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Abstract

As a recently consolidated paradigm for optimistic concurrency in modern multicore architectures, Transactional Memory (TM)
can help to the exploitation of parallelism in irregular applications when data dependence information is not available up to run-
time. This paper presents and discusses how to leverage TM to exploit parallelism in an important class of irregular applications,
the class that exhibits irregular reduction patterns. In order to test and compare our techniques with other solutions, they were
implemented in a software TM system called ReduxSTM, that acts as a proof of concept. Basically, ReduxSTM combines two major
ideas: a sequential-equivalent ordering of transaction commits that assures the correct result, and an extension of the underlying
TM privatization mechanism to reduce unnecessary overhead due to reduction memory updates as well as unnecesary aborts and
rollbacks. A comparative study of STM solutions, including ReduxSTM, and other more classical approaches to the parallelization
of reduction operations is presented in terms of time, memory and overhead.
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1. Introduction

The availability of multiple cores sharing a global memory
in modern commodity computers is having a strong influence
in how applications need to be designed so that they can benefit
from all this available computational power. When decompo-
sing a problem into a number of concurrent tasks, the achieva-
ble performance is subject to the right resolution of data and
control dependencies. In general, dependencies are managed in
a conservative way, specially when they are solved at compila-
tion time. Such is the case for applications exhibiting irregular
memory patterns whose dependences could not be known until
execution time. In this context, transactional memory (TM) [1]
can provide an optimistic concurrency support on multicore ar-
chitectures, helping programmers to exploit parallelism in ir-
regular applications when data dependence information is not
easily analyzable or even available before runtime.

TM has emerged as an alternative way to coordinate con-
current threads. TM provides the concept of transaction, a con-
struct that enforces atomicity, consistency and isolation to the
execution of a computation wrapped in the transaction. Tran-
sactions are allowed to run concurrently, but in a way that the
results are the same as if they were executed serially.

In a TM system, transactions are speculatively executed and
their changes are tracked by a data version manager. If two con-
current transactions conflict (write/write, read/write the same
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shared memory location), one of them must abort. After re-
storing its initial state, the aborted transaction retries its exe-
cution. When a transaction finishes its execution, it commits,
making its changes in memory definitive. The design of the
version manager is eager if changes are immediately transla-
ted into memory and a undo-log is used to store the old values
(to be used in case of abort). By contrast, in a lazy version
manager, updates are held in a write-buffer and not written in
memory until commit takes place. In a similar way, the conflict
manager may detect the conflict when it occurs (eager), or may
postpone the conflict check until commit time (lazy). Many TM
systems have been proposed in the last two decades, implemen-
ted either in software (STM), in hardware (HTM) or, hybrid, a
combination of both (HyTM) [2].

Encouraged by TM benefits, efforts have been devoted to
leverage TM for extracting parallelism from sequential appli-
cations. In fact, many basic operations in a TM system, like de-
tecting and solving memory conflicts, buffering of memory up-
dates, and execution rollbacks, are also required by speculative
multithreading (SpMT), or thread-level speculation (TLS) [3].
These techniques have been shown useful for finding paralle-
lism in single-threaded programs.

In general, extracting thread parallelism from a sequen-
tial program requires decomposing the program into tasks and
the correct computation of dependencies between these tasks.
Computing such dependencies statically (at compile time) is
often not possible for many complex applications. In these ca-
ses, SpMT/TLS could be useful to find parallelism, as no static
data dependence analysis is demanded (see for instance, [4]). In
this way, the optimistic concurrency exploited by TM systems
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may help to parallelize irregular applications. Tasks, defined as
code sections out of the sequential program, may be executed
as concurrent transactions so as the TM system is in charge
of tracking memory accesses at runtime in order to detect and
solve conflicts (data dependencies) between transactions. Note,
however, that some ordering constraints amongst transactions
must be fulfilled to avoid violations of data dependencies and
to assure correct results. In general, transactions must commit
in an order that preserves the sequential semantics.

This paper presents and discusses how to leverage TM to
exploit parallelism in an important class of irregular applicati-
ons, the class that exhibits irregular reduction patterns. In order
to test and compare our techniques with other solutions, they
were implemented in a system called ReduxSTM, that acts as
a proof of concept. Basically, ReduxSTM takes advantage of
both, a transaction commit ordering and the TM privatization
mechanism, in order to avoid unnecessary aborts and rollbacks
and reduce overhead due to memory updates.

The rest of the paper discusses irregular reduction patterns
and the most common techniques to extract parallelism from
them. Next, some related work is introduced. Section 5 pre-
sents our proposal to support full and partial irregular reducti-
ons using TM, and the design of the ReduxSTM system. Next
section discusses an experimental evaluation of our proposal
and a comparison with other TM systems available. Finally,
some conclusions are drawn.

2. Reduction patterns in irregular applications

A reduction statement is a pattern of the form O = O ⊕ ξ,
where ⊕ is a commutative and associative operator applied to
the memory object O, and ξ is an expression computed using
objects not depending on O. A reduction or histogram loop is
a computational pattern that includes one or several reduction
statements with the same or different memory objects but with
the same operator for each object. In addition, no references
to those memory objects can occur in other parts of the loop
outside the reduction statements [5].

Reductions are found in the core of many scientific and en-
gineering applications such as sparse matrix computations or fi-
nite element solvers, and they are frequently associated with ir-
regular access patterns. Examples of reduction loops are shown
in Fig. 1, where the reduction operation is the sum which is
applied to scalars or elements of reduction arrays. The irregu-
lar nature of the operation comes from the access through the
indirection arrays, acting as subscripts of the reduction array,
which, in turn, are subscripted by the loop index.

From the data dependence viewpoint, memory accesses in-
side the reduction loop could give rise to loop-carried depen-
dencies. An optimistic situation occurs when the only true de-
pendencies are caused by the reduction statements. In such a
case, the iterations of the loop can be arbitrarily reordered wit-
hout altering the final result, as a consequence of the commu-
tativity and associativity of the reduction operator. Hence the
loop can be executed in parallel in spite of the reduction de-
pendencies. On the other hand, there are situations where the
reduction conditions are not completely fulfilled. Examples of

these situations are when the reduction object is accessed in the
loop outside the reduction statements, when several different
reduction operators are applied to the same reduction object, or
when the loop includes other true cross-iteration dependencies
apart from the reduction statements [6, 7]. In the first two cases,
it is possible that the reduction conditions are fulfilled for some
of the memory accesses to the reduction object, but not for all
of them. This situation is referred to as partial reduction (see an
example in Fig. 2).

As a common problem, a not small number of solutions to
the parallelization of reductions can be found in the literature,
each one focused on improving specific aspects of the parallel
programming (performance, memory requirements, complex-
ity, etc). We distinguish three major approaches to parallelizing
reduction loops: (a) methods that guarantee the mutual exclu-
sion between accesses to the reduction array [8], (b) methods
that accumulate in a private storage during the original loop
execution and update the reduction array with the partial accu-
mulations of each thread in a final stage [9, 10, 11], and (c)
methods that split the reduction array by using an inspection
phase that is in charge of determining the computation assigned
to each thread [12, 13]. The third group drops out of the scope
of this work due to its low programmability, as they require a
substantial effort and knowledge about the application.

Mutual exclusion. One obvious way of avoiding race conditi-
ons is transforming the original sequential loop into a DOALL,
and to assure that only a single thread accesses to the shared
data each time by enclosing such data accesses in a critical
section. Drawbacks of this technique are the degree of seria-
lization and the cost of synchronization in typical multi core
processors. The degree of serialization is basically determined
by the number of conflicting iterations and by the particular im-
plementation.

The serialization issues in critical sections can be improved
by using fine-grained locks. Basically, this method associates
one lock with every element in the reduction array. In this way,
two concurrent threads will be able to simultaneously access
to different elements, but not the same one. Although it is an
efficient approach, supporting such a large number of locks can
result in high memory requirements depending on the size of
the reduction array.

Also atomic operations can be used to guarantee the mu-
tual exclusion between reduction operations. These operations
block the memory bus until operations are completed, avoiding
other processes to access shared data simultaneously. The use
of atomic operations is usually a more efficient approach and
exhibits a negligible memory consumption, however, its availa-
bility is strongly dependent on the hardware architecture. For
example, most of the commodity multiprocessors do not in-
clude floating point support for atomic operations, which are
the basis of a high proportion of scientific applications. Further-
more, they present other limitations like the inability to group
several operations in a single atomic block.

Task-based models, which can be suitable to tackle the pa-
rallelization of reduction loops, can be also included in this
group. For example, using task supporting dependencies (like
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Read subscript arrays:
edge(1,*), edge(2,*)

do itime=1,nTimes
do i=1,nEdges
n1 = edge(1,i)
n2 = edge(2,i)

Compute ζ1, ζ2, ζ3

vel(1,n1)=vel(1,n1)+ζ1
vel(2,n1)=vel(2,n1)+ζ2
vel(3,n1)=vel(3,n1)+ζ3

vel(1,n2)=vel(1,n2)-ζ1
vel(2,n2)=vel(2,n2)-ζ2
vel(3,n2)=vel(3,n2)-ζ3

enddo
.....

enddo

Compute subscript arrays:
m(*),
mbeg(*),
mend(*)

do irow=1, nRows
do i=1,jdt+1
im =m(i)
imb=mbeg(i)
ime=mend(i)
do is=imb,ime,2
Compute ζ1, ζ2...
do ilev=1,2*jdlev
f1(ilev,im)=f1(ilev,im)+ζ1
f2(ilev,im)=f2(ilev,im)+ζ2
.....
enddo

enddo
.....

enddo

do ihop=1, nHops
Update subscripts: B1(*),B2(*)
do itime=1,nTimes
do ih=1,nParticles
i=B1(ih)
j=B2(ih)
Compute r(i,j), ζ(i,j), η(i,j), θ(i, j)

if (r .lt. CutOff) then
AX(i)=AX(i) + ζ
AX(j)=AX(j) - ζ
AY(i)=AY(i) + ζ
AY(j)=AY(j) - ζ
U = U + η
P = P + θ
endif

enddo
.....

enddo
enddo

(a) (b) (c)

Figure 1: Outline of some reduction kernels of interest: (a) Unstructured, (b) Legendre transform, and (c) 2D Molecular dynamics.

OpenMP task depend or [14, 15]) reduction variables can be
expressed as an input-output dependency of the task. In irregu-
lar codes, the main limitation of these approaches derives from
their capacity of expressing complex dependencies with enough
precision, like indirections or subscripted subscripts; or when
these dependencies cannot be known when the task is created
because indirections are computed inside the task.

Privatization. One simple solution to avoid race conditions is
to distribute the iteration space of the loop into threads, each of
which performs its reductions over a local reduction space. A
preamble is necessary in order to initialize the private reduction
space to the identity (neutral) element of the reduction opera-
tor (copy-in). Similarly, a final reduction phase must accumu-
late all private reduction values into the (global) reduction array
(copy-out).

Two representative approaches are Replicated Buffer and
Array Expansion. While the first one proposes a local copy
of the reduction array per thread, in the Array Expansion met-
hod, the reduction array is extended by adding a new dimention
for the number of concurrent threads. In this way, the copy-out
phase can be fully parallelized.

The privatization technique is quite direct to implement
with no additional work during the loop execution, and works
very well if the access pattern is dense (most of the elements in
the reduction array are written during the execution). If access
pattern is sparse, then many elements may stay unmodified and
too much time can be wasted by reducing with the neutral ele-
ment. Furthermore, its work increases linearly with the number
of threads. However, the main drawback of privatization-based
techniques is the memory requirements because the reduction
memory space is multiplied by the number of threads.

3. TM approach to reduction patterns

When considering the parallelization of a full reduction
loop, a TM straightforward approach is to replace critical secti-
ons by TM sections as shown in Fig. 3. It is a simple solution
from the viewpoint of programmability, and potential conflicts

for (i=0; i<N; i++){
A[K[i]] = ...;
... = A[L[i]];
A[R[i]] = A[R[i]] ⊕ ξ;

}

Figure 2: Example of loop with a partial reduction area. Indirect subscripts, K,
L and R, constrain the accesses to array A as shown on the right. Observe that
areas A[K[:]] and A[L[:]] do not overlap.

for (i=0; i<NInd; i++){
Compute ξ1, ξ2
#pragma omp critical{
...
A[idx1[i]] =

A[idx1[i]] ⊕ ξ1
A[idx2[i]] =

A[idx2[i]] ⊕ ξ2
...

}
}

for (i=0; i<NInd; i++){
Compute ξ1, ξ2
BEGIN_XACT()

...
TM_WRITE(A[idx1[i]]],

TM_READ(A[idx1[i]] ⊕ ξ1))
TM_WRITE(A[idx2[i]]],

TM_READ(A[idx2[i]] ⊕ ξ1))
...

END_XACT()
}

(a) (b)

Figure 3: TM straightforward approach (b) as replacement of critical section
(a).

resulting from indirect accesses are managed by the TM sy-
stem. In case of low contention scenarios, TM will keep a good
concurrency level in contrast to the serialization derived from
the used of critical sections (mutex/spin locks, atomics, etc.).

If certain transaction order is introduced in a TM system, in
such a way that commits take place as in the sequential code,
then it can be used as a support for TLS. This is specially in-
teresting when classical techniques are not suitable because the
reduction condition is not fully satisfied.

One example of this situation is shown in Fig.2, where a
loop contains a reduction sentence that may conflict with ot-
her reads and writes. Nevertheless there may be a subset of
iterations fulfilling the reduction condition if the subscripts are
subject to the pattern shown in the figure [6]. Fig. 4 sketches
another example where some reads and writes through pointers
can be aliases of the reduction variables. This fact prevents the
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for (termptr = ... ; termptr = termptr->nextterm) {
...
for (netptr = ... ; netptr=netptr->nterm) {

...
*costptr += ...; // Reduction sentence

}
...
rowsptr = tmp_rows[net] ;
for (row = 0 ; rowsptr[row] == 0 ; row++ ){

...
}
...
tmp_num_feeds[net] = f ;
...
tmp_missing_rows[net] = -m ;
...
delta_vert_cost += ( ... ); // Reduction sentence

}

Figure 4: Sketch of a loop from the procedure new dbox a() found in the code
300.twolf (benchmark SPEC CPU2000). Here pointer aliases make unable to
know statically if it is a full reduction loop, although reduction sentences are
included.

loop from being recognized statically as a reduction loop [7].
These patterns are known as partial reductions which have

been addressed in the literature by means of speculative appro-
aches, as detailed in the next section.

4. Related work

The idea of leveraging reductions in speculative paralleli-
zation of loops is not new. In [16], LRPD is proposed, fea-
turing a run-time data dependence test that is launched joined
with a speculative do-all parallel execution of a loop. If the test
fails, the loop execution is discarded and must be re-executed
serially. This test can detect and privatize reduction statements
avoiding the need of serialization. Privateer [5] extends LRPD
idea handling dynamic and recursive data structures with an in-
spector/executor scheme. Another TLS approach for reduction
patterns is presented in [7] focused on partial reduction varia-
bles (PRV). By means of a PRV detection algorithm, specula-
tive tasks are created, which are executed in parallel. Threads
stall when a reduction variable is accessed by a non reduction
operation. Conflicts between reductions are not causing stalls
as they operate on private replicas that must be committed even-
tually. Specific architectural support is needed.

A solution to exploit reduction properties in an STM system
is proposed in [17, 18]. This work is restricted to histogram
loops in which iterations can be safely reordered, as the only al-
lowed dependences come from reduction variables. This propo-
sal disables the conflict detection for reduction memory opera-
tions, leverages privatization to accumulate locally to each tran-
saction partial reduction updates, and adapts the commit phase
to accumulate partial reduction updates to global memory.

Other more general TM-based solutions that support spe-
culative execution that can be applied to irregular reductions
are proposed in [19, 20, 21]. IPOT [19] features a program-
ming model aimed to parallelize sequential code. A master
thread spawns chunks of instructions in parallel using TM-like
structures with additional annotations that enable the relaxation
of consistency constraints. IPOT requires additional compiler
and architectural support for speculative execution, ordering

and conflict detection. Similarly, ALTER [20] proposes anot-
her TM-style TLS scheme. Variables can be annotated in order
to use a more permissive consistency checking like out-of-order
(TLS with no ordering) or stale read (ignoring read dependen-
ces). A variable can be declared as reduction according to a
reduction operator. ALTER uses a fork-join scheme for the an-
notated loops, executing chunks of iterations in TM-like struc-
tures and validating results at the end of the chunks. Finally,
an automatic parallelization technique using ordered hardware
transactions is proposed in [21]. The model relies in hardware
performance counters to detect loops and identify candidate in-
structions to parallelize, and generates parallel code that relies
in TM to detect and resolve any conflict.

More recently an STM approach called RMW (Read-
Modify-Write without aborts [22]) adds specific TM support
for read-modify-write patterns, in which reductions can be in-
cluded. Nevertheless this technique does not guarantee any
transaction ordering and its scalability is limited to few RMW
variables, which excludes large vectors as commonly happen
in reduction loops.

5. ReduxSTM Design

In addition to be a straightforward substitute for critical
sections, TM carries out an underlying selective privatization of
those tracked shared variables. The idea we introduce here is to
harness this underlying privatization as a mechanism to tackle
reduction variables allowing skipping dependencies. The tran-
saction commit phase will be in this case the moment when the
transactional reduction private values are accumulated into the
shared version of the variables in memory. Commutative and
associative properties guarantee that this can be done safely. In
this way the programmer or compiler only needs to recognize
reduction sentences but not whether the whole loop verifies the
condition of reduction. Besides, with this strategy, full or par-
tial reductions can be treated with the same degree of program-
mability. Reduction sentences that conflict with other memory
accesses to the same position will be treated as transactional
conflicts by aborting if necessary.

Our proposal, ReduxSTM, supports patterns that cannot be
determined statically whether they are full or partial reducti-
ons. Hence, it overcomes the limitations of previous works [17,
18]. ReduxSTM is conceived as a proof of concept to test TM
techniques to support partial reduction patterns. As such, it
could be implemented as an extension of an existing STM sy-
stem, or as a stand-alone system. It does not need to rely on
special compiler or architectural support. A feature compari-
son of ReduxSTM with the other aforementioned approaches is
summarized in Table 1.

5.1. Features
Reduction support. One key feature of ReduxSTM is the

ability to exploit the underlying TM selective privatization me-
chanism for reduction operations. Although not strictly manda-
tory for speculative parallelization, this feature becomes useful
to remove a fraction of accesses to shared memory, hence redu-
cing contention between transactions. Exploiting this implicit
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Table 1: Trade off among parallelization techniques.

Memory
Requirements

Potential
Parallelism

Synch.
Overhead

Merging
Overhead

Privatization very high very high very low yes
Critical Sections very low very low high none
Fine-grained Locks high high high none
Atomic Ops none very high high none
TM straightforward low high/medium low yes
ReduxSTM low very high low yes

privatization allows to eliminate unnecessary transaction con-
flicts, improving concurrency.

For this purpose, a new primitive for memory reduction has
been added to the existing ones. This primitive is handled by the
conflict, version and commit managers as a third basic memory
operation: read (R), write (W) and reduction (Rdx). The seman-
tics associated with Rdx is the combination of two operations: a
read followed by a write on the same memory location of the re-
duced value. In this way, the new primitive Rdx(add, val,⊕) is
functionally equivalent to W(add,R(add) ⊕ val), but it enables
an improved execution.

Ordered transactions. A second important feature that we
demand to ReduxSTM is to keep ordering constraints between
transactions. When decomposing an application in speculative
tasks, the concurrent execution of these tasks must preserve the
sequential semantics to ensure the correctness of the final result.
Besides, although fully-reduction loops may be safely reorde-
red, reduction operations may coexist with other reads or writes
on the same memory locations, invalidating reduction conditi-
ons, thus depending on these ordering constraints to ensure cor-
rect results.

Because of that, ReduxSTM commits transactions in accor-
dance with the sequential execution order. This constraint is
added to the commit manager at the expense of a certain per-
formance cost due to delays in commit phases, and also means
that the memory updates performed by each transaction during
its commit phase are serialized following this order.

Notwithstanding, potential aborts and rollbacks caused by
false dependences can be avoided thanks to this ordering kno-
wledge [3, 18], as shown in Table 2. The first column spe-
cifies two memory operations executed by two different tran-
sactions where the first one must commit before the second one
(in sequential order). For instance, R−W represents an anti-
dependence. The second column corresponds to the behavior
of a standard TM system, while the last column consider addi-
tional support for order and reductions.

Version management. Supporting reduction operations
(that may conflict with reads and writes) together with ordered
commits leads the design to a lazy approach, that is, updates
to memory are held in private buffers during the execution of
the transaction, and they are consolidated into memory during
commit. Two kinds of private buffers, that store disjoint in-
formation, are considered: the write buffer (typically used by
lazy-versioned STMs to store written values) and the reduction
buffer (a new space to store the values partially accumulated
by the transaction). Note that a reduction buffer is required for
each different reduction operator under consideration.

Table 2: Possible transactional conflicts.

Standard
STM

ReduxSTM
(Order + Reductions)

R−W abort no conflict
W−R abort abort
W−W abort no conflict
Rdx−R as R-W-R abort
R−Rdx as R-R-W no conflict
Rdx−W as R-W-W no conflict
W−Rdx as W-R-W no conflict

Rdx−Rdx as R-W-R-W no conflict

Every time a transactional reduction is issued, the write buf-
fer is searched for the memory address. If it is found, the value
specified in the reduction operation is reduced with the value
stored in the buffer. However, this new computed value is kept
in the write buffer because the reduction condition is not ful-
filled. Otherwise, the reduction value is operated with the cor-
responding accumulated value in the reduction buffer (or with
the neutral element in case of the first reduction on this memory
position) in order to update it in the reduction buffer. If a po-
sition stored in the reduction buffer is written later in the same
transaction, it must be withdrawn from the reduction buffer and
inserted in the write buffer because the reduction condition is
broken. Notice that if a transaction performs a transactional
read in a variable previously reduced within the transaction, the
value must be obtained as a combination of the data in memory
with the associated value in the reduction buffer.

Conflict detection. Transactions in ReduxSTM perform
validation (or invalidation) during its commit phase making
conflict detection lazy [23].

Commit management. As only one transaction can be
committing at a time, such transaction is responsible for
checking conflicts and for validating itself or invalidating other
transactions conflicting with it. Ordered finalization guaran-
tees the atomic nature of the commit phase acting as the main
synchronization mechanism.

The commit phase is subject to the particular characteris-
tics of the implementation strategy, which are discussed in sub-
section 5.2. Independently of its implementation the commit
phase must be in charge of: (a) Waiting for the turn (order) to
commit; (b) Checking conflicts and trigger aborts suitably; (c)
Updating main memory consolidating the values stored in the
write and reduction buffers (reduction values need to be accu-
mulated with those in memory).

5.2. Implementation

Two well-known STM algorithms, Commit Time Invalida-
tion and Time-Based Validation, were selected to implement
two versions of ReduxSTM. These algorithms were chosen be-
cause they are suitable to implement straightforwardly the des-
cribed features to support reductions. These two versions were
implemented from scratch.

Commit Time Invalidation (CTI). In this approach the commit-
ting transaction will mark as killed (invalidate) those subse-
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quent transactions that have conflicts with it following a similar
scheme to the one described in [24]. Data conflicts are detected
based on memory addresses. At the beginning of its commit
phase, each transaction must check if it has been marked as
killed (validation). If so, it must abort. If not, it can start conso-
lidating its written and reduced values into memory (only one
transaction can be in this phase). After consolidating values, the
committing transaction proceeds to check its data sets against
other transactions’ data sets, invalidating those transactions ac-
cording to rules in table 2. Three data sets are defined: read,
write and reduction sets. In our implementation, these sets have
been represented by Bloom filters that are accessed through a
hash of the memory addresses.

Time-based validation (TS). In contrast to the previous stra-
tegy, this one uses time stamps to register when read and up-
dates take place [25]. In our implementation these time stamps
are represented by the transaction order number. Conflicts are
detected by validating the data accessed by each transaction in
terms of this information.

Each transaction maintains a private array for its read time
stamp. A global write time stamp structure keeps track of the
time stamp when this position was updated (by any write and
reduction from any transaction). In its commit phase, the tran-
saction validates its reads by comparing its private reads’ time
stamp with global write time stamp. If validation is success-
ful, the transaction consolidates its writes and reductions into
memory, updating the global write time stamp accordingly. To
limit the memory requirements, these structures have a fixed
size and they are accessed by applying a hash function to the
associated memory address.

6. Experimental Evaluation

The goal of this section is to evaluate experimentally how
STM techniques perform in codes dominated by reduction ope-
rations, specially when special reduction support is incorpo-
rated to the STM system, such as the proposed ReduxSTM.
Experiments were conducted on a server with 256 GB RAM
and a 16-core/32-threads Intel Xeon E5-2698 processor at 2.3
GHz. The system runs Linux kernel 3.13 (64 bits) and all pro-
grams were compiled using GNU GCC 4.8.2 (optimization op-
tion -O2).

TinySTM (v.1.0.5) [25] was used as the baseline state-of-
the-art STM system. Both the standard and the ordered versi-
ons of TinySTM have been tested. Note that if the STM system
does not preserve the sequential order, correct results are obtai-
ned only for those codes that can be safely reordered, such as
full reduction loops (e.g. histograms). Nevertheless, in codes
where reduction sentences may conflict with other read or write
operations the order may need to be preserved.

6.1. Experimental Setup
Several representative codes have been used for evaluation.

These codes, briefly described in table 3, spend a significant
execution time in irregular reductions. Fluidanimate, MD2, Un-
structured and Legendre kernels correspond with full reduction

Table 3: Tested benchmarks.

Fluidanimate [26] Part of PARSEC benchmark suite. This application uses
the Smoothed Particle Hydrodynamics (SPH) method for
fluid simulations for interactive real-time animations such
as computer games. Two different configurations were tes-
ted. The simmedium input simulates 100K particles during
5 time frames and native configuration simulates 500K par-
ticles during 500 time frames.

MD2 [27] This application simulates 2D molecular dynamics for very
large systems when those molecules have short-range inte-
ractions. It involves the determination of the forces that
affect each particle. To reduce the complexity of this pro-
blem when the interactions between the particles are short-
scoped, MD2 uses a neighbor list that limits the interacti-
ons.

Unstructured [28] Unstructured solves the Euler equations for physical simu-
lations involving fluid dynamics and material deformati-
ons. Each time step, the application computes the forces
and velocities for each node of a mesh.

Legendre [29] This kernel uses Legendre transforms used in numerical
weather prediction. It uses 3d arrays to represent different
conditions. In each time step, two subroutines are called
to perform inverse an direct transformations, involving ir-
regular reductions due to indirections in the array accesses.

300.twolf [30] This is a place and route simulator code included in the
SPEC 2000 benchmark suite. It contains some interesting
reduction patterns like those in routine new dbox a() in
dimbox.c, where potential conflicts may appear between
reduction and non-reduction variables due to aliases.

Table 4: Benchmarks features and workload.

Benchmark S Acc Loops Rdx-in-loop
Fluidanimate 104M 182M 2 2, 6

MD2 320K 572M 1 6
Unstructured 40K 9M 6 6, 6, 6, 9, 9, 6

Legendre 390K 2M 2 8, 8
300.twolf 43K 30M 1 2

loops, as shown in Fig. 1. Additionally, 300.twolf includes re-
duction patterns combined with other potentially conflicting re-
ads and writes, as sketched in Fig. 4.

Table 4 summarizes some features of the tested workload
for the selected benchmarks. Column labeled S corresponds to
the combined number of elements in all the reduction arrays.
It acts as an indicator of the extra memory requirements. Acc
is the total number of accesses to the reduction arrays. Loop
shows the number of the analyzed reduction loops in the ben-
chmark. Rdx-in-loop is the number of reduction statements in
each of the reduction loops. If a code has more than one re-
duction loop, the sentences in each loop are displayed separated
by commas.

Parallelization techniques have been applied to the re-
duction loops contained in the codes Fluidanimate, MD2, Un-
structured and Legendre and to the loop in function new_dbox_a()
of 300.twolf. These techniques have been:

- Coarse-grained locks (CG Locks), which correspond
with critical sections;

- Fine-grained locks (FG Locks), where we use an indi-
vidual lock variable associated to each element of the
shared reduction array;

- Full privatization of the reduction variables, implemented
via array expansion [10];
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- TinySTM used as reference state-of-the-art STM with the
default configuration;

- TinySTM-ordered, the version of TinySTM with ordered
commits;

- ReduxSTM: both the timestamp-based (ReduxSTM-TS)
and the commit-time-invalidation (ReduxSTM-CTI) stra-
tegies.

For all STM sytems, the parallelization of the reductions
loops has been carried out by decomposing the loops into
chunks of consecutive iterations and assigning a chunk of
iterations to a transaction. Note that for the STM algorithms
analyzed, both ReduxSTM variants and TinySTM-ordered have
ordering constraints while TinySTM has not.

Due to the necessary instrumentation in STM approaches,
the number of iterations enclosed by a single transaction beco-
mes a relevant parameter to be tuned as a trade-off, which is gi-
ven by the chunk size. Larger transactions can reduce the over-
head due to the additional instrumentation, as we need fewer
transactions to complete the loop. However, larger transacti-
ons involve also large datasets which increases the probability
of conflicts, and consequently the number of aborts. On the
other hand, although the cost and probability of abort is lower
for smaller transactions, the total overhead of starting and com-
mitting transactions (e.g., reset of data structures) has a higher
impact for a larger number of small transactions.

For privatization, and both lock-based techniques, loops are
equally partitioned among threads, without grouping iterations
into chunks. Remember that privatization requires an initializa-
tion and a final reduction phase.

Locks has been implemented using POSIX spinlocks. It
should be mentioned that for FGL the number of locks has been
optimized by using a single lock per reduction array subscript
instead per reduction array element. In this way, groups of
reductions sharing the same subscript (e.g., vel(*,n1) in
Fig. 1(a) for Unstructured) has been protectedwith the same
lock. This reduces the number of the required lock variables
and the number of lock/unlock pairs, which translates into a
lower overhead.

6.2. Performance comparison
Next, a comparative of different techniques in terms of

speed-up is provided. The observed speedup is calculated with
respect to the non-instrumented sequential code, using as exe-
cution time the minimum wall-clock time among ten executions
at least.

In experiments, the independent variables are the number
of threads and the transaction size (iterations per chunk) for the
techniques where applicable. In such cases, speedup plots dis-
play the speedup for the transaction size (chunk) exhibiting the
best speedup for a given number of threads. The plots showing
speedup in function of transaction size are referred to experi-
ments with 16 threads.

Fig. 5 shows speedups for Fluidanimate using two datasets
corresponding to meshes of 100K and 500K particles. As ex-
pected, CG Lock does not accelerate at all due to the use of a

Mesh 100K Mesh 500K

0

2

4

6

1 2 4 8 16 1 2 4 8 16
Threads                                              Threads

S
pe

ed
up

CG Locks
FG Locks
Privatization
TinySTM
TinySTM Ord.
ReduxSTM TS
ReduxSTM CTI

Mesh 100K Mesh 500K

2

3

4

5

1 10 100 500 1000 1 10 100 500 1000
Transaction size                                  Transaction size

S
pe

ed
up

 (
16

 th
re

ad
s)

TinySTM
TinySTM Ord.
ReduxSTM TS
ReduxSTM CTI

Figure 5: Fluidanimate: speedup for the best transaction size in each case, and
influence of the transaction size for 16 threads.

single global lock. This method can be suitable for applicati-
ons where the time spent in reduction sentences are negligible
in comparison with the computation time outside the critical
section, which is not the case. Best results are obtained using
FG Locks or privatization because of the low contention asso-
ciated with the problem. Observe that for the largest mesh, pri-
vatization performance stops scaling well with a high number
of threads. This is caused by the large memory requirement of
the technique and the NUMA characteristics of the target ma-
chine architecture. All STM systems exhibit a similar behavior
as long as the abort rate remains very low, so ReduxSTM does
not take advantage of its reduction support. In this scenario,
STM approaches obtain a better speedup and become a good
trade-off between performance and memory requirements. Re-
garding the influence of the transaction size on performance,
the behavior of STMs is very dependent on the input data fea-
tures. In this way, for the smallest mesh, the penalty of large
transactions is more significant than in the case of the largest
mesh, for which smaller transactions involve a high penalty.

MD2 includes both scalar and array reductions in the re-
duction loop as shown in Fig. 1(c). Two different parallelizati-
ons have been carried out (Fig. 6). In the first one, all shared
reduction variables (scalars and vectors) have been treated tran-
sactionally. In the second one, scalar variables have been pri-
vatized, in such a way that the number of reduction statements
on shared objects decreases to 4 (from 6) inside the iteration.
This is a common optimization found in the literature [31] for
this class of codes, that requires further knowledge about the
application. Without scalar privatization, the contention caused
by scalars makes both TinySTM versions worsen their perfor-
mance due to the a high abort rate. In contrast, ReduxSTM
is able to filter conflicts caused by reduction operations. No-
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Figure 6: MD2: speedup for the best transaction size in each case, and influence
of the transaction size for 16 threads.
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Figure 7: Unstructured: speedup for the best transaction size in each case, and
influence of the transaction size for 16 threads.

netheless, the lower size of the reduction arrays allows the pri-
vatization technique to obtain the best results, outperforming
FG Locks.

Fig. 7 shows results for Unstructured. In these experi-
ments the reduction support makes ReduxSTM gain advantage
with respect to TinySTM. TinySTM performance degrades
quickly with large transactions due to conflicts. Nevertheless,
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Figure 8: Legendre: speedup (one iteration per transaction considered).

ReduxSTM can leverage the absence of conflicts to increase
transaction size and obtaining better results. As in previous
experiment, both FG Locks and privatization get the best re-
sults. In addition to the base workload, experiments including
a synthetic extra computational load have been conducted. The
synthetic load is ten times larger than the base one. It is remar-
kable that ReduxSTM is able to reach similar speedups than
privatization when the problem exhibits a high computational
load.

Legendre results are shown in Fig. 8. Different transaction
sizes have been not analyzed due to the small number of ite-
rations in the outermost loop. None of the tested algorithms
achieves good results in this benchmark as the low computatio-
nal workload (memory-bounded code) is making the additional
instrumentation costs much more noticeable.

Fig. 9 shows results obtained with 300.twolf. Experiments
are focused on the routine new_dbox_a(). Experiments were
carried out using the medium-sized workload provided with
300.twolf. This code features a high contended memory access
pattern and also the amount of exploitable parallelism is limi-
ted by its memory-bound nature. Only one and two iterations
per transactions have been considered as performance decrea-
ses quickly for larger transactions. Note that only methods that
guarantee the original sequential order can be tested because
reduction operations coexist with other potentially conflicting
reads and writes. For this reason only ordered STM systems
ensure a correct execution. Although TinySTM does not fulfil
this condition, it has been included for comparison as an opti-
mistic reference. ReduxSTM performs significantly better than
TinySTM for every configuration, as ReduxSTM can deal with
the conflicts related with reduction patterns. Despite the nature
of the benchmark, which makes it difficult to exploit paralle-
lism, ReduxSTM is able to obtain speedup up to a relatively
high number of threads. Nevertheless, for the analyzed wor-
kload, beyond 8 threads conflicts raise the number of aborts
degrading the performance.

6.3. Memory overhead

In this subsection memory overhead of the different techni-
ques is analyzed (extra memory usage over the sequential ver-
sion) and the results are depicted in Fig. 10. An 8-byte size for
both variables and pointers, and 4-byte size for lock structures
(POSIX spinlocks) has been assumed.
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Figure 9: 300-Twolf: speedup for transactions containing one and two itera-
tions. Only ordered STM methods that guarantees correct result are shown;
TinySTM (not ordered) is shown with reference purpose.

As privatization needs to allocate an additional private re-
duction array for each thread, the memory requirements grow
with the number of threads and eventually it becomes the most
memory expensive method. Total memory overhead can be
obtained as S · T , where S is the size of all used reduction
arrays, and T is the number of threads.

Fine-grain locks have a memory overhead comparable to
privatization, as it needs a lock array of size S . However, this
overhead remains the same independently of the number of
threads. We can see how memory costs are slightly better than
1-thread privatization due to the memory costs for lock structu-
res. Coarse-grain lock parallelization needs only a single lock,
so it has the lowest memory requirements.

Regarding STM approaches, as data buffer entries are re-
cycled between transactions the needs of memory depend on
the distinct memory accesses performed within a transaction.
To calculate this occupation, the number of different addresses
acceded by each transaction has been monitored. It has been
assumed that each data buffer entry involves a minimum of two
8-byte elements: the address and its associated value.

In addition to data buffers, TinySTM declares a constant
220 elements 8-byte lock array for handling conflict detection
and an additional 24 bytes per write-buffer entry to hold me-
tadata needed for versioning. Although read-buffer entries in
TinySTM do not need these additional metadata, we have in-
cluded them in the calculations to obtain a conservative upper
bound of the memory requirements. This way, the extra me-
mory can be estimated as 8 · 220 + η (2 + 3) 8 T , where η repre-
sents the maximum distinct memory addresses accessed during
a single transaction in each code, and 8 · (2 + 3) stands for two
8-byte elements per entry to hold address and value and three
8-byte elements for additional metadata.

ReduxSTM-CTI employs two 26 bit (8-byte) per-transac-
tion signatures to perform conflict detection besides the per-
transaction write-buffer and two 28 2-byte arrays for fast-
access to the buffer. Its memory requirements are obtained
as (8 · 2 + 16 η + 2 · 28 · 2) T . ReduxSTM-TS requires a single
per-thread read timestamp and the global update timestamp, ha-
ving both 26 8-byte elements. It also uses the 2-byte arrays for
fast access to write-buffer. The needed memory is calculated
as (26 · 8 + 16 η + 2 · 28 · 2) T + 26 · 8. Note that in highly con-

tended workloads, potential aliases in STMs consequence of
small metadata (false positives) might harm the performance.
In this case, larger signatures (ReduxSTM-CTI) or timestamps
(ReduxSTM-TS), should be configured according to the me-
mory requirements of the problem.

While in section 6.2 we have shown that often privatization
and fine-grain locks obtain the best results in pure performance
terms, its memory requirements may be too high compared with
all analyzed STM systems as shown in Fig. 10. We can con-
clude that STM approaches can be a useful method that allows
to extract significant parallelism with relatively low memory re-
quirements.

7. Conclusions

It is known that many applications that exhibit irregular me-
mory access patterns are very hard to parallelize. In fact, it is
usual that no data dependence information is available. In this
context, the optimistic concurrency support provided by tran-
sactional memory (TM) may be useful to extract parallelism
from such applications. TM can be leveraged to exploit thread
level parallelism. This work has presented ReduxSTM, a soft-
ware TM (STM) with specific support for reduction operations,
a pattern found very frequently in the core of irregular applica-
tions. Commit/version management and conflict detection were
tailored to take advantage of both, transaction sequential orde-
ring to assure correct results and the privatization of reduction
patterns. Both facts were used to avoid unnecessary transaction
rollbacks. In this way, ReduxSTM allows managing reduction
sentences safely without further knowledge about the loop en-
closing them. Compared with classical parallelization of re-
duction loops, experiments showed that STM approaches are a
good trade-off between exploited parallelism and memory over-
head, and their advantages in irregular codes are extended when
support for reductions is added, specially in highly contended
workloads.
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