
ReduxSTM: Optimizing STM designs for Irregular Applications

Manuel Pedrero, Eladio Gutierrez, Sergio Romero, Oscar Plata

Dept. Computer Architecture, University of Malaga, Spain

Abstract

The exploitation of optimistic concurrency in modern multicore architectures via Transactional Memory (TM) is becoming a main-
stream programming paradigm. TM features can be leveraged to provide support for speculative parallel execution of irregular
applications, characterized by a lack of knowledge about data dependences at compile-time. This work is focused on software TM
(STM) solutions and how they can be adapted and optimized to deal efficiently with irregular memory access patterns, mainly those
caused by reduction operations.

With this aim, ReduxSTM is introduced as a specific STM system designed by combining techniques for speculative execution
with TM algorithms. ReduxSTM is based on three main design aspects: a transactional commit order mechanism which is available
to guarantee sequential semantics when needed; a specific transactional memory primitive defined for expressing commutative and
associative operations (reductions) that leverages the underlying TM privatization mechanism to avoid unnecessary transaction
aborts caused by reduction memory patterns; and an enhanced conflict resolution mechanism that takes advantage of the two
previous features.

Keywords: Software transactional memory, Thread level speculation, Irregular applications, Reduction operations

1. Introduction

Modern commodity computers are composed of one or sev-
eral multicore processors sharing a global memory. The ef-
ficient exploitation of these computing resources requires the
programmer to invest a considerable effort in developing par-
allel software. When decomposing a problem into a number
of concurrent tasks, the achievable performance is subject to
the amount and type of data and control dependences between
them. Parallel programs must be carefully designed to allow
concurrent thread execution without data races and minimal
memory contention on shared data. Given this trend, a key
challenge is to make parallel programming technology easier to
use. Transactional Memory (TM) falls in such technology, as
it is intended to simplify multithreaded programming. TM has
emerged as an alternative to traditional lock-based mechanisms
to coordinate concurrent threads [1, 2]. TM provides the con-
cept of transaction to enclose a section of code of a thread, en-
forcing atomicity and isolation during its execution with other
concurrent transactions.

TM has been an active research topic for the last two
decades [3, 2]. Recently TM is receiving support from pro-
cessor manufacturers, as evidenced by the implementation
of hardware best-effort solutions in the most recent architec-
tures [4, 5, 6]. Apart from hardware designs (HTM), a plethora
of software approaches (STM) has been proposed a while ago.

Email addresses: mpedrero@uma.es (Manuel Pedrero),
eladio@uma.es (Eladio Gutierrez), sromero@uma.es (Sergio Romero),
oplata@uma.es (Oscar Plata)

TM algorithms can be more flexible and sophisticated in soft-
ware but at the expense of suffering from performance penal-
ties due to the need for extensive instrumentation to track all
transactional memory accesses and to detect and solve conflicts
without the help of hardware support. TM algorithms are usu-
ally designed for the common case, that is, short transactions
with low contention where the majority of transactional mem-
ory operations are reads.

The usual domain of TM is multithreaded code; that is, code
that it is already parallel. However, as TM exploits oppor-
tunistic concurrency (version management and conflict detec-
tion/resolution) it can be leveraged to provide support for spec-
ulative parallel execution [7, 8] of legacy code. Speculation
permits to execute optimistically sections of code from concur-
rent threads as data updates are buffered and accesses to shared
data are tracked to detect conflicts, acting accordingly in such
cases to preserve correctness. Programmers can parallelize a
sequential application by properly mapping the computations
across a number of threads, executing data-dependent code sec-
tions as transactions. The underlying TM system dynamically
detects data conflicts (dependences) between concurrent trans-
actions and solves them appropriately. In addition, some order-
ing constraints amongst transaction commits must usually be
enforced in order to ensure correct results (preserve sequential
semantics).

Speculation is particularly useful in applications exhibiting
non-uniform or irregular memory access patterns where depen-
dence information is not easily analyzable at compile time and
frequently cannot be solved before runtime. This paper focuses
on the challenge of parallelizing irregular applications using

Preprint submitted to J. Parallel Distrib. Comput. April 25, 2017

the speculative support provided by TM. This application class,
found in many scientific and engineering domains, contains
loops with indirection arrays. This code pattern comes from the
fact that data is usually organized as (static or dynamic) unstruc-
tured grids or meshes (or compressed sparse matrices). Loops
iterate over edges, that represent relations or interactions, and
node data is accessed and updated using indirection arrays. Fre-
quently, these loops involve irregular reductions, where array
elements are updated using only associative and commutative
operations and there are no loop-carried dependences except on
elements of the updated arrays.

In this paper we present an approach, called ReduxSTM,
that optimizes TM mechanisms to support efficient transac-
tions with irregular memory access patterns. The approach
is based on combining techniques for speculative execution
with software TM algorithms, with the aim of extracting par-
allelism from irregular applications using transactions. Re-
search focused on combining or exploiting thread-level spec-
ulation (TLS) using TM approaches can be found in the liter-
ature [7, 9, 10, 11, 12, 13, 14, 15]. However, all these tech-
niques are of general use, not specifically tailored for a particu-
lar class of applications. ReduxSTM, in contrast, is designed to
extract parallelism from concurrent transactions by exploiting
both, commit ordering constraints (in order to preserve sequen-
tial semantics) and the ability to privatize irregular reduction
patterns. The goal is to avoid unnecessary transaction aborts
and rollbacks in the presence of such data access patterns, very
common in the broad class of irregular applications. Both fea-
tures are independent, so if commit ordering is disabled (when
the sequential semantics is not violated), ReduxSTM behaves
similarly to conventional STMs (not ordered) but with better
conflict avoidance in the presence of irregular reduction pat-
terns.

To summarize, this paper makes the following contributions:

• A software TM system, ReduxSTM, that combines spec-
ulative execution techniques and transactional memory al-
gorithms to extract parallelism from irregular applications
using transactions.

• Transaction commit ordering and irregular reduction pat-
terns are exploited to avoid unnecessary transaction aborts.

• Explicit memory operation primitive and memory set are
introduced in the context of TM to optimize the execution
of concurrent transactions involving irregular reductions.

• An enhanced conflict resolution mechanism based on ad-
ditional information coming from ordered transactions.

The rest of the paper is organized as follows. Section 2 intro-
duces irregular reductions and the main approaches designed
for their efficient parallelization, in particular those based on
transactions. Section 3 discusses an STM model that estab-
lishes the basis for ReduxSTM. Section 4 describes ReduxSTM
design and algorithms. Section 5 shows an evaluation of the
performance and sensitivity of ReduxSTM with various syn-
thetic and application-based benchmarks. Section 6 presents
related work. Finally, section 7 concludes the paper.

float A;
for (i=0; i<N; i++){

Calculate ξ;
A = A ⊕ ξ;

}

int f1[fDim], ..., fn[fDim];
float A[ADim];
for (i=0; i<fDim; i++){

Calculate ξ1, ξ2, ..., ξn;
A[f1[i]] = A[f1[i]] ⊕ ξ1;

...
A[fn[i]] = A[fn[i]] ⊕ ξn;

}

Figure 1: Examples of reduction loops: single scalar reduction statement (left),
multiple irregular reduction statements (right).

2. Transactional approaches to irregular reductions

A reduction statement is a pattern of the form O = O ⊕ ξ,
where ⊕ is a commutative and associative operator applied to
the memory object O, and ξ is an expression computed using
objects different from O. A reduction loop includes one or sev-
eral reduction statements with the same or different memory
objects but with the same operator for each object, in such a
way that the only true dependences are those loop-carried de-
pendences due to the reduction statements. Necessarily, in these
cases, no references to the reduction objects can appear in other
parts of the loop outside the reduction statements [16]. The
iterations of a reduction loop can be arbitrarily reordered with-
out perverting the final result, as a consequence of the com-
mutativity and associativity of the reduction operator. Fig. 1
shows examples of reduction loops: a reduction operator ⊕
(+, ×, max()...) is applied to a scalar variable A (scalar reduc-
tion) or the elements of a reduction array A[] (histogram reduc-
tion) [17]. In this last case, the irregular nature of the operation
comes from the accesses through the indirection arrays, f1 ...
fn, acting as subscripts of the reduction array, which, in turn,
are subscripted by the loop index. A great effort has been done
in the efficient parallelization of reductions as they are found in
the core of many applications and they are frequently associated
with irregular access patterns.

2.1. Classical techniques for parallelizing reduction loops

Reduction loops can be executed in parallel as iterations can
be reordered thanks to the commutative and associative prop-
erties, even if, in general, memory conflicts caused by indirect
accesses cannot be detected until run–time. Three groups of
strategies are found in the parallelization of reductions: based
on mutual exclusion, based on the privatization of the reduction
variables and based on the partitioning of the reduction objects.
These techniques have proven to be very efficient, although in
certain problems it is not easy to anticipate which technique
performs the best [18, 19] due to the influence of the memory
patterns and other architectural factors such as the synchroniza-
tion costs.

The first group involves a low programming effort as the loop
can be executed in parallel enclosing the accesses to the reduc-
tion array in a critical section. Drawbacks of these techniques
are the degree of serialization and the cost of synchronization in
typical multicore processors. The degree of serialization is basi-
cally determined by the number of conflicting iterations and by
the particular implementation. In spite of the low programming

2

effort, a wide range of implementations is available (pure criti-
cal section, fine-grained locks, hardware atomic ops, ...) and by
choosing one of them we are determining the performance.

The second group of solutions distributes the iteration space
into threads, each of which performs its reductions over a lo-
cal reduction space. A preamble is necessary in order to ini-
tialize the private reduction space to the identity (neutral) el-
ement of the reduction operator. Similarly, a final reduction
phase must accumulate all private reduction values into the
(global) reduction array. Two representative examples in this
class are Replicated Buffer [20] and Array Expansion [21]. Op-
timizations aimed at reducing the memory overhead have been
proposed, such as Selective Privatization/Reduction Table[18].
These techniques try to minimize memory footprint by replicat-
ing selectively only those elements of the reduction array that
are written by several threads, but at the cost of complex imple-
mentations.

Techniques in the third group avoid the privatization by parti-
tioning the reduction array. They need an inspection phase that
is in charge of determining the computation assigned to each
thread. In this group we find methods like LocalWrite [22]
and SynchWrite [23].

2.2. Motivating examples

Fig. 2 depicts several examples of interest from the viewpoint
of transactional memory. These in Fig. 2(a) correspond to situa-
tions where reduction sentences are inside a loop, but the loop is
not a fully reduction loop. The whole set of iterations cannot be
freely reordered, due to reads and writes outside the reduction
sentences, or because there is a mixing of different reduction
operators. Nevertheless depending on the contents of indirec-
tions, a subset of iterations could form a reduction group if they
are consecutive, and consequently, some parallelism could be
exploitable [24].

The piece of code in Fig. 2(b) takes part of the program
300.twolf included in the CPU SPEC2000 benchmark [25].
In this case reduction variables are accessed by dereferencing
pointers which can induce potential aliases with other objects
of the code that can be read or written outside the reduction
assignments [26].

Fig. 2(c) shows the work routine of Kmeans included in the
STAMP transactional benchmark [27]. The loop is a full reduc-
tion loop with several reduction sentences. In this case, trans-
actions have been used as a mean to deal with indirections as-
sociated to reductions.

As a result of indirect references, classical techniques for re-
ductions may be not applicable just as they are, despite being
very efficient. In these cases, parallelism exploitation will in-
volve run-time speculative solutions [28, 26, 24].

2.3. Reduction Parallelization Using Transactional Memory

Transactional memory can be useful to extract optimistic par-
allelism in the above situations. TM combines all the features
of the classical parallelization techniques for reductions (atom-
icity, implicit selective privatization) with its speculative nature
and also an easy programmability.

Transactions can be used as a straightforward replacement
of critical sections when parallelizing reductions. After all, a
reduction sentence is a read followed by a write in the same
memory position, as shown in Fig. 3(a) for an explicit TM sys-
tem. The execution model is similar to use fine-grain locks pro-
tecting individual memory locations [17, 29, 30]. In OpenTM
notation [31], Figs. 3(b,c,d) show how the reduction sentences
can be enclosed inside transaction with different granularities:
assignment by assignment, iteration by iteration or in chunks of
iterations. The computation of the values to be added (ξ) is con-
sidered private in these examples and it can be outside the crit-
ical section. Performance degradation may arise here from the
fact that indirections can cause conflicts that may make trans-
actions abort (or stall). The abort cost increases with the size
of the transaction, though smaller transactions increase the total
starting/end overhead.

If at compile-time it can be assured that no other data de-
pendences exist apart from reductions, the TM system can be
arranged in such a way that conflict detection can be disabled
for reduction loops, as proposed in [32]. Nevertheless if reduc-
tion sentences are found in loops with additional dependences,
or the contention over reduction variables is high, the perfor-
mance of the TM can be at risk. It is precisely these situations
which are tackled in this paper.

3. Software transactional memory model

Numerous STM systems have been described in literature.
This section tries to summarize some common terminology
about STM. A deeper discussion about these terms can be found
in [33, 34].

A transaction T is a fragment of a sequential code that has
been assigned to a thread which is in charge of its execution.
Two or more transactions can run concurrently assigned to dif-
ferent threads. Concerning the memory accesses carried out by
a transaction, two definitional properties are assumed: atomic-
ity and isolation [1].

A dataset is defined as the set of memory references as-
sociated to a given execution of a transaction T . Typically
the set of datasets in a transaction has two members, one for
the memory locations that has been written and another for
those positions read. We will denote the set of T ’s datasets
as DS(T) = {WS ,RS }, considering to be formed by the write
(WS) and read (RS) sets.

Illusion of isolation and atomicity is achieved by executing
transactions speculatively. A transaction T can transit through
several possible states, since its assignment to a thread until its
end: {Idle, Live, Doomed, Committing, Committed}. Idle state
corresponds to those transactions that have not started. Live or
Active means that the transaction is in (speculative) execution
and it can be aborted due to data conflicts. In this case we say
that the transaction is Doomed which is a transitional state that
involves to discard speculative changes (rollback) and to retry
the transaction from its beginning (making it Idle again). When
commit starts, a first phase can validate possible data conflicts
making the transaction abort as well. If correctly validated, dur-
ing the Committing state the speculation ends by consolidating

3

for (i=0; i<N; i++){
A[K[i]] = ...;
... = A[L[i]];
A[R[i]] = A[R[i]] ⊕ ξ;

}

for (i=0; i<N; i++){
A[S[i]] += ξ+;
A[M[i]] *= ξ∗;

}

new_dbox_a(..., *costptr) {
...
for (termptr = ... ; termptr = termptr->nextterm) {
...
for (netptr = ... ; netptr=netptr->nterm) {
...
/* Reduction sentence */
*costptr += ABS(newx - new_mean) - ...;

}
...
/* Several reads of rowsptr which potentially
* aliases with the reduction variables */
rowsptr = tmp_rows[net] ; /* tmp_rows is global */
for (row = 0 ; rowsptr[row] == 0 ; row++){
...

}
...
/* Writes to other global variables which
* potentially aliases with
* the reduction variables */
tmp_num_feeds[net] = f ;
...
tmp_missing_rows[net] = -m ;
...
/* Reduction sentence */
delta_vert_cost += (...);

}
return;

}

do {
...
delta = 0.0;
for (i = 0; i < npoints; i++) {

index = common_findNearestPoint(
feature[i], nfeatures,
clusters, nclusters);

/* If membership changes,
* increase delta by 1 */
if (membership[i] != index) {

delta += 1.0;
}
/* Assign the membership to object i
* membership[i] can’t be changed by
* other thread */
membership[i] = index;
/* Update new cluster centers :
* sum of objects located within */
new_centers_len[index][0] += 1;
for (j = 0; j < nfeatures; j++) {

new_centers[index][j] +=
feature[i][j];

}
}
...

} while (delta > threshold);

(a) Partial reductions (b) Pointer aliases in a SPEC 2000 code function (c) Reduction patterns in the STAMP code Kmeans

Figure 2: Motivating examples.

#pragma omp transaction {
...
A = A ⊕ ξ

}

⇓
TM start()

...
TM write(A, TM read(A) ⊕ ξ)

TM end()

#pragma omp parallel for
for (i=0; i<fDim; i++){

Calculate ξ1, ξ2, ..., ξn
#pragma omp transaction

A[f1[i]]=A[f1[i]] ⊕ ξ1
#pragma omp transaction

A[f2[i]]=A[f2[i]] ⊕ ξ2
...

}

#pragma omp parallel for
for (i=0; i<fDim; i++){

Calculate ξ1, ξ2, ..., ξn
#pragma omp transaction

{
A[f1[i]]=A[f1[i]] ⊕ ξ1
A[f2[i]]=A[f2[i]] ⊕ ξ2

...
}

}

chunk = fDim/nThreads;
#pragma omp transfor

schedule(static, chunk)
for (i=0; i<fDim; i++){

Calculate ξ1, ξ2, ..., ξn
A[f1[i]]=A[f1[i]] ⊕ ξ1
A[f2[i]]=A[f2[i]] ⊕ ξ2

...
}

(a) Reduction sentence in an explicit
TM system

(b) Fine-grain transactions (c) Coarse-grain transactions (d) Extra-coarse-grain transactions

Figure 3: Parallelization of reduction loops using TM.

the memory positions written by the transaction. After that we
say that the transaction is Committed and this thread can start
a new idle transaction or continue with non-transactional code.
Note that in our terminology a re-execution of a given transac-
tion T due to aborts is no considered another distinct transaction
but the transition of T to the Idle state via Doomed.

A set of transactional primitives {start(T), read(A), write(A,
value), abort(T), commit(T), validate(T)} are available. These
operate on a memory address A or over a transaction T . Each
primitive can imply the modification of the datasets of the trans-
action and also may change its state. The commit() primitive
is in charge of atomically consolidating speculative data into
memory. The abort() primitive discards all speculative data,
making the transaction re-start (rollback) with empty datasets.
Notice that abort() can be invoked from read(), write() or com-
mit(), if the speculative private data of the transactions is incon-
sistent with memory data. This validation is done via validate()
primitive which can check datasets in order to do that or simply
can check if the transaction is Doomed as a consequence of the
conflict detection mechanism.

We say that there is a conflict between two transactions T1, T2
if ∃D1 ∈ DS(T1),D2 ∈ DS(T2) | D1

⋂
D2 , ∅. Potential con-

flicts are given by DS × DS, which are in the typical case the
combinations R-R, R-W, W-R, W-W. For each combination a
conflict resolution rule must be applied that guarantees memory
consistency in the case that the transaction commits [35, 36].
Generally R-R is ignored, but any other pair involving a write
will doom one of the contending transactions to abort. Conflict
detection may be carried out when a transactional primitive is
invoked. Thus several design aspects can be considered. One
of them is which transaction is doomed (contention manage-
ment), finding two major options, to doom the one detecting
the conflict (self-abort) or the other one (kill), although another
policy can be established [37]. When the conflict is detected
for each read or write primitives the conflict detection is said to
be eager (encounter time). However, if the detection is deferred
to the commit, during the phase before consolidating data, the
conflict detection is said to be lazy (commit time).

Concerning the transaction execution correctness, the opac-
ity property [38, 39] is a desirable feature that goes beyond the
serialization and guarantees that a transaction aborts before any
memory operation makes the memory private snapshot incon-
sistent with respect to the global memory (because some trans-
actions committed in the meantime). Opacity checking, when

4

done through incremental invalidation, involves a complexity
that grows quadratically with the number of reads, because for
each read all previous reads need to be checked for consistency.
If done by invalidation in commit-time, this complexity can
be reduced to a linear increasing but at the expense of locking
memory operations of one transaction while another is commit-
ting [40]. As a lighter alternative, virtual world consistency [41]
behaves similarly to opacity for the committed transactions but
it is more relaxed for the aborted transactions. Basically, vir-
tual world consistency is equivalent to working with a consis-
tent fixed snapshot of the memory taken at the start (or restart)
of the transaction. Private data are internally consistent during
the transaction life but not necessarily with data in the global
memory. Virtual world consistency is considered to be enough
to tackle typical problems coming from the lack of consistency
when opacity is not guaranteed.

Strictly speaking, a transactional system can be considered
unordered, as the first transaction that comes to commit, with
validated datasets, commits. This is the semantics of transac-
tions as a substitute for critical sections. When used as a tool
for parallelizing applications, this unordered behaviour can lead
to a valid solution though it is not exactly the same as the one of
the sequential code. Or the solution is the same if the sequential
code can be safely reordered as it is the case of pure reduction
loops. Nevertheless an explicit total order can be introduced.
This means that each transaction has an ordinal number which
determines the commit order. This order can be defined by the
programmer, for example to specify the order of the sequential
code. Also, this ordering could be automatically defined from
the instant when the transaction starts, or it arrives at commit.
Although defining an order could harm performance, it can also
play an important role. For example, this relation can be used to
set an abort priority ensuring forward progress (no neverending
abort cycles). Also certain data conflicts are eliminated as those
caused by W-W dependences. Transaction order can also be in-
troduced for semantic reasons, to make the execution equivalent
to this one of the sequential (single-thread) execution as it hap-
pens in TLS solutions.

Reduction operations involve a read followed by a write in
the same memory position and they can be considered as a
whole operation in memory. In fact, as discussed previously,
concurrent reductions can be implemented as atomic. If we in-
troduce reductions as a new primitive, those conflicts derived
from them can be filtered thanks to their commutative and asso-
ciative nature. Basically transactional reduction primitives will
behave leveraging the internal selective privatization associated
with the transactional mechanism: (1) Transactional reduction
objects are implicitly initialized to the operator neutral element,
thereby the first reduction operation initializes the private copy
of the reduction variable, (2) subsequent reductions of the same
kind will make an incremental reduction, (3) in commit phase,
partial cumulated value must be atomically reduced into the
global reduction object. The key here is that reduction oper-
ations of the same kind do not conflict. So by giving support
to reduction operations, it is expected a diminution of the abort
rates. Observe that a reduction operation does potentially con-
flict with other memory operations: reads, writes or reductions

Figure 4: Improvement space considering both support for reductions and or-
dered transactions. Venn diagram depicts two transactions’ data sets.

of another kind. And this can happen both intra-transaction and
inter-transactions. Intra-transaction conflicts can be solved us-
ing the last private value of the object and may mean to lose the
reduction benefits. On the other side, inter-transaction conflicts
involving reductions need be solved by settling new conflict res-
olution rules.

In Fig. 4, the Venn diagram for the write and read set of
two transactions is depicted. Note that set size is arbitrary, and
this will be in function of the particular datasets in a real case.
Marked areas represent the room for improvement when sup-
port for reductions is implemented along with a transactional
ordering mechanism. By way of illustration only one kind of re-
duction operator is heeded. Situations with no advantages (nor
disadvantages) are the ones where a reduction conflicts with a
read (Rdx-R)1, which remains as a true W-R dependence. Cen-
tral area corresponds with reduction-reduction (Rdx-Rdx) con-
flicts, which can be ignored as resolved by the effective privati-
zation carried out by the transaction. In addition, by introduc-
ing a commit order, those conflicts caused by modifications in
memory (W-W, Rdx-W, W-Rdx) can be also ignored as well as
R-W and R-Rdx, because updates are consolidated into mem-
ory in transaction order.

4. ReduxSTM

In this section we introduce ReduxSTM, a software transac-
tional memory implementation able to take advantage of the
commutative and associative properties of the reduction oper-
ators in order to reduce the potential transaction aborts carried
by reduction variables as discussed above.

4.1. Features

ReduxSTM combines two major features: (1) a specific re-
duction support by means of new reduction sets for each sup-
ported reduction operator, which will demand new rules to
solve their potential associated conflicts; and (2) an ordering
mechanism to set up a commit order for transactions. This last

1With X-Y we are denoting two operations X,Y performed by two trans-
actions where the transaction performing operation X precedes the transaction
performing operation Y, in the defined order.

5

feature facilitates conflict resolution as well as permits to pre-
serve the sequential equivalence, if needed, as it happens when
TM is used for TLS purposes.

Although ReduxSTM could be seen as a general support that
can be used to improve a given STM system, some particular
characteristics are described next:

Reduction primitives ReduxSTM deals with reduction sen-
tences without further knowledge about the surrounding
control structure, that may be a reduction loop or not. With
this purpose, ReduxSTM defines a new explicit transac-
tional reduction primitive whose arguments are a memory
position A, a kind of reduction operation op (sum, product,
max, min ...), and a value deltavalue to be reduced into A:

redux(A, deltavalue, op) .

The action of redux() is functionally equivalent to:

write(A, read(A) ⊕ deltavalue) (⊕ is the op operator)

with the proviso that different reduction operations of the
same kind will not conflict. This primitive is available to
the programmer together with the standard read(A), and
write(A, value) functions, and its use is optional.

Reduction sets Along with the standard Read and Write sets
(RS, WS) defined per transaction, a Reduction set needs
to be introduced for each reduction operator op (RxSop).
When a reduction primitive of operator op is invoked, the
memory address of the reduction variable is included into
its associated reduction set.

Two particularities should be observed:

(1) That an address remains in its reduction set provided
that any other write() or redux() primitive with dif-
ferent operator does not write in the same address in
this transaction. If it is the case, this position must
migrate from its reduction set to the write and read
sets because the reduction properties are broken in
this situation.

(2) Linked to each address in a reduction set, the partial
reduction value accumulated till now by this transac-
tion needs to be stored. The first time that the opera-
tor is applied on a position the value is simply stored
(virtually it is accumulated with the reduction neutral
element). However, for subsequent operations of the
same kind the stored value must be updated by suit-
ably accumulating it with the deltavalue argument of
the redux() primitive.

Version management ReduxSTM has been devised as a lazy
system from the viewpoint of versioning, that is, transac-
tion private values are consolidated into memory during
the commit phase. Until then, values are stored in a per-
transaction private redo buffer. Observe that both the write
set and the reduction set contain values that must be con-
solidated. So, in addition to the conventional write buffer,
a reduction buffer is defined. The values associated to the

Table 1: Inter-transaction conflicts in different STM designs.
TM TM + TM + TM + Order

Order Reduction + Reduction
R – R no conflict no conflict no conflict no conflict
R – W abort no conflict abort no conflict

R – RDX abort† abort† abort no conflict
W – R abort abort abort abort
W – W abort no conflict abort no conflict

W – RDX abort† abort† abort no conflict

RDX – R abort† abort† abort abort
RDX – W abort† abort† abort no conflict

RDX – RDX abort† abort† no conflict no conflict

RDX – RDX′ ‡ abort† abort† abort abort
†No reduction primitive available. In terms of conflicts, a reduction is implemented as
write after read (R-W).
‡RDX, RDX′ refer to reductions of different kind (different operators).

write set are directly written to memory. But those asso-
ciated to the reduction sets must be accumulated with the
corresponding ones in memory according to the reduction
operator. Note that a transaction keeps the partial reduced
value as if it had been initialized with the neutral element.
For reduction variables, transactions are behaving as a im-
plicit selective privatization.

Ordered transaction commits Another key aspect of Re-
duxSTM is the use of sequenced commits following a nu-
meral ordering. ReduxSTM relies on this mechanism to
fulfill the atomicity property. This way, only one transac-
tion can be in committing state. Although disjoint trans-
actions cannot commit concurrently, introducing ordered
commits has several advantages in our approach aside
from avoiding detecting disjointness. First, it simplifies
the contention management as the committing transaction
is responsible for killing either other conflicting transac-
tions or itself, depending on the contention policy. Second,
if the ordering is defined according to the sequential exe-
cution, the result should be identical, which could be desir-
able in numerical or scientific codes addressed with spec-
ulative parallelization. Additionally, as mentioned previ-
ously, ordered transactions can enhance the conflict detec-
tion mechanism, filtering those conflicts involving a write
after a write.

ReduxSTM defines two ways of specifying ordering be-
tween transactions. An explicit order can be declared
when transaction starts, so the n-th transaction cannot
commit until all precedent transactions 1, ... n−1 have
committed. For example, this explicit order can be the one
of the iterations in a loop. Optionally, an implicit order can
be defined, in which transactions obtain their order auto-
matically just before entering its commit phase. This last
option resembles an unordered mode, but once the order
number is picked up, the transaction keeps it even if the
transaction aborts and restarts.

Conflict management As well as the version management, the
conflict detection in ReduxSTM is also lazy, i.e., conflicts
are not detected until commit. Although lazy conflict de-

6

tection will make commit probably longer, it allows the
system to ignore conflicts that do not imply a read-after-
write situation.

Table 1 features those inter-transaction conflicts that do not
cause aborts thanks to the combination of the reduction
support, ordered commits and lazy versioning and con-
flict detection. Basically the reduction support eliminates
conflicts between reductions of the same kind in differ-
ent transactions, and the ordered commits rid of these due
to writings in the same memory position by two different
transactions.

Observe that reductions can give rise to intra-transactions
conflicts, when a reduction variable collides with a write
or another reduction of different kind. If so, this reduc-
tion variable must stop being considering as reduction and
must be switched to an standard write, as commented pre-
viously. Notice also that our definition of transactional re-
duction operation does not return the value of the reduction
variable. Reductions are associated to updates of mem-
ory locations only. In this way, W-RDX does not cause
a read-after-write dependence in our implementation (no-
conflict).

Contention management The contention management is con-
ditioned by the fact that commits are ordered. In case of
conflict between two transactions, the more natural way is
to make abort and restart the transaction with the highest
order. ReduxSTM is formulated so that the committing
transaction is in charge of detecting and solving the con-
flict situations. Two strategies has been explored:

(1) Kill itself: in this case conflicts have occurred with
precedent transactions that have already committed.
This is suitable for conflict detection approaches
based on timestamps or memory values, as the prece-
dent transactions no longer exist, but their trail is kept
as a version number (timestamp) or value.

(2) Kill others: in this case the transactions that may
conflict with the committing one, are live or waiting
for committing but necessarily with a higher order
number. The committing one will mark these con-
flicting transactions as doomed, which will be abort-
ed/restarted where appropriate.

4.2. Design

ReduxSTM is offered as a library available to the pro-
grammer or compiler. It comprises: initialization functions
(StmInit() to be called by the master thread every time a trans-
actional phase starts in the program and a per-thread initializa-
tion function StmInitThread() to be called by the thread be-
fore starting any transaction), the corresponding closing func-
tions, and the rest of basic primitives defined in an explicit STM
as well as the new reduction primitive(s) (StmStart(), Stm-
Read(), StmWrite(), StmRDX(), StmRollback(), StmCom-
mit()). For the sake of a clearer description, one single generic

reduction operator is considered hereinafter (represented as ⊕),
although many others could be considered.

The design of ReduxSTM has tried to keep the essential part
of an STM but adding the above mentioned features, in order to
evaluate the impact of the support for reductions. This support
has been implemented over two different STM approaches that
cover the two contention manger strategies commented previ-
ously. The first one utilizes the notion of timestamps, or ver-
sion numbers, for conflict detection, which is a popular tech-
nique in STM designs (e.g. LSA algorithm [42, 43], but with
no locks (see algorithm 1). The second implementation follows
a commit-time invalidation strategy [40] with a conflict detec-
tion based on memory addresses. This is shown in algorithm 2.
Table 2 abridges some formal notation used in the description
of both algorithms.

Both approaches share the reduction support and the ordered
commit features. The support for reductions involves to im-
plement the new primitive StmRDX() and modifications to the
standard read and commit, in such a way that the reduction op-
erator(s) is applied when read a reduction value, or when re-
duction values are consolidated into memory respectively. In-
formation about reduction variables are kept in the reduction set
and its associated reduction buffer which stores not the absolute
value but the accumulated partial value of the reductions. Ob-
serve that a write on a previously reduction address involves to
migrate this address suitably from the corresponding reduction
set/buffer to the write set/buffer, stopping being a reduction.

On the other hand, sequenced ordered commits form the
foundation of the transaction synchronization. A global
counter, with initial value 1, is incremented when a transaction
finishes its commit. The transaction order is defined explicitly
when StmStart(order) is invoked. The first action of StmCom-
mit() is precisely to wait until the global counter reaches the
transaction’s order number, in which case the commit will ad-
vance if no conflict is detected. Otherwise one of the two trans-
actions need to be aborted. In the timestamp-based approach,
the policy is kill-itself and in the commit-time invalidation the
policy is kill-others. Notice that only one transaction can exe-
cute the commit part beyond the loop waiting for its turn, and
this transaction must have the lower order number of all the live
ones at this moment.

To guarantee forward progress, the mapping of numbered
transactions to threads must be carried out in such a way that
the set of live transactions must be a consecutive rank at every
moment. If an order number was lost, there would be a transac-
tion waiting for a non-existing one for ever.

Null can be used as a special order number as the argument
of StmStart(). This indicates that the order is implicit, as de-
scribed in subsection 4.1. In this mode the order is not assigned
until the transaction arrives at the commit, just before waiting.
With this purpose, another global counter is introduced, which
is atomically increased (by fetch-and-add), like a ticket, when-
ever an implicit order is assigned to a transaction.

The timestamp-based approach in algorithm 1 uses the global
order counter as a clock. A global write timestamp array,
globalWTR, is in charge of storing a timestamp (version num-
ber) each time that an address is consolidated in a commit. A

7

Table 2: Some notation used in algorithms 1 and 2.

nThreads . Number of cooperating threads.
globalOrder . The global order counter, which is increased when a transaction commits.
globalT x . A global array with transaction descriptors, one per thread.
tx . A per-thread global object (thread local storage) pointing to the descriptor of the transaction being executed by such a

thread.
tx.status . State of a transaction tx. Possible states are: {TxNone, TxIdle, TxActive, TxDoomed, TxCommiting}.
tx.RS , tx.WS , tx.RdxS . Read, Write and Reduction sets of a transaction tx. One Reduction set needs to be defined for each reduction operator.

As an example, only a reduction operator is considered (⊕).
Write and Reductions sets has a Write and a Reduction buffer associated respectively. The assignment tx.WS [addr] ←
value denotates introducing the value for the address addr in the WriteBuffer. This assignment involves tx.WS ← tx.WS ∪
{addr}. Resetting the write set (e.g. tx.WS ← ∅) involves to empty also the write buffer. If a < tx.WS , then tx.WS [a]
returns null. The same notation applies to reduction sets and buffers.

globalWTS , tx.RTS . Timestamp arrays: respectively, the global write timestamp and a per-thread read timestamp. The assignments
TS [addr] ← t denotes that the timestamp associated to address addr is t. Timestamps are defined from the global or-
der counter. Similar notation to write buffers is used, for resetting and consulting. If a position a has never been written in
a commit globalWTS [a] = 0. Similarly, for a transaction tx, if a < tx.RS then tx.RTS [a] = 0.

∗addr . Contents of the global memory location pointed by addr.
savePC&Env() . Save program counter, stack pointer, and core environment, such as the C function setjmp().
restorePC&Env(env) . Restore program counter, stack pointer, and core environment, such as the C function longjmp().
MemoryFence() . Full memory fence synchronization primitive, such as the gcc intrinsic sync syncronize().

per-transaction read timestamp array, tx.RTS , gets the current
version number from globalOrder, each time that an address is
read. Conflicts are tested in commit phase by comparing both
arrays, being true when a newer version of a read value exists.
In this case, the committing transaction must roll back.

In algorithm 2 the committing transaction has the ability of
invalidating subsequent active transactions that have conflict
with it. Here no timestamp marks are used, but data set infor-
mation is used instead. When a transaction reaches its commit
phase, and takes its turn, first it updates the shared memory with
the private data stored in the write and reduction buffers. Then
the commit phase continues checking if another active transac-
tion has one of the updated addresses in its read set. If so, the
subsequent conflicting transaction is marked as doomed, as it
must abort. Observe that no more than nThreads − 1 transac-
tions can be doomed by the committing one.

4.3. Implementation issues
In the design of a software TM system, in addition to the

choice of a particular algorithm, much of the performance can
come from the implementation details. In this subsection we
discuss some implementation details in relation to our proposal.

4.3.1. Synchronization mechanisms
In ReduxSTM, transactions does not use locks to acquire the

ownership of memory positions, and in this sense the algorithm
can be classified as non-OREC [2]. Instead, combined with the
lazy-lazy design, the mechanism that guarantees atomicity is
the waiting for the commit turn which is in charge of sequen-
tializing commits in a given order (Fig. 5(a)). In fact, this wait
loop is behaving as a spin lock that avoid simultaneous con-
flicting updates in global memory. This solution matches the
premises of subsection 4.1 at the expense of losing certain per-
formance which make it mandatory to keep the commit phase
as light as possible.

In modern multicore systems with relaxed memory models
some extra synchronization via memory fences/barriers [44]
may be necessary. Observe the commit-time invalidation of al-
gorithm 2. Consider a committing transaction simultaneously

with a subsequent transaction that is reading. To be correct,
these two pairs of actions:

Tcommitting: (consolidate values to global memory, check oth-
ers’ ReadSet)

Treading: (update my ReadSet, read from memory)
must be seen in this exact order by each thread with respect to
the other. In case of conflict, either the checking is done after
updating the read set (which causes an abort of the reader trans-
action) or a correctly committed value is read from global mem-
ory though the update of the read set is done prior the check-
ing (there is not any abort but it is unnecessary). All possible
execution histories of this two pairs of actions lead to correct
situations when each thread perceives them in thread order (see
Fig. 5(b)).

Timestamp based version (algorithm 1) does not requires
any memory fence, except for consideration about opac-
ity and virtual world consistency, as discussed in subsec-
tion 4.3.4, because the committing transaction is validating its
data set against precedent already committed transactions (see
Fig. 5(c)).

4.3.2. Data structures for write buffers and timestamps
In previous sections write and reduction buffers have been

introduced as data structures storing the private speculative val-
ues that have to be consolidated into memory if the transaction
is validated. Our implementation uses a unified structure for all
these buffers, depicted in Fig. 6, which has been called OpSet.
Basically the structure is a simple hash table implemented as a
matrix containing pairs (address, value). As the data granular-
ity used by ReduxSTM is 8 aligned bytes, the 3 least significant
bits of the address are not meaningful and they has been used to
code whether a value is a result of a write or a reduction. This
allows unifying write and reduction buffers in the same struc-
ture. Also it facilitates the migration from a reduction buffer to
the write buffer simply by changing this 3 address bits.

Operations on the structure include: inserting and finding by
address, and traversing all inserted pairs. Each row is selected
by applying a hash function to the address. Insertions involve to

8

Algorithm 1 ReduxSTM – Timestamp based version.

1 function StmInit(nThreads)
2 globalOrder ← 1
3 globalT x← AllocateDescriptors(nThreads)
4 globalWTS ← ∅
5 end function

1 function StmInitThread()
2 tx← globalT x[myThreadId]
3 tx.status← TxIdle
4 end function

1 function StmStart(order)
2 tx.RS ← ∅, tx.WS ← ∅, tx.RdxS ← ∅
3 tx.RTS ← ∅
4 tx.order ← order
5 tx.status← TxActive
6 tx.env← savePC&Env()
7 end function

1 function StmRead(addr)
2 tx.RS ← tx.RS

⋃
{addr}

3 tx.RTS [addr]← globalOrder

4 if addr ∈ tx.WS then
5 value← tx.WS [addr]
6 else if addr ∈ tx.RdxS then
7 value← (∗addr) ⊕ tx.RdxS [addr]
8 else
9 value← (∗addr)

10 end if
11 return value
12 end function

1 function StmWrite(addr, value)
2 if addr ∈ tx.RdxS then
3 tx.RdxS ← tx.RdxS − {addr}
4 end if
5 tx.WS [addr]← value

(⇒ tx.WS ← tx.WS
⋃
{addr})

6 end function

1 function StmRDX(addr, deltavalue)
2 if addr ∈ tx.WS then
3 tx.WS [addr]← deltavalue ⊕ tx.WS [addr]
4 else if addr ∈ tx.RdxS then
5 tx.RdxS [addr]← deltavalue ⊕ tx.RdxS [addr]
6 else
7 tx.RdxS [addr]← deltavalue
8 (⇒ tx.RdxS ← tx.RdxS

⋃
{addr})

9 end if
10 end function

1 function StmRollback() . Abort and restart
2 tx.status← TxIdle
3 tx.RS ← ∅, tx.WS ← ∅, tx.RdxS ← ∅
4 tx.RTS ← ∅
5 tx.status← TxActive
6 restorePC&Env(tx.env)
7 end function

1 function StmCommit()

2 while tx.order , globalOrder do
. Wait for its turn

3 end while

. Now committing
4 tx.status← TxCommitting

. Validation
5 for all addr ∈ tx.RS do
6 if tx.RTS [addr] ≤ globalWTS [addr] then
7 StmRollback()
8 end if
9 end for

. Update global write timestamp
10 for all addr ∈ tx.RdxS

⋃
tx.WS do

11 globalWTS [addr]← globalOrder + 1
12 end for

. Consolidate written data into memory
13 for all addr ∈ tx.RdxS do
14 ∗addr ← ∗addr ⊕ tx.Rdx[addr]
15 end for
16 for all addr ∈ tx.WS do
17 ∗addr ← tx.WS [addr]
18 end for

19 tx.status← TxIdle
20 globalOrder ← globalOrder + 1
21 end function

1 function StmExitThread()
. Descriptor tx free for be reused
. ReduxSTM thread exit

2 tx.status← TxNone
3 end function

1 function StmExit()
. ReduxSTM exit

2 DeallocateDescriptors(globalT x)
3 end function

reuse an entry if this address was already inserted (it was found
this option faster than adding repeated entries like a log).

In each commit the whole write/reduction buffer needs to be
traversed. The auxiliary arrays inserted and row count are used
as indexes for traversing the structure faster. Note that although
in algorithms 1 and 2 the consolidation of reductions and writes
appear separate, it is implemented as a whole.

Dimensions of this structure have a clear influence in the per-
formance. Ideally, having as many rows as possible reduces
the number of hash aliases and so the sequential traversal of
a row when searching for an address. Nevertheless, this will

increase the reset cost (notice than resetting the structure in-
volve resetting only the row counter array and count variable),
as the structure have to be reset every time a transaction starts
or aborts. Another important point is the locality exploitation
when accessing to the structure. In order to be more scalable,
and to reduce the cache and page misses, the matrix is orga-
nized in planes (see Fig. 6). So the access to element DS[x][y]
is done as DS[x/2p][y][x mod 2p], where 2p is the number
of entries in the fraction of a row in a plane. In experiments, a
plane width of one or two cache lines got the best results.

A similar hashed structure has been used to keep timestamps

9

Algorithm 2 ReduxSTM – Commit-time invalidation version.

1 function StmInit(nThreads)
2 globalOrder ← 1
3 globalT x← AllocateDescriptors(nThreads)
4 for all t ∈ globalT x do
5 t.status← TxNone
6 end for
7 end function

1 function StmInitThread()
2 tx← globalT x[myThreadId]
3 tx.status← TxIdle
4 end function

1 function StmStart(order)
2 tx.RS ← ∅, tx.WS ← ∅, tx.RdxS ← ∅
3 tx.order ← order
4 tx.status← TxActive
5 tx.env← savePC&Env()
6 end function

1 function StmRead(addr)
2 tx.RS ← tx.RS

⋃
{addr}

3 MemoryFence()
4 if addr ∈ tx.WS then
5 value← tx.WS [addr]
6 else if addr ∈ tx.RdxS then
7 value← (∗addr) ⊕ tx.RdxS [addr]
8 else
9 value← (∗addr)

10 end if
11 return value
12 end function

1 function StmWrite(addr, value)
2 if addr ∈ tx.RdxS then
3 tx.RdxS ← tx.RdxS − {addr}
4 end if
5 tx.WS [addr]← value (⇒ tx.WS ← tx.WS

⋃
{addr})

6 end function

1 function StmRDX(addr, deltavalue)
2 if addr ∈ tx.WS then
3 tx.WS [addr]← deltavalue ⊕ tx.WS [addr]
4 else if addr ∈ tx.RdxS then
5 tx.RdxS [addr]← deltavalue ⊕ tx.RdxS [addr]
6 else
7 tx.RdxS [addr]← deltavalue
8 (⇒ tx.RdxS ← tx.RdxS

⋃
{addr})

9 end if
10 end function

1 function StmKill(otherTx) . Explicit abort
2 otherT x.status← TxDoomed
3 end function

1 function StmRollback() . Abort and restart
2 tx.status← TxIdle
3 tx.RS ← ∅, tx.WS ← ∅, tx.RdxS ← ∅
4 tx.status← TxActive
5 restorePC&Env(tx.env)
6 end function

1 function CheckKilled()
2 if tx.status = TxDoomed then
3 StmRollback()
4 end if
5 end function

1 function StmCommit()
. Wait for its turn

2 while tx.order , globalOrder do
3 CheckKilled()
4 end while
5 CheckKilled()

. Now committing
6 tx.status← TxCommitting

. Consolidation
7 for all addr ∈ tx.RdxS do
8 ∗addr ← ∗addr ⊕ tx.Rdx[addr]
9 end for

10 for all addr ∈ tx.WS do
11 ∗addr ← tx.WS [addr]
12 end for

13 MemoryFence()

. Conflict detection, full commit invalidation
14 for all otherT x ∈ globalT x do
15 if otherT x.status = TxActive then
16 if otherT x.RS

⋂
(tx.WS

⋃
tx.RdxS) , ∅ then

17 StmKill(otherTx)
18 end if
19 end if
20 end for

21 tx.status← TxIdle
22 globalOrder ← globalOrder + 1
23 end function

1 function StmExitThread()
2 tx.status← TxNone
3 end function

1 function StmExit()
2 DeallocateDescriptors(globalT x)
3 end function

in algorithm 1 (globalWTS , tx.RTS). In this case one single
value needs to be stored per entry. During the commit phase the
structure associated to tx.RTS is traversed in order to validate
the absence of conflicts. Note that all of the addresses mapped
with the same hash value are aliases from the timestamp view-
point. Consequently false conflicts due to this aliasing may
arise, with higher probability for smaller timestamp structures.
If both data structures for OpSet and timestamps have the same
dimensions, the same hash function can be used and the loop

updating global write timestamps can be fused with this one
consolidating data into memory in algorithm 1.

4.3.3. Data structures for data sets (commit-time invalidation
implementation)

Although OpSet has membership information about the
Write and Reduction sets, in the commit-time invalidation ver-
sion of ReduxSTM, it can be inefficient to traverse them when
checking conflicts. For this reason in this version Bloom fil-

10

(a) (b) (c)

Figure 5: Synchronization mechanisms in ReduxSTM: (a) ordered commits, (b) memory fences in commit-time invalidation algorithm, (c) timestamp based
ReduxSTM with opacity.

ters [45, 46, 47] have been introduced. Each transaction has one
for representing tx.RS and another one for tx.WS ∪ tx.RdxS .

Bloom filters have been implemented as unsigned integer
arrays, where each bit represents a set of memory addresses
mapped by a single hash function. An insertion to the corre-
sponding filter needs to be done for each read, write and reduc-
tion operation. Nevertheless, the test for disjointness is very fast
as it involves only the bitwise-and of the words compounding
the filter.

The performance of Bloom filters is a trade-off of its size.
For small filters the probability of false positives may be high,
but for large ones the time spent in reset and the traversal to
check their intersection can be dominant. Paradoxically, for
highly contented transactions, where filters may be very popu-
lated, conflicts can be found faster than for almost empty filters
as the traversal is stopped when a positive is found.

4.3.4. The opacity issue
Algorithms discussed so far do not verify opacity [38] or an-

other similar condition as we have focused on introducing the
support for reductions. Although such correctness conditions
require additional synchronization effort at the expense of per-
formance, they can be necessary for the right execution of some
particular codes.

Algorithm 3 shows how to incorporate the checking for opac-
ity to the timestamp version of ReduxSTM. Just before the read
function returns, a call to a partial validation function is inserted
(anticipating the validation done in commit). Two alternatives

Figure 6: Unified hashed data structure for Write and Reduction buffers
(OpSet).

for this validation are featured. ValidateVWC() checks for vir-
tual world consistency [41] based on the value of the global
order at transaction’s start. ValidateFullOpacity() checks for
opacity by testing all the positions previously read by the trans-
action. As discussed in section 3, virtual world consistency is a
lighter alternative to opacity being enough for a wide range of
situations. Observe that a memory fence is needed to guarantee
that reading transactions see the correct order of the committing
one (Fig.5(c)).

In the commit-time invalidation version a different approach
is needed to fulfill opacity because it would be cost prohibitive
if transactions have to access each other’s data sets (without
race conditions). In this case the idea is treating the commit
phase as a critical section with respect to reads [40]. To this
effect a sequential lock (seqlock) [48, 49] mechanism has been
used, as shown in algorithm 4. By means of the global vari-
able globalOpacitySeqLock, no reader can start if a commit is
in progress, and a read must be retried if a commit was com-
pleted during the read routine before returning.

4.3.5. Further optimizations
Our ReduxSTM implementation has taken into account some

other optimization issues that include:

• The use of the optimized library asmlib [50] for resetting
data structures.

Note that an influencial design parameter is the size of data
structures (Bloom filters, timestamp tables, write buffers)
because as they are smaller, performance may degrade due
to hash aliases in memory addresses. However, in the op-
posite side, the initialization of large data structures is a
frequent operation that can cause also inefficiencies. For
this reason, the use of an optimized library to perform op-
erations like memset(), used for reset, can be a critical
point.

• Irrevocable retry of the committing transaction in the
timestamp approach.

As the committing transaction in this version can kill itself
only once, the retry can be done in a irrevocable way [51].
In this manner, the check for conflicts can be removed in
this re-execution. Note that if opacity or VWC are en-

11

Algorithm 3 Opacity or virtual world consistency in ReduxSTM - Timestamp based version.

1 function StmStart(order)
2 ...
3 tx.start ← globalOrder
4 end function

1 function ValidateVWC(addr)
2 if tx.start < globalWTS [addr] then
3 StmRollback()
4 end if
5 end function

1 function ValidateFullOpacity(addr)
2 for all addr ∈ tx.RdxS do
3 if tx.RTS [addr] < globalWTS [addr] then
4 StmRollback()
5 end if
6 end for
7 end function

1 function StmRead(addr)
2 tx.RS ← tx.RS

⋃
{addr}

3 tx.RTS [addr]← globalOrder
4 if addr ∈ tx.WS then
5 value← tx.WS [addr]
6 else if addr ∈ tx.RdxS then
7 value← (∗addr) ⊕ tx.RdxS [addr]
8 else
9 value← (∗addr)

10 end if

. Call one of the validate() functions
11 Validate(addr)

12 return value
13 end function

1 function StmCommit()
2 while tx.order , globalOrder do

. Wait for its turn
3 end while

. Now committing
4 tx.status← TxCommitting

. Validation
5 for all addr ∈ tx.RS do
6 if tx.RTS [addr] ≤ globalWTS [addr] then
7 StmRollback()
8 end if
9 end for

. Update global write timestamp
10 for all addr ∈ tx.RdxS

⋃
tx.WS do

11 globalWTS [addr]← globalOrder + 1 ??
12 end for

13 MemoryFence()

. Consolidate written data into memory
14 for all addr ∈ tx.RdxS do
15 ∗addr ← ∗addr ⊕ tx.Rdx[addr]
16 end for
17 for all addr ∈ tx.WS do
18 ∗addr ← tx.WS [addr]
19 end for

20 tx.status← TxIdle
21 globalOrder ← globalOrder + 1
22 end function

abled, an extra memory fence will be necessary each time
a write update its corresponding global write timestamp.

• Anticipated rollback in the commit-time invalidation ap-
proach.

Any live transaction with higher order number than the
committing one can be marked as doomed in case of con-
flict. If any transactional operation (read, write, reduction)
checks for this status each time it is invoked we can antici-
pate the abort. This check introduces a light overhead, but
can be advantageous for large transactions.

It should be mentioned that now it is possible for a commit
to check a read Bloom filter of other transaction while such
a filter is being reset. In this case a false abort can be
raised. However it has been tested that the probability of
this situation is very low and it is not worth introducing an
extra synchronization to prevent it.

5. Evaluation

ReduxSTM’s performance has been tested over a variety of
codes summarized in table 3. It covers several groups of scenar-
ios that we have considered of interest. Our goal is measuring

the impact of the transactional reduction support as well as an-
alyzing the behaviour of our proposal in general contexts (with
no reductions).

Full reduction loops are not sensitive to order (due to commu-
tativity) but from the viewpoint of dependences, conflicts occur
if reductions are implemented as reads and writes. This as-
pect is analyzed with RXasRW. Two of the benchmarks, Eigen-
Bench [52] and WormBench [53], have been modified in order
to introduce reduction operations which are not present origi-
nally. In the modified EigenBench, reduction sentences coexist
with reads and writes. Although strictly speaking a correct re-
sult would require sequential ordering, we will consider this
code as unordered, keeping its original spirit. Our version of
WormBench forces worm objects to carry out reduction oper-
ations only. This way the code becomes equivalent to a full
reduction loop, and consequently unordered and with no partial
reductions. Patterns found in CHARMM [54] are representative
of full reduction loops, where loop-carried dependences come
only from reduction operations on arrays accessed through in-
direct subscripts. In Twolf, writes, reads and reductions coexist
together, but a correct result is guaranteed only if sequential or-
der is preserved. The STAMP suite is a general TM benchmark,
frequently used as a reference, but not specially focused on re-
duction patterns, present only in one of its codes. Finally, from

12

Algorithm 4 Opacity in commit-time invalidation based version of ReduxSTM.

1 function StmInit(nThreads)
...

2 globalOpacitySeqLock← 0
3 end function

1 function StmRead(addr)
2 tx.RS ← tx.RS

⋃
{addr}

3 re read:
4 do
5 start ← globalOpacitySeqLock
6 while start mod 2

7 MemoryFence()
8 if addr ∈ tx.WS then
9 value← tx.WS [addr]

10 else if addr ∈ tx.RdxS then
11 value← (∗addr) ⊕ tx.RdxS [addr]
12 else
13 value← (∗addr)
14 end if

15 if start , globalOpacitySeqLock then
16 goto re read
17 end if

18 return value
19 end function

1 function StmCommit()

2 while tx.order , globalOrder do
3 CheckKilled() . Wait for its turn
4 end while
5 CheckKilled()

. Now committing
6 tx.status← TxCommitting

7 Fetch&Add(globalOpacitySeqLock, 1)

. Consolidation
8 for all addr ∈ tx.RdxS do
9 ∗addr ← ∗addr ⊕ tx.Rdx[addr]

10 end for
11 for all addr ∈ tx.WS do
12 ∗addr ← tx.WS [addr]
13 end for

14 MemoryFence()

. Conflict detection, full commit invalidation
15 for all otherT x ∈ globalT x do
16 if otherT x.status = TxActive then
17 if otherT x.RS

⋂
(tx.WS

⋃
tx.RdxS) , ∅ then

18 StmKill(otherTx)
19 end if
20 end if
21 end for

22 Fetch&Add(globalOpacitySeqLock, 1)

23 tx.status← TxIdle
24 globalOrder ← globalOrder + 1
25 end function

the SPEC2006 benchmark, several loops with interest from the
TLS viewpoint have been tested.

As a reference, TinySTM, one popular state-of-the-art STM
library, has been considered in two compilations: the stan-
dard base configuration of the library (hereinafter referred as
TinySTM) and a compilation with ordered commits (module
mod order enabled) (referred as TinySTM-ordered).

Experiments were performed on a 2.30GHz Intel Xeon E5-
2698 (Haswell) server with 16 cores and 256GB RAM. All exe-
cutables were compiled with gcc 4.8.2 with -O2 optimizations.

It should be mentioned that although our server processors
support best-effort HTM, so as it would be possible to use it
in ReduxSTM in a similar way as in [55], however this was
not accomplished. First, because this would need to know the
reduction set a priori (for instance, using explicit annotations).
Second, this would be worth it only for very small reduction
objects, due to hardware capacity overflows. In fact, this is a
drawback identified in [55].

The observed execution time has been obtained getting the
minimum time of at least 10 trials per experiment. Those
tests that exceeded a reasonably execution time (about 10 times
greater than the sequential one) were considered timed-out.
This situation happened specially with the ordered version of
TinySTM. Both proposed implementations of ReduxSTM have
been tested: Timestamp based version (ReduxSTM-TS) and
Commit-time invalidation version (ReduxSTM-CTI).

5.1. RXasRW (Reductions as Read+Write)
RXasRW is a synthetic histogram reduction loop shown in

Fig. 7 whose goal is to measure the impact of the transactional
reduction support in terms of the fraction of reduction sentences
that benefit from it. A reduction operation on an array is carried
out per iteration through an indirection subscript which is ini-
tialized with random values. Configurable parameters includes
the reduction array size (NR) which acts as a measure of con-
tention, the transaction size (iterations per transaction), and the
computational load associated to the value to be reduced (ξ).

RXasRW also features a threshold, θ, which determines the
probability of the reduction being implemented in the standard
way, that is, as a read followed by a write. For a STM sup-
porting reductions, θ=0% means that all reductions are imple-
mented with the special primitive StmRedux, whereas a 100%
implies that every reduction is implemented as a read and a
write. For other STMs, all reduction operations are carried out
in the standard way, independently of θ.

Fig. 9 shows the observed performance in terms of speedup
with respect to the sequential execution and TCR (Transactional
Commit Rate, defined as the quotient between the number of
committed transactions and the total number of them, commit-
ted and aborted). These experiments were performed using a
loop of 107 iterations, a reduction array of 1000 elements, 10 it-
erations per transaction, and a computational load of 50 FLOPs
per iteration.

13

Table 3: Benchmarks used for evaluation.
Benchmark Description Histogram Partial Ordered

name loop reductions
RXasRW Histogram loop with a fraction of reductions implemented as Read+Write (see Fig. 7) yes yes no

EigenBench The TM benchmark Eigenbench [52], suitably modified to include reductions no† yes† no
Twolf Function new_dbox_a() from the code 300.twolf (SPEC2000 CPU) [25] no yes yes

Charmm Non-bonded force calculation loop of a molecular dynamics 3D simulation kernel [54] yes no no
Wormbench Yet another STM benchmark [53] modified to include reductions yes† no† no

STAMP All codes of the generic transactional STAMP suite [27] no‡ no‡ no
SPEC2006 Selected loops suitable for thread-level speculation of the SPEC CPU2006 suite [14] no no yes
† This refers to our customized version ‡ Except KMeans

uint64_t A[NR]; /* Reduction array */
int Ind[N/xactSize][xactSize]; /* Indirection array */

/* Reduction (A) and indirection (Ind) arrays
has been initilialized previously */

/* Iteration space (N) is assumed to be
multiple of the transaction size (xactSize) */

for (i=0; i<N/xactSize; i++){
StmStart();
for (ii=0; ii<xactSize; ii++){

Compute ξ
idx = Ind[i][ii];
prw = rand();

if (prw > θ)
StmRedux(A[idx], ξ);

else
StmWrite(A[idx], StmRead(A[idx]) ⊕ ξ);

}
StmCommit();

}

Figure 7: RXasRW pseudocode, a histogram reduction loop where a frac-
tion of reductions are implemented w/o reduction support.

void test_core(tid, loops, Writes, Reads, Redux, ...) {
...

for (i=0; i<loops; i++) {
StmStart();
for (j=0; j< Writes + Reads + Redux ; j++) {
switch(rand_action(...) {

index = rand_index(tid, ...);
case READ:
val += StmRead(array[index]);

case WRITE:
StmWrite(array[index], val);

case REDUX:
StmRedux(array[index], val);

...

}
}
StmCommit();
val += local_ops(R_OUT, W_OUT, val, tid);

}
}

Figure 8: Sketch of the Eigenbench kernel, modified to include reduction
operations in addition to reads and writes.

Several facts can be highlighted. First, the speedup and
TCR reached by ReduxSTM is appreciably better than this
one achieved by TinySTM (both standard and ordered), even
though ReduxSTM makes transactions commit in sequential or-
der. Even more, TinySTM underperforms quickly when more
threads are competing. This endorses the ability of the pro-
posed support for reductions to filter a considerable amount of
conflicts caused by reduction sentences. Second, ReduxSTM-
TS is able to scale better for higher number of threads with
regard to ReduxSTM-CTI. The reason for that is that the kill-
others policy of CTI version leads the committing transaction
to check a increasing number of Bloom filters corresponding
to the other potentially conflicting threads. Relative discrepan-
cies between TCR and speedups can be explained by the cost of
commit phase in ReduxSTM. In this way, although ReduxSTM-
CTI and ReduxSTM-TS exhibit similar TCR, the speedup can
be lightly different. Third, the partial reductions, coming up
from implementing a fraction of reductions as read plus write,
causes that the advantage of ReduxSTM grows speedily with
the number of reduction sentences implemented via StmRedux
(lower θ).

Starting from the initial configuration described above, sev-
eral sensitivity measures are shown in Fig. 10. All these exper-
iments were executed with θ=0%, that is, maximum TCR for
ReduxSTM (all conflicts filtered by the reduction support).

The reduction array size determines the contention pressure
(Fig. 10(a)). By increasing this size, the contention decreases. It

must be kept in mind that a high contention affects not only the
parallel transactioned code but also it slows down the sequen-
tial one because locality exploitation may be degraded. Also
the cost of instrumentation may be higher for lower contention
because a larger range of addresses needs to be tracked (more
queries and insertions in data structures). This is specially no-
ticeable for ReduxSTM-TS because commit validation phase
depends on the number of unique addresses in data sets. It is
precisely in high contended scenarios where ReduxSTM takes
a stronger advantage over the reference STM. When the con-
tention pressure decays, this advantage shrinks lightly with re-
spect to the standard TinySTM, although it continues high with
regards to its ordered counterpart (remember that ReduxSTM
always preserves the order). As stated before, ReduxSTM-TS
is able to scale better with the number of threads because it does
not need to query living transactions of other threads.

Transaction size must trade the overhead associated to start
and finish transactions off the cost of aborts (Fig. 10(b)). Larger
transactions involve higher conflict probability and also to dis-
card more work. For the current problem dimensions, this
tradeoff is observed more clearly for 8 threads. TinySTM is un-
derperforming deeply in all these experiments, which causes a
relative insensitivity to the transaction size, specially TinySTM-
ordered. It should be noted that many experiments of TinySTM
timed out. Observe again that ReduxSTM-TS scores over
ReduxSTM-CTI for a higher number of threads.

Computational intensity (ratio between arithmetic and mem-

14

2 Threads 4 Threads 8 Threads 16 Threads

0

1

2

3

4

RDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTS RDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTS RDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTS RDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTS

S
pe

ed
up

θ = reductions implemented as read+write
θ = 10%
θ = 5%
θ = 2%
θ = 1%
θ = 0% (100% StmRedux)

2 Threads 4 Threads 8 Threads 16 Threads

0.00

0.25

0.50

0.75

1.00

RDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTS RDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTS RDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTS RDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTS TY TYORDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTSRDXCTI RDXTS

T
C

R

RDXCTI=ReduxSTM-CTI RDXTS=ReduxSTM-TS TY=TinySTM TYO=TinySTM-ordered

Figure 9: Performance of RXasRW in terms of speedup (upper) and transaction commit rate (TCR) (lower).

ory operations) can also modulate the behaviour of the bench-
mark. This intensity is commonly associated to the computa-
tion of values to be reduced into the reduction objects. Al-
though higher computational effort increases the abort recov-
ery cost, in general, it translates into more exploitable paral-
lelism, as shown in Fig. 10(c). Whereas the high conflict rates
of TinySTM harm its performance, ReduxSTM specially bene-
fits from high computational loads in scenarios like this where
reduction operations predominate.

The need to represent unbounded data sets in an efficient
way, has involved to use hashed data structures (Bloom filters
in ReduxSTM-CTI, and timestamp arrays in ReduxSTM-TS)
whose finite size gives rise to certain probability of conflicts
due to false positives. Plots in Fig. 10(d) evidence this effect
(θ=3% is considered). A performance optimum can be mea-
sured around a size of 210 elements for the analyzed problem
size (in both Bloom filters and timestamp arrays), with negli-
gible TCR improvement beyond this point. This is because in-
creasing the hashed data structure size adds an extra overhead
(resetting, inserting, querying, ...) that may not compensate the
drops in false positives. It should be mentioned that these ex-
tra costs are dominated by the resetting of data structures in the
case of ReduxSTM-TS, and the intersection of Bloom filters in
the case of ReduxSTM-CTI.

5.2. Eigenbench

Eigenbench [52] is a highly customizable benchmark with
the possibility of isolating orthogonal aspects that determine
the performance of a STM. Original code has been modified
to introduce reduction sentences as shown in Fig. 8. While Re-
duxSTM can leverage its reduction support, other STMs will
use the read+write equivalent for these sentences. Experiments
have been set up using the so-called hot-array, which models

a shared array where all threads can access. The size of the
hot-array has been 100K elements, all transactions in each ex-
periment are of the same size.

Fig. 11 displays several ternary plots sampling the space of
memory operations (Read/Write/Reduction) for different trans-
action sizes. Markers indicate the STM with the highest ob-
served speedup in each sampled scenario. Speedup is computed
with the minimum execution time of at least ten repetitions of
each experiment.

In short transactions (10 memory operations per transac-
tion) TinySTM obtains the best result except when the number
of reads is almost null, in which case ReduxSTM-CTI works
better. As conflict probability increases (larger transactions)
ReduxSTM-TS starts dominating specially in scenarios with a
high number of memory updates, relegating TinySTM to those
samples with more reads (from 40 ops./xact. TinySTM is the
best only for read-only transactions, while TinySTM-ordered
did not get the best result in any experiment).

5.3. TWolf

Function new dbox a() is part of the code 300.twolf in-
cluded in the SPEC2000. Its interest lies in the loop sketched in
Fig. 2(b) that contains sentences with potential reduction pat-
terns. However, as shared reduction variables are accessed via
pointers, reference aliases may exist. This fact that cannot be
determined until execution time [26].

In these experiments, a two-step methodology was used for
the evaluation. First, the original sequential program was in-
strumented to obtain a memory trace of the function of interest
(new dbox a()), marking in it if a position corresponds to a
read, a write or a reduction. In a second step, the trace is sim-
ulated recreating the instrumented memory pattern, as well as
the original computational load. The simulation is carried out in

15

8 Threads 16 Threads

0

2

4

6

8

1 10 100 1000 10000 1 10 100 1000 10000
Reduction array size

S
pe

ed
up

ReduxSTM CTI
ReduxSTM TS
TinySTM
TinySTM Ord.

(a)

8 Threads 16 Threads

0

3

6

9

1 5 10 50 100 500 1000 1 5 10 50 100 500 1000
Iterations per transaction

S
pe

ed
up

ReduxSTM CTI
ReduxSTM TS
TinySTM
TinySTM Ord.

(b)

8 Threads 16 Threads

0.0

2.5

5.0

7.5

10.0

0 5 20 45 80 125 0 5 20 45 80 125
Computational intensity (flops/iteration)

S
pe

ed
up

ReduxSTM CTI
ReduxSTM TS
TinySTM
TinySTM Ord.

(c)

1e5

2e5

3e5

4e5

5e5

6 8 10 12 14 16T
hr

ou
gh

pu
t (

xa
ct

./s
) ReduxSTM CTI

2e5

4e5

6e5

6 8 10 12 14 16T
hr

ou
gh

pu
t (

xa
ct

./s
) ReduxSTM TS

0.6

0.7

0.8

0.9

1.0

6 8 10 12 14 16
Bloom filter size (2n)

T
C

R

0.7

0.8

0.9

1.0

6 8 10 12 14 16
Timestamp array size (2n)

T
C

R

1 Thr.
2 Thr.
4 Thr.
8 Thr.
16 Thr.

(d)

Figure 10: Sensitivity to different configurations of RXasRW.

10
0

80

60

40

20

100

80 60 40 20

100

80

60

40

20

READ

WRITE RDX

R
EA

D

WRITE

R
D

X

Best perf. (40 ops./xact.)
10

0

80

60

40

20

100

80 60 40 20

100

80

60

40

20

READ

WRITE RDX

R
EA

D

WRITE

R
D

X

Best perf. (30 ops./xact.)

10
0

80

60

40

20

100

80 60 40 20

100

80

60

40

20

READ

WRITE RDX

R
EA

D

WRITE

R
D

X

Best perf. (20 ops./xact.)

10
0

80

60

40

20

100

80 60 40 20

100

80

60

40

20

READ

WRITE RDX

R
EA

D

WRITE

R
D

X

ReduxSTM CTI ReduxSTM TS TinySTM

Best perf. (10 ops./xact.)

Figure 11: Eigenbench: STM with better performance for a given percentage of reads, writes and reductions (4 threads considered).

parallel and in a transactional way by partitioning the outer loop
of the simulated function into chunks of consecutive iterations.
Each one of these chunks is executed as a transaction. Trans-
actions are mapped to threads in a round-robin way, preserving
the original serial order.

Experiments were carried out using a medium-sized work-
load (the training workload included in 300.twolf). For
this load, in total, 12 million iterations of the outer loop in
new dbox a() were executed. The resulting memory trace
contained about 550M reads, 46M writes and 70M reductions.
An important observation is that less than 0.15% of the total
memory references are different. That means a high contented
transactional execution. In addition, the amount of exploitable
parallelism is limited by the memory-bound nature of the code.

Fig. 12 shows results obtained with different number of itera-
tions enclosed in a single transaction. Although TinySTM (not
ordered) has been included for comparison it must be warned
that wrong results may be produced in this case as original
order is not guaranteed. As a reference, a global lock based
parallelization is also shown, which is not able to scale at all
due to the highly contended data sets. Observe that best re-
sults are obtained for the smallest chunk size (one iteration per
transaction). The large number of memory operations per iter-
ation, and the high contention explain why larger chunks harm
performance. In contrast to TinySTM, implementations of Re-
duxSTM get rid of conflicts derived from potentially conflict-
ing reduction patterns. For larger transactions, ReduxSTM-TS
performance falls down. ReduxSTM-CTI, while obtains worse

16

speedups than the timestamp based alternative is shown to be
less sensitive to transaction size in the analyzed scenario.

5.4. Charmm

These experiments correspond with the non-bonded force
calculation loop described in [54] where each particle of a set
interacts with all others. Interacting particle pairs are repre-
sented by a neighbour list per particle, which gives rise to re-
duction patterns with subscripted subscripts and indirections in
the innermost loop bounds. Experiments shown in Fig. 13, cor-
respond to a simulation using a system of 2.5K particles involv-
ing 372K interaction pairs.

The main observation in Fig. 13 is how the support for re-
ductions helps to solve the underperforming behaviour caused
by reductions when they are implemented as transactional write
after read, due to absence of conflicts. Even although this loop
can be safely reordered (since we have no dependences apart
from reduction variables), TinySTM is unable to take advantage
of this fact. Another remarkable point is the scalability exhib-
ited by ReduxSTM in the range of number of threads tested.

5.5. Wormbench

Wormbench [53] is designed to evaluate the behaviour of
STM implementations and to test some of the common syn-
chronization problems associated with multi-threaded applica-
tions. This benchmark simulates several worms moving in a
world represented by a shared matrix of values. Each worm
has a body and a head, covering a subset of the world, and it
is controlled by a single thread. In each step of the simulation,
all the worms perform a move, involving some operations in

1 iter./xact. 2 iter./xact.

1

2

3

4

1 2 4 8 16 1 2 4 8 16
Threads

S
pe

ed
up

Global lock
ReduxSTM CTI
ReduxSTM TS
TinySTM *
TinySTM Ord.

1 iter./xact. 2 iter./xact.

0.00

0.25

0.50

0.75

1.00

2 4 8 16 2 4 8 16
Threads

T
C

R

ReduxSTM CTI
ReduxSTM TS
TinySTM
TinySTM Ord.

Figure 12: Speedup (left) and TCR (right) for routine new dbox a() in 300.twolf
code (SPEC CPU2000).

the subset of the world covered by the worm head. The action
of the worm over the world must be atomic. Different scenar-
ios can be simulated by configuring the size of both world and
worms, and the sequence of operations to be performed in each
simulation step.

Wormbench has been originally written in C# and for our
purposes it has been ported to C language in order to be com-
piled with the STM libraries under study. A new worm opera-
tion has been introduced. This carries out a histogram reduction
on the world elements covered by the head of the worm. The
experiments has been focused on this new operation in such a
way that all data dependences come from reductions (no partial
reductions).

Results shown in Fig. 14 correspond to experiments using a
constant head worm size of 8 elements and a range of world
sizes from 16x16 to 128x128. World size will determine the
contention degree: the smaller the world, the higher the con-
tention, and consequently higher conflict probability. TinySTM
versions present difficulties to perform efficiently in high con-
tended scenarios. In fact, TinySTM-ordered exhibits a very
poor performance and the standard version times out in small
worlds for 16 threads (represented with null speedup in the
figure). An interesting fact is that the contention level where
ReduxSTM and TinySTM equals performance grows with the
number of threads. This point takes place in a 24x24 world
for 2 threads but around 64x64 for 16 threads. Observe also
that although ReduxSTM-CTI performs slightly better than
ReduxSTM-TS for 2 and 4 threads, ReduxSTM-TS outper-
forms the former for 16 threads.

5.6. STAMP
Stanford’s STAMP [27] is a benchmark suite designed for

transactional memory that tries to cover a wide spectrum of
algorithms and domains. It includes 8 benchmarks based on
real applications with several configurations oriented to evalu-
ate TM implementations. Experiments used the default param-
eters from [27] which are summarized in table 4. It should be
emphasized that although this suite is not specially focused on
reduction patterns, it can be useful to measure the performance
of ReduxSTM in general situations.

In general, as observed in Fig. 15, ReduxSTM performance is
placed between the ordered and unordered version of TinySTM.
Reasons for that include: the overhead associated by the or-
dered commits in ReduxSTM, the low abort rate of the analyzed
configuration and the absence of reduction sentences to be ex-
ploited. In codes like SSCA2, KMeans and Intruder, the small
size of transactions limits the performance of ReduxSTM-
CTI. It performs much better with large and contended work-
loads, like in Bayes or Labyrinth. On the other hand, over-
all ReduxSTM-TS results are better, even as competitive as
TinySTM-ordered in most situations.

It should be mentioned that for the only code containing re-
duction patterns, KMeans (see Fig. 2(c)), the improvement of
ReduxSTM is not as significant as expected. Two facts explain
this. First, transactions are enclosing several small code sec-
tions with reduction sentences which causes a barrier effect be-
tween transactions of different threads in ordered STMs. This

17

0.0

0.5

1.0

1.5

2.0

1 2 4 8 16
Threads

S
pe

ed
up

ReduxSTM CTI
ReduxSTM TS
TinySTM
TinySTM Ord.

ReduxSTM CTI ReduxSTM TS

0.0

0.5

1.0

1.5

2.0

1 2 4 8 16 1 2 4 8 16
Threads

S
pe

ed
up

Using Reduction support
Using Read+Write

(a) (b)

Figure 13: Charmm; (a) observed speedup (b) ReduxSTM speedup improvement using the support for reduction operations versus implementing the reductions as
write after read.

2 Threads 4 Threads 8 Threads 16 Threads

0

1

2

3

4

5

16 24 32 48 64 96 128 16 24 32 48 64 96 128 16 24 32 48 64 96 128 16 24 32 48 64 96 128
World Size

S
pe

ed
up

Global lock
ReduxSTM CTI
ReduxSTM TS
TinySTM
TinySTM Ord.

0

5

10

15

20

2 4 8 16
Threads

R
el

at
iv

e
sp

ee
du

p
B

es
t R

ed
ux

S
T

M
 w

.r.
t.

T
in

yS
T

M World Size
16x16 (Higher contention)
24x24
32x32
48x48
64x64
96x96
128x128 (Lower contention)

(a) (b)

Figure 14: Wormbench benchmark; (a) sensitivity to different world sizes, the smaller the world, the higher the contention; (b) summarized relative speedup (best
ReduxSTM version w.r.t. TinySTM-ordered) for different contention degree.

damages particularly the performance of ReduxSTM. Second,
the use of a queue to distribute the work adds some artificial
R-Rdx dependences due to a conditional check inside the re-
duction loop. This diminishes the capacity of ReduxSTM to
filter conflicts due to reductions. Notice, that both problems are
programming artifacts that could be overtaken if KMeans is re-
coded, as the algorithm by itself can be considered a histogram
reduction loop.

Another remarkable fact is that some of the codes require
at least virtual world consistency (VWC) to be executed cor-
rectly (Bayes, Yada, Indtruder) [56]. Fig. 16 shows the impact
in ReduxSTM-TS performance that relaxing consistency con-
ditions have in those codes where it can be safely done. Seri-
alizability obtains the best results in performance as the con-
sistency is more relaxed. At the other extreme opacity offers
very strong guarantees, but it demands a higher computational
effort. ReduxSTM encounters a good consistency balance with
VWC, that guarantees a reasonable consistency degree without
worsening too much performance.

5.7. SPEC2006

This subsection includes experiments with some inter-
esting loops from the SPEC CPU2006 benchmark suite.
The goal is to illustrate the thread-level speculative capa-
bilities of ReduxSTM, i.e., how ReduxSTM behaves in a
more general range of codes with no special emphasis in
reductions but suitable for speculative approaches. In this
context, the execution correctness is preserved by committing

transactions in the equivalent sequential order. The loops
have been selected from those analyzed in [14] which show
potential speedup using thread-level speculation techniques
according to previous studies [57]. Particularly, the cho-
sen loops are: pbeampp.c:165, quark stuff.c:1523,
fast algorithm.c:133, mv-search.c:394 and
vector.c:513 from benchmarks 429.mcf, 433.milc,
456.hmmer, 464.h264ref and 482.sphinx3, respectively.
They represent a significant portion of the execution time of
each benchmark.

The same methodology described previously for Twolf
(Sec. 5.3) has been followed in these experiments which were
carried out using the SPEC2006 reference workload. Note that,
although TinySTM (not ordered) has been included for com-
parative purposes, it may not yield correct results. Results are
shown in Fig. 17. Measured speedups and TCRs are referred to
the loops under study.

The 429.mfc loop features a RAW dependence that carries all
evaluated STM systems to serialization. Although ReduxSTM
could exploit a reduction sentence in the loop body, the use of
the reduction variable as index in a subsequent array access pre-
vent to gain any benefit (see Table 1). Extra optimizations like
data forwarding could be necessary to improve the performance
in this case [14].

No true data conflicts between iterations can be found in the
433.milc loop. In this case the STM system scalability is mainly
limited by false positives, especially for TinySTM which ex-
hibits a very low TCR. The lack of data locality in STM ver-

18

Table 4: STAMP suite arguments and features.
Bench Parameters #xact xact length R/W Set xact time Contention
Bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1 2518 Long Large High High

Genome -g16384 -s64 -n16777216 2139692 Medium Medium High Low
Intruder -a10 -l128 -n262144 -s1 23428126 Short Medium Medium High
KMeans -m40 -n40 -t0.00001 -i random-n65536-d32-c16 87382 Short Small Low Low

Labyrinth -i random-x512-y512-z7-n512 1026 Long Large High High
SSCA2 -s20 -i1.0 -u1.0 -l3 -p3 22362279 Short Small Low Low
Vacation -n2 -q90 -u98 -r1048576 -t4194304 4194304 Medium Medium High Low/Medium

Yada -a15 -i ttimeu1000000.2 2415298 Long Large High Medium

Bayes Genome Intruder KMeans (Low)

Labyrinth SSCA−2 Vacation Yada

1

2

3

4

2

4

6

1

2

3

0

1

2

2

4

6

8

0.25

0.50

0.75

1.00

0

2

4

6

8

0.5

1.0

1.5

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Threads

S
pe

ed
up

ReduxSTM CTI
ReduxSTM TS
TinySTM
TinySTM Ord.

Figure 15: STM comparison in STAMP suite.

Genome KMeans SSCA−2 Vacation

1.0

1.5

2.0

2.5

3.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.5

1.0

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Threads

S
pe

ed
up

Serializability
Opacity
VWC

Figure 16: ReduxSTM-TS speedup with different consistency constraints for those STAMP codes that can run with relaxed consistency.

sions with respect the sequential one also limits their perfor-
mance.

The 456.hmmer loop includes a recurrence that makes the
current iteration depend on the previous one (RAW depen-
dence). This causes the serialization of transactions in ordered
STM systems unless optimizations like data forwarding are
available. The higher TCR observed in not ordered TinySTM is
explained by those conflicts that do not emerge when sequential
order is not fulfilled (results of this version may be incorrect).

Potential WAW dependences can appear in the 456.h264ref
loop due to false positives. Although the ability of ReduxSTM
to filter this class of conflicts gives it advantage in terms of TCR
against TinySTM, the serialized commits prevent from reaching
a competitive speedup because of the low computational inten-

sity.

Conflicts in the 482.sphinx3 loop are scarce and involve
WAW dependences due to false positives. In this loop both ver-
sions of ReduxSTM obtain a very high TCR, as false conflicts
due to aliases in the Bloom filters or timestamp arrays corre-
spond to WAW, which can be filtered effectively. This is not the
case of TinySTM-ordered whose TCR is much lower.

Note that ReduxSTM does not suffer from some of the draw-
backs cited in [14] for thread-level speculation using HTM,
such as aborts caused by order inversion and WAR/WAW de-
pendences.

19

429.mcf 433.milc 456.hmmer 464.h264ref 482.sphinx3

0

1

2

3

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Threads

S
pe

ed
up

Global lock
ReduxSTM CTI
ReduxSTM TS
TinySTM *
TinySTM Ord.

429.mcf 433.milc 456.hmmer 464.h264ref 482.sphinx3

0.00

0.25

0.50

0.75

1.00

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16
Threads

T
C

R

ReduxSTM CTI
ReduxSTM TS
TinySTM *
TinySTM Ord.

∗Correct results are not guaranteed for not ordered TinySTM that is shown only as a reference

Figure 17: Speedup and TCR for selected loops from SPEC CPU2006.

6. Related Work

Over the last years, STM has been subject of an extensive
study that has led to an ample number of different STM algo-
rithms. A good taxonomy can be found in [58] which discusses
how this large number of available algorithms may even hin-
der its use, as each one exhibits advantages for some partic-
ular codes or memory patterns. ReduxSTM design, although
introducing new semantics, borrows some characteristics from
other STMs such as time-based STMs (TinySTM/LSA [59, 43],
TL2[42]), TML [60], NOrec [49] and InvalSTM [40]. The use
of TM as a means of speculative parallelization has been ex-
plored in the field of scientific computation as in [9, 61, 62]
and [63] as well as the parallelization of legacy or binary
code [64, 13].

As a precedent, speculative parallelization of loops like
LRPD [28] relies on a inspector/executor paradigm in which
iteration dependences are determined for static variables before
the runtime concurrently launches groups of non-conflicting it-
erations. LRPD is able to privatize reduction variables suitably.

More recently similar ideas has been reformulated in Priva-
teer [16], a TLS system able to support pointers and dynamic
data structures. Privateer introduces a privatization criterion,
that determines if a loop can be executed fully parallel, and a
reduction criterion capable of deal with reduction objects. Any
other cross-iteration dependence results in a violation of the the
privatization criterion, so the speculative execution is discarded,
and the loop is re-executed sequentially.

In the context of ordered TLS, IPOT (Implicit Parallelism
With Ordered Transactions) [7] is a programming model that
allows parallelizing a sequential code by defining chunks of in-
structions to be executed in parallel using TM-styled structures.

IPOT requires additional compiler and architectural support for
the speculative execution environment. IPOT features a set of
explicit hint annotations for chunks and defines several groups
of variables (read-only / private / reductions) that enables to re-
lax consistency properties.

Similarly to IPOT, ALTER [65] proposes another TM-style
TLS scheme. Variables can be annotated in order to use a more
permissive consistency checking like out-of-order (TLS with
no ordering) or stale read (ignoring read dependences). Also a
variable can be declared as reduction according to a reduction
operator. ALTER uses a fork-join scheme for the annotated
loops, executing chunks of iterations in TM-like structures and
validating results at the end of chunk.

Another TLS approach for reduction patterns is presented
in [26] focused on partial reduction variables (PRV). By means
of a PRV detection algorithm, speculative tasks are created,
which are executed in parallel. Threads stall when a reduc-
tion variable is accessed by a not reduction operation. Con-
flicts between reductions are not causing stalls as they operate
on private replicas that must be committed eventually. Specific
architectural support is needed.

In [32] it is explored the parallelization of pure histogram
reduction loops using TM as a form of selective privatiza-
tion. Since only reduction operations take place in these cases,
all conflict detection can be disabled during the execution of
the loop whose iterations have been mapped into transactional
chunks. The underlying STM system is TEPO [15], a scheduler
of transactions, built on top of TinySTM, that allows transaction
execution in a defined order.

Read-Modify-Write (RMW) without aborts [55] is a recent
STM proposal dealing with this operation pattern (RMW) of

20

which reductions operations are a particular case. RMW shares
with ReduxSTM some features such as declaring specific data
sets, degrading reductions to writes if a memory position is up-
dated at not reduction sentences, or deferring final accumula-
tions to commit phase. Nevertheless, RMW does not introduce
any order restriction between transactions and its scalability is
strongly restricted by the number of reduction variables that is
a limiting factor. The proposed algorithm may suffer also from
a not negligible computation replication of the modify function.

Concepts behind ReduxSTM are general enough to be ap-
plicable to any given STM. In contrast to systems like IPOT
or ALTER that introduce an own notation, ReduxSTM relies
on standard TM explicit primitives which simplifies the pro-
grammability. Being true that RMW concept is more general
than reductions themselves, ReduxSTM manages to achieve a
good trade-off that allows to provide additional parallelization
opportunities in irregular codes, while maintaining a reasonable
level of additional instrumentation and limiting the overhead.

7. Conclusions

Transactional memory (TM) is a parallel programming
paradigm suitable for being applied to irregular applications,
where exploitation of optimistic concurrency could be very ef-
fective as data dependences are usually unknown until run-time.
In this context, this work takes the way of improving TM by
adding specific support to deal efficiently with some common
memory access patterns. Specifically, we have focused on re-
duction patterns which are frequently found in the core of this
class of applications. With this purpose, ReduxSTM, a soft-
ware TM system, has been introduced. ReduxSTM combines
specific support for commutative and associative operators with
a mechanism for enforcing some transactional commit order,
needed when reduction patterns co-exist with other memory
patterns. In this way, the conflict manager is able to avoid many
of the transaction aborts caused by reductions.

An extensive experimental evaluation has shown that ideas
behind ReduxSTM can improve the performance of STM de-
signs. ReduxSTM has been compared to a state-of-the-art STM
system (TinySTM) for a wide set of benchmark codes, combin-
ing reduction patterns with other memory patterns in different
degrees. The obtained results encourage to include this type of
support in STM systems.

Acknowledgements

This work has been supported by the Government of Spain
with project TIN2013-42253-P.

References

[1] M. Herlihy, J. Moss, Transactional memory: Architectural support for
lock-free data structures, in: 20th Ann. Int’l. Symp. on Computer Archi-
tecture (ISCA’93), 1993, pp. 289–300.

[2] T. Harris, J. Larus, R. Rajwar, Transactional Memory, 2nd Ed., Morgan
& Claypool Publishers, USA, 2010.

[3] J. Larus, R. Rajwar, Transactional Memory, Morgan & Claypool Publish-
ers, USA, 2007.

[4] R. M. Yoo, C. J. Hughes, K. Lai, R. Rajwar, Performance evaluation of
Intel transactional synchronization extensions for high-performance com-
puting, in: Int’l. Conf. for High Performance Computing, Networking,
Storage and Analysis (SC’13), ACM Press, 2013, pp. 1–11.

[5] M. Ohmacht, A. Wang, T. Gooding, B. Nathanson, I. Nair, G. Janssen,
M. Schaal, B. Steinmacher-Burow, IBM Blue Gene/Q memory subsystem
with speculative execution and transactional memory, IBM J. on Research
and Development 57 (1/2) (2013) 7:1–12.

[6] H. Le, G. Guthrie, D. Williams, M. Michael, B. Frey, W. Starke,
C. May, R. Odaira, T. Nakaike, Transactional memory support in the IBM
POWER8 processor, IBM J. on Research and Development 59 (1) (2015)
8:1–14.

[7] C. von Praun, C. Ceze, C. Cascaval, Implicit parallelism with ordered
transactions, in: 12th ACM Symp. on Principles and Practice of Parallel
Programming (PPoPP’07), 2007, pp. 79–89.

[8] L. Porter, B. Choi, D. M. Tullsen, Mapping out a path from Hardware
Transactional Memory to Speculative Multithreading, in: 18th Int’l. Conf.
on Parallel Architectures and Compilation Techniques (PACT’09), 2009,
pp. 313–324.

[9] K. Nikas, N. Anastopoulos, G. Goumas, N. Koziris, Employing trans-
actional memory and helper threads to speedup Dijkstra’s algorithm, in:
38th Int’l Conf. on Parallel Processing (ICPP’09), 2009, pp. 388–395.

[10] M. Mehrara, J. Hao, P.-C. Hsu, S. Mahlke, Parallelizing sequential appli-
cations on commodity hardware using a low-cost software transactional
memory, in: 30th ACM SIGPLAN Conf. on Programming Language De-
sign and Implementation (PLDI’09), 2009, pp. 166–176.

[11] C. E. Oancea, A. Mycroft, T. Harris, A lightweight in-place implemen-
tation for software thread-level speculation, in: 21st Annual Symp. on
Parallelism in Algorithms and Architectures (SPAA’09), 2009, pp. 223–
232.

[12] J. Barreto, P. F. Dragojevic, R. Filipe, R. Guerraoui, Unifying thread-level
speculation and transactional memory, in: ACM/IFIP/USENIX 13th Int’l.
Middleware Conf. (Middleware’12), 2012, pp. 187–207.

[13] M. Saad, M. Mohamedin, B. Ravindran, HydraVM: extracting paral-
lelism from legacy sequential code using STM, in: 4th USENIX Work-
shop on Hot Topics in Parallelism (HotPar’12), 2012.

[14] R. Odaira, , T. Nakaike, Thread-level speculation on off-the-self hardware
transactional memory, in: IEEE Int’l. Symp. on Workload Characteriza-
tion (IISWC’14), 2014, pp. 212–221.

[15] M. A. Gonzalez-Mesa, E. Gutierrez, E. L. Zapata, O. Plata, Effective
transactional memory execution management for improved concurrency,
ACM Transactions on Architecture and Code Optimization 11 (3) (2014)
24.

[16] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, D. I. August, Speculative sep-
aration for privatization and reductions, in: 33rd ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI’12), 2012,
pp. 359–370.

[17] M. Schindewolf, A. Cohen, W. Karl, A. Marongiu, L. Benini, Towards
transactional memory support for gcc, in: GCC Research Opportunities
Workshop, 2009.

[18] H. Yu, L. Rauchwerger, An adaptive algorithm selection framework for
reduction parallelization, IEEE Trans. on Parallel and Distributed Sys-
tems 17 (10) (2006) 1084–1096.

[19] R. Jin, G. Yang, G. Agrawal, Shared memory parallelization of data min-
ing algorithms: Techniques, programming interface, and performance,
IEEE Trans. on Knowledge and Data Engineering 17 (1) (2005) 71–89.

[20] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bu, Maxi-
mizing multiprocessor performance with the SUIF compiler, IEEE Com-
puter 29 (12) (1996) 84–89.

[21] P. Feautrier, Array expansion, in: 2nd Int’l Conf. on Supercomputing
(ICS’88), 1988, pp. 429–441.

[22] H. Han, C. Tseng, Exploiting locality for irregular scientific codes, IEEE
Trans. on Parallel and Distributed Systems 17 (7) (2006) 606–618.

[23] E. Gutiérrez, O. Plata, E. Zapata, A compiler method for the parallel exe-
cution of irregular reductions in scalable shared memory multiprocessors,
in: 14th Int. Conf. on Supercomputing (ICS’00), 2000, pp. 78–87.

[24] L. Rauchwerger, Speculative parallelization of loops, in: Encyclopedia of
Parallel Computing, Springer, 2011, pp. 1901–1912.

[25] Systems performance evaluation cooperation. SPEC benchmarks,
http://www.spec.org, retrieved: 2015-07-19.

[26] L. Han, W. Liu, J. M. Tuck, Speculative parallelization of partial reduction

21

variables, in: 8th Annual IEEE/ACM Int’l. Symp. on Code Generation
and Optimization (CGO’10), 2010, pp. 141–150.

[27] C. Cao Minh, J. Chung, C. Kozyrakis, K. Olukotun, STAMP: Stanford
transactional applications for multi-processing, in: IEEE Int’l. Symp. on
Workload Characterization (IISWC’08), 2008, pp. 35–46.

[28] L. Rauchwerger, D. Padua, The LRPD test: speculative run-time paral-
lelization of loops with privatization and reduction parallelization, IEEE
Transactions on Parallel and Distributed Systems 10 (2) (1999) 160–180.

[29] V. Ravi, G. Agrawal, Integrating and optimizing transactional memory in
a data mining middleware, in: Int’l. Conf. on High Performance Comput-
ing (HiPC’09), 2009, pp. 215–224.

[30] S. Kim, H. Han, K.-M. Choe, Region-based parallelization of irregular
reductions on explicitly managed memory hierarchies, The Journal of Su-
percomputing 56 (1) (2011) 25–55.

[31] W. Baek, C. Minh, M. Trautmann, C. Kozyrakis, K. Olukotun, The
OpenTM transactional application programming interface, in: 16th Int’l.
Conf. on Parallel Architectures and Compilation Techniques (PACT’07),
2007, pp. 376–387.

[32] M. Gonzalez-Mesa, R. Quislant, E. Gutierrez, O. Plata, Dealing with
reduction operations using transactional memory, in: 25th Int’l. Symp.
on Computer Architecture and High Performance Computing (SBAC-
PAD’13), 2013, pp. 128–135.

[33] M. L. Scott, Sequential specification of transactional memory seman-
tics, in: 1st ACM SIGPLAN Workshop on Transactional Computing
(TRANSACT’06), 2006.

[34] P. Fatourou, M. Iaremko, E. Kanellou, E. Kosmas, Algorithmic tech-
niques in STM design, in: Transactional Memory. Foundations, Algo-
rithms, Tools, and Applications, Springer, 2015, pp. 101–126.

[35] M. F. Spear, V. J. Marathe, W. N. Scherer III, M. L. Scott, Conflict detec-
tion and validation strategies for software transactional memory, in: 20th
Int’l. Symp. on Distributed Computing (DISC’06), 2006, pp. 179–193.

[36] H. E. Ramadan, I. Roy, M. Herlihy, E. Witchel, Committing conflicting
transactions in an STM, in: 14th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (PPoPP’09), 2009, pp. 163–172.

[37] M. F. Spear, L. Dalessandro, V. J. Marathe, M. L. Scott, A comprehensive
strategy for contention management in software transactional memory, in:
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’09), 2009, pp. 141–150.

[38] R. Guerraoui, M. Kapalka, On the correctness of transactional memory,
in: 13th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP’08), 2008, pp. 175–184.

[39] D. Dziuma, P. Fatourou, E. Kanellou, Consistency for transactional mem-
ory computing, in: Transactional Memory. Foundations, Algorithms,
Tools, and Applications, Springer, 2015, pp. 3–31.

[40] J. E. Gottschlich, M. Vachharajani, J. G. Siek, An efficient soft-
ware transactional memory using commit-time invalidation, in: 8th
Ann. IEEE/ACM Int’l. Symp. on Code Generation and Optimization
(CGO’10), 2010, pp. 101–110.

[41] D. Imbs, M. Raynal, Virtual world consistency: A condition for STM sys-
tems (with a versatile protocol with invisible read operations), Theoretical
Computer Science 444 (2012) 113–127.

[42] D. Dice, O. Shalev, N. Shavit, Transactional locking ii, in: 20th Int’l.
Conf. on Distributed Computing (DISC’06), 2006, pp. 194–208.

[43] P. Felber, C. Fetzer, P. Marlier, T. Riegel, Time-based software transac-
tional memory, IEEE Trans. on Parallel and Distributed Systems 21 (12)
(2010) 1793–1807.

[44] M. F. Spear, M. M. Michael, M. L. Scott, P. Wu, Reducing mem-
ory ordering overheads in software transactional memory, in: 7th An-
nual IEEE/ACM Int’l. Symp. on Code Generation and Optimization
(CGO’09), 2009, pp. 13–24.

[45] L. Ceze, J. Tuck, J. Torrellas, C. Cascaval, Bulk disambiguation of spec-
ulative threads in multiprocessors, ACM SIGARCH Computer Architec-
ture News 34 (2) (2006) 227–238.

[46] M. F. Spear, K. Kelsey, T. Bai, L. Dalessandro, M. L. Scott, C. Ding,
P. Wu, Fastpath speculative parallelization, in: Int’l. Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC’09), 2009, pp. 338–
352.

[47] R. Quislant, E. Gutierrez, O. Plata, E. L. Zapata, Hardware signature de-
signs to deal with asymmetry in transactional data sets, IEEE Transactions
on Parallel and Distributed Systems 24 (3) (2013) 506–519.

[48] C. Lameter, Effective synchronization on Linux/NUMA systems, in:

Gelato Conference, 2005.
[49] L. Dalessandro, M. F. Spear, M. L. Scott, NOrec: Streamlining STM by

abolishing ownership records, in: 15th ACM SIGPLAN Symp. on Princi-
ples and Practice of Parallel Programming (PPoPP’10), 2010, pp. 67–78.

[50] A. Fog, Instructions for ASMlib: a multiplatform library of highly opti-
mized functions for C and C++, Technical University of Denmark, ver-
sion 2.34 (2013).

[51] L. Dalessandro, D. Dice, M. Scott, N. Shavit, M. Spear, Transactional
mutex locks, in: 16th Int’l. Euro-Par Conf. (EuroPar’10), 2010, pp. 2–13.

[52] T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, K. Olukotun, Eigen-
bench: A simple exploration tool for orthogonal TM characteristics, in:
IEEE Int’l. Symp. on Workload Characterization (IISWC’10), 2010, pp.
1–11.

[53] F. Zyulkyarov, A. Cristal, S. Cvijic, E. Ayguade, M. Valero, O. Unsal,
T. Harris, WormBench - a configurable workload for evaluating transac-
tional memory systems, in: 17th Int’l. Conf. on Parallel Architectures and
Compilation Techniques (PACT’08), 2008, pp. 61–68.

[54] R. Das, Y.-S. Hwang, J. Saltz, A. Sussman, Runtime and compiler sup-
port for irregular computations, in: Compiler optimizations for scalable
parallel systems, Springer, 2001, pp. 751–778.

[55] W. Ruan, Y. Liu, M. Spear, Transactional read-modify-write without
aborts, ACM Transactions on Architecture and Code Optimization 11 (4)
(2015) 1–24.

[56] W. Ruan, Y. Liu, M. Spear, STAMP need not be considered harmful, in:
9th ACM SIGPLAN Workshop on Transactional Computing (TRANS-
ACT’14), 2014.

[57] V. Packirisamy, A. Zhai, W. C. Hsu, P. C. Yew, T. F. Ngai, Explor-
ing speculative parallelism in SPEC2006, in: ISPASS, 2009, pp. 77–88.
doi:10.1109/ISPASS.2009.4919640.

[58] Q. Wang, S. Kulkarni, J. Cavazos, M. Spear, A transactional memory
with automatic performance tuning, ACM Transactions on Architecture
and Code Optimization 8 (4) (2012) 1–23.

[59] P. Felber, C. Fetzer, T. Riegel, Dynamic performance tuning of word-
based software transactional memory, in: 13th ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming (PPoPP’08), 2008,
pp. 237–246.

[60] M. F. Spear, A. Shriraman, L. Dalessandro, M. L. Scott, Transactional
mutex locks, in: 4th ACM SIGPLAN Workshop on Transactional Com-
puting (TRANSACT’14), 2009.

[61] K. Ljungkvist, M. Tillenius, D. Black-Schaffer, S. Holmgren, M. Karls-
son, E. Larsson, Using hardware transactional memory for high-
performance computing, in: IEEE Int’l. Symp. on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW’11), 2011, pp. 1660–
1667.

[62] J. Sreeram, S. Pande, Parallelizing a real-time physics engine using trans-
actional memory, in: 17th Int’l. Euro-Par Conference (Euro-Par’11),
2011, pp. 206–223.

[63] B. L. Bihari, Transactional memory for unstructured mesh simulations,
Journal of Scientific Computing 54 (2-3) (2013) 311–332.

[64] M. DeVuyst, D. M. Tullsen, S. W. Kim, Runtime parallelization of legacy
code on a transactional memory system, in: 6th Int’l. Conf. on High
Performance and Embedded Architectures and Compilers (HiPEAC’11),
2011, pp. 127–136.

[65] A. Udupa, K. Rajan, W. Thies, ALTER: Exploiting breakable depen-
dences for parallelization, in: 32nd ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation (PLDI’11), 2011, pp. 480–
491.

22

