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Abstract— Barrier is a very common synchronization method
used in parallel programming. Barriers are used typically to
enforce a partial thread execution order, since there may be
dependences between code sections before and after the barrier.
This work proposes TMbarrier, a new design of a barrier
intended to be used in transactional applications. TMbarrier
allows threads to continue executing speculatively after the bar-
rier assuming that there are not dependences with safe threads
that have not yet reached the barrier. Our design leverages
transactional memory (TM) (specifically, the implementation
offered by the IBM POWER8 processor) to hold the speculative
updates and to detect possible conflicts between speculative and
safe threads. Despite the limitations of the best-effort hardware
TM implementation present in current processors, experiments
show a reduction in wasted time due to synchronization compared
to standard barriers.

Keywords - Hardware Transactional Memory; Specula-

tion; IBM POWER8; Parallel Computing

I. INTRODUCTION

Modern multicore processors include several cores sharing

the physical memory. Exploiting these resources may not be

a trivial task, since the programmer have to deal with chal-

lenges associated with parallel programming. These difficulties

usually derive from data dependencies arising when several

threads need to access to the shared memory. The coordination

between cooperating threads is typically carried out with

synchronization primitives, such as mutexes or barriers, that

prevent threads from reaching sections of the code until certain

conditions are met. It is well known that these approaches are

pessimistic as they may block the execution of one or more

threads until they can continue its execution safely.

Every time a thread blocks due to synchronization it stops

making useful work for the application. A goal of program-

mers must be maximizing the exploitation of the available

hardware by keeping a high degree of concurrency while

preserving correctness.

As multicore processors have become mainstream, efforts

have been made to make parallel programming easier to

use. Transactional Memory (TM) [1], [2] is one of the

proposals oriented to simplify multithreaded programming. It

was proposed as an alternative to lock-based mechanisms to

coordinate concurrent threads. TM introduces the concept of

transaction, a section of code that runs assuring atomicity

and isolation with respect to other transactions that may be

executing concurrently. TM has been an active research topic

for the last two decades. Recently major processor manufac-

turers have included hardware best-effort solutions in their

architectures [3], [4]. Apart from hardware designs (HTM),

many software approaches (STM) have been also proposed [2].

TM can be leveraged to support thread-level speculation

(TLS), which is especially interesting in the parallelization of

legacy code [5], [6], [7], [8]. Speculation allows to optimisti-

cally execute sections of code in parallel by deferring memory

updates until all the threads have executed the section without

data conflicts. When a conflict is detected, the conflict manager

must act accordingly to preserve correctness (for instance,

discarding all the speculative work and re-executing the section

sequentially). The TM conflict detection and version manage-

ment methods can be used to support speculation. Usually, this

involves enforcing a total order among transactions to preserve

correctness in case of a conflict.

The TM paradigm does not necessarily assume any specific

transaction execution order as it has been devised as a sub-

stitute for locks. Nevertheless several TM proposals introduce

a total ordering [9], [10], [11]. In this case, each transaction

is launched with an unique, increasing order identifier. When

a transaction finishes its execution, it has to wait until every

previous transaction has committed before it can release its

changes to shared memory. This enforces a serialization of

the transactional commit phase, that may hinder performance.

Many applications need only to enforce an ordering between

certain phases of an algorithm. In these scenarios, barriers are

often used to synchronize these different phases [12]. As this is

a common abstraction, environments for parallel programming

usually include support for barriers. Since TM is intended to be

used in conjunction with parallel libraries, it does not include

specifically a definition for barriers.

In this work, TMbarrier is proposed, a transactional barrier

intended to be used in transactional codes. The idea behind

TMbarrier is to allow a thread to continue speculatively

its execution after a barrier without waiting for the rest of

the threads. This proposal is aimed at substituting standard

barriers, in order to reduce the time wasted waiting in barriers.

The design of the transactional barrier relies in HTM fea-

tures present in processors like IBM POWER8. We have made

an implementation of TMbarrier using the HTM primitives of

such processor and conducted an experimental evaluation. Our
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results show that TMbarrier can reduce significantly the time

wasted in barriers, improving the performance in the tested

applications despite the current limitations of the HTM. We

also suggest that our approach could profit some extra HTM

features not present in the processor.

In summary, this paper makes the following contributions:

• A new transactional barrier, TMbarrier, that leverages TM

to speculate after a barrier.

• A new primitive, tmbarrier, to be introduced to the

TM API.

• An implementation of TMbarrier using the best-effort

HTM offered by the IBM POWER8 processor.

II. LIMITATIONS OF COMMERCIAL HTM

In the past years, HTM has reached commercial processors.

Intel introduced transactional extensions (TSX) in the Haswell

architecture and IBM added transactional facilities to the

POWER8 processor. Both of them feature a basic support for

TM, including hardware support for conflict detection, store

buffering and an execution rollback mechanism in the case

of a conflict. These designs are categorized as best-effort,

because the system does not guarantee the eventual commit

of a hardware transaction.

Limitations of these HTM systems basically derive from

their implementation based on the cache memory system that

behaves as the speculative storage for transactional data sets.

On the one hand, the cache limited capacity can give rise

to transaction aborts when their data sets are larger than the

available storage (4MB for reads and 22KB for writes in Intel

TSX [6], and 8KB for each set in IBM POWER8). On the

other hand, as conflicts are detected at cache-block level, false

conflicts can arise if different data used within transactions are

mapped to the same cache block (false sharing). As the size

of the cache block is large compared to typical variable sizes

(64 bytes in Intel Haswell and 128 bytes in IBM POWER8),

the impact of these conflicts is often not negligible [8].

Additionally, these HTM implementations are implicit, that

is, when the processor enters in transactional mode, all mem-

ory accesses within the transaction are stored marked as

transactional, taking part of the data set and consequently

susceptible to cause aborts. Also, pure nested transactions are

not supported. Nesting are usually implemented by flattening

the nested transactions into a large outer one. Lastly, the

conflict manager, that determines which transaction wins in

case of conflict [13], is not configurable.

A remarkable feature of the IBM HTM is the ability

to disable the transactional execution within the transaction.

This is called the suspended mode. All memory accesses in

suspended mode are registered as non-transactional, but can

still induce aborts with any transaction, including the one in

suspended mode. Although this feature is mainly intended for

debugging, a careful use of it can provide a communication

mechanism between transactions without the risk of aborts. As

this feature will be used as a basis for TMbarrier design, our

focus is set hereinafter on the IBM POWER8.

Algorithm 1 Transaction start in best-effort HTM

1 function TM BEGIN( )
2 while True do
3 while ISLOCKED(fallbackLock) do ⊲ Avoid lemming effect
4 end while
5 tx.status← HTMSTART ⊲ HTM xact. call
6 if tx.status == SUCCESS then ⊲ Hardware path
7 tx.mode← HW
8 if ISLOCKED(fallbackLock) then ⊲ Add fallbackLock to rset
9 HTMABORT ⊲ HTM abort call

10 end if
11 BREAK

12 else ⊲ Abort treatment
13 tx.retries = tx.retries− 1
14 if tx.retries == 0 then ⊲ Software path
15 LOCK(fallbackLock)
16 tx.mode← SW
17 BREAK

18 end if
19 end if
20 end while
21 end function

A. Best-effort HTM

Best-effort HTM transactions are not guaranteed to com-

mit [3]. There are several events that may trigger the abort of

a transaction, and some of them always will preclude a hard-

ware transaction to finalize. For this reason, best-effort HTM

requires a software fallback path provided by the programmer.

Typically, this is solved by using a global lock, as shown

in algorithms 1 and 2. To start a transaction, the HTM start

procedure (HtmStart) is called, which returns whether the

transaction was initiated or not. If successful, the transaction

needs to be subscribed to the global lock fallbackLock

by reading it, thus adding it to its read set. If the transaction

cannot start (or it was aborted), it continues through the

else path in line 12, where the counter tx.retries is

decremented. If this counter reaches zero, the system assumes

that the transaction cannot continue in hardware mode, so it

tries to lock fallbackLock and switches to an irrevocable

software path. This action causes all the active hardware

transactions to abort, because the lock was previously read

in line 8.

When the transaction ends (algorithm 2), it checks whether

it is in either the hardware or software path. In the case

of being in the hardware path, the HTM ending procedure

(HtmEnd) is invoked, that tries to commit changes to memory.

If the transaction is in the software path instead, all the updates

to memory have been done in non-transactional mode, so it

is only needed to release the global lock. In any case, the

tx.retries counter is reset for the transaction.

Line 3 in algorithm 1 is intended to avoid a harmful

scenario, lemming effect [14], [15], that happens when the

software path causes all the other transactions to abort and

exhaust their retries, resulting in a cascade of switches to the

software path.

III. TRANSACTIONAL BARRIERS

Consider the general linear recurrence equation extracted

from the Livermore Loops [16] in algorithm 3. The inner

loop can be parallelized as shown in algorithm 4 [17]. In



Algorithm 2 Transaction end in best-effort HTM

1 function TM END( )
2 if tx.mode == HW then
3 HTMEND ⊲ HTM commit call
4 else
5 UNLOCK(fallbackLock)
6 end if
7 tx.retries← MAXRETRIES ⊲ Restore retries
8 end function

Algorithm 3 Livermore Loop 6: General linear recurrence

1 for i = 1 to N do
2 for k = 0 to i do
3 w[i] = w[i] + b[k][i] ∗ w[(i− k)− 1]
4 end for
5 end for

Algorithm 4 Livermore Loop 6: Parallel version

1 for t = 0 to N - 2 do
2 for k = tid*chunk to (tid+1)*chunk do
3 if k < (N − t) then
4 w[t+ k + 1] = w[t+ k + 1] + b[k][t+ k + 1] ∗ w[t]
5 end if
6 end for

BARRIER

7 end for

this parallel version, the inner loop distributes the workload

by blocks, and the exploitable parallelism decreases in each

iteration of the outer loop. A barrier is mandatory before

each iteration of the outer loop, as the threads have to access

to updated values in w. The barrier synchronizations can

have a considerable impact in the performance due to time

spent in them and the conservative assumptions made by the

compiler [18].

TM can be leveraged to avoid such barriers by enclosing

iterations in transactions and by establishing a total order of

precedence among them based on the original sequential code.

This approach have been used to enable TLS with TM [6].

The rationale behind this is that threads could execute the

majority of the work in parallel and only transaction commits

are serialized. However, in practice this serialization may result

in a high overhead.

With the aim of mitigating such an overhead, the total order

could be relaxed to a partial order in those parallel codes where

dependences are solved with a barrier synchronization. Taking

again the example of algorithm 4, if the inner loop body

is enclosed in a transaction, transactions executed between

the same barrier calls can be committed in any order. In

this way, we can define a partial ordering that enforces

that all transactions before the barrier call are required to

commit before any other transaction after the barrier can try to

confirm its changes to global memory. This partial order keeps

the sequential equivalence of the code, while enabling more

opportunities for parallel exploitation, since all the transactions

before the barrier could commit without being serialized.

Our proposal is to introduce a new primitive, hereinafter

tmbarrier, that provides some information to a given

TM system in order to enable a dynamic partial ordering

at runtime. When a thread reaches tmbarrier, the thread

switches to a speculative mode by opening a new transaction

upon the tmbarrier call. Since this moment, all updates

carried out by the thread are buffered by the TM system

until either a conflict is detected (a) or all the remaining

threads have reached the tmbarrier (b). In case (a), the

transaction rolls back to the barrier point (i.e., it is aborted),

discarding any speculative work. In case (b), the transaction

is allowed to commit, and the thread will switch again to a

non-speculative mode, thus updating the speculative data in

memory. In our proposal, the speculation window only can be

extended between two tmbarrier calls (i.e., if a speculative

thread enters tmbarrier, it will be blocked until becomes

non-speculative or aborts).

A. Ordering

To enable the partial ordering in TMbarrier, each thread

holds an epoch number in its metadata (tx.order). A global

variable (glOrder) synchronizes the real epoch. Epochs are

initialized to 1 at the beginning of the application, and they

are incremented as follows: tx.order is updated when the

corresponding non-speculative thread reaches a tmbarrier;

glOrder is updated when the last non-speculative thread

exits a tmbarrier. A transaction can only commit when

its tx.order matches glOrder.

These epochs allow the system to identify transactions

executing before and after a barrier in each thread. Hereinafter,

we refer to speculative transactions as those started after the

barrier. Since local epoch in speculative transactions do not

match glOrder, they are not allowed to commit until all the

threads before the barrier have reached it, so that glOrder

has been updated.

B. Nested transactions

The scheme outlined so far considers only a single specula-

tive transaction per thread, because no transaction is allowed

to commit until glOrder is updated to match speculative

epochs. To improve the speculative execution efficiency, a

maximum of specMax transactions per thread are allowed

to execute after a tmbarrier by leveraging nested trans-

actions [19]. The TM system will open an outer transaction

after the tmbarrier, so subsequent transactions are started

as inner nested ones up to a maximum of specMax. Note

that this outer transaction is instrumental while nested ones are

those already present in the code. By doing so, the condition

of a single speculative transaction after the tmbarrier is

kept, but this outer transaction can enclose several inner ones,

allowing to increase the degree of speculation.

C. Using TMbarrier

Figure 1 illustrates how TMbarrier work. Consider three

concurrent threads executing a code with glOrder n. Thread

1 executes a transaction with tx.order n and reaches a

tmbarrier call. Instead of blocking, it increments its local

epoch and opens a outer transaction (depicted in red) after

exiting the barrier. It continues the execution and starts new

(inner) speculative transactions with tx.order n + 1. The
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Fig. 1. Using TMbarrier. Colored rectangles represent transactions, blank
bars represent barriers. Red hexagons are outer transactions enclosing several
inner transactions. Each n inside a trasaction is its local epoch (tx.order),
while bottom n represents the global epoch (glOrder).

TABLE I
THREAD STATES FOR TMBARRIER

non-xact hw-xact sw-xact spec spec-xact

non-xact - start max. retries tmbarrier -
hw-xact cmt, abort - - - -
sw-xact commit - - - -
spec spec. commit - - - start
spec-xact - - - commit -

same occurs with thread 3. Thread 2 is the last one in reaching

the tmbarrier, so it updates glOrder to n+1 and it does

not switch to speculative mode, since its local epoch matches

glOrder. After that, when thread 1 finishes its second

transaction after the barrier, it checks that its local epoch also

matches glOrder and commits the outer transaction, thus

releasing its speculative data to the global memory.

The same is done by thread 3. Thread 1 encounters a

tmbarrier again, but this time its speculative transaction

detects a conflict with a non-speculative transaction in thread

2, so it aborts both the inner and outer transaction, discarding

all speculative work and returning its execution just after

exiting the second tmbarrier. As thread 3 has not reached

tmbarrier yet, thread 1 reopens the outer transaction and

re-executes speculatively. This time, after committing an inner

transaction, thread 1 can switch again to non-speculative mode,

since all threads have reached the second tmbarrier. The

same occurs to thread 2, that speculates two inner transactions

before switching again to non-speculative mode.

IV. TMBARRIER DESIGN

When designing TMbarrier, one of the goals was to test

the possibilities provided by state-of-the-art commercial HTM

implementations. The algorithms 1 and 2 has been used as a

basis to implement the tmbarrier primitive.

A. Thread states

In a best-effort HTM, three exclusive states are considered

for a given thread: (1) non-xact: a thread that is not executing

a transaction, (2) hw-xact: a thread executing a hardware

transaction, and (3) sw-xact: a thread executing a software

fallback path. In our proposal of TMbarrier two more states

are introduced, namely: (4) spec: a thread that is executing

speculative code after a tmbarrier call, but this code is

not originally within a transaction, and (5) spec-xact: a thread

that is executing a hardware speculative transaction after a

tmbarrier call. Table I shows those states and the events

that trigger transitions among them.

A thread always starts execution in non-xact state. When a

transaction starts, the thread changes to hw-xact, and continues

in this state until it aborts or commits, returning then to non-

xact. If a transaction aborts too many times, it transitions

from non-xact state to sw-xact by acquiring the fallback lock

(line 15, algorithm 1). A transaction in this state is irrevocable,

consequently it must end by committing its changes and

returning to non-xact state.

When a thread in non-xact state encounters a tmbarrier

call, speculation begins by opening an outer transaction and

switching to spec state. In this state, the beginning of any

(inner) transaction will change the state to spec-xact. A spec-

ulative transaction is always hardware, that is, it cannot take

the fallback path. Whenever a speculative transaction commits

or aborts, the thread and global epochs are checked in order

to end the speculation as soon as possible. If epochs match

the thread switches from spec to non-xact state by committing

the outer transaction (spec. commit transition).

B. tmbarrier primitive

The tmbarrier primitive uses an internal counter to

keep track of the number of threads that have executed the

primitive. Its initial value is the number of threads involved

and it is decremented atomically each time a thread enters

tmbarrier. When the last thread enters tmbarrier, the

global epoch glOrder is atomically incremented, allowing

speculative threads to commit its changes. Otherwise the

thread switches its mode to spec according to table I and opens

a outer transaction. Finally, if a thread enters tmbarrier

in spec state, it is halted in TM suspended mode until it

eventually commits (when its epoch matches glOrder) or

aborts due to a conflict.

C. Starting transactions

Transaction start is similar to algorithm 1. However, in the

case of an abort (lines 12-19), if the thread is speculative it

is prevented to switch to sw-xact state. Instead, it decrements

specMax and restarts the tx.retries counter. This pre-

serves the correctness of the code, as no transaction in spec

state commits until all threads executing before the barrier

have ended. The reason for decrementing specMax is to

lessen the risk of abort, as the number of inner transactions

after tmbarrier is reduced. After updating both counters,

the thread determines if it can switch to the non-spec mode

by checking if glOrder matches tx.order (see table I).

D. Committing transactions

Transaction commit is based on algorithm 2, but now it is

checked if the transaction is in spec state when it reaches the

commit phase. If this is the case, transaction enters in the TM



suspended mode to check if glOrder matches tx.order.

All transactional accesses to glOrder must be done in the

TM suspended mode to prevent that all speculative threads

abort when glOrder is updated.

If epochs match, transaction performs a double commit, one

to exit the inner transaction, and another one to exit the outer

transaction and to switch to non-spec state. If epochs do not

match, the thread performs a single commit to exit the inner

transaction, and a thread-local counter is incremented until

reaching specMax. If speculation can continue, no further

action is needed: the next call to transaction start will open

another inner transaction. If specMax is reached, the thread

will be halted in the TM suspended mode until its epoch

matches glOrder and can commit its changes (or abort due

to a conflict).

E. Dealing with POWER8 HTM limitations

Some specific features of the best-effort HTM implemen-

tation in POWER8 should be taken into account so as to

implement the TMbarrier efficiently.

First, the HTM is implicit and it detects conflicts with cache

block granularity, so it is necessary to map glOrder and

the fallback lock into two separate cache blocks. The fallback

lock variable is always included in the read set of every

transaction. Nevertheless glOrder must not be registered in

any transactional set, as the increment of glOrder would

make any active transactions abort. While transactions in

hw-xact state could eventually commit, all speculative work

after tmbarrier would be lost as transactions in spec-xact

state cannot commit until glOrder is updated.

Also, all thread-local metadata have to be aligned to a

separate cache block. Additionally they should be packed in

an single cache block to avoid false sharing. Altogether, our

implementation uses a single cache block (128 Bytes) per

thread to store transaction metadata, and two additional blocks

to store global metadata.

The TM suspended mode have to be handled with special

care, because it may lead to non-intuitive effects [13]. For

example, incrementing a speculative transaction counter within

a hardware transaction in suspended mode can cause an abort

if another metadata located in the same cache block has

been read, because there is a non-transactional access to a

block marked transactional in the thread. A way to tackle

this problem is by forbidding any writes in suspended mode.

Another less restrictive way is by isolating data that is accessed

transactionally from data that is updated in suspended mode

in separate cache blocks. In our proposal, the TM suspended

mode is only used when checking if thread epoch matches

glOrder, so no writes in this mode are made. We also collect

some statistics, but only outside a transaction (e.g., causes of

aborts and commit paths after a successful commit).

Nested transactions in POWER8 HTM are handled by

flattening inner transactions into the corresponding outer one.

This feature has two disadvantages compared to other more ad-

vanced techniques [19]. First, a conflict in an inner transaction

triggers the abort of all the transactions enclosed by the same

outer transaction. Second, memory accesses performed by any

inner transaction are accumulated in the same data set, which

is shared by all the inner transactions, increasing the abort

probability. To address this limitation the maximum number

of speculative transactions inside an outer transaction is tuned

dynamically. Besides, if a speculative transaction aborts due to

exceeding the maximum data set supported by the hardware,

specMax is immediately decremented to reduce the footprint

of the outer transaction.

TMbarrier design should prevent a conflict involving a

speculative transaction from causing a loss of non-speculative

work. This requires a custom TM conflict manager with

an abort-speculative policy ensuring that any conflict be-

tween speculative and non-speculative transactions is solved

by aborting the speculative transaction. Unfortunately, as

POWER8 HTM conflict manager is hardcoded, a transaction

before tmbarrier can abort because of a conflict with a

speculative transaction.

V. EXPERIMENTAL EVALUATION

The performance of the proposed TMbarrier method has

been evaluated using two representative benchmarks. The

first one is a pure barrier microbenchmark from [20] to test

the transactional barriers in the absence of conflicts. This

benchmark consists of a sequence of steps synchronized by

a barrier. In each step only half of the threads do actual

work resulting in load imbalance. The second benchmark is a

general linear recurrence from the Livermore Loops. It exhibits

a high time spent in barriers and a relatively low amount of

enforced dependences [18].

Experiments have been conducted in the system described

in table II. Reported results for each profile correspond to the

fastest of 30 executions in order to rule out system effects

such as thread scheduling. Each thread was mapped onto a

physical core by means of taskset to prevent that several

threads share HTM physical resources which would increase

the abort rate.

Several profiles have been considered in the evaluation:

• P8: it corresponds to POWER8 HTM with a basic scheme

as shown in algorithms 1 and 2. In this profile, the barrier

synchronization has been implemented with standard

OpenMP barriers.

• P8-NoBar: it is a similar scheme to P8 but all barriers

have been removed. Although this profile yields incorrect

results, it can be used as an upper reference for the

achievable performance.

• P8-Ordered: it stands for an ordered HTM version of

the P8 profile where each transaction commit is blocked

until all the previous transactions have committed, as de-

scribed in section I. Barriers have been removed because

synchronization is guaranteed by the total order.

• P8-OrdWTB: it refers to the TMbarrier proposal imple-

mented using the POWER8 HTM. In this profile barriers

have been implemented with a tmbarrier call as

described in section III. All threads in this profile can

speculate up to 8 transactions per thread after a barrier.



A. Barrier microbenchmark

This barrier microbenchmark [20] is intended to illustrate

a best-case scenario for TMbarrier. In the benchmark, com-

putations are organized in steps. In each step several threads

make some work and synchronize themselves with a barrier

at the end of the step. The workload is not balanced among

the threads. Instead, only half of the spawned threads works

in each step. Computations do not involve data dependences.

As the workload scales linearly with the number of threads,

efficiency has been calculated 1, which informs about the

overhead introduced by the synchronization method.

Figure 2 (left) shows the efficiency obtained with default

configuration from [20], as well as in other scenarios with less

work per step. The upper bound set by the idealized profile P8-

NoBar is in the range 90%-100% depending on the workload.

Results show that our proposal, P8-OrdWTB, is able to keep

a good efficiency in all these scenarios, whereas the other two

alternatives are significantly penalized by the synchronization

overhead. Notice that in this benchmark, idle threads can

benefit from TMbarrier as they can continue executing the

next step speculatively, thus exploiting parallelism in presence

of imbalanced loads.

To analyze how well TMbarrier leverages speculation, fig-

ure 2 (right) breaks down the different commit paths followed

by transactions in P8-OrdWTB. As relative breakdowns were

not sensitive to workload only the default configuration is

shown. Four different paths are distinguished: (1) Non Spec.

refers to transactions finished before reaching a tmbarrier

call (hw-xact state); (2) Spec. Normal refers to speculative

transactions (after the barrier) that have executed at least one

inner transaction and have performed a double commit (inner

plus outer) to exit speculation; (3) Spec. Barrier refers to

transactions that have reached the barrier in spec state, and

have waited for the rest of transactions running before the

barrier; and (4) Spec. Max. refers to speculative transactions

that have reached the limit of speculation.

Path (1) is determined by the transactions committed by the

last thread arriving to each barrier, which has no opportunity

to speculate. This is a lower limit that basically derives from

the algorithm itself and take part of its critical execution path.

In this case the amount remains almost constant with respect

to 1-thread scenario because speculative transactions do not

abort as the benchmark has no data dependences.

Also, there is a large percentage of the transactions that

need to wait in the next barrier (3). This is explained because

each thread only executes a single transaction in each step,

and synchronizes with a barrier immediately afterwards. In our

implementation, threads in spec state block in tmbarrier.

This is also the reason for the absence of commits that

reaches the speculation limit (4). Finally, Spec. Normal (2)

is almost absent with two threads, but grows linearly with the

number of threads, because there are more in-flight speculative

transactions that will fulfill the commit condition when they

have finished.

1efficiency =
throughput(N threads)

N×throughput(sequential)
, for N threads with throughput =

#steps

exec. time

TABLE II
EVALUATION PLATFORM

Parameter Description

Processor IBM POWER8 3.5GHz

Cores 10 physical with SMT 8

Memory 512GB

OS Ubuntu Server 16.04.1 LTS, Kernel 4.4.0-47 ppc64le

Compiler GNU gcc v5.4

All profiles exhibit a very low abort rate regardless of the

number of threads and the workload. This is expected due

to optimistic nature of the microbenchmark, but confirms that

P8-OrdWTB does not introduce extra conflicts.

B. Recurrence

Results for this kernel with different chunk sizes (number

of iterations enclosed by a single transaction) are shown in

figure 3. Chunk sizes have been selected in the range of

interest where the number of transactions are minimized while

maintaining a low abort ratio in order to maximize the speedup

for the P8 profile. The kernel presents a limited amount of

parallelism even when eliminating barrier synchronization.

These results agree with [17], that points out that the maximum

achievable performance with the best software barriers is

around 2x in a 16-core processor. We have measured an upper

limit of about 3x by eliminating all barriers (P8-NoBar). In

profile P8-Ord the penalty introduced by total order limits

the speedup to 1.4x in the best scenario. Also, the overhead

in this implementation grows rapidly with the number of

threads. Profile P8 that uses standard barriers reaches about

1.5x speedup with 8 threads and the best chunk configuration.

Results are not much better than P8-Ord due to the synchro-

nization overhead and the performance is very dependent on

the chunk size.

P8-OrdWTB increases this speedup up to 2x but most impor-

tantly, it consistently outperforms P8 with standard barriers in

non-optimal chunk configurations. This is explained because

the adaptative speculation of TMbarrier permits to execute

more transactions with smaller chunks, and also to reduce the

time in the barriers with larger chunks. The upper limit given

by P8-NoBar is about 3x with 10 threads, which shows the

limited amount of exploitable parallelism found in this code.

Reasons for this behavior is the memory-bound nature of this

benchmark, and the reduction of the amount of operations in

the inner loop with successive iterations of the outer loop.

Regarding aborts, the Transaction Commit Rate (TCR) [21]

is shown in figure 3 (down). This metric is the ratio between

the number of committed transactions and the total number of

started transactions. A maximum value of 1 indicates that all

transactions committed without aborting.

Profile P8 keeps aborts near zero because transactions in the

inner loop do not have true data dependences (conflicts may

be caused only by memory location aliases). Barriers prevent

conflicts due to true dependences. P8-NoBar also has a very

low number of aborts because none of the transactions have to

wait due to synchronization, and the resulting data reference
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Fig. 2. Microbenchark: efficiency over sequential execution (left) and commit paths (right)
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Fig. 3. Recurrence: speedup over sequential execution (top) and TCR (bottom)

pattern exhibits a very low conflict probability even in the

absence of barriers.

The profile P8-OrdWTB has a lower TCR, that decreases

when using more threads and with larger chunk sizes. Those

aborts are mainly due to conflicts caused by those enforced

dependences between transactions before and after the bar-

rier [17]. In fact, allowing speculative execution beyond a

barrier leads to new memory access patterns, that may pro-

duce new conflicts. This enforces us to adjust the degree of

speculation when the number of aborts is too high.

In cases with lower TCR, a noticeable percentage of the

aborts are caused by conflicts with non-transactional code.

This is due to the fallback lock acquisition when a transaction

running before the barrier has aborted too many times. When a

transaction acquires this lock, all the active transactions abort.

For larger chunks of iterations (enclosed by a single trans-

action), aborts due to cache capacity may also occur, as

nested transactions are supported via flattening, increasing the

probability of exceeding the maximum transactional set size.

In this benchmark, the ratio of successfully committed

speculative transactions with respect to the total number of

transactions is about 2%, with variations due to the number of

threads, size of the transaction and frequency of tmbarrier

calls. Note that although this is not a high rate, a single

speculative commit is enclosing up to eight inner transactions.

VI. RELATED WORK

Leveraging TM to exploit optimistic parallelism using

Thread-Level Speculation (TLS) or Speculative Multithreading

(SpMT) is not a new topic [22], [6], [23], as TM support for

conflict detection and update buffering is very convenient to

TLS designs. An analysis of the usage of HTM for TLS, using

Intel TSX, is presented in [6]. Based on results over some

programs of SPEC CPU2006, the authors conclude that the

main cause of performance loss are transaction aborts due to

memory conflicts, and suggest future improvements in HTM

implementations, such as data-forwarding, multi-version cache

and word-level conflict detection. This agrees with [24], which

studies the exploitable speculative parallelism in SPEC2006

finding interesting parallelization opportunities using TLS.

Applying TLS strategies to already parallelized codes can

involve to speculate after synchronization directives such as

barriers or locks. In [25] authors propose a hardware design

that enables this kind of speculation using a safe thread

to guarantee forward progress and monitor for conflicting

accesses to preserve correctness.

OpenTM [26], which extends OpenMP with a TM API,

considers a new set of directives meant to express non-

blocking synchronization. OpenTM supports a total order in



transactions and in transactional loops, but does not allow

OpenMP synchronization clauses within transactions as TM

strong isolation could be not guaranteed. The proposal requires

virtualized transactions, that are not bounded by execution

time, memory footprint or other limitations. Nevertheless,

this feature is not supported by current best-effort HTM

implementations.

Focused on barriers, [18] studies the effect of barrier

synchronization and misspeculation past barriers in a set of

parallel programs. The goal is to find TLS opportunities in

codes which feature both considerable time spent in syn-

chronization and infrequent interprocessor dependences. The

authors propose a new solution based on the advanced load

address table (ALAT) present in Itanium processors to detect

misspeculation and to speculate past barriers.

Another approach to speculate in synchronization directives

by combining OpenMP and HTM is proposed in [20]. This

approach is meant to be used with non-transactional code, but

also uses a transaction after a barrier to buffer speculative

updates. Nevertheless it is not intended to leverage escape

actions nor already transactional code. For this reason, a

single post-barrier synchronization point has to be manually

specified, forcing the transaction to abort if it cannot commit

when reaching it. Authors reported a best-case success rate of

around 40% for speculative transactions in the same barrier mi-

crobenchmark analyzed in this paper. The same configuration

yields a nearly perfect success rate in our proposal, as shown

in Figure 3 right, where successful speculative transactions

scale linearly with the number of threads. This work does not

consider some limitations of real HTMs, namely read/write

set sizes and illegal instructions into the speculative transac-

tion. Also, this solution does not exploit nested transactions

nor several speculation levels, as it cannot support multiple

synchronization points.

VII. CONCLUSION

This work proposes TMbarrier, a transactional barrier de-

signed to reduce the wasted time due to barriers by using

speculation. TMbarrier is designed using existing best-effort

HTM implementations present in commodity processors. The

proposal is focused on already transactional codes that make

use of barriers, though it can be extended to non-transactional

applications. It is only necessary to replace standard barriers

with the proposed transactional barrier. The performance of

TMbarrier has been analyzed experimentally using a mi-

crobenchmark and a recurrence kernel from the Livermore

Loops. Both codes exhibit a high amount of time spent

in barrier synchronizations and a low number of enforced

dependences between data before and after the barrier. Results

show that parallel codes using the proposed transactional

barriers outperform the corresponding versions using standard

barriers. Moreover, the proposed implementation can benefit

from future advances in best-effort HTMs, such as larger

transactional read/write sets, word-level conflict detection and

a better transaction nesting support.
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