying until the outer transaction commits. This may explore more concurrency

when shared resources are simultaneously accessed by several large transactions.

Another advanced TM primitive is the “retry”: this primitive enables waiting on

multiple conditions such as the “select” system call described in the POSIX standard.

Figure 2.3 demonstrates the use of the retry primitives where a thread attempts to find

an available data item from a collection of lists. If all of the lists are empty, then the

retry statement is executed, which aborts and restarts the transaction.

15

2.2. Implementation Options

atomic

{

for (int i=0; i<NUM_LIST; i++)

{

int e;

if (!list[i]. empty ())

{

e = list[i]. get_element ();

}

return e;

}

retry;

}

Figure 2.3: Example code for the use of “retry” primitive: If the retry statement is

reached, the transaction is aborted and re-executed.

2.2 Implementation Options

The key mechanisms of TM systems are data versioning and conflict detection. TM

systems must simultaneously manage multiple versions of data while the transactions

are still active. In order to achieve this goal, new data versions created by transactional

writes are isolated from the rest of the system by maintaining either an undo-log or a

write-buffer. When the transaction commits, the new version becomes globally visible.

On the other hand, if the transaction aborts, the old version of data remains to be the

visible one.

In order to provide a conflict detection, memory accesses in a transactions must

be tracked. If a conflict is detected between two transactions, one of them aborts and

either restores the old versions of its data from the undo-log or discards its write-buffer,

depending on the approach used for data versioning.

2.2.1 Eager and Lazy Data Versioning

As mentioned before, the goal of data versioning in TM systems is to manage different

versions of data in a memory and to perform actions when a transaction commits or

aborts. More specifically, the data versioning system updates the memory locations

with the new values produced by a transaction atomically when the transaction com-

mits. If the transaction aborts, the data versioning system discards the new version of

16

2.2. Implementation Options

data safely.

There are two types of data versioning: eager and lazy data versioning, which can

be summarized as follows:

• Eager versioning [115] stores transactional write accesses to memory as a new

version as soon as possible, and buffers the old version in an undo-log. If the

transaction commits, there is no further action required to make the new versions

visible. If the transaction aborts, the eager versioning introduces some delay to

restore the old versions of data from the undo-log to the memory.

• Lazy versioning [43] writes all the new data versions in a write-buffer until the

transaction commit phase starts. If the transaction commits, the new versions are

copied from the write-buffer to the memory. If the transaction aborts, no further

action on the data structures is required and the write-buffer is simply discarded.

Unlike eager versioning, lazy versioning introduces delay on the transaction com-

mit phase, since it needs to update the memory locations with the latest version

of the data.

2.2.2 Eager and Lazy Conflict Detection

In order to decide whether a conflict between transactions occurs, TM systems track

memory accesses through a read-set and a write-set per transaction. The read-set

includes addresses read by the transaction and the write-set contains memory addresses

written by the transaction. A conflict happens when two transactions access the same

address and one of them is a write operation. In particular, conflict detection relies

on comparing the read- and write-set of each transaction with all the other read- and

write-sets. A conflict is detected when a variable in the write-set of a transaction is

also in any set of other transactions.

There are two types of conflict detections: eager and lazy.

• Systems with eager conflict detection check for conflicts as transactions read

and write a memory location. Read and write operations are allowed to complete

only when they do not cause any conflicts. Under eager conflict detection, conflicts

are detected before the end of the transaction so that they can be handled as soon

as possible. Resolving conflicts in an early stage reduces the amount of work lost

17

2.2. Implementation Options

by aborting transactions. However, the performance of eager conflict detection

system depend on which technique is used to resolve conflicts.

• The other technique is lazy conflict detection: this approach assumes that con-

flicts among transactions are rare, thus this technique delays conflict detections to

the end of the transaction. While executing a transaction, all the read and write

operations are allowed without performing any control. Before committing, the

transaction is validated by comparing the read/write sets against the read/write

sets of other transactions. If there are no read-write or write-write conflicts, the

transaction commits and all temporary data are stored to memory. Lazy conflict

detection does not introduce overhead to each read and write as eager conflict

detection does, since it postpones all the checks until the end of the transaction.

TM systems can detect conflicts at various granularities.Word-level granularity (the

smallest possible granularity) provides the highest accuracy but might introduce ex-

cessive overhead to track and compare read- and write-sets. This overhead is reduced

as the granularity of the conflict detection strategy increases, though the risk of incur-

ring false conflicts increases too. False conflicts are generally undesirable because they

might cause more transactions to abort although no real conflicts have actually oc-

curred, which degrades the performance. Cache-line-level granularity provides a good

trade-off between the false conflicts and the runtime overhead of conflict detection: this

design choice divides the memory addresses into a finite set of strips and each strip is

mapped to memory locations by using a hash function. The risk of of false conflicts

might still be high, depending on the cache line size. Object-level detection is an al-

ternative, intended to be used by object oriented applications. Depending on the size

of the object, it may reduce the overhead in terms of time (to compare the read sets

and the write sets) and space (to track the read sets and the write sets) needed for

conflict detection. With this approach, false conflicts only occur when two transactions

perform write operations on two different fields of an object. Comparing the three

approaches, the word-level granularity is the one with the highest precision and the

highest overhead (in terms of both time and space) while the object-level granularity

provides the lowest overhead but has a high false conflict risk. The cache-line-level

granularity resides between the other two approaches in terms of overhead and the

false conflict rate. Unlike the object-level granularity, the cache-line- and word-level

18

2.2. Implementation Options

int foo(int arg)

{

// begin the transaction

atomic

{

a++;

} //end the transaction

}

(a) Implicit Transaction

int foo(int arg)

{

BEGIN_TRANSACTION;

temp_1 = stmRead(a);

temp_2 = temp_1 + 1;

stmWrite(a,temp_2);

END_TRANSACTION;

}

(b) Explicit Transaction

Figure 2.4: Type of Used Transactions in Programming Languages

granularity conflict detection systems are not language-level entities, which results in

more programming effort to reduce the number of conflicts.

2.2.3 Software and Hardware

Researchers have proposed several different implementations of transactional memory

classified into Software Transactional Memory (STM), Hardware Transactional Mem-

ory (HTM) and Hybrid Transactional Memory. Software TM systems [5, 43, 65, 67,

70, 71, 104, 133, 135] implement transactional memory entirely in software. An STM

implementation instruments all shared memory reads and writes inside atomic sections

by using read and write barriers. The instrumentation can be inserted by a compiler in

an implicit way (see Figure 2.4a) [35, 138]. In an explicit way, the programmer uses a

set of low-level APIs to manually annotate memory accesses in transactions, as shown

in Figure 2.4b [23, 43, 104, 133]. As mentioned before, tracking the shared memory

accesses is essential for data versioning and conflict detections.

In STM Systems, each transaction has a transaction descriptor that describes the

transaction’s state which consists of the read/write set (including transaction records),

the undo-log (for eager versioning) or the write-buffer (for lazy versioning). Moreover,

the transaction’s descriptor might include additional data to handle nested transaction

with partial rollback. With eager versioning, the write barrier acquires a lock on the

transaction record corresponding to the memory location to be updated, then an old

value from this memory location is added to the undo-log and then the memory location

content is updated with the new value. With lazy versioning, the new value is stored

19

2.2. Implementation Options

to the write-buffer with the write barrier; if the transaction commits, the transaction

acquires all lock on the all needed transaction records and store all new values from the

write-buffer to the memory. In order to detect conflicts among transactions, conflict

detection techniques compare version numbers of transaction records in transactions’

read/write sets. If a conflict is detected, STM systems provide effective conflict res-

olution schemes such as stalling one of the transactions or aborting one transaction

selected randomly and re-executing the aborted transaction later.

STM systems also provide flexible transactional semantics such as nested transac-

tions with partial rollback. Moreover, STM implementations can accommodate modern

language features (e.g, garbage collection (GC), exception handling) and useful tools

(e.g, debugger, performance analyzers). However, in general, they incur performance

degradation due to the instrumentation required for transactional memory accesses.

Hardware TM systems [10, 27, 62, 72, 115, 131, 155] do not need code instrumen-

tation in the atomic section to manage data versioning and track conflicts, instead,

they use a set of instructions in the Instruction Set Architecture (ISA) to provide a

low-level transactional interface. In order to guarantee a good performance, it is crucial

to cope with data versioning and conflict detection by using hardware resources. Since

there is no need to instrument any code, HTM systems are also able to handle more

general cases than STM, such as two versions of the same function called from inside

transactions or outside of the transaction.

Caches implement data versioning by storing transactional read and write opera-

tions to either an undo-log (for eager versioning) or a write-buffer (for lazy versioning).

With eager versioning, before performing a new cache line write, the cache line and

its address are added to the undo-log by performing additional cache writes. If the

transaction aborts, the undo-log must be restored to a memory. With lazy versioning

systems, a cache line write is added to the write-buffer with the W tracking bit set,

which indicates that there is an ongoing write operation. If the transaction aborts, the

write-buffer is flushed without performing any validation. If the transaction commits,

the data in the write-buffer becomes visible to other transactions and the TM system

resets all the W bit for each cache line involved in the transaction.

Cache coherence protocols provide communication between read sets and write sets

to detect conflicts. With the eager conflict detection mechanism, when a transaction

performs a read or a write access, the processor sends a request to the corresponding

20

2.2. Implementation Options

cache line. A conflict is detected if there is any copy of the cache line with the R

(read) or W (write) bit set by any processors. The lazy conflict mechanism uses the

same coherence message protocol but send all the requests from the write set when the

transaction commits.

Even though hardware TM systems offer superior performance, they exhibit ad-

ditional challenges. Managing data versioning and tracking conflicts transparently by

using cache hierarchies and cache coherency protocols are not trivial. Besides that, a

long transaction can lead to cache overflow since there is a limited space to store all

the information related to read/write sets tracking, write buffering and undo logging.

Moreover, their restricted semantics do not support transactional language constructs

such as deeply nested transactions with partial rollback, blocking primitives and inter-

rupts.

An alternative approach to blend the performance of HTM with the flexibility of

STM is Hybrid Transactional Memory [40, 91, 114]. In Hybrid transactional memory

implementations, transactions start in the HTM mode, if the HTM system fails due

to an excessive resource requirement, the transactions are roll-backed and restarted in

the STM mode. Therefore, they are faster than Software TM systems but slower than

Hardware TM systems.

There are hundreds of millions of multi core machines already in the field. We

believe that, for the sake of backward compatibility, emerging TM-based program-

ming models will need to be implemented in software on these machines. Moreover,

a growing consensus holds that STM will be needed as a “fall-back” mechanism when

hardware transactions fail due to buffer space limitations, interrupts, or other transient

or deterministic causes [36, 42, 91, 144].

2.2.4 Commonly Used STMs

Throughout the dissertation, we use and compare various STM implementations. In

the following we summarize the main design choices, characteristics and trade-offs of

these popular STMs.

TL2 is an STM that implements a lazy data versioning [43]. A transaction begins

by reading the value t in a global “clock.” Ownership records (orecs), found by address

hashing, indicate the last time at which one of the corresponding location was mod-

ified. If a transaction encounters a location that was written after t, it assumes it is

21

2.2. Implementation Options

inconsistent, aborts, and retries. At commit time, the transaction locks the orecs for

all locations that need to be modified, checks to make sure that all of the locations it

read still have a timestamp earlier than t, increments the global time, stores the new

time into all the locked orecs, writes out all the updates, and then unlocks the orecs.

TinySTM implements an eager conflict detection along with an eager versioning

system with extendable timestamps [133]. Extendable timestamps avoid false positives

in which a transaction is aborted despite having seen a consistent view of memory. If

a transaction encounters a location that was written after start time t, it checks to see

whether any previously read location has been modified since t. If not, it re-reads the

global clock and continues, pretending it started at this new time t′ instead of t.

TL2 and TinySTM do not support safe privatization. Both require additional code

(and nontrivial overhead, not included in our experiments) for correct execution of pro-

grams in which data transitions back and forth between shared and private state [105].

RSTM suite includes a variety of STM algorithms, some of which have several

variants. The selection of an STM library can be handled simply by re-compiling the

code with a different back end. Among the word-based back ends, TML, LLT, ET,

NOrec and Pipeline reflect popular but divergent points in the STM design space.

These STMs are briefly described below.

• TML is an eager conflict detection, eager versioning system with a single se-

quence lock [92]. TML allows concurrent read-only transactions with no logging

overhead, but only one system-wide writer is allowed. This approach is effective

in workloads where reads are the common case. However, using a single sequence

lock without logging means that conflict detection is extremely conservative: any

writer conflicts with any other concurrent transaction.

• LLT is a canonical lazy versioning STM implementation patterned after TL2 [43].

• ET starts with the basic LLT infrastructure, adds the ability to operate in both

eager conflict detection/eager versioning and eager conflict detection/lazy ver-

sioning mode, and adds extendable timestamps as in TinySTM [133].

• NOrec [39], like LLT, is a lazy versioning system: it delays the resolution of

conflicts until a transaction is ready to commit. It uses a single sequence lock [92],

however, rather than ownership records to serialize commit and write-back. A

22

2.2. Implementation Options

transaction checks, after each read, to see if any writer has committed since start

time t; if so, it performs value-based validation [123] to see if its prior reads, if

performed right now, would return the values previously seen; if so, as in ET, it

reads a new start time from the global clock and continues. Writers can speculate

in parallel, but only one can commit at a time. This serialization ultimately limits

scalability, but the simplicity of the system yields surprisingly good performance

for up to a few dozen cores. Moreover, NOrec is inherently privatization safe.

• Pipeline extends ET with lazy conflict detection/lazy versioning and it adds the

start time linearization approach proposed by Menon et al. [110] to provide single

global lock atomicity (SGLA) in Java. SGLA is a basic, pragmatic semantics,

where a program is required to behave “as if” transactions were protected by

a single global lock. Although SGLA simplifies the design, implementation and

testing of STM systems, the implementation of SGLA semantics reduces the

scalability because it requires total ordering among all transactions in the system.

23

2.2. Implementation Options

24

Part II

Comprehensive Evaluation of TM

Systems

As researchers work to develop robust, mature STM, it becomes increasingly important

to be able to effectively and fairly compare STM designs with benchmarks that are rep-

resentative of real-world applications. Chapter 3 describes RMS-TM, a comprehensive

benchmark suite to evaluate (hardware and software) TM implementations. RMS-TM

consists of several applications from the RMS domain that are considered representa-

tive of future workloads for multi-core systems. Moreover, researchers should be able

to share applications, compilers, and run times among groups, and to be able to modify

one layer of the system stack while keeping the others constant, for “apples-to-apples”

comparison. To this extent, we developed a software layer that allows researchers to

test the same applications with interchangeable STM back ends (Chapter 4).

25

26

Chapter 3

RMS-TM Benchmark Suite

3.1 Introduction

Muultiple Software TM (STM) [70, 104, 133, 135] and Hardware TM (HTM) imple-

mentations [27, 62, 115, 155] have been proposed in the literature. Although some of

implementations have reached maturity level, there are still open research issues, in

addition to performance, such as handling nested transactions, I/O operations, system

and library calls inside transactions. Moreover, performance comparison of TM-based

applications against their equivalent lock-based versions is crucial for the justification

of further research in this area as well as for convincing the industry to implement TM

systems in commercial products. One major aspect of performing functional and per-

formance evaluation of TM systems is the development of an emerging TM benchmark

suite.

We identify six desired properties for a TM benchmark suite: (1) the suite should

include both the lock-based and TM-based versions of the same benchmarks, (2) the

benchmarks should have high scalability, (3) the benchmarks should represent real-

world applications, (4) the benchmarks should encompass a wide range of different TM

behaviors, (5) the benchmarks should include open research issues for TM researchers,

and (6) the benchmark suite should be useful in evaluating both STM and HTM sys-

tems.

Although there are multiple benchmark suites [11, 22, 59, 163, 168] proposed for

evaluating TM systems, none of those has all of the above-mentioned properties. For

example, the STAMP benchmark suite [22] does not include lock-based versions of

27

3.1. Introduction

its applications, SPLASH-2 [163] does not provide a wide range of TM characteris-

tics, Atomic Quake [168] cannot be used to evaluate HTM systems. Previous work by

Hughes et al. [74] also pointed out that existing TM workloads have similar character-

istics in terms of transactional behaviors and that there is need of more comprehensive

benchmarks. In this chapter, we introduce such a benchmark suite, RMS-TM (Recog-

nition, Mining, and Synthesis - Transactional Memory). Apart from having a wide

range of transactional and run-time characteristics, RMS-TM presents challenging fea-

tures such as nested transactions, I/O operations and library calls inside transactions,

which are common operations in real applications.

To construct our benchmark suite, we develop a step by step methodology for

choosing candidate TM benchmarks from among a set of real-world applications, and

we reimplement the selected applications by using the TM programming model. The

final result is a new benchmark suite that includes different applications from the

Recognition, Mining, and Synthesis (RMS) domain. We use RMS applications because

these applications have high relevance to mainstream workloads, and they are proposed

as emerging workloads to evaluate future multi- and many-core systems [97].

In this chapter we make the following contributions:

• We introduce a new benchmark suite, RMS-TM, that consists of lock-based and

transactified versions of seven applications from BioBench [8], MineBench [119],

and PARSEC [13] benchmark suites. RMS-TM has a wide range of transac-

tional and run-time characteristics that qualify it as a new and comprehensive

benchmark suite for evaluating both STM/HTM designs. The applications in

our benchmark suite feature the following: 1) representative real-world applica-

tions, 2) nested transactions [116, 120], 3) large amount of I/O operations [12],

system [150] and library calls inside atomic blocks, 4) complex function calls and

control flow inside atomic blocks, 5) various mix of long/short transactions with

different sizes of read/write sets, 6) low/medium/high contention rates, and 7)

high scalability.

• We develop a methodical procedure to construct our benchmark suite from candi-

date applications. We first divide the application selection process into static and

dynamic pre-transactification phases, and then, in the transactification phase, we

28

3.2. The Transactification Process

transactify the selected applications from their original lock-based parallel imple-

mentations. This process ensures that the selected applications satisfy the desired

properties for a TM benchmark suite.

• We evaluate our benchmark suite using three different TM implementations (one

STM and two HTMs), namely Intel-STM [135], EazyHTM [156], and Scalable

TCC [27] and we show that RMS-TM can be used in the evaluation of both STM

and HTM systems.

We find that the RMS-TM applications present varying percentage (1.5%-95.7%)

of time spent inside atomic blocks with small and large read (a few bytes to 3

MB) and write (a few bytes to 493 KB) sets, and with low and high contention

(0.0%-88.4% abort rates). We also find that our benchmarks have high scalability

(Intel STM 4.7×, EazyHTM 6.0×, and ScalableTCC 6.3×, on average, for eight

threads).

3.2 The Transactification Process

In this section we describe our methodology for constructing the RMS-TM benchmark

suite. To create our benchmark suite, we develop a two-step procedure: (1) we apply

static and dynamic pre-transactification to select applications from among a set of

candidate benchmarks, and (2) we transactify the selected applications.

We analyze three different benchmark suites: BioBench, MineBench, and PAR-

SEC. The applications in these benchmark suites are from the RMS domain, and they

represent future workloads [97]. The BioBench suite consists of bioinformatics appli-

cations that are developed using the Pthread parallel programming model [21]. The

MineBench suite is designed considering data mining categories that are commonly

used in industry problems. The applications in this suite are implemented by using

OpenMP [28]. The PARSEC benchmark suite includes emerging applications that are

computationally intensive.

3.2.1 Pre-Transactification Phase

We choose applications from the candidate benchmark suites using TM-specific use-

fulness criteria, e.g., having nested transactions, irrevocable operations, system and

29

3.2. The Transactification Process

Application Domain Locking Type Nested Function Special Operations Barrier

Locking Calls in Critical Sections Synch.

Hmmsearch sequence profile coarse-grained no yes I/O, memory management no

searching operations, library calls

Hmmpfam sequence profile coarse-grained no yes I/O, memory management no

searching operations, library calls

Hmmcalibrate calibrate profile coarse-grained no yes memory management no

HMMs operations, library calls

Apriori association coarse-grained yes yes memory management yes

rule mining fine-grained operations

PLSA dynamic fine-grained no yes none no

programming

Rsearch pattern recog- fine-grained no yes memory management no

nition mining operations no

ScalParC classification coarse-grained no no none yes

fine-grained

UtilityMine association coarse-grained yes yes memory management yes

rule mining fine-grained operations

Bodytrack computer vision fine-grained no yes library calls yes

Fluidanimate fluid simulation fine-grained no no none yes

Freqmine frequent item fine-grained no no memory management no

set mining operations no

Table 3.1: Applications that pass the Static Pre-Transactification step.

library calls inside atomic blocks, etc. To make an effective and comprehensive analy-

sis, we divide the pre-transactification phase into two sub-phases: static and dynamic.

In the static phase, we analyze source codes of the applications; in the dynamic phase,

we execute and profile the candidate applications to calculate the amount of time they

spend inside critical sections and to analyze their scalability.

3.2.1.1 Static Pre-Transactification

We use five criteria in the static pre-transactification phase: (1) synchronization con-

structs used between lock blocks, (2) type of locking granularity, (3) nested locking, (4)

function calls between acquiring and releasing locks, and (5) special operations inside

critical sections, e.g., I/O operations, library and system calls.

Table 3.1 shows the characteristics of the applications selected in the static pre-

transactification phase. We select Hmmpfam, Hmmsearch, and Hmmcalibrate, because

they exhibit a large amount of I/O operations, system and library calls, and relatively

complex function calls inside critical sections. Hmmpfam and Hmmsearch also present

a large number of instructions in coarse-grained critical sections. Applications that

have a coarse-grained locking structure are promising candidates, because they spend

a significant amount of time waiting to acquire a lock; minimizing this synchronization

time is an important topic for TM research.

30

3.2. The Transactification Process

Application Number of Threads

1 2 4 8

Hmmsearch 0.3 0.4 0.4 0.5

Hmmpfam 11.1 12.0 14.2 20.6

Hmmcalibrate 3.9 4.2 4.8 5.6

Apriori-100 1.1 1.6 2.8 5.6

Apriori-1000-20 0.1 0.2 0.4 0.7

Apriori-2000-20 0.1 0.1 0.2 0.4

PLSA 0.0 0.0 0.0 0.0

Rsearch 0.0 0.0 0.0 0.0

ScalParC-A64-D125 0.0 0.2 1.0 1.9

ScalParC-A64-D250 0.0 0.1 0.6 0.8

ScalParC-A64-500 0.0 0.1 0.4 0.7

UtilityMine-1000-10-1 53.9 52.8 56.8 56.3

UtilityMine-1000-10-20 70.1 66.0 70.0 69.5

UtilityMine-2000-20-1 69.8 65.6 69.5 65.7

Fluidanimate 0.0 5.5 9.6 15.2

Freqmine 0.0 0.0 0.0 0.0

BodyTrack 0.1 0.2 0.3 0.2

Table 3.2: Percentage of time spent inside critical sections with respect to total parallel

time for the lock-based applications. The data sets used are appended to the application

name.

ScalParC, Apriori, and UtilityMine include both fine- and coarse-grained locking,

providing different types and sizes of transactions. In addition, they use synchronization

constructs between atomic blocks. We expect placement of synchronization constructs

between lock blocks to create interesting TM characteristics, e.g., a high abort rate even

when an application does not spend much time inside transactions. In fact, immediately

after a barrier, all threads will attempt to enter their atomic blocks at the same time,

but only one will commit successfully.

PLSA, Rsearch, BodyTrack, Fluidanimate, and Freqmine pass the static pre-transactification

phase as well as. Since these applications have function calls inside critical sections, it

is difficult to statically determine the length of the transactions and their read/write

sets. In addition, some of these applications have memory management operations in-

side critical sections, such as malloc() or free(), that are challenging for some TM

design.

31

3.2. The Transactification Process

Apriori ScalParC UtilityMine Hmmsearch Hmmpfam Hmmcalibrate Fluidanimate Mean
0

1

2

3

4

5

6

7

8

S
c

a
la

b
il

it
y

2 threads 4 threads 8 threads

Figure 3.1: Scalability of the lock-based applications, with the largest data sets, nor-

malized to single-threaded lock execution time.

3.2.1.2 Dynamic Pre-Transactification

In the dynamic pre-transactification phase, we use percentage of time spent inside

critical sections and scalability as the evaluation criteria.

Table 3.2 shows that PLSA, Rsearch, Freqmine, and BodyTrack spend a very small

percentage of their execution time inside critical sections. These applications cannot

stress the underlying TM systems due to their short transaction lengths, low transaction

frequencies, and small read/write sets; therefore, we filter out these applications. Even

though ScalParC and Apriori spend a short amount of time inside critical sections,

we maintained these applications in the benchmark suite because they have several

marked atomic blocks and they use synchronization constructs, e.g., barriers between

consecutive atomic blocks. Apriori and UtilityMine have a high level (up to nine) of

nested locking, which makes them important candidates for evaluating TM systems

with support for arbitrary levels of nested transactions. From the Hmmer package,

we select Hmmsearch, Hmmpfam, and Hmmcalibrate. Although Hmmsearch spends a

short time inside critical sections, it is a crucial benchmark for TM research because it

has I/O operations and library and system calls inside critical sections.

Figure 3.1 shows the scalability of lock-based applications that we consider as

promising candidates for TM research. Notice that all the benchmarks have a sub-

32

3.2. The Transactification Process

linear speedup but they scale well except when we use eight threads in parallel, i.e., all

the available processors in our experimental setup.

3.2.2 Transactification Phase

We transactify the selected applications starting from their equivalent lock-based ver-

sions by replacing locks with transactions. To maintain the original semantics, we keep

the size of the atomic blocks as in the lock-based versions.

The transactification process is not straightforward because each application has a

different parallelization strategy. Moreover, each TM system poses specific challenges,

e.g., calls to pre-compiled library functions and I/O operations and system calls inside

transactions. We now describe the details of these challenges and our solutions for

three TM systems, namely Intel STM [135], EazyHTM [156], and ScalableTCC [27].

3.2.2.1 STM Implementation

Intel STM [135] consists of a C/C++ compiler and a STM Runtime Library. The com-

piler instruments all shared memory reads and writes inside transactions by using read

and write barriers. The flattening model is used to support nested transactions, and

weak isolation between transactional and non-transactional code is provided. Transac-

tions can be executed in optimistic or pessimistic mode. In both cases, the transactional

writes update the data in-place with strict two-phase locking, while the transactional

reads are executed optimistically or pessimistically. Serial execution mode is also pro-

vided to support transactions that contain irrevocable operations.

Intel STM compiler provides simple language extensions to develop TM applica-

tions. The functions inside atomic blocks should be marked as either tm callable1

or tm pure2. Otherwise, if an unannotated function is called inside atomic blocks, the

compiler generates code that triggers serial execution unless it knows that the called

function does not require instrumentation. The applications that we examine often

allocate objects through the new operator and/or they call external functions inside

1The compiler generates a clone function annotated as tm callable and translates each memory

read and write to a TM read barrier function and a TM write barrier function.
2The programmer guarantees that a function marked as tm pure does not access shared variables

when it is called from inside a transaction.

33

3.2. The Transactification Process

atomic blocks. The version of the compiler that we use1 does not mark the new opera-

tor as tm callable implicitly although the object constructor is marked. This causes

transactions to run irrevocably. To deal with this challenge we overload the new op-

erator and we mark it as tm callable. Another challenge is associated with function

calls of precompiled libraries inside transactions. To avoid executing these transactions

in serial mode, we reimplement some glibc string functions, such as strcmp, strstr,

strlen, and we mark them as tm callable.

3.2.2.2 HTM Implementations

EazyHTM [156] and ScalableTCC [27] are HTM proposals that provide scalable per-

formance. Both TM systems are directory-based and implement lazy data versioning.

The key feature of EazyHTM is separating conflict detection and conflict resolution.

Conflicts are detected while transactions run, but they are resolved at commit time

allowing truly parallel commits. On the other hand, ScalableTCC detects conflicts

optimistically when transactions are ready to commit. ScalableTCC implements a con-

tinuous use of transactions within parallel programs providing non-blocking execution

and improved fault-isolation.

The main challenges that we faced while porting RMS-TM applications to Eazy-

HTM and ScalableTCC, are dynamic memory management and I/O operations inside

transactions. Most of our applications dynamically allocate memory using malloc and

realloc. To overcome this issue, we use a user mode memory manager that allocates

chunks of memory for each thread when the applications start [22]. When a thread

requires new memory, the user mode manager takes this memory from its pre-allocated

pool and assigns it to the thread without calling the malloc system call.

In addition, Hmmpfam and Hmmsearch perform many I/O operations inside criti-

cal sections. The replacement of the locks protecting these critical sections with trans-

actions is not straightforward because rollback can happen at any time during the

execution of a transaction, and the transaction can restart at any arbitrary point of

its execution. Most current TM systems cannot safely perform I/O or system calls

inside transactions. For these operations, we use the library developed by Perfumo et

al. [129], which enables the use of I/O operations inside transactions. To provide a fair

1Intel C++ STM Compiler Prototype Edition 3.0

34

3.3. RMS-TM Overview

comparison, we also modify the lock-based versions of the applications to make them

use the same library.

3.3 RMS-TM Overview

We used our pre-transactification process to select applications from the RMS domain,

and we transactified those applications to construct the RMS-TM benchmark suite. In

this section, we provide the descriptions of the applications in the benchmark suite:

Hmmsearch, Hmmpfam, and Hmmcalibrate from BioBench, Apriori, ScalParC, and

Utility-Mine from MineBench, and Fluidanimate from PARSEC.

TM-Hmmsearch reads a Hidden Markov model (HMM) and searches a sequence

database for significantly similar sequence matches. In the transactional version, the

threads read the next sequence from an input list of sequences in parallel, and they

use transactions to protect the accesses to the input list of sequences. Moreover, the

threads share two score lists ranked by per-sequence scores and per-domain scores and

a histogram of the whole sequence stores. Transactions are used to protect update

operations on these data structures.

TM-Hmmpfam searches a query sequence against a profile HMM database. In

the transactional version, each thread accesses the shared profile HMMs database and

reads the next profile HMM. This application scores the input sequence against the

profile HMM and adds a significant hit to the per-sequence and per-domain top hits

lists. Transactions protect the shared file pointer of the HMMs database. Update

operations on the shared per-sequence and per-domain top hits lists are also enclosed

inside transactions.

TM-Hmmcalibrate calibrates a profile HMM using an artificial database of se-

quences. After reading the profile HMM, this application generates random sequences;

it computes a raw score for each sequence against the profile HMM and it adds this

score to a histogram. The increment on the shared counter and the generation of

the sequence are enclosed in transactions. Another transaction is used to protect the

accesses to the histogram of scores.

TM-Apriori [165] is an Association Rule Mining (ARM) algorithm performed

on transactional records in a database. This application uses a hash tree to store

35

3.4. Evaluation

candidates. Transactions are used to protect the calculation of support values and the

insertion of a candidate item set into the hash tree.

TM-ScalParC [79] is a parallel formulation of a decision tree classification. The

decision tree model splits the records in the training set into subsets based on the values

of attributes. This process continues until each record entirely consists of examples from

one class. During the partitioning phase, different threads try to simultaneously access

a shared counter. Transactions protect the accesses to this shared counter.

TM-UtilityMine [99] is another ARM technique. A utility mining model is de-

veloped to identify item sets with high utilities. The utility of an item or an item set

can be defined as its usefulness. A single common hash tree stores the candidate item

sets at each level of search as well as their transaction-weight utilization. Transactions

protect the updates of the utility of item sets and insertion of a candidate into the tree.

TM-Fluidanimate [117] is based on spatial partitioning and uses a uniform grid

partitioned to cells to reside fluids. The uniform grid is evenly partitioned in subgrids

along cell boundaries. We use transactions to enclose the update particles of the cells

that lie on subgrid boundaries.

3.4 Evaluation

We evaluate RMS-TM using three different (one STM and two HTMs) TM systems:

Intel STM, EazyHTM, and ScalableTCC. We compare the TM-based implementations

of the applications to their equivalent lock-based versions and we analyze their trans-

actional behavior, such as read/write set sizes, abort/commit rates, time spent inside

atomic blocks, scalability, etc. We also evaluate the STAMP benchmark suite on the

same TM systems and we compare and contrast the results with our benchmark suite.

3.4.1 Intel STM Results

In this Section, we present the evaluation of our benchmark suite using the Intel STM

system. All results are the averages of five different executions using three different

data sets. We perform our experiments on a Dell PE6850 workstation with 4 dual core

x64 Intel Xeon processors running at 3.2GHz equipped with 32GB RAM, a 32KB IL1

and a 32KB DL1 private caches per core, a 4MB L2 cache shared by two cores, and a

8MB L3 cache shared by all cores.

36

3.4. Evaluation

Applications Read Set (bytes) Write Set (bytes) Transactions

Min Mean Max Min Mean Max #Commits #Aborts Abort

Rate (%)

TM-Hmmsearch 24 3K 3M 0 296 493K 613,316 7,678 1.2

TM-Hmmpfam 16 7K 2M 0 846 270K 28,333 5,832 17.1

TM-Hmmcalibrate 8 13K 74K 4 5K 30K 10,016 76,219 88.4

TM-Apriori-100 4 424 67K 0 274 45K 14,410 282 1.9

TM-Apriori-1000-20 4 408 132K 0 263 87K 14,431 290 2.0

TM-Apriori-2000-20 4 449 380K 0 289 246K 14,758 464 3.0

TM-ScalParC-A64-D125 8 31 952 1 7 238 52,404 61,072 53.8

TM-ScalParC-A64-D250 8 30 840 1 7 210 75,408 80,691 51.7

TM-ScalParC-A64-D500 8 34 944 1 8 236 117,240 153,872 56.8

TM-UtilityMine-1000-10-1 32 424 28K 4 7 202 43,724,391 292,031 0.7

TM-UtilityMine-1000-10-20 4 646 65K 4 7 1K 197,213,249 1,212,087 0.6

TM-UtilityMine-2000-20-1 4 644 47K 0 7 1K 3,954,033,044 2,181,138 1.0

TM-Fluidanimate 4 8 1K 4 7 12 1,177,944,500 252 0.0

Table 3.3: Basic TM characteristics (with eight threads) of the RMS-TM applications,

with Intel STM. The number of bytes read/written transactionally and the number of

aborts or commits are generated by the Intel STM runtime library.

3.4.1.1 Transactional Behavior

Table 3.3 presents the basic runtime TM characteristics of the RMS-TM applications,

such as the number of bytes read or written transactionally, the number of times a

transaction aborts execution due to a conflict, etc. RMS-TM explores several combi-

nations of TM characteristics: medium read/write sets with medium abort rates (TM-

Hmmpfam), small read/write sets with high abort rates (TM-ScalParC), and large

read/write sets with high abort rates (TM-Hmm calibrate). In addition, the informa-

tion presented in Table 3.3 show that the RMS-TM applications cover a wide spectrum

of contention ranging from 0.0% for TM-Fluidanimate to 88.4% for TM-Hmmcalibrate.

Although TM-ScalParC spends most of its execution time outside atomic blocks, it has

a high abort rate due to the use of synchronization points between consecutive atomic

blocks, which confirms our observation in the static pre-transactification phase.

Table 3.4 presents the percentage of time spent in atomic blocks with respect to total

parallel time with 1, 2, 4, and 8 threads for each data set. We observe some overhead

introduced by the Intel STM compiler and run-time library because of the extra work

required to handle transactions, such as when detecting conflicts. As we can see from

Table 3.2 and Table 3.4, the Intel STM runtime introduces different overheads in the

transactified versions of the benchmarks. For example, the lock version and TM version

of TM-Hmmpfam spend 20.6% and 20.7% of their parallel times inside critical sections.

On the other hand, TM-ScalParC-A64-D250 spends 0.8% of its parallel time inside

37

3.4. Evaluation

Application Number of Threads

1 2 4 8

TM-Hmmsearch 1.1 1.1 1.2 1.6

TM-Hmmpfam 11.1 12.0 14.2 20.7

TM-Hmmcalibrate 7.8 8.3 9.3 14.3

TM-Apriori-100 3.4 5.1 9.7 17.2

TM-Apriori-1000-20 0.0 0.2 0.6 1.8

TM-Apriori-2000-20 0.2 0.3 0.7 1.5

TM-ScalParC-A64-D125 0.1 0.5 2.3 11.5

TM-ScalParC-A64-D250 0.1 0.3 1.5 7.4

TM-ScalParC-A64-D500 0.1 0.2 1.0 5.9

TM-UtilityMine-1000-10-1 88.7 91.8 91.5 92.2

TM-UtilityMine-1000-10-20 95.3 96.0 95.4 95.6

TM-UtilityMine-2000-20-1 95.2 95.8 95.4 95.7

TM-Fluidanimate 0.0 18.9 39.3 61.7

Table 3.4: Percentage of time spent inside atomic blocks with respect to total parallel

time for RMS-TM applications.

critical sections with the lock implementation and 7.4% with the TM implementation.

Between these two extremes of the spectrum, there are intermediate cases. For example,

Hmmsearch spends 0.5% in the lock-based version and 1.6% in the transactified version.

Table 3.4 shows that the benchmarks cover a wide range of cases in terms of time

spent inside atomic blocks. This variety is a desirable property for a TM benchmark

suite, because it allows researchers to evaluate TM systems using applications that are

either very sensitive to TM overheads (TM-ScalParC-A64-D250) or those that are not

sensitive to the overhead of TM systems (TM-Hmmpfam).

3.4.1.2 Performance Analysis

Figure 3.2 shows the scalability of the RMS-TM applications with respect to their

single-threaded case. The RMS-TM applications present a scalability similar to their

equivalent lock-based versions except TM-ScalParC, TM-UtilityMine, and TM-Fluidanimate.

Several factors may influence the scalability of TM applications, but a high abort rate

is the most common reason for poor scalability. Table 3.3 shows that TM-ScalParC

exhibits this characteristic with 56.8% percent abort rate which causes performance

degradation especially with eight threads. Although TM-UtilityMine has a low abort

rate, this benchmark presents a large number of transactions, each one with large read-

/write sets. In other words, each rollback operation is expensive (the cost of each

rollback depends on the read/write set size) and it affects performance. We also found

38

3.4. Evaluation

0

1

2

3

4

5

6

7

8

Apr
io
ri

TM
−A

pr
io
ri

Sca
lP

ar
C

TM
−S

ca
lP

ar
C

U
til
ity

M
in
e

TM
−U

til
ity

M
in
e

H
m

m
se

ar
ch

TM
−H

m
m

se
ar

ch

H
m

m
pf

am

TM
−H

m
m

pf
am

H
m

m
ca

lib
ra

te

TM
−H

m
m

ca
lib

ra
te

Flu
id
an

im
at

e

TM
−F

lu
id
an

im
at

e

M
ea

n

TM
−M

ea
n

S
c
a

la
b

ili
ty

2 threads 4 threads 8 threads

Figure 3.2: Scalability of the lock-based and TM-based applications, with the largest

data sets, normalized to single-threaded lock and TM execution time, respectively, with

Intel STM.

that TM-UtilityMine, with 8 threads, spends 66.0% of its total time inside transactions

for rollback operations (wasted work) [128].

We performed a deeper analysis of all the applications using oprofile [126] and we

examined specific performance counters. We found that the Intel STM run-time system

evicts data from the L2 cache while managing the read- and write-sets. This increases

the number of L2 cache misses and degrades performance. TM-UtilityMine is sensitive

to this situation: because of its long transactions with large read sets, more than 90% of

the L2 cache misses are caused by the Intel STM library. This extra overhead becomes

larger as the sizes of the read- and write-sets increase, therefore, it limits the scalability

of the application. Consequently, TM-UtilityMine enables TM designers to have better

understanding of the runtime overhead of TM systems.

Scalability is also affected by the run-time STM library. Every time a thread at-

tempts to modify a memory location inside a transaction, the STM run-time system

scans the read-set of each active transaction to check whether the same memory loca-

tion was previously read by another thread. The larger the read-set the longer the time

required to scan each active transaction and the larger the overhead introduced by the

STM run-time system, which limits scalability. On the other side, the larger the num-

39

3.4. Evaluation

0 1 2 3 4 5 6 7 8
1

1.5

2

2.5

Number of threads

O
ve

rh
ea

d

(a) TM-Fluidanimate

0 100 200 300 400 500 600 700
0

5

10

15

Read−set size (bytes)

O
ve

rh
ea

d

(b) TM-UtilityMine

Figure 3.3: (a) Runtime overhead of TM-Fluidanimate as a function of the number of

threads (from 1 to 8) with constant read- and write-set sizes. (b) Run-time overhead

of TM-UtilityMine increases as the size of the read-set increases.

ber of concurrent active transactions (which is upper bound by the number of threads),

the larger the overhead. Figure 3.3a shows the runtime overhead of TM-Fluidanimate

as function of the number of threads (from 1 to 8) with constant read- and write-set

sizes. The run-time overhead linearly increases with respect to the number of threads.1

In addition, Figure 3.3b demonstrates that the run-time overhead of TM-UtilityMine

increases with the size of the read-set.2 Note that applications with high abort rates

will interrupt the list traversal sooner because of conflict detection, and they will have

a lower performance degradation. Obviously, applications that spend a large part of

their execution inside transactions are affected more by the STM run-time overhead.

3.4.2 EazyHTM Results

We evaluate the performance of RMS-TM applications on EazyHTM [156] using a full-

system simulator based on the Alpha 21264 architecture. EazyHTM is implemented

using the M5 simulator [14] which is modified with a directory memory hierarchy and

a core-to-core interconnection network. Table 3.5 presents the main characteristics of

the simulated system. We use the largest possible data set in our simulations.

1For this application the number of transactions per thread is constant.
2The number of threads (eight) is constant in this graph.

40

3.4. Evaluation

Feature Description

CPU 1-8 Alpha cores, 2 GHz, in-order, 1 IPC

L1 32 KB, 64-byte cache line, 4-way associativity,

private per core, writeback, MSI, 2 cycles latency

L2 512 KB, 64-byte cache line, 8-way associativity,

private per core, writeback, 8 cycles latency

Main Memory 100 cycles latency

ICN 2D Mesh topology, 10 cycles latency per hop

Table 3.5: Configuration of the simulated system.

Application Read Set Write Set Transactions

(cache lines) (cache lines)

90 pctile Max 90 pctile Max #Commits #Aborts Abort

Rate (%)

TM-Hmmsearch 161 975 56 1,368 2,008 362 15.3

TM-Hmmpfam 3,348 10,338 1,400 3,832 308 345 52.9

TM-Hmmcalibrate 51 71 29 37 5,016 376 7.0

TM-Apriori-100 11 40 6 206 11,232 36 0.3

TM-ScalParC-A64-D125 4 4 3 3 50,393 18,979 27.4

TM-UtilityMine-1000-10-1 65 120 1 2 43,724,391 374,050 0.8

TM-Fluidanimate 2 2 1 1 9,347,885 3,131 0.0

Table 3.6: Transactional behavior of the RMS-TM applications with eight threads,

with EazyHTM. The sizes of transactional read and write sets are presented as the

90th percentile.

3.4.2.1 Transactional Behavior

Table 3.6 summarizes the transactional characteristics of the RMS-TM applications

on EazyHTM. TM-Hmmpfam exhibits a high abort rate. This is caused by the large

read/write sets that do not fit in the cache. Since EazyHTM does not provide support

for unbounded transactions, transactions are eventually aborted and restarted. Bench-

marks with high commit rates (TM-Hmmcalibrate, TM-Apriori, TM-UtilityMine, and

TM-Fluidanimate) and with high abort rates (TM-Hmmsearch, TM-Hmmpfam, and

TM-ScalParC) are important candidates to evaluate both lazy and eager data ver-

sioning. For example, Hammond et al. [62] and Moore et al. [115] show that high

commit/abort rates have large impacts on performance in HTM systems. This hap-

pens because eager data versioning relies on the idea that the commit rate is higher

than the abort rate, therefore, these systems are designed with a low commit cost. On

the other hand, HTM systems with lazy data versioning do not rely on this hypoth-

esis and they usually show that the abort cost is significantly lower than the commit

cost. To enable researchers to perform exhaustive studies on TM systems with different

41

3.4. Evaluation

0

1

2

3

4

5

6

7

8

Apr
io
ri

TM
−A

pr
io
ri

Sca
lP

ar
C

TM
−S

ca
lP

ar
C

U
til
ity

M
in
e

TM
−U

til
ity

M
in
e

H
m

m
se

ar
ch

TM
−H

m
m

se
ar

ch

H
m

m
pf

am

TM
−H

m
m

pf
am

H
m

m
ca

lib
ra

te

TM
−H

m
m

ca
lib

ra
te

Flu
id
an

im
at

e

TM
−F

lu
id
an

im
at

e

M
ea

n

TM
−M

ea
n

S
c
a

la
b

ili
ty

2 threads 4 threads 8 threads

Figure 3.4: Scalability of the lock-based and TM-Based applications normalized to

single-threaded lock and TM execution time, respectively, using EazyHTM. The

datasets are indicated in Table 3.6.

versioning strategies, RMS-TM provides different combinations of TM behaviors.

3.4.2.2 Performance Analysis

Figures 3.4 shows the scalability of lock- and TM-based RMS-TM applications on

EazyHTM. The majority of the TM-based applications exhibit high scalability, com-

parable to their equivalent lock-based versions. More in details, TM-Hmmcalibrate

scales linearly, TM-Hmmsearch and TM-Apriori scale slightly better than their lock-

based version, while TM-UtilityMine scales slightly worse than its lock-based version.

TM-ScalParC scales well up to four threads. However, this application scales poorly

with eight threads as opposed to its lock-based version. We noticed that the num-

ber of directory messages to detect conflicts is constant with two and four threads

(where the application shows a reason scalability) but it doubles with 8 threads (the

case of poor scalability). TM-ScalParC is the only application with such behavior.

TM-Fluidanimate presents a very high number of directory messages that increases

with the number of threads. For all the other applications the number of directory

messages is roughly constant regardless of the number of threads. We conclude that

EazyHTM’s conflict detection mechanism introduces overhead that limits the scalabil-

42

3.4. Evaluation

Application Read Set Write Set Transactions Wast

(cache lines) (cache lines)

90 pctile Max 90 pctile Max #Commits #Aborts Abort

Rate (%)

TM-Hmmsearch 109 945 56 1,369 2,008 204 9.2 0.2

TM-Hmmpfam 3,260 10,342 1,312 3,833 308 219 41.6 8.4

TM-Hmmcalibrate 47 72 26 37 5,016 285 5.3 0.1

TM-Apriori-100 11 19 6 103 14,438 14 0.1 0.6

TM-ScalParC-A64-D125 4 5 3 4 50,352 10,010 16.6 12.9

TM-UtilityMine-1000-10-1 65 120 1 3 43,724,391 436,698 1.0 1.7

TM-Fluidanimate 2 2 1 1 9,347,885 2,207 0.0 0.1

Table 3.7: Transactional behavior of the RMS-TM applications with eight threads,

with ScalableTCC. The sizes of transactional read and write sets are presented as the

90th percentile.

ity of TM-ScalParC with eight threads and TM-Fluidanimate with two, four and eight

threads.

3.4.3 ScalableTCC Results

In this section, we present our experimental results for the ScalableTCC HTM system

using a full-system simulator based on the Alpha 21264 architecture. Table 3.5 presents

the main parameters of the simulated multi-core system that we use for ScalableTCC.

3.4.3.1 Transactional Behavior

Table 3.7 presents the basic TM characteristics of the RMS-TM applications, and it

includes data such as the number of commits/aborts and read/write set size in 64-

byte cache lines. All transactional characteristics in Table 3.7 show that RMS-TM

covers different combinations of TM execution scenarios, such as the sizes of transac-

tional read (2 - 3,260 cache lines) and write (1 - 1,312 cache lines), and abort rates

(0.0% to 41.6%). More specifically, TM-Hmmpfam has the largest read- and write-sets,

3,260 (203 KB) and 1,312 (82 KB) cache lines, respectively. Moreover, this applica-

tion presents the highest abort rate (41.6%). Effective contention manager policies can

reduce the number of aborted transactions, which implies that TM-Hmmpfam can en-

able TM designers to improve their contention manager proposals. On the other hand,

TM-UtilityMine and TM-Fluidanimate show high commit rates with a large number

of committed transactions, which makes them desirable TM benchmarks for evaluating

TM systems with lazy data versioning, where the commit cost is high.

43

3.4. Evaluation

0

1

2

3

4

5

6

7

8

Apr
io
ri

TM
−A

pr
io
ri

Sca
lP

ar
C

TM
−S

ca
lP

ar
C

U
til
ity

M
in
e

TM
−U

til
ity

M
in
e

H
m

m
se

ar
ch

TM
−H

m
m

se
ar

ch

H
m

m
pf

am

TM
−H

m
m

pf
am

H
m

m
ca

lib
ra

te

TM
−H

m
m

ca
lib

ra
te

Flu
id
an

im
at

e

TM
−F

lu
id
an

im
at

e

M
ea

n

TM
−M

ea
n

S
c
a

la
b

ili
ty

2 threads 4 threads 8 threads

Figure 3.5: Scalability of the lock-based and TM-based applications normalized to

single-threaded lock and TM execution time, respectively, with ScalableTCC. The

datasets are indicated in Table 3.7.

Figures 3.5 shows the scalability of lock- and TM-based RMS-TM applications on

ScalableTCC. Most of the TM-based applications present similar scalability to their

equivalent lock-based versions except TM-ScalParC, TM-Apriori, TM-UtilityMine and

TM-Hmmpfam. As we can see from Table 3.7, TM-ScalParC and TM-Hmmpfam with

eight threads waste 12.9%, and 8.4% of their total execution time, respectively, which

limits their scalability. Further analysis showed that rolling back aborted transactions

is a large component of the total wasted time for these applications. TM-Apriori

and TM-UtilityMine do not scale as well as their lock-based equivalent with eight

threads. For these applications, we observe that they spend relatively large amount of

time at synchronization points especially with eight threads, as opposed to the other

applications.

3.4.4 Comparison of RMS-TM and STAMP

In this section we compare RMS-TM to STAMP using three different TM systems.

Both RMS-TM and STAMP have substantial number of applications with varying abort

/commit rates and small/large transactions. RMS-TM also has I/O operations, library

calls, memory management operations, pre-compiled library calls inside transactions,

44

3.4. Evaluation

Bayes Intruder Kmeans−hi Labyrinth SSCA2 Vacation−hi Yada Mean
0

1

2

3

4

5

6

7

8

S
c

a
la

b
il

it
y

2 threads 4 threads 8 threads

(a) Intel STM

Bayes Intruder Kmeans−hi Labyrinth SSCA2 Vacation−hi Yada Mean
0

1

2

3

4

5

6

7

8

S
c

a
la

b
il

it
y

2 threads 4 threads 8 threads

(b) EazyHTM

Bayes Intruder Kmeans−hi Labyrinth SSCA2 Vacation−hi Yada Mean
0

1

2

3

4

5

6

7

8

S
c

a
la

b
il

it
y

2 threads 4 threads 8 threads

(c) ScalableTCC

Figure 3.6: Scalability of the STAMP applications normalized to single-threaded TM

execution time.

and nested transactions, whereas STAMP only provides memory management opera-

tions inside transactions. Hence, we believe that the RMS-TM applications present

more realistic use cases of TM. On the other hand, the STAMP benchmarks provide

larger read/write sets than RMS-TM. This characteristic can help TM researchers eval-

uate their TM proposals that support virtualized transactions [32].

We analyze the scalability of RMS-TM and STAMP applications on three different

TM systems. Figures 3.6a, 3.6b and 3.6c, show that RMS-TM applications scale well

as the number of cores increases on both STM and HTMs (Intel STM 4.7×, EazyHTM

6.0×, and ScalableTCC 6.3×, on average, with eight threads). However, some STAMP

applications on the STM implementation, Figure 3.6a, show no scalability regardless of

45

3.5. Related Work

the number of threads, whereas they have a reasonable scalability on HTMs (EazyHTM

4.1× and ScalableTCC 3.7×, on average, with eight threads).

Unlike STAMP, RMS-TM provides both lock-based and transactified implemen-

tations to better understand drawbacks of TM proposals through direct performance

comparison. For example, as presented in Section 3.4.1.2, performance and scalability

analysis between TM-UtilityMine and its equivalent lock-based implementation provide

important insights into the STM system. With this information we understand that

TM-UtilityMine’s poor scalability is caused by STM run-time overhead rather than the

algorithm. Finally, RMS-TM consists of applications written in C/C++ programming

languages using different parallel programming models such as OpenMP and Pthread.

On the other hand, STAMP applications are implemented in C with pthread.

3.5 Related Work

In this section, we briefly review some of the previously proposed TM benchmarks

to highlight their advantages and disadvantages in evaluating TM systems. We cate-

gorize TM benchmark suites into micro-benchmarks (TM micro-benchmarks [50] and

The Haskell STM Benchmark Suite [128]), parallel benchmarks (SPLASH-2 [163]), and

other benchmarks with more complex transactional characteristics (STMBench7 [59],

Lee-TM [11], WormBench [167], STAMP [22], Atomic Quake [168]. and QuakeTM [55]).

TM micro-benchmarks contain single data structures, such as hash tables, linked

lists, B-trees, etc. These benchmarks are useful for providing basic-level insights into

TM designs, but they do not exhibit different TM characteristics, and they are not

representative of realistic workloads.

The Haskell STM Benchmark Suite consists of ten applications that are imple-

mented with Haskell, which features TM as a first-class language feature. Most of the

applications in this benchmark suite are micro-benchmarks.

SPLASH-2 contains eight parallel applications and four computational kernels.

This benchmark suite focuses on applications that utilize little synchronization be-

tween threads, and it does not provide various sizes of critical sections or different

conflict rates. Therefore, this benchmark suite is not fully capable of evaluating the

underlying TM system and discovering interesting transactional behaviors.

46

3.5. Related Work

STMBench7 presents an application to analyze STM systems. This benchmark

provides a coarse-grained and medium-grained locking implementation that can be

compared to its equivalent transactified version. The benchmark performs complex and

dynamic operations on a large data structure, so it has only relatively long transactions.

Lee-TM benchmarks feature long and realistic workloads that consist of sequential

as well as coarse- and medium-grained lock-based, transactional, and optimized trans-

actional implementations. This benchmark suite is useful for comparing different lock

and transactional implementations; however, it only features different implementations

of the same algorithm.

WormBench is a highly configurable transactional application. This synthetic ap-

plication is useful mostly to mimic existing TM applications rather than discovering

unknown usage patterns of emerging transactional applications.

STAMP is a benchmark suite that consists of eight applications with 30 different

sets of configurations. The input data for the applications present a wide range of run-

time transactional characteristics, e.g., varying transaction lengths, read/write set sizes,

and degree of contention. This benchmark suite provides sequential and transactional

versions of the applications, but it does not provide their lock-based versions; thus, TM

researchers cannot compare TM-based and the equivalent lock-based implementations.

QuakeTM and Atomic Quake are rich and complex transactional memory applica-

tions. QuakeTM is parallelized from the sequential version of Quake game server using

TM, while Atomic Quake is derived from the parallel lock-based version of the server.

These benchmarks exhibit irregular parallelism, have I/O and system calls, error han-

dling, and instances of privatization. In addition, inside transactions, there are function

calls, memory management, and nested transactions. However, these benchmarks can

only be used for evaluating STM systems due to their size and complexity.

In comparison, RMS-TM includes lock-based and TM-based implementations of

seven real-world applications that have a wide range of TM characteristics in terms

of transaction lengths, read/write set sizes, and contention. This benchmark suite is

suitable for evaluating both STM and HTM systems. In addition, unlike most other TM

benchmarks, RMS-TM presents many desirable properties, such as nested transactions,

I/O operations, and system calls inside transactions.

47

3.6. Conclusions

3.6 Conclusions

We introduced a new TM benchmark suite, RMS-TM, that consists of multi-core work-

loads from the Recognition, Mining, and Synthesis domain. We developed a general

methodology to determine applications that are suitable for analyzing TM implemen-

tations, and we transactified the selected applications. Therefore, RMS-TM includes

both locked-based and transactified versions of the same applications. We evaluated

RMS-TM using one STM and two HTM implementations, and we presented the de-

tailed analysis of our experimental results. We found that the applications in our

benchmark suite have high scalability, and they feature a wide range of transactional

characteristics. RMS-TM is publicly available in the hopes of helping researchers to

design and evaluate their TM systems [134].

48

Chapter 4

Interchangeable Back Ends for

STM Compilers

4.1 Introduction

As researchers work to develop robust, mature STM, it becomes increasingly important

to be able to share applications, compilers, and runtimes among groups, and to be able

to modify one layer of the system stack while keeping the others constant, for “apples-

to-apples” comparison.

Until recently, most STM systems were implemented as user-level libraries: the pro-

grammer was expected to manually instrument not only transaction boundaries, but

also individual loads and stores within transactions. This library-based approach was

adequate for early experiments with microbenchmarks, but it becomes increasingly te-

dious and error prone for larger applications [37]. The use of different library interfaces

in different research groups has also made it difficult to share applications across groups,

or to make reliable performance comparisons: experiments with different versions of

the application source code inevitably raise questions of fairness and confidence.

A recent draft standard for transactions in C++ [6], and the release of compilers

conforming to that standard, promises to significantly ease the construction of large

transactional programs, and reduce the problem of source-level incompatibility among

groups. Compilers also improve the interoperability of hardware and software TM, by

automatically generating the instrumented loads and stores that are required by the

latter but not the former. In the software case, the fact that calls to the back-end

49

4.1. Introduction

system are being generated by a compiler rather than a human programmer means

that the back end can provide a wide, performance-oriented ABI instead of a narrow

convenience-oriented API.

Unfortunately, much of the work on STM systems over the past 7 years remains

incompatible with recent compilers because of interface issues. Indeed, the four publicly

available C++ TM compilers support remarkably little back-end diversity. Oracle’s

compiler, which generates code only for the SPARC, employs the SkySTM back end [95];

Intel’s compiler, for the x86, employs a modified version of the STM presented in Ni et

al. [121]; and the Dresden and GNU compilers, also for the x86, employ TinySTM [52].

At the same time, the three x86 compilers and their two back ends employ (for the most

part) a common ABI designed by Intel [77], which raises the prospect of interoperability.

The RSTM suite [147] comprises the widest diversity of STM algorithms currently

available (13 in the version 5 release). In the interest of wider experimentation, we have

adapted the “word-based” algorithms to the Intel ABI, allowing them to be used with

any conforming compiler. To minimize per-algorithm effort, we introduce a “shim”

layer that embodies most of the adaptation. As of this writing, we have successfully

connected the Intel C++ TM compiler to three RSTM back ends: LLT (lazy detection,

lazy versioning, with timestamps), which resembles TL2 [43]; ET (extendable times-

tamps), which resembles TinySTM; and Precise (a.k.a. NOrec [39]), which provides

unusually strong privatization semantics, and works particularly well as the software

half of a hybrid TM system [36].

Our compiler-ready back ends allow us, for the first time, to run large applications

on top of RSTM without hand-instrumenting loads and stores. As a first installment

toward “apples-to-apples” comparison, we present performance results in Section 4.4

for both RSTM and the Intel back end on several applications from the RMS-TM

benchmark suite [86]. We also present results for a selection of microbenchmarks and

for applications from the STAMP suite [22]. For STAMP we consider both the original

code, which uses hand instrumentation of (only) “important” loads and stores, and new

versions written to the C++ TM standard. One new version lets the compiler instru-

ment everything inside transactions; another uses Intel’s transaction [[waiver]]

extension to disable instrumentation of many “unimportant” loads and stores. Our

results suggest that the scalability of STAMP depends critically on minimizing instru-

mentation.

50

4.2. Design and Implementation

4.2 Design and Implementation

4.2.1 Draft Specification for TM in C++

The draft standard for C++ TM [6], written jointly by representatives of Intel, Or-

acle, and IBM, defines language extensions for TM applications. In particular, the

transaction{} construct brackets sequences of statements to be executed “all at

once.”

A transaction can be declared as either atomic (the default) or relaxed. Atomic

transactions are restricted to perform only safe operations—loosely, those that a com-

piler and runtime are sure to be able to execute speculatively, and roll back on abort.

In a data-race-free program, an atomic transaction never appears to interleave with

execution in other threads or with behavior in the outside world.

Relaxed transactions are allowed to perform unsafe operations. They may or may

not be executed speculatively. Operations inside a relaxed transaction are isolated from

other transactions, but may, if unsafe, appear to interleave with (nontransactional)

execution in other threads or with the outside world—even if the overall program is

data-race free.

Functions called in an atomic transaction must be declared with the transaction safe

attribute, and cannot themselves contain unsafe operations, or calls to unsafe functions.

Functions called in a relaxed transaction may be declared with the transaction callable

attribute, to increase the likelihood that the compiler will be able to execute the trans-

action speculatively. A transaction callable function, like a relaxed transaction, is

permitted to perform unsafe operations. The compiler can be expected to generate two

clones of a transaction safe or transaction callable function—one for use out-

side transactions, one (with instrumented loads and stores) for use inside. The C++

draft standard calls for transactional function pointers to be statically typed with the

same transaction safe or transaction callable attributes as the functions being

assigned into them.

Some unsafe operations are said to be irrevocable, meaning that they cannot be

rolled back. Examples include I/O and writes to atomic variables. If a relaxed trans-

action performs an irrevocable action, the STM implementation can be expected to

preclude concurrent execution of certain other transactions [152]. Note that not all un-

51

4.2. Design and Implementation

safe operations are necessarily irrevocable. For example, a read of a volatile variable

is an unsafe operation but it will probably not be irrevocable.

The Intel compiler, which we use for our experiments, implements certain exten-

sions to the C++ TM standard. For example, a function can be declared with the

transaction pure attribute, meaning that the programmer guarantees it to be idem-

potent, and thus safe to execute—even within an atomic transaction—without instru-

mentation on its loads and stores. Finally, the transaction [[waiver]] {} construct

can be used to bracket a sequence of statements inside a transaction that should not be

rolled back on abort. Waivered code is essentially unstructured open nesting; example

use cases include debugging, statistics gathering, and semantically neutral operations

like tree rebalancing.

The current version of Intel’s compiler does not implement transactionally typed

function pointers. It supports the transactional use of function pointers by dynamically

detecting if the indirect call target has a transactional clone, calling it if it does, and

switching to serial irrevocable mode to perform the indirect call nontransactionally if

it doesn’t. This has two side effects: indirect calls through function pointers are only

valid in relaxed transactions as they might require serial irrevocable execution, and

incorrectly annotated source may lead to poor performance due to transactions silently

switching to serial irrevocable mode.

4.2.2 Intel ABI Overview

Figure 4.1a shows a simple program fragment using the C++ TM API. The Intel

compiler automatically generates an equivalent version instrumented for the Intel ABI

(Figure 4.1b). Implementations of the functions in the ABI are provided by the un-

derlying STM library. This subsection describes the instrumentation performed by the

Intel compiler; the following section details how we link the instrumented code to the

RSTM back ends.

The code in Figure 4.1a executes a transactional read of variable a, increases its

value by 5, and writes back the result (line 5). In Figure 4.1b, the thread performing the

transaction allocates a transaction descriptor by calling ITM getTransaction (line 3).

The beginTransaction function (line 4) takes several parameters: the transaction

descriptor, a set of bit values encoding information about the transaction’s properties,

and the source location where the atomic block begins. Given these, beginTransaction

52

4.2. Design and Implementation

int a;

int foo()

{

__transaction{

a = a + 5;

}

}

(a) C++ TM standard application pro-

gramming interface (API)

int foo()

{

_ITM_transaction * td =

_ITM_getTransaction ();

int doWhat =

beginTransaction(td , prop , str_loc);

/* a = a + 5; */

int a_tmp = _ITM_RfWU4(td , &a);

a_tmp = a_tmp + 5;

_ITM_WaWU4(td, &a, a_tmp);

_ITM_commitTransaction(td , &outer_commit);

}

(b) Intel TM application binary interface (ABI)

Figure 4.1: Automatic read/write instrumentation of a simple TM program

saves the machine state (callee-saves registers, stack pointer) and starts the transaction.

If the transaction aborts internally, execution will resume with a second return from

beginTransaction–it effectively has setjmp semantics in this way.

At line 6, the compiler knows that the read of a will be followed by a write. It

therefore instruments the access with a call to ITM RfWU4—Read for Write, 4 bytes.

In an eager-acquire STM this routine could pre-acquire a write lock on a, avoiding the

need to promote a read lock later, and return the value of a, which the compiler saves

in temporary variable a tmp.

The next write operation is instrumented with ITM WaWU4—Write after Write, 4

bytes, which can avoid the complexities of lock promotion. The ITM WaWU4 (line 8) up-

dates a with its new value (a tmp). The last call in the generated code (ITM commitTrans-

action) attempts to commit the transaction. If the function detects that the trans-

action has conflicts, then the transaction will abort and perform a longjmp back to

beginTransaction. If no conflicts are detected, the transaction commits and execu-

tion continues with whatever lies after line 10.

53

4.2. Design and Implementation

4.2.3 Design Details

Several technical challenges made the adaptation of RSTM to Intel ABI an interesting

and nontrivial task. As noted in Section 4.1, the principal design decision was to

introduce a “shim” library that maps the ABI function calls generated by the compiler

(sometimes with a bit of “glue” code) to the function signatures provided by (one of)

the RSTM back ends. This strategy allows most of the adaptation work to be done

once rather than once per back end. The main disadvantage of the shim approach

is potentially extra overhead. Fortunately, most of the back end routines in RSTM

were intended to be inlined into manually instrumented source. We inline them into

the shim instead, allowing us to incur only one function call, rather than two, at each

instrumentation point.

Subword accesses. The existing RSTM back ends were designed to support only 4-

byte loads and stores, but the Intel ABI requires 1-, 2-, 4-, 8-, 12-, 16-, 24-, and 32-byte

accesses as well. Multiword accesses are easily implemented (if slightly inefficiently)

as sequences of word accesses. Subword accesses, however, raise the possibility of false

sharing. If x and y occupy opposite halves of the same word, for example, then a

transaction that modifies x may force the abort of a transaction that reads y, even

though no conflict has actually occurred. Worse, if nontransactional code modifies y

during the execution of a transaction that modifies x, commit-time write-back of the

word containing x may overwrite the modification of y, leading to incorrect behavior—

even though the program is data-race free.

Perhaps the simplest solution would be to maintain read and write logs at byte

granularity, but this would quadruple the cost of instrumentation for common-case

word-sized accesses. A second alternative might be to maintain separate logs for word,

halfword, and byte level access, but this leads to significant complexity when a trans-

action accesses the same word at multiple granularities. We ultimately chose to add

a bit mask to each entry in the read and write logs, to identify which part(s) of the

word have been accessed. Appropriate bits are or-ed into the mask on each access.

During write-back, only modified bytes are updated. During value-based validation (as

in NOrec), only accessed bytes are compared.

For orec-based conflict detection (as in LLT and ET), we see no easy way to keep

track of subword updates. Per-byte timestamps would again quadruple the cost of

54

4.3. Experimental Setup

common operations, and bit mask schemes suffer from the fact that different words

mapping to the same orec may have different update patterns, and different bytes may

be updated at different times. For the sake of simplicity and modest overhead, we have

chosen to maintain orec-based conflict detection at the word level only. This can lead

to unnecessary aborts, but not to incorrect behavior.

Two small optimizations streamline the code path for load and store instrumen-

tation. First, a “fast path” always checks for full-word granularity, since that is the

common case. Second, to simplify masking, bitmaps are full-word width, with 8 iden-

tical bits in every byte.

Inevitability (irrevocability). The Intel ABI defines a function (changeTrans-

actionMode) that can be used to make completion of a transaction inevitable prior to

I/O, calls to uninstrumented functions, or other irreversible operations. The RSTM

back ends currently support inevitability only when requested prior to performing any

loads or stores. To support the Intel ABI routine, we arrange to abort a transaction

that has already performed memory accesses, and restart it in inevitable mode.

Missing functionality. Support for some of the Intel ABI routines was missing

entirely in RSTM and had to be added to the shim. The addUserUndoAction and

addUserCommitAction routines allow user code to register functions to be called when

a transaction rolls back or commits. In the absence of explicit guidance in the ABI,

we arrange to call these functions in the order in which they were registered. The

registerThrownObject routine allows user code to register exception objects. Updates

to such objects are not rolled back on abort, and for redo-log implementations buffered

writes to such objects must be performed during aborts.

4.3 Experimental Setup

In the Section 4.4 we use our Intel/RSTM shim to (1) explore the overhead of auto-

matic (as opposed to manual) read and write instrumentation, and (2) compare the

performance of the default Intel back end to three of the RSTM alternatives. In our

experiments we employ three RSTM microbenchmarks (HashTable, DoubleList, and

RBTree) and selected applications from the STAMP [22] and RMS-TM benchmark [86]

suites.

55

4.3. Experimental Setup

The STAMP suite comprises eight applications with 30 configuration sets. The

applications are drawn from bioinformatics, engineering, computer graphics, and ma-

chine learning. They vary significantly in transaction lengths, read- and write-set sizes,

and degree of contention. All were written with explicit calls to a transactional li-

brary API. They needed to be modified by hand to employ the C++ TM standard

API instead. In the time available we were able to complete three of the eight appli-

cations: Kmeans, SSCA2, and Vacation. Kmeans and SSCA2 were straightforward:

their transactions are relatively simple, with no nested subroutine calls, transactional

libc library calls, or unsafe operations. Vacation was more of a challenge (as would

be the five remaining applications). We annotated functions called from within trans-

actions in Vacation as either transaction safe or transaction callable, depending

on whether they include unsafe operations. We then defined transactions as atomic or

relaxed accordingly.

STAMP implements generic data structures using function pointers. A set of objects

of opaque type, for example, is represented with a list of void* and a pointer to a func-

tion that can be used to test for object equality. STAMP’s initial implementation uses

pointers to uninstrumented functions in such contexts: the original developers deter-

mined that the lack of instrumentation would not compromise program correctness. As

described in Section 4.2.1, the Intel compiler currently generates code that will silently

switch to serial irrevocable mode when it encounters such pointers. To mimic the behav-

ior of the original STAMP application, we can use Intel’s transaction [[waiver]]

extension, which allows us to call through these pointers nontransactionally. Alterna-

tively, we can declare the target functions as transaction safe and call them transac-

tionally, without the waiver. This leads to significant overhead, however, because the

functions are called frequently during core data structure traversals, and the compiler

must now use instrumented versions of the code. For completeness we test both “with

waiver” and “without waiver” versions of Vacation.

The RMS-TM suite comprises seven applications from the Recognition, Mining

and Synthesis (RMS) domain. As in STAMP, transactions vary greatly in length, read-

and write-set size, and degree of contention. RMS-TM applications also exercise a va-

riety of special TM features, including nested transactions, I/O, and system calls and

complex function calls inside transactions. Unlike STAMP, the RMS-TM suite was

developed using the C++ TM standard rather than a library-level API. Running these

56

4.4. Experimental Results

applications directly on the RSTM back ends, without the shim library, would have

required large amounts of tedious and error-prone hand instrumentation. We report

results for one application from each of the RMS-TM application domains: HMMcali-

brate (from Bioinformation), UtilityMine (from Datamining) and Fluidanimate (from

Physics).

We perform our experiments on a 2.27 GHz, 2-processor Intel Xeon (E5520) system.

Each processor contains four hyperthreaded cores serviced by private 32KB L1 Icache

and 32KB Dcache, a private 256KB L2 cache, and a shared 8MB L3 cache. The system

is equipped with 8GB of RAM that each processor access through a QPI memory

controller. Benchmarks are written using the subset of the C++ TM draft API [6]

supported by the Intel R© C++ STM Compiler Prototype Edition 4.0 [75], and compiled

using –O3 settings. The reference input sets were used where applicable. Experiments

were performed on Linux version 2.6.30. We rely on the default Linux thread scheduler

which prefers to distribute threads across processors before cores before hyperthreads.

The tested benchmarks and implementations do not benefit from hyperthreading, so

we report results up to 8 threads only.

4.4 Experimental Results

4.4.1 Overhead Analysis of Automatic Instrumentation

While relying on a compiler to automatically instrument read and write accesses sim-

plifies the instrumentation of complex programs relative to manual instrumentation, it

may lead to over-instrumentation due to the need for conservative assumptions about

aliasing and lack of idempotence. On the other hand, the compiler may identify opti-

mization opportunities that were missed during manual instrumentation, therefore im-

proving performance. To assess these potential effects, we compared the performance of

the original, manually-instrumented STAMP applications to that of the automatically-

instrumented versions that use our shim library. We could not perform the same

analysis for RMS-TM, as manually instrumented versions are not available.

Linking with RSTM through the TM ABI shim library introduces some additional

overhead, unrelated to the compiler, relative to manually instrumentation. We expect

this overhead to be small—at most one additional function call per instrumented access.

57

4.4. Experimental Results

Ssca2 Vacation Kmeans
0

20

40

60

80

100

120

140

160

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e
 %

 (
c
o
m

p
ile

r/
m

a
n
u
a
l)

ET LLT NOrec

Figure 4.2: Execution time of compiler-instrumented code, relative to manually instru-

mented code, for single-threaded STAMP applications. Vacation represents “without

waiver” execution.

As noted in Section 4.3, the manually instrumented versions of the List and RBTree

data structures in Vacation use uninstrumented functions internally for frequently ex-

ecuted comparison operations. The compiler cannot possibly generate equally efficient

code for these without a global understanding of the program, as the comparisons ac-

cess shared memory locations. In the next section we provide Vacation results both

with and without transaction [[waiver]]. The former requires the same level of

programmer understanding as the original implementation; the latter illustrates the

overhead of leaving code generation entirely up to the compiler.

Figure 4.2 shows the overhead of automatic instrumentation for the single-threaded

execution of the STAMP benchmarks (without transaction [[waiver]]) on the

three RSTM back ends. The results depend on both the applications and the back

end. SSCA2 shows performance improvement for ET and limited overhead for LLT

and NOrec. Since ET shows a net benefit, we believe that the compiler does a good

job of instrumenting the code and identifying optimization opportunities, and that the

different behavior of LLT and NOrec is specific to the STMs. For Kmeans and Vacation,

on the other hand, all of the back ends suffer significant performance loss compared to

the manually-instrumented version—from 10–50%. Here the compiler clearly introduces

read/write instrumentation that the manually instrumented version was able to avoid,

and extra optimization opportunities, if any, are insufficient to compensate.

Conservative instrumentation can have an effect on scalability as well. The resulting

58

4.4. Experimental Results

Application IntelSTM NOrec ET LLT

2 4 8 2 4 8 2 4 8 2 4 8

HashTable 0.05 0.17 0.28 0.02 0.07 0.24 0.85 11.91 5.02 1.68 5.53 11.11

RBTree 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.09 0.18 0.48 1.57

DoubleList 13.85 36.31 52.13 10.09 27.56 49.48 7.75 29.15 57.35 14.81 37.38 63.16

SSCA2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 3.00

Kmeans 0.05 0.02 0.00 2.23 5.59 13.48 47.39 56.82 74.95 37.15 55.61 76.24

Vacation 0.01 0.04 0.08 0.00 0.00 0.00 0.80 1.13 4.26 0.08 0.26 0.66

HMMcalibrate 15.24 39.36 66.76 4.52 14.99 43.55 98.16 99.54 99.94 91.01 97.29 99.05

UtilityMine 0.01 0.05 0.26 0.00 0.03 0.10 0.09 1.44 0.80 0.11 0.41 0.93

Fluidanimate 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.04 0.02 0.05

Table 4.1: Abort Rates (percentage of all dynamic transaction instances that abort)

for 2, 4 and 8 threads.

larger read and write sets lead to longer transactions, due to increased validation times

and to an increase in the probability of false conflicts in orec-based implementations.

In Kmeans, for example, manually instrumented code sees 8-thread abort rates for ET

and LLT of 3% and 58%, respectively. For compiler instrumented code (Table 4.1), the

corresponding rates are both around 75%. Clearly the extra instrumentation inserted

by the compiler in this case interacts badly with eager conflict detection.

NOrec, which is lazy like LLT, sees an abort rate of approximately 14% with both

manual and automatic instrumentation. It would be vulnerable, however, to increases

in the number of instrumented writes, since its write-back operations are globally seri-

alized. An even larger issue would arise in any application where compiler the instru-

mented writes in what could otherwise be a read-only transaction.

4.4.2 Back-end Comparisons

In this section we present performance results for the three sets of benchmarks men-

tioned in Section 4.3.

Microbenchmarks: In our first experiment we consider microbenchmarks in

which a set of threads use transactions to continually insert, delete, and look up keys in a

set. The set is prepopulated with half of the possible keys and we execute an instruction

mix that consists of 33% of each operation. Approximately half of the insert and delete

operations find the target key and modify the set, so transactions should be 66% read

only. The IntelSTM compiler does not introduce any unnecessary writes, so the results

presented here meet this goal. We consider three different set implementations—a hash

table, a red-black tree, and a doubly linked list. Figure 4.3 reports the throughput

59

4.4. Experimental Results

2 4 8
0

2

4

6

8

10
x 10

6

#Threads

T
ot

al
 tr

an
sa

ct
io

ns
/s

ec
on

d

(a) HashTable

2 4 8
0

2

4

6

8

10

12

14
x 10

5

#Threads

T
ot

al
 tr

an
sa

ct
io

ns
/s

ec
on

d

(b) DoubleList

1 2 4 8
0

1

2

3

4

5
x 10

6

#Threads

T
ot

al
 tr

an
sa

ct
io

ns
/s

ec
on

d

IntelSTM
NOrec
LLT
ET

(c) RBTree

Figure 4.3: Throughput results for the microbenchmarks. Y axis shows total number

of transactions per second: higher is better.

(total number of transactions per second) for these microbenchmarks when varying the

number of threads from one to eight.

In HashTable (Figure 4.3a) we test 8-bit keys (maximum set size of 256), and

transactions are tiny, performing a maximum of five reads and three writes. This

results in few conflicts, as seen in the low abort rates for all the back ends (between

0.24% and 11.11% with eight threads, as reported in Table 4.1). This configuration

should be extremely scalable, however we immediately see the effect of Linux’s default

scheduling policy. Placing the second thread across the QPI interconnect results in long

latencies and high overheads for data and metadata access once we have two threads.

ET, LLT, and the IntelSTM can overcome this initial drop given enough threads, but

NOrec’s reliance on a single global sequence lock will not scale across the processors

with such small transactions. Further investigation shows a high number of commit

time re-validations for HashTable compared to the other microbenchmarks (23% of

all commits with eight threads), which implies that NOrec transactions spend much of

their time waiting in their commit barrier due to their need to validate after each writer

commit. ET and LLT show better scalability at eight threads than IntelSTM; this may

be attributed, at least in part, to the overhead of privatization safety in IntelSTM (not

needed in the microbenchmark, and not provided by default in ET or LLT).

In DoubleList (Figure 4.3b) we again test 8-bit keys, but experience much more con-

tention due to the linear structure of the list-based set. As with HashTable, DoubleList

transactions perform a small number of writes, however they may perform up to 300

reads. These longer transactions reduce the relative overhead of metadata bottlenecks,

60

4.4. Experimental Results

resulting in better scalability for the RSTM back ends. The large number of conflicts

means that, in contrast to HashTable, ET and LLT validate nearly as frequently as

NOrec. NOrec’s higher throughput is a result of its lower abort rate, which stems in

turn from value-based conflict detection and the resulting lack of false conflicts. It is

currently unclear why larger transactions do not benefit IntelSTM as well. We suspect

that contention management may play a role.

Finally, RBTree (Figure 4.3c) expands the key set size to 20 bits and illustrates

the behavior of memory-bound applications. With set sizes approaching a million

elements, RBTree transactions may perform over 100 instrumented reads and up to 50

writes during rebalancing. While data cache misses dominate execution time, ET and

LLT scale better than IntelSTM and NOrec. In fact, IntelSTM and NOrec introduce

larger runtime overhead because of the privatization-safe guarantees they provide. As

with HashTable, NOrec’s scalability is impacted by its need to validate when any writer

commits.

STAMP: Figures 4.4a, , 4.4b, and 4.4c show performance results for the selected

STAMP applications on the tested back ends.

Figure 4.4a shows Vacation results using the recommended “high” contention pa-

rameters, both with (dotted lines) and without (solid lines) transaction [[waiver]].

With the waiver, Vacation exhibits large, read-dominated transactions—more than

1300 instrumented reads and 150 instrumented writes—with low contention, evidenced

by low abort rates in Table 4.1. As expected, all back ends provide good scalability

with performance improvement up to eight threads. Without the waiver, the number of

instrumented reads roughly doubles, to more than 2500. IntelSTM continues to scale

well in these conditions. The RSTM back ends, however, have a clear performance

problem with read sets this large. As of this writing, the source of the problem is

unclear, and is a subject of ongoing investigation. We would not have been aware of

the issue without the availability of the Intel ABI to RSTM shim.

SSCA2 transactions (Figure 4.4b) consist of up to three reads and two writes, and

are effectively independent of one another. Each transaction performs at least one

write, and transactions form the bulk of application execution time. This represents

the pathological workload for NOrec, where writer commits are serialized. We see this

in NOrec’s lack of scalability. In contrast, ET, LLT, and IntelSTM allow non-conflicting

writers to commit in parallel and scale well. IntelSTM shows high overheads similar to

61

4.4. Experimental Results

1 2 4 8
0

20

40

60

80

100

#Threads

E
xe

cu
tio

n
T

im
e

(a) Vacation

1 2 4 8
0

5

10

15

20

25

#Threads

E
xe

cu
tio

n
T

im
e

(b) SSCA2

1 2 4 8
0

5

10

15

20

25

30

#Threads

E
xe

cu
tio

n
T

im
e

(c) Kmeans

1 2 4 8
0

1

2

3

4

5

6

#Threads

E
xe

cu
tio

n
T

im
e

(d) HMMcalibrate

1 2 4 8
0

100

200

300

400

#Threads

E
xe

cu
tio

n
T

im
e

(e) UtilityMine

1 2 4 8
0

100

200

300

400

500

600

#Threads

E
xe

cu
tio

n
T

im
e

IntelSTM
NOrec
LLT
ET

(f) Fluidanimate

Figure 4.4: Scalability results for STAMP and RMS-TM. The Y axis shows execution

time in seconds: lower is better. In Figure 5.5e, dotted lines represent the version with

transaction [[waiver]]

62

4.4. Experimental Results

those seen in the HashTable microbenchmark, where transactions are similarly small

and nonconflicting. We speculate that the cause of this overhead may be related to

mechanisms used to provide privatization safety [121].

As discussed in Section 4.4.1, the Intel STM compiler appears to dramatically over-

instrument Kmeans transactions. This results in larger read and write sets and, con-

sequently, higher abort rates than those reported by Minh et al. [22]. For ET and

LLT, the abort rates are particularly high: 75% or more at eight threads (Figure 4.1).

The fact that NOrec sees only a 13% abort rate at eight threads suggests that most

of the problem in ET and LLT is due to false conflicts. At the same time, compiler

instrumentation results in all transactions being writers, which penalizes NOrec dispro-

portionally, giving it the longest 8-thread execution time. Notice that, while the abort

rate is very low with IntelSTM, its performance is similar to that of the other STMs.

This suggests that its performance is dominated by other components.

RMS-TM: Figures 4.4d, 4.4e, and 4.4f show the execution time of the selected

RMS-TM applications. HMMcalibrate exhibits short transactions with high contention.

As shown in Table 4.1, it has the highest abort rate (between 44% and 99.9%, with

eight threads). At the same time, it spends only a tiny fraction of its execution time

inside transactions, allowing it to exhibit good scalability for all the back ends.

In UtilityMine (Figure 4.4e), IntelSTM shows high run-time overhead even with

two threads. ET and LLT keep improving up to eight threads, but NOrec does not: a

large number of threads increases the number of re-validations, leading to very little im-

provement beyond four threads. IntelSTM scales similarly to ET and LLT beyond two

threads, but overall performance is dominated by the high instrumentation overhead.

Fluidanimate also has short transactions, but in contrast to HMMcalibrate, its

contention is low. When increasing the number of concurrent threads, the number

of transactions per thread remains constant, so the total number of transactions in-

creases. On the other hand, the work done per thread decreases with the number of

threads: as a result, Fluidanimate shows strong scalability up to four threads. With

eight threads, however, the ratio between the computation and synchronization phases

decreases, which limits scalability (Figure 4.4f). The high frequency of writer transac-

tions (read/write ratio of 1.16:1) leads to a performance bottleneck in NOrec at eight

threads.

63

4.5. Related Work

Summarizing, our results show that scalability and overall performance depend

heavily on both the application and the choice of back-end system. Generally speaking,

high instrumentation overhead limits overall performance. IntelSTM shows significantly

higher overhead than the RSTM back ends for some applications (e.g., HashTable and

SSCA2). For these, even single-thread performance is significantly lower than with the

other STMs. If the abort rate is high, value-based conflict detection (NOrec) helps

reduce false conflicts and, therefore, improves performance. DoubleList and HMMcal-

ibrate illustrate this effect. When the read/write ratio is low (i.e., the application has

multiple active writer transactions), STMs that allow concurrent writers (ET, LLT and

IntelSTM) show higher performance compared to single-writer STMs. We can see this

effect strongly in SSCA2, and to a lesser extent in HashTable and Kmeans.

4.5 Related Work

Intel STM [161] consists of a C/C++ compiler and a high performance STM Run-

time Library. The compiler instruments all shared memory reads and writes inside

transactions by using read and write barriers. The flattening model is used to support

nested transactions, and weak isolation between transactional and non-transactional

code is provided. Transactions can be executed in optimistic or pessimistic mode. In

both cases, the transactional writes update the data in-place with strict two-phase

locking, while the transactional reads are executed optimistically or pessimistically.

Serial execution mode is also provided to support transactions that contain irrevocable

operations.

GCC-TM [138] is focused primarily on the challenges of programming in the large.

One major issue is the need to maintain two or more copies of certain functions: the

traditional version for use outside transactions, and one or more versions with instru-

mented reads and writes, for use inside transactions. Among other things, linkers and

object file conventions must be extended to accommodate the multiple versions, and

to identify which to call on any given code path. In a similar vein, support must be

provided for programmer annotations (attributes) [6], which can dramatically increase

the number of functions that are callable within transactions—or their expected perfor-

mance when called. Comparatively little attention is currently being paid to the STM

64

4.6. Conclusions

back end for GCC, which is a simple, correct, but unoptimized implementation based

loosely on the TinySTM of Riegel et al [133].

Bartok [68] is an ahead-of-time C# compiler which has language-level support for

TM. Bartok-STM updates memory locations in-place by logging the original value for

rollback in case a conflict occurs. It detects conflicts at object granularity, eagerly for

write operations and lazily for read operations.

Tanger [53] is an extension for the LLVM [94] compiler framework that automat-

ically transactifies applications. The programmer only has to mark the start and the

end of the transactions. The instrumentation delegates all shared data accesses in these

regions under the control of the TinySTM [133] library.

In comparison, the RSTM package includes several STM run-times, each of which

appears well suited to some workloads. The most widely held conclusion from STM

research so far is that no one runtime is ideal for every application. That’s why we

believe that the various RSTM back ends provide richer variation in terms of STM

algorithms, and much more opportunity to tune the system to application needs.

4.6 Conclusions

As Transactional Memory moves towards a more robust and mature stage, it becomes

essential to be able to share and run applications, compilers, and run-time systems

among groups. Standardization is a key step in this direction. However, while releases

of compilers with support for TM are available, much of the work that has been done

on STM runtimes is not compatible with those compilers, because of interface issues.

In this chapter we described work that makes back ends from the RSTM suite

(specifically, LLT, ET and NOrec) compatible with the Intel TM ABI, and with compil-

ers that conform to that ABI. This work entailed modest changes to RSTM itself, plus

the creation of a shim library that adapts the Intel ABI to the RSTM API. Using the

newly available back ends, we evaluated the performance of several applications from

the STAMP and RMS-TM benchmark suites; the former required manual re-writing

to eliminate the manual instrumentation of the STAMP API and to accommodate the

need for annotations on functions called within transactions in the C++ TM API.

Our work makes it possible, for the first time, to run large applications from other

groups on the RSTM back ends, and to obtain an “apples to apples” comparison of

65

4.6. Conclusions

back ends using such applications. It also allows us, in the case of STAMP, to compare

automatically and manually instrumented applications.

We find that memory footprint, abort rate, and consequent performance depend

heavily on both the particular application and the choice of back-end system. This re-

sult confirms earlier findings with microbenchmarks; from it we conclude that diversity

in back ends is essential, and that dynamic adaptation among back ends (as explored,

for example, by Spear [151]) is a promising research direction. Our experiments also

show that, while unnecessary instrumentation introduced by the compiler may induce

considerable run time overhead, the Intel STM compiler is able to exploit optimization

opportunities that may actually improve performance over hand-instrumented code in

certain cases.

66

Part III

Design and Implementation of a

High Performance STM

Performance and scalability of current TM designs on aggressive multi-core/multi-

threaded processors do not always meet the programmer’s expectation. This is espe-

cially true for STM designs, where the overhead of instrumentation and transactions’

management severely limits application’s performance, especially at large scale.

We propose a new STM design (Chapter 5), STM 2, based on an assisted execution

model in which time-consuming TM operations are offloaded to auxiliary threads while

application threads optimistically perform computation. Surprisingly, our results show

that is often more convenient to use additional processing elements to support com-

putation rather than performance computation: STM 2 provides, on average, speedups

between 1.8x and 5.2x (and up to 12.8x) over state-of-the-art STM systems.

On the other hand, assisted-execution systems may show low processor utilization.

In order to alleviate this problem and to increase the efficiency of STM 2, we used an

integrated hardware/software approach to dynamically partition hardware resources at

fine-grained level (Chapter 6). We enriched STM 2 with a runtime mechanism that

automatically and adaptively detects application and auxiliary threads’ computing de-

mands and dynamically partition hardware resources between the pair. This dynamic

mechanism further improves STM 2’s performance (up to 85% over the standard STM 2

design) and efficiency.

67

68

Chapter 5

STM2: A Parallel STM for High

Performance SMT Systems

5.1 Introduction

Performance and scalability of current TM systems is not always satisfactory, especially

for STM proposals where the overheads introduced by the STM runtime system may

well outweigh the parallelism gained [24]. Performance of several applications among

the most common benchmarks suites, such as STAMP [22], are limited by STM over-

head and provide performance degradation beyond a certain number of threads [24].

Some authors report drastic slow-downs when using STM (e.g., only breaking even with

optimized sequential code after using 8 cores [24]). Even state-of-the-art TM systems

typically require at least two threads to achieve performance that matches optimized

sequential code [39, 68].

In this chapter we propose a novel, high-performance STM design that provides

higher performance and scalability for real TM applications. Our design is based on

two main observations: First, the TM system itself may limit scalability by introducing

run time overhead or serializing the the execution of the application’s threads to resolve

conflicts. In particular, STMs that use bookkeeping introduce considerable slowdown

due to read- and write-set validation and transaction state management [24]. Moreover,

the STM needs to correctly handle conflicts among transactions running concurrently,

eventually aborting and rolling back one or more transactions. Second, in any parallel

program, Amdahl’s law [9] limits the extent to which parallel execution can achieve

69

5.1. Introduction

speedups. With TM, if large sections of parallel code run within transactions, there

is a risk that the speedup possible via Amdahl’s law will never be enough to recover

the overheads of using TM. On the other hand, 4- or 8-core architectures with tens of

hardware threads are already available [112, 162] and this count is expected to increase

in the coming years, thus scalability of parallel applications is crucial for extracting

high performance from future multi-core and multi-threaded systems.

Both STM runtime overhead and the Amdahl’s Law limit on the theoretical speedup

suggest the use of assisted execution models [47], in which some of the computing ele-

ments (cores or hardware threads) are used to support computation rather than being

devoted to running additional application threads [98, 109, 166]. The intuition behind

assisted execution models is that some of the computing elements can accelerate sequen-

tial part of the application and/or relieve application threads from handling runtime

functionalities, therefore pushing further the theoretical Amdahl’s Law’s speedup and

reducing runtime overhead. Since not all applications are able to effectively use all cores

and/or hardware threads, we propose to perform time-consuming STM operations on

those computing elements that do not provide measurable performance improvement.

The general idea is that using additional cores/hardware threads to speed up STM

operations may provide higher performance than using these processing elements to

run additional application threads. Specifically, we offload read-set validation, book-

keeping, transaction state management and conflict detection to an auxiliary thread

running on a sibling core/hardware thread, i.e., a processing element that shares some

levels of hardware resource (like the L1 or L2 cache) with the application thread.1

In order to demonstrate our proposal we implemented Software Transactional Mem-

ory for Simultaneous Multithreading systems (STM 2 - pronounced STM-squared). To

the best of our knowledge, STM 2 is the first parallel STM system that uses secondary

hardware threads to leverage STM overhead. STM 2 is essentially a parallel STM system

where transactional operations are divided between application threads (computation)

and auxiliary threads (STM management). With STM 2, application threads opti-

mistically perform their computation with minimal support from the underlying STM

system. All synchronization and STM management operations are performed by the

1Two hardware threads in a core or two cores sharing the L2 cache are examples of sibling hardware

thread/core, respectively.

70

5.1. Introduction

paired auxiliary threads. This means that application threads experience minimal over-

head. Auxiliary threads, instead, validate read-sets, maintain transaction states and

detect conflicts in parallel with the application threads’ computation. STM 2 detects

conflicts as soon as they occur (eager conflict detection). If a conflict is detected, the

auxiliary thread interrupts its corresponding application thread and aborts the trans-

action. If no conflicts arise during a specific transaction, the auxiliary thread commits

the transaction and updates the modified shared memory location (lazy update). Com-

munication between application threads and their corresponding auxiliary threads is

performed through a lock-free circular buffer and simple atomic state variables.

We tested STM 2 on an aggressive, high performance SMT processor, an IBM

POWER7 system with a total of 32 hardware threads. To the best of our knowl-

edge, this is the first study that tests transactional memory on a POWER7 processor.

Our results show that by overlapping computation and STM management operations

STM 2 obtains performance improvement, outperforming modern well-known STM sys-

tems, namely TinySTM, NOrec, TML and TL2, for several STAMP benchmarks. Our

experiments show that STM 2 achieves, on average, between 1.8x and 5.2x speedups

over state-of-the-art STM systems, with peaks up to 12.8x.

This work makes the following contributions:

• Introduces STM 2, a novel parallel STM implementation that reduces the runtime

overheads by offloading time consuming TM management operations to auxiliary

threads running on sibling hardware threads.

• Tests several state-of-the-art STM systems, namely TinySTM, TL2, NOrec and

TML, on an aggressive multithreading processor designed for high performance.

• We show that, perhaps surprisingly, it is often better to use hardware threads to

parallelize the STM implementation, than to devote those hardware threads to

running additional application threads.

The rest of this chapter is organized as follows: Section 5.2 motivates our work.

Section 5.3 describes the design of STM 2 and provides internal details of the imple-

mentation. Section 5.4 and Section 5.5 describe our experimental setup and results,

respectively. Section 5.6 summarizes related work. Finally, Section 5.7 concludes this

work.

71

5.2. Motivation

Bayes Genome Labyrinth SSCA2 VacationLow VacationHigh
0

1

2

3

4

5

6

7

8

9

10

O
v
e
rh

e
a
d

 w
.r

.t
.
s
in

g
le

 t
h

re
a
d

 i
n

s
tr

u
m

e
n

te
d

abort

stm_read

stm_write

begin

commit

Figure 5.1: TinySTM per-transaction overhead breakdown for STAMP applications

with respect to instrumented single thread version. We report per-transaction over-

head because the number of transactions per thread for STAMP applications decreases

with the number of threads. We instrumented TinySTM and obtained per-transaction

overhead breakdown for single thread, 2, 4, 8, 16 and 32 concurrent threads versions.

STM per-transaction overhead increases with the number of threads because of the

higher pressure on internal STM data structure, more frequent read-set validations and

higher contention.

5.2 Motivation

STM management operations are time-consuming and may introduce considerable over-

heads that increase with the number of threads running in parallel and the size of the

read- and write-set [86]. The result is that STM systems may not be able to provide sat-

isfactory performance at scale [24]. In order to understand the overhead introduced by

STMs, we run preliminary experiments instrumenting TinySTM, a widely used STM

system. Figure 5.1 shows the per-transaction overhead introduced by TinySTM on

STAMP benchmarks running on an IBM POWER7 system when varying the number

of threads from 1 to 32.1 Since the total number of transactions in STAMP bench-

marks is constant, the number of transactions per thread decreases with the number of

concurrent threads. We, hence, report the per-transaction overhead of each benchmark

normalized to the overhead introduced by the STM when running the same application

with one thread. For example, VacationLow presents large, mostly-read transactions,

1In these experiments and in the rest of the chapter, we use the default configuration for TinySTM,

eager conflict detection and lazy data versioning.

72

5.3. STM2 Design and Implementation

therefore, each transaction spends most of its time in the stm read() function. When

going from 1 to 32 concurrent threads, the commit rate increases and more read-set val-

idations need to be performed. For the specific case of VacationLow, the STM overhead

with 32 concurrent threads increases by 5.7x with respect to the instrumented single

thread execution. While VacationLow ’s and VacationHigh’s transactions are dominated

by read time, Genome and SSCA2 have short transactions, thus their per-transaction

overhead breakdown is completely different. In particular, Figure 5.1 shows that the

relative overhead of begin transaction() and commit() have a higher impact on

SSCA2 than on VacationLow in the instrumented, single thread version. Figure 5.1

also shows that for applications with high contention, such as Labyrinth, the overhead

introduced by aborts increases at scale.

Our experiments, in accordance to what was previously observed [24, 86, 108], show

that per-transaction STM overhead increases with the number of concurrent threads,

which may limit scalability substantially. Note that the actual impact on the applica-

tions’ performance may vary depending on the amount of time each application spends

inside transactions. Section 5.5 discusses the impact of STM overhead on each appli-

cation’s performance.

5.3 STM2 Design and Implementation

Recent studies [89] show that future scientific problems with large data sets will require

higher computational power (i.e., higher number of cores) than what is currently avail-

able. Processing elements that do not directly provide performance improvement should

be used in a better way, for example, to leverage the work performed by overloaded

cores. STM 2 is a novel implementation that goes in this direction: time-consuming

operations (such as read-set validation and conflict detection) are offloaded to auxiliary

threads running on separate hardware threads. Application threads have fewer STM

management operations to perform and can spend their cycles on more useful work.

Figure 5.2b shows how offloading operations to auxiliary threads may reduce STM

overhead, therefore improving performance. Figure 5.2a shows how a typical eager

conflict detection, lazy data versioning STM system works. Before actually accessing

any memory location, the application thread performs an stm read() when reading

a memory location, or an stm write() when attempting to modify a shared variable.

73

5.3. STM2 Design and Implementation

begin_transaction()

stm_read()

stm_write()

stm_read()

commit()

R0

R1

W0

C0

C1

C2

ti
m

e

Application thread

B

E

(a) Standard STM system

begin_transaction()

stm_read()

stm_write()

stm_read()

commit()

ti
m

e

W0

R1

R0

C0

C1

C2

R0

W0

R1

MSG_READ

MSG_WRITE

MSG_READ

SIG_READYTOCOMMIT

Application thread Auxiliary thread

E

B
P

P

F

MSG_COMMIT

(b) STM 2

Figure 5.2: STM 2 offloads time-consuming STM operations to sibling hardware

threads. In this Figure the application thread performs two read (R0 and R1) and

a write (W0) operations. C denotes computational phases that do not access shared

memory locations. begin transaction() and commit() are marked with B and E,

respectively, while P denotes polling and F denotes commit phase at the auxiliary

thread’s side. Offloading STM operations to auxiliary threads reduces the overall exe-

cution time.

These two functions notify the STM runtime about which locations should be inserted

into the read-set and the write-set of that thread. Whenever the STM runtime system

takes control, it may check whether a conflict has occurred and, if so, abort a conflicting

transaction. As Figure 5.2a shows, the application thread often runs STM library code

rather than performing its computation, especially if the STM operation triggers time-

consuming activities, such as read-set validation.

We propose to move time-consuming STM operations to another hardware thread

and perform them in parallel with its application thread. Figure 5.2b shows our ap-

proach: Whenever an application thread accesses a memory location (either reading or

writing), it simply sends a message to its corresponding auxiliary thread and then keeps

performing its computation. The auxiliary thread, in turn, waits for messages coming

from its corresponding application thread and performs read-set validation, transac-

tion state management and conflict detection. Whenever an auxiliary thread detects a

conflict, it aborts its corresponding application thread. As Figure 5.2b shows, offload-

74

5.3. STM2 Design and Implementation

ing STM operations to auxiliary threads and performing transaction management in

parallel reduce the transaction’s execution time, therefore improving performance.

STM 2 is an eager conflict detection, lazy update STM system. Given that we are

using an auxiliary thread that runs in parallel with the application thread, it makes

sense to perform as many operations as possible in parallel. In this scenario, lazy conflict

detection would delay most of the work at commit stage, serializing the execution of the

application thread (that would mainly run during the transaction) and the auxiliary

thread (that would be idle during the transaction and overloaded at commit time)

and indeed invalidate most of the benefit of our approach. On the other hand, the

main drawback of eager conflict detection is the extra overhead caused by the STM

management operations (Figure 5.2a). This overhead is exactly what STM 2 reduces.

Eager conflict detection increases the parallelism of STM 2 and decreases the amount

of work to be done at commit stage, which is a synchronization point and critical for

the STM 2 performance (see Figure 5.2b). Eager updates, instead, would require extra

communication among the auxiliary threads. Memory locations modified by aborted

transactions must rollback to their original values, hence, all transactions that have read

those invalid values may have to rollback too. In STM 2, memory updates and aborts

are handled by auxiliary threads, hence they should also take care of restoring memory

locations modified by aborted transactions. This, in turn, would require auxiliary

threads to exchange messages among themselves. Although eager updates is a possible

solution, lazy updates minimize communication among auxiliary threads.

Offloading time-consuming STM operations to a secondary processing element is

particularly appealing for multithreading architectures (like IBM POWER, Intel with

Hyper-Threading or SUN Niagara). In STM 2, application and auxiliary threads are

paired on the same core, i.e., they are pinned to two separate hardware threads of

the same core. While application and auxiliary threads could run on different cores,

running on the same core is advisable for the following reasons: 1) the cost of a hardware

thread (in terms of space, resources and power consumption) is lower than that of a

core; 2) even though extra cores may improve performance linearly, extra hardware

threads usually provide only between 1.2x and 1.6x speedup [4], and 3) application and

auxiliary threads running on the same core share more resources (for example, the L1

cache), which allows lower-latency communication.

75

5.3. STM2 Design and Implementation

In the current implementation, STM 2 supports a basic TM programming model in

which a transaction that aborts does not necessarily see a consistent view of memory,

and in which there is no conflict detection between transactional and non-transactional

memory accesses. Consequently, the programmer or compiler using STM 2 must sand-

box the effects of “zombie” transactions, and must ensure that data is accessed in

a consistent way (e.g., using the fence techniques of Spear et al. [148], or using the

memory protection isolation mechanisms of Abadi et al. [2]). This is the programming

model typically used in STAMP and other TM applications (e.g., Labyrinth explicitly

restarts inconsistent transactions) therefore no extra support is required to run STAMP

benchmarks.

The following subsections describe with more detail the main components of STM 2:

application and auxiliary threads synchronization (Section 5.3.1), transactional write

(Section 5.3.2) and read (Section 5.3.3) operations.

5.3.1 Application/Auxiliary Thread Synchronization

Application and auxiliary threads communicate through a communication channel and

atomic status variables. Application threads send messages to their paired auxiliary

threads to notify read and write operations. These operations require extra parame-

ters and cannot be implemented by a simple shared variable (see in following subsec-

tion). Auxiliary threads, instead, only need to send two signals1 to application threads:

SIG READYTOCOMMIT and SIG ABORT. We thus implemented a single-producer/single-

consumer, circular, lock-free queue where the application thread (producer) posts read

and write messages that the auxiliary thread (consumer) retrieves and processes. The

SIG READYTOCOMMIT and SIG ABORT signals do not need extra information and are im-

plemented through atomic status variables shared between application and auxiliary

threads. These variables are accessed and modified using atomic operations. An extra

signal (SIG START) and message (MSG COMMIT), are sent to auxiliary threads when a

transaction begins or ends. When an application thread is not involved in a transac-

tion, its corresponding auxiliary thread waits in a spinning loop. As the application

thread enters a transaction (begin transaction()), the auxiliary thread receives the

SIG START signal and starts polling the communication channel for incoming messages.

When an application thread reaches the end of a transaction and attempts to commit

1Note that these are different from operating system signals.

76

5.3. STM2 Design and Implementation

(commit()), it sends the MSG COMMIT message and waits for the auxiliary thread to com-

plete its work by spinning on the SIG READYTOCOMMIT signal. If the auxiliary thread

succeeds resolving all conflicts and validating its read-set, it commits the transaction

by updating all shared memory locations modified by the application thread and sets

the SIG READYTOCOMMIT signal.

Finally, all shared atomic variables are modified only by one of the two threads

during a transaction. For example, auxiliary threads set SIG READYTOCOMMIT and

SIG ABORT signals while application threads only read the status of these variables.

Similarly, only application threads set the SIG START signal, while auxiliary threads

only poll on its value. The result is that the communication involved is minimal and

we believe that a small extra hardware buffer between two hardware threads may elim-

inate the need of using the L1 and increase performance.

5.3.2 Writing to a shared memory location

Memory locations modified by application threads during transactions are not visible

to other threads until the transaction commits. On the contrary, conflicts are detected

as soon as they occur, avoiding unnecessary computation for transactions that will be

aborted and reducing the overhead at commit time.

To guarantee correctness, only one application thread at a time is allowed to change

the value of a particular shared memory location, although several threads can mod-

ify different memory locations at the same time. Before altering a memory location,

application threads need to be sure that no other thread is currently attempting to

modify the same location. STM 2 uses ownership records to identify which thread is

entitled to change the value of a given shared memory location. Once a thread owns

a location, it is allowed to modify its content. Any other thread that needs to alter

the content of the same location and, therefore, tries to acquire its ownership, will

fail (conflict) and will restart the transaction. STM 2 maintains a per-thread write-set

buffer to temporarily store values modified during a transaction but not yet committed.

If the transaction commits successfully, STM 2 will publish its write-set. The updated

values will then become visible to the other application threads. STM 2 uses versioning

based on extendable timestamps to detect conflicts [133]: every time a shared memory

location is updated with a new value, the current timestamp is used as version number

and associated with that location. A conflict arises when an application thread has

77

5.3. STM2 Design and Implementation

void stm_write(Addr , Val)

{

if (writeset.insert(Addr , Val)

==

present)

return;

else

channel.send(

MSG_WRITE , Addr , Val);

}

(a) Application thread transactional write

void aux_stm_write(Addr , Val)

{

if (validate () == fail) abort ();

if (acquire_ownership(Addr))

ownedlist.add(Addr);

else

ret = cm.onconflict ();

if (ret == CM_ABORT)

abort ();

}

(b) Auxiliary thread transactional write

Figure 5.3: Pseudo-code for application and auxiliary thread STM write

read a value from a memory location whose version number is lower than the current

one.

Whenever an application thread wants to modify a shared memory location, it issues

an stm write() call, passing the address of the memory location and the new value

as arguments. Figure 5.3 shows the pseudo-code for stm write() on both application

and auxiliary thread sides. On the application thread side (Figure 5.3a), stm write()

checks whether the location is already in the write-set, in which case the application

thread simply updates the value and returns. If the location is not in the write-set,

the application thread will still optimistically write the new value to its write-set but

it will also send an MSG WRITE message to its corresponding auxiliary thread. Upon

receiving an MSG WRITE message, the auxiliary thread first validates its read-set and

then tries to acquire the ownership of the target memory location (Figure 5.3b). If

both operations are successful, the auxiliary thread adds the location to its list of owned

shared memory locations. At commit stage, these locations will be updated in memory

and the new values will become visible to the other application threads. Note that, on

success, no other message is sent to the application thread because it had optimistically

already proceeded with the transaction. If the auxiliary thread detects a conflict while

trying to acquire the ownership of the location, the contention manager will decide

which transaction has to abort. In case the contention manager returns CM ABORT, the

auxiliary thread notifies its corresponding application thread by setting the status of

78

5.3. STM2 Design and Implementation

void stm_read(Addr)

{

found = writeset.find(Addr);

if (found)

return from writeset;

else

channel.send(MSG_READ , Addr);

return from memory;

}

(a) Application thread transactional read

void aux_stm_read(Addr)

{

if (is_owned(Addr))

ret = cm.onconflict ();

if (ret == CM_ABORT) abort ();

if (validate () == fail)

abort ();

else

reads.insert(Addr);

}

(b) Auxiliary thread transactional read

Figure 5.4: Pseudo-code for application and auxiliary thread STM read

the transaction to aborted. The auxiliary thread then removes all entries in the read-

set, releases all owned locations, and rolls back. Whenever an STM operation is issued,

application threads check their transaction’s status and restart the transaction if they

find out that the transaction has been aborted by their paired auxiliary threads. Note

that, besides resetting the write-set, no other actions are required from the application

thread on abort.

We minimized synchronization overhead by using a lock-free data structure for

the communication channel described in Section 5.3.1, and by clearly dividing data

structures between application and auxiliary threads. Auxiliary threads own the read-

set and the list of owned locations. Application threads, on the other hand, own the

write-set. Since application threads never access auxiliary threads’ data structures (and

vice versa) there is no need to protect them with locks.

5.3.3 Reading from a shared memory location

Application threads read shared memory locations by calling the stm read() function

and passing the address of the target memory location as argument. The stm read()

has three main goals: 1) locate the current version of the shared value to return, 2)

insert the address of the shared location in the transaction’s read-set (unless it is already

present), and 3) perform read-set validation, if required. These operations are divided

between the application and the auxiliary threads.

79

5.4. Experimental Setup

Figure 5.4 shows how application and auxiliary threads operate when reading a

memory location. The application thread (Figure 5.4a) locates the current version of

the value to be read. The current value is either stored in the transaction’s write-set or

in the original memory location. In the former case, the application thread has already

issued at least one write operation on that location at the time of reading the value. In

this case STM 2 returns the value modified by the last write operation contained in the

transaction’s write-set. If the address is not found in the write-set, STM 2 returns the

current version from memory and sends an MSG READ message to the auxiliary thread

together with the address of the target memory location. Note that other threads may

be modifying the same memory location but those threads have not committed their

transactions yet, hence those modifications are not visible to the current thread.

When the auxiliary thread receives the MSG READ message, it performs conflict de-

tection. A conflict occurs when 1) the memory location is locked by another thread

or 2) the version read by the application thread is different from the current version,

i.e., some other thread has committed a new version (validate() returns fail). In

the former case, the auxiliary thread calls the contention manager which may decide

to abort either the current transaction or the one that has locked the location. In the

latter case, the transaction aborts. If no conflicts are detected, the auxiliary thread

inserts the memory location’s address into the read-set and moves to the next message.

5.4 Experimental Setup

This section describes the setup environment, the benchmarks and the STM systems

used in our experiments.

We performed our experiments on an IBM POWER7 [4, 162], an out-of-order, 8-core

design where each core is 4-way SMT (32 hardware threads in total). Each core region

(or “chiplet”) contains a 32 KB 4-way set associative L1 I-cache and a 32 KB 8-way set

associative L1 D-cache, a private per-core 256 KB L2 cache and a 4 MB portion of the

shared 32 MB L3 cache. Since POWER7 is capable of running 32 threads concurrently,

we limit our experiments to 32 threads without over-provisioning the system (i.e., we

run as many threads as available hardware threads). Each POWER7 core can run

in single-thread (ST) mode, SMT2 (two threads executing on a core concurrently) or

SMT4 (three or four threads executing on a core) mode. For capacity computing (i.e.,

80

5.5. Experimental Results

multiple independent, serial jobs running in parallel), both SMT2 and SMT4 modes

are expected to provide benefits. For capability computing (i.e., parallel applications

with high degree of parallelism), SMT4 may not show extra benefits [4]. STM 2 uses

the SMT4 mode and offloads time-consuming TM operations to secondary hardware

threads that, otherwise, may not provide extra performance improvement.

We compare STM 2 to several well-known, publicly available and mature STM pro-

posals, namely TML [149], NOrec [39], TinySTM [133], and TL2 [43], using the STAMP

benchmark suite [22] compiled with gcc 4.3.4 and -O3 settings. TML is an eager con-

flict detection, eager versioning system with a single sequence lock [92]. TL2 is a lazy

conflict detection, lazy versioning system. TinySTM is an eager conflict detection,

lazy versioning system with extendable timestamps. NOrec extends TML with lazy

updates and value-based conflict detection.

We selected these STM systems because they reflect popular but divergent points in

the STM design space. Several of these STM systems have not been officially ported on

POWER architectures (e.g., TL2, NOrec). We ported those STM systems on POWER

processors1 to be able to fairly evaluate STM 2 but some of the STAMP benchmarks

(namely Intruder, Kmeans and Yada) did not execute correctly with some of the tested

STMs due to bugs in STAMP code [25]. We omit these results for those benchmarks

for fairness. Finally, in order to evaluate the effect of increasing the read-set size on

the performance of the STMs, we run two versions of Vacation (i.e., VacationLow and

VacationHigh).

5.5 Experimental Results

In this Section we analyze the performance of STM 2 and the other tested STM systems.

Figure 5.5 shows performance of STAMP benchmarks running on the IBM POWER7

system previously described. We report the execution time of each STAMP benchmark

when varying the number of threads from 2 to 32. In the first set of experiments,

we compare STM systems running STAMP benchmarks when using the same number

of application threads: we, thus, compare STMs with N threads to STM 2 running N

application threads plus N auxiliary threads (N+N), for N=2, 4, 8, 16. While in these

experiments STM 2 uses double the number of threads (N+N) than the other STMs

1No further modifications to the original implementations have been applied.

81

5.5. Experimental Results

0 2 4 8 16 32
0

10

20

30

40

50

60

70

E
xe

cu
tio

n
tim

e

16+16 16+168+82+2 4+4

(a) Bayes

0 2 4 8 16 32
0

5

10

15

20

25

E
xe

cu
tio

n
tim

e

TinyStm

NORec

TML

TL2

STM2

16+16 16+168+82+2 4+4

(b) Genome

0 2 4 8 16 32
0

20

40

60

80

100

120

140

160

180

200

E
xe

cu
tio

n
tim

e

16+16 16+168+82+2 4+4

(c) Labyrinth

0 2 4 8 16 32
0

5

10

15

20

25

30

E
xe

cu
tio

n
tim

e

16+16 16+168+82+2 4+4

(d) SSCA2

0 2 4 8 16 32
0

20

40

60

80

100

120

E
xe

cu
tio

n
tim

e

16+16 16+168+82+2 4+4

(e) VacationLow

0 2 4 8 16 32
0

50

100

150

200

250

E
xe

cu
tio

n
tim

e

16+16 16+168+82+2 4+4

(f) VacationHigh

Figure 5.5: STAMP benchmarks with different STMs. The x-axis reports the number

of used threads, which is N for the standard STMs and N+N for STM 2, for N=2,4,8,16.

For N=32, we compare STMs performance to STM 2 using 16+16 threads (we repeat

this value in correspondence of N=16 and N=32 to facilitate comparison with the other

STMs having equal hardware resources). In the graphs, lower is better.

82

5.5. Experimental Results

Bayes Genome Labyrinth Ssca2 VacationLow VacationHigh Average
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

S
p
e
e
d
u
p

NORec

TL2

TML

TinyStm

Figure 5.6: Speedups of STM 2over tested STMs for STAMP applications using the

same amount of hardware resources (32 hardware threads).

(N), the extra hardware threads are available and there is no reason why they should

be left idle if an STM can take advantage of them. Moreover, in this set of experiments,

the number of transactions per application thread is the same. In the second set of

experiments, we analyze the performance of STM 2 and the other STMs using the same

amount of hardware resources: we compare STM systems with 32 threads to STM 2 with

16 application threads and 16 auxiliary threads (16+16). We report STM 2 speedups

for this experiment (32 threads versus 16+16 threads) in Figure 5.6.

As we can see from Figures 5.5 and 5.6, STM 2 reduces runtime overhead by offload-

ing time-consuming operations to dedicated hardware threads. The reduced overhead

directly translates to better performance (lower execution time).

TinySTM Both TinySTM and STM 2 use eager conflict detection and lazy ver-

sioning. TinySTM is, thus, the ideal STM system to be compared with in order to

analyze the effect of offloading transaction state maintenance, read-set validation and

conflict detection to secondary hardware threads. As Figure 5.5 shows, STM 2 per-

forms better or equal than TinySTM in all cases. If the level of contention is low

and the read-set size are small (Genome and SSCA2), STM 2 and TinySTM behave

similarly, especially at small scale (N=2 or N=4 threads). When the read-set becomes

larger, STM 2 clearly outperforms TinySTM. For example, STM 2 performs consider-

83

5.5. Experimental Results

ably better when running VacationLow (7x faster) and VacationHigh (12.3x faster)

with 32 hardware threads. VacationLow exhibits large, mostly-read transactions, thus

its read-set size is considerably larger than other applications. Eager conflict detec-

tion requires scanning read-sets to identify possible conflicts during the execution of

each transaction. In this scenario, larger read-sets introduce higher runtime overhead.

Moreover, as reported by Cascaval et al. [24] and confirmed by our experiments (Fig-

ure 5.1), runtime overhead increases with the number of concurrent threads. STM 2 is

able to absorb transaction state maintenance, read-set validation and conflict detection

overheads with the secondary hardware threads. In our experiments, TinySTM is not

always able to scale beyond N=16 threads: VacationLow takes about 24.24 seconds

with N=16 threads and 96.88 seconds with N=32 threads. STM 2 instead is able to

make a better use of the last 16 hardware threads by accelerating STM operations and

reducing the execution time to 13.79 seconds (7x faster) when using 16 applications

threads and 16 auxiliary threads (16+16). Moreover, STM 2 is also faster than the

best TinySTM performance obtained with N=16 threads (1.8x). We conclude that

the STM overhead introduced by TinySTM on VacationLow is completely absorbed by

the auxiliary threads in STM 2. The effects of offloading STM operations to secondary

hardware threads become more evident when increasing the number of read operations

performed during each transaction or the level of contention in the application. Vaca-

tionHigh performs the same algorithm as VacationLow but its transactions operate on

more items (i.e., larger read-sets). Figure 5.5f shows that TinySTM does not provide

performance improvement beyond N=4 threads (in fact, performance constantly re-

duces with the number of threads). STM 2, instead, efficiently scales up to 32 hardware

threads (16+16), providing a final speedup of 12.3x over TinySTM with 32 hardware

threads.

Bayes and Labyrinth exhibit a high level of conflict, even though their read- and

write-sets are not as large as in VacationLow. STM 2 performs better than any other

STM in these two cases and, in particular, shows a 1.9x and 1.1x speedup over TinySTM

with 32 hardware threads for Bayes and Labyrinth, respectively.

For SSCA2 eager conflict detection, multiple-writers STMs (STM 2 and TinySTM)

perform considerably better than the other STMs. This seems to indicate that early

detection of conflicts reduces the STM overhead for this application. SSCA2 differs

from the other benchmarks in that it shows a bursting and irregular behavior with

84

5.5. Experimental Results

higher number of short, read-write transactions per second (high commit rate). Lazy

conflict detection STMs (TL2 and NOrec) fail to acquire all required locks at commit

time because other transactions commit in the meantime. Even if these commits do

not generate actual conflicts, NOrec still needs to re-validate the elements in the read-

sets. Increasing the number of concurrent threads also raises the probability that a

transaction commits while another thread is validating its read-sets. The result is that

commit time increases with the number of threads. Conversely, TinySTM and STM 2

acquire ownership of shared memory locations when a thread issues a write operation

and maintain it throughout the execution of the short transaction, which proves to be

a good choice for this particular case.

NOrec Unlike TinySTM, TL2 and STM 2, NOrec does not perform any bookkeep-

ing. Runtime overhead is negligible and limited to the initialization and finalization of

transactions. However, NOrec only allows one active writer transaction in the system

at a time. We, thus, expect NOrec to perform better than STMs with bookkeeping

when the level of contention is limited, but to gradually reduce performance when the

number of writers per transaction increases (which depends on the application and the

number of concurrent threads). Indeed, NOrec scales nicely for all applications except

Bayes and SSCA2. On the other hand, bookkeeping allows STM 2 to support several

concurrent writer transactions at a time. The result of combining concurrent writers

and reduced runtime overhead is that STM 2 usually performs better or equal than

NOrec. For applications with limited contention (Genome) or with a limited num-

ber of concurrent writers (VacationLow and VacationHigh), STM 2 and NOrec perform

similarly. When the level of contention increases or there are several writers per trans-

action, STM 2 outperforms NOrec. This happens with Bayes (high contention) with

N=32 threads (1.7x speedup) and with SSCA2 (high number of concurrent writers)

beyond N=4 threads (up to 6.4x speedup). In these cases, STM 2 keeps scaling up to

32 hardware threads, while rollbacks and re-validation limit NOrec’s performance.

NOrec and STM 2 perform similarly for Labyrinth, which presents large transactions

and a high conflict rate. For this kind of application, lazy conflict detection STMs

usually have a disadvantage with respect to eager conflict detection STMs. NOrec,

however, is able to make up for this disadvantage with its value-based conflict detection.

The results is that NOrec introduces fewer false aborts than TL2.

85

5.5. Experimental Results

STM 2 provides, on average, 2.1x speedup over NOrec (see Figure 5.6). Since NOrec

has a low runtime overhead, our results prove that eager conflict detection and book-

keeping overhead is effectively absorbed by the auxiliary threads.

TL2 Both TL2 and STM 2 perform lazy data versioning, though TL2 detects con-

flicts at commit stage while STM 2 detects conflicts during a transaction’s execution.

Lazy conflict detection STMs introduce negligible validation runtime overhead but they

may suffer from higher abort overhead, caused by the “wasted” time spent executing

transactions that will abort, and high commit overhead (lock acquisition). Our exper-

iments show that, indeed, TL2 performs well for applications with low contention, like

VacationLow and VacationHigh (which perform mainly read operations) or Genome

(limited contention). While STM 2 and TL2 are essentially equivalent for Genome,

TL2 performs better than STM 2 when running VacationLow and VacationHigh. Ap-

plications with high contention or high commit rate, instead, pose challenges to TL2

due to frequent modifications of a centralized data structure [95]. For these kinds of

applications, STM 2 outperforms TL2: with 32 hardware threads, STM 2 achieves 1.5x

speedup over TL2 for Bayes, 1.6x speedup for Labyrinth, and 5.4x speedup for SSCA2

(Figure 5.6). Note that, while STM 2 performs significantly better than TL2 for high

contention applications, TL2 does not substantially outdistance STM 2 for applications

with low-contention or applications with mostly-read transactions. The results show

that, on average, STM 2 shows a 1.8x speedup over TL2.

TML STM 2 performs consistently and substantially better than TML for all STAMP

benchmarks. While a global lock provides low runtime overhead and intrinsically guar-

antees serialization, performance is usually poor for applications with high contention

and/or large transactions. Our experiments show that the serialization overhead in-

duced by the use of a global lock with a high number of threads considerably reduces

overall performance. As Figure 5.6 shows, STM 2 exceeds TML for applications with

high contention, like Bayes (1.7x speedup) and Labyrinth (12.8x speedup), large read-

sets, like VacationLow (5.8x speedup), and read-write transactions, like SSCA2 (4.6x

speedup).

Summary Our results show that, on average, STM 2 outperforms all tested STMs.

For applications with high contention (Bayes and Labyrinth) or bursting and irregu-

lar transactions with a high number of concurrent writers (SSCA2), STM 2 provides

high speedups over lazy conflict detection STMs (up to 6.4x) or single global lock

86

5.6. Related Work

STM (12.8x). For applications with low contention and mostly-read transactions (Va-

cationLow, VacationHigh and Genome), STM 2 performs well with respect to lazy con-

flict detection and no bookkeeping STMs: Only TL2 outperforms STM 2 when run-

ning VacationLow and VacationHigh, while STM 2 still outperforms NOrec and TML

for VacationLow and VacationHigh and NOrec, TML and TL2 for Genome. STM 2

provides the same performance, or even outperforms, lazy conflict detection and no-

bookkeeping STMs for applications where lazy conflict detection provides advantages.

Finally, STM 2 exceeds TinySTM with all the applications and provides speedups up

to 12.3x over TinySTM for applications that are critical for eager conflict detection

STMs, such as VacationHigh.

Our proposal largely overlaps computation and STM management operations and

effectively reduces runtime overhead. STM 2 remarkably improves performance and

provides the advantages of eager conflict detection STMs with the limited runtime

overhead of lazy conflict detection STMs. Note that, given that all STMs run the same

number of transactions and that STM 2 is faster than the other STMs (between 1.8x

and 5.2x with 32 hardware threads, on average), it follows that STM 2’s throughput

(measured in number of transactions per second) is higher, despite the use of dedicated

hardware threads to run STM operations.

5.6 Related Work

The use of extra threads to help the computation of main threads has been previously

proposed, though for different goals. Auxiliary threads are usually employed to resolve

unpredictable branches or cache misses that the main threads would have to stall upon

otherwise [29, 33, 153] or to prefetch data from memory. Zilles et al. [166] explore

using separate threads in a multithreading processor for exception handling to avoid

squashing in-flight instructions.

Mehrara et al. [108] and Milovanovic et al. [113] propose the use of an auxiliary

thread in lazy conflict detection STMs. Both proposals, however, use a centralized

dedicated thread. Mehrara et al. [108] present STMlite, a software transactional mem-

ory that aims to automatically parallelize sequential applications. In this work, all the

application threads send their memory modifications to the auxiliary thread, which, at

commit time, serially performs the updates. This approach provides benefits when the

87

5.7. Conclusion

lock contention is high by serializing the memory updates in one thread. Milovanovic

et al. [113] propose a combined OpenMP and STM runtime system based on an STM

library, which performs lazy conflict detection and lazy versioning management. The

authors introduce an additional separate thread for asynchronous eager conflict detec-

tion that aims to detect conflicts before the commit time and, therefore, reduce wasted

time for doomed transactions. However, the authors did not implement an advanced

synchronization mechanism between transactions and the associated dedicated thread.

This unnecessarily forces the system at commit phase to repeat several checks already

performed during the eager conflict detection phase. Both proposals suffer from a lack

of scalability: the centralized auxiliary thread may become a bottleneck, especially for

a high count of threads.

Casper et al. [25] use an FPGA connected to the AMD HyperTransport bus to

accelerate conflict detection using bloom filters. Conflict detection is performed at

commit phase by the accelerator and it is synchronous with the threads running on the

normal cores which have to wait for the accelerator to complete conflict detection.

In contrast to previous work, STM 2 is a fully parallel STM: STM 2 assigns a ded-

icated auxiliary thread to each application thread for managing validation and book-

keeping involved in the main computation. These threads run on dedicated cores/hard-

ware threads. Since each application thread has its own auxiliary thread for their trans-

actional operations, unlike STMlite [108] and the approach proposed by Milovanovic

et al. [113], we avoid having a single point of serialization. Finally, STM 2 and the

work proposed by Casper et al. [25] are orthogonal: STM 2’s auxiliary threads could be

accelerated through dedicated hardware, such as FPGAs.

5.7 Conclusion

In conclusion, we have presented STM 2, a parallel STM system that offloads STM time-

consuming management operations to auxiliary threads running on separate hardware

threads. To the best of our knowledge, STM 2 is the first parallel STM that takes

advantage of secondary hardware threads to accelerate STM functions and reduces

overall overhead.

We tested STM 2 on an IBM POWER7 system, an aggressively multithreading

processor designed for high performance. By overlapping computation and STM oper-

88

5.7. Conclusion

ations, STM 2 generally outperforms current, state-of-the-art STMs, namely TinySTM,

TL2, NOrec and TML. Our experiments show average speedups between 1.8x and 5.2x

over the tested STMs, with peaks up to 12.8x, with 32 hardware threads. We conclude

that auxiliary threads effectively absorb the overhead of transactional bookkeeping and

conflict detection, considerably improving the overall performance.

89

5.7. Conclusion

90

Chapter 6

Enhancing the Performance of

Assisted Execution Runtime

Systems

through Hardware/Software

Techniques

6.1 Introduction

As presented in the previous chapter, adopting assisted execution model for STMs

reduces runtime overhead, therefore provides significant performance improvement.

However, the main drawback of assisted execution models is the generally low pro-

cessor utilization and the waste of resources, especially in phases when applications

could use all available hardware threads. Waste of hardware resources cannot be toler-

ated in high-efficiency system (e.g., Exascale systems) and a tighter interaction between

hardware and software is essential to reach high level of system efficiency [45].

This work explores the use of fine-grained hardware resource allocation to increase

overall processor utilization and application’s performance when a static partition of

hardware resource in assisted execution runtime systems leads to sub-optimal perfor-

mance and processor under-utilization. As opposed to coarse-grained resource allo-

cation (adding or removing cores/hardware threads to a particular task) that can be

91

6.1. Introduction

implemented at software level, fine-grained resource allocation (partitioning renaming

registers, load/store queue entries, ROB slots, etc.) requires a collaboration between

the software and the underlying hardware. Although fine-grained resource allocation

requires a deep understanding of all the layers involved, from the hardware to the appli-

cations, it has the potential to provide higher performance and better adapt to frequent

changes in the application’s behavior.

In this chapter, we apply fine-grained hardware resource partitioning to STM 2 (Soft-

ware Transactional Memory for Simultaneous Multithreading processors) [82]. In order

to increase processor utilization and overall performance through fine-grained resource

allocation, we used an integrated hardware/software approach where system functional-

ities are divided among three different components: 1) STM 2 is enriched with a runtime

mechanism that automatically detects computing demand of application and auxiliary

threads and drives the underlying hardware actuators; 2) the hardware enforces re-

source partitioning among the running threads; 3) the operating system provides an

interface between STM 2 and the dynamic hardware resource allocation mechanism.

This work spans the full hardware/software stack: we leverage the IBM POWER7

hardware thread prioritization [17, 20, 145, 162] to dynamically partition hardware re-

source (e.g., renaming registers or load/store queue entries) between application and

auxiliary threads; we use a special version of Linux 2.6.33 patched to enable the full

range of hardware priorities from within user level programs.

In this work, we begin by proposing a set of static techniques that can be applied

when configuring STM 2 to partition hardware resources between application/auxiliary

thread pairs. To this extent, we explore all possible configurations to apply fine-grained

resource allocation to STM 2 and their performance implications. We show that static

approaches work for straightforward optimizations but might not work for complex

optimizations, such as resource partitioning within transactions. If the transaction

structure is irregular or present bursts of transactional operations, a static approach

may lead to sub-optimal performance or, in the worst case, performance degradation.

Moreover, programmers need to manually explore all the possible settings and select

the best performing configuration. Hence, we propose an adaptive solution that auto-

matically partitions hardware resources between application and auxiliary threads at

run time, transparently to the programmer and with no need of manual reconfigura-

tion. Our adaptive solution monitors the computing power demand of application and

92

6.2. Hardware resource partitioning

auxiliary threads and adapts to 1) phases within an application, 2) different behav-

iors of each application/auxiliary threads pair within the same application, and 3) the

structure of the particular transaction executed by a thread at a given moment.

We test our proposals on a real IBM POWER7 system using two sets of bench-

marks: first, we explain the potentialities of fine-grained resource allocation using

Eigenbench [73] (a malleable TM micro-benchmark developed to explore TM systems’

corner cases) and then we apply our solutions to STAMP applications [22]. Experimen-

tal results show that static approaches are only effective for simple scenarios while more

realistic and complex applications require the use of adaptive solutions. Performance

results for the adaptive solution show improvements that match the static approaches,

for simple cases, and up to 65% and 85% over the standard STM 2 design for more

complex scenarios where static approaches fail to provide optimal performance.

The rest of this chapter is organized as follows: Section 6.2 provides a short back-

ground on IBM POWER7 hardware thread priority mechanism. Section 6.3 details

static techniques and the impact of POWER7 hardware thread prioritization on STM 2.

Section 6.4 describes cases where static solutions fail to reduce load imbalance and intro-

duces a new adaptive solution. Section 6.5 provides experimental results for Eigenbench

and for applications from the STAMP benchmark suite. Section 6.6 details the related

work. Finally, Section 6.7 concludes this work.

6.2 Hardware resource partitioning

Fine-grained hardware resource allocation generally requires hardware support to dy-

namically partition resources at run time with acceptable latency. A wide range of

mechanisms to control hardware resources allocated to a particular core or hardware

thread have been proposed in the literature [26, 30, 101, 102]. Some of these proposals

have been implemented in real IBM [61, 145, 146] or Intel [76] processors, which allows

system developers to implement fine-grained resource allocation solutions on real sys-

tems. In this work fine-grained hardware resource allocation for STM 2 is implemented

upon IBM POWER7 processors, using the hardware thread prioritization mechanism

to dynamically assign processor resources to the running threads at run time. This

section briefly describes the POWER7 hardware prioritization mechanism.

93

6.2. Hardware resource partitioning

Priority Priority level Privilege level or-nop inst.

0 Thread shut off Hypervisor -

1 Very low Supervisor or 31,31,31

2 Low User or 1,1,1

3 Medium-Low User or 6,6,6

4 Medium User or 2,2,2

5 Medium-high Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very high Hypervisor or 7,7,7

Table 6.1: Hardware thread priority levels in the IBM POWER7 processor.

IBM POWER7 [4, 162] processors are out-of-order, 8-core design with each core

having up to 4 SMT threads (32 hardware threads in total). Each core region (or

“chiplet”) contains a 32KB 4-way set associative L1 I-cache and a 32KB 8-way set

associative L1 D-cache, a private per-core 256KB L2 cache and a 4MB portion of the

shared 32MB L3 cache. Each POWER7 core can run in single-thread (ST) mode,

SMT2 (two threads executing on a core concurrently) or SMT4 (three or four threads

executing on a core) mode. For capacity computing (i.e., multiple independent, serial

jobs running in parallel), both SMT2 and SMT4 modes are expected to provide benefits.

For capability computing (i.e., parallel applications with high degree of parallelism),

SMT4 may not show extra benefits [4].

Besides multi-core and multithreading capabilities, IBM POWER7 processors pro-

vide a mechanism to partition hardware resource within a core by fetching and decoding

more instructions from one hardware thread than from the others [145]. Each hard-

ware thread in a core has a hardware thread priority, an integer value in the range of

0 (hardware thread off) to 7 (the core is running in single thread mode), as illustrated

in Table 6.1. The amount of hardware resources assigned to a hardware thread is pro-

portional to the difference between the thread’s priority and the priorities of the other

hardware threads in the same core. In general, the higher the priority of a hardware

thread, the higher the amount of hardware resources assigned to that thread (if the

other hardware thread priorities are constant).

The priority value of a hardware thread in POWER7 processors can be controlled

by software and dynamically modified during the execution of an application. IBM

94

6.3. Static Fine-Grained resource partitioning

POWER7 processors provide two different interfaces to change the priority of a thread:

issuing an or-nop instruction or using the Thread Status Register (TSR). The current

thread priority of a hardware thread can be read from the local TSR register using a

mfspr instruction. As Table 6.1 shows, not all hardware thread priority values can

be set by applications: user software can only set priority levels 2, 3, 4; the operating

system (OS) can set 6 out of 8 levels, from 1 to 6; the Hypervisor can span the whole

range of priorities. In order to use all possible levels of priorities, a special Linux 2.6.33

kernel patched with the Hardware Managed Threads priority (HMT) patch [17, 18, 19]

is required. This custom kernel provides two interfaces (a sysfs and a system call)

through which the users can set the current hardware thread priority, including the

ones that require OS or Hypervisor privilege (the OS issues a special Hypervisor call

to set priority 0 and 7). The system call interface (hmt set()) is more suitable for

the purpose of this work than the sysfs interface because it introduces lower overhead

when frequently changing application and auxiliary thread priority.

6.3 Static Fine-Grained resource partitioning

Runtime systems benefit from the assisted execution model if application threads often

require support to perform high-overhead operations [98, 109, 166]. Under these hy-

pothesis, devoting hardware threads to perform runtime operations rather than main

computation may provide higher performance than using all available hardware re-

sources to run application threads. STM 2, in particular, provides significant speedups

over canonical STM systems (between 1.8x and 5.2x on average) [82] for applications

that spend a considerable amount of time performing transactions and the overhead

of TM operations limits scalability. However, similarly to other assisted execution

systems, STM 2 may not fully utilize the processor’s resources. For example, an ap-

plication could spend most of its execution time in an embarrassingly parallel phase

(Section 6.3.1) or alternate accesses to shared locations with private variables within

transactions (Sections 6.3.2.1 and 6.3.2.2).

This section describes fine-grained resource allocation techniques that can be ap-

plied to STM 2 at configuration time to improve processor utilization and efficiency

95

6.3. Static Fine-Grained resource partitioning

when auxiliary threads are mostly idle or overloaded.1 Applying these techniques re-

quires an comprehensive understanding of the IBM POWER7 hardware thread priority

mechanism. Previous studies [17, 103, 111] focus on IBM POWER5 processor gener-

ations which, to the contrary of POWER7, feature only two hardware threads per

core rather than four. In order to better explain the performance implications of the

POWER7 hardware thread prioritization mechanism and the effects of fine-grained

resource partitioning, this section follows a step-by-step approach. Experiments are

performed using Eigenbench [73], a simple TM micro-benchmark that allows program-

mers to tune orthogonal TM characteristics, such as the number of local accesses out-

side or inside transactions, the conflict level, or the number of transactional operations

per transaction. Eigenbench performs N consecutive iterations of a computation block,

where each block consists of an embarrassingly parallel computation part and a transac-

tion. We properly tune Eigenbench to create challenging scenarios for STM 2. We then

leverage the IBM POWER7 hardware thread priority mechanism to improve STM 2’s

performance in these challenging scenarios. In the following sections, ATp denotes

the priority of an application thread, AxTp the priority of an auxiliary thread, and

∆p = ATp − AxTp the difference between the priority of an application thread and its

corresponding auxiliary thread. Positive values of ∆p denote that an application thread

has higher priority than its paired auxiliary thread, whereas negative values of ∆p in-

dicate that the auxiliary thread has higher priority than its corresponding application

thread.

6.3.1 Embarrassingly parallel phases

During embarrassingly parallel phases, threads perform computation on private data

and do not need to protect accesses to memory locations. In STM 2, auxiliary threads

paired with application threads not performing transactions at a given time sit idle,

waiting for a new transaction to start. Since each thread runs on a dedicated hardware

thread and the system is not over-provisioned, this design may lead to overall processor

under-utilization. In fact, waiting auxiliary threads do not perform any useful work but

consume hardware resources that could be used by application threads. A näıve solution

1No application’s source modification is required in order to apply these techniques. Since STM 2

is transparent to applications (which are not aware of auxiliary threads), using these techniques from

within the application would result in a very complicated task and requires compiler assistance.

96

6.3. Static Fine-Grained resource partitioning

25 50 75 95
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Percentage of time spent in embarrassingly parallel phases

S
p
e
d
u
p
 w

.r
.t
.
s
ta

n
d
a
rd

 S
T

M
2

+5 +4 +3 +2 +1

Figure 6.1: Performance impact of reducing the priority of auxiliary threads when

varying the percentage of time spent performing embarrassingly parallel computation

and the value of ∆p. The graph shows that the performance improvement obtained

by reducing the priority of the idle auxiliary threads is proportional to the percentage

of time the application spends in embarrassingly parallel phases and to ∆p. näıve-EP

denotes suspending/resume in embarrassingly parallel (EP) phases.

to this problem consists of suspending waiting auxiliary threads and resuming their

execution as soon as their paired application threads enter a transaction. This approach

usually reduces responsiveness, which may limit overall performance, especially if the

application frequently alternates short transactions and embarrassingly parallel phases.

Moreover, suspending idle auxiliary threads, in general, does not increase processor

utilization: the hardware thread that was running the auxiliary thread is released

back to the operating system (OS) which may decide to either run another task or

leave it idle. If there is no other runnable task available to the idle hardware thread,

the OS may reduce the priority of the idle hardware thread, implicitly increasing the

performance of the other hardware thread. This decision is not under the control of

STM 2 and depends on the system status at the time of suspending an auxiliary thread.

On the other hand, spinning usually guarantees higher responsiveness, which lead us

design STM 2 with this approach, at the cost of unnecessarily consuming hardware

resources without making any progress. In order to increase processor utilization in

embarrassingly phases while maintaining high responsiveness, we reduce the hardware

priority of spinning auxiliary threads (AxTp) and restore it to its initial value as soon

97

6.3. Static Fine-Grained resource partitioning

as the corresponding application threads start a new transaction.

The impact of reducing auxiliary threads priority during embarrassingly parallel

computation phases on the performance of the whole application depends on the per-

centage of time the application spends performing embarrassingly parallel computation

and the amount of extra hardware resources assigned to application threads (∆p). Fig-

ure 6.1 shows the performance improvement of Eigenbench over STM 2 when running

1000 iterations per thread, with one transaction per iteration. In this experiment,

the number of transactional operations per iteration is fixed to 20.1 We then vary

the percentage of time spent by Eigenbench in embarrassingly parallel computation

phases from 25% to 95% and the value of the hardware thread priority of the auxiliary

threads (AxTp) while keeping ATp = 6. This experiment only focuses on the perfor-

mance improvement obtained from reducing the hardware thread priority of auxiliary

threads during embarrassing parallel phases, hence ATp = AxTp = 6 inside transac-

tions. As expected, reducing AxTp during embarrassingly parallel computation phases

provides performance improvements proportional to the percentage of time the appli-

cation spends in embarrassingly parallel computation. Figure 6.1 also shows that the

best performance values are obtained with ∆p = 5 (i.e., ATp = 6 and AxTp = 1). This

is an important design point because this value of ∆p can only be achieved through

the HMT Linux patch. Had we limited the use of priority to the user-available levels,

the maximum ∆p would have been 2 (ATp = 4 and AxTp = 2), which would provide

performance improvement of 16.8% (in the 95% case) instead of 22.3% obtained with

∆p = 5. This performance improvement comes essentially free of any drawbacks, as

reducing hardware resources does not have any impact on the performance of waiting

auxiliary threads.

The graph also reports the performance improvement obtained suspending idle aux-

iliary threads (näıve-EP) and resuming them as new transactions begin. Suspending

waiting auxiliary threads provides some performance improvement, mainly because the

system only runs one application and, thus, there is a high probability that the OS

will reduce the hardware thread priority of the hardware thread previously running the

waiting auxiliary thread. However, the performance improvement achieved with this

approach does not match the one obtained with ∆p = 5. This is due to two main

1Here, and in the rest of the chapter, Eigenbench is configured to perform 10% of transactional

writes.

98

6.3. Static Fine-Grained resource partitioning

(a) Standard case.

(b) Static allocation of extra hardware resources to application threads.

Figure 6.2: Frequently idle auxiliary threads within a transaction. (a) In this scenario,

application threads issue transactional operations at a low rate, thus, auxiliary threads

are frequently idle. In this trace white denotes local computation within a transaction

while colored bars denote transactional reads or writes. (b) Application threads receive

more hardware resources (AxTp = 1 and ATp = 6) but auxiliary threads are still able

to complete all TM operations before the corresponding application threads reach the

commit phase, hence, the transaction’s total execution time is reduced. The elapsed

time in both traces is the same.

reasons: first, the OS is free to schedule any other process or kernel daemon on idle

hardware threads previously occupied by the waiting auxiliary threads. This external

process may introduce even larger slowdown on the applications threads (data cache

lines eviction, TLB entries eviction, resource contention). Second, the overhead of

resuming auxiliary threads may reduce the overall benefit.

6.3.2 Load imbalance inside transactions

Load imbalance [18, 19, 139, 160] is a well-known problem for parallel applications that

need to synchronize at determined points, such as at barriers or fork/join constructs.

Load imbalance happens when one or more threads in a parallel application have more

work to perform than the others, with the result that the whole application proceeds

at the speed of the slowest threads, which may severely limit overall performance.

In STM 2, each application/auxiliary thread pair needs to synchronize at the end

of each transaction (commit()) before moving to the next phase. For each appli-

cation/auxiliary thread pair, load imbalance may occur because: 1) the application

99

6.3. Static Fine-Grained resource partitioning

thread issues TM operations at a low rate, thus its corresponding auxiliary thread is

frequently idle (Section 6.3.2.1), and 2) the auxiliary thread has not completed all TM

management operations when the corresponding application thread reaches the commit

phase (Section 6.3.2.2). The next sub-sections explain these scenarios with details.

6.3.2.1 Overloaded application threads

Figure 6.2 shows a partial execution trace (one transaction) of a scenario in which appli-

cation threads perform TM operations at a low rate. In this figure, local computation

(operations on private variables) is depicted in white and TM operations are drawn

as colored bars. In order to obtain these execution traces, we instrumented STM 2

and produced traces that can be visualized with Paraver [130], a performance analysis

tool commonly used to study parallel applications. In this experiment Eigenbench is

configured in such a way that application threads perform Nlocal local operations for

every shared access (Nshared). In the example shown in Figure 6.2, Nlocal = 300 and

Nshared = 20 (the total number of operations is Nlocal × Nshared + Nshared = 6, 020),

which results in the auxiliary thread being idle for 95% of the time during the execution

of a transaction.

Figure 6.2a shows the standard STM 2 case: the auxiliary thread is frequently idle

but consumes hardware resources by spinning on the communication channel for in-

coming read/write messages. The application thread, on the other hand, can only use

a partial amount of the shared hardware resources, with the results that its speed is

limited. In this simple scenario the programmer could configure STM 2 to reduce the

priority of the auxiliary thread (AxTp), therefore assigning more hardware resources to

the application thread. Figure 6.2b shows the effect of setting ATp = 6 and AxTp = 1

(∆p = 5): performance improves considerably by reducing AxTp and assigning extra

hardware resources to the application thread. In fact, although the auxiliary thread

proceeds at slower speed than the one in Figure 6.2a (the trace shows that each TM op-

eration now takes longer), the application thread does not have to wait and can proceed

with its computation. This happens because the auxiliary thread has still enough time

to complete all TM operations before its corresponding application thread reaches the

commit phase, thus the application thread does not wait to complete the transaction.

Unfortunately, setting the correct values of ATp and AxTp is not always straightfor-

ward: since the internal design of the IBM POWER7 hardware thread priority mecha-

100

6.3. Static Fine-Grained resource partitioning

0 4 10 20 60 100
0

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Number of local accesses per transactional operation

S
p
e
e
d
u
p
 w

.r
.t
.
s
ta

n
d
a
rd

 S
T

M
2

+5 +4 +3 +2 +1

Figure 6.3: Performance impact of reducing the priority of auxiliary threads in presence

of load imbalance within transactions (overloaded application threads). In this graph,

we vary the number of local accesses per transactional operation (Nlocal) and the value

of ∆p. The results show that the best value of ∆p is not always the same and that

aggressive values of ∆p provide performance improvement only when Nlocal is large.

nism is not symmetric [17], the performance degradation of the lower priority thread is

usually higher than the performance improvement of the higher priority thread. This

design does not lead to performance degradation when reducing the priority of auxil-

iary threads that are actually not doing any progress, like in embarrassingly parallel

computation phases. However, applying the wrong set of priorities when both threads

are performing useful work may reverse the imbalance, with the final effect of worsening

the overall performance.

In order to quantify the effect of fine-grained resource allocation on applications with

imbalanced transactions, we performed a complete design space exploration, varying

the number of accesses to local variables (Nlocal) per TM operation (Nshared) within

a transaction and the priority values of the auxiliary threads (AxTp); ATp = 6 in all

cases. The result of this design space exploration is reported in Figure 6.3. When

the number of local accesses is limited or null, excessively reducing AxTp reverses the

imbalance: auxiliary threads become the bottleneck and application threads have to

wait at commit phase for their auxiliary threads to complete their work. This often

leads to performance degradation, especially when the priority difference is large (e.g.,

101

6.3. Static Fine-Grained resource partitioning

(a) Standard case.

(b) Spin-only: Static allocation of extra resources to auxiliary threads at com-

mit phase.

(c) Entire transaction: Static allocation of extra resources to auxiliary threads

throughout the whole transaction.

Figure 6.4: Overloaded auxiliary threads. In the traces, white denotes transaction

computation (both local and shared accesses) while light green denotes application

threads’ waiting time at commit phase. In this scenario auxiliary threads are overloaded

and cannot complete all TM operations before their corresponding application threads

reach the commit phase. Increasing the amount of hardware resources assigned to

auxiliary threads improves overall performance. The elapsed time is the same for all

the traces.

∆p ≥ 4). For Nlocal = 0, reducing the hardware thread priority of auxiliary threads

degrades performance up to 63% (ATp = 6 and AxTp = 1, ∆p = 5). As the number of

local accesses per TM operation increases, auxiliary threads are able to complete their

work even with fewer hardware resources: for Nlocal = 100, aggressive settings achieve

overall performance improvement of 44%.

6.3.2.2 Overloaded auxiliary threads

Some TM management operations, such as read-set validation or conflict detection,

require a variable amount of time to be completed. For example, the read-set validation

102

6.3. Static Fine-Grained resource partitioning

overhead depends on the number of individual shared memory locations read during a

transaction and the number of concurrent writers. The former determines the size of

the read-set while the latter determines the frequency with which read-set validation

is performed.

STM 2 is an eager-conflict detection STM, thus read-set validation is performed

when a potential conflict arises. Note that, although required, not all read-set vali-

dations result in aborting the transaction. If an application triggers several read-set

validations, auxiliary threads may not be able to complete all their TM operations

before the corresponding application threads reach the commit phase. If such a sit-

uation arises, application threads are forced to wait at commit phase. Figure 6.4a

illustrates this case: the auxiliary thread is not able to complete all TM management

operations before its corresponding application thread reaches the commit phase, thus

the application thread is forced to wait, effectively serializing part of computation and

TM management operations. In the trace, application thread’s waiting time at commit

phase is denoted with light green while white depicts the execution of a transaction

(both local computation and transactional operations).

Eigenbench does not allow the user to control the number of read-set validations

per transaction, thus, in order to create the scenario in Figure 6.4a, we introduced

extra (although not always necessary) read-set validations to simulate potential conflicts

induced by large read-sets and large numbers of concurrent threads. In scenarios such

as the one depicted in Figure 6.4a, prioritizing auxiliary threads (∆p < 0) may provide

performance benefits. This technique can be applied just at commit phase (Spin-only)

or throughout the whole transaction (Entire Transaction).

Spin-only: Figures 6.4b shows how reducing ATp while an application thread

is waiting at commit phase speeds up the execution of TM management operations,

achieving overall performance improvement. This solution, similarly to the case de-

scribed in Section 6.3.1, is straightforward and does not introduce any performance

degradation because application threads do not perform useful work while waiting at

commit phase. In particular, the figure shows the case in which ATp = 1 and AxTp = 6

(∆p = −5). Comparing Figures 6.4a and 6.4b, there is no performance degradation

for the application thread computing phase (white in the traces), while the spinning

time (light green) is considerably reduced. Performance improvement, in this case, is

proportional to the spinning time reduction. Similarly to the the case described in

103

6.3. Static Fine-Grained resource partitioning

Section 6.3.1 (see Figure 6.1), overall performance improves with the decrease of ATp,

thus the best performance is achieved with ∆p = −5.

Entire transaction: Figure 6.4c shows a solution that decreases the priority of

the application thread at the beginning of the transaction and maintains ∆p < 0 for

the entire transaction execution. This approach is more aggressive than the previ-

ous spin-only solution: the performance of application threads considerably reduces

by prioritizing auxiliary threads during the transaction computation phase. This can

be observed by comparing Figures 6.4a and 6.4c: the application thread computing

phase (white) takes considerably longer than in the standard case. On the other hand,

the auxiliary thread does not accumulate too many pending TM operations, hence

its corresponding application thread has to spin for less time at commit phase. The

net result is that, with the more aggressive approach, the performance improves with

respect to both the baseline (65%) and the safe, spin-only approach (7%). Note that

statically reducing the priority of application threads also has the side effect of reducing

the rate at which application threads inject messages into the communication channel.

Consequently, auxiliary threads might spend time waiting for the next incoming mes-

sage, which would reduce the net benefit. This situation may arise especially for large

negative values of ∆p but we have not measured any slowdown in our experiments.

As discussed above, the number of read-set validations per TM operation depends

on application characteristics, such as the number of concurrent writers. Figure 6.5

shows the impact of statically increasing AxTp (∆p < 0) at the beginning of the trans-

action when the number of read-set validations per TM operation decreases. The graph

also shows the performance of reducing ATp to one (∆p = −5) when application threads

wait at commit phase (i.e., the case depicted in Figure 6.4b). Finally, the graph re-

ports the effect of suspending waiting applications threads and resuming them once

the transaction is ready to commit (näıve-spin). The figure reports the performance

improvement over the standard STM 2 when performing read-set validation every N

transactional operations (1:N) and varying the value of ∆p. These experiments show

that increasing AxTp for transactions that require a high number of validations gen-

erally provides higher performance improvements than just reducing ATp at commit

phase or suspending/resuming waiting applications. For example, when performing one

validation for every transactional operation (1:1), increasing AxTp from the beginning

of the transaction provides performance improvement of 65% over the standard STM 2

104

6.3. Static Fine-Grained resource partitioning

1:1 1:2 1:5 1:10 1:20
0

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Ratio between TM operations and validations

S
p
e
e
d
u
p
 w

.r
.t
.
s
ta

n
d
a
rd

 S
T

M
2

−5 −4 −3 −2 −1 Spin−only

Figure 6.5: Performance impact of increasing the priority of overloaded auxiliary

threads when varying the number of read-set validations per transactional operation

and ∆p. The graph shows that the right value of ∆p is not always the same and

that aggressive settings of ∆p are only suitable when the ratio read-set validations to

transactional operation is high.

while reducing ATp to one at commit phase provides 55% performance improvement

and suspending/resuming waiting application threads provides 40% performance im-

provement. On the other hand, reducing ATp when an application thread is spinning

at commit phase is a safe operation that does not introduce any measurable perfor-

mance degradation. This technique can, therefore, be applied as fall-back mechanism

in case a perfect balance between application and auxiliary threads cannot be achieved

by increasing AxTp at the beginning of a transaction.

Finally, the best value of ∆p is not always the same for all ratios and aggressive

settings are only possible when the ratio number of read-set validations to transac-

tional operations is high. Figure 6.5 shows, in fact, that incorrect settings of ATp and

AxTp when prioritizing auxiliary threads may lead to considerable performance degra-

dation (up to 70%), especially if the number of read-set validations per transaction

is low. As for the case of reducing AxTp for frequently idle auxiliary threads (Sec-

tion 6.3.2.1), manually setting ATp and AxTp is a complicated task, even for simple

micro-benchmarks.

105

6.4. Adaptive Fine-Grained resource partitioning

(a) Standard case (b) Static allocation of extra resources to auxiliary

threads

(c) Static allocation of extra resources to applica-

tion threads

(d) Adaptive resource partitioning

Figure 6.6: Irregular transactions with bursts of transactional operations. In this ex-

ample Eigenbench executes a burst of transactional operations in the middle of the

transaction. White denotes local computation within transaction, colored bars denote

transactional reads and writes, the light green at the end of the transaction denotes

application threads waiting at commit phase. Static approaches provide sub-optimal

performance because decreasing/increasing AxTp improves performance in one phase

but suffers slowdown in the other. The adaptive solution, instead, properly adapts to

the transaction structure and partition hardware resources on demand.

6.4 Adaptive Fine-Grained resource partitioning

Section 6.3 shows that, for simple scenarios, setting the best values of ATp and AxTp can

be done at configuration time by an expert programmer. For example, setting ATp = 6

and AxTp = 1 provides considerable performance improvements for embarrassingly

parallel computation phases (Section 6.3.1), proportional to the percentage of time

spent by the application in those phases (see Figure 6.1). In other cases, instead,

setting the right value of ∆p is not trivial and depends on the actual work performed

by application and auxiliary threads. In certain cases (Figure 6.3), the right decision is

to reduce AxTp and give more hardware resources to the application thread; in others

(Figure 6.5), the auxiliary thread is the bottleneck and increasing its priority improves

overall performance. In both cases, the right value of ∆p depends on the structure of

the transaction (i.e., uniform versus burst structure, ratio of shared and local accesses,

etc.). If the structure of the transaction is not uniform, depends on input parameters

or changes during the execution of the applications, statically setting the proper values

of ATp and AxTp becomes a daunting task and may result in performance degradation.

106

6.4. Adaptive Fine-Grained resource partitioning

Figure 6.6a shows an execution trace of a transaction with a burst of accesses

to shared memory locations roughly starting in the middle of the transaction: the

application thread performs some local computation (white in the trace) followed by

a burst of shared memory accesses (the colored bars in the trace denote transactional

read and write operations), and then performs computation on local data.1 This simple

example shows one of the reasons why the original STM 2 design provides performance

improvement over other state-of-the-art STM systems: a large part of the execution

of TM operations overlaps with the application computation. At the same time, the

auxiliary thread is able to complete all TM operations before the application thread

reaches the commit phase, thus, application threads run almost as if they were oblivious

of the STM runtime library. However, the same trace shows that the auxiliary thread is

mainly idle during the local computation phases and considerably overloaded when the

sudden burst of shared memory accesses starts. As with many static approaches, the

main problem in this example is that it is not trivial to configure, at compile time, the

values of ATp and AxTp that provide the best performance for both local computation

and bursts of shared memory accesses.

Noticing that the burst of shared accesses results in a considerable amount of work

for the auxiliary thread, one possible approach is to increase AxTp (∆p < 0): Fig-

ure 6.6b shows the effect of setting ATp = 5 and AxTp = 6 (∆p = −1). In this

case, although the performance of the auxiliary thread improves considerably during

the execution of the TM operations, the performance degradation suffered in the lo-

cal computation phases outweighs the improvement, which results in an overall 27%

slowdown with respect to the standard STM 2 design.

The opposite approach consists of reducing the priority of the auxiliary thread to

benefit the application thread. Figure 6.6c shows that the performance of the appli-

cation thread during the local computation phase improves by 12%, while, obviously,

the performance of the auxiliary thread when performing TM operations decreases. In

fact, the trace shows that the auxiliary thread is still performing TM operations when

the application thread reaches the end of the transaction, thus, the application thread

has to wait at commit phase. Although local computation phases are predominant in

1In this experiment, we use a modified version of Eigenbench. By design, Eigenbench issues TM

operation uniformly, i.e., one TM operation every Nlocal local operations, thus the standard version of

Eigenbench does not allow us to generate bursts of TM operations.

107

6.4. Adaptive Fine-Grained resource partitioning

this transaction structure and part of the TM operations overlaps with the second local

computation phase, there is still a slight performance degradation. Neither solution is

optimal, as both of them gain and suffer in opposite phases during the execution of the

transaction. The common problem to both solutions is that static approaches seldom

adapt to non-uniform structures, such as the one presented in Figure 6.6a.

This section introduces an automatic solution that adapts, at run time, to the

transaction’s structure and automatically sets the best values of ATp and AxTp. This

adaptive solution is based on heuristics and on the lessons learned when applying the

static solutions described in Section 6.3. The proposed heuristics are designed according

to the following key principles:

P1 Reducing the hardware thread priority of either application or auxiliary threads

introduces an asymmetric performance degradation [17]. Thus, we need to be

careful when decreasing the priority of a thread, especially for large values of

|∆p|.

P2 Reducing the priority of a waiting auxiliary thread considerably improves perfor-

mance (up to 44%), as shown in Figures 6.1 and 6.3, without any performance

degradation. The heuristics should decrease AxTp whenever the application en-

ters a (large) embarrassingly parallel section.

P3 If application threads issue bursts of TM operations, their corresponding auxiliary

threads may not be able to complete all TM operations before the application

threads reach commit phase. The heuristics should consider prioritizing auxiliary

threads (∆p < 0) in such scenarios. Figures 6.5 and 6.6b show that increas-

ing AxTp directly affects application threads’ performance, thus auxiliary thread

prioritization must be done judiciously.

P4 As proved in Section 6.3, in some cases, large values of ∆p provide higher perfor-

mance improvements. However, this required the use of the system call hmt set(),

which introduces some overhead. We tend to modify the priority of waiting

threads (mainly the auxiliary threads), as this directly affects the value of ∆p =

ATp −AxTp.

Besides these basic key principles, the adaptive solution employs the static mech-

anisms that do not depend on the actual application and auxiliary thread structure,

108

6.4. Adaptive Fine-Grained resource partitioning

such as reducing AxTp during embarrassingly parallel phases or reducing ATp when

spinning at commit phase. For short embarrassingly parallel sections or for cases in

which all TM operations are completed when an application thread reaches the commit

phase, the overhead of invoking a system call may outweigh the performance improve-

ment. To avoid such situations, the adaptive solution snoozes for a short time before

actually issuing the system call. At the beginning of a transaction the initial values

are ATp = ATp(0) = 5 and AxTp = AxTp(0) = 5. Since ATp remains constant during

the execution of a transaction (P4), these settings allow the enriched STM 2 to reach

large positive values of ∆p (P2) but also to be able to prioritize auxiliary threads (P3),

depending on the structure of the transaction. With these initial settings, positive and

negative values of ∆p can be achieved by changing only the value of AxTp, without the

application threads issuing any hmt set() (P4), hence reducing the run time overhead.

Detecting load imbalance: The first problem towards the development of an

adaptive solution is how to determine, at run time, if there is load imbalance and which

thread is the bottleneck. In order to detect load imbalance, we monitor the number

of messages queued in the communication channel between application and auxiliary

threads. In fact, if the application thread issues transactional operations at a low rate,

the queue would be frequently empty. Conversely, if the application thread issues TM

operations at a rate higher than the rate at which the auxiliary thread completes its

work, the queue would gradually fill up. By monitoring the queue between application

and auxiliary thread, we are able to effectively detect load imbalance with negligible

overhead.

Reducing the priority of auxiliary threads: In case it is determined that an

auxiliary thread is often idle (i.e., the queue is empty most of the time), the heuristic

aims at reducing AxTp so that the paired application thread receives more hardware

resources. In order not to reverse the load imbalance, the heuristic decreases AxTp only

after a certain amount of consecutive attempts to dequeue a message that reveal that

the queue is empty. This quantity is denoted as snooze time. A constant snooze time

would decrease the priority regardless of the current value of AxTp, however, according

to principle P1 and previous work [17, 18, 19, 57, 107], the priority of a thread should

be decreased judiciously, especially if the priority difference ∆p is already large. On the

other hand, Figure 6.3 shows that, even for small values of Nlocal, decreasing AxTp pro-

vides benefits. The solution adopted here is to make snooze time variable: every time

109

6.4. Adaptive Fine-Grained resource partitioning

the auxiliary thread decreases its priority, the heuristic computes a new snooze time

value as a function of ∆p. The general idea is that the larger the value of ∆p, the larger

the value of snooze time, i.e., the value of AxTp is reduced less often if the ∆p is large.

snooze time is computed as:

snooze time = a+ b ∗ f(∆p)

where f(∆p) is a monotonically increasing function for ∆p = 0...4, and a and b are con-

stants. snooze time is small for small values of ∆p, which allows the heuristic to quickly

reduce AxTp when the auxiliary thread is idle. As ∆p increases, snooze time increases

as well, which makes the next priority change occur less often. The right f(∆p) function

depends on the specific hardware resource partitioning scheme: For POWER7 systems,

the performance degradation of reducing the hardware thread priority is exponential

(P1), hence an f(∆p) expressed as an exponential function should confidently model

performance. For ∆p = 0...4, however, an exponential function can be approximated

with a less expensive polynomial: empirical tests show that f(∆p) = (∆p + 1)3 quickly

reacts for small values of ∆p and progressively increases snooze time for larger values

of ∆p. The values of a = 40 and b = 10 are also empirically determined, so the final

function to compute the next value of snooze time is the following:

snooze time = 40 + 10 ∗ (∆p + 1)3

Increasing the priority of auxiliary threads: In this adaptive system, the

value of AxTp at time t may be lower than its initial value AxTp(0). This may happen

because the auxiliary thread was frequently idle before t and the heuristic decreased

its hardware thread priority. If a burst of TM operations such as the one depicted in

Figure 6.6a arises, the heuristic should increase the value of AxTp or else the auxil-

iary thread will not be able to complete its work before its corresponding application

thread reaches the commit phase (see Figure 6.6c). Raising the value of AxTp should

not be too impulsive as, if the burst is particularly short, it might be worth keep-

ing AxTp < AxTp(0) (Figure 6.3). The heuristic increases the value of AxTp until it

reaches AxTp(0) if there are more than QS THRESHOLD elements in the queue (in the

current implementation this value is 20), which denotes that the auxiliary thread is

potentially accumulating work. As reported in Section 6.3.2.2, increasing the value of

AxTp so that ∆p < 0 reduces the rate at which application threads inject messages into

110

6.4. Adaptive Fine-Grained resource partitioning

0 1 2 3

x 10
4

0

1

2

3

4

5

6
A

u
x
ili

a
ry

 t
h
re

a
d
 p

ri
o
ri
ty

(a) Beginning

1.19 1.2 1.21 1.22 1.23

x 10
6

0

1

2

3

4

5

6

Time

(b) TM Burst

2.03 2.04 2.05 2.06 2.07

x 10
6

0

1

2

3

4

5

6

(c) End

Figure 6.7: The adaptive solution automatically changes the value of AxTp according to

the structure of the transaction and the computing demand of application and auxiliary

threads. These graphs show the values of AxTp during one transaction for the case

discussed in Figure 6.6d. The x-axis reports time since the beginning of the transaction.

the communication channel, which may reduce the overall performance. Nevertheless,

there are critical cases, such as a burst of TM operations at the end of a transaction,

in which this approach may increase the performance: auxiliary threads are allowed to

increase their priority up to AxTp = 6 (i.e., ∆p = −1) if the number of pending mes-

sages in the queue is larger than QS THRESHOLD CRITICAL (128 in our implementation).

Notice that higher values of |∆p| (i.e., ∆p = −2,−3, ..) are also possible but cumber-

some. Instead, in case the load cannot be balanced with ∆p = −1, the heuristic reduces

the priority of the application thread while spinning at commit phase (see Figure 6.4b).

Figure 6.6d shows that the dynamic solution is able to adapt to the non-uniform

structure of the transaction and provides higher performance than both static ap-

proaches. First, the adaptive solution reduces the priority of the auxiliary thread during

the initial local computation phase, therefore improving the performance of the appli-

cation thread. Next, when the sudden burst of accesses to shared memory locations

starts, the adaptive solution gradually increases AxTp and, if necessary, reaches values

higher than ATp (∆p < 0). Finally, once the auxiliary thread has completed all its TM

operations, the adaptive mechanism reduces AxTp again, improving the performance of

111

6.5. Experimental results

the application thread in the last part of the transaction. The overall result is perfor-

mance improvement of 15%, where static approaches result in performance degradation

when decreasing or increasing AxTp, respectively (based on the best values among all

possible settings of ATp and AxTp).

The adaptive solution’s heuristics can be evaluated with two different metrics: 1)

the convergence to the best value of ∆p, and 2) the speed at which the heuristics reach

that value. Figure 6.7 shows the value of AxTp (ATp=ATp(0) throughout the execution)

as function of the elapsed time since the beginning of the transaction, for a transaction

with a burst of TM operations in the middle (the same case reported in Figure 6.6d).

As Figure 6.7a shows, the adaptive solution successfully converges to AxTp = 1 (stable

state), first quickly and then, as ∆p increases, more slowly (the steps get larger as ∆p

increases). When the sudden burst of TM operations starts (Figure 6.7b), the heuristic

quickly adapts to the new scenario and converges to AxTp = 5. Since increasing

AxTp does not depend on ∆p, the steps are much smaller than in Figure 6.7a. In the

meanwhile, the auxiliary thread has accumulated a considerable amount of work, thus,

the heuristic further increases AxTp = 6 (∆p = −1), giving more hardware resources

to the auxiliary thread (Figure 6.7b). Finally, once all the accumulated work has been

processed, the heuristic automatically reduces the auxiliary thread priority until it

reaches the value AxTp = 1 (Figure 6.7c), similarly to what happens in the first part.

6.5 Experimental results

The evaluation of the adaptive solution presented in the previous section is performed

on a IBM POWER7 system (8 cores, 4 hardware threads per core) equipped with 64 GB

of RAM. STM 2 and all the applications are compiled with GCC 4.3.4 with optimization

level O3 and the results reported for each application are the average of 25 runs. In

order to use all hardware priority levels, all tests are performed on a custom version

of the Linux 2.6.33 kernel patched with the HMT patch [18]. In all the experiments,

the Eigenbench and STAMP applications use all the available hardware threads (32

in the tested configuration): 16 application threads and 16 auxiliary threads. STAMP

applications use the reference (large) input sets [22].

112

6.5. Experimental results

6.5.1 Eigenbench

Figure 6.6 shows the effect of statically increasing (Figure 6.6b) and decreasing (Fig-

ure 6.6c) AxTp for transactions with non-uniform structure. In particular, Figure 6.6

depicts an example of a transaction with a burst of accesses to shared memory locations

roughly starting in the middle of the transaction. For this particular example, neither

statically decreasing nor increasing AxTp provides performance improvement over the

standard STM 2, while the adaptive solution effectively allocates hardware resources on

demand, reaching overall performance improvements up to 15%.

An interesting observation is that, for transactions with burst of TM operations,

the performance improvement depends on both the size and the position of the burst.

The size of the burst clearly affects whether prioritizing application/auxiliary threads

provides higher performance. In the extreme cases (bursts of 0% or 100%), the ex-

amples degenerate to the cases presented in Section 6.3 (Section 6.3.2.1 and 6.3.2.2,

respectively). If a short burst of TM operations occurs at the beginning of a transac-

tion, the auxiliary thread has enough time to complete all TM management operations

before the application thread reaches the commit phase, even without applying fine-

grained resource allocation. As the burst of TM operations moves towards the end of

the transaction, the auxiliary thread may not be able to complete all the TM operations

before its corresponding application thread reaches the commit phase. If that happens,

the application thread will spin at commit phase, which leads to sub-optimal perfor-

mance. Obviously, the worst case occurs when the burst of TM operations appears at

the end of the transaction: in this case application and auxiliary threads essentially

run sequentially, invalidating most of the advantages of assisted execution.

Figure 6.8 shows the performance of the best combination for the proposed static ap-

proaches (both prioritizing application and auxiliary thread) and the adaptive solution

over the standard STM 2 design, when varying the size of the burst (from 20% to 75%

of the transaction execution time) and the position of the burst (middle and end of the

transaction). The experiments in the graph show that statically partitioning hardware

resources provides performance improvement only for extreme cases (20% and 75%),

either because there is a large part of the transaction in which the auxiliary thread is

mainly idle, or because the burst is large enough to cause the application thread to

spin at commit phase for a considerable amount of time. In the other scenarios (30%

113

6.5. Experimental results

20% 30% 50% 75% 20% 30% 50% 75%
0

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

S
p
e
e
d
u
p
 w

.r
.t
 S

ta
n
d
a
rd

 S
T

M
2

TM operations burst time

∆
p
>0 ∆

p
<0 Adaptive

EndMiddle

Figure 6.8: Performance of static (best values among all combinations) and adaptive

solutions for application with not-uniform transaction structure and varying size/posi-

tion of burst of shared accesses. The graph shows that the adaptive solution matches

or outperforms static approaches and always provides performance improvement over

the standard STM 2. EP denotes embarrassingly parallel phases.

and 50%), STM 2 effectively runs TM operations and computation in parallel. As Fig-

ure 6.6 shows, neither increasing nor decreasing AxTp provides the best performance

and both approaches incur performance degradation. The dynamic approach, on the

other hand, 1) provides performance improvement over both static approaches and 2)

more importantly, always outperforms the standard STM 2 for both the “Middle” and

the “End” cases. This experiment shows that the automatic solution is able to adapt

to the structure of the transaction, properly increasing or decreasing the value of AxTp

on demand. In a nutshell, the adaptive solution provides performance improvements

between 6% and 38% over the standard STM 2and outperforms the best performance

provided by both static techniques.

6.5.2 STAMP applications

This section shows that the cases examined in the previous section with Eigenbench are

indeed common to more complex applications and pose challenges to assisted execution

runtime systems, such as STM 2. To evaluate the proposed adaptive solution, we use

applications from the STAMP benchmark suite, a set of applications widely used to

114

6.5. Experimental results

Bayes Genome Labyrinth Ssca2 Vacation Intruder Kmeans Yada
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

S
p
e
e
d
u
p
 w

.r
.t
.
s
ta

n
d
a
rd

 S
T

M
2

EP
∆

p
>0 ∆

p
<0

Spin−only Naive−EP Naive−Spin Adaptive

1.86

Figure 6.9: Performance impact of static (best values among all combinations) and

adaptive solutions for STAMP applications. The adaptive solution matches or outper-

forms the static approaches for all applications (except Vacation).

test transactional memory systems.

Figure 6.9 shows the performance of (separately) applying the static approaches

described the Section 6.3 and the adaptive solution presented in the previous section.

The graph reports, for each static technique, the best values of the pair (ATp, AxTp)

among all possible configurations. Applications in Figures 6.9 can be divided into two

groups: applications in the first group (Bayes, Genome, Yada, Labyrinth, and SSCA2)

show performance improvement when applying fine-grained resource allocation. Ap-

plications in the second group (Vacation, Intruder, and Kmeans) show limited or no

performance improvement when fine-grained resource allocation is applied. This means

that the load is well balanced between applications and auxiliary threads and that the

original STM 2 design provides already high performance and processor utilization. For

these applications, the adaptive solution aims at not worsening performance.

Statically decreasing AxTp during embarrassingly parallel phases generally improves

performance, up to 46% (Bayes) though the actual impact depends on the amount of

time spend in these phases. Even in this case, static solutions may suffer from the

115

6.5. Experimental results

overhead of unnecessary changing the values of ATp: for example, if the time between

two transactions is short, the overhead of invoking a system call may outweigh the per-

formance improvement obtained throughout embarrassingly parallel sections. This sit-

uation does not often arise with Eigenbench, where we have the complete control of the

application’s structure, but it appears in some of the STAMP benchmarks that present

back-to-back transactions (e.g., SSCA2 or Vacation). In some cases (e.g., Intruder and

Kmeans) even simply reducing AxTp between two consecutive transactions results in

a considerable overall slowdown (10% and 5%, respectively). The same scenario arises

when application threads are waiting at commit phase: if the auxiliary thread has al-

ready performed all the TM operations when the application thread reaches the commit

phase, the system call overhead may induce performance degradation. Suspending idle

auxiliary threads (näıve-EP) or spinning application threads (näıve-Spin) introduces

an even larger overhead: in the worst cases (large number of small transactions) the

performance slowdown can be up to 38% (SSCA2). In general, näıve-EP and näıve-

Spin perform worst or equal than their hardware thread priority counterparts (EP

and Spin-only, respectively). In order to avoid these situations, the adaptive solution

snoozes for a short time before reducing the priority of waiting auxiliary threads dur-

ing embarrassingly parallel phases or application threads waiting at commit phase. In

particular, the adaptive solution reduces ATp only if there are at least SPIN THRESHOLD

messages (20 in the current implementation) in the communication channel when an

application thread reaches the commit phase. Similarly, the adaptive solution reduces

AxTp in embarrassingly parallel phases only after EP THRESHOLD cycles.

Within transactions, static techniques do not usually provide performance improve-

ment even for applications in the first group: Prioritizing auxiliary threads (∆p < 0) al-

ways reduces application’s performance while prioritizing application threads (∆p > 0)

provides speedups for Bayes, Labyrinth and Yada. Spinning at commit phase pro-

vides measurable performance improvement only for Bayes, which proves that auxiliary

threads are not particularly overloaded, hence AxTp should not generally be greater

than ATp (unless particular situations arise). For well-balanced applications, such as

Vacation, static approaches provide performance degradation or have almost no effect

(performance variation are within 1%). In these cases, the adaptive solution does not

generally detect load imbalance and, therefore, does not react (i.e., no priority change)

with the result that there is almost no performance variation.

116

6.5. Experimental results

(a) Labyrinth’s transaction execution trace (b) Labyrinth’s execution trace: close-up of the fi-

nal part of a transaction

Figure 6.10: Labyrinth’s transactions alternate a large local computation phase (white

in the figure) with a burst of transactional operations (colored bars) at the end. The

adaptive solution is able to capture this structure and properly set ATp and AxTp

in each sub-phase. The result is performance improvement of 19% over the standard

STM 2.

Among the tested STAMP applications, Labyrinth, SSCA2 and Bayes are the most

interesting cases for this study. Labyrinth presents very large, back-to-back transac-

tions with a large number of accesses to local memory locations followed by a burst

of shared memory accesses (TM operations). This behavior is similar to the one pre-

sented in Section 6.3.2.2, where a burst of TM operations appears towards the end

of a transaction, but more extreme compared to the modified version Eigenbench. In

particular, both the local computation phases and the number of TM operations issued

in burst are considerably larger. Figure 6.10a depicts the execution trace of one of

Labyrinth’s transaction: the picture clearly shows that the local computation phase

(white in the trace) is predominant, which explains why even statically reducing AxTp

provides some performance improvements (Figure 6.9). Figure 6.10b shows a close-up

of the final part of the transaction, the burst of TM operations. Since the burst is

at the end of the transaction, the application thread has to wait at commit phase for

the auxiliary thread to complete all TM management operations, though the auxiliary

thread is mainly idle during the transaction (which explains the small performance

improvement for the spin-only case in Figure 6.9). As it was the case for the examples

in Section 6.3.2.2, due to the non-uniform structure of the transaction, static solutions

fail to capture the application’s characteristics. The adaptive solution, instead, is able

to lower the priority of the auxiliary thread in the first part of the transaction, reaching

AxTp = 1, and increase the auxiliary thread priority when the application thread issues

the burst of TM operations. Overall the adaptive solution outperforms the standard

STM 2 by 19%.

117

6.5. Experimental results

SSCA2 presents two separate execution phases: in the first phase, the application

generates the graph that will be solved in the second phase. Both phases are parallel

but, while the second phase uses transactions to protect shared memory locations, the

first phase is embarrassingly parallel, as each thread works on its local portion of the

graph. The original STM 2 assigns half the available hardware threads to run auxiliary

threads even in the embarrassingly parallel phase: by statically reducing the priority of

the auxiliary threads in the first phase, static solutions achieve 10.3% of performance

improvement over the standard STM 2 design. In the second part of the application,

SSCA2 performs very short and balanced transactions with a low conflict rate and

several concurrent writers. In this phase, the application is well balanced and applying

static solutions decreases performance. The adaptive solution also lower AxTp in the

first phase but does not detect load imbalance within transactions, hence it does not

react. The net result is a performance improvement of 9.8% over STM 2. For this

application, suspending waiting application or auxiliary threads has a dramatic impact

on performance caused by the large number of short transactions.

Bayes is the application that shows the largest performance improvement: Even

static approaches achieve improvement in the order of 30-45%. Bayes implements an

algorithm for learning the structure of Bayesian networks from observed data through a

hill-climbing strategy. To this extent, the application combines local and global search.

Similarly to SSCA2, the applications performs two parallel parts: the first is mainly

embarrassingly parallel and devoting more hardware resources to application threads

considerably increases performance (up to 45%). In the second part, instead, the appli-

cations uses a few large transactions with large read- and write-sets. However, similarly

to Labyrinth, auxiliary threads are frequently idle, thus decreasing AxTp provides ben-

efits. For Bayes the adaptive solution precisely captures the application’s structure

and combine the positive effects observed for Labyrinth and SSCA2, providing a final

performance improvement of 85% over the standard STM 2.

The examples shown in this section demonstrate that there are cases in which fine-

grained hardware resource partitioning can be used to improve the performance of

assisted execution systems, such as STM 2. For not well-balanced applications, like

Labyrinth and Bayes, and for applications with large (sequential or parallel) inde-

pendent computing phases, like SSCA2 and Bayes, the adaptive solution successfully

employs dynamic fine-grained hardware resource partitioning and provides considerable

118

6.6. Related work

performance improvements without any effort from the programmer, modification of

the applications or library re-linking. Only Intruder among all the STAMP applications

shows minimal performance degradation. Finally, considering that the STM 2 already

outperforms several state-of-the-art STMs [82], the adaptive solution shows average

speedup of 2.88x, 2.68x, 2.41x, and 6.21x over TinySTM [133], NOrec [39], TL2 [43],

and TML [149], respectively.

6.6 Related work

Hardware thread prioritization [57, 107] has been introduced by IBM in the POWER5

processor family. Hardware thread prioritization allows users to dynamically bias the

amount of hardware resources assigned to hardware threads in the same core. AIX [57]

provides the users with an interface to modify hardware thread priorities. Linux kernels

use hardware prioritization when 1) a thread is spinning on a lock, 2) a thread is waiting

for another thread to complete a required operation (smp call function()), or 3) a

thread is idle. Linux resets the priority of a thread after receiving an interrupt or an

exception and does not keep a per-process priority status. Moreover, Linux does not

consider the priority of the paired thread and, since the prioritization mechanism works

with the priority difference, arbitrarily modifying the priority of one hardware thread

may invalidate the decision taken on the other. Boneti et al. [17] characterized the use

of hardware thread prioritization for POWER5 processors running micro-benchmarks

and SPEC benchmarks. Other researchers [111] have also investigated the effect of

hardware thread priorities on the execution time of co-scheduled application pairs on

a trace-driven simulator of the POWER5 processor. Moreover, in a follow-up work,

Boneti et al. used hardware prioritization to transparently balance high performance

computing applications [18, 19], achieving up to 18% performance improvement.

Mann et al. [103] proposed a holistic approach that aims at reducing Operating

System (OS) jitter by utilizing the additional threads or cores in a system. The authors

tried to handle jitter through different approaches, one of the approaches is setting the

hardware priority of the primary SMT thread to priority 6 and that of the secondary

SMT thread to priority 1 in order to reduce jitter caused by SMT interference.

119

6.7. Conclusions

6.7 Conclusions

Assisted execution models can relieve application threads from the overhead of running

runtime system functionalities and improve performance, even in those cases where

the theoretical speedup computed with Amdahl’s law does not justify the use of extra

cores/hardware threads. However, assisted execution models, in general, present low

processor utilization and the waste of resources.

In this work we propose to use adaptive fine-grained resource allocation to im-

prove the efficiency and utilization of assisted execution models. We apply our solution

to STM 2, a parallel software transactional memory system that offloads STM time-

consuming operations to auxiliary threads. We propose an integrated hardware/soft-

ware approach to implement fine-grained resource allocation for STM 2: our work spans

the full hardware/software stack, from the hardware thread prioritization mechanism

of IBM POWER7 processor to the programming language runtime system.

In order to understand the impact of fine-grained resource allocation on a complex

system, such as STM 2, on real hardware, we followed a step-by-step approach in which

we separately and statically apply different techniques to Eigenbench and STAMP ap-

plications. In the second phase, static techniques are integrated with heuristics that

automatically detect computing power requirements and drive the hardware actuators

to dynamically perform hardware resource allocation. The proposed adaptive solution

improves performance and resource utilization for applications that prove to be chal-

lenging for the original STM 2. Results obtained on a state-of-the-art IBM POWER7

system with 32 hardware threads show that adaptive fine-grained resource allocation

provides performance improvement up to 65% over the standard STM 2 design for

Eigenbench, a simple and malleable TM benchmark, and up to 86% for more com-

plex applications from the STAMP benchmark suite. Our experience with the IBM

POWER7 hardware prioritization mechanism suggests that integrated hardware/soft-

ware solution are interesting and can be employed to efficiently solve problems that may

be difficult to solve completely at one level. However, a more fine-grained hardware

prioritization mechanism that provides more intermediate values rather than extreme

values, such as the current IBM POWER7 mechanism, would further help fine tuning

integrated hardware/software solutions.

120

6.7. Conclusions

Finally, we remark that, although we applied fine-grained hardware resource allo-

cation to STM 2, this approach can be used for other assisted execution systems, such

as OS exception handlers [166] or dynamic check in Java Script [109].

121

6.7. Conclusions

122

Part IV

Correctness Semantics for TM

applications

Although TM has reached maturity level and several STM and HTM implementa-

tions are available, there is still lack of debugging tools that automatically check the

correctness of C/C++ TM programs, particularly race detection tools. The current

definition of transactional data race requires all transactions to be totally ordered “as

if” serialized by a global lock, which limits scalability of TM designs.

In Chapter 7, we revisit the current correctness model for TM applications, mainly

those based on the happens-before relation, and analyze their strengths and weaknesses.

We first propose to relax the current definition of transactional data race to allow a

higher level of concurrency. Based on this relaxed definition, we propose the first

practical race detection algorithm for C/C++ applications (TRADE) and implement

the corresponding race detection tool.

Then, in Chapter 8, we propose a new definition of transactional data race that is

more intuitive, is transparent to the underlying TM implementation, can be used for a

broad set of C/C++ TM programs, enables a wide range of implementation techniques

to be used, and allows the implementation of efficient dynamic race detection tools for

TM applications. Based on this new definition, we propose T-Rex, an efficient and

scalable race detection tool for C/C++ TM applications.

We analyze the precision and the performance of both tools and compare them with

each other and with a race detection tool based on the current definition of transactional

data race. Our experiments show that T-Rex and TRADE have discovered subtle

transactional data races in a widely-used STAMP applications which have not been

reported in the past.

123

124

Chapter 7

TRADE: Precise Dynamic Race

Detection for Scalable

Transactional Memory Systems

7.1 Introduction

The dominance of multi-core processors has made concurrent programming essential to

achieve optimal performance. Unfortunately, despite the performance benefit, parallel

programming introduces high software complexity and is prone to synchronization bugs,

such as data races. There have been significant efforts to develop TM systems, hardware

(HTM) [42, 63] and software (STM) [39, 43, 133], compilers with TM support [31, 34, 77]

and basic debuggers for TM [69, 169]. However, there is not yet a consensus on a single

definition for a data race for TM applications and there is no race detection tools that

help programmers discover data race conditions in real C/C++ TM programs.

This lack of consensus on the definition of transactional data race and on the no-

tion of what it means for a TM program to be correctly synchronized, motivated the

development of several different correctness disciplines which constrain the behavior of

correct TM applications, ranging from Static Separation (SS) in STM-Haskell [67] and

Dynamic Separation (DS) in AME [3] to Transactional Data Race Free (TDRF) [38].

Under each of these disciplines, a correct implementation is required to provide the

“fundamental property” [136] of memory models, which defines that a correctly syn-

chronized program appears to run with a simple semantics that can be understood with

125

7.1. Introduction

reference solely to the source language, rather than with reference to details of the im-

plementation. For instance, with TM, this semantics would typically require that the

programmer sees transactions with strict serializability, and without seeing the effects

of speculative execution.

Most of the researchers have suggested that transactional semantics should be de-

fined in terms of locking semantics [16], and that TM should be considered as a tech-

nique for implementing the semantics of a single global lock, but allowing greater con-

currency than what would be implied by actually having a single lock [110]. This basic,

pragmatic semantics is called single global lock atomicity (SGLA), where a program is

required to behave “as if” transactions were protected by a single global lock. More

precisely, a TM system is said to provide SGLA if, for every program execution, there

exists some global total order on all transactions that is consistent with program or-

der, and that when closed with program order produces a happens-before order that

explains the program’s reads. This semantics is equivalent to the one proposed by

Dalessandro et al. [38] in TDRF model, Grossman et al. [58] and the one currently

adopted by the Draft Specification of Transactional Language Constructs for C++ [6].

SGLA semantics also leads to a definition of what it means for a program using

transactions to have a data race: the transactional program has a data race if and only

if the equivalent lock-based program has a data race. Assuming that an underlying

STM implements SGLA semantics, researchers have extended the definition of data

race based on the happens-before relation for lock-based applications to transactional

memory applications [38, 58, 110]. In this work, we call this relation strict transactional

happens-before.

Although SGLA simplifies the design, implementation and testing of STM systems,

many important scalable STMs do not implement SGLA semantics. The reason is that

forcing a total order among all transactions may reduce the concurrency level, which is

not desirable from the performance point of view. Performance (scalability in partic-

ular) is of paramount importance for modern multi-core systems, hence programmers

have been reluctant to use STM designs that implement SGLA semantics. For example,

TinySTM [133], NORec [39], and TL2 [43] are commonly used STMs, yet none of these

STMs implements SGLA semantics. Hence, the applicability of race detection tools

based on the strict happens-before relation is limited.

126

7.1. Introduction

In order to remove the constraints introduced by SGLA semantics on the imple-

mentations and to be able to run TM applications on scalable STMs, we relaxed the

definition of strict happen-before by requiring total ordering only among conflicting

transactions (relaxed happens-before relation). We denote two transactions as conflict-

ing if there exists a memory access to x from two different threads and one transaction

writes to and the other either reads from or writes to x. If no such conflicting access

exists, the transactions do not have to be ordered with respect to each other (non-

conflicting). Based on the relaxed happens-before relation, we propose Transactional

data RAce DEtection (TRADE), a novel and precise race detection algorithm for TM

applications. The algorithm determines whether an execution of a TM application

is race-free by tracking relaxed happens-before edges among conflicting transactions.

Based on TRADE, we implement a dynamic race detection tool for C/C++ TM appli-

cations.

We also design a race detection algorithm for TM applications running on STMs

that give SGLA semantics (s-TRADE) and implement the corresponding dynamic race

detection tool. This tool requires the underlying STM to implement SGLA as suggested

in [110] and cannot be used with an STM that does not enforce total ordering among

all transactions, such as TinySTM.

We analyze the precision of each dynamic race detectors on a 8-core Intel Nehalem

system with STAMP applications, a benchmark suite commonly used to test STM

systems [22]. Although STAMP benchmarks are considered to be mature applications,

our tools detect potentially harmful transactional data races that, to the best of our

knowledge, have not been previously reported. To further analyze the soundness of

our tools, we inject data race bugs into STAMP applications and verify that they

are precisely detected. We also compare the race detectors in term of performance:

Despite the fact that TRADE requires more work than s-TRADE to establish relaxed

happens-before edges among conflicting transactions, TRADE runtime overhead with

respect to s-TRADE is generally negligible. More importantly, TRADE can be used

with scalable STM systems that provide higher performance compared to STMs that

implement SGLA semantics.

In this chapter we make the following novel contributions:

• We propose two novel race detection algorithms for TM applications. To the

best of our knowledge, these are the only practical algorithms proposed in the

127

7.2. Background

literature. TRADE, in particular, can be used with many high-performance

STMs.

• Based on our algorithms, we implement the corresponding dynamic race detection

tools for real C/C++ TM applications.

• We analyze STAMP applications and discover potentially harmful transactional

data races for SSCA2 that have not been reported in the past.

This chapter is organized as follows: Section 7.2 provides information about the prop-

erties of TM systems, their implications and their relation with correctness models.

Section 7.3 reviews preliminary concepts of strict and relaxed happens-before relation.

Section 7.4 and 7.5 details our transactional race detection algorithms and implemen-

tations, respectively. Section 7.6 evaluates our race detection tools in term of precision

and performance. Section 7.7 presents the related work. Section 7.8 concludes this

chapter.

7.2 Background

Although the definition of data race is orthogonal to the synchronization mechanism,

critical sections protected by locks and transactions are semantically different and

present distinct characteristics and requirements, thus race detection tools used for

lock-based applications cannot be directly extended to transactional memory. With

TM, a transaction either executes completely and atomically or should appear as if

it were never executed. This means that transactions’ effects should be permanently

visible, and thus can generate data races, when a transaction successfully commits. In

fact, a transaction may abort, causing all modified memory locations to roll back to

their original values, as if they had never been modified. With lock-based applications,

instead, memory locations modified by a thread inside a critical section are immediately

and permanently visible to other threads and can, therefore, immediately generate data

races.

TM systems guarantee that threads have a consistent view of the memory among

transactions, eventually aborting conflicting transactions. TM systems with support

for weak isolation [106] guarantee transactional semantics only among transactions, i.e.,

accesses to shared memory locations within transactions appear as atomic operations

128

7.2. Background

Thread 1 Thread 2

atomic { tmp1 = ready;

data = 42; tmp2 = data;

ready = true; if tmp1 {

} tmp2++;

}

Figure 7.1: Does ready=true imply that Thread 2 sees data=42?

to other transactions. TM systems with support for strong isolation [15], instead, also

guarantee transactional semantics between transactional and non-transactional code,

hence normal non-transactional accesses are serialized by the TM with any concurrent

transactions. Many HTM implementations naturally provide strong isolation, and there

has been substantial progress in developing STMs that support strong isolation [2, 140,

143]. However, strong isolation requires extra instrumentation barriers that introduce

large runtime overhead, especially on STM designs. Most of the state-of-the-art STMs

only support weak isolation and rely on the programmer or race detection tools to

guarantee that the program is correctly synchronized.

Moreover, even if the implementation of an STM system provides strong isola-

tion, the system still needs to account for the interaction between transactional and

non-transactional accesses. Consider the example in Figure 7.1: the intent of the pro-

grammer is to prepare some data and publish it once it is ready, thus when ready is

true, the programmer expects Thread 2 to see data = 42. However, although the

correctness of the transactional code is guaranteed by strong isolation, a programmer

cannot assume that, if Thread 2 sees ready = true then it must also see data = 42.

This line of reasoning is only correct if Thread 2’s implementation is guaranteed to

read from ready before it reads from data (sequential consistency). This ordering is

not enforced by many programming languages (e.g., Java) or by processors with weak

memory models (e.g., POWER processors) and, since there is no explicit dependency

between data and ready, a compiler can apply reordering optimization [38]. In other

words, strong isolation does not imply sequential consistency. Therefore, programs

running on TM systems with strong isolation may still incur data races.

129

7.3. Preliminaries

7.3 Preliminaries

This section defines transactional data races based on the previous definition of strict

happens-before relation and on our relaxed transactional happens-before definition. We

represent an execution of a multi-threaded program as a sequence of actions, such as

transactional/nontransactional read/write operations, begin/end transaction, fork/join

and barriers and we assume the following:

• Accesses from an individual thread are ordered by program order (−→po).

• Transactions commit in a global temporal order, commit order (−→co). A trans-

action TXi is ordered before a transaction TXj , if TXi commits before TXj in

the program execution.

• Synchronization primitives, such as barrier(), fork(), and join(), introduce

a sync-primitive order (−→so). An access a performed before a synchroniza-

tion primitive is ordered before an access b performed after that synchronization

primitive.

In this work we consider applications that only use transactions to synchronize accesses

to shared memory locations. While other synchronization mechanism (e.g., locks) could

be used in conjunction with transactions, there is currently no agreed-upon correct

semantics of programs that simultaneously use transactions and locks [64]. Moreover,

we are not aware of any publicly available applications programmed with transactions

and locks that we can use in our experiments. We leave this for future work.

7.3.1 Strict Transactional Happens-Before Relation

Although locks and transactions are semantically different, previous work focused on

extending existing definitions of data race for lock-based applications to transactional

memory applications. Researchers have investigated forms of single global lock atomicity

(SGLA) and relaxed forms of this which map correct synchronization of TM programs

into existing lock-based disciplines [38, 58, 110]. In STM systems that implements

SGLA semantics, transactions are considered “as if” they were executed under a single

global lock. Menon et al. explore the implementation and performance implications

130

7.3. Preliminaries

of SGLA and the merits of various definitions for which pairs of transactions are or-

dered [110]. They show that a sufficient condition for SGLA is to allow concurrent

execution of transactions but to linearize their execution at commit phase in a stag-

gered, pipelined fashion. This staggered execution of transactions provides an explicit

total ordering over all transactions:

Definition 1. All transactions in the execution are totally ordered by a strict synchronized-

with relation (−→ssw) if and only if they are ordered by commit order. If transaction

A −→ssw B then access a in A −→ssw access b in B.

With the strict synchronized-with relation, two transactions are allowed to run in par-

allel but they need to commit in linear order, even if their read- and write-sets do not

overlap.

Definition 2. The irreflexive transitive closure of program order, sync-primitive order

and the strict synchronized-with relation define a strict transactional happens-before

(−→shb) partial ordering on all accesses in the execution.

Definition 3. A strict transactional data race exists between two accesses in a given

execution if and only if they access the same location, at least one is a write, they are

executed by different threads, and are not ordered by −→shb.

This definition is equivalent to the ones proposed in previous work [38, 58, 110] and

the Draft Specification of Transactional Language Constructs for C++ [6].

7.3.2 Relaxed Transactional Happens-Before Relation

SGLA limits the nature of TM by not allowing non-conflicting transactions to commit

concurrently. The result is that STMs that implement SGLA provide much lower

performance than STMs that provide higher concurrency.

Figure 7.2 shows speedup of several popular STM designs over sequential version.

The experiments are conducted with STAMP applications running with eight threads

on a 8-core Intel Nehalem system. In the graph we use STM implementations from

the Rochester Software Transactional Memory package (RSTM) [147]: LLT is a lazy

conflict detection, write-buffered design similar to TL2 [43]; ET is a eager conflict de-

tection, write-buffered design inspired by TinySTM [133]; NORec [39] is a lazy conflict

detection, write-buffered STM based on a single sequential lock; finally Pipeline is a

131

7.3. Preliminaries

Genome Intruder Labyrinth Ssca2 Vacation Yada Bayes Kmeans
0

1

2

3

4

5

6

7

8

S
p

e
e

d
u

p
 (

X
)

LLT ET NOrec Pipeline

Figure 7.2: Speedup of STAMP applications with various STMs.

lazy conflict detection, write-buffered STM that implements SGLA semantics as de-

scribed by Menon et al. [110]. All the STMs tested, except Pipeline, allow read-only

transactions to commit in parallel; LLT and ET also allow read-write transactions that

have no conflicts to commit in parallel. The graph clearly shows that the performance

of Pipeline is considerably lower than the other STMs: in some cases, such as Bayes and

Intruder, Pipeline performance with eight threads barely matches the single threaded

execution. On the other hand, LLT and ET achieve good speedups for most of the cases.

Because of these performance reasons, programmers have been averse to using STMs

with SGLA semantics. Many important state-of-the-art STM designs do not imple-

ment SGLA semantics: TinySTM [133] (recently used in GCC-TM [138]), NORec [39]

(which allows read-only transactions to commit in parallel) and TL2 [43]. This, in

turn, limits the applicability of race detection tools based on the strict transactional

happens-before relation.

Moreover, the strict transactional data race definition may produce results that do

not fit with programmers’ intuitive expectations for transactions’ execution. Consider

the example in Figure 7.3: This program is racy, as Thread1 and Thread2 may access

x concurrently. Indeed, if we consider a program execution in which Thread2’s trans-

action (TX2) commits before Thread1’s transaction (TX1), then accesses to x in TX1

and in r1 = x are not ordered by −→shb, hence there is a strict transactional data

race, which matches the programmer’s reasoning of the correctness of this program.

However, if we consider a program execution in which TX1 commits before TX2, then

132

7.3. Preliminaries

Thread 1 Thread 2

atomic { atomic {

x = 1; y = 42;

} }

r1 = x

Figure 7.3: This program has a transactional data race, as Thread1 and Thread2 may

access x concurrently.

TX1 −→shb TX2. By program order TX2 −→shb r1 = x, hence TX1 −→shb r1 = x.

It follows that, in this execution, there is no strict transactional data race, which con-

tradicts the programmer’s expectation. Note that, since TX1 and TX2 do not conflict,

a programmer expects the two transactions to run and commit in parallel. However,

this program execution is forbidden under STMs that implement SGLA.

In order to remove the excessive constraints and limitation imposed by the strict

transactional data race definition, we propose an alternative definition of transactional

data race that is more intuitive and can be used with a broader set of high-performance

STMs. To this extent, we provide the following definitions to include less than the full

atomic order:

Definition 4. All conflicting transactions in the execution are ordered by a relaxed

synchronized-with relation (−→rsw) if and only if they are ordered by commit order. If

transaction A −→rsw B then access a in A −→rsw access b in B.

Definition 5. The irreflexive transitive closure of program order, sync-primitive order

and the relaxed synchronized-with relation define a relaxed transactional happens-before

(−→rhb) partial ordering on all accesses in the execution.

As opposed to the strict happens-before relation, two non-conflicting transactions are

not ordered by the relaxed happens-before relation.

Definition 6. A relaxed transactional data race exists between two accesses in a given

execution if and only if they access the same location, at least one is a write, they are

executed by different threads, and are not ordered by −→rhb.

This definition of relaxed transactional data race can be used with STMs that do not

implement SGLA semantics because it does not assume transactional total ordering

among all transactions. In the particular example in Figure 7.3, r1 = x in Thread2

133

7.3. Preliminaries

and the access to x in Thread1 are not ordered by −→rhb, hence there is a relaxed

transactional data race when the two threads access x regardless of the order in which

transactions commit. Note that, the programmer’s expected execution in which TX1

and TX2 run and commit in parallel is also allowed by the underlying STM: This pro-

gram execution also presents in a relaxed transactional data race.

Comparison: Two transactions ordered by relaxed happens-before relation are also

ordered by strict happens-before relation, i.e., TX1 −→rhb TX2 ⇒ TX1 −→shb TX2,

but not vice-versa. Let us define E as the set of strict happens-before edges in a given

execution and E′ as the set of relaxed happens-before edges in the same execution.

Since the set of conflicting transactions is a subset of all transactions, it follows that

E′ ⊆ E. The other direction is not true: there are transactions ordered by strict

happens-before relation that are not ordered by relaxed happens-before relation (e.g.,

read-only transactions), then TX1 −→shb TX2 6⇒ TX1 −→rhb TX2 because E 6⊆ E′.

Summarizing, all transactional data races detected by an algorithm based on −→shb

are also detected by an algorithm based on −→rhb but not vice-versa.

Privatization-safety: Happens-before relations (for example, both the strict and the

relaxed happens-before relations defined above) handle many styles of programming,

including privatization and publication, two techniques used by programmers to di-

rectly access shared objects that are temporarily private to a thread. However, as

explained in Section 8.2, the underlying STM must implement a form of privatization-

safety (which usually requires inserting memory barriers and global synchronization

among all running threads). Because of performance issues, only a few STMs, among

the commonly-used state-of-the-art STMs (see Section 2.2.4) implement privatization-

safety, i.e., IntelSTM, NORec. Finally, many STMs, e.g., TinySTM, TL2, do not suport

privatization-safety. In order to use a race detection algorithm based on a happens-

before relation, the STM should either be extended to support privatization-safety (as

explained for TL2 in [110]) or the programmer must ensure correctness through (im-

plicit or explicit) synchronization barriers. Privatization-safe versions of STMs that are

not originally designed to be privatization-safe (e.g., TL2) are not usually available. In

this work, thus, we rely on the programmer to guarantee privatization correctness of ap-

plications that use privatization/publication idioms when running on a STM that does

134

7.4. Transactional Race Detection Algorithms

not implement privatization-safety, as the ones used in Section 7.6. This, of course,

poses a constraint on the programmer. We will remove this constraint in the next

chapter, where we introduce a new correctness model that is not based on any forms of

happens-before relation and does not assume that an STM implements privatization-

safety.

7.4 Transactional Race Detection Algorithms

In this section we describe our race detection algorithms for TM applications. The first

algorithm (s-TRADE) detects transactional data races based on the strict transactional

happens-before relation (Section 7.4.1). This algorithm is designed for STM systems

that implement SGLA, as it assumes a form of total ordering among all transactions

in the system. The second algorithm (TRADE), instead, is based on the relaxed

transactional happens-before relation and does not assume SGLA, hence it covers a

broader set of STM implementations (Section 7.4.2). The correctness proofs of the

algorithms (soundness and completeness) are presented in Appendix A.

Both algorithms are based on vector clocks: a vector clock V C : Tid→ Clk records

a clock for each thread t ∈ Tid, where Tid is the set of all threads in the system. For

each thread t ∈ Tid, we define the following operations:

V1 v V2 iff ∀t ∈ Tid, V1(t) ≤ V2(t)

V1 t V2 = λt.max(V1(t), V2(t))

⊥V = λt.0

inct(V) = λu. if u = t then V (u) + 1 else V (u)

Vector clocks are partially ordered (v) in a point-wise manner, with an associated join

operation (t) and minimal element (⊥).

The semantics of transactional memory requires transactions to be executed entirely

and atomically and their effects to be permanent only after successful commits. On

abort, all transactional operations appear as if they were never executed and their effects

(writes to memory) should not be visible to other threads. Atomicity is achieved by two

135

7.4. Transactional Race Detection Algorithms

possible designs that differ in the way the STM updates modified memory locations:

in-place and write-buffered. For simplicity, we present our algorithms for write-buffered

STMs (e.g., TL2), where transactional writes are buffered into a local data structure

and the memory locations modified by a transaction are only updated upon successful

validation of the transaction at commit phase. However, we highlight here the main

difference between in-place and write-buffered STMs from a race-detection perspective.

In-place STMs optimistically update shared memory locations when a transactional

write is issued; if the transaction aborts, the modified memory locations are rolled

back to their original values. The main difference between in-place and write-buffered

STMs is whether aborted transactions are considered part of the execution (visible

abort semantics) or not (invisible abort semantics) [142]. In-place STMs usually adopt

visible abort semantics, which means that transactional writes performed by an aborted

transaction can still originate data races. In this case our algorithms must verify the

occurrence of a data race at the moment a transactional operation is issued, even if the

transaction eventually aborts. With write-buffered STMs, instead, aborted transactions

are generally not part of the execution, thus transactional writes performed by aborted

transactions do not originate data races. In this case, our algorithms perform race

detection upon successful validation of a transaction at commit phase.

7.4.1 s-TRADE Race Detection Algorithm

For STM systems that implements SGLA semantics, total ordering is defined by −→ssw.

For these STMs, we propose the following algorithm based on vector clocks to detect

strict transactional data races. We define:

C : Tid→ V C

W : V ar → V C

R : V ar → V C

G : V ar → V C

where C is the vector clock of each thread t ∈ Tid, W and R are the write and read

vector clocks of a variable v ∈ V ar and G is the global vector clock used to establish

strict transactional happens-before edges.

For each thread t ∈ Tid, the algorithm follows the next rules:

136

7.4. Transactional Race Detection Algorithms

[Thread Creation]

∀t ∈ Tid, i = 1..N Ct(i) := 0

Ct(t) := 1

[Before Transaction Commit]

Ct := Ct tG

[After Transaction Commit]

G := Ct

inct(Ct)

[TX / NonTX Read Shared]

Rx(t) := Ct(t)

Wx v Ct ⇒ RaceFree

[TX / NonTX Write Shared]

Wx(t) := Ct(t)

Wx v Ct and Rx v Ct ⇒ RaceFree

At thread creation, all entries in the vector clock of thread t (Ct) are initialized to 0,

except the thread’s clock (Ct(t) = 1). Strict transactional happens-before relations are

established by G: at commit phase, before performing the STM writes to memory, the

thread’s vector clock is joined to the global clock G. After the transaction has been

validated, the thread’s vector clock is copied to G and then Ct(t) is increased to record

that now thread t has moved to the next clock.

For this algorithm, the rules for transactional and nontranscational read/write oper-

ations are the same. However, for write-buffered STMs that implement invisible abort

semantics, the actual race detection for transactional operations is performed during

the validation of the transaction at commit phase.1

1As explained before, race detection for in-place STMs that implement visible abort semantics is

performed at the moment the transactional operation is issued, similarly to nontransactional operations.

137

7.4. Transactional Race Detection Algorithms

C1 C2 G Wx Rx Wy

<3,0,...> <1,5,...> <2,4,...> <1,1,...> <1,0,...> <0,0,...>

<3,0,...> <1,5,...> <2,4,...> <1,1,...> <1,0,...> <0,0,...>

<3,4,...> <1,5,...> <2,4,...> <1,1,...> <1,0,...> <0,0,...>

<4,4,...> <1,5,...> <3,4,...> <3,1,...> <1,0,...> <0,0,...>

<4,4,...> <3,5,...> <3,4,...> <3,1,...> <1,0,...> <0,0,...>

<4,4,...> <3,6,...> <3,5,...> <3,1,...> <1,0,...> <0,5,...>

<4,4,...> <3,6,...> <3,5,...> <3,1,...> <1,6,...> <0,5,...>

begin_tx

TxWr x

end_tx begin_tx

TxWr y

end_tx

Rd x

Figure 7.4: Example trace for the program in Figure 7.3 running on an STM that

implements SGLA. No strict transactional data races detected.

Read operations For both transactional and nontransactional read operations,

the variable x’s read clock of the reading thread Rx(t) is updated with the current

thread’s clock Ct(t). Next, the algorithm searches for the occurrence of a possible

write-read race: if all modifications to x are prior to the current thread’s vector clock

(Wx v Ct), then there is no race detected.

Write operations Transactional and nontransactional writes to shared memory

locations behave similarly to their respective read operations except that the algorithm

also searches for write-write and write-read races: if all reads from x (Rx v Ct) and all

modifications to x (Wx v Ct) are prior to the thread’s vector clock, then there is no

strict transactional race.

Figure 7.4 shows the evolution of s-TRADE race detection algorithm for the exam-

ple shown in Figure 7.3, assuming that Thread1’s transaction commits before Thread2’s

transaction. The figure shows that there is a strict happens-before edge between

Thread1’s transaction and Thread2’s transaction. When Thread2 accesses x nontrans-

actionally, Wx =< 3, 1, ... > and C2 =< 3, 6, ... >, thus Wx v C2 and the execution is

race-free.

7.4.2 TRADE Race Detection Algorithm

Unlike the previous algorithm, where producing strict happens-before edges only re-

quires a single global vector clock, in this algorithm there are relaxed happens-before

138

7.4. Transactional Race Detection Algorithms

edges between any two conflicting transactions, one edge for each variable. We say that

a transaction TXi is ordered with a transaction TXj on a shared variable x ∈ V ar if

they both access x and at least one access is a write. It follows that TXi and TXj can

be ordered on x but not on y, if they do not conflict on y.

The relaxed transactional happens-before relation is established as follows: For

each transactional read operation, a transaction TX has incoming edges from previous

transactions that wrote the same memory location. Transactional write operations

induce incoming edges between a transaction TX and previous transactions that read

from or wrote to the same memory location. Conversely, there are outgoing edges

from a transaction TX to subsequent transactions that read or write the memory

locations accessed by TX. For each transactional read operation, there is an outgoing

edge to subsequent transactions that write the same memory location. Similarly, each

transaction write operation generates an outgoing edge to transactions that read or

write the same variable. It follows that non-conflicting transactions (e.g., read-only

transactions) are not ordered by the relaxed transactional happens-before relation.

For this algorithm, we define:

C : Tid→ V C

W : V ar → V C

R : V ar → V C

TW : V ar → V C

TR : V ar → V C

where C contains the vector clocks of each thread t ∈ Tid; W and R are the write

and read clocks of a variable v ∈ V ar, respectively; TR and TW contain the read and

write transactional dependency clocks of each variable v ∈ V ar. TR and TW are used

to establish relaxed transactional happens-before relations. ∀t ∈ Tid, the algorithm

follows the next rules:

[Thread Creation]

i = 1..N Ct(i) := 0

Ct(t) := 1

139

7.4. Transactional Race Detection Algorithms

[Transaction Commit]

inct(Ct)

[NonTX Read Shared]

Rx(t) := Ct(t)

Wx v Ct ⇒ RaceFree

[TX Read Shared]

Ct := Ct t TWx

Rx(t) := Ct(t)

TRx(t) := Ct(t)

Wx v Ct ⇒ RaceFree

[NonTX Write Shared]

Wx(t) := Ct(t)

Wx v Ct and Rx v Ct ⇒ RaceFree

[TX Write Shared]

Ct := Ct t TWx t TRx

Wx(t) := Ct(t)

TWx(t) := Ct(t)

Wx v Ct and Rx v Ct ⇒ RaceFree

At the beginning of the application, the vector clock of each thread t ∈ Tid is initialized

to 0. When a thread t is created, its clock Ct(t) is set to the value 1. Ct keeps track

of thread t’s clock and the clocks of any other thread t′ 6= t last observed by t. Ct(t) is

updated at the end of every transaction. The read and write vector clocks of a variable

x, R and W , are initialized to 0 the first time x is accessed for reading or writing,

respectively. TR and TW are also initialized to 0 the first time a variable is accessed

transactionally.

140

7.4. Transactional Race Detection Algorithms

C1 C Wx Rx Wy

begin_tx

end_tx

begin_tx

end_tx

TWx TWy

<3,0,...> <1,5,...> <1,1,...> <1,0,...> <0,0,...><1,1,...> <0,0,...>

<3,0,...> <1,5,...>
TxWr x TxWr y

<1,1,...> <1,0,...> <0,0,...><1,1,...> <0,0,...>

<3,1,...> <1,5,...> <3,1,...> <1,0,...> <0,5,...><3,1,...> <0,5,...>

<4,1,...> <1,6,...> <3,1,...> <1,0,...> <0,5,...>
Rd x

<3,1,...> <0,5,...>

<4,1,...> <1,6,...> <3,1,...> <1,6,...> <0,5,...><3,1,...> <0,5,...>

2

Figure 7.5: Example trace for the program in Figure 7.3 running on an STM that

does not implement SGLA semantics. HB detects a transactional data race in a given

execution.

Read operations Nontransactional read operations update the t-th entry of a

variable x’s read clock with the current thread clock (Rx(t) := Ct(t)) and then check

whether a write-read race has occurred: If all writes to x are precedent to the last

observed vector clock of thread t (Wx v Ct), then there is no race. Transactional read

operations first update the thread vector clock with the write transactional dependency

clock (Ct := CttTWx). This operation builds incoming edges between the current read

operation and previous transactional write operations to x. Next, TRx is updated to

build outgoing edges between the current transaction and any subsequent transaction

that writes x. As for nontransactional read operation, transactional read operations

update the read vector clock of the variable x (Rx) and perform race detection.

Write operations Nontransactional write operations update the variable’s write

clock Wx with the value of the thread’s clock (Wx(t) := Ct(t)) and then check for a

possible occurrence of a data race. For write operations, both read-write and write-

write transactional race conditions must be checked. On transactional writes, the

thread vector clock is updated with both read and write transactional dependency

vector clocks (Ct := Ct t TWx t TRx): this operation builds incoming edges from

previous transactional that read or wrote x and the current transaction. Next, TWx is

updated with the current thread clock: this operation builds outgoing edges between

the current transaction and any subsequent transaction that reads or writes x. Finally,

transactional write operations update the write vector clock Wx and check if the current

transactional write has generated any write-write or write-read transactional data race.

141

7.4. Transactional Race Detection Algorithms

Figure 7.5 shows the evolution of TRADE algorithm for the example in Figure 7.3.

In this example, Thread1’s and Thread2’s transactions do not conflict and are thus al-

lowed to run and commit concurrently. Since the two transactions do not conflict, there

are no relaxed happens-before edges between them. It follows that when Thread2 ac-

cesses x nontransactionally, there is a possibility of a concurrent accesses with Thread1’s

transactional access to x, thus the algorithm detects a transactional data race. More

specifically, at the time Thread2 accesses x, WX =< 3, 1, ... > while C2 =< 1, 6, ... >,

thus the algorithm detects a data race.

7.4.3 Extensions

Besides transactions and read/write accesses, our algorithms also track common oper-

ations that induce a partial/global ordering, such as thread creation/destruction and

global barriers. Our algorithms need only track barrier releases, which indicate that

all threads have reached the barrier.1 The vector clock of a thread is updated with the

current thread clock of each thread (maximum across all threads’ vector clocks) and

then all threads move to the next clock by adding one to each entry of their vector

clock:

[Barrier Release]

∀t ∈ Tid, Ct = inct(
⊔

u∈T id
Cu)

Fork and join operations also introduce a partial ordering between parents and children.

Thread fork/join operations follow the next rules, where we assume that thread t is the

father of thread u:

[Fork]

Cu := Cu t Ct

Ct := inct(Ct)

1In case only a subset of threads participate to the barrier, we also need to track barrier entries

and record which thread is involved in the barrier and should update its clock.

142

7.5. Design and Implementation

[Join]

Ct := Ct t Cu

Cu := incu(Cu)

7.5 Design and Implementation

This section presents the design and implementation of TRADE algorithm for trans-

actional C/C++ applications.1 Our prototype implementation of this algorithm checks

if a TM program has relaxed transactional data races in a particular execution. If the

tool detects relaxed transactional data races, it reports the address and the instruction

of each transactional data race detected.

7.5.1 Binary instrumentation Framework

Dynamic race detection tools imply tracking accesses to shared memory locations. For

unmanaged languages such as C/C++, current compilers for TM applications only

provide automatic instrumentation of transactional accesses [6, 34]. None of them, to

the best of our knowledge, instruments nontransactional accesses or provides hooks for

dynamic checking tools. Manual instrumentation, on the other hand, is prohibitive for

large, real applications such as the ones tested in this work. We, thus, implemented

TRADE on top of Pin [100], a dynamic instrumentation tool that allows programmers

to instrument transactional and nontransactional read and write accesses, as well as

functions’ entry and exit points. Pin enables users to dynamically modify binary appli-

cations on the fly, with no static annotation inserted by the programmer and no need

of re-compiling/re-linking applications.

7.5.2 TRADE Instrumentation State and Code

In order to distinguish transaction from nontransactional code, we instrument be-

gin/end transaction. PIN TM BEGIN() is invoked before the execution of the transaction:

1For clarity we present here the implementation for write-buffered systems with invisible abort

semantics. The implementation for in-place systems with visible abort semantics is straightforward

from the modifications discussed in Section 7.4. We also omit s-TRADE implementation description

for the same reasons.

143

7.5. Design and Implementation

class ThreadState {

int C[];

int tid;

List TxRead_list;

List TxWrite_list;

}

class VarState {

int R[];

int W[];

int TxR [];

int TxW [];

}

void TXread(VarState x, ThreadState t){

t->TxRead_list.insert(x);

}

void TXwrite(VarState x, ThreadState t){

t->TxWrite_list.insert(x);

}

void commit(ThreadState t){

for each element in t->TxRead_list

eff_TXread(t->TxRead_list.remove(), t)

for each element in t->TxWrite_list

eff_TXwrite(t->TxWrite_list.remove(), t)

}

void eff_TXread(VarState x, ThreadState t){

vc_cup(t.C, x.TxW);

x.R[t.tid] = t.C[t.tid];

x.TxR[t.tid] = t.C[t.tid];

//write -read race?

if (x.W[u] > t.C[u] for any u) Race!;

}

void eff_TXwrite(VarState x, ThreadState t){

vc_cup(t.C, x.TxW);

vc_cup(t.C, x.TxR);

x.W[t.tid] = t.C[t.tid];

x.TxW[t.tid] = t.C[t.tid];

//read -write race?

if (x.R[u] > t.C[u] for any u) Race!;

//write -write race?

if (x.W[u] > t.C[u] for any u) Race!;

}

Figure 7.6: Implementation of the TRADE algorithm.

144

7.5. Design and Implementation

the function sets a flag indicating that the thread has now entered a transaction. At

commit stage, the STM library checks whether there are unresolved conflicts and, if

not, the transaction commits and PIN TM END() is invoked. This function checks for

the occurrence of race conditions for each memory locations in the read-/write-set and

clears the flag. Note that, on abort, the transaction restarts from the beginning, thus,

PIN TM END() is not invoked.

TRADE associates a ThreadState structure to each thread (see Figure 7.6). This

structure contains a unique thread identifier tid and a vector clock C. Since a thread

vector clock C is private to each thread and there are no concurrent accesses to the

particular thread vector clock, there is no need to protect thread vector clocks with

any lock. Each memory access has an association with VarState containing read and

write vector clocks, R and W, respectively. Besides R and W, TRADE requires TxR

and TxW to be able to establish relaxed transactional happens-before edges. Unlike

thread vector clocks, transactional and nontransactional read and write vector clocks

are accessed by many threads concurrently and must be protected by locks: we use

fine-grained read/write locking (each read/write vector clock is protected by a specific

lock) so that multiple threads can access disjoint vector clocks in parallel.

Figure 7.6 shows the most important TRADE event handlers, such as TRADE TXread()

and TRADE TXwrite() are used to track transactional read/write accesses, respectively.

TRADE is transparent to the underlying STM design and does not rely on the par-

ticular STM implementation or data structures (e.g., the read- and write-set). When a

transactional operation is issued, we use shadow temporal read/write data structures

(linked list without duplicates) to record memory locations accessed within a transac-

tion. The semantics of transactional memory implies that modified memory locations

are permanently visible to other threads only once the transaction has committed, thus

we perform lazy race detection at commit phase. In more details, for each transactional

read/write operations, the algorithm establishes relaxed transactional happens-before

edges between the current and the preceding transactions: TRADE lazy TXread() and

TRADE lazy TXwrite() update the thread vector clock with the maximum clock val-

ues between the thread vector clock (C) and TxR and/or TxW. Moreover, TxR and TxW

are updated with the clock of the thread to establish relaxed transactional happens-

before edges with following conflicting transactions. If the tool detects a write-read

145

7.6. Evaluation

Detected Races # Detected Races

Appl. TRADE s-TRADE

w/o w/ w/o w/

Bug inj. Bug inj. Bug inj. Bug inj.

Intruder 0 1,705* 0 1,221*

Ssca2 99 102 99 102

Kmeans 0 253,044 0 238,457

Vacation 0 6,733 0 68

Genome 0 73 0 10

Yada 0 6 0 6

Bayes 0 3 0 0

Labyrinth 0 5 0 5

Table 7.1: Number of transactional data races detected by TRADE and s-TRADE

without and with bug-injection. ∗Intruder crashed because of the injected bug.

race (W>C) for transactional reads or read-write/write-write races (R>C/W>C) for trans-

actional writes, it raises an alarm. Note that it is not necessary to check race-freedom

conditions for repeated accesses to a variable within a transaction: because of the TM

atomicity property, all accesses to the same variable in a transaction have the same

thread vector clock (Ct(t)) value. For example, only the last transactional write to

a variable x is checked regardless of how many transactional writes to x have been

performed within the transaction.

The pseudocode for nontransactional read/write operations is exactly the same as

their equivalent lazy transactional reads/writes, except for the operations that require

TxR and TxW modification.

7.6 Evaluation

We validate the effectiveness of s-TRADE and TRADE through precision and per-

formance analysis. We run applications from the STAMP benchmark suite, which is

widely used to test TM systems, and we choose Pipeline and LLT from the RSTM

library to have STMs with and without SGLA semantics, respectively. Note that s-

TRADE can only be used with Pipeline because it requires SGLA; TRADE, instead,

can be used with both Pipeline and LLT. The STAMP applications and the tested

STMs are compiled with gcc 4.4.5 with optimization level O3 for 64-bit architectures,

and run on an Intel Nehalem system (8 cores, 16GB of RAM). In all the experiments

146

7.6. Evaluation

thread_barrier_wait ();

for (i = i_start; i < i_stop; i++) {

for (j = inVerId[i];

j < (inVerId[i] + Degree[i]);

j++) {

if ((j - inVerId[i]) < MAX_SIZE) {

inVerList[j] =

List[i*MAX_SIZE+j-inVerId[i]];

} else {

inVerList[j] =

auxArr[i][(j-inVerId[i]) % MAX_SIZE];

}

}

}

thread_barrier_wait ();

Figure 7.7: SSCA2 code snapshot.

we run eight threads. To ensure a fair comparison, both tools are implemented on top

of Pin and as similarly as possible.

Precision Analysis: Table 7.1 reports the number of transactional data races

detected by TRADE running with LLT and s-TRADE running with Pipeline with

and without bug injection.

The second and forth columns in the table show the number of transactional data

races for the unmodified version of STAMP applications. Even though STAMP bench-

marks are mature applications, both our tools detect transactional data races for

SSCA2. To the best of our knowledge, these real transactional data races have not

been previously reported.

SSCA2 consists of four kernels that work on a large, directed, weighted multi-graph

and includes a scalable data generator that produces edge tuples containing a start and

end vertex and the weight of each directed edge. The transactional implementation

focuses on kernel 1 (which builds the graph) and presents short transactions with small

read-/write-sets. The large number of nodes in the graph leads to infrequent conflicts.

Moreover, in several parts, each thread works on a disjoint partition of the graph,

without synchronizing the accesses to the nodes. Both s-TRADE and TRADE detect

transactional data races in the process of creating the inner vertex list (inVerList).

This code is enclosed between two global barriers and no transactions are used to protect

147

7.6. Evaluation

Genome Intruder Labyrinth Ssca2 Vacation Yada Bayes Kmeans Avg
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

O
v
e
rh

e
a
d

Figure 7.8: TRADE runtime overhead over s-TRADE.

accesses to the graph’s nodes, hence the accesses to the nodes are ordered neither by

−→shb nor by −→rhb. Figure 7.7 shows the snapshot of the code where the transactional

data races occur. During the creation of the inner vertex list, each thread accesses the

next Degree[i] > 0 vertices of a vertex with Id inVertId[i], where Degree[i] is

the degree of vertex i. This means that thread tk accesses the first nodes in thread

tk+1 partition when analyzing the last nodes (i = i stop-1) in its partition without

synchronization. Although we have not experienced any incorrect result or crash in

our tests, as the number of threads increases, and therefore the number of nodes in

the threads’ partitions decreases, there is a higher probability that these transactional

data races will cause a serious error.

To verify that TRADE and s-TRADE are sound race detection algorithms, we

inject bugs into STAMP applications in the form of removing transactions, which trans-

forms transactional sections into nontransactional ones. We then manually check that

the tools detect all and only the injected data races. The third and the fifth columns

in Table 7.1 show the number of transactional data races detected by TRADE and

s-TRADE when injected bugs. As described in Section 7.3, all happens-before edges

produced by TRADE are also produced by s-TRADE but not vice-versa. In more

details, read-only and non-conflicting transactions are ordered by −→shb but not or-

dered by −→rhb. We, thus, expect the number of transactional data races detected by

TRADE to be equal or greater than the number of transactional data races detected by

148

7.6. Evaluation

s-TRADE. Note that both tools are precise: simply using LLT allows non-conflicting

transactions to commit in parallel while Pipeline does not.

Table 7.1 confirms our intuition: the number of transactional data races detected

by TRADE is always greater or equal than the number of data races reported by s-

TRADE. In particular, TRADE detects more data races than s-TRADE for Kmeans,

Vacation, Genome, and Bayes. These applications perform read-only and/or non-

conflicting transactions that can commit in parallel with LLT but not with Pipeline.

For SSCA2, Yada and Labyrinth the removed transaction produces the same effect on

both set of happens-before edges, hence the both tools detect the same transactional

data races. For example, for SSAC2 the removed transaction is enclosed between a

pair of barriers while for Yada the memory locations in the removed transaction are

accessed only in that portion of the code.

Performance Analysis: To make a fair comparison between s-TRADE and

TRADE and evaluate the performance impact of tracking relaxed happens-before

edges, we run both race detection tools on STAMP applications using Pipeline as

the underlying STM. Figure 7.8 shows the runtime slowdown of TRADE with re-

spect to s-TRADE. Intuitively, TRADE is expected to introduce larger overhead

than s-TRADE because the tool needs to track potential relaxed happens-before edges

between transactional read and write operations (nontransactional operations behave

similarly). However, as we can see from Figure 7.8, TRADE generally introduces lower

overhead than s-TRADE because there are other factors that also account for the total

runtime overhead when running STAMP applications.

STMs that implements SGLA do not allow multiple threads to commit in parallel;

s-TRADE poses the additional constraint that race detection must also be carried on

as part of the commit operation. This is necessary to ensure that no other thread up-

dates any read/write vector clocks while a thread is still performing race detection. On

the other hand, the serialization time at commit phase increases and eventually worsens

the performance. Serialization time depends on two parameters: i) the total number

of transactions (second column in Table 7.2) and ii) the size of each transaction, com-

puted as the average number of transactional accesses per transaction (eighth column

in Table 7.2). Applications with a large number of transactions (such as Kmeans and

Intruder) show, in general, better performance with TRADE than with s-TRADE.

Although Intruder and SSCA2 have comparable number of transactions, s-TRADE

149

7.6. Evaluation

#Transactional Per Tx #Nontransactional TX/

Apps. Transactions Accesses Accs. Accesses Non

Tx

Total Read Total Unique

Only

Read Write Read Write Read Write

Intruder 6,045K 31.10% 55,752K 3,164K 9.85% 40.09% 9.74K 25,699K 10,338K 1.63

Ssca2 5,558K 0.00% 2,780K 5,560K 9.38% 54.69% 1.50K 157,486K 34,243K 0.04

Kmeans 10,207K 0.00% 13,113K 6,588K 0.01% 0.01% 1.93K 513,365K 1,507K 0.03

Vacation 2,097K 0.15% 288,957K 7,099K 4.68% 62.14% 141.18K 37,639K 14,645K 5.66

Genome 2,489K 56.55% 58,288K 1,638K 2.21% 80.24% 24.07K 10,392K 6,259K 3.59

Yada 30K 35.71% 1,647K 240K 18.71% 51.19% 62.92K 68K 57K 15.09

Bayes 2K 26.92% 33K 3K 2.57% 14.25% 18.00K 218K 19K 0.15

Labyrinth 1K 0.76% 92K 91K 98.05% 99.71% 183.00K 4K 3K 26.14

Table 7.2: STAMP applications’ characteristics.

performs slightly better than TRADE for the latter. This is caused by the fact that

SSCA2 ’s transactions are smaller than Intruder ’s, which means that SSCA2 ’s serial-

ization time is shorter.

For applications with limited number of transactions (Yada, Labyrinth and Bayes),

the serialization overhead at commit phase is negligible. In these scenarios, establish-

ing relaxed happens-before edges penalizes TRADE with respect to s-TRADE. This

effect can be seen especially with Labyrinth and Yada, while for Bayes the two tools

perform similarly. More in detail, for Bayes the ratio between the number of trans-

actional and nontransactional accesses (0.15) is much lower than Labyrinth and Yada

(15.09 and 26.14, respectively). This low ratio indicates that nontransactional opera-

tions are the primary factors in determining the overall execution time. On the other

hand, transactional accesses are predominant for both Labyrinth and Yada. However,

Labyrinth mainly accesses individual addresses transactionally, which only requires vec-

tor clocks allocation and initialization. Non-unique transactional accesses, instead, re-

quire TRADE to determine the relaxed happens-before edges: The high overhead for

Yada is caused by the large number of non-unique transactional accesses performed.

We also analyze the overhead introduced by s-TRADE and TRADE over native

execution of STAMP applications. In this case, we use Pipeline for s-TRADE and LLT

for TRADE. Table 7.3 reports the execution times for the native execution of STAMP

applications running with both STM systems. As reported in Section 7.1, running

STAMP applications with LLT provides higher speedups than Pipeline. The columns

“Instr. Only” present the execution time when running STAMP applications with Pin

only intercepting the necessary instructions required for the two algorithms, such as be-

gin/end transactions, read and write accesses, etc. For some applications (like Kmeans),

150

7.6. Evaluation

LLT Pipeline

Apps. without SGLA semantics with SGLA semantics

B
a
se

-t
im

e

In
st
r
.
O
n
ly

T
R
A
D
E

B
a
se

-t
im

e

In
st
r
.
O
n
ly

s-
T
R
A
D
E

Intruder 1.71 63.65 270.95 4.26 103.28 358.36

SSCA2 0.70 12.73 566.86 1.89 15.40 507.21

Kmeans 3.74 176.30 178.75 5.89 213.41 308.34

Vacation 1.82 98.01 437.10 2.96 72.18 518.78

Genome 1.78 74.49 140.78 2.61 59.43 191.21

Yada 0.10 1.65 6.79 0.55 1.82 3.65

Bayes 5.82 36.11 41.23 10.47 69.98 81.58

Labyrinth 16.12 68.04 78.85 31.37 96.15 111.57

Table 7.3: Performance comparison between TRADE running on LLT and s-TRADE

running on Pipeline. Time in seconds.

the instrumentation overhead accounts for the largest part of the total overhead when

running the race detection tools. The total execution time of running TRADE and s-

TRADE is reported in the columns labeled “TRADE” and “s-TRADE”, respectively.

While the relative slowdown over the native execution for TRADE and s-TRADE is

comparable, the absolute execution time for TRADE is generally considerably lower

than s-TRADE, even for Labyrinth for which, as shown in Figure 7.8, TRADE shows

a high relative slowdown with respect to s-TRADE (Labyrinth runs 1.41x faster with

TRADE).

Summary: These experiments demonstrate that both tools precisely detect trans-

actional data races for STAMP applications. Our performance evaluation also reveals

that TRADE performs similarly to s-TRADE despite the overhead introduced by

tracking the relaxed happens-before edges. More importantly, TRADE shows faster

overall execution time when coupled with high-performance STM systems, such as LLT

or ET, which decreases debugging session time and increases programmers’ productiv-

ity. Debugging tools such as TRADE are fundamental in the multi-core era, where

high performance and scalability are of paramount importance.

151

7.7. Related Work

7.7 Related Work

In lock-based synchronization, there are well-established requirements to detect whether

or not a program satisfies a locking discipline. Under these established requirements,

data race detection tools have been also intensively studied. We can classify data race

detection for lock-based applications into two main categories: dynamic and static anal-

ysis. Static race detectors [49, 78] are based on compile-time analysis of the source code

to find all potential data races in any possible execution of a program. Dynamic race

detectors [137, 158] rely on program instrumentation or hardware support to monitor

memory accesses and synchronization operations. Dynamic tools are often based on

lockset [137, 158] or on happens-before [44, 141] relation.

Lockset algorithms enforce the locking discipline where every shared variable is

protected by some locks. Basically, each shared variable is associated with a lockset

that keeps track of all locks held during accesses, and a race is reported when the lockset

becomes empty. Happen-before algorithms are based on Lamport’s happens-before

relation [93], which combines program order and synchronization events to establish a

partial temporal ordering of instructions.

There are only a few works on race detection that leverage TM. Gupta et al. [60]

present a system that modifies a HTM implementation to perform dynamic race detec-

tion (RaceTM). The authors introduce the concept of lightweight debug transactions

that span nontransactional code and exploit the conflict detection mechanisms of TM

to detect transactional data races. RaceTM introduces a lower instrumentation over-

head than TRADE, as shared memory accesses are tracked by the hardware. On the

other hand, RaceTM is sensitive to thread migration and introduces a high number of

false positives caused by false sharing inside cache lines, and false negatives caused by

cache eviction. TRADE is not affected by many of these issues and does not require

extra hardware. Finally, TRADE is based on a formal definition of transactional data

races.

Teixeira et al. [154] detect data races in TM applications by converting transac-

tions into lock-protected critical sections and applying an existing lock-oriented data

race detector. The authors implemented their approach with AJEX [41], an exten-

sion to the Polyglot compiler framework for Java, to parse atomic blocks and to use

JChord [118] lock-based data race detector. Elmas et al. [48] present Goldilocks which

152

7.8. Conclusions

is a lockset-based algorithm for precisely computing the happens-before relation and

detecting data-races at runtime. The authors implemented the algorithm in the Kaffe

Java Virtual Machine and evaluated their system by using Java benchmarks and a few

microbenchmarks that combine lock-based and transaction-based synchronization. For

the implementation of transactions, the authors use the source-to-source translation

and protect all shared objects accessed in a transaction with per-object lock. The

problem with these two approaches is that directly transforming transactions into a

single global lock serializes the execution of transactions and modifies the run-time

characteristics of the application, enforcing an artificial total sequential order.

Unlike previous transactional race detection algorithms, s-TRADE and TRADE

do not require serial execution of transactions. Moreover, TRADE does not assume

the strict synchronized-with relations and can be used with high-performance STMs.

Finally, all the transactions-aware race detection tools proposed in the literature have

been evaluated with simple Java micro-benchmarks and cannot be used in production

systems. We evaluate s-TRADE and TRADE with the state-of-the-art STM systems

and with real and complex C/C++ TM applications, such as STAMP benchmarks.

7.8 Conclusions

TM has reached maturity level with many hardware (HTM) and software (STM) im-

plementations available to programmers. However, there is still lack of debugging tools

that automatically check the correctness of TM programs, especially those written with

unmanaged programming languages, such as C/C++.

In this chapter we proposed TRADE, a novel algorithm that precisely detects

transactional data races for C/C++ TM applications. Our algorithm is based on the

relaxed transactional happens-before relation that only orders conflicting transactions.

This definition is closer to transactional memory semantics and more intuitive than

previously defined strict transactional happens-before relation.

We implemented a dynamic race detection tool based on TRADE: Our tool pre-

cisely detects transactional races (real or injected) for STAMP applications. Thanks

to our tool, we were able to identify data races in SSCA2 that have not been previ-

ously reported. We also compared TRADE tool with an equivalent race detection tool

that implements an algorithm based on the strict happens-before relation (s-TRADE).

153

7.8. Conclusions

TRADE tool shows negligible overhead over s-TRADE but can be used with popular,

high-performance STMs, which increases its practicability.

154

Chapter 8

T-Rex: A Dynamic Race

Detection Tool for C/C++

Transactional Memory

Applications

8.1 Introduction

The correctness models mentioned in the previous chapter pose some restrictions on

the programmer, the language, and the underlying TM implementation. For example,

Static Separation (SS) poses restrictions on how memory locations can be accessed

during the execution of a program — the same location cannot be written both trans-

actionally and nontransactionally — and does not permit common programming tech-

niques, such as initializing shared memory locations before the main thread creates

secondary threads. Dynamic Separation (DS) overcomes some of the limitations of SS

by providing explicit operations, invoked by the programmer, to indicate when a loca-

tion changes from being available for use inside transactions to being available for use

directly. Both SS and DS require language support and extensions available only in

STM-Haskell and AME, respectively, which limits their applicability. SGLA requires a

total ordering among all transactions in the system [110]. However, programmers have

been reluctant to use STMs that implements SGLA semantics because enforcing total

ordering serializes transactions with respect to their commit order, which considerably

155

8.1. Introduction

limits performance and scalability, as shown in Figure 7.2. Consequently, most of the

high performance STMs do not implement SGLA, which diminishes the applicability

of the race detection tool based on strict transactional happens-before. The relaxed

transactional happens-before relation overcomes some of the limitations of SGLA by al-

lowing a higher level of concurrency. However, a race detection algorithm based on the

relaxed transactional happens-before relation, such as TRADE, still suffers from the

problems of any tool based on a form of happens-before relation: it is costly in terms

of performance, sensitive to compiler optimization, and highly depending on thread

interleaving.

The definition of transactional data race is central to all correctness models for TM

applications as a correct TM program never features transactional data races. In this

work, we propose a new definition of transactional data race based on the intuitive

notion of data races occurring between accesses to a memory location from different

threads, where at least one access is a write and at least one access is non-transactional.

This definition is transparent to the underlying STM implementation, can be used

for a broad set of C/C++ TM programs, enables a wide range of implementation

techniques to be used, and allows the implementation of efficient dynamic race detection

tools for TM applications. We only rely on properties that are common to a large

number of TM implementations or intrinsic to transactional memory (such as weak

isolation) and do not assume other properties that are not widely available. Moreover,

our definition is agnostic to thread interleaving, which implies that a transactional

data race exists irrespective to the order in which the two threads are scheduled in a

particular execution, even if the race does not manifest itself in a particular execution.

Based on this definition, we propose T-Rex, a dynamic race detection tool that

detects transactional data races for C/C++ TM programs. T-Rex records transactional

and non-transactional accesses to shared memory locations into per-thread meta-data

structures and then detects transactional data races at global synchronization points

(such as barriers and application termination). To help programmer resolve bugs, T-

Rex reports the instruction and memory location addresses and the type of each race.

We evaluated T-Rex with a widely-used STM system, TL2 [43], running applica-

tions from the STAMP benchmark suite [22] on an 8-core Intel Nehalem server. Our

experiments reveal new data races for several STAMP applications. To validate the

accuracy of our tool, even for applications that do not present transactional data races,

156

8.2. Motivation

we inject synthetic bugs and verify that the injected bugs are detected. We perform

a detailed performance analysis and provide the overhead breakdown of T-Rex when

running STAMP applications and identify major bottlenecks. We then show how op-

timization techniques, such as zero-copy commit phase, effectively reduce these bottle-

necks. Finally, our experiments show that T-Rex is considerably faster than the race

detection tool presented in Chapter 7, TRADE (5.58x faster on average).

This work makes the following contributions:

• We propose a definition of a transactional data race for C/C++ TM programs

that does not impose any constraints on STMs.

• Based on this definition, we implement T-Rex, a dynamic race detection tool for

C/C++ TM applications that provides full coverage with higher performance

with respect to previous race detection tools.

• We discover new data races for STAMP applications (Intruder and Bayes) that

have not been previously reported.

This chapter is organized as follows: Section 8.2 motivates our work from different

aspects. Section 8.3 introduces our transactional data race definition and its correctness

implications; Section 8.4 describes the design, implementation and optimization of

T-Rex ; Section 8.5 provides detailed coverage and performance analysis of T-Rex ;

Section 8.6 concludes this work.

8.2 Motivation

While happens-before algorithms (such as s-TRADE and TRADE) handle many styles

of synchronization, they come at a cost. First, tools based on happens-before are

usually costly in terms of performance, as they need to access global information and

check for the occurrence of data races at every memory access [137, 164]. Second,

happens-before algorithms are sensitive to compiler and hardware instruction reordering

and optimizations. Third, the effectiveness of these tools is highly dependent on the

thread interleaving produced by the scheduler. Consider the example in Figure 8.1:

Intuitively, the example includes a data race on x, as Thread 2 accesses x without

the proper synchronization. However, if Thread 2 fully executes before Thread 1 then

157

8.2. Motivation

Thread 1 Thread 2

atomic { r1 = x

x = 1; atomic {

y = x + 1; y = 42;

} }

Figure 8.1: This program is intuitively racy but a race detection tool based on relaxed

transactional data race definition produces different results according to thread inter-

leaving: if Thread 2 fully executes before Thread 1 then the tool does not detect any

transactional data races in a given execution.

Thread 2’s transaction (T2) is ordered before Thread 1’s transaction (T1), i.e., T2

−→rhb T1. (r1 = x) −→rhb T2 by program order, hence (r1 = x) −→rhb T1, thus

TRADE does not detect any transactional data races. Let us now consider a thread

interleaving in which Thread 1 executes before Thread 2: in this case T1 −→rhb T2

and, by program order, (r1 = x) −→rhb T2 but we cannot conclude that (r1 = x)

−→rhb T1, thus there is a relaxed transactional data race and TRADE detects a race.

Ideally, a program should be correctly synchronized under a given definition irre-

spectively of the order in which the two threads are scheduled in a particular execution.

Moreover, the definition of relaxed transactional data race does not always follow the

programmer’s intuition of the execution of a program: For example, the program in Fig-

ure 8.1 is intuitively incorrect but a tool based on relaxed transactional happens-before

may report that the program is correct.

Privatization and publication are techniques used by programmers to directly access

shared objects that are temporarily private to a thread. The code in Figure 8.2 shows a

typical privatization example: this program appears to be correct as shared is always

accessed within a transaction and access to x from Thread 2 is conditioned to the value

of shared. In this example, either Thread 1’s transaction commits first, in which case

Thread 2 never accesses x and the final state is x = 1, or Thread 2’s transaction

commits first, in which case the final value is x = 43.

Strict and relaxed transactional data race definitions assume support for safe pri-

vatization/publication in the STM and recognize these idioms. However, most STM

systems do not provide such support due to performance or design complexity rea-

sons [110]: In order to support privatization and publication, the STM must enforce a

158

8.2. Motivation

Thread 1 Thread 2

atomic { atomic {

shared = false; if (shared)

} x = 42;

x++; }

Figure 8.2: Initially shared = true and x = 0. This program is intuitively correct but

may result in incorrect behavior, depending on the underlying STM implementation.

memory barrier before a thread attempts to read a shared memory location. This in-

troduces additional overhead and completely defeats the purpose of accessing a shared

variable privately, i.e., shared memory access without the overhead of synchronization.

If the underlying STM does not support safe privatization/publication, there might be

subtle transactional data races introduced by the STM itself, because of speculative

reads, buffered writes or the abort mechanism.1 We refer to this kind of transactional

data races as “STM-centric” data races. Let us consider again the example in Fig-

ure 8.2, with a lazy-update/lazy conflict detection STM that does not support safe

privatization. Assume that Thread 2’s transaction executes first, then shared is true

and Thread 2 writes 42 to x. However, since the STM is lazy update, the writes to

the memory are delayed at commit phase. If x++ in Thread 1 is performed before the

STM writes back to x in Thread 2, then x will be overwritten with the value written

by Thread 2’s transaction. The final result will be x = 42, which is a value “out of

thin air”.2

Compiler and hardware instruction reordering and optimizations can also introduce

speculative reads or delayed writes. As discussed in the previous Chapter 7, in the

example in Figure 7.1 a compiler could reorder the instructions in Thread 2 execution

and speculatively read data before reading ready. While both buffered and in-place

update STMs suffer from these problems, compiler and hardware optimizations are

essential to achieve high performance and cannot simply be disabled.

TRADE does not consider possible STM-centric data races nor compiler/hardware

1As explained in Section 7.2, if the underlying STM does not implement privatization-safety, there

is an additional constraint on the programmer to guarantee the correctness of privatization and publi-

cation idioms.
2In eager-update STMs, there are similar problems caused by the fact that a transaction may

continue to execute as zombie transaction with its modification visible to other threads [1].

159

8.3. Preliminaries

optimizations, thus programs such as the ones described in Figures 7.1 and 8.2, can

result in incorrect executions or program crashes even if they appear to be correct

according to the relaxed transactional data race definition. In this work we do not rely

on any particular STM implementation and opt for an approach in which we do not

assume safe privatization/publication support. At the same time, we allow common

compiler and hardware optimizations, such as instruction re-ordering.

8.3 Preliminaries

As shown in the previous section, correctness models based on happens-before relation

come with some limitations and pose constraints on the STM implementation such as

support for safe privatization/publication. Because of performance and implementation

reasons, many STMs do not provide such support. For example, TL2 supports neither

SGLA nor safe privatization/publication, hence it is an “inconsistent” implementation

for strict and relaxed happens-before transactional data race definition [38, 110].

In this section we look for a definition of transactional data race that follows the

programmer’s intuition of being correctly synchronized while, at the same time, allowing

the design and implementation of efficient data race detection tools for a broad set of

TM programs and STM implementations. We define as transactional an access to a

shared memory location that is enclosed by atomic{...}. Conversely, we define as

non-transactional an access to a memory location not enclosed by atomic{...}. Let

us define Wnt
i and Rnti as the sets of memory locations written and read by thread Ti

outside transactions, respectively, and W t
i and Rti as the sets of locations written or

read by thread Ti within transactions, respectively. We also define Si = {nt, t} the

transactional state of thread Ti: if Ti execution is within a transaction, then Si = t,

otherwise Si = nt. We can define the state of a thread Ti at any given moment as

σi =< Rnti ,W
nt
i , R

t
i,W

t
i , Si >. The initial state of a thread Ti is σ0i =< �,�,�,�, nt >.

The state of a TM multi-threaded program σ at any given moment is the union of the

N threads’ states at that moment, i.e., σ =
⋃N
i=1 σi.

During the program execution, each thread performs several operations that change

its state, hence, the program state.

• rd(i, x) and wr(i, x), which read and write a value from x nontransactionally. As

a result of rd(i, x), Rnti = Rnti ∪{x}; similarly a wr(i, x) produces a state in which

160

8.3. Preliminaries

Wnt
i = Wnt

i ∪ {x}.

• txrd(i, x) and txwr(i, x), which read and write a value x transactionally. A

txrd(i, x) produces a new state in which Rti = Rti ∪{x}; the result of a txwr(i, x)

is W t
i = W t

i ∪ {x}.

• begin(i) and end(i). begin(i) starts a transaction and sets Si = t; end(i) termi-

nates a transaction and sets Si = nt.1

• barrier, which blocks a thread Ti until all threads Tj , j 6= i, reach the barrier.

A barrier operation transforms a program state σ = {σ1,, σN} into an empty

state σ′ = {�, ...,�}.

We denote the sequence of operations performed by a thread Ti during its execution

with αi. An execution trace α is a sequence of operations performed by all threads

in a multi-threaded program that change the state of a program from σ to σ′, i.e.,

σ ⇒α σ′. A particular execution trace α is the combination of the specific interleaving

of the sequences of actions of each thread αi in that execution. It follows that the

same sequences of actions α1, ...αN can produce different execution traces, one for each

possible thread interleaving. If σ ⇒α σ′ and σ ⇒α′ σ′, than α and α′ are equivalent

(α ≡ α′) and α′ can be obtained from α by applying a different thread interleaving. If

σ ⇒α′ σ′′, then α and α′ are not equivalent (α 6≡ α′), i.e., there is at least one thread

execution trace that is different in the two program execution traces α and α′.

Having defined the possible operations that threads can perform and that affect their

status, the simplest definition of transactional data race is the definition of conflict.

Definition 7. Given a program execution α, two memory accesses a and b conflict if

they access the same location, at least one is a write, and they are executed by different

threads.

However, this definition does not take into account that not all conflicts are harmful.

Definition 8. A benign conflict between two accesses a and b is a conflict that does

not generate incorrect results or crashes in any execution of the program.

1We consider a flat model for nested transactions, thus any begin(i) after the outmost begin(i) will

not modify the thread state.

161

8.3. Preliminaries

We define a conflict that is not benign as harmful. The following conflicting accesses

are benign:

• Transactional accesses. Accesses to the same shared variable within transactions

are benign conflicts. The TM system will take care of detecting the conflict and

aborting one of the conflicting transactions.

• Single-threaded accesses. Shared variables accessed during sequential parts of the

program do not generate harmful conflicts with other accesses in parallel parts of

the program. This paradigm enables common practices such as setting the ini-

tial value of global variables before creating secondary threads (initialization) or

writing the final results after joining all secondary threads (finalization) without

using transactions. Initialization is a programming paradigm that transforms

a program state σ ⇒ σ′ where σ = {σ1,�, ...,�} (σ1 is the state of the main

thread) and σ′ = {�,�, ...,�}. Finalization is a programming idiom that pro-

duces a state σ = {σ1, σ2, ..., σN} = {�,�, ...,�}; after the finalization σ2, ..., σN

do not change.

• Global synchronization. Global synchronization primitives (such as barriers) are

points in the program that have to be reached by all threads before proceeding

to the next section. Accesses to shared memory locations across global synchro-

nization primitives do not generate harmful conflicts. Global synchronization

primitives behave like barrier operation and produce a state σ = {�,�, ...,�}.

We can now provide a formal definition of transactional data race:

Definition 9. A transactional data race exists between two accesses a and b in an

execution α if a and b conflict, the conflict is not benign, and at least one access is

non-transactional.

This definition of transactional data race is independent of thread interleaving and relies

on the more intuitive idea that two accesses to a shared object without the proper syn-

chronization would probably result in a data race. Similar to data race detectors based

on lockset algorithms, this definition does not need to witness a concurrent access to a

shared memory location in particular program execution to report a potential race [137].

This is a safe approach as, although programmers occasionally deliberately allow a data

162

8.3. Preliminaries

race when the nondeterminism seems harmless, usually a potential data race is a se-

rious error caused by failure to synchronize properly. More formally, given a program

execution trace α = {α1, ..., αN}, where α1, ..., αN are the thread execution traces of

all threads in the system, if α is race-free, then all program execution traces α′ ≡ α are

also race-free. Similarly, if a race is observed in a program execution α, then the race

is present in all the program executions α′ ≡ α. For example, in the code in Figure 8.1,

α1 = begin(1); txrd(1, x); end(1) and α2 = rd(2, x); begin(2); txwr(2, y); end(2). If we

detect a transactional data race in the execution α = α2;α1, we can infer that the

same race exists in the execution α′ = α1;α2, even if we have not witnessed the trans-

actional data race in α′. Note that s-TRADE and TRADE are not independent of

thread interleaving: tools based on their corresponding transactional data race defi-

nition will report that the execution α = α2;α1 is race-free; however, this does not

imply that all program executions α′ ≡ α are race-free as well. In fact, the same

tool will report a happens-before transactional data race for the execution α′ = α1;α2

(α′ ≡ α). In some cases, different thread interleavings may produce non-equivalent

program executions. For the example in Figure 8.2, if Thread 1 fully executes first,

then the program execution is α = α1;α2, where α1 = begin(1); txwr(1, shared);

end(1); rd(1, x);wr(1, x) and α2 = begin(2); txrd(2, shared); end(2). If Thread 2 fully

executes first, then the program execution is α′ = β2;α1, where Thread 2 execution

trace is β2 = begin(2); txrd(2, shared); txwr(2, x); end(2). Since α2 and β2 are two dif-

ferent thread executions (there is an extra txwr(2, x) operation in the latter), α 6≡ α′.

A tool based on our definition of transactional data race will report a data race for α′

but not for α.

We can define an algorithm to detect transactional data races in TM programs: a

transactional data race occurs between thread Ti and Tj if and only if at least one of

the following is true:

c1i (j) = Wnt
i ∩ {Rntj ∪Wnt

j ∪Rtj ∪W t
j } 6= � (8.1)

c2i (j) = Rnti ∩ {Wnt
j ∪W t

j } 6= � (8.2)

c3i (j) = W t
i ∩ {Rntj ∪Wnt

j } 6= � (8.3)

c4i (j) = Rti ∩ {Wnt
j } 6= � (8.4)

163

8.4. Design and Implementation

We define the set of transactional data races between Ti and Tj as:

Si(j) = c1i (j) ∪ c2i (j) ∪ c3i (j) ∪ c4i (j) (8.5)

A program is correctly synchronized if and only if, ∀ threads Ti, Tj such that i 6= j,

Si(j) = �.

We can also define a correctness model for TM programs:

Definition 10. A TM program is correct if and only if no transactional data races

exist in any serializable not-equivalent program execution α.

This correctness model is compatible with most of the popular available STM imple-

mentations. Moreover, the model allows common programming practices and idioms

such as initialization, read-shared and finalization. Finally, a transactional data race

detection tool based on this model is less prone to missing transactional data races as

compared to a tool based on strict and relaxed transactional happens-before. In fact

s-TRADE and TRADE tools need to analyze all possible serializable executions of the

program (which requires many repetitions of the same program with the same input),

while a tool based on our correctness model only needs to check the not-equivalent

executions (which are considerably fewer).

8.4 Design and Implementation

This section presents the design and implementation of T-Rex, a dynamic race detection

tool for real C/C++ TM applications. T-Rex checks if a TM program is correct based

on Definition 10. First, we describe the data structures used to record transactional and

non-transactional shared memory accesses, then the dynamic binary instrumentation

framework used to identify transactions and instrument read/write accesses. Finally, we

describe the T-Rex transactional data race detection algorithm and several techniques

for its optimization.

8.4.1 Threads Data Access Table

To detect possible data races independent of thread interleaving, all individual trans-

actional and non-transactional accesses to shared memory locations and their access

modes (read/write, transactional/non-transactional) have to be recorded. T-Rex stores

164

8.4. Design and Implementation

HeadTail

31 21 0

IndexKey

K

K

Address:

DAT

(a) Data Access Table

21

Transaction ID

Generation ID

Next Entry Ptr

31 7 3 0

Key

Access mode bitmask
Temporal access mode bitmask

(b) Data Access Entry

Figure 8.3: T-Rex bookkeeping data structures: a) per-thread DAT; b) entry in the

per-thread DAT.

each access into a per-thread data access table (DAT), shown in Figure 8.3a. The

per-thread DAT is implemented as a hash table and the hash function uses the least

significant 22 bits of the memory address (bits [21:0]) to index the table. Addresses

that map to the same hash table bucket (aliases) are stored in a linked list, thus all

individual accesses are precisely stored without information loss.

Figure 8.3b depicts the structure of a DAT entry. The first word stores the upper

part of the memory address (bits [31:22]), used to disambiguate aliases in the same hash

table bucket. Bits [3:0] (access mode bitmask) store the location access modes: this

bitmask is cross checked with the other threads to determine possible transactional data

races. The forth and the fifth words store the head and tail of the list of instructions

that have accessed a memory location. The following sections describe the rest of the

structure.

8.4.2 Non-Transactional Memory Accesses

To distinguish the transactional accesses from the non-transactional ones, we use the

same binary instrumentation framework presented in Chapter 7. At every non-transactional

165

8.4. Design and Implementation

access, our framework built on top of Pin [100] executes either PIN READ() or PIN WRITE()

and inserts/updates the entry corresponding to the memory location in the thread’s

DAT. PIN READ() and PIN WRITE() set the non-transactional read (bit [1]) and non-

transactional write (bit[0]) bit, respectively. Both functions first look for the memory

location address into the threads’ DAT and, if found, update the access mode bitmask.

If the thread has never accessed that particular memory location, a new entry is added

and the access mode bitmask properly initialized. For performance reasons, we store

both head and tail of each bucket list: the last element of a bucket list (tail) is

returned if the required address is not found.

8.4.3 Transactional Memory Accesses

Since our correctness model is transparent to the underlying STM design, T-Rex does

not rely on the particular STM implementation and data structures (e.g., the read-

and write-set) or any other assumption specific to a particular STM. A possible imple-

mentation to track transactional read/write accesses consists of using shadow temporal

data structures: Once the transaction commits and the memory accesses become per-

manent, the values in the temporal structures are copied to the thread’s DAT. From

the performance point of view, however, keeping separate data structures introduce

memory copy overhead at commit phase. We, instead, implemented a commit zero-

copy algorithm to keep track of transactional accesses. Bits [7:4] in Figure 8.3b store

a temporal access mode bitmask used during transaction execution: We use a transac-

tion ID to identify memory locations already accessed by the current transaction from

those that have never been accessed in the scope of the current transaction. On trans-

actional read/write access, the thread’s DAT is searched and, if the memory address is

already present in the table, its transaction ID is compared to the current transaction

ID. If the entry’s transaction ID is smaller than the current transaction ID, this is the

first attempt to access that location transactionally and T-Rex copies the access mode

bitmask (bits [3:0]) to the temporal access mode bitmask (bits [7:4]), updates the ac-

cess mode bitmask and the entry’s transaction ID, and records the DAT entry. From

that moment on, every other transactional operation to the same memory location in

the scope of the current transaction directly updates the access mode bitmask (bit [3]

or bit [2] for STM READ() and STM WRITE(), respectively). If the memory location is

not found in the thread’s DAT, a new entry is added and its bitmask and transaction

166

8.4. Design and Implementation

ID are initialized with the current access mode and transaction ID. If the transaction

commits, no further update of the thread’s DAT is required (zero-copy on commit).

On aborts, the access mode bitmasks of the locations accessed during the transaction

must be rolled back to their original values. To this extent, T-Rex maintain a list of

individual memory locations accessed by the current transaction. Moreover, memory

locations added by the current transaction (temporal access mode bitmask is 0) are

removed from the thread’s DAT. Although, with our scheme, aborting is more expen-

sive than committing a transaction, the number of commits is, on average, orders of

magnitude higher than the number of aborts, thus we generally have a net gain.

8.4.4 T-Rex Race Detection

A thread Ti may have transactional data races with multiple threads at the same time.

The following theorems reduce the complexity of computing all the sets of transactional

data races.

Theorem 1. The set of transactional data races that thread Ti has with threads {Tj , Tk}
is equivalent to the union of the sets of transactional data races:

Si(j, k) = Si(j) ∪ Si(k)

Proof. This theorem can be proved using the commutativity and distributivity prop-

erties of set unions and intersections.

The equality in Theorem 1 can be also read in the reverse order: if Si(j) and Si(k)

are known, Si(j, k) can be obtained by summing the known sets. Since Si(j) and Si(k)

are independent, they can be determined in parallel. Theorem 1 can be generalized to

N ≥ 3:

Corollary 1. The set of transactional data races that thread Ti has with threads

{T1, . . . , Ti−1, Ti+1, . . . , TN} is equivalent to the union of the individual sets of races:

Si(1, . . . , i− 1, i+ 1, . . . , N) =
⋃
j 6=i

Si(j)

Proof. This theorem can be proved using the commutativity and distributivity prop-

erties of set unions and intersections.

167

8.4. Design and Implementation

This definition still requires computing Si(j) for i, j = 1..N, i 6= j, where N is the

number of threads.

Theorem 2. The set of transactional data races that thread Ti has with thread Tj is

equivalent to the set of transactional data races that thread Tj has with thread Ti:

Si(j) = Sj(i)

Proof. The theorem can be proved by applying the commutativity and distributivity

properties of set unions and intersection and by properly grouping the terms.

In our implementation, the sets Rti, W
t
i , R

nt
i , and Wnt

i of a thread Ti are determined

by the access mode bitmask in each entry of the thread Ti’s DAT (DATi). For example,

if the entry for the location X stores the access mode bitmask 0110, then X ∈W t
i and

X ∈ Rnti , hence thread Ti can have a transactional data race on X with any thread Tj

if X ∈ {Wnt
j ∪Rntj } (8.3) or X ∈ {Wnt

j ∪W t
j } (8.2).

We can express conditions (8.1)-(8.4) introduced in Section 8.3 in terms of bit

operations and detect transactional data races through a logic function determined

and optimized with Karnaugh maps techniques.1 Let us define Bi(X) to be the access

mode bitmask of thread Ti for location X (Bi(X) = 0x0 if X 6∈ DATi). Then, for

threads Ti and Tj , conditions (8.1)-(8.4) can be expressed as:

(8.1)⇒ (Bi(X) ∧ 0x1) ∧Bj(X) (8.6)

(8.2)⇒ (Bi(X) ∧ 0x2) ∧ (Bj(X) ∧ 0x5) (8.7)

(8.3)⇒ (Bi(X) ∧ 0x4) ∧ (Bj(X) ∧ 0x3) (8.8)

(8.4)⇒ (Bi(X) ∧ 0x8) ∧ (Bj(X) ∧ 0x1) (8.9)

for each X ∈ DATi and the number of transactional data races between Ti and Tj on

location X can be computed as the sum of the hamming weights of (8.6)-(8.9).

Moreover, by Theorem 1 and Theorem 2, ∀i, j, k : i 6= j 6= k, Sj(i) and Sk(i) can

be independently computed by threads Tj , and Tk and Si(j, k) equals to the union

of these two sets. Sj(i) and Sk(i) can be computed in parallel because each thread’s

1The representation of Karnaugh maps for 8 variables requires considerable space and we omit it

here for the sake of brevity.

168

8.4. Design and Implementation

DAT is disjoint from the others and T-Rex race detection only requires reading the

threads’ DATs. We, thus, implemented a parallel race detection algorithm in which each

thread Ti independently detects transactional races with thread Tj , ∀j > i according

to Theorem 2.

As mentioned in Section 8.3, memory accesses across sequential/parallel parts of

a program do not incur transactional data races. T-Rex keeps track of the number

of current active threads and enable bookkeeping only when there are N ≥ 2 active

threads.

Similarly, memory accesses from different threads across global synchronization

points are also race-free. When an application reaches a global synchronization point,

T-Rex performs race detection for the memory locations accessed by the threads be-

tween this global synchronization point and the previous one, and then safely discards

the entries in the threads’ DATs. Instead of deallocating/allocating threads’ DATs at

every global synchronization point, which is costly, we discard the DATs’ entries by

invalidating their generation ID : after data race detection, T-Rex increases the cur-

rent global generation ID, which invalidates all the previous entries in the DATs. The

generation ID of an entry is recorded when the memory location is first inserted into

the thread’s DAT and it is valid as long as the value is equal to the global current

generation ID. As a further memory optimization, invalid entries can be re-used when

inserting a new memory location in the current generation. We use the same technique

to avoid deallocation of entries inserted into the thread’s DAT from within transac-

tions: on abort, instead of deallocating entries, we artificially decrease their generation

numbers.

Extensions: Although privatization/publication are not directly considered as be-

nign conflicts, T-Rex provides debugging primitives (begin private and end private)

to filter out warnings produced by those idioms. These primitives should only be used

if the underlying STM provides support for safe privatization/publication and does not

introduce STM-centric data races.

Another programming style consists of creating/terminating threads (besides the

initialization/finalization techniques described previously) during the program execu-

tion. T-Rex handles this case by introducing artificial global synchronization points

every time a thread forks/terminates a child thread. This essentially shortens the

169

8.5. Experimental results

Transactional Data # Extra Races

Appl. Races with bug injection

Location Addresses Instruction Addresses

Intruder 540723 5 7723∗

Ssca2 99 7 3

Kmeans 0 0 3546

Vacation 0 0 758354

Genome 0 0 1706

Yada 0 0 6

Bayes 260 7 3

Labyrinth 0 0 7

Table 8.1: Number of detected transactional data races for STAMP applications for the

original version and a version with synthetic bugs injected. ∗Intruder crashed because

of the injected bug.

execution window inside which race detection is applied but introduces a timing depen-

dence, which makes the algorithm sensitive to thread interleaving. In our experience,

these cases are rare (none of the tested applications uses this technique). T-Rex is

not configured to recognize this paradigm by default to avoid timing dependences and

preserve the independence of thread interleaving.

8.5 Experimental results

This section evaluates the coverage and performance of T-Rex and compares T-Rex

with TRADE on a Intel Nehalem system (8 cores, 16GB of RAM). We run applications

from the STAMP benchmark suite, widely used to test TM systems, on TL2 [43].

STAMP applications and TL2 are compiled with gcc 4.4.5 with optimization O3 for

64-bit architectures. In all the experiments we run eight parallel threads.

8.5.1 T-Rex Race Detection Coverage

This section analyzes transactional data race conditions for STAMP applications and

T-Rex coverage. Table 8.1 shows the number of transactional data races detected by

T-Rex (both the number of instructions and memory locations) for all the STAMP

applications.

Detected Races: Even though STAMP benchmarks are mature applications, T-

Rex detects transactional data races for Intruder, Bayes and SSCA2. To the best

of our knowledge, this is the first study that reports these transactional data races

170

8.5. Experimental results

and their internal details. Our further investigation shows that the detected data

races for Intruder and Bayes are harmful if the underlying STM does not support safe

privatization/publication. For SSCA2, the detected races are harmful even if the STM

systems support SGLA and safe privatization/publication. Finally, we analyze whether

those data races are detected by TRADE.

T-Rex reports exactly the same transactional races detected by TRADE for SSCA2

in the process of creating the inner vertex list. Since the code that generates the inner

vertex list is enclosed between two global barriers and no transactions are used to

protect accesses to the graph’s nodes, the accesses to the nodes are always detected as

a race by both T-Rex and TRADE.

Intruder is a signature-based network intrusion detection systems (NIDS) applica-

tion that scans network packets for matches against a known set of intrusion signatures.

Incoming packets are stored in a FIFO queue while a self-balancing tree dictionary con-

tains the lists of packets that belong to the same session. Both these data structures are

shared among the threads. The application consists of three parallel phases: capture,

reassembly, and detection. In the TM implementation, the capture and reassembly

phases are enclosed inside transactions and populate the FIFO queue and the dictio-

nary. In the detection phase, threads retrieve packets from the FIFO queue and detect

possible intrusions. Although both the FIFO and the packets are shared data struc-

tures, once a packet has been retrieved from the FIFO, no other thread is allowed

to work on that packet anymore (privatization), thus there is no need to enclose the

detection phase inside transactions. However, each packet is modified by both trans-

actional (capture and reassembly) and non-transactional (detection) code, thus T-Rex

reports transactional data races. No other transactional data races are reported by

T-Rex besides the ones just described.

Bayes implements an algorithm for learning Bayesian networks from observed data

using a hill-climbing strategy that uses both local and global search. At each iteration,

a thread receives a variable to analyze and updates the network with new dependencies.

In the transactional version, transactions are used to extract a variable from the task list

(privatization) and to add the variable back to the list (publication). After extracting

a variable, a thread need not protect its modifications through transactions. This

program is racy because several threads extract the same variable from the list and

171

8.5. Experimental results

Genome Intruder Labyrinth Ssca2 Vacation Yada Bayes Kmeans
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

O
v
e
rh

e
a
d
 (

X
)

Naive Generation Zero−copy
165 207 485 117 152 272

(a) T-Rex runtime overhead.

Genome Intruder Labyrinth Ssca2 Vacation Yada Bayes Kmeans
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

O
v
e
rh

e
a
d
 B

re
a
k
d
o
w

n
 (

X
)

Pin−only Bookkeping Race detection

(b) T-Rex runtime overhead breakdown for Zero-

copy.

Figure 8.4: T-Rex overall overhead and overhead breakdown for STAMP applications.

then access the variable directly without using a barrier to delimit the two portions of

the code.

s-TRADE and TRADE do not detect any those STM-centric transactional races

for Intruder and Bayes because they establish happen-before relations between the

transaction that privatizatizes the data and the prior transactions while assuming that

safe privatization is guaranteed by the underlying STM system. Since most of the

commonly-used STMs do not support safe privatization and publication, we believe

that it is crucial to discover these STM-centric transactional data races. These races

are subtle and likely to be bugs in practice with some typical STM systems. More

importantly, it is very difficult for the programmer to reason about incorrect results in

the absence of transactional data races.

Injected Races: Similarly to the previous chapter, we inject bugs in the STAMP

applications in the form of removing transactions, which transforms transactional sec-

tions into non-transactional ones in order to verify that T-Rex detects transactional

data races without any miss. The third column in Table 8.1 shows the number of trans-

actional data races detected by T-Rex when injecting bugs in the STAMP applications.

T-Rex detects all the transactional data races produced by the injected bugs. If these

bugs results in an application crash (malign faults), we detect data races before the

application crash (T-Rex intercepts the SIG KILL/SIG ABORT signals).

172

8.5. Experimental results

#Transactional #Nontransactional

Appl. TXs Syn. Accesses Accesses

Rd Wr Rd Wr

Intruder 6,045K 1 55,752K 3,164K 25,699K 10,338K

Ssca2 5,558K 47 2,780K 5,560K 157,486K 34,243K

Kmeans 10,207K 302 13,113K 6,588K 513,365K 1,507K

Vacation 2,097K 1 288,957K 7,099K 37,639K 14,645K

Genome 2,489K 258 58,288K 1,638K 10,392K 6,259K

Yada 30K 1 1,647K 240K 68K 57K

Bayes 2K 4 32K 3K 218K 19K

Labyrinth 1K 1 92K 91K 4K 3K

Table 8.2: STAMP applications’ characteristics.

8.5.2 Overhead analysis

Figure 8.4a shows the T-Rex runtime overhead over the native execution of STAMP

applications running with TL2. We report the overhead of three different implementa-

tions: Näıve uses our race detection algorithm but deallocates/allocates threads’ DATs

at each global synchronization point, after performing a race detection. This version

also uses shadow data structures to store temporal transactional read and write ac-

cesses that are copied back to the thread’s DAT after successful commits. Temporal

data structures are allocated at the beginning of a transaction and deallocated at com-

mit phase and on abort. Generation employs generation across global synchronization

points (no need to deallocate/allocate threads’ DATs) but still uses shadow data struc-

tures for transactional accesses. To the contrary of the previous case, temporal data

structures are not deallocated at the end of transactions but invalidated through a spe-

cific generation ID. Finally, Zero-copy uses both our optimizations: generation across

global synchronization points and zero-copy commit phase.

By comparing the versions Näıve, Generation and Zero-copy we can perceive the

effects of each optimization. The use of generations across the global synchronization

points considerably improve the performance for the applications (such as Genome,

Kmeans and SSCA2) that use barriers or fork/join (see Table 8.2). Moreover, ver-

sion Generation does not deallocate/allocate temporal data structures for transac-

tional accesses, hence applications with a large number of commits (Intruder, SSCA2

and Kmeans) also report large performance improvements. Including our zero-copy

on commit optimization improves performance for all applications. Our zero-copy on

commit technique removes the memory copy overhead of moving transactional accesses

173

8.5. Experimental results

Genome Intruder Labyrinth Ssca2 Vacation Yada Bayes Kmeans Average
0

25

50

75

100

125

150

175

200

225

250

275

O
v
e

rh
e

a
d

 (
X

)

TRADE T−Rex

800

Figure 8.5: Comparing TRADE and T-Rex execution overhead over native execution

with TL2.

from the temporal data structure to the threads’ DATs. The overhead of applications

with a large number of commits (Kmeans, Intruder and SSCA2) or large read- and

write-sets (Vacation) considerably reduces.

For SSCA2 and Kmeans, the runtime overhead is particularly high: we analyzed the

overhead breakdown (Figure 8.4b) and discovered that, for these benchmarks, the pure

Pin instrumentation overhead (no bookkeeping and no race detection) is dominant.

This overhead is 35.5x and 33.9x for SSCA2 and Kmeans, respectively. We further

examined the reasons why we experience large instrumentation overhead for some ap-

plications such as SSCA2 and Kmeans: Table 8.2 reports the number of commits,

synchronization points, and transactional/non-transactional read and write accesses.

Note that Pin instrumentation overhead is higher for applications with a large number

of read/write accesses and transactions.

From Figure 8.4b and Table 8.2, we can also derive conclusions about the book-

keeping, the read and write instrumentation and the race detection overheads. In the

graph, bookkeeping also includes the overhead of tracking read/write accesses through

Pin. As expected, applications with large numbers of memory accesses (SSCA2 and

Vacation) show larger bookkeeping overhead. However, this overhead is larger for ap-

plications with a high percentage of unique accesses. For example, SSCA2 (55% of

unique accesses) shows considerably higher bookkeeping overhead than Vacation (2%

174

8.6. Conclusions

of unique accesses). Finally, Figure 8.4b shows that the pure overhead of our race

detection algorithm is marginal compared to instrumentation and bookkeeping. Only

Genome, SSCA2 and Kmeans show noticeable overhead. These applications are the

only ones that frequently use global synchronization, thus T-Rex performs transactional

race detection several times.

Figure 8.5 shows the execution overhead over native execution of TRADE com-

pared to T-Rex. Even though TL2 is an inconsistent implementation for TRADE

because it does not support safe privatization/publication (the programmer must en-

sure correctness of these idioms), we run both race detection tools on the same STM

to be able to provide fair comparison. As we can see from the graph, the overhead of

T-Rex and TRADE is comparable for Labyrinth, Bayes, and Kmeans. On the other

hand, T-Rex overhead is much lower than the one introduced by TRADE for those

applications that present large numbers of transactions, such as Genome, Intruder,

SSCA2, and Vacation, up to 800x over the native execution for SSCA2. This is mainly

caused by the difficulty of tracking the happens-before relations between all the accesses

to shared memory locations. In particular, the vector clocks used to track happens-

before relations are shared data structure (as opposed to T-Rex DATs) that need to

be protected by lock and limit scalability (i.e., the overhead is larger when the thread

count is higher).

8.6 Conclusions

Despite the level of maturity reached by transactional memory and the many implemen-

tations available at both hardware and software levels, there is still a lack of consensus

on the notion of what it means for a TM program to have a data race. Previous cor-

rectness models and definition of transactional data races come with some limitations

and impose restrictions on the STM implementations: for example, s-TRADE requires

the underlying STM to support total ordering among all transactions in the system,

which limits the applicability of s-TRADE to most of the STM designs. To overcome

these limitations, we propose a new definition of transactional data race that is more

intuitive, does not constrain the underlying STM implementation, is independent of

thread interleaving but, at the same time, allows common programming idioms and

practices.

175

8.6. Conclusions

Based on this definition, we implement T-Rex, a precise dynamic checking tool for

C/C++ TM applications. T-Rex is able to efficiently detect transactional data races

in complex, real programs, such as STAMP applications. We discovered transactional

data races in some STAMP programs that, to the best of our knowledge, had not been

previously reported. Our results show that T-Rex is considerably faster than a race

detection tool based on TRADE (5.58x on average).

176

Part V

Conclusions

177

178

Chapter 9

Conclusions

Increasing performance through higher processor frequency has reached a sudden stop

caused by three major technical bottlenecks: 1) the increasing gap between proces-

sor and memory speed (Memory Wall), 2) the increasing difficulty of finding enough

parallelism within a single stream of instruction to keep the processor utilization high

(ILP Wall), and 3) the increasing power consumption, which grows exponentially with

the processor operation frequency (Power Wall). This combination of factors has mo-

tivated the major processor manufacturers to shift towards a processor design that

includes several computing elements (cores or hardware threads) within the same pro-

cessor die.

Chip Multithreading (CMT) processors promise to deliver higher performance by

running more than one stream of instructions in parallel rather than by increasing

the processor’s frequency. CMT processors come with different architectures: Chip

Multi-Processor (CMP), Simultaneous Multi-Threading (SMT), or a combination of

them. Market trends show that the core count has been consistently increasing over

the last years and chips with 8 cores and 32/64 hardware threads are commonly avail-

able. Moreover, CMT processors deliver higher performance/watt ratios [162] than

single thread architectures, which makes them suitable for power-constrained systems,

such as data centers. In order to exploit CMT’s capabilities, programmers have to

parallelize their applications. However, efficiently parallelizing applications, especially

at large scale, is difficult and prone to errors and race conditions, such as dead and live

locks. Several proposals focus on how to reduce the effort of parallelizing applications

on CMT machines. Novel shared memory programming models, such as OpenMP [125],

179

PGAS [122, 157], Charm++[80], and Transactional Memory [72], that have the poten-

tiality to simplify parallel programming and to enable users to extract higher level of

parallelism are seeing wider use in various fields, including high performance computing,

data centers and server markets.

Transactional Memory (TM) [46, 66, 72] is a promising programming model that ad-

dresses ease of programmability of parallel programs while keeping up with performance

expectations of multi-core processors. Transactional Memory allows programmers to

mark compound statements in parallel programs with the expectation that the under-

lying run-time implementation will execute such transactions concurrently whenever

possible, generally by means of speculation – optimistic but checked execution, with

rollback and retry when conflicts arise. The principal goal of TM is to simplify synchro-

nization by raising the level of abstraction, breaking the connection between semantic

atomicity and the means by which that atomicity is achieved. Secondarily, TM has

the potential to improve performance, most notably when the practical alternative is

coarse-grain locking.

Researchers have proposed different designs and implementations of transactional

memory system, from Hardware Transactional Memory (HTM) to Software Transac-

tional Memory (STM) and to hybrid solutions. Until recently, however, most of these

solutions mainly focused on implementations that respect TM semantics and the ACI

properties. While this is a necessary step, it produced a multitude of HTM and STM

designs and benchmark suites that are usually not compatible with each other. More-

over, programmers have been reluctant to use TM because of the generally limited

performance and scalability and because of the lack of development tools (e.g., compil-

ers, debuggers, race detectors) and common benchmarks to evaluate which TM design

best suits their needs.

More recently, there has been significant effort to consolidate research designs and

implementation into industrial standards for transactional memory. This work is sum-

marized in Draft Specification of Transactional Language Constructs for C++ [6].

Moreover, the availability of mature compilers, both from the open source community

(GCC-TM [138]) and from the industry (Intel [35, 161], Microsoft [68]), and hardware

transactional memory implementations, IBM BG/Q [63] and Intel Haswell[132], show

that transactional memory has now reached a maturity level and that it can be used

in the production environments rather than just the research environments.

180

However, in order for transactional memory to be widely adopted in mainstream

parallel programming, there is need of filling the gap between the research prototypes

developed in the last years and the industry-level standards and products. This disser-

tation presents work towards improving the practicality of transactional memory across

three dimensions. Specifically, this dissertation makes the following contributions:

• Comprehensive evaluation of TM systems

We developed RMS-TM, a comprehensive TM benchmark suit that includes re-

alistic applications from the Recognition, Mining, and Synthesis (RMS) domain.

RMS-TM addresses ongoing TM research issues (e.g., nested transactions, I/O

operations, system and library calls inside transactions) and provides the poten-

tial for straightforward comparison against locks. We also developed a library

interface that allows a reliable and fair performance comparison of TM proposals

developed by different research groups. Our interchangeable software layer makes

it possible to interchange the STM library while keeping the benchmarks source

and binary code unaltered.

• Design and implementation of a high-performance STM

We have designed a novel parallel STM implementation, Software Transactional

Memory for Simultaneous Multi-threading systems — STM 2. STM 2 reduces the

runtime overheads by offloading the time-consuming TM operations to a auxiliary

thread running on sibling core/hardware thread. Application threads optimisti-

cally perform their computation with minimal support from the underlying STM

system. All synchronization and STM management operations are performed by

the paired auxiliary threads. We exploit the fact that, on modern multi-core

processors, sets of cores can share L1 or L2 caches. This lets us achieve closer

coupling between the application thread and the auxiliary thread (when com-

pared with a traditional multi-processor systems). We show that our approach

outperforms several well-known STM implementations for various TM applica-

tions, with average speedups between 1.8x and 5.2x over the tested STM systems.

We further enhance STM 2’s performance by effectively partitioning processor re-

sources between application and auxiliary threads. In order to bias the allocation

of hardware resources in favor of the most demanding thread, we leverage the

181

hardware thread prioritization mechanism implemented in POWER machines.

Results show that effective hardware resource partitioning performs, in general,

better than the original STM 2, up to 86% performance improvement.

• Providing Correctness Semantics for TM applications

We propose two novel and precise race detection algorithms and tools for TM

applications. The first tool, namely TRADE, is based on a relaxed definition of

the happens-before relation and removes the SGLA constraints on the underlying

STM system. This algorithm can be used with a broader set of high-performance,

scalable TM systems but still requires support for safe-privatization. The second

algorithm T-Rex removes this constraint. T-Rex is based on a new definition of

transactional data race that follows the programmers intuition of racy accesses,

is independent of thread interleaving, can accommodate popular STM designs,

and allows common programming idioms. We implement the race detection tools

for C/C++ TM applications corresponding to our algorithms (TRADE and T-

Rex). For comparison reasons, we also implemented a race detector based on the

strict happens-before relation. We compare precision and run-time overheads of

our race detection tools. We also analyzed the implications of each semantics on

parallel programming and STM implementations. Our experiments show that our

tools precisely detect transactional data races. However, T-Rex is considerably

faster than the tools based on (strict or relaxed) happens-before relation and can

be used with a broader set of scalable STM designs because it does not pose

implementation constraints.

In summary, this dissertation presents novel techniques and important findings to-

wards improving the efficiency and practicality of TM systems, especially when running

on massive multithreaded systems. Both TM system designers and application devel-

opers can use the techniques and findings described in this dissertation.

As future work, we plan to analyze the interaction of TM with other programming

models and synchronization primitives within the same applications. Such scenarios can

arise, for example, when using distributed shared memory systems where application

threads can use TM to synchronize access to a shared memory location within a single

node and message passing (e.g., MPI) when communicating across different nodes.

Systems such as BG/Q are ideal testbeds for such scenarios. A second scenario involves

182

the use of transactions and lock in legacy applications that are gradually ported to TM.

In both cases, the semantics of what it means for a program to be correctly synchronized

and our race detection algorithms need to take into account the interaction between

TM and the other programming models used. Orthogonally, we plan to extend some of

the techniques proposed in this dissertation, e.g., assisted execution, to other systems,

such as OS exception handlers [166], dynamic check in Java Script [109] or our race

detection algorithms.

183

184

Appendix A

TRADE correctness proofs

In this appendix, we provide the logical reasoning of the algorithms’ correctness proofs.

For brevity, we prove the correctness of TRADE; the proof for s-TRADE is a simplified

version of this.

We begin the correctness proofs with the formal definition of program state σ. At

any given moment a program is in a state σ represented by a tuple< C,R,W, TR, TW >.

Definition 11. A state σ =< C,R,W, TR, TW > is well-formed if and only if:

1. for all t, u ∈ Tid, if t 6= u then Cu(t) < Ct(t)

2. for all x ∈ V ar, t ∈ Tid, Rx(t) ≤ Ct(t)

3. for all x ∈ V ar, t ∈ Tid, Wx(t) ≤ Ct(t)

4. for all x ∈ V ar, t ∈ Tid, TRx(t) < Ct(t)

5. for all x ∈ V ar, t ∈ Tid, TWx(t) < Ct(t)

Let σ0 be the initial state where all vector clocks in the tuple are empty, then σ0 is

well-formed.

An execution trace α is a sequence of operations performed by all threads in a

multi-threaded program. The operations that a thread t ∈ Tid can perform are the

following:

• rd(t, x) and wr(t, x), which read and write a value from x nontransactionally,

• txrd(t, x) and txwr(t, x), which read and write a value x transactionally,

185

• begin(t) and end(t), which start and end a transaction,

• fork(t, u), which forks a thread u,

• join(t, u), which blocks until a thread u terminates, and

• barrier, which blocks until all threads u 6= t reach the barrier.

When performing an operation a, a program moves from an initial state σ to a final

state σ′. We indicate this transition with ⇒a. If the operation a is race-free and σ is

well-formed then σ′ is also well-formed.

Theorem 3. (Soundness) Given a well-formed state σ and σ ⇒α σ′, if TRADE

detects a data race φ, then φ is a race in α.

Proof. If TRADE detects a race between two operations a and b, then

i) a and b conflict, and

ii) a 6→whb b.

Let’s assume that a and b do not race in α, then either a and b do not conflict, which

contradicts (i), or a −→rhb b, which contradicts (ii). Hence a races with b in α.

Lemma 1. Let σa be a well-formed state and a.α be an execution trace such that

σa ⇒a.α σb ⇒b σ′b. Let’s also assume t = tid(a) and u = tid(b). If Cat (t) ≤ Cbu(t), then

a −→a.α.b b.
1

Theorem 4. (Completeness) Given a well-formed state σ and σ ⇒α σ′, all data races

in α are detected by TRADE.

Proof. The theorem can be proved by contradiction. Suppose that there is a data race

in α not detected by TRADE. This means that there are two operations in α, say

a and b, that conflict and a 6→whb b. The proof can be constructed by induction on

α = a.β.b, assuming that the data race between a and b is the first in the trace and

that there are no other races between β and b. The process can then be repeated with

α = β. Finally, let’s assume t = tid(a) and u = tid(b); by definition of data race t 6= u

and by Lemma 1 Cat (t) > Cbu(t) because a 6→whb b.

Without loss of generality, let’s assume that a is a write operation to x ∈ V ar and

b is a read operation from x ∈ V ar. Cat and Cbu denote the thread vector clocks at the

time the operations a and b are executed.

1The proof of this lemma can be found in [54]. We omit it here.

186

• a = txwr(t, x), b = txrd(u, x). If begin(u) occurs after end(t) then:1

TW a
x (t) = Cat (t) by txwr(t, x)

Cbu = Cu t TW a
x by txrd(u, x)

If follows that Cat (t) = Cbu(t), which contradicts the initial hypothesis Cat (t) >

Cbu(t), hence a −→rhb b.

• all other cases (at least one operation is nontransactional).

W a
x (t) = Cat (t) by txwr(t, x), or wr(t, x)

W a
x v Cbu is false in the rd(u, x), or txrd(u, x), because W a

x (t) > Cbu(t)

It follows that TRADE detects a race between a and b, which contradicts the

initial hypothesis that there was a race in α not detected by TRADE.

1If the two transactions run in parallel and there is a conflict between a and b, the TM system will

abort one of the transactions, hence a data race cannot occur, which contradicts the initial hypothesis.

187

188

References

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional memory and

automatic mutual exclusion. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 63–74, 2008. 159

[2] M. Abadi, T. Harris, and M. Mehrara. Transactional memory with strong atomicity using

off-the-shelf memory protection hardware. In Proceedings of the Symposium on Principles

and Practice of Parallel Programming, pages 185–196, 2009. 12, 76, 129

[3] M. Abadi, T. Harris, and K. F. Moore. A model of dynamic separation for transactional

memory. Inf. Comput., pages 1093–1117, 2010. 125

[4] J. Abeles, L. Brochard, L. Capps, D. DeSota, J. Edwards, B. Elkin, J. Lewars, E. Michel,

R. Panda, R. Ravindran, J. Robichaux, S. Kandadai, and S Vemuganti. Performance

guide for HPC applications on IBM power 755 system, 2010. 75, 80, 81, 94

[5] A. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeisman.

Compiler and runtime support for efficient software transactional memory. In Proceedings

of the ACM SIGPLAN conference on Programming language design and implementation,

2006. 19

[6] A. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich. Draft specification of transactional

language constructs for C++, Aug. 2009. Version 1.1. 49, 51, 57, 64, 126, 131, 143, 180

[7] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus ipc: the

end of the road for conventional microarchitectures. In Proceedings of the 27th annual

international symposium on Computer architecture, pages 248–259, 2000. 3

[8] K. Albayraktaroglu, A. Jaleel, Xue Wu, M. Franklin, B. Jacob, Chau-Wen Tseng, and

D. Yeung. Biobench: A benchmark suite of bioinformatics applications. In Proceedings of

the IEEE International Symposium on Performance Analysis of Systems and Software,

pages 2–9, Washington, DC, USA, 2005. 28

[9] G. M. Amdahl. Validity of the single processor approach to achieving large scale comput-

ing capabilities. In Proceedings of the Spring Joint Computer Conference, pages 483–485,

1967. 69

189

References References

[10] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded

transactional memory. In Proceedings of the IEEE International Symposium on High

Performance Computer Architecture, 2005. 20

[11] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham, M. Luj’an, and K. Jarvis. Lee-TM:

A non-trivial benchmark suite for transactional memory. In Proceedings of the 8th In-

ternational Conference on Algorithms and Architectures for Parallel Processing, pages

196–207, Agia Napa, Cyprus, 2008. 27, 46

[12] L. Baugh and C. Zilles. An analysis of I/O and syscalls in critical sections and their

implications for transactional memory. In Proceedings of International Symposium on

Performance Analysis of Systems and Software, pages 54–62, Washington, DC, USA,

2008. 28

[13] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Characteri-

zation and architectural implications. In Proceedings of the 17th International Conference

on Parallel Architectures and Compilation Techniques, Toronto, ON, Canada, 2008. 28

[14] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt.

The M5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–60, 2006. 40

[15] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing transactional semantics:

The subtleties of atomicity. The Fourth Annual Workshop on Duplicating, Deconstruct-

ing, and Debunking (WDDD), 2005. 12, 129

[16] Hans-J. Boehm. Transactional memory should be an implementation technique, not a

programming interface. In Proceedings of the First USENIX conference on Hot topics in

parallelism, pages 15–15, 2009. 126

[17] C. Boneti, F. Cazorla, R. Gioiosa, C-Y. Cher, A. Buyuktosunoglu, and M. Valero.

Software-Controlled Priority Characterization of POWER5 Processor. In Proceedings

of the 35th IEEE International Symp. on Computer Architecture, Beijing, China, June

2008. 92, 95, 96, 101, 108, 109, 119

[18] C. Boneti, R. Gioiosa, F. Cazorla, J. Corbalan, J. Labarta, and Mateo Valero. Balancing

HPC applications through smart allocation of resources in MT processors. In Proceedings

of the 22nd IEEE International Parallel and Distributed Processing Symp., Miami, FL,

2008. 95, 99, 109, 112, 119

[19] C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero. A dynamic scheduler for balancing

HPC applications. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,

2008. 95, 99, 109, 119

[20] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel. A multithreaded

PowerPC processor for commercial servers. IBM Journal of Research and Development,

(6), 2000. 92

190

References References

[21] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1997. 29

[22] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional

applications for multi-processing. In Proceedings of The International Symposium on

Workload Characterization, 2008. 27, 34, 46, 50, 55, 63, 69, 81, 93, 112, 127, 156

[23] D. Carlstrom, B, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis, and

K. Olukotun. The atomos transactional programming language. In Proceedings of the

2006 ACM SIGPLAN conference on Programming language design and implementation,

pages 1–13, 2006. 19

[24] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee.

Software Transactional Memory: Why is it only a research toy? ACM Queue, pages

46–58, 2008. 5, 69, 72, 73, 84

[25] J. Casper, T. Oguntebi, S. Hong, N. G. Bronson, C. Kozyrakis, and K. Olukotun. Hard-

ware acceleration of transactional memory on commodity systems. In Proceedings of

the International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 27–38, 2011. 81, 88

[26] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez, A. Ramirez, and

M. Valero. QoS for high-performance SMT processors in embedded systems. IEEE

Micro, (4), 2004. 93

[27] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh, W. Baek, C. Kozyrakis,

and K. Olukotun. A scalable, non-blocking approach to transactional memory. In Pro-

ceedings of the International Symposium on High Performance Computer Architecture,

pages 97–108, 2007. 20, 27, 29, 33, 34

[28] B. Chapman, G. Jost, and R. Van der Pas. Using OpenMP: Portable Shared Memory

Parallel Programming (Scientific and Engineering Computation). The MIT Press, 2007.

29

[29] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt. Simultaneous sub-

ordinate microthreading (SSMT). In Proceedings of the Annual International Symposium

on Computer Architecture, pages 186–195, 1999. 87

[30] S. Choi and D. Yeung. Learning-based SMT processor resource distribution via hill-

climbing. SIGARCH Computer Architecture News, (2), 2006. 93

[31] D. Christie, J. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack, C. Fetzer, M. Nowack,

T. Riegel, P. Felber, P. Marlier, and E. Riviere. Dresden TM Compiler (DTMC). In

Proceedings of the 5th ACM European Conference on Computer Systems, 2010. 125

191

References References

[32] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. Van Biesbrouck, G. Pokam,

B. Calder, and O. Colavin. Unbounded page-based transactional memory. SIGPLAN

Notices, 41(11):347–358, 2006. 45

[33] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. P. Shen.

Speculative precomputation: long-range prefetching of delinquent loads. In Proceedings

of the Annual International Symposium on Computer Architecture, pages 14–25, 2001. 87

[34] TM compiler support in gcc 4.7. Project web site. http://gcc.gnu.org/gcc-

4.7/changes.html. 125, 143

[35] Intel Corporation. In Intel C++ STM Compiler Prototype Edition 2.0 Language Exten-

sions and Users Guide, 2008. 19, 180

[36] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F. Spear.

Hybrid NOrec: A case study in the effectiveness of best effort hardware transactional

memory. In Proceedings of the 16th International Conference on Architectural Support

for Programming Languages and Operating Systems, Newport Beach, CA, USA, Mar.

2011. 21, 50

[37] L. Dalessandro, V. J. Marathe, M. F. Spear, and M. L. Scott. Capabilities and limitations

of library-based software transactional memory in C++. In Proceedings of the 2nd ACM

SIGPLAN Workshop on Transactional Computing, 2007. 5, 49

[38] L. Dalessandro and M. L. Scott. Strong isolation is a weak idea. In Proceedings of the 4th

ACM SIGPLAN Workshop on Transactional Computing, 2009. 125, 126, 129, 130, 131,

160

[39] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining STM by abolishing

ownership records. In Proceedings of the Symposium on Principles and Practice of Parallel

Programming, pages 67–78, 2010. 4, 5, 22, 50, 69, 81, 119, 125, 126, 131, 132

[40] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid

transactional memory. In Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems, pages 336–346, 2006. 4, 21

[41] R. Dias and B. C. Teixeira. Ajex: A source-to-source java stm framework compiler.

Technical report, DI-FCT/UNL, 2009. 152

[42] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial hard-

ware transactional memory implementation. In Proceeding of the 14th international con-

ference on Architectural support for programming languages and operating systems, 2009.

4, 21, 125

192

References References

[43] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In Proceedings of the

International Symposium on Distributed Computing, pages 194–208, 2006. 4, 17, 19, 21,

22, 50, 81, 119, 125, 126, 131, 132, 156, 170

[44] A. Dinning and E. Schonberg. Detecting access anomalies in programs with critical

sections. In Proceedings of the 1991 ACM/ONR workshop on Parallel and distributed

debugging, pages 85–96, 1991. 152

[45] J. Dongarra, P. H. Beckman, T. Moore, P. Aerts, G. Aloisio, J. Andre, D. Barkai,

J. Berthou, T. Boku, B. Braunschweig, F. Cappello, B. M. Chapman, X. Chi, A. N.

Choudhary, S. S. Dosanjh, T. H. Dunning, S. Fiore, A. Geist, B. Gropp, R. G. Harrison,

M. Hereld, M. A. Heroux, A. Hoisie, K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale,

R. Kenway, D. E. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,

B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S. M”uller, W. E.

Nagel, H. Nakashima, M. E. Papka, D. A. Reed, M. Sato, E. Seidel, J. Shalf, D. Skin-

ner, M. Snir, T. L. Sterling, R. Stevens, F. Streitz, B. Sugar, S. Sumimoto, W. Tang,

J. Taylor, R. Thakur, A. E. Trefethen, M. Valero, A. Steen, J. S. Vetter, P. Williams, and

K. A. Wisniewski, R.and Yelick. The international exascale software project roadmap.

IJHPCA, 25(1):3–60, 2011. 91

[46] Ulrich Drepper. Parallel programming with transactional memory. ACM Queue, pages

38–45, 2008. 11, 180

[47] Michel Dubois and Ho Song. Assisted execution. Technical Report GENG-98-25, Uni-

versity of Southern California, Los Angeles, 1998. 70

[48] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and transaction-aware java

runtime. In Proceedings of the ACM SIGPLAN conference on Programming language

design and implementation, 2007. 152

[49] D. Engler and K. Ashcraft. Racerx: effective, static detection of race conditions and

deadlocks. In Proceedings of the 9th ACM symposium on Operating systems principles,

pages 237–252. 152

[50] J. Ennals, R. Adaptive Evaluation of Non-Strict Programs. PhD thesis. University of

Cambridge, 2004. 46

[51] Object-relational main-memory embedded database system.

http://sourceforge.net/projects/fastdb/. 12

[52] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of word-based software

transactional memory. In Proceedings of the 13th ACM SIGPLAN Symp. on Principles

and Practice of Parallel Programming, Salt Lake City, UT, USA, Feb. 2008. 50

193

References References

[53] P. Felber, T. Riegel, C. Fetzer, M. S”usskraut, U. M”uller, and H. Sturzrehm. Transac-

tifying applications using an open compiler framework. In Proceedings of the 2nd ACM

SIGPLAN Workshop on Transactional Computing, Portland, OR, Aug. 2007. 65

[54] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic race detection.

In Proceedings of the ACM SIGPLAN conference on Programming language design and

implementation, pages 121–133, 2009. 186

[55] V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal, E. Ayguade, T. Harris, and M. Valero.

QuakeTM: parallelizing a complex sequential application using transactional memory. In

Proceedings of the 23rd International Conference on Supercomputing, 2009. 46

[56] David Geer. Industry trends: Chip makers turn to multicore processors. Computer,

38(5):11–13, 2005. 3

[57] B. Gibbs, B. Atyam, F. Berres, B. Blanchard, L. Castillo, P. Coelho, N. Guerin, L. Liu,

C. Diniz Maciel, and C. Thirumalai. Advanced POWER Virtualization on IBM eServer

p5 Servers: Architecture and Performance Considerations. IBM Redbook, 2005. 109, 119

[58] D. Grossman, J. Manson, and W. Pugh. What do high-level memory models mean

for transactions? In Proceedings of the workshop on Memory system performance and

correctness, pages 62–69, 2006. 126, 130, 131

[59] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: A benchmark for software trans-

actional memory. SIGOPS Operating Systems Review, 41(3), 2007. 27, 46

[60] S. Gupta, F. Sultan, S. Cadambi, F. Ivancic, and M. Rotteler. Using hardware trans-

actional memory for data race detection. In Proceedings 23rd International Parallel and

Distributed Processing Symposium, 2009. 152

[61] H. Q. Le, W. J Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J. Ronchetti, W.

M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM POWER6 microarchitecture. IBM

Journal of Research and Development, (6), 2007. 93

[62] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.

Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coherence

and consistency. In Proceedings of the 31st Annual International Symposium on Computer

Architecture, pages 102–113, New York, NY, USA, 2004. 20, 27, 41

[63] Ruud Haring. The Blue Gene/Q compute chip. In The 23rd Symposium on High Perfor-

mance Chips (Hot Chips), 2011. 4, 125, 180

[64] V. Haris, G. Neelam, and M. S. Michael. Pathological interaction of locks with transac-

tional memory. In Proceedings of the 3th ACM SIGPLAN Workshop on Transactional

Computing, 2008. 130

194

References References

[65] T. Harris and K. Fraser. Language support for lightweight transactions. In Proceedings

of the 18th annual ACM SIGPLAN conference on Object-oriented programing, systems,

languages, and applications, pages 388–402, 2003. 19

[66] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition. Morgan and

Claypool Publishers, 2nd edition, 2010. 11, 180

[67] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions.

In Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of

parallel programming, pages 48–60, 2005. 19, 125

[68] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory transactions. In

Proceedings of the Conference on Programming Language Design and Implementation,

pages 14–25, 2006. 5, 65, 69, 180

[69] M. Herlihy and Y. Lev. TM DB: A generic debugging library for transactional programs.

In Proceedings 18th International Conference on Parallel Architectures and Compilation

Techniques, 2009. 125

[70] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing software

transactional memory. In Proceedings of the Object-Oriented Programming, Systems,

Languages, and Applications, pages 253–262, Portland, OR, USA, 2006. 19, 27

[71] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional mem-

ory for dynamic-sized data structures. In Proceedings of ACM Symposium on Principles

of Distributed Computing, 2003. 19

[72] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free

data structures. In Proceedings of the Annual International Symposium on Computer

Architecture, pages 289–300, 1993. 4, 11, 20, 180

[73] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and K. Olukotun. Eigen-

bench: A simple exploration tool for orthogonal TM characteristics. In Proceedings of

the IEEE International Symposium on Workload Characterization, 2010. 93, 96

[74] C. Hughes, J. Poe, A. Qouneh, and T. Li. On the (dis)similarity of transactional memory

workloads. In Proceedings of the IEEE International Symposium on Workload Charac-

terization, 2009. 28

[75] Intel C++ STM Compiler, Prototype Edition. urlsoftware.intel.com/en-us/articles/intel-

c-stm-compiler-prototype-linebreak[1]urledition/. 57

[76] Intel Corporation. Intel AtomTM processor n450, d410 and d510 for embedded applica-

tions, 2010. Document Number: 323439-001 EN, revision 1.0. 93

195

References References

[77] Intel Corporation. Intel transactional memory compiler and runtime application binary

interface, May 2009. Document No. 318523-002US, revision 1.1. 50, 125

[78] Choi J., A. Loginov, and Sarkar V. Static datarace analysis for multithreaded object-

oriented programs. Technical report, IBM Research Division, Thomas J. Watson Research

Centre, 2001. 152

[79] M. V. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scalable and efficient parallel

classification algorithm for mining large datasets. In Proceedings of the 12th International

Parallel Processing Symposium on International Parallel Processing Symposium, pages

573–579, Washington, DC, USA, 1998. 36

[80] Laxmikant Kale. Charm++. In D. Padua, editor, Encyclopedia of Parallel Computing.

Springer Verlag, 2011. 180

[81] G. Kestor, L. Dalessandro, A. Cristal, 4 Scott, M. L., and O. S. Unsal. Interchangeable

back ends for stm compilers. In The 6th ACM SIGPLAN Workshop on Transactional

Computing, 2011. 6

[82] G. Kestor, R. Gioiosa, T. Harris, A. Crystal, O. Unsal, I. Hur, and M. Valero. STM2: A

parallel STM for high performance simultaneous multithreading systems. In Proceedings

of the 20th IEEE International Conference on Parallel Architectures and Compilation

Techniques, pages 221–231, 2011. 6, 92, 95, 119

[83] G. Kestor, R. Gioiosa, O. S. Unsal, A. Cristal, and M. Valero. Enhancing the perfor-

mance of assisted execution runtime systems through hardware/software techniques. In

Proceedings of the 26th ACM international conference on Supercomputing, pages 153–162,

2012. 7

[84] G. Kestor, R. Gioiosa, O. S. Unsal, A. Cristal, and M. Valero. Hardware/software tech-

niques for assisted execution runtime systems. In The 2nd Workshop on Runtime Envi-

ronments, Systems, Layering and Virtualized Environments, 2012. 7

[85] G. Kestor, O. S. Harris, T. Unsal, A. Cristal, and S. Tasiran. T-Rex: A dynamic race

detection tool for c/c++ transactional memory applications. In under submission the 23th

IEEE International Conference on Parallel Architectures and Compilation Techniques,

2013. 7

[86] G. Kestor, V. Karakostas, O. S. Unsal, A. Cristal, I Hur, and M. Valero. RMS-TM: A

comprehensive benchmark suite for transactional memory systems. In Proceeding of the

International Conference on Performance Engineering, pages 335–346, 2011. 6, 50, 55,

72, 73

[87] G. Kestor, S. Stipic, O. S. Unsal, A. Cristal, and M. Valero. RMS-TM: A transactional

memory benchmark for recognition, mining and synthesis applications. In The 4th ACM

SIGPLAN Workshop on Transactional Computing, 2009. 6

196

References References

[88] G. Kestor, S. Tasiran, O. S. Unsal, and A. Cristal. TRADE: Precise dynamic race

detection for scalable transactional memory systems. In under submission the 25th ACM

Symposium on Parallelism in Algorithms and Architectures, 2013. 7

[89] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,

P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,

M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. A.

Yelick. ExaScale computing study: Technology challenges in achieving exascale systems.

Technical Report DARPA-2008-13, DARPA IPTO, September 2008. 73

[90] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded sparc

processor. IEEE Micro, 25(2):21–29, 2005. 3

[91] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional

memory. In Proceedings of the eleventh ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 209–220, 2006. 4, 21

[92] Christoph Lameter. Effective synchronization on Linux/NUMA systems. In Proceedings

of the Gelato Federation Meeting, San Jose, CA, USA, May 2005. 22, 81

[93] L. Lamport. Time clocks, and the ordering of events in a distributed system. Commun.

ACM, 21:558–565, 1978. 152

[94] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program

analysis and transformation. In Proceedings of the International Symp. on Code Gener-

ation and Optimization, Palo Alto, CA, USA, 2004. 65

[95] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum, and M. Olszewski. Anatomy

of a scalable software transactional memory. In The 4th ACM SIGPLAN Workshop on

Transactional Computing, 2009. 5, 50, 86

[96] B. Lewis and D. J. Berg. Multithreaded programming with Pthreads. Prentice-Hall, Inc.,

1998. 4

[97] B. Liang and P. Dubey. Recognition, mining and synthesis moves computers to the era

of tera. In Technology@Intel Magazine, pages 1–10, 2005. 28, 29

[98] S. S.W. Liao, P. H. Wang, H. Wang, G. Hoflehner, D. Lavery, and J. P. Shen. Post-pass

binary adaptation for software-based speculative precomputation. In Proceedings of the

ACM SIGPLAN 2002 Conference on Programming language design and implementation,

pages 117–128, 2002. 70, 95

[99] Y. Liu, W. Liao, and A. Choudhary. A fast high utility itemsets mining algorithm. In

Proceedings of the 1st International Workshop on Utility-based Data Mining, pages 90–99,

Chicago, IL, USA, 2005. 36

197

References References

[100] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,

and K. Hazelwood. Pin: building customized program analysis tools with dynamic in-

strumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 190–200, 2005. 143, 166

[101] K. Luo, M. Franklin, S. S. Mukherjee, and A. Seznec. Boosting SMT performance by spec-

ulation control. In Proceedings of the 15th IEEE International Parallel and Distributed

Processing Symposium, pages 2–, 2001. 93

[102] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero. MLP-Aware Dynamic Cache

Partitioning. International Conference on High Performance Embedded Architectures

and Compilers, 2008. 93

[103] P. D. V. Mann and U. Mittaly. Handling OS jitter on multicore multithreaded systems.

In Proceedings of the 2009 IEEE Inter. Symp. on Parallel and Distributed Processing,

pages 1–12, 2009. 96, 119

[104] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III, and

M. L. Scott. Lowering the overhead of software transactional memory. In The 1st ACM

SIGPLAN Workshop on Transactional Computing. 2006. 19, 27

[105] V. J. Marathe, M. F. Spear Spear, and M. L. Scott. Scalable techniques for transpar-

ent privatization in software transactional memory. In Proceedings of the International

Conference on Parallel Processing, Portland, OR, USA, Sept. 2008. 22

[106] M. Martin, C. Blundell, and E. Lewis. Subtleties of transactional memory atomicity

semantics. IEEE Comput. Archit. Lett., 5, 2006. 12, 128

[107] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer, and S. R. Kunkel.

Characterization of simultaneous multithreading (SMT) efficiency in POWER5. IBM J.

Res. Dev., 49(4/5):555–564, 2005. 3, 109, 119

[108] M. Mehrara, J. Hao, P. Hsu, and S. Mahlke. Parallelizing sequential applications on

commodity hardware using a low-cost software transactional memory. In Proceedings of

the Conference on Programming Language Design and Implementation, pages 166–176,

2009. 73, 87, 88

[109] M. Mehrara and S. A. Mahlke. Dynamically accelerating client-side web applications

through decoupled execution. In Proceedings of the 9th IEEE International Symp. on

Code Generation and Optimization, pages 74–84, 2011. 70, 95, 121, 183

[110] V. Menon, S. Balensiefer, T. Shpeisman, A. Adl-Tabatabai, R. L. Hudson, B. Saha, and

A. Welc. Practical weak-atomicity semantics for java stm. In Proceedings of the annual

symposium on Parallelism in algorithms and architectures, pages 314–325, 2008. 23, 126,

127, 130, 131, 132, 134, 155, 158, 160

198

References References

[111] M. R. Meswani and P. J. Teller. Evaluating the performance impact of hardware thread

priorities in simultaneous multithreaded processors using SPEC CPU2000. In Workshop

on Operating System Interference in High Performance Applications, 2006. 96, 119

[112] Sun Microsystem. OpenSPARCTM T2 Core Microarchitecture specification. 70

[113] M. Milovanovi’c, R. Ferrer, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguad’e, and

M. Valero. Multithreaded software transactional memory and openmp. In Proceedings of

the Workshop on Memory performance: Dealing with Applications, systems and architec-

ture. 87, 88

[114] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper, C. Kozyrakis,

and K. Olukotun. An effective hybrid transactional memory system with strong isolation

guarantees. In Proceedings of the 34th annual international symposium on Computer

architecture, pages 69–80, 2007. 4, 21

[115] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM: Log-based

transactional memory. In Proceedings of the 12th International Symposium on High-

Performance Computer Architecture, pages 254–265, Austin, TX, USA, 2006. 17, 20, 27,

41

[116] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M. Swift, and

D. A. Wood. Supporting nested transactional memory in LogTM. In Proceedings of the

12th International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 359–370, San Jose, CA, USA, 2006. 15, 28

[117] M. M”uller, D. Charypar, and M. Gross. Particle-based fluid simulation for interactive

applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, pages 154–159, San Diego, CA, USA, 2003. 36

[118] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for java. In Proceedings

of the ACM SIGPLAN conference on Programming language design and implementation,

pages 308–319, 2006. 152

[119] R. Narayanan, B. ”Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary. Minebench:

A benchmark suite for data mining workloads. In Proceedings of the International Sym-

posium on Workload Characterization, pages 182–188, San Jose, CA, USA, 2006. 28

[120] Y. Ni, V. S. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. Eliot B. Moss,

B. Saha, and T. Shpeisman. Open nesting in software transactional memory. In Pro-

ceedings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel

programming, 2007. 15, 28

[121] Y. Ni, A. Welc, A. Adl-Tabatabai, M. Bach, S. Berkowits, J. Cownie, R. Geva,

S. Kozhukow, R. Narayanaswamy, J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian.

199

References References

Design and implementation of transactional constructs for C/C++. In Proceedings of the

23rd ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages

and Applications, Oct. 2008. 50, 63

[122] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Apr‘a. Advances,

applications and performance of the global arrays shared memory programming toolkit.

International J. High Perform. Comput. Appl., 20:203–231, May 2006. 180

[123] M. Olszewski, J. Cutler, and J. G. Steffan. Judostm: A dynamic binary-rewriting ap-

proach to software transactional memory. In Proceedings of the International Conference

on Parallel Architecture and Compilation Techniques, 2007. 23

[124] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for

a single-chip multiprocessor. In Proceedings of the seventh international conference on

Architectural support for programming languages and operating systems, pages 2–11, 1996.

3

[125] OpenMP Architecture Review Board. The OpenMP specification for parallel program-

ming. Available at http://www.openmp.org. 179

[126] OProfile - a system profiler for linux. Available at http://oprofile. sourceforge.net/. 39

[127] Oracle database system. http://www.oracle.com/technology/products/timesten/index.html.

12

[128] C. Perfumo, N. Sonmez, S. Stipic, O. Unsal, A. Cristal, T. Harris, and M. Valero. The

limits of software transactional memory (STM): Dissecting Haskell STM applications on

a many-core environment. In Proceedings of the 5th Conference on Computing Frontiers,

pages 67–78, Ischia, Italy, 2008. 39, 46

[129] C. Perfumo, O. Unsal, A. Cristal, and M. Valero. TxFS: Transactional file system.

Technical Report UPC-DAC-RR-CAP-2010-12, Department of Computer Architecture,

Universitat Politecnica de Catalunya, 2010. 34

[130] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A tool to visualize and

analyze parallel code. Technical report, In WoTUG-18, 1995. 100

[131] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In Proceedings of

the International Symposium on Computer Architecture, 2005. 20

[132] James Reinders. Transactional synchronization in Haswell. http://software.intel.com/en-

us/blogs/2012/02/07/transactional-synchronization-in-haswell. 180

[133] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional memory with scalable time

bases. In Proceedings of the Annual Symposium on Parallel Algorithms and Architectures,

pages 221–228, 2007. 4, 5, 19, 22, 27, 65, 77, 81, 119, 125, 126, 131, 132

200

References References

[134] RMS-TM - BSC Microsoft Benchmark Suite for TM systems. Available at

http://www.bscmsrc.eu/software/rms-tm. 48

[135] B. Saha, A.-R. Adl-tabatabai, R. L. Hudson, C. Cao Minh, and B. Hertzberg. McRT-

STM: a high performance software transactional memory system for a multi-core runtime.

In Proceedings of the 11th ACM Symposium on Principles and Practice of Parallel Pro-

gramming, pages 187–197, 2006. 19, 27, 29, 33

[136] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory of memory

models. In Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice

of parallel programming, pages 161–172, 2007. 125

[137] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic

data race detector for multithreaded programs. ACM Trans. Comput. Syst., 15:391–411,

1997. 152, 157, 162

[138] M. Schindewolf, A. Cohen, W. Karl, A. Marongiu, and L. Benini. Towards transactional

memory support for GCC. In GCC Research Opportunities Workshop, 2009. 19, 64, 132,

180

[139] K Schloegel, G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-

constraint graph partitioning. Technical report, University of Minnesota, Minneapolis,

1999. 99

[140] F. T. Schneider, V. Menon, T. Shpeisman, and A. Adl-Tabatabai. Dynamic optimization

for efficient strong atomicity. In Proceedings of the 23rd ACM SIGPLAN conference on

Object-oriented programming systems languages and applications, pages 181–194, 2008.

12, 129

[141] D. Schonberg. On-the-fly detection of access anomalies. In Proceedings of the ACM

SIGPLAN 1989 Conference on Programming language design and implementation, pages

285–297, 1989. 152

[142] T. Shpeisman, A. Adl-Tabatabai, R. Geva, Y. Ni, and A. Welc. Towards transactional

memory semantics for C++. In Proceedings of the 21st Ann. Symp. on Parallelism in

algorithms and architectures, 2009. 136

[143] T. Shpeisman, V. Menon, A. Adl-Tabatabai, S. Balensiefer, D. Grossman, R. L. Hudson,

K. F. Moore, and B. Saha. Enforcing isolation and ordering in stm. In Proceedings of the

2007 ACM SIGPLAN conference on Programming language design and implementation,

pages 78–88, 2007. 12, 129

[144] A. Shriraman, S. Dwarkadas, and M. L. Scott. Implementation tradeoffs in the design of

flexible transactional memory support. J. Parallel Distrib. Comput., Oct. 2010. 21

201

References References

[145] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. Van Norstrand, B. J.

Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q. Nguyen, B. Blaner, C. F.

Marino, E. Retter, and P. Williams. IBM POWER7 multicore server processor. IBM J.

Res. Dev., pages 191–219, May 2011. 92, 93, 94

[146] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. POWER5

system microarchitecture. IBM Journal of Research and Development, (4/5):505–521,

2005. 93

[147] Rochester software transactional memory runtime. www.cs.rochester.edu/research/ syn-

chronization/rstm/. 50, 131

[148] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatization techniques for

software transactional memory. In Proceedings of the Annual Symposium on Principles

of Distributed Computing, pages 338–339, 2007. 76

[149] M. F. Spear, A. Shriraman, L. Dalessandro, and M. L. Scott. Transactional mutex locks.

In The 4th ACM SIGPLAN Workshop on Transactional Computing, 2009. 81, 119

[150] M. F. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and M. L. Scott. Imple-

menting and exploiting inevitability in software transactional memory. In Proceedings of

the 37th International Conference on Parallel Processing, pages 59–66, Washington, DC,

USA, 2008. 28

[151] Michael F. Spear. Lightweight, robust adaptivity for software transactional memory.

In Proceedings of the 22nd Symposium on Parallelism in Algorithms and Architectures,

Santorini, Greece, June 2010. 66

[152] Michael F. Spear, Michael Silverman, Luke Dalessandro, Maged M. Michael, and

Michael L. Scott. Implementing and exploiting inevitability in software transactional

memory. In Proceedings of the International Conference on Parallel Processing, Port-

land, OR, USA, Sept. 2008. 51

[153] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slipstream processors: improving

both performance and fault tolerance. In Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating systems, pages 257–268,

2000. 87

[154] B. C. Teixeira, J. Lourenco, and D. Sousa. A static approach for detecting concurrency

anomalies in transactional memory. In Proceedings of InForum 2010, 2010. 152

[155] S. Tomi’c, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris, and

M. Valero. EazyHTM: Eager-lazy hardware transactional memory. In Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 145–155,

2009. 20, 27

202

References References

[156] S. Tomi’c, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris, and

M. Valero. EazyHTM: Eager-lazy hardware transactional memory. In Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 145–155,

2009. 29, 33, 34, 40

[157] UPC Consortium. UPC specifications. Technical Report LBNL-59208, Lawrence Berkeley

National Lab, 2005. 180

[158] C. Von Praun and T. R. Gross. Object race detection. In Proceedings of the 16th ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and applica-

tions, pages 70–82, 2001. 152

[159] David W. Wall. Limits of instruction-level parallelism. In Proceedings of the fourth in-

ternational conference on Architectural support for programming languages and operating

systems, pages 176–188, 1991. 3

[160] C. Walshaw and M. Cross. Dynamic mesh partitioning and load-balancing for paral-

lel computational mechanics codes. Computational Mechanics Using High Performance

Computing, Saxe-Coburg Publications, Stirling, 2002. 99

[161] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-Tabatabai. Code generation

and optimization for transactional memory constructs in an unmanaged language. In

Proceedings of the International Symposium on Code Generation and Optimization, pages

34–48, Washington, DC, USA, 2007. 64, 180

[162] M. Ware, K. Rajamani, M. Floyd, B. Brock, J.C. Rubio, F. Rawson, and J.B. Carter.

Architecting for power management: The IBM POWER7 approach. In Proceedings of

the IEEE International Symposium on High Performance Computer Architecture, 2010.

70, 80, 92, 94, 179

[163] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:

Characterization and methodological considerations. In Proceedings of the 22nd Annual

International Symposium on Computer Architecture, pages 24–36, S. Margherita Ligure,

Italy, 1995. 27, 28, 46

[164] X. Xie and J. Xue. Acculock: Accurate and efficient detection of data races. Code

Generation and Optimization, IEEE/ACM International Symposium on, pages 201–212,

2011. 157

[165] M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li. Parallel data mining for association

rules on shared-memory multi-processors. In Proceedings of the ACM/IEEE Conference

on Supercomputing, page 43, 1996. 35

[166] C. B. Zilles, J. S. Emer, and G. S. Sohi. The use of multithreading for exception handling.

In Proceedings of the 32nd annual ACM/IEEE International Symp. on Microarchitecture,

1999. 70, 87, 95, 121, 183

203

References References

[167] F. Zyulkyarov, A. Cristal, S. Cvijic, E. Ayguade, M. Valero, O. Unsal, and T. Harris.

Wormbench: A configurable workload for evaluating transactional memory systems. In

Proceedings of the 9th Workshop on Memory Performance, pages 61–68, Toronto, ON,

Canada, 2008. 46

[168] F. Zyulkyarov, V. Gajinov, O. Unsal, A. Cristal, E. Ayguad’e, T. Harris, and M. Valero.

Atomic quake: Using transactional memory in an interactive multiplayer game server.

In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 25–34, Raleigh, NC, USA, 2009. 27, 28, 46

[169] F. Zyulkyarov, T. Harris, O. S. Unsal, A. Cristal, and M. Valero. Debugging programs

that use atomic blocks and transactional memory. In Proceedings of the Symposium on

Principles and practice of parallel computing, 2010. 125

204

	I Introduction
	1 Introduction
	1.1 The Difficulty of Parallel Programming
	1.2 Transactional Memory and Challenges
	1.3 Contributions
	1.4 Organization
	1.5 Publications

	2 Transactional Memory
	2.1 TM Programming Model
	2.1.1 Semantics
	2.1.2 Programming

	2.2 Implementation Options
	2.2.1 Eager and Lazy Data Versioning
	2.2.2 Eager and Lazy Conflict Detection
	2.2.3 Software and Hardware
	2.2.4 Commonly Used STMs

	II Comprehensive Evaluation of TM Systems
	3 RMS-TM Benchmark Suite
	3.1 Introduction
	3.2 The Transactification Process
	3.2.1 Pre-Transactification Phase
	3.2.1.1 Static Pre-Transactification
	3.2.1.2 Dynamic Pre-Transactification

	3.2.2 Transactification Phase
	3.2.2.1 STM Implementation
	3.2.2.2 HTM Implementations

	3.3 RMS-TM Overview
	3.4 Evaluation
	3.4.1 Intel STM Results
	3.4.1.1 Transactional Behavior
	3.4.1.2 Performance Analysis

	3.4.2 EazyHTM Results
	3.4.2.1 Transactional Behavior
	3.4.2.2 Performance Analysis

	3.4.3 ScalableTCC Results
	3.4.3.1 Transactional Behavior

	3.4.4 Comparison of RMS-TM and STAMP

	3.5 Related Work
	3.6 Conclusions

	4 Interchangeable Back Ends for STM Compilers
	4.1 Introduction
	4.2 Design and Implementation
	4.2.1 Draft Specification for TM in C++
	4.2.2 Intel ABI Overview
	4.2.3 Design Details

	4.3 Experimental Setup
	4.4 Experimental Results
	4.4.1 Overhead Analysis of Automatic Instrumentation
	4.4.2 Back-end Comparisons

	4.5 Related Work
	4.6 Conclusions

	III Design and Implementation of a High Performance STM
	5 STM2: A Parallel STM for High Performance SMT Systems
	5.1 Introduction
	5.2 Motivation
	5.3 STM2 Design and Implementation
	5.3.1 Application/Auxiliary Thread Synchronization
	5.3.2 Writing to a shared memory location
	5.3.3 Reading from a shared memory location

	5.4 Experimental Setup
	5.5 Experimental Results
	5.6 Related Work
	5.7 Conclusion

	6 Enhancing the Performance of Assisted Execution Runtime Systems through Hardware/Software Techniques
	6.1 Introduction
	6.2 Hardware resource partitioning
	6.3 Static Fine-Grained resource partitioning
	6.3.1 Embarrassingly parallel phases
	6.3.2 Load imbalance inside transactions
	6.3.2.1 Overloaded application threads
	6.3.2.2 Overloaded auxiliary threads

	6.4 Adaptive Fine-Grained resource partitioning
	6.5 Experimental results
	6.5.1 Eigenbench
	6.5.2 STAMP applications

	6.6 Related work
	6.7 Conclusions

	IV Correctness Semantics for TM applications
	7 TRADE: Precise Dynamic Race Detection for Scalable Transactional Memory Systems
	7.1 Introduction
	7.2 Background
	7.3 Preliminaries
	7.3.1 Strict Transactional Happens-Before Relation
	7.3.2 Relaxed Transactional Happens-Before Relation

	7.4 Transactional Race Detection Algorithms
	7.4.1 s-TRADE Race Detection Algorithm
	7.4.2 TRADE Race Detection Algorithm
	7.4.3 Extensions

	7.5 Design and Implementation
	7.5.1 Binary instrumentation Framework
	7.5.2 TRADE Instrumentation State and Code

	7.6 Evaluation
	7.7 Related Work
	7.8 Conclusions

	8 T-Rex: A Dynamic Race Detection Tool for C/C++ Transactional Memory Applications
	8.1 Introduction
	8.2 Motivation
	8.3 Preliminaries
	8.4 Design and Implementation
	8.4.1 Threads Data Access Table
	8.4.2 Non-Transactional Memory Accesses
	8.4.3 Transactional Memory Accesses
	8.4.4 T-Rex Race Detection

	8.5 Experimental results
	8.5.1 T-Rex Race Detection Coverage
	8.5.2 Overhead analysis

	8.6 Conclusions

	V Conclusions
	9 Conclusions
	A TRADE correctness proofs

