
Performance Optimization Strategies
for Transactional Memory Applications

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Martin Otto Schindewolf

aus Eschwege

Tag der mündlichen Prüfung: 19. April 2013

Erster Gutachter: Prof. Dr. Wolfgang Karl

Zweiter Gutachter: Prof. Dr. Albert Cohen

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum der Helmholtz-Gesellschaft www.kit.edu





Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller bereits
bekannte Hilfe selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau
angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert
oder mit Abänderung entnommen wurde.

Karlsruhe, den 4. März 2013

Martin Schindewolf





Abstract

Transactional Memory (TM) has been proposed as an architectural extension to enable
lock-free data structures. With the ubiquity of multi-core systems, the idea of TM gains new
momentum. The motivation for the invention of TM was to simplify the synchronization
of parallel threads in a shared memory system. TM features optimistic concurrency as
opposed to the pessimistic concurrency with traditional locking. This optimistic approach
lets two transactions execute in parallel and assumes that there is no data race. In case of a
data race, e.g., both transactions write to the same address, this conflict must be detected
and resolved. Therefore a TM run time system monitors shared memory accesses inside
transactions. These TM systems can be implemented in software (STM), hardware (HTM)
or as a hybrid combination of both. Most of the research in TM focuses on language
extensions, compiler support, and the optimization of algorithmic details of TM systems.
Each of the resulting TM systems has a different performance characteristic and comes
with a number of parameters that can be tuned. This optimization space overwhelms the
application developer who has been the target audience for the invention of TM. In contrast
to other research activities, this thesis proposes TM tools that are candidates to bridge the
gap between the application developer and the designer of the TM system. These tools
for TM provide insights in the run time behavior of the TM application and guide the
application developer to optimize the TM application.

In contrast to related work presenting tools for a specific TM system coupled with a
programming language, this thesis presents solutions that cover multiple TM systems
(Software, Hardware, and hybrid TM) and account for different parameter settings in each
of the TM systems. Moreover, the proposed methods and strategies use information of all
different layers of the TM software stack. Therefore, static information, information about
the run time behavior, and expert-level knowledge need to be extracted to develop these
new methods and strategies for the optimization of TM applications. Extracting and using
this information poses the following challenges that need to be addressed.

The first challenge is to capture the genuine TM application’s behavior at run time. This
is especially important because transactions are sensitive to artificially introduced delays
of a thread which may cause an introduced TM conflict. This may lead to a recorded
application’s behavior that is biased through the tracing machinery. Therefore, a lightweight
trace generation scheme with a small probe-effect needs to be developed and evaluated.
This thesis presents similar solutions for STM and hybrid TM that generate event traces.
For STM, the logging of frequently occurring events, such as TM loads and stores, quickly
saturates the write bandwidth of the hard disk. Thus, a reduction of the amount of data to be
written to hard disk needs to be achieved. Therefore, we research how these events can be
compressed online without disturbing the application. A multi-threaded trace compression
scheme is designed, implemented, and evaluated. We enhance the TinySTM, a word-based
open source STM, with tracing facilities. Due to the lightweight and compressing tracing

i



ii

scheme, the resulting TracingTinySTM generates event traces that capture the genuine
TM application’s behavior. For an FPGA-based hybrid TM system, called TMbox, a
low-overhead tracing solution is shown. Each processing element is enhanced with an
event generation unit for monitoring. When an instruction of interest is encountered, a
corresponding time-stamped event is generated and passed on to the log unit. This unit
uses idle times on the bus to transfer it to the memory of the host machine. Although all
methods are tailored to and applied in the context of TM, they are universally applicable
in a different context. Example application areas are the monitoring of arbitrary events in
an FPGA-based processor prototype or the logging and compressing of events in a math
library.

The second challenge arises with the release of IBM’s new Blue Gene/Q architecture with
HTM support. We establish a set of best practices for the new architecture so that the
application developer can exploit the full potential of the architecture including the TM
subsystem. For this purpose, we introduce a new benchmark, CLOMP-TM, that has a
series of parameters that allow us to explore varying transaction granularities and conflict
rates, coupled with typical computational kernels found in scientific codes. This enables
new insights through evaluating the TM system and comparing the performance with other
synchronization primitives of OpenMP. Further, this new BG/Q architecture also requires
tool support to enable optimizations of scientific applications. A trace-based solution to
capture the run time behavior on a per event basis is not feasible for this proprietary HTM
system. This HTM system requires a complete software stack, including compiler and run
time system. Thus, we design, implement and evaluate three different tools for TM that
enable programmers to explore the subtleties of TM execution and contribute the following
to the state-of-the-art:

• the first tool that profiles applications using MPI and OpenMP with TM on BG/Q,

• a tracing tool for TM that enables in-depth inspection of thread-level execution
and utilization of the architecture through visualization with the state-of-the-art
visualization tool Vampir,

• a tool that measures overheads associated with TM, designed to dissect these over-
heads and direct optimization efforts for the TM stack.

These tools uncover the subtle interaction of the TM system and the prefetching on BG/Q
and help to study the implications for designing applications and choosing the TM mode
of execution. Moreover, these tools enable to obtain a comprehensive understanding of
the performance of synchronization mechanisms in LULESH, a Lagrange hydrodynamics
proxy application, and find the cause for the missing performance with TM.

The third challenge is to correlate the gathered TM characteristics with microarchitecture
events for the optimization of TM applications using STMs. Although this correlation
is not new by itself, it is extremely helpful and has not been researched extensively in
this context. Besides choosing well-suited parameters to monitor the microarchitecture,
the correct interpretation of the obtained values is of key importance. To simplify the
optimization for humans, the Visualization Of TM Applications (VisOTMA) framework is
developed that visualizes these traces and enables the programmer to identify frequently
conflicting transactions and the corresponding values of microarchitecture parameters in a
post-processing step.

The visualization of this aggregated data needs to be achieved in a way that an inexperienced
as well as an experienced programmer can identify pathological execution patterns – posing

ii



iii

the fourth challenge. So far optimizations have been carried out by TM experts with
excellent knowledge of the underlying TM system. An inexperienced programmer does
not have or may not be willing to acquire the knowledge of the TM system. Thus, the
inexperienced programmer follows a trial-and-error strategy to optimize the TM application.
To speedup this process, we invent EigenOpt – an exploration tool based on EigenBench
– as part of the VisOTMA framework. With the help of EigenOpt, any programmer can
capture the TM characteristic of the application in terms of parameters for Eigenbench.
These parameters combined with Eigenbench are straightforwardly used to explore the
space available through optimizations. With this tool, unrewarding optimization directions
can be excluded without modifying the application. In this thesis, we will research how to
identify and avoid optimization attempts with diminishing returns. This will speedup the
optimization process for an inexperienced programmer and also yield new insights for an
experienced one.

The fifth challenge is to detect and exploit a potential phase behavior of TM applications
and integrate this analysis in the VisOTMA framework. In case the behavior of the
TM application has periods with high and low conflict probability, this behavior of the
application can be detected and exploited. Exploiting these phases is motivated through
the different proposed TM designs: optimistic conflict detection schemes detect conflicts
at commit-time whereas pessimistic schemes check for conflicts at encounter-time. In
the optimistic case, a conflict early in the execution of a transaction is noticed at commit
time so that computations are performed that have to be undone. The wasted work in this
transaction can be reduced, when switching from the optimistic to the pessimistic scheme.
In this thesis, we transfer algorithms, Signal Analysis and Wavelet-based classification,
that have been proposed for phase detection in other contexts, to TM. These enable the
offline detection of a TM phase behavior.

To complement the information retrieved in the above challenges, we gather and interpret
static information. First, we design and implement initial support for Transactional Memory
in GCC. This freely available support may provide the baseline for a wide-spread adoption
of TM. The original GTM design, a design for the integration of TM in the programming
language C with GCC, is presented, implemented, and evaluated. Second, we research how
to exploit static information inside of a compiler to select suited STM parameters to project
the run time behavior of that TM application and give advice to the application developer.
This approach is called MAPT for analysis of Memory Access Patterns in Transactions
and helps to select an STM parameter at compile-time.

In short the main contributions of this thesis are the following:

• a tracing methodology for STM that captures the genuine TM application’s behavior
– in a way that generating traces has a lower influence on the TM application and a
higher throughput than a comparable Pin tool – while at the same time optionally
employing compression algorithms,

• a low-overhead tracing solution for hybrid TM that exploits the properties of the
TMbox architecture to achieve low-intrusiveness and enables a guided optimization
process through visualization that yields a relative performance gain of 24.1 % when
moving from STM-only to a hybrid-ETL variant on TMbox,

• a set of best practices that describes how to use TM on IBM’s new Blue Gene/Q
architecture with HTM support. Applying these practices yields a speedup of 1.22
over a simple transactional version of a Monte Carlo Benchmark and a speedup of

iii



iv

4.4 for an optimized TM version of a Smoothed Particle Hydrodynamics method
from the PARSEC suite over a simple TM version. Additionally three tools are
specifically designed for the evaluation and optimization of TM performance that
highlight the interaction of TM and prefetching on BG/Q and help to identify the
cause for the missing performance with TM in a Lagrange hydrodynamics proxy
application,

• a novel framework for the optimization of STM applications (VisOTMA) that pro-
vides the following additional features

– visualization of TM applications to identify pathological behavior that can help
to tune the transaction’s size in a way that the tuned TM version of a simulated
fluid flow benchmark, implemented with a smoothed particle hydrodynamics
method, yields a speedup of 1.43 over the initial TM version,

– correlation of TM characteristics with microarchitecture events to better steer
the optimization process and gain insights in the run time behavior and the
applicability of STM to two variants of the method of Conjugate Gradients
and reveal details whether the changed utilization of the microarchitecture
is due to an altered convergence behavior or the choice of a different algo-
rithmic formulation while at the same time comparing TM to other means of
synchronization,

– EigenOpt, an exploration tool that speeds up the optimization process for
inexperienced programmers and excludes directions with diminishing returns
which also helps experienced programmers,

– algorithms for the detection of phase behavior in TM applications uncovering
the additional potential of exploiting the resulting phase changes through
adaptation of the TM system,

• design, implementation, and evaluation of inital support for TM in the GCC compiler,

• a new approach that gathers and exploits static information to select suited STM pa-
rameters and speedup the run time of the application yielding a relative improvement
in execution time of 14.7 % for a transactional K-means clustering algorithm and
16.9 % for learning a Bayesian network implemented with transactions.

iv



Zusammenfassung

Transactional Memory (TM) wurde als eine Architekturerweiterung vorgeschlagen, die die
Verwendung von Datenstrukturen ohne Sperren ermöglichen soll. Durch die Allgegenwart
von heutigen Mehrkernsystemen bekommt diese Idee neuen Schwung. Als Motivation
für die Erfindung von TM diente die zu vereinfachende Synchronisation von mehreren
parallel ablaufenden Fäden in einem System mit gemeinsam verwendetem Speicher. TM
unterstützt hierbei einen optimistischen Ablauf der Transaktionen, welcher im Gegensatz
zum pessimistischen Ablauf keinen wechselseitigen Ausschluss der Fäden erzwingt und
somit eine parallele Abarbeitung unter der Bedingung, dass keine Wettlaufsituation auftritt,
ermöglicht. Im Fall einer solchen Wettlaufsituation, die zum Beispiel dadurch entstehen
kann, dass zwei Transaktionen auf die gleiche Speicherstelle schreiben, führt dies zu einem
Konflikt der beiden Transaktionen, der erkannt und aufgelöst werden muss. Hierfür gibt es
ein TM-Laufzeitsystem, welches die Zugriffe auf gemeinsam verwendeten Speicher inner-
halb von Transaktionen überwacht. Diese Laufzeitsysteme für TM können in Software,
kurz STM, Hardware, kurz HTM, oder als Hybridsystem realisiert werden. Die meisten
der Forschungssysteme im Bereich von TM sind spezialisiert auf Spracherweiterungen,
Unterstützung durch Übersetzer oder die Optimierung von algorithmischen Details des
TM-Systems. Jedes der resultierenden TM-Systeme besitzt eine unterschiedliche Leis-
tungscharakteristik und eine Vielzahl von Parametern, die abgestimmt werden können. Der
hieraus resultierende Optimierungsraum überwältigt den Anwendungsprogrammierer, der
jedoch das Zielpublikum für die Einführung von TM darstellte. Im Gegensatz zu anderen
Forschungsaktivitäten beschäftigt sich diese Arbeit mit Werkzeugen für TM, welche die
Lücke zwischen dem Anwendungsprogrammierer und dem Entwickler des TM-Systems
überbrücken sollen. Diese Werkzeuge ermöglichen Einblicke in das Laufzeitverhalten
einer Anwendung mit TM und leiten den Anwendungsentwickler zur Optimierung der
TM-Anwendung an.

Im Gegensatz zu anderen verwandten Arbeiten, die die Werkzeuge auf eine bestimmte
Kombination von Programmiersprache und TM-System zuschneiden, präsentiert diese
Arbeit Lösungen für mehrere TM-Systeme (Software, Hardware und hybride) und be-
zieht das Setzen von unterschiedlichen Parametern für jedes dieser TM-Systeme mit ein.
Zudem verwenden die vorgeschlagenen Methoden und Verfahren zur Optimierung von
TM-Anwendungen Informationen von allen Schichten des Software-Systems. Statische
Informationen, Informationen über das Laufzeitverhalten der Anwendung, sowie Experten-
wissen müssen extrahiert und gesammelt werden, um diese neuen Methoden und Strategien
zur Optimierung von TM-Anwendungen zu entwickeln. Das Erheben und Verwenden der
benötigten Informationen verlangt nach der Bewältigung der folgenden Herausforderungen.

Als erste Herausforderung muss das unverfälschte Laufzeitverhalten der TM-Anwendung
festgehalten werden. Dieses ist von hoher Bedeutung, weil Transaktionen sehr empfind-
lich auf eingeführte Verzögerungen eines Fadens reagieren, wodurch künstliche Konflikte

v



vi

mit anderen Transaktionen ausgelöst werden können. Hierdurch kann das aufgezeichnete
Anwendungsverhalten durch die Aufzeichnungsmechanismen selbst verfälscht werden.
Folglich muss eine leichtgewichtige Lösung für das Erstellen von Spurdateien, verbunden
mit einer geringen Verfälschung der Anwendung, entwickelt und ausgewertet werden.
Diese Arbeit präsentiert ähnliche Lösungen für STM- und hybride TM-Systeme, welche
Spurdateien der Ereignisse der TM-Anwendung erzeugen. Für das STM-System wird
für die Aufzeichnung der häufig vorkommenden Ereignisse, wie beispielsweise transak-
tionale Lese- und Schreibzugriffe, die Bandbreitenbeschränkung der Festplatte schnell
zum Flaschenhals. Um diesem entgegenzuwirken, muss eine Reduktion der Daten, die
auf die Festplatte geschrieben werden, erreicht werden. Hierfür erforschen wir wie diese
Ereignisse zur Laufzeit komprimiert werden können, ohne die Anwendung damit zu stören.
Ein mehrfädiges Kompressionsschema für Spuren von TM-Ereignissen wird entworfen,
implementiert und ausgewertet. Wir erweitern TinySTM, eine Wort-basierte, quelloffene
STM-Implementierung mit der Infrastruktur zum Erstellen von TM-Ereignisspuren. In Fol-
ge des leichtgewichtigen und komprimierenden Schemas für Spuren von TM-Ereignissen,
generiert die resultierende TracingTinySTM Ereignis-Dateien, die das unverfälschte Ver-
halten der TM-Anwendung wiedergeben. Eine Lösung zur Spurerstellung mit geringem
Mehraufwand wird für ein FPGA-basiertes hybrides TM-System, genannt TMbox, de-
monstriert. Jedes Rechenelement wird um eine Überwachungseinheit erweitert, die bei der
Ausführung interessanter Instruktionen ein entsprechendes Ereignis generiert. Falls eine
überwachte Instruktion auftritt, wird ein Zeitstempel generiert und gemeinsam mit dem
Ereignis an die Aufzeichnungseinheit weitergegeben. Diese Einheit benutzt Leerzeiten auf
dem Bus, um diese Ereignisse an den Speicher des Hauptcomputers zu schicken. Obwohl
diese Methoden auf den speziellen Kontext von TM zugeschnitten sind und dort angewen-
det werden, sind sie universell und könnten auch in einem anderen Kontext angewendet
werden. Andere Anwendungsgebiete sind das Überwachen von beliebigen Ereignissen in
einem FPGA-basierten Prozessor-Prototypen oder das Aufzeichnen und Komprimieren
von Ereignissen in einer Mathematikbibliothek.

Die zweite Herausforderung entsteht mit der Veröffentlichung der Blue Gene/Q Architek-
tur, welche eine Unterstützung für HTM besitzt, durch IBM. Wir erstellen eine Menge an
bewährten Vorgehensweisen, die es dem Anwendungsentwickler ermöglichen, das volle
Potential der Architektur inklusive des TM-Systems zu nutzen. Zu diesem Zweck führen
wir einen neuen Benchmark, genannt CLOMP-TM, ein, welcher über eine Vielzahl an Pa-
rametern verfügt, die es ermöglichen Transaktionen mit unterschiedlichen Granularitäten,
Konfliktraten und verschiedenen Rechenkernen, welche im wissenschaftlichen Rechnen
Verwendung finden, zu erforschen. Dieses ermöglicht neue Einsichten durch die Evaluation
des TM-Systems und den Vergleich der Leistung mit anderen Synchronisationprimitiven,
welche von OpenMP unterstützt werden. Zudem benötigt diese neue BG/Q Architektur
auch TM-spezifische Werkzeugunterstützung, um die Optimierung von wissenschaftli-
chen Anwendungen zu ermöglichen. Eine Lösung, die auf der Erzeugung von Spuren von
TM-Ereignissen basiert, um das Laufzeitverhalten festzuhalten, ist für dieses proprietä-
re System nicht bzw. nur eingeschränkt durchführbar. Das HTM-System benötigt eine
vollständige Softwareunterstützung, die Übersetzer und Laufzeitsystem umfasst. Folglich
entwerfen, implementieren und bewerten wir drei verschiedene Werkzeuge für TM, welche
es Programmierern ermöglichen, die Feinheiten der Ausführung mittels TM zu ergründen
und tragen damit Folgendes zum Stand der Forschung bei:

• das erste Werkzeug, welches das Erstellen von Laufzeitprofilen von Anwendungen
mit MPI, OpenMP und TM auf der BG/Q Architektur ermöglicht,

vi



vii

• ein Werkzeug für TM, welches durch Ereignisspuren von TM Statistiken in Kombina-
tion mit der Auslastung der Architektur, welche auf der Granularität des ausführenden
Fadens erhoben werden, eine detaillierte Analyse mittels des Visualisierungswerk-
zeugs Vampir, das dem Stand der Technik entspricht, ermöglicht und

• ein Werkzeug, das den Mehraufwand, der mit TM einhergeht, misst, den jeweiligen
Ausführungsphasen einer Transaktion zuordnet und damit ermöglicht, dass Opti-
mierungsversuche direkt auf die relevanten Teile der Softwareschichten abzielen
können.

Diese Werkzeuge enthüllen die Wechselwirkung zwischen TM-System und dem Vorab-
laden von Werten aus dem Speicher auf der BG/Q Architektur und helfen dabei, die
Auswirkungen von Entwurfsentscheidungen für die Anwendung und die Auswahl des
TM Ausführungsmodus zu verstehen. Darüber hinausgehend ermöglichen diese Werkzeu-
ge ein umfassenderes Verständnis der Synchronisationsmechanismen in LULESH, einer
Lagrange-Hydrodynamik-Stellvertreter-Anwendung und identifizieren den Grund für die
fehlende Leistung mit TM.

Die dritte Herausforderung ist die Korrelation der gesammelten TM-Charakteristiken mit
Ereignissen, die das Verhalten der Mikroarchitektur beschreiben, um dieses zur Optimie-
rung von STM-Anwendungen zu verwenden. Obwohl diese Art der Korrelation selbst
nicht neu ist, ist sie extrem hilfreich und wurde in diesem Kontext noch nicht weitergehend
untersucht. Die korrekte Interpretation der erhobenen Werte ist neben der Auswahl von
geeigneten Parametern der Mikroarchitektur, welche dann überwacht werden, von höchster
Bedeutung. Um die Optimierung für Menschen zu vereinfachen, entwickeln wir das Rah-
menwerk VisOTMA zur Visualisierung von TM-Anwendungen. Dieses ermöglicht es in
einem Nachbearbeitungsschritt dem Programmierer häufig konfligierende Transaktionen
und die zugehörigen Werte der Mikroarchitekturparameter zu identifizieren.

Die Visualisierung dieser aggregierten Daten muss so erfolgen, dass sogar ein unerfahrener
Programmierer pathologische Ausführungsmuster erkennen kann. Dies stellt die vierte
Herausforderung dar. Bisher wurden Optimierungen von TM-Experten vorgenommen,
die ein ausgezeichnetes Wissen über das zugrundeliegende TM-System hatten. Ein uner-
fahrener Programmierer hat dieses Wissen über das TM-System nicht oder will es sich
nicht aneignen. Folglich verfolgt dieser bei der Optimierung der TM-Anwendung eine
Strategie, die auf Versuch und Irrtum beruht. Um diesen Prozess zu beschleunigen, führen
wir EigenOpt ein. EigenOpt ist ein Erkundungswerkzeug, welches auf EigenBench beruht
und in das VisOTMA-Rahmenwerk integriert wird. Mit der Hilfe von EigenOpt kann jeder
Programmierer das charakteristische TM-Laufzeitverhalten in Form von Parametern für
EigenBench festhalten. Diese Parameter in Verbindung mit EigenBench werden kanonisch
verwendet, um den Raum für Optimierungen zu erforschen. Mit diesem Werkzeug können
Optimierungsansätze, die keinen Erfolg versprechen, ausgeschlossen werden, ohne die
Anwendung zu modifizieren. In dieser Arbeit werden wir erforschen, wie man das charak-
teristische TM-Anwendungsverhalten automatisiert festhält und Optimierungsansätze ohne
Aussicht auf Gewinn identifiziert und vermeidet. Dies wird den Optimierungsvorgang für
einen unerfahrenen Programmierer beschleunigen und neue Einsichten für einen erfahrenen
Programmierer bereithalten.

Die fünfte Herausforderung besteht in der Detektion und dem Ausnutzen eines potentiellen
Phasenverhaltens der TM-Anwendung und in der Integration dieser Analyse in das beste-
hende Rahmenwerk VisOTMA. Für den Fall, dass das TM-Anwendungsverhalten Perioden

vii



viii

mit hohem und niedrigem Konfliktpotential aufweist, kann dieses Anwendungsverhalten
erkannt und eventuell ausgenutzt werden. Die Ausnutzung dieses Phasenverhaltens wird
motiviert durch die verschiedenen TM-Entwürfe: eine optimistische Konflikterkennung er-
kennt Konflikte erst zur Zeit des Abschlusses der Transaktion, während eine pessimistische
Konflikterkennung beim Zugriff auf die Daten bereits Konflikte erkennt. Wenn im optimis-
tischen Fall ein Konflikt früh in der Ausführung einer Transaktion auftritt und erst beim
Abschluss der Transaktion erkannt wird, werden weitere Berechnungen angestellt, die zum
Ende der Transaktion wieder rückgängig gemacht werden müssen. Diese verschwendete
Arbeit in dieser Transaktion kann verringert werden, wenn man von dem optimistischen
zum pessimistischen Schema wechselt. In dieser Arbeit übertragen wir Algorithmen wie
die Signal Analyse und eine Klassifikation basierend auf Wavelets, welche für die Pha-
senerkennung in anderen Bereichen vorgeschlagen wurden, auf TM. Diese Algorithmen
ermöglichen die Erkennung eines Phasenverhaltens in TM.

Um die Informationen, die in den vorhergehenden Herausforderungen erhoben wurden zu
ergänzen, sammeln und interpretieren wir auch statische Informationen. Zuerst entwerfen
und implementieren wir eine Unterstützung von Transactional Memory im GCC. Diese frei
verfügbare Unterstützung, genannt GTM, kann als Basis für einen weitverbreiteten Einsatz
von TM dienen. Der ursprüngliche Entwurf von GTM wird präsentiert, implementiert
und ausgewertet. Zweitens erforschen wir, wie man statische Informationen innerhalb des
Übersetzers verwenden kann, um geeignete Parameter einer STM-Bibliothek anhand des
erwarteten Laufzeitverhaltens der TM-Anwendung auszuwählen und den Anwendungs-
programmierer damit zu unterstützen. Dieser Ansatz wird von uns MAPT genannt, da
er die Speicherzugriffsmuster in Transaktionen analysiert und bei der Selektion eines
STM-Parameters zur Übersetzungszeit unterstützt.

Zusammengefasst sind die Hauptbeiträge dieser Arbeit die folgenden:

• eine Methodik zur Spurerstellung von STM-Ereignissen, die das unverfälschte TM-
Anwendungsverhalten in einer Form festhält, so dass diese einen geringeren Einfluss
auf die TM-Anwendung und einen höheren Durchsatz zur Folge hat als ein vergleich-
bares Werkzeug, welches auf dem dynamischen Binärinstrumentierer Pin basiert,
wobei bei unserem Ansatz optional Kompressionsalgorithmen zum Einsatz kommen,

• eine Lösung zur Spurerstellung von Ereignissen in hybriden TM-Systemen, die
wenig Overhead erzeugt und Eigenschaften der TMbox Architektur ausnutzt, um
eine geringe Beeinflussung und eine Anleitung zum Optimierungsprozess mittels
Visualisierung bereitstellt, die einen relativen Leistungsgewinn von 24.1 % zur Folge
hat, wenn man von einer Ausführung in STM zu einer hybrid-ETL Variante auf
TMbox wechselt,

• eine Menge an bewährten Vorgehensweisen, die beschreiben, wie man das neue
HTM-System der Blue Gene/Q Architektur verwendet. Die Anwendung dieser
Vorgehensweisen zeigt einen Gewinn von 1.22 im Vergleich zu einer einfachen
transaktionalen Version eines Monte-Carlo-Benchmarks und einen Gewinn von 4.4
für eine optimierte TM-Version einer geglätteten Partikelmethode der Hydrodynamik
aus der PARSEC-Sammlung. Zusätzlich werden drei Werkzeuge speziell für die
Auswertung und Optimierung der Leistung von TM entworfen, so dass diese die
Interaktionen zwischen TM-System und dem Vorabladen von Werten aus dem Spei-
cher auf der BG/Q beleuchten und helfen den Grund für die fehlende Leistung von
TM in einer Lagrange-Hydrodynamik-Stellvertreter-Anwendung zu identifizieren,

viii



ix

• ein neues Rahmenwerk zur Optimierung von STM-Anwendungen (VisOTMA),
welches die folgenden zusätzlichen Eigenschaften besitzt:

– die Visualisierung des TM-Anwendungsverhaltens ermöglicht, um pathologi-
sches Verhalten der TM-Anwendung identifizieren zu können und zusätzlich
hilft die Transaktionsgröße in einer Art und Weise anzupassen, dass die op-
timierte STM-Variante einer geglätteten Partikelmethode der Hydrodynamik
aus der PARSEC-Sammlung einen Laufzeitgewinn von 1.43 gegenüber der
initialen TM-Version erzielt,

– die Korrelation von TM-Charakteristika und Ereignissen der Mikroarchitektur,
welche es ermöglicht, den Optimierungsprozess besser zu steuern und hierfür
Einblicke in das Laufzeitverhalten und die Anwendbarkeit von STM gewährt.
Diese Methode wird auf zwei Varianten des mathematischen Verfahrens der
konjugierten Gradienten angewendet und gibt detailliert Aufschluss darüber,
welche Veränderungen der Nutzung der Mikroarchitektur durch ein verändertes
Konvergenzverhalten und welche durch andere Effekte der Umformulierung
des Verfahrens bedingt sind, wobei zusätzlich TM mit anderen Möglichkeiten
zur Synchronisation verglichen wird,

– EigenOpt, ein Erkundungswerkzeug, welches die Optimierung sogar für uner-
fahrene Entwickler beschleunigt und Optimierungsansätze, die keinen Erfolg
versprechen, ausschließt, ohne dass die Anwendung modifiziert werden muss,

– Algorithmen für die Erkennung eines Phasenverhaltens in TM-Anwendungen,
die zusätzliches Potential zur Ausnutzung der Phasenwechsel durch die Anpas-
sung des TM-Systems aufzeigen,

• den Entwurf, die Implementierung und die Auswertung der initialen Unterstützung
des Übersetzers für TM im GCC,

• einen neuen Ansatz, der statische Informationen sammelt und ausnutzt, um einen
passenden Parameter der STM-Bibliothek auszuwählen und einen Laufzeitgewinn
der Anwendung mit einer relativen Steigerung von 14.7 % für einen transaktionalen
K-means Bündelungsalgorithmus und 16.9 % für das Lernen eines Bayes’schen
Netzwerks mittels Transaktionen erzielt.

ix





Contents

1 Motivation for Tools targeting Transactional Memory 1
1.1 Transactional Memory for Parallel Programming . . . . . . . . . . . . . 1
1.2 The Missing Performance with TM . . . . . . . . . . . . . . . . . . . . . 2
1.3 Tool Support for Simplifying the Optimization of TM Programs . . . . . 2
1.4 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals 9
2.1 Transactional Memory Concept and Properties . . . . . . . . . . . . . . . 9
2.2 Realization of Transactional Memory . . . . . . . . . . . . . . . . . . . 11

2.2.1 Software Transactional Memory . . . . . . . . . . . . . . . . . . 12
2.2.2 Hardware Transactional Memory . . . . . . . . . . . . . . . . . 16
2.2.3 Hybrid Transactional Memory . . . . . . . . . . . . . . . . . . . 18

2.3 Memory Model for Transactional Memory . . . . . . . . . . . . . . . . . 19

3 Related Work 23
3.1 Compiler Support for TM . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Information Retrieval in TM Systems . . . . . . . . . . . . . . . . . . . 28
3.3 Tools for the Optimization of TM Applications . . . . . . . . . . . . . . 30
3.4 FPGAs and Hybrid TM . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Programming with TM . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Performance, Energy, and Modeling of TM . . . . . . . . . . . . . . . . 38
3.7 Adaptive STMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Phase Detection and Prediction . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 Open Questions with the State-of-the-Art . . . . . . . . . . . . . . . . . 42

4 Concept and Overview 45
4.1 Concept for the Optimization of TM Applications . . . . . . . . . . . . . 46
4.2 Components that Implement the Concept . . . . . . . . . . . . . . . . . . 47
4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 TM-specific Trace Generation for STM and Hybrid TM Systems 51
5.1 Augmenting TinySTM with Trace Generation Facilities . . . . . . . . . . 51

5.1.1 Minimizing Application Disturbances . . . . . . . . . . . . . . . 52
5.1.2 Implication of Lightweight Trace Generation on Offline Analysis 53
5.1.3 The Influence of Tracing on the Runtime . . . . . . . . . . . . . 53
5.1.4 Online Trace Compression . . . . . . . . . . . . . . . . . . . . . 56
5.1.5 Impact of Trace Generation on STAMP Benchmarks . . . . . . . 58

5.2 Event Logging in a Hybrid TM System (TMbox) . . . . . . . . . . . . . 60
5.2.1 Design of the Event Logging Extensions . . . . . . . . . . . . . . 62

xi



xii Contents

5.2.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Comparison of SW- and HW-based Monitoring of TM Events . . . . . . 64
5.4 Summarizing the Trace Generation . . . . . . . . . . . . . . . . . . . . . 66

6 Visualization and Tool Support for TM Applications in Unmanaged
Languages 69
6.1 A Toolchain for the Optimization Cycle of TM Applications . . . . . . . 69

6.1.1 Studying the Influence of Transaction Size on the Performance . . 71
6.1.2 Retrieving TM Events and Memory Requests . . . . . . . . . . . 75
6.1.3 Visualization with Paraver . . . . . . . . . . . . . . . . . . . . . 77

6.2 Revealing Optimization Potential . . . . . . . . . . . . . . . . . . . . . . 82
6.2.1 Transaction Size . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.2 Visualization of Pathological TM Cases . . . . . . . . . . . . . . 84
6.2.3 Evaluation of a Transactified PARSEC Benchmark . . . . . . . . 86
6.2.4 Optimization of Hybrid TM with TMbox . . . . . . . . . . . . . 88

6.3 Conjugate Gradients Solver . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.1 Pipelined Conjugate Gradients Solver . . . . . . . . . . . . . . . 93
6.3.2 Comparison of CG and Pipelined CG . . . . . . . . . . . . . . . 97
6.3.3 Findings with Normal and Pipelined CG . . . . . . . . . . . . . . 109

6.4 Phase Detection in TM Applications . . . . . . . . . . . . . . . . . . . . 110
6.4.1 Comparison with Related Work . . . . . . . . . . . . . . . . . . 111
6.4.2 Design of the TM Phase Detector . . . . . . . . . . . . . . . . . 112
6.4.3 Applying Phase Detection Algorithms to the STAMP Suite . . . . 115
6.4.4 Discussion of Phase Detection for TM . . . . . . . . . . . . . . . 118

6.5 EigenOpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5.1 Parameters of Eigenbench . . . . . . . . . . . . . . . . . . . . . 121
6.5.2 Changes to the TracingTinySTM . . . . . . . . . . . . . . . . . . 123
6.5.3 Adjustments to Post-Processing Tools . . . . . . . . . . . . . . . 123
6.5.4 Intrusiveness with EigenOpt . . . . . . . . . . . . . . . . . . . . 124
6.5.5 Results with EigenOpt . . . . . . . . . . . . . . . . . . . . . . . 127
6.5.6 Outlook for EigenOpt . . . . . . . . . . . . . . . . . . . . . . . 128

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Compiler Support for TM and Guidance Through Static Information 131
7.1 Towards TM for GCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.1.2 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.1.3 Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.1.4 Optimizations and Extensions . . . . . . . . . . . . . . . . . . . 134
7.1.5 Parallelization of Irregular Reductions . . . . . . . . . . . . . . . 136
7.1.6 Overinstrumentation with GCC . . . . . . . . . . . . . . . . . . 138
7.1.7 Improvements with GCC-4.7 . . . . . . . . . . . . . . . . . . . . 140
7.1.8 Concluding Remarks for TM in GCC . . . . . . . . . . . . . . . 144

7.2 Selection of the Conflict Detection Granularity in an STM . . . . . . . . 144
7.2.1 Detection of Memory Access Patterns in Transactions . . . . . . 146
7.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.3 Conclusion and Outlook for MAPT . . . . . . . . . . . . . . . . 151

xii



Contents xiii

8 First Experience with BG/Q Performance 153
8.1 Demands on Transactional Memory in HPC . . . . . . . . . . . . . . . . 153
8.2 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . 154
8.3 Experimental Setup with BG/Q . . . . . . . . . . . . . . . . . . . . . . . 155

8.3.1 Overview of BG/Q’s TM Hardware . . . . . . . . . . . . . . . . 155
8.3.2 Application Perspective in BG/Q’s TM Software Stack . . . . . . 156
8.3.3 The CLOMP-TM Benchmark . . . . . . . . . . . . . . . . . . . 156

8.4 Characterizing TM Performance using CLOMP-TM . . . . . . . . . . . . 158
8.4.1 Synchronization Overhead . . . . . . . . . . . . . . . . . . . . . 160
8.4.2 Conflict Probability . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.4.3 Tuning the BG/Q TM Runtime Environment . . . . . . . . . . . 162
8.4.4 CLOMP-TM with Mixed Scatter Modes . . . . . . . . . . . . . . 166
8.4.5 Using TM in the Context of MPI Applications . . . . . . . . . . 166
8.4.6 Finding a Competitive Task to Thread Ratio . . . . . . . . . . . . 168

8.5 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.6 Application Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.6.1 MCB: A Proxy Application for Monte Carlo Simulations . . . . . 169
8.6.2 Fluidanimate from the PARSEC Suite . . . . . . . . . . . . . . . 170

8.7 Summarizing the First Experience with BG/Q . . . . . . . . . . . . . . . 171

9 Tool Support for TM on BG/Q 173
9.1 Introduction and Motivation for Tools on BG/Q . . . . . . . . . . . . . . 173
9.2 Design of a TM Tool for IBM’s Run Time Stack . . . . . . . . . . . . . . 174

9.2.1 A Profiling Tool for TM . . . . . . . . . . . . . . . . . . . . . . 174
9.2.2 A Tracing Tool for TM . . . . . . . . . . . . . . . . . . . . . . . 177
9.2.3 A Tool for Measuring TM Overheads . . . . . . . . . . . . . . . 178
9.2.4 Common Implementation Details for the Tools . . . . . . . . . . 180

9.3 TM Tools: Experimental Setup and Measurements . . . . . . . . . . . . 181
9.3.1 Experimental Setup: BG/Q . . . . . . . . . . . . . . . . . . . . . 181
9.3.2 Tool Overhead of the Overhead Tool . . . . . . . . . . . . . . . . 183
9.3.3 Break Down of TM Overheads . . . . . . . . . . . . . . . . . . . 183
9.3.4 Influence of Scrub Rate on Application’s Behavior . . . . . . . . 185
9.3.5 Implications of the TM Mode on the Microarchitecture . . . . . . 190
9.3.6 Long Transactions at Any Cost? . . . . . . . . . . . . . . . . . . 191

9.4 Profiling LULESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.5 A Case Study with Vampir Visualizing TM Performance Data . . . . . . 199
9.6 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10 Conclusion and Future Work 203
10.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.1.1 Information Retrieval for Hybrid TM and STM . . . . . . . . . . 203
10.1.2 Optimization of TM Applications . . . . . . . . . . . . . . . . . 204
10.1.3 Hybrid TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
10.1.4 Compilation and Static Information . . . . . . . . . . . . . . . . 206
10.1.5 HTM of BG/Q from an Application’s Perspective . . . . . . . . . 207
10.1.6 Tool Support for TM on BG/Q . . . . . . . . . . . . . . . . . . . 207

10.2 Outlook and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 208

xiii



xiv Contents

Bibliography 209

Appendix Curriculum Vitae 231

xiv



List of Publications Relevant for this
Thesis

[HJK+13] Vincent Heuveline, Sven Janko, Wolfgang Karl, Björn Rocker, and Martin
Schindewolf. Software Transactional Memory, OpenMP and Pthread Imple-
mentations of the Conjugate Gradients Method – A Preliminary Evaluation.
In Michel Daydé, Osni Marques, and Kengo Nakajima, editors, High Per-
formance Computing for Computational Science - VECPAR 2012, volume
7851 of Lecture Notes in Computer Science, pages 300–313. Springer Berlin /
Heidelberg, July 2013.

[KSS+12] Philipp Kirchhofer, Martin Schindewolf, Nehir Sonmez, Oriol Arcas, Os-
man S. Unsal, Adrian Cristal, and Wolfgang Karl. Enhancing an HTM System
with Monitoring, Visualization and Analysis Capabilities. In Euro-TM Work-
shop on Transactional Memory (WTM 2012), April 2012. Abstract avail-
able at http://www.eurotm.org/action-meetings/wtm2012/
program/abstracts#Kirchhofer.

[SAK+12] Nehir Sonmez, Oriol Arcas, Philipp Kirchhofer, Martin Schindewolf, Os-
man S. Unsal, Adrián Cristal, and Wolfgang Karl. A low-overhead Pro-
filing and Visualization Framework for Hybrid Transactional Memory. In
FCCM 2012: The 20th Annual IEEE International Symposium on Field-
Programmable Custom Computing Machines, pages 1–8, 2012. http:
//fccm12.cse.sc.edu/4699a001.pdf.

[SBG+12] Martin Schindewolf, Barna Bihari, John Gyllenhaal, Martin Schulz, Amy
Wang, and Wolfgang Karl. What Scientific Applications Can Benefit from
Hardware Transactional Memory? In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis,
SC ’12, pages 90:1–90:11, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press.

[SCK+09] Martin Schindewolf, Albert Cohen, Wolfgang Karl, Andrea Marongiu, and
Luca Benini. Towards Transactional Memory Support for GCC. In First
International Workshop on GCC Research Opportunities, GROW ’09, January
2009. Held in conjunction with: the fourth International Conference on High-
Performance Embedded Architectures and Compilers (HiPEAC).

[SEK11] Martin Schindewolf, Alexander Esselson, and Wolfgang Karl. Compiler-
Assisted Selection of a Software Transactional Memory System. In Mladen
Berekovic, William Fornaciari, Uwe Brinkschulte, and Cristina Silvano, edi-
tors, Architecture of Computing Systems - ARCS 2011, volume 6566 of Lecture

xv

http://www.eurotm.org/action-meetings/wtm2012/program/abstracts#Kirchhofer
http://www.eurotm.org/action-meetings/wtm2012/program/abstracts#Kirchhofer
http://fccm12.cse.sc.edu/4699a001.pdf
http://fccm12.cse.sc.edu/4699a001.pdf


xvi Contents

Notes in Computer Science, pages 147–157. Springer Berlin / Heidelberg,
2011.

[SK09] Martin Schindewolf and Wolfgang Karl. Investigating Compiler Support for
Software Transactional Memory. In Proceedings of ACACES 2009 Poster
Abstracts: Advanced Computer Architecture and Compilation for Embedded
Systems, pages 89–92, Terrassa, Spain, July 2009. Academia Press, Ghent.

[SK12] Martin Schindewolf and Wolfgang Karl. Capturing Transactional Memory
Application’s Behavior – The Prerequisite for Performance Analysis. In In-
ternational Conference on Multicore Software Engineering, Performance and
Tools (MSEPT 2012), volume 7303 of Lecture Notes in Computer Science,
pages 30–41. Springer Verlag, May 31–June 1, 2012.

[SRKH13] Martin Schindewolf, Björn Rocker, Wolfgang Karl, and Vincent Heuveline.
Evaluation of two Formulations of the Conjugate Gradients Method with Trans-
actional Memory. In Felix Wolf, Bernd Mohr, and Dieter an Mey, editors, 19th
International European Conference on Parallel and Distributed Computing
Euro-Par 2013, volume 8097 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2013. Accepted for publication.

[SSB+12] Martin Schindewolf, Martin Schulz, Barna Bihari, John Gyllenhaal,
Amy Wang, and Wolfgang Karl. Performance Analysis of and Tool
Support for Transactional Memory on BG/Q. In Euro-TM Workshop
on Transactional Memory (WTM 2012), April 2012. Abstract avail-
able at http://www.eurotm.org/action-meetings/wtm2012/
program/abstracts#Schindewolf.

xvi

http://www.eurotm.org/action-meetings/wtm2012/program/abstracts#Schindewolf
http://www.eurotm.org/action-meetings/wtm2012/program/abstracts#Schindewolf


List of Figures

2.1 Commit phases in an STM system. . . . . . . . . . . . . . . . . . . . . . 13

4.1 Schematic interaction of components in a system with TM software stack. 46
4.2 Overview and relationship of components presented in this thesis. . . . . 47

5.1 Heap size of the bank application. . . . . . . . . . . . . . . . . . . . . . 54
5.2 Influence of trace generation on the TM behavior. . . . . . . . . . . . . . 55
5.3 TracingTinySTM with support for online trace compression. . . . . . . . 56
5.4 Throughput and similarity with multi-threaded trace compression. . . . . 57
5.5 Compression factor as a function of thread count and computation time. . 57
5.6 Average execution times of the STAMP benchmarks. . . . . . . . . . . . 58
5.7 File sizes for traces of the STAMP benchmarks. . . . . . . . . . . . . . . 59
5.8 Overview of the TMbox system. . . . . . . . . . . . . . . . . . . . . . . 61
5.9 TMbox system block diagram with event logging machinery. . . . . . . . 62
5.10 Run time overhead in % for different Hybrid TM tracing levels. . . . . . . 65
5.11 Runtime overhead in % for STM-only (x86-host) vs. STM-only (FPGA). 66

6.1 Components and interplay in the VisOTMA framework. . . . . . . . . . . 71
6.2 Throughput in Txn/s with PSTMA. . . . . . . . . . . . . . . . . . . . . . 74
6.3 Throughput in transactional loads and stores per second. . . . . . . . . . 75
6.4 TM application visualized with Paraver. . . . . . . . . . . . . . . . . . . 78
6.5 Dependencies between two threads visualized with Paraver. . . . . . . . . 79
6.6 Paraver visualizing the StarvingElder pattern. . . . . . . . . . . . . . . . 85
6.7 Zoomed FriendlyFire pattern. . . . . . . . . . . . . . . . . . . . . . . . . 85
6.8 fluidanimate with small and long transactions. . . . . . . . . . . . . 87
6.9 Pathological TM behavior of the intruder benchmark on TMbox. . . . 88
6.10 Optimizing the execution times of the intruder benchmark on TMbox. 89
6.11 Execution time of normal CG. . . . . . . . . . . . . . . . . . . . . . . . 92
6.12 Execution time of pipelined CG. . . . . . . . . . . . . . . . . . . . . . . 96
6.13 Aborts with normal and pipelined CG. . . . . . . . . . . . . . . . . . . . 98
6.14 Visualization of normal and pipelined CG. . . . . . . . . . . . . . . . . . 99
6.15 Speedup with normal and pipelined CG. . . . . . . . . . . . . . . . . . . 100
6.16 Load and store instructions. . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.17 Level 1 instruction and data cache misses. . . . . . . . . . . . . . . . . . 103
6.18 Data cache misses in L2. . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.19 Instructions retired and floating point instructions. . . . . . . . . . . . . . 106
6.20 Conditional branch and mispredicted branch instructions. . . . . . . . . . 107
6.21 Break down of instructions. . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.22 Comparison of three STM strategies. . . . . . . . . . . . . . . . . . . . . 110

xvii



xviii List of Figures

6.23 Workflow for phase detection in TM applications. . . . . . . . . . . . . . 112
6.24 Digital Signal created from conflict potential. . . . . . . . . . . . . . . . 113
6.25 Haar wavelet transform of the digital signal. . . . . . . . . . . . . . . . . 114
6.26 Window with different sizes. . . . . . . . . . . . . . . . . . . . . . . . . 115
6.27 Phase Detection with Signal Analysis of STAMP benchmarks. . . . . . . 117
6.28 Phase Detection using Haar Wavelets of the STAMP benchmarks. . . . . 119
6.29 Overview of the workflow with EigenOpt. . . . . . . . . . . . . . . . . . 121
6.30 Influence of reading PAPI counters on throughput of TM system. . . . . . 124
6.31 Influence of reading PAPI counters on the abort rate. . . . . . . . . . . . 125

7.1 Checkpointing mechanism after the gtm_checkpoint pass. . . . . . . 134
7.2 Speedup over sequential execution. . . . . . . . . . . . . . . . . . . . . . 138
7.3 kmeans with compiler and hand instrumented transactions. . . . . . . . 139
7.4 Hand-instrumented or compiler-instrumented transactions. . . . . . . . . 140
7.5 Run times of kmeans. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.6 Speedup with kmeans. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.7 Memory consumption of a word-based and a cache line-based STM. . . . 145
7.8 False sharing in the context of transactional memory. . . . . . . . . . . . 146
7.9 Additional LLVM compiler passes. . . . . . . . . . . . . . . . . . . . . . 147

8.1 Excellent speedups with Large TM over Small Atomic. . . . . . . . . . . 159
8.2 CLOMP-TM with small critical sections. . . . . . . . . . . . . . . . . . 160
8.3 CLOMP-TM with large critical sections. . . . . . . . . . . . . . . . . . . 161
8.4 CLOMP-TM with huge critical sections. . . . . . . . . . . . . . . . . . . 161
8.5 Influence of TM_MAX_NUM_ROLLBACK (RBM) on retries/speedup. . . . 163
8.6 Setting TM_MAX_NUM_ROLLBACK and changing the level of contention. 164
8.7 Influence of the scrub rate for SpecIds on performance. . . . . . . . . . . 165
8.8 Influence of the scrub rate for SpecIds on the amount of rollbacks. . . . . 165
8.9 CLOMP-TM with MPI in a strong scaling experiment. . . . . . . . . . . 167
8.10 fluidanimate with transactions and locks. . . . . . . . . . . . . . . . 171

9.1 Data structures of the profiling tool for TM. . . . . . . . . . . . . . . . . 176
9.2 Overview of the tracing tool for TM. . . . . . . . . . . . . . . . . . . . . 177
9.3 Finite state machine that describes transactional actions and buckets. . . . 179
9.4 Tool overhead for measuring an empty code region. . . . . . . . . . . . . 182
9.5 Detailed breakdown of a transaction. . . . . . . . . . . . . . . . . . . . . 184
9.6 BGPM events and scrub rate (part I). . . . . . . . . . . . . . . . . . . . . 186
9.7 BGPM events and scrub rate (part II). . . . . . . . . . . . . . . . . . . . 187
9.8 Stall cycles and the long-running mode. . . . . . . . . . . . . . . . . . . 188
9.9 Stall cycles and the short-running mode. . . . . . . . . . . . . . . . . . . 189
9.10 L1P utilization in the long-running and short-running mode. . . . . . . . 189
9.11 L2_REQ_RETIRE and the long-running and short-running mode. . . . . 190
9.12 Studying the influence of the access pattern. . . . . . . . . . . . . . . . . 191
9.13 Influence of moving the computation inside the transaction. . . . . . . . . 192
9.14 Computation inside the transaction in the long-running mode. . . . . . . . 193
9.15 Influence of the scrub rate on the stall cycles in long-running mode. . . . 193
9.16 LULESH executed with different scrub rates and long-running TM mode. 195
9.17 LULESH executed with different scrub rates and short-running TM mode. 195
9.18 BGPM events of LULESH with long-running TM mode. . . . . . . . . . 196
9.19 BGPM events of LULESH with short-running TM mode. . . . . . . . . . 197

xviii



List of Figures xix

9.20 L1P misses with LULESH and 16 threads in short-running mode. . . . . 197
9.21 L1P misses with LULESH and 16 threads in long-running mode. . . . . . 198
9.22 L1P hits and stall cycles with LULESH and 16 threads. . . . . . . . . . . 198
9.23 Vampir visualizing the application’s behavior. . . . . . . . . . . . . . . . 200

xix





List of Tables

3.1 Design space of phase detection. . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Experimental platform ExpX5670. . . . . . . . . . . . . . . . . . . . . . 49

5.1 Format of timing and transactional events in x86_64 binary trace files. . . 53
5.2 L3 cache misses for labyrinth. . . . . . . . . . . . . . . . . . . . . . 60
5.3 Format of the events that are transferred as packets. . . . . . . . . . . . . 63
5.4 Area overhead per processor core in different tracing configurations. . . . 64

6.1 Relation of contention parameter and ApT . . . . . . . . . . . . . . . . . 82
6.2 Parameter settings for the example problem. . . . . . . . . . . . . . . . . 97
6.3 STAMP input parameter sets. . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Parameters used in EigenBench. . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Orthogonal TM characteristics. . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Additional event types required for EigenOpt. . . . . . . . . . . . . . . . 123
6.7 Cases InTxn and NonTxn with known inputs. . . . . . . . . . . . . . . . 126
6.8 Transactional characteristics of the intruder benchmark. . . . . . . . . 126
6.9 Parameters obtained from traces with Case1. . . . . . . . . . . . . . . . . 127
6.10 Test case with high contention and one and two transactions. . . . . . . . 128
6.11 Test case with low contention. . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Read barriers with two optimization levels. . . . . . . . . . . . . . . . . 142
7.2 Write barriers with two optimization levels. . . . . . . . . . . . . . . . . 143
7.3 Throughput of two conflict detection variants. . . . . . . . . . . . . . . . 149
7.4 Throughput of three test cases. . . . . . . . . . . . . . . . . . . . . . . . 150
7.5 Run times of STAMP benchmarks. . . . . . . . . . . . . . . . . . . . . . 150

8.1 Different contention levels in the CLOMP-TM benchmark. . . . . . . . . 157
8.2 Description of synchronization constructs used in CLOMP-TM. . . . . . 157
8.3 Parameters for CLOMP-TM. . . . . . . . . . . . . . . . . . . . . . . . . 159
8.4 MCB with one MPI task and 64 threads (strongScaling). . . . . . . . . . 170

xxi





Listings

2.1 Example of two threads executing transactions. . . . . . . . . . . . . . . 10

6.1 Algorithmic design of a parameterizable synthetic TM application. . . . . 72
6.2 Proposed optimization algorithm for TM applications based on PSTMA. . 73
6.3 Example logs of dynamic memory requests with malloc. . . . . . . . . 76
6.4 Trace format for logging dynamic memory requests with free. . . . . . 77
6.5 Detecting communication patterns between transactions. . . . . . . . . . 78
6.6 Global statistics of transactional execution. . . . . . . . . . . . . . . . . 80
6.7 Statistics per transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.8 Sorted list of addresses with number of contentious accesses. . . . . . . . 81
6.9 Transactional version of fluidanimate with small Txns. . . . . . . . 83
6.10 Transactified fluidanimate with the long Txns version. . . . . . . . . 84
6.11 Mapping of CG to OpenMP for parallelization. . . . . . . . . . . . . . . 90
6.12 Fast version of a reduction that is implemented with TM macros. . . . . . 91
6.13 Implementation of the pipelined CG with OpenMP Reduction. . . . . . . 94

7.1 C extension with a pragma to specify transactions. . . . . . . . . . . . . . 132
7.2 Example of a reduction pattern with nested loops. . . . . . . . . . . . . . 137

8.1 Use of MPI barriers for CLOMP-TM with MPI. . . . . . . . . . . . . . . 166

9.1 Application programming interface for the TM profiling tool. . . . . . . . 175
9.2 API for the tracing tool for TM. . . . . . . . . . . . . . . . . . . . . . . 178

xxiii





1. Motivation for Tools targeting
Transactional Memory

1.1 Transactional Memory for Parallel Programming
With multi-core processors becoming the norm for desktop as well as server machines,
parallel programming gains importance in everyday software development. Due to the
difficulties associated with conventional locking, Herlihy and Moss proposed Hardware
Transactional Memory (HTM) to facilitate the synchronization in applications using shared
memory [91]. The concept of transactions is borrowed from database systems and re-
leases the programmer from the burden of managing low-level primitives e.g., locks to
synchronize concurrent threads of execution.

For programmers, Transactional Memory offers the convenient abstraction of an atomic
block, also called transaction, to synchronize concurrent accesses to shared memory. A
transaction may contain a finite sequence of instructions that execute with the following
properties: Atomicity, Consistency, and Isolation (ACI) [83]. These ACI properties
provide a convenient abstraction for coordinating concurrent accesses to shared data and
herewith simplify parallel programming. TM delivers the means to overcome most of
the shortcomings of traditional lock-based synchronization, such as priority inversion,
deadlock, livelock, and convoying.

Moreover, TM features optimistic concurrency that replaces the mutual exclusion of
traditional synchronization. This enables to execute transactions in parallel and detect
conflicting memory accesses of different threads. A run time system, implemented in
hardware (HTM), software (STM) or both (hybrid TM), implements the conflict detection
and maintains speculative versions of the data.

The optimistic concurrency with TM nourishes the hope for an increased scalability
compared with pessimistic synchronization. Scalability improvements gain importance
with the ever increasing core counts of the new multi-core generations. Another advantage
of TM is the composability of independently developed parallel libraries. This may
facilitate the integration of third party libraries in the development cycle of parallel software.

Moreover, the transaction simplifies to reason about the correctness of the parallel code
because transactions are simple to understand and insert. Thus, TM improves parallel

1



2 1. Motivation for Tools targeting Transactional Memory

programming over lock-based synchronization, which especially attracts programmers new
to the development of parallel software.

1.2 The Missing Performance with TM
The target audience judges whether TM is a success or not. This audience may have more
demands on TM than the expected gains in usability. For developers who start to program
in parallel, a convenient abstraction that simplifies synchronization may be convincing. For
experts in high performance computing (HPC), this may not suffice. In this use case, the
composability of parallel modules and the expected gains when maintaining the software
are advantageous but the performance of TM is also a very important factor.

The performance of TM depends on the implementation of the run time system. STM
comes with known performance deficiencies that originate from the overhead due to the
instrumentation of the memory accesses, executing the algorithm for conflict detection,
lock acquisition and release, and validation of the read and write sets. HTMs often have
limitations e.g., in the number of memory locations that can be accessed inside of a
transaction or the type of instructions that can be executed. Otherwise the transaction fails
and retries. Hybrid TM inherits the performance of both systems so that a transition from
hardware to software execution yields a performance degradation.

Although these overheads and limitations are known, the application developer does
not necessarily know whether overheads cause the unexpectedly low performance or an
execution pattern that results in repeated rollbacks of a transaction. The issue is that the
application developer is unaware of the TM application’s behavior and has no profound
basis to take counter measures e.g., to reorganize the transactions, choose a better suited
TM run time system or reorganize the data structures to achieve a better utilization of the
microarchitecture.

Moreover, there has been little research on the human factor in TM programming so
that the granularity of transactions and the introduced costs through inappropriate use
of transactions have not been quantified. Tools for TM can detect and help ameliorate
these cases so that even inexperienced programmers can detect pathological execution
patterns in their TM application and judge whether this behavior negatively influences the
performance of the TM application.

1.3 Tool Support for Simplifying the Optimization of TM
Programs

So far tool support for TM has been proposed to support STM [7, 191, 127, 123, 220,
29, 76] or HTM [31, 71]. While these solutions are tailored to a specific TM system and
programming language, we present the first holistic approach that considers multiple TM
systems (Software, Hardware, and hybrid TM) as well as includes information from more
than two layers of the TM software stack. Information from the TM application, TM
compiler, TM run time system, and hardware pose the inputs for the novel methods and
strategies for the optimization of TM applications presented in this thesis. We collect
information from these different layers of the TM software stack in order to obtain a broader
view on the performance of the application and advance the state-of-the-art. The additional
information is expected to yield higher performance gains and enable optimizations beyond

2



1.3. Tool Support for Simplifying the Optimization of TM Programs 3

that of previous tools for TM that consider only one or two layers of the TM software stack.
In particular we identify the following possibilities to improve the state-of-the-art in tools
for TM.

The following related works use profiling or sampling information from the TM run time
system that is retrieved during run time and combine it with information from the source
code [7, 191, 127, 220, 123, 29, 76]. The combination of information from the TM run
time and source code is important and valuable for the programmer, but cannot explain
performance deficiencies in the presence of a TM behavior that shows very few rollbacks.
In order to sufficiently explain the performance of the TM system in these cases and provide
complementary information from the microarchitecture for all cases, we research how to
use information from the hardware performance counters of the microarchitecture. These
counters enable to rate and compare the utilization of resources of the microarchitecture
e.g., L1 caches and help to identify the sources for performance degradation with TM even
for a TM application with very few rollbacks. Moreover, readings from these performance
counters also help to compare synchronization using TM with other synchronization
constructs e.g., with OpenMP primitives and enable new insights into the interaction of the
TM system with the microarchitecture that have not been possible with previous tools for
TM.

Optimization of TM applications with the mentioned tools is a trial-and-error process that
takes the following steps: first, profile the TM application, then find the data structures
that are heavily contended and identify the corresponding transactions, use the profiling
information to determine the wasted work caused by transactions that abort and either
rearrange or substitute the data structures or change the reordering of statements in the
transaction to reduce the amount of wasted work [220]. Hence, an application developer
must invest time and effort to refactor the data structures and/or transactions of the TM
application in order to reduce the amount of wasted work. A new version of the application
must be tested for correctness, executed and compared with the previous profile in order
to find out whether the code changes yield the expected performance gains. Often this a
disappointing and tiring process that yields diminishing returns. We seek to alleviate this
process through providing a set of best practices for the programming with TM. These
practices enable the programmer to design the TM application according to criteria that
incorporate transactional length and conflict potential. With these practices an application
developer easily sees whether a transaction meets the requirements or not and can direct the
optimization efforts so that the transactions in the TM application meet the requirements
formulated in the best practices. A second approach researches how to use hardware per-
formance counters to extract the characteristic parameters of the TM application behavior.
With these characteristic parameters, a tool such as the EigenBench microbenchmark [94]
helps to simulate the effects of possible optimizations on the target application and helps
to exclude optimization directions with diminishing returns. This approach may help
application developers to simulate a set of optimizations and select and transfer the most
promising one to the actual TM application.

Moreover, the existing tools do not account for the time varying behavior of TM applica-
tions. In order to make the time varying behavior of a TM application easily accessible
for an inexperienced as well as an experienced application developer, transitions between
execution phases with low and high contention between transactions must be recognized
automatically with a tool. This approach helps to assess the potential of optimizations that
exploit the transition between optimistic and pessimistic conflict detection modes of an

3



4 1. Motivation for Tools targeting Transactional Memory

STM system. In order to identify a possible optimization possibility and to answer the
question whether phases exist in current TM applications, we develop a post-processing
tool that analyzes the execution phases of a TM application and detects phase changes.
This tool enables even inexperienced application developers to identify execution phases
in the application and determine the number of phase changes to judge the optimization
potential.

Until now, tools for TM do not take advantage of the static information from the TM
application that is available throughout the compilation process. This may lead to missed
optimization opportunities and result in selecting a standard parameter setting of the STM
system that may not be the best for this particular application. Hence, incorporating static
information in the flow of the optimization of TM applications seems an idea worth to
research in this thesis.

Therefore, static information, information about the run time behavior and best practices,
that condense the knowledge of experts, need to be extracted to develop these new methods
and strategies for the optimization of TM applications. The practical result of researching
these methods and strategies are tools for TM that can be easily applied even by inex-
perienced application developers. These tools extract the run time behavior of a TM
application, provide means, e.g., a representative application with a multitude of input
parameters, to find best practices, support the visualization of the run time behavior, and
thus help experienced as well as inexperienced application developers to optimize the TM
application. Extracting and combining information from TM systems implemented in
hardware, software or both in a suitable way poses the following six challenges that we
address in this thesis.

The first challenge is to capture the genuine TM application’s behavior at run time. This
is especially important because transactions are sensitive to artificially introduced delays
of a thread which may lead to an introduced TM conflict. This may lead to a recorded
application behavior that is biased through the tracing machinery. Therefore, a lightweight
trace generation scheme with a small probe-effect needs to be developed and evaluated.
This thesis presents similar solutions for STM and hybrid TM that generate event traces.
For STM, the logging of frequently occurring events, such as TM loads and stores, quickly
saturates the write bandwidth of the hard disk. Thus, a reduction of the amount of data to be
written to hard disk needs to be achieved. Therefore, we research how these events can be
compressed online without disturbing the application. A multi-threaded trace compression
scheme is designed, implemented, and evaluated. We enhance the TinySTM, a word-based
open source STM, with tracing facilities. Due to the lightweight and compressing tracing
scheme the resulting TracingTinySTM generates event traces that capture the genuine
TM application’s behavior. For an FPGA-based hybrid TM system, called TMbox, a
low-overhead tracing solution is shown. Each processing element is enhanced with an
event generation unit for monitoring. When an instruction of interest is encountered, a
corresponding time-stamped event is generated and passed on to the log unit. This unit uses
idle times on the bus to transfer it to the memory of the host machine. The event tracing
methodology captures transactions that utilize the HTM part of the hybrid TM system as
well as transactions using the STM part. Our approach is the first to capture the behavior of
a TM application in a hybrid TM system. Although all methods are tailored to and applied
in the context of TM, they are universally applicable in a different context. Example
application areas are the monitoring of arbitrary events in an FPGA-based processor
prototype or the logging and compressing of events in a math library.

4



1.3. Tool Support for Simplifying the Optimization of TM Programs 5

The second challenge arises with the release of IBM’s new Blue Gene/Q architecture with
HTM support. We establish a set of best practices for the new architecture so that the
application developer can exploit the full potential of the architecture including the TM
subsystem. For this purpose, we introduce a new benchmark, CLOMP-TM, that has a
series of parameters that allow us to explore varying transaction granularities and conflict
rates, coupled with typical computational kernels found in scientific codes. This enables
new insights through evaluating the TM system and comparing the performance with other
synchronization primitives of OpenMP. Further, this new BG/Q architecture also requires
tool support to enable optimizations of scientific applications. A trace-based solution to
capture the run time behavior on a per event basis is not feasible for this proprietary HTM
system. This HTM system requires a proprietary software stack, including compiler and
run time system. Thus, we design, implement and evaluate three different tools for TM
that enable programmers to explore the subtleties of TM execution. We contribute the first
tool that profiles applications using MPI and OpenMP with TM on BG/Q, a tracing tool
for TM that enables in-depth inspection of thread-level execution and utilization of the
architecture through visualization with the state-of-the-art visualization tool Vampir, and
a tool that measures overheads associated with TM, designed to dissect these overheads
and direct optimization efforts for the TM stack. These tools incorporate the use of BG/Q
specific hardware performance counters in order to uncover the subtle interaction of the
TM system and the prefetching on BG/Q and help to study the implications for designing
applications and choosing the TM mode of execution. Moreover, these tools enable to
obtain a comprehensive understanding of the performance of synchronization mechanisms
in LULESH, a Lagrange hydrodynamics proxy application, and find the cause for the
missing performance with TM.

The third challenge is to correlate the gathered TM characteristics with microarchitecture
events for the optimization of TM applications using STMs. Although this correlation is not
new by itself, it is extremely helpful and has not been researched extensively in this context.
Besides choosing well-suited parameters to monitor the microarchitecture, the correct
interpretation of the obtained values is of key importance. To simplify the optimization
for humans, the Visualization Of TM Applications (VisOTMA) framework is developed
that visualizes these traces and enables the programmer to identify frequently conflicting
transactions and the corresponding microarchitecture parameters in a post-processing step.

The visualization of this aggregated data needs to be achieved in a way that an inexperienced
as well as experienced programmer can identify pathological execution patterns – posing
the fourth challenge. So far optimizations have been carried out by TM experts with
excellent knowledge of the underlying TM system. An inexperienced programmer does
not have or may not be willing to acquire the knowledge of the TM system. Thus, the
inexperienced programmer follows a trial-and-error strategy to optimize the TM application.
To speedup this process, we invent EigenOpt – an exploration tool based on EigenBench
– as part of the VisOTMA framework. With the help of EigenOpt, any programmer can
capture the TM characteristic of the application in terms of parameters for Eigenbench.
These parameters combined with Eigenbench are straightforwardly used to explore the
space available through optimizations. With this tool, unrewarding optimization directions
can be excluded without modifying the application. In this thesis, we will research how
to identify and avoid optimization attempts with diminishing returns. This will speedup
the optimization process for an inexperienced programmer and yield new insights for an
experienced one.

5



6 1. Motivation for Tools targeting Transactional Memory

The fifth challenge is to detect and exploit a potential phase behavior of TM applications
and integrate this analysis in the VisOTMA framework. In case the behavior of the
TM application has periods with high and low conflict probability, this behavior of the
application can be detected and exploited. Exploiting these phases is motivated through
the different proposed TM designs: optimistic conflict detection schemes detect conflicts
at commit-time whereas pessimistic schemes check for conflicts at encounter-time. In the
optimistic case a conflict early in the execution of a transaction is noticed at commit time so
that the programs performs computations that have to be undone. The wasted work in this
transaction can be reduced, when switching from the optimistic to the pessimistic scheme.
In this thesis, we transfer algorithms, Signal Analysis and Wavelet-based classification,
that have been proposed for phase detection in other contexts, to TM. These enable the
offline detection of a TM phase behavior.

To complement the information retrieved in the above challenges, we gather and interpret
static information. First, we design and implement initial support for Transactional Memory
in GCC. This freely available support may provide the baseline for a wide-spread adoption
of TM. The original GTM design, a design for the integration of TM in the C programming
language with GCC, is presented, implemented, and evaluated. Second, we research how
to exploit static information inside of a compiler to select suited STM parameters to project
the run time behavior of that TM application and give advice to the application developer.
This approach is called MAPT for analysis of Memory Access Patterns in Transactions
and helps to select an STM parameter at compile-time.

1.4 Organization of this Thesis
The structure of this thesis is the following. Chapter 2 introduces the basic concept of
transactional memory and elaborates on the advantages with TM. We present the three
basic types of realizing TM in software, hardware, and as hybrid variant and illustrate
these with prototypes. Further, we discuss the implications of the memory model on
programming with TM.

We present closely related works in Chapter 3 and discuss these works with our approach.

The overall concept of researching methods and strategies for the optimization of TM
applications is shown in Chapter 4. After illustrating the TM stack and the information
associated with each layer, we discuss the testbeds for realizing the methods and strategies
as tools and evaluating the approach.

Chapter 5 shows two solutions for fine grained tracing of TM events in STM and hybrid
TM. While the STM solution may also compress the event traces, the tracing scheme
for hybrid TM adds hardware structures to the TM system that enable tracing with low
overhead in execution time. We compare both tracing schemes to assess the value of adding
hardware components to generate traces of TM events.

We illustrate our framework and its components for post-processing of the TM run time
information in Chapter 6. The visualization component illustrates the TM run time behavior
of the TM application and uncovers pathological execution patterns with TM. A simple
reference application helps to find a suited transaction length for execution with STM. We
apply these findings to optimize a benchmark from the PARSEC suite and a numerical
application. Another component of the framework implements two algorithms to detect
execution phases with different conflict potential in TM applications. We apply these to the

6



1.4. Organization of this Thesis 7

STAMP benchmarks and discuss the results. Then, we present the EigenOpt approach that
helps the programmer to identify and exclude optimization directions with diminishing
returns.

Chapter 7 presents the initial design and implementation of TM support in GCC, adds
ideas for future work based on the compiler extension and documents its progress. Then
we present a static approach for analyzing memory access patterns in transactions, use this
information to select a property of the STM system, and present results from applying it to
test cases and STAMP benchmarks.

In Chapter 8 we present the first experiences with HTM on the BG/Q architecture from
an application’s perspective. We introduce CLOMP-TM, a benchmark that is aimed at
evaluating TM systems for scientific workloads. We condense the findings from the
experiments with CLOMP-TM into a set of best practices and apply them to a realistic
Monte Carlo Benchmark code and a Smoothed Particle Hydrodynamics method.

In Chapter 9 we complement the best practices with a set of tools that enable each
programmer to explore the subtleties of TM execution on BG/Q. We present detailed multi-
threaded overhead measurements of the TM subsystem dividing transactional execution into
three separate phases, uncover the subtle interaction of the TM system and the prefetching
unit, and study the implications for the design of the application. Further, we evaluate
how to choose the TM mode, obtain a comprehensive understanding of the performance of
synchronization mechanisms in LULESH, a Lagrange hydrodynamics proxy application,
and find the cause for the missing performance with TM.

Chapter 10 concludes this thesis, summarizes the findings from designing and implementing
tools for each TM system, reviews the results from applying the tools to TM applications
and gives some ideas how to extend this work in the future.

7





2. Fundamentals

This chapter introduces the basic concept of Transactional Memory in Section 2.1, the
advantages of synchronizing shared memory applications with TM, and discusses the
implementation of the TM run time system. Section 2.2.1 discusses the implementation
of TM with software primitives, Section 2.2.2 presents hardware support for TM, and
Section 2.2.3 combines both to a hybrid TM system. In Section 2.3 we introduce the
different memory models for TM, discuss the differences, describe the progress that
converges to a single memory model for STM, and sketch the implications of a memory
model on compiler instrumentation and possible optimizations. With respect to the work
presented in this thesis, this chapter presents the basic concept of TM and discusses three
implementation techniques in order to motivate the need for tools tailored to each of these
implementation strategies and highlight the respective specialties of the implementation
(e.g., memory model) that tools need to consider.

2.1 Transactional Memory Concept and Properties
Traditionally programmers use synchronization constructs that enforce mutual exclusion to
ensure a correct parallel execution of multiple threads in a program with shared memory.
Locks or critical sections are placed in the code and prevent that more than one thread
enters this section at the same time. With Transactional Memory (TM), managing these
locks becomes oblivious. Instead of low-level locking primitives, Transactional Memory
(TM) offers the high-level concept of transactions. These transactions may consist of
a structured block that contains control flow and function calls. The most important
difference to traditional lock-based synchronization is – besides the ease-of-use – the
optimistic concurrency with TM. Instead of enforcing mutual exclusion (as locks do),
transactions execute in parallel and conflicting memory accesses are resolved by a TM
run time system. By replacing potentially many locks with transactions, the application
developer gains a convenient and straightforward way of handling synchronization in
parallel shared memory programs. TM reliefs the programmer of managing locks explicitly
and thus avoids many of the pitfalls associated with locking: deadlocks, priority inversion,
convoying, and lack of scalability.

Two locking strategies with different granularities are commonly distinguished: fine-
grained and coarse-grained locking. While fine-grained locking offers performance and

9



10 2. Fundamentals

scalability, it is difficult to maintain and add new components to the software because lock
acquire and release must follow a specific order. The application developer establishes and
implements this virtual order because otherwise the program will deadlock. Other applica-
tion developers working on the same application, now have to adhere to this order of lock
acquires and releases although it may not be written down explicitly. Thus, programming
errors in parallel programming on large software projects are frequent. Coarse grain locks
avoid this programming complexity, but also come with limited scalability and, thus, lack
of performance at high thread counts.

Here TM promises the simplicity of coarse grain locks with the performance of fine grain
locks. Moreover, examples show that composing two operations from two separate code
pieces under locks is not always possible [117]. Especially if the code must maintain
certain invariants, the programmer has to redesign and rewrite these operations in one
combined operation. TM enables this composability of rather simple operations through
strong guarantees associated with transactions [3]. As an example, Adl-Tabatabai et al.
demonstrate how to realize a move operation between two concurrent hashtables with
transactions. This solution is as simple to write as with a coarse grain lock and maintains
the invariant that the moving element must be present in only one hashtable at a time.
With fine grain locks, the programmer must modify the underlying concurrent hashtables
to implement a move operation and may easily introduce deadlocks. With transactions,
the programmer only has to wrap the move operation in a transaction. The properties
of transactions, which originate from the database community, will assure the desired
behavior. The idea of transferring the properties from the database community to the
synchronization (of processes) dates back to 1977 and has been proposed by Lomet [126].
Lomet also discovers that strong guarantees, e.g., the atomic actions, simplify the arguing
of programmers about the correctness of code.

The properties that provide the strong guarantees for TM are atomicity, consistency, and
isolation. Atomicity guarantees that either all operations in a transaction are performed
or none of them. Consistency demands that no inconsistent states are introduced through
transactional execution. Isolation assures that two concurrently running transactions
appear to be isolated from each other. Thus, the computed results are independent of the
intermediate state observed by a second transaction. TM can have a huge impact on large
scale software development by enabling the composability of separately developed and
maintained parallel software modules. Due to the strong guarantees and the high-level
abstraction, combining parallel modules that synchronize with TM seems feasible.

_ _ t r a n s a c t i o n { _ _ t r a n s a c t i o n {
a c c o u n t 2 −= v a l u e 1 ; a c c o u n t 1 −= v a l u e 2
a c c o u n t 1 += v a l u e 1 ; a c c o u n t 3 += v a l u e 2 ;

} }
Listing 2.1: Example of two threads executing transactions.

From a programmer’s perspective the synchronization is severely simplified compared with
fine-grained locking. Listing 2.1 illustrates two threads that are concurrently executing
transactions. The block following the keyword __transaction is executed with ACI
properties. In this example the account variables are located in shared memory and the
value variables in local memory (e.g., as stack variables). Thus, there is a dependency
between transaction 1 and 2 because of the variable account1. In case both transactions
are executed in parallel, this dependency will likely lead to a conflict that needs to be

10



2.2. Realization of Transactional Memory 11

detected and resolved by the TM system. A conflict is caused by two transactional accesses
from two threads to the same address where at least one is a write access. The resolution
of a conflict mostly requires to abort one transaction, revert its changes, and retry the
transaction.

2.2 Realization of Transactional Memory
In order to realize a TM run time system that provides the ACI properties, the TM system
solves the following problems. An intermediate value that a transaction produces before
the commit must be shielded from accesses of other transactional accesses because it is still
speculative. Hence, a conflict with another transaction, that is caused by two accesses to the
same address where at least one is a write access, may still abort the ongoing transaction
and revert the speculative values. These conflicts may be detected when accessing the
address or at commit time of the transaction. Another aspect that needs to be addressed
is the versioning of data. A speculative value is associated with a version number, also
called data versioning, so that the TM system may perform a validation that detects reads
of outdated values and aborts the transaction during the commit phase. This is required to
assure the serializability of transactions.

Hence, a TM system that implements these techniques makes important design decisions
regarding the conflict detection and the buffering of speculative values that influence
the performance. A conflict detection scheme can either be optimistic or pessimistic.
Optimistic conflict detection checks for conflicts at commit time whereas a pessimistic
scheme continuously checks for conflicts at access time. All reads and writes are monitored
in so called read/write sets of a transaction. These serve as meta data for the TM algorithm
that detects conflicts and enables a roll back of a transaction. A similar design decision
has to be made for the buffering of speculative values. The optimistic scheme updates the
memory in-place such that an undo log must be maintained by the TM run time system
in order to enable a rollback. The pessimistic scheme uses a write buffer to temporarily
buffer speculative values.

Another important property of a TM system is the resolution of the memory accesses
inside the TM system. This resolution defines the granularity for the conflict detection.
Depending on the source language and the realization of the TM run time system the
following granularities are wide-spread: object-based, word-based, stripe-based, or cache
line-based conflict detection. Object oriented languages feature an object-based conflict
detection granularity, that also comes with the advantage of storing TM meta data with
the objects which increases the data locality and employs a special open operation prior
to performing transactional operations on the object. A stripe-based conflict detection
scheme divides the memory space into stripes of fixed size that form the granularity
for detecting conflicts. The word-based and cache line-based schemes are special cases
of the stripe-based scheme that support resolution on the size of words and cache lines
respectively. These conflict detection schemes are employed in languages without run
time system or object-orientation, e.g., C. The word-based scheme requires more memory
for meta data whereas the cache line-based resolution may exhibit false positives. These
are accesses that are falsely classified as conflicts due to the granularity of the resolution.
These accesses go to distinct memory location but map to the same STM internal lock.
With a higher resolution of the conflict detection scheme, these accesses would not be
classified as conflicts. This problem is analogous to the false sharing problem. We explain
both problems in detail and address the problem of false positives in Section 7.2.

11



12 2. Fundamentals

When two transactions execute concurrently both may access the same memory address.
In case at least one of these accesses is write access, the two transactions have a conflict.
This situation is called contention because both transactions contend for the same address.
The TM system provides means for contention management that decide which of the
transactions should abort and retry. These contention management schemes may assure
e.g., fairness so that each transaction is allowed to commit at some point or progress of
the application. Contention management schemes often employ a delay time before the
transaction is allowed to retry. The delay avoids that the two transactions immediately
conflict again. Often the delay is determined through an exponential back-off mechanism
so that the delay increases exponentially each time the transaction retries again.

These concepts can be realized in software as Software Transactional Memory (STM),
hardware as Hardware Transactional Memory (HTM), or as a combination of both as hybrid
TM. In the following, a few representatives of the respective species will be presented in
this thesis.

The interested reader finds a more complete overview of TM systems in [83]. This overview
is beyond the scope of this thesis so that we restrict our discussion to a few example systems
that illustrate the wealth of possible implementation options of the required actions and
design decisions in TM systems that influence the run time behavior. The inexperienced
application developer faces all these TM systems with their possibilities. This overview
enables the reader to understand the dilemma that the application developer faces and that
we research to alleviate with tool support for TM that is presented in Chapter 4 and the
following.

2.2.1 Software Transactional Memory
Software Transactional Memory (STM) implements the algorithms that maintain the ACI
properties for the programmer in software. Due to the optimistic concurrency with TM,
the STM system must buffer speculative data while transactions are in progress. Moreover,
multiple versions of the same datum may exist when transactions execute concurrently.
Thus, the STM requires a data versioning system to assure that only consistent states are
committed to main memory. During the commit phase these versions are validated to
assure that no outdated values produced the results. Therefore an STM systems implement
algorithms for conflict detection and validation in software [194]. Moreover, STMs
may buffer speculative data to perform data versioning in two ways: in-place that is the
speculative version of the data is kept in memory and the STM maintains an undo log or in a
write buffer so that speculative data is buffered inside the STM and made publicly available
during a successful commit operation. The conflict detection can either be early/eager
or late/lazy. These strategies are also known as encounter-time locking and commit-time
locking strategies. Further, STMs support either visible or invisible read operations. Visible
reads can be observed by concurrently running transactions, e.g., through acquiring a lock
that corresponds to the address, whereas invisible reads can not be observed. Of course,
implementing the selected algorithm and data versioning in software comes with significant
overheads [27]. In the following, we discuss the commit operation in an STM system in
detail to illustrate the basic concept of STMs.

According to Fraser and Harris [67], the commit in an STM system goes through three
phases. Figure 2.1 illustrates these phases. In the example the transaction comprises a read
to address a1 and a write to address a2 – both of these accesses are stored in the read and
write set respectively. The commit operation starts, visualized by the gray bar, and first

12



2.2. Realization of Transactional Memory 13

Location of a1 guaranteed valid from 0 until 2

0. Read a1

Start commit
operation

Linearization
point

Decision
point

Finish commit
operation

1. Acquire a2 2. Read-check a1 3. Release a2

Exclusive access to location a2 retained from 1 until 3

Figure 2.1: Illustration of commit phases in a Software Transactional Memory system;
taken from Fraser and Harris [67].

acquires exclusive access to the locations that need to be written (in this case a2). After
exclusive access is achieved, no other transaction can update these locations. Thus, this
is the logical point in time where the results of the transaction take effect with respect to
other transactions. This point in time is also called the linearization point because if this
transaction commits successfully (which is undecided yet), this point determines the rank
of the transaction in the serialization order with respect to other transactions. Although
the transactions potentially execute at the same time, this determines the order in which
changes to the contents of the memory are made. This guarantees that a transaction with
rank k will use the newly produced memory contents of transaction with rank k− 1 if there
are overlaps in the memory read and written. The next step in the commit operation assures
this through validating the reads of the transaction. In case a read of an outdated variable is
detected, the transaction rolls back. This means that a different transaction modified the
variable contents between the read and the read check. The read check relies on versioning
information and is also called validation phase. The decision point is the point in time
where the decision whether the transaction commits or aborts is made. In case of a commit,
the variables that are written are updated with the new values. Regardless whether the
transaction commits or aborts, it needs to revoke the previously acquired exclusive access
to the variables. This step completes the commit operation.

The first pure software implementation of a TM system originated in 1995 [180]. This
approach is known as a static solution because the programmer needed to identify all
accesses to shared memory locations in a transaction and pass them with the function call
at the begin of the transaction. This procedure was error-prone and hindered straightforward
refinement of transactions because programmers could simply forget to add a new location
to the list of accessed locations.

Thus, later STM versions support accessing memory locations dynamically and are called
Dynamic Software Transactional Memory (DSTM). DSTM has been proposed by Herlihy
et al. [90]. DSTM uses a write buffer and conflict detection at the granularity of objects.

Harris and Fraser present a Word-based Software Transactional Memory (WSTM) and
follow a similar approach using a write buffering STM but with conflict detection at
word-size [67].

Dice et al. published a popular TM algorithm, called Transactional Locking II (TL2),
in 2006 [54]. The algorithm uses a global counter, called global version clock, to track
the version of the values read and locks to detect writes to memory locations. Writing
transactions increment the global version clock upon commit. A transaction samples the
counter and stores it in a thread local variable. The algorithm stores reads in a read set

13



14 2. Fundamentals

that contains the address read and writes in a write set that contains the address and the
new value. Reads additionally check the corresponding write lock of the address to detect
concurrent writers and abort the transaction early. The algorithm first locks the location in
the write set on commit, then atomically increments the global version clock. In case the
not all locations of the write set were acquired, the transaction fails. Then, the algorithm
validates the read set and aborts the transaction when it detects a newer write to a memory
location. On success, the algorithm commits the changes to memory and releases the locks
on the locations written. The global version clock becomes a scalability bottleneck for high
thread counts. Therefore, SkySTM, the successor of TL2, introduces the scalable non-zero
indicator, a hierarchical data structure that replaces the global version clock, but provides
the same functionality and is designed for high thread counts to improve the scalability of
the implementation [124].

TinySTM1 detects conflicts on a word granularity and comes with a customizable design.
At compile time the programmer may select whether write-buffering or in-place updates
are preferable and decide between a encounter-time or commit-time locking strategy [62].
TinySTM uses a similar conflict detection algorithm like TL2 but incrementally constructs
a valid snapshot of memory locations for read-only transactions so that these do not need
to be validated on commit. This approach is called lazy snapshot algorithm [162]. The
linearization point of these read-only transaction is at the start time of the transaction (not
during the commit phase).

Intel’s McRT [168] comes with compiler support and an STM. The STM supports conflict
detection at cache line and object granularity and implements an undo log as well as a
write buffer.

A major difference in the implementation and design of e.g., WSTM and TinySTM is that
WSTM is a lock-free (or more precisely non-blocking) implementation whereas TinySTM
uses locks. In a lock-based implementation a transaction may acquire a lock and yields
exclusive ownership of a memory location so that other transactions that also want to
access this location have to block until the lock becomes available or have to retry the
transaction. The conflict detection algorithm in a lock-free STM relies on architectural
support for atomic operations e.g., compare-and-swap (not locks) so that it does not block
other transactions. The emerging lock-free STMs are inspired by lock-free implementations
of parallel data structures e.g., double-ended queues [88]. The data structures synchronize
concurrent accesses to a parallel data structure, in this case a queue that supports adding
and removing elements at both ends, by means of synchronization primitives that give
weaker guarantees than locks and the use of specifically designed algorithms. In this case
the correct synchronization of concurrent accesses is achieved through the use of atomic
compare-and-swap operations. The atomic compare-and-swap operations can also be used
to implement locks.

These non-blocking algorithms are classified according to the following scheme that
groups them according to their progress guarantees [67]. Obstruction-freedom guarantees
progress only if operations of one thread do not contend with operations of other threads.
In a lock-free system, obstruction freedom is enhanced by the guarantee that – even in
the presence of contention with other threads – the system makes progress. A common
solution adds a helper mechanism. In case two threads contend for a memory location one
thread helps the second thread to complete the ongoing transaction. This helper mechanism

1http://tinystm.org/tinystm

14

http://tinystm.org/tinystm


2.2. Realization of Transactional Memory 15

guarantees progress even in the presence of threads that contend for the same memory
locations. Wait-freedom is achieved if all threads make progress – even in the presence of
contention.

In [67], Fraser et al. present a word-based STM design (WSTM), an object-based STM
design (OSTM), and a multiword compare-and-swap (MCAS) operation. The performance
comparison uses these designs and compares them to lock-based and compare-and-swap-
based synchronization to implement a red black tree, that is a self-balancing tree, and a
skip list. The results show that the scalability of lock-based synchronization depends on
the granularity of the lock on the one hand and the contention of the lock on the other hand.
Also under high contention, the OSTM and WSTM designs outperform the lock-based
synchronization.

Opposing to Fraser’s work on obstruction-free STMs, Ennals designs an object-based STM
that is not obstruction-free [58]. Instead he argues that obstruction-freedom is required for
distributed systems, but is dispensable for STMs. Programmers appreciate the advantages
of STM over serialized execution and do not need a guarantee that one atomic operation
does not block another one. Furthermore the operating system/TM run time may adjust the
number of concurrently running transactions so that transactions are not often suspended
while running. Hence, transactions are suspended infrequently so that these transactions
do not block other transactions which is a major concern of obstruction-free approaches.
Ennals states that obstruction-freedom prevents important optimizations such as storing
STM meta data with the object or in a private memory region of the current processor so
that extra cache misses are unlikely. Moreover, choosing the number of active transactions
smaller or equal to the number of cores should avoid conflicts. The STM builds on a
revocable two phase locking scheme for writes (similar to TL2) and optimistic concurrency
control for reads, both using a global clock for versioning. The memory is divided in a
private space for meta data and public (shared) memory. A fair comparison with Fraser’s
STM, using the exact same setup and benchmarks, shows that Ennal’s design performs
between a factor of 2 (with limited memory bandwidth) and 5 (with high contention)
faster than Fraser’s. These results illustrate that a non-obstruction-free STM can perform
significantly better than an obstruction-free one.

Another aspect of Software Transactional Memory systems is the contention management.
The contention manager arbitrates in case of a conflict between two transactions. In
most cases one of the transactions must retry whereas the other transaction continues. A
contention manager may provide desired properties such as forward progress or fairness.
Therefore, the contention manager must select the right transaction. A smart strategy also
avoids livelock and starvation. Spear et al. present an example of a contention manager
that is designed for blocking STMs with invisible reads that ensures fairness [192]. This
algorithm reduces the accesses to meta data on every transactional memory access which
has been one of the weaknesses of previous contention management strategies [170]. As
a side note it should be noted that STM conflict detection policies such as commit-time
locking or encounter-time locking also influence the contention management. The reason is
that a conflict is detected earlierer with encounter-time locking providing fewer information
about the transaction to the contention manager. With commit-time locking, the contention
manager may decide based on more information e.g., read set/write set sizes that influence
the rollback costs. Advanced techniques have been developed to benchmark contention
management schemes: Discrete event simulation is used as a tool for the development of
TM contention managers [52].

15



16 2. Fundamentals

Contention management can either be passive or active [192]. Passive signifies that a
transaction aborts itself if it detects a conflict with a concurrent writer. Applications with a
regular access pattern benefit from this strategy. Whereas active would abort the concurrent
transaction in case a transaction detects a conflict. In this thesis, we restrict the considered
contention management strategy with STM to be passive due to the applications with
regular accesses that benefit from this scheme.

An additional issue arises with the optimistic concurrency of TM when a transaction has
to execute actions that can not be undone. This is the case with performing transactional
I/O or more generally executing system calls from inside of a transaction. In the literature
two terms exist to descibe techniques that enable to execute these actions: irrevocability
and inevitability. Welc et al. research how to apply irrevocable transactions to speedup
contention management and discuss the performance of irrevocability in general [206].
This approach introduces the single owner read lock that allows one transaction at a time to
transition to irrevocable mode. Thus, one irrevocable transaction executes in parallel with
revocable transactions. Spear et al. solve the same problem by introducing the inevitable
mode and research ways of implementing and exploiting it [195].

This paragraph gives a brief insight into the evolution and debate of STM research and
demonstrates that an application developer faces a variety of questions that require answer-
ing before choosing a fitting STM system. In their search for STM systems with different
progress guarantees, contention management schemes, conflict detection algorithms, and
the like, researchers have lost sight of the inexperienced application developer who has
been the target audience for the invention of TM. In this thesis, we present techniques that
make the programmer aware of the TM application’s behavior and bridge the gap between
the experienced TM researcher and inexperienced application developer by providing tools
that help both groups to optimize the TM application.

2.2.2 Hardware Transactional Memory

In a Hardware Transactional Memory the TM functionality is implemented in hardware.
Herlihy and Moss proposed such a TM implementation in 1993 for a (bus-based) multipro-
cessor architecture with shared memory [91]. The TM functionality is provided through
extensions of the cache coherency protocol and adding a fully-associative transactional
cache of fixed size in addition to the regular cache. Both caches are L1 data caches. All
transactional operations, that comprise data loaded or stored in a transaction, target the
transactional cache. Data can only be in one of both caches at a time. The transactional
cache buffers the speculative values while transactions are in flight and supports the com-
mit and abort of transactions. Moreover, the cache-coherency protocol is extended with
transactional read operations. These may retrieve values from the normal caches or from
the transactional caches if the tag of the cache line indicates a non-transactional value.
Transactional cache lines are not transferred via the cache-coherency protocol while a
transaction is in progress. This data is made available to other processors only after a
successful commit operation that changes the state of the cache lines in the transactional
caches to valid. Transactions that access only a certain number of memory locations so
that the reads and writes fit in the transactional cache and do not exceed the scheduling
quantum can be executed. Larger or longer running transactions fail and retry or will
require software emulation. This first HTM proposal is an example for a best-effort HTM
system. For the transactions that fail or retry due to resource limitations, there is no
additional effort put in lifting the restrictions of the hardware. Many other implementation

16



2.2. Realization of Transactional Memory 17

alternatives have been proposed since then to lift these restrictions for hardware TM. A
comprehensive description of HTM components is published in [93]. A short, incomplete
survey of HTMs follows.

Transactional Coherency and Consistency (TCC), developed at Stanford University, has
been proposed as a shared memory model [80]. TCC uses transactions as units for memory
coherency and consistency which means that all writes of a successfully committed trans-
action are broadcasted to all participating processors. This assures the consistency because
all processors receive the new values to work with and implements the coherency through
the broadcast operation. The granularity of coherency and consistency is the transaction
that has been defined through the programmer. TCC further uses a write buffer to store
speculative writes and a commit control unit that grants the right to commit and ensures
serialization at commits. Moreover, the commit unit also enforces a programmer-defined
order of committing transactions that is specific to TCC. ATLAS is an implementation of
TCC on FPGAs that uses a write buffer and optimistic conflict detection [147].

The following HTM systems use a pessimistic conflict detection and a write buffer: LTM
(Large TM) developed at the Massachusetts Institute of Technology [6], Herlihy/Moss
TM [91], and VTM (Virtual TM) [158] proposed by Intel Corp. and Brown University.
An undo log and pessimistic conflict detection is used by the following HTMs: UTM
(Unbounded TM) Massachusetts Institute of Technology [6] and LogTM (Log-based TM)
proposed by the University of Wisconsin-Madison [138, 212]. In both cases a transaction
may exceed the size of the cache and both HTMs provide sophisticated mechanisms to
assure the data consistency and track overflowed values. These measures are indicative
for unbounded HTMs, that lift the restrictions of the HTM system, and the accompanying
complexity make them less likely to be adapted by industry. Issues with HTM are the
occurrence of interrupts inside of a transaction or reaching the end of a time slice while
executing a transaction. The common HTM behavior is to abort the transaction in these
cases. To overcome these deficiencies and avoid an overly complicated HTM design,
researchers proposed to combine hardware and software to a hybrid TM system.

IBM’s Blue Gene/Q architecture supports Transactional Memory in hardware through
buffering speculative values in the L2 cache and performing conflict detection in hard-
ware [201]. The TM run time system configures the hardware at the begin of a transaction
so that conflicting accesses during the execution of a transaction can be detected in hard-
ware when accessing the L2 cache. The TM run time and the operating system monitor the
execution of a transaction and provide a sandboxed execution environment called jail mode.
This environment enables the execution of arbitrary code inside transactions. Especially
the operating system plays an important role because it detects and resolves violations of
the jail mode. E.g., I/O operations violate the jail mode because they can not be undone
easily. Hence, these operations lead to a retry of the transaction in an irrevocable mode.
The interplay of OS and TM run time system enables the execution of arbitrary code and
guarantees forward progress through the irrevocable mode. Moreover, the run time system
also adapts the amount of retries a transaction makes before transitioning into the irrevoca-
ble mode. A compiler/run time approach stores and restores the live-in registers. These
operations cause some overhead. To classify the overheads, the paper compares BG/Q
hardware TM with two different execution modes with TinySTM and omp critical.
A comparison of the execution times of a single-thread with a sequential version gives first
insights in the overheads and more results show the impact on accesses to the L1 cache and
the length of the instruction path. STAMP benchmarks [24] illustrate the scalability when

17



18 2. Fundamentals

going from 1 to 64 threads. Four different categories describe the relation between HTM
and STM. Effective HTM comprises the benchmarks genome and vacation. Both show
a better scalability than TinySTM. Benchmarks ssca2 and labyrinth fall into the
category capacity bottleneck because both exceed HTM resources. The TinySTM code for
labyrinth uses privatization (cf. Section 2.3) and performs better. The same holds for
benchmark bayes. For the other benchmarks of the STAMP suite, HTM shows the best
performance at low thread counts, which is explained through limited hardware and coarse
grain conflict detection that may become a bottleneck due to contention.

For a comprehensive description of the BG/Q architecture and comparisons with other hard-
ware please confer Section 8.2 of this thesis. Currently the BG/Q architecture is the only
commercially available architecture with hardware transactional memory support. In this
thesis we research what application properties benefit from hardware transactional memory
on BG/Q in Chapter 8 and highlight a profiling and a tracing tool that both account for
transactional execution in Chapter 9. Other vendors also announced microprocessors with
HTM support. Intel®’s next processor generation, called Haswell, features Transactional
Synchronization Extensions (Intel® TSX) [103]. The techniques and tools researched in
this thesis should be transferred to Intel® TSX in the future.

2.2.3 Hybrid Transactional Memory
Hybrid Transactional Memory combines the strengths of HTM and STM components.
HaSTM [169] uses HTM primitives to accelerate software routines e.g., for the validation
of the read and write sets. Thus, the STM part is always active but relies on special
hardware to accelerate the processing. Other approaches combine hardware and software
in a different way. Transactions have two code paths: one that utilizes the HTM ressources,
e.g., transactional cache and special instructions, and one that addresses the STM system.
A transaction will first try to execute the code path with the HTM support because the
execution is usually faster and if HTM resources are exhausted and the transaction retries
(potentially a pre-defined number of times), the implementation falls back to the execution
of the software path [47]. The hybrid TM system keeps the HTM and the STM meta
data coherent. This requires that the HTM system also accesses STM meta data so that
both systems can run in parallel and detect conflicts. A different approach executes either
the hardware code path or the software code path of all transactions at a time [122].
Transactions that can not complete in hardware can queue for execution in software. In
case enough transactions are in the queue, the execution in software is triggered. This
approach does not have to keep STM and HTM meta data coherent because only one TM
system is active at a time.

The combination of hardware and software to a hybrid TM system has the advantage that
hardware costs are modest and the TM extension only needs to provide best-effort hardware.
In combination with the software part, the hybrid system still ensures the execution of
transactions that exceed the limits of the hardware. Although this execution comes with a
performance penalty compared with executing transactions in hardware only, this approach
makes a TM extension of current microprocessors affordable for manufacturers and does
not expose the limits of the hardware to the programmer.

AMD’s Advanced Synchronization Facility (ASF) is such a best-effort hardware extension
of the AMD64 architecture that provides progress guarantees for transactions in the absence
of contention of different threads for the same memory locations [36]. The instruction set
extension provides the following ASF-specfic instructions: speculate, commit, lock

18



2.3. Memory Model for Transactional Memory 19

mov, watchr, watchw, and release. While the first two instructions start and end a
transactions respectively, the other instructions declare protected memory locations and
define for which kind of accesses these should be monitored. The release instruction
removes an address from the read or write sets so that it will not be monitored any longer.
Two implementation alternatives of ASF exist: a cache-based implementation that modifies
the cache-coherency protocol and a variant that adds a locked-line buffer to each CPU that
holds monitored addresses and backup copies. The evalutation uses a near cycle-accurate
simulator and integer set and STAMP benchmarks [24] with up to 8 threads and shows a
significant improvement over the STM solution.

Another hybrid TM system that also features an ASF implementation is TMbox [190].
In this thesis, we present a tracing methodology that extracts fine-grained event traces
of the hybrid TM system TMbox in Section 5.2. Similarly to the ASF proposal, the
new BG/Q architecture could also be classified as a hybrid TM system according to our
standards because a TM run time system implemented in software initiates and commits
transactions [201]. However, we refer to the BG/Q as HTM system because the compiler
generates only one execution path for a transaction whereas hybrid systems, except for
HaSTM, usually have at least two paths.

2.3 Memory Model for Transactional Memory
In the following, we will review the state-of-the-art that targets the definition of the memory
model with respect to transactional execution. In general, a memory model defines the order
in which loads and stores must execute to produce a well-defined result for the programmer.
With shared memory, the model also defines when parallel threads of execution see values
produced by other threads. For TM, the memory model also needs to define the semantics
for parallel transactional and non-transactional accesses to the same shared datum. The
memory model provides the foundation for programming with TM and, hence, influences
our work that researches methods and strategies for the optimization of TM applications
in multiple ways. For instrumenting accesses to shared memory with the compiler, the
memory model defines which accesses to instrument. This especially applies to accesses to
shared memory outside of transactions. For the optimization strategies, the memory model
influences whether specific programming patterns have the potential to alter the results of
the execution. Thus, the memory model has a huge influence on our work and although we
do not research the memory model itself, we discuss current trends with respect to the TM
architectures used in our work.

Ever since the proposition of sequential consistency in 1979 by Leslie Lamport [116], the
memory model has been a controversial topic. Memory models that give strong guarantees
to the programmer must restrain the optimization possibilities of the compiler and the
architecture. On the other hand, systems that perform aggressive reordering of memory
accesses and compiler optimizations exhibit a program behavior that is difficult to reason
about and predict.

In the Transactional Memory domain, the memory model discussion concentrates on the
relationship between transactional and non-transactional accesses and whether a program-
mer needs to be aware of implementation-level details of the TM system. The opposite
positions are a strong and a weak isolation model. Strong isolation provides isolation
between transactional and non-transactional accesses to shared memory [16, 185]. Hence,
strong isolation prevents non-transactional read accesses to observe intermediate states

19



20 2. Fundamentals

of a transaction in progress and enforces an order of the transaction and any kind of
non-transactional access in case both access the same datum.

In Software Transactional Memory there are two ways to achieve strong isolation. A
pure software solution must instrument non-transactional accesses to shared data with
STM functions, so called single access transactions, to detect concurrent accesses. In this
case the strong isolation properties come with severe overheads that result in a loss of
performance. In case hardware primitives support the conflict detection, these can also be
used to enforce strong isolation.

Weakly isolated transactions do not give any guarantees for concurrent transactional and
non-transactional accesses to the same data structures [133]. Hence, intermediate states
of a transaction could be observed with a non-transactional read access. This introduces
problems when programmers want to use well-known parallel programming patterns like
privatization [193] or publication [133] because these move data between a shared and a
private memory space and, hence, access the data from inside as well as from outside of a
transaction. A transaction may privatize data through moving it from a shared to a private
memory space in order to process it without the need for synchronization. In a publication
pattern the transaction moves private data to a shared memory space inside of a transaction.
These two patterns in combination with an in-place update implementation of the STM
may introduce race conditions in an otherwise race-free program. Programming with these
patterns seems natural to most programmers so that a stronger model is required. The most
intuitive model that is based on weak isolation is single global lock atomicity. In this model
transactions behave as if they were acquiring a single global lock on start of a transaction
and releasing it on commit [134]. A quiescence mechanism assures that each transaction
waits until it is safe to commit without introducing a race in a potential privatization pattern.
This assures the correct ordering of the transactional access that privatizes the data with
respect to other transactions that access the same memory location and could introduce
spurious undo operations. The inverse problem is solved through publication safety. For
the single lock semantics, the implementation of the STM also must not expose speculative
state to non-speculative accesses (e.g., not use in-place updates) and maintain granular
safety which means only undo operations at the same granularity that accesses have been
performed with [185].

Menon et al. compare the single global lock atomicity in Java with stronger and weaker
models and come to the conclusion that strong isolation as well as single global lock
atomicity come with significant overheads [134]. While strong isolation suffers from large
single thread overheads and shows a good scalability, single global lock atomicity has
lower single thread overhead but scales not as good.

Luchangco argues that defining semantics for Transactional Memory in terms of locks
would lead to a diverse set of incompatible implementations which would break the
composability of parallel modules that the TM community has hoped for [128]. The
existence of different and incompatible isolation levels in the database community serves
as an example. Further, two examples showcase why the author thinks that lock-based
semantics are non-intuitive.

Dalessandro et al. propose a model that is stronger than weak isolation and weaker than
strong isolation: Transactional Data Race Freedom (TDRF) assures transactional sequential
consistent semantics for data race-free programs [46]. On the one hand, this does not give
semantics to programs with data races as strong isolation does. On the other hand, the

20



2.3. Memory Model for Transactional Memory 21

memory accesses inside the transaction are performed in program order, giving a stronger
and more intuitive guarantee than strong isolation that does not adhere to the ordering.

Spear et al. propose multiple implementations to achieve privatization safety [193]. The
two basic concepts are introducing blocking fences or enabling non-blocking privatization.
While the first technique ensure privatization safety through waiting and thus blocks the
committing thread, the second technique must inspect the meta data of all memory oper-
ations for a privatizing transaction and perform full validation of the read and write set.
These techniques can be refined by programmer annotations so that only affected trans-
actions pay the performance penalty [214]. Although the proposed annotation performs
quiescence of transactions as default, it introduces the risk that the programmer forgets to
remove an annotation when transaction was changed to privatize data. The potential result
is that the execution either fails or produces the wrong result.

Grossman et al. make a first attempt to explore the impact of high-level memory models
on the semantic of transactions [79]. They research the impact of a weak memory model
(weaker than sequential consistency) on compiler transformations and illustrate that the
isolation as well as the ordering of transactions are affected by the memory model. Moore
and Grossmann develop a language that is capable of modeling the effects of high-level
transactions that execute with multiple small steps [137]. Along with multiple models for
strong and weak isolation, this work also covers parallel nesting (e.g., spawning a thread in
a transaction).

Harris et al. present a concurrency model that is based on transactional memory and
enables composability [84]. They highlight the implementation of an STM in Haskell and
show how transactions are separated from irrevocable actions such as performing input
or output. Moreover they also present a formal definition of the operational semantics of
STM Haskell.

Other researchers propose to enrich the transactional programming model with programmer-
defined points that enable transactions to cooperate [188]. At these points transactions
may observe speculative state of other transactions and communicate. This not only
allows to call barriers inside transactions but also enables irreversible operations as well
as having helper transactions. The model composes with the open nesting of transactions
if compensating actions are supported. The programmer must specify the points when
transactions may communicate and cooperate which complicates the programming model
for the novice programmer.

Eventually the debate around a practical memory model for TM constructs in C++ con-
verges to a semantic that provides the guarantees of a single global lock that guards all
transactions [18]. The semantic is expressed in terms of the memory model of C++11 [5].
In practice the semantic means that a data access to a variable that is concurrently accessed
outside and inside of a transaction is considered a data race and may yield a variety of
legal results. Interestingly the memory model of the BG/Q architecture provides stronger
guarantees [201]. A transactional execution of the case would be strongly isolated and
force the transaction to roll back when the variable is accessed concurrently outside of a
transaction. When the transaction executes in serial mode, multiple interleavings of the
concurrent updates are possible. As a result, well-behaving software that is written with
transactions following the specifications of the transactional constructs for C++ should
directly be transferable from STM to BG/Q. A transfer from BG/Q to STM might uncover
data races that have been covered by the strong isolation of BG/Q. Thus, the portability of

21



22 2. Fundamentals

TM software may cause some issues that could be alleviated using tools in the future. For
the work presented in this thesis, the STM supports weak isolation while hybrid TM and
BG/Q provide a stronger kind of isolation. For hybrid TM the execution in hardware mode
is strongly isolated due to a non-transactional write sending an invalidation that aborts a
transaction in flight. The same applies for BG/Q with the execution in the transactional
mode. Thus, for executing in the transactional mode, optimizations that rely on patterns
that require a stronger memory model, such as the privatization or publication patterns, are
possible.

22



3. Related Work

This Chapter 3 reviews related work that is relevant to classify the work in this thesis with
respect to other research. In order to facilitate the understanding of this works, we build on
the knowledge about the concept of TM and the different implementation possibilities for
TM as illustrated in the previous Chapter 2.

Section 3.1 gives an overview over related work that covers compiler support for TM.
These works prepare the reader for our work presented in Chapter 7 that not only introduces
basic TM support for GCC, but also explores how to use static information to select an
STM property.

Then Section 3.2 discusses techniques for the retrieval of run time information of applica-
tions in general and more specifically for TM applications to establish a basis for the work
on generating TM event traces in STMs presented in Section 5.1. Section 3.3 reviews tools
for the optimization of TM applications and compares these approaches with our work
presented in Chapter 6.

Section 3.4 presents research that focuses on hybrid TM systems, profiling of TM and
other applications, and highlights approaches that are based on FPGA hardware. These
works are the fundament for the extension of an FPGA-based hybrid TM system with event
logging extensions in Section 5.2.

In Section 3.5, we highlight case studies that document how to program with TM. First,
we will highlight studies that involve student groups. Then, we review the applicability
of TM to scientific codes and other application areas. From our perspective, applying the
tools researched in this thesis would have been beneficial for all of these works.

Section 3.6 holds works that cover the modeling of performance with TM and the energy
consumption of TM system. Although these approaches are not directly related to the
methods and strategies researched in this thesis, the presentation of works from nearby
research areas helps to generate new ideas for future work.

Then, Section 3.7 presents approaches that cover the adaptation of the STM system. These
approaches are orthogonal to the ones presented in this thesis and could, thus, be combined.

Finally, Section 3.8 reviews related work that targets the phase detection in sequential and
parallel programs. This provides the ground for the phase detection algorithms for TM
applications proposed and evaluated in Section 6.4.

23



24 3. Related Work

3.1 Compiler Support for TM
In this section we will present related work that targets compiler support for TM. The
detailed presentation of the works lays the foundations to understand the novelty and the
contributions of the two TM-centric compiler-based approaches in Chapter 7.

For a basic support of Transactional Memory an API-based approach is sufficient. Da-
lessandro et al. demonstrate that a well-designed API for C++ can exercise language
features such as macros, overloading, exceptions, and multiple inheritance to simplify the
API, support privatization, and ensure usability through catching programming errors [45].
More importantly, they also state that this approach fails to deliver the ease of programming.
Therefore, and for the improving of the programming model and providing optimizations
the compiler plays the primary role.

A TM-enabled compiler additionally recognizes a keyword or pragma that marks a transac-
tion in the code. Inside these transactions, the compiler substitutes shared memory accesses
with calls to a Software Transactional Memory library (STM). Furthermore, live-in stack
variables need to be logged on entry to the transaction so that these can be replayed when
the transaction retries. For STM implementations without hardware support to accelerate
conflict detection, executing these STM functions for reads and writes, also denoted as
barriers in the following, has a large overhead. Thus, compiler optimizations that mitigate
these overheads are of great importance.

Intel develops McRT, a runtime system for multicore architectures, which includes an STM
library implementation and compiler techniques to optimize and support these STM barriers
in an unmanaged language [202]. This work transfers previous algorithms for conflict
detection for Java [4] to unmanaged languages e.g., C and C++. Further, Wang et al.
present solutions to handle function pointers, the aliasing of local variables, and exceptions
introduced through inconsistencies caused by speculation [202]. Compiler optimizations
perform redundant barrier elimination, inlining of the STM fast path, elimination of barriers
that refer to transaction-local memory, and generating different functions for transactional
and non-transactional execution. Further, a TM-specific register checkpointing scheme
enables partial redundancy elimination across transaction boundaries. For the SPLASH-2
benchmarks [210] the single-thread overhead of STM compared with fine-grained locking
(both with optimizations) is 6.4 % on average. On a 16-way SMP system executing 16
threads, the benchmark raytrace scales best with STM whereas the benchmark barnes
does not perform as good as with fine grain locks. Both perform always better than coarse
grain locks.

In addition to compiler support for transactions, McRT also provides transactional versions
of C library functions such as malloc and free [97]. The implementation of these
uses thread-local storage to avoid introducing atomic primitives for the synchronization of
threads. Further, memory allocated in aborting transactions is freed correctly and nested
transactions with partial rollbacks are also supported. Integrating malloc and free with
the STM enables to recycle memory (which leads to an increased locality) and use object
meta-data for conflict detection. Most importantly this integration enables the programmer
to manage memory from inside of transactions.

For managed languages such as Java, optimizations can also be implemented in a just-
in-time compiler/runtime environment. This approach has the great advantage that an
intermediate representation of the code can be tuned to the underlying platform. Adl-
Tabatabai et al. research compiler and runtime support for STM in Java [4]. They apply

24



3.1. Compiler Support for TM 25

just-in-time optimizations to STM operations in order to safely eliminate redundant barriers
and to reduce the single thread overhead. With these techniques the single thread overhead
has been reduced from 63 % to 16 % with respect to lock-based synchronization. The TM
system enables nested transactions with partial rollback to the checkpoint of the inner
transaction and the conflict detection on a word or object granularity based on the type
information.

Dragojević et al. propose a compiler and runtime approach for optimizing STM read and
write barriers [56]. They observe that memory is often allocated inside of a transaction and
later accessed in that or a subsequent transaction of the same thread through expensive STM
read and write barriers. These barriers are unnecessary because the allocated memory has
not escaped the transaction (or more precisely the thread) and may thus not be accessed by a
different thread. They introduce the term captured memory for this kind of memory access.
Moreover this approach also covers transactional accesses to read-only and thread-local
data that can also benefit from eliding regular barriers.

A static approach for performing this so called escape analysis [34] requires inter- and
intra-procedural analysis to cover all memory references. Since the compiler has to make
conservative assumptions, it is complemented with a run time system that checks whether
the address to be accessed has escaped previously. The implementation uses the standard
pointer analysis in the Intel C++ compiler. This analysis uses intra-procedural pointer
analysis and function inlining to include function calls. The available inter-procedural
analysis has not been used due to two reasons: it would add substantially to the compilation
time and this approach would not work when using linked libraries. The performance
of three data structures for implementing the address range checks in the run time are
compared: tree, array, and filter. While tree always returns the exact result, array and filter
may yield false negatives. The overall result is that leaving out the expensive barriers
when accessing captured memory may yield up to 18 % performance improvement for 16
threads.

Wu et al. describe similar compiler optimizations for TM in Java and C/C++ to identify
and eliminate TM barriers for contention-free writes [211]. Escape analysis for heap
locations and optimizations for stack-local variables, that have their address taken, are
combined to reduce the amount of read and write barriers. For an implementation of a
B+tree [121], that connects the nodes on one level with a single-linked list, applying both
techniques together yields performance improvements of 32 % on average across 1 to 16
threads. A SQL relational database, HSQLDB1 that holds a table in memory, serves as show
case for the potential of TM. The existing multi-threaded version uses the synchronized
statement to guard the database object. A transaction straightforwardly replaces this
block. Although the single-thread performance is 5 times slower with TM, the better
scalability of TM allows TM to overtake the lock-based version at 4 threads. Moreover,
compiler optimizations (separate transactional version of functions and transaction local
optimizations) are effective and increase the throughput of the TM system.

Some researchers propose transactional memory as an enhancement to OpenMP [136, 9].
These proposals include a variety of new transactional directives, such as #pragma omp
sections transaction grouping together independent sections that are treated as
transactions. OpenTM [9] extends GCC with two nesting variants: open and closed nesting.
Open nesting publishes the state of an inner transaction in case the outer transaction aborts

1HSQLDB - 100% Java Database available at http://hsqldb.org/.

25

http://hsqldb.org/


26 3. Related Work

whereas closed nesting discards the changes from the inner transactions causing no side
effects; open nesting allows for additional optimizations to happen at compilation and
runtime, but breaks major assumptions about transactional execution (it is intended for
expert library developers). An extension to the omp for directive is also proposed, omp
transfor, executing the loop iterations in parallel as transactions. Furthermore, the
programmer may specify the scheduling of these loop iterations and enforce sequential
commit of the transactions (relying on the quiescence mechanism) to enable a memory
consistency behavior compatible with weakly isolated, single-lock execution [133]. Milo-
vanović et al. [136] study the interaction between OpenMP 3.0 tasks and transactional
execution. In particular, an optional list holds the shared memory locations to instrument
or not instrument. This mechanism provides the programmer with a verbose yet effective
means to reduce instrumentation overhead. A similar mechanism is proposed in IBM’s
TM-enabled XL Compiler [101].

From the previous paragraph, we conclude that both TM extensions of GCC are closely
coupled with OpenMP. Thus, an extension with Pthreads or a comparable threading library
other than OpenMP is not possible with these approaches. Moreover, these approaches also
extend the OpenMP primitives so that they go beyond a transactional memory extension of
GCC that is presented in Section 7.1.

Tanger is an open source compiler framework that supports the use of transactions [61].
This particular approach extends the Low Level Virtual Machine (LLVM) intermediate
representation and generates code for the TinySTM library [62]. Further enhancements
to Tanger allow the conflict detection algorithm of TinySTM to operate on objects in
an unmanaged environment [161]. LLVM has been proposed in [118] and features a
load-store architecture with an infinite register set. LLVM simplifies program analysis
and optimization [119]. The compiler framework is very versatile and can also be used
for worst case execution time analysis [148]. The universal applicability makes LLVM
suited to implement a static analysis of the memory access patterns in transactions (cf.
Section 7.2).

STM systems with conflict detection on cache line granularity are sensitive to false sharing.
In cache-coherent multiprocessor systems false sharing may lead to cache thrashing. When
different processors update different words of the same cache line in an interleaved manner,
an invalidate-based coherence protocol makes the cache line oscillate between caches. The
overhead associated with invalidating and transferring the cache line results in loss of per-
formance. As false sharing is a major topic in Section 7.2, we briefly review related work
on the detection and avoidance of false sharing. Tool support, such as Intel’s VTune Perfor-
mance Analyzer, helps to detect false sharing in general [102]. The programmer can also
revert to manual techniques (e. g. employing the attribute __declspec(align(n))
to enforce the alignment of data structures) or reorganize data structures so that accesses
are not mapped in the same cache line. Further, programming patterns e.g., privatization
and publication patterns help the programmer to circumvent false sharing. Privatization
is based on copying shared data to thread local memory. Then the threads may process
the data without interference of other threads, thus avoiding false sharing. Upon finishing
the computation, the thread may copy the data back to shared memory, and herewith make
the data publicly available. Menon et al. study how to employ these software patterns
with transactions and their implications on the semantics of TM in [133]. The implications
of supporting these particular programming patterns have been discussed in the previous
Section 2.3.

26



3.1. Compiler Support for TM 27

The description of the false sharing pattern in the context of transactional memory, not only
underlines the importance of tackling this issue but also promises potential performance
gains. Hence, the static detection of a false sharing pattern in transactional memory
accesses is a reasonable research direction. In Section 7.2 we present a heuristic that
analyzes the memory access patterns in transactions, based on the results the compiler
decides between a word-based and a cache line-based conflict detection scheme in the
STM. Hence, our approach avoids the negative effects of false positives in STMs without
relying on manual work or dynamic techniques.

In the following we review works that qualify and quantify the overheads of execution with
STM. Yoo et al. identify four challenges that arise when running large-scale workloads
such as a particle dynamics simulation and a game physics engine on the McRT-STM with
Intel’s compiler, supporting TM in C and C++ [214]:

1. false conflicts that result from a coarse conflict detection granularity,

2. over instrumentation through instrumenting thread-local or non-escaped memory
locations;

3. costs due to privatization safety that are caused by quiescing transactions,

4. poor amortization of STM overheads due to the lack of parallelism.

Caşcaval et al. research the reasons why Software Transactional Memory is limited to
research approaches [27]. Their first observation is that no large-scale codes use STM
although TM promises to improve the productivity and to ease the maintenance. Instead
TM systems execute dedicated TM benchmark suites to find bottlenecks. They compare
three STMs: TL2 and IBM STM with hand instrumentation with Intel’s compiler/run time
approach. The results with delaunay, kmeans, vacation, and genome (all from
the STAMP suite [24]) show that on a quad-core Intel Xeon server mostly 4 threads are
necessary to reach the performance of a single-threaded version. Vacation, executing
with any of the STM variants, does not reach the single-thread performance even when
executed with 8 threads. For IBM’s STM a comparison shows the impact of compiler
instrumentation versus hand instrumentation. Then the single thread overheads of two
validation strategies show that a global clock is superior to full validation. Further for
both global clock and full validation a simulator-based break down of time spent in STM
functions verifies the initial finding. Further detailed break downs of the execution time of
STM read, STM write, and STM end operations shows that the overhead associated with
TM bookkeeping dominates the cost. With these findings, the conclusion states that there
are great challenges ahead to make STM attractive. In order to keep the productivity gains,
the programmer should not be involved (e.g., through annotations). In their opinion, these
findings justify only a small investment in hardware support.

Common approaches for the language integration of Transactional Memory either extend
the language with a keyword (or pragma) or provide a specific API so that the programmer
can address the TM system. In the following a complimentary approach, called Optimistic
Thread Concurrency is presented [75]. Azul Inc. addresses the large code base of legacy
software that is written with lock-based primitives. Here, TM is used as an implementation
technique to accelerate the execution of lock-based critical sections. In detail the Java
virtual machine (Azul VM) is extended with mechanisms for speculatively releasing a
lock and run on a hardware with TM extensions that track data contention. In case of
contention, a rollback is initiated transparently for the application. The same technique

27



28 3. Related Work

enables to optimistically execute synchronized blocks in Java and detect data contention.
With profiling information the differentiating between different locking strategies becomes
feasible. A conservative strategy, called thick locking, enforces mutual exclusion and is
used in case of contention. Speculative locks lets more than one thread acquire this lock
and checks for data contention of the memory accesses. In case of contention, one thread
is aborted and resumes execution at the lock acquire operation without visible effects. Thin
locks are used without contention and can revert either to speculative or to thick locks. For
a hashtable implementation with 5 % writes, the optimistic thread concurrency shows a
great improvement in operations per millisecond.

Welc et al. follow a similar idea to transparently reconcile locks and transactions [205].
Their scheme enables the monitor abstraction in Java to switch between locks and
transactions. Locks are efficient for low contention cases because locks are optimized for
this case through only setting a bit in the object using a compare-and-swap operation. In
case of contention, locks would serialize the execution of threads, thus, transactions are
the method of choice. However, there is an issue with the semantics of nesting in Java
that needs to be resolved first. Java enables the arbitrary nesting of monitors. The results
of a synchronized block are published at the exit of the monitor. When looking at closed
nesting semantics of transactions, the inner transaction does not publish its state. To match
both semantics, the authors identify atomicity idioms that the program must conform to so
that the observable behavior is the same. A formal model, based on ClassicJava [66],
shows that in the presence of that atomicity idioms both variants yield the same results.
The implementation of the switching logic (based on the contention record of that monitor)
is implemented in the Jives RVM. The OO7 benchmark implements an object-oriented
database management system [25]. A comparison of transactions-only with the hybrid
scheme shows that the overhead in the uncontended case can be lowered and that speedups
are possible with transactions in the contended case.

The last two works are not directly related with the work in this thesis, but have been
presented to show that TM can also be applied as an implementation technique to speedup
traditional synchronization approaches.

3.2 Information Retrieval in TM Systems
In this section, we will introduce the well-known techniques for retrieving information
of a parallel application first and then review TM-specific solutions. There are several
ways of retrieving information about the run time behavior of a parallel application. A
very popular approach generates event traces at run time. Therefore the application must
be instrumented with calls to event logging routines. This instrumentation can either be
achieved statically at compile time or dynamically at run time.

Dynamic approaches often use dynamic binary instrumentation to instrument a running
application. E.g., Pin is a dynamic compilation tool that features portable, transparent,
and efficient instrumentation [129]. DynamoRIO belongs to the same category but differs
in implementation details [22]. Valgrind is specialized on memory instructions and more
heavy-weight [145].

Static instrumentation approaches often use libraries to log events. The Open Trace
Format employs ASCII events and focuses on scalability and read performance [113].
More formats are the Pablo Self-defining trace format and Pajé [166, 50]. Epilog is a

28



3.2. Information Retrieval in TM Systems 29

representative for a binary trace format [207] and Intel’s structured trace format (STF) for
a proprietary trace format2.

For the information retrieval in TM systems, the following solutions exist. A profiling solu-
tion for TM applications written in C# [220]. The profiling data consists of begin and start
of a transaction with timestamps and transaction read and write set sizes. Conflicts trigger
the recording of the winning transaction id and object. This approach takes advantage of
the garbage collector so that additional information about objects is stored upon allocation
and tracing tasks are executed after garbage collection in order to minimize the application
disturbance. The garbage collector is characteristic for a managed language. In case of an
unmanaged language, such as C or C++, different solutions are needed. For our approach
(applications and STM written in C), more general solutions are needed.

Another approach implements a profiling framework for applications written in Haskell,
thus, achieving a solution for a functional programming language [191]. Further related
work uses discrete event simulation to support the development of TM contention man-
agers [52]. Lourenço et al. propose a monitoring framework for TM with visualization
capabilities that addresses the programming language C/C++ [127]. The framework con-
sists of four components: a monitoring tool and trace generator, a trace file processor, trace
file analyzers, and a graphical user interface. We will discuss the monitoring tool with
respect to our work here and the remaining components in Section 3.3. The monitoring unit
reduces the throughput to 40 % of the original throughput (in transactions per second) for
two test cases. The monitoring relies on event traces that comprise the same information as
for our STM tracing but has been developed independently. Although they advertise their
trace generation as having a low-overhead, the reduced throughput leaves some doubts on
that claim. Compared with our work they also use thread-local buffers that hold tracing
data in a binary format. Instead of having a fixed buffer that is flushed to disk when it is full,
they merge all TM events according to their occurrence to establish a global order and write
them to a single text trace file when the program finishes. This approach underestimates
the amount of events generated when multiple threads continuously execute transactions
for a few seconds: the system will either run out of memory because memory demands
of the thread-local buffers increase linear in the run time or start swapping to fulfill the
memory needs. In both cases the behavior of the application is altered through the tracing
machinery. None of these approaches has explored techniques for compression nor did
these works compare their performance with a binary-instrumentation tool; as we do in
Section 5.1.

Castro et al. trace STM applications through intercepting the STM calls through the
dynamic linking mechanism [29]. Their declared goal is application and STM library inde-
pendence and low intrusiveness. They report a maximum overhead of 9.9 % when tracing
start and commit events. This approach relies on the dynamic linking mechanisms of Linux.
Their library define symbols with the same names as the STM library. Before executing the
application, the tracing library is loaded into memory using the LD_PRELOAD mechanism.
Thus, each call from the TM application calls the tracing library first. The trace library
resolves the original symbol of the STM, traces the event in a per thread buffer and calls
the STM library. Surprisingly a lock is used to protect the trace operation and the call to
the STM library. The argumentation is that a call to the trace operation must be atomic
because the order of events may break otherwise. This lock artificially serializes threads
and, thus must affect the quality of the trace data. The authors do not comment on this

2Intel® Corp., Intel® Cluster Tools

29



30 3. Related Work

issue. The experimental results section shows the number of commits and aborts plotted
as absolute values over time for the STAMP benchmarks genome, labyrinth and
intruder [24]. Castro et al. claim that this approach is independent of the STM library,
this claim only holds for STM libraries with the same API or an API that has already been
implemented in the trace library. Otherwise the interception of the calls in the STM run
time fails due to the API of the STM being unknown to the trace library. Moreover, this
approach works only with dynamically linked STMs. Often STMs are linked statically or
STM functions may even be inlined by the compiler to reduce the overheads. In both of
these cases, the presented approach fails. Due to relying on the interception mechanism,
contents of STM internal data structures can not be traced and events can not be attributed
to a transaction (only to a thread). Thus, our approach, illustrated in Section 5.1, allows
to trace more information and, hence, provides information at a finer granularity to other
tools in the post-processing step.

3.3 Tools for the Optimization of TM Applications
This paragraph holds the existing post-processing tools for TM applications. Starting with
a generic debugging tool for TM, this paragraph also presents tools and frameworks for
the visualization of the TM behavior that are comparable with our VisOTMA framework
presented in Chapter 6.1.

Herlihy and Lev propose a generic debugging library for debugging TM programs that use
STMs [87]. The design of the debugging library, called tm_db, is generic and modular so
that it may interplay with different debuggers on one side and different STM libraries on
the other side. Debugging tools for TM have to face the difficulty that intermediate states
of the TM run time system should not be exposed to the user. Otherwise the debugging
tool would expose details of the implementation that should be hidden under the covers of
transactional properties such as atomicity and isolation. To achieve this goal, the authors
define the logical value of memory location to be the value of the last committed transaction
or a non-transactional access. The debugger presents this logical value to the user. In order
to monitor the progress of a transaction, they define three different notions of transaction:
the transaction as source code, the logical execution of a transaction, and potentially many
(due to rollbacks) physical executions of a logical transaction. With this distinction, a user
can track the progress of a transaction. Moreover, the transaction’s status can be queried
and distinguishing between covering and accessing a memory location enables to detect
false conflicts. To debug problems with accesses at a sub-word granularity, a mask marks
the accessed bytes. The user may also set breakpoints on transactional events and choose
to observe events in different transaction-related scopes. The authors further show how
they extended SkySTM [124] with a support layer and tm_db with a SkySTM specific
module to eventually connect a debugger with SkySTM through tm_db.

Lev presents T-PASS, a transactional program analysis system, to profile transactional
programs that use SkySTM [123]. T-PASS features an integration with the debugger and
a technique for replaying transactions. The profiling tool helps to focus optimization
efforts on frequently executed program parts. In order to tune these, Lev proposes the
following strategies: split transactions to reduce contention, use privatization to reduce
synchronization overheads, eliminate performance critical false conflicts and tune the
configuration of the STM. The Dynamic Tracing framework (DTrace) [23] provides
support for dynamically instrumenting software running in user or kernel space and has

30



3.3. Tools for the Optimization of TM Applications 31

been designed for the Solaris operating system. DTrace collects and aggregates events and
passes them to T-PASS which complements these with sampling information. The overhead
with T-PASS without profiling is ≈ 4 % and with profiling ≈ 10 %. A single-threaded run
provides information on how often a logical transaction is executed, how long it runs and
the data it accesses. A multi-threaded run provides the cost of contention, data to analyze
conflicts and data to identify writing transactional accesses that do not alter the object.
Unfortunately, the description of the work does not cover which and how information is
retrieved with that level of detail with the small overheads. The user interacts through
queries with the Java front-end of T-PASS. Lev presents many diagrams that illustrate the
capabilities of T-PASS. Again, a transaction has three abstraction levels (code block, logical
and physical transaction) that are all supported through queries. Through distinguishing
these levels, the user obtains a detailed view on the performance and may even correlate the
data from different levels. The application under test is a hash table implementation with
transactions. The charts show how to use filters and e.g., obtain a break down of unique
locations accessed in a transaction divided up in read, writes and read-after-writes. T-PASS
has a special emphasis on finding transactions with a small data set and short execution
times that are candidates for acceleration through a best-effort HTM system [53]. A metric
for measuring contention is defined as

contention overhead =
failure time+ wait time

useful time

where failure time denotes time for retries including the times for exponential back-
off due to contention, wait time contains contention management and useful time is
for successful logical transactions. Further, a transaction may be inspected at the level
of conflicts so that individual read and writes are classified into wins and losses. Wins
indicate that this access caused a conflict but the other transaction aborted and losses are
defined complementary. These metric assigns a weight to each memory access. With
these weights, an optimization can focus on the accesses that have a higher impact on
performance. T-PASS also supports the evaluation of the contention management strategy
and identifying the upgrade of transactional reads to writes and writes that do not modify
the object. T-PASS is implemented in Java, closely coupled with SkySTM and restricted
to the use with the Solaris operating system due to using DTrace. The employed sampling
techniques yield low overhead but selectively profile transactions. This delays the execution
of the profiled transactions with respect to all other transactions. The randomized sampling
mitigates the effect on the execution.

In the context of an object-based STM, profiling and in particular metrics to rate the
application have been explored for Java [7]. The metrics comprise: speedup of the
multi-threaded execution over a single threaded execution, execution time spent in transac-
tions, wasted work defined as time in aborted transactions, mean aborts per commit, and
percentage of time spent in contention management. Although these presented metrics
are transferable to our approach, the implementation of a software profiling framework in
Java differs significantly from our framework that addresses unmanaged languages and
comes with a set of post-processing tools that includes phase detection in TM applications.

Moreover, a Haskell-specific profiling framework that profiles the TM application at the
atomic block level has been proposed [191]. The advantage of this approach over the
metrics that use averages in previous works is that it uncovers relationships between atomic
blocks such as abort/commit due to conflicts and reveals the shared data that causes the
conflicts. A global table contains the atomic blocks and the transactional variables accessed.

31



32 3. Related Work

This table contains statistics on the number of aborted and committed transactions, the
size of the read and write set, the cycles spent in the commit phase, work phase, validation
and the number of conflicting variables. The overhead of the approach with an example
with 20 atomic blocks using a linked list with more than 1000 conflicting transactional
variables yields 7 % additional aborts on average. While this approach is demonstrated to
have benefits with an implementation of the application and the run time system in Haskell,
it is questionable whether this level of detail is practical to profile STMs written in C/C++
due to a global table introducing an additional artificial point of synchronization. Thus, our
solution favors a fine grained tracing approach combined with an analysis and visualization
in a post-processing step.

Zyulkyarov et al. present a profiling and visualization framework for TM application’s
written in C# [220]. The profiling components are tightly integrated in the Bartok-STM
library and rely on information of the garbage collector to correlate conflicting addresses
with the source code location of the allocation. Processing of the profiling data is done
offline or when the garbage collector is active (if this is possible) to reduce the probe
effect on the application. A backtrace of the stack established the context of a conflict. All
potential conflicts in a transaction are tracked through running all conflicting transactions
to completion in serial mode and tracking all memory accesses. Profiling data records entry
and exit of transactions with timestamps as well as read and write set sizes and gathers local
and global statistics on the transactional execution. On conflicts, stack trace and conflicting
addresses of the transactions involved as well as transaction id of the winning transaction
are profiled. These are aggregated into conflictWin and wastedWork metrics that count how
often a transactions has been winning a conflict or has been aborted. This information
is turned into an aborts graph that represents the relationship between transactions. The
visualization supports a timeline view that can be zoomed and helps to get an overview
of the application’s behavior. The paper presents three examples for the optimization of
TM applications from the STAMP suite [24]. Bayes scaled poorly. The reason is the
object-granularity of the Bartok-STM that generates false conflicts. Intruder comes
with a red-black tree that caused many conflicts. Replacing it with a chaining hashtable
reduces the conflicts and improves performance. Further, moving the modification of
the queue data structure to the begin of the transaction reduced the amount of wasted
work. Labyrinth has been modified applying application domain-specific knowledge
and work with an outdated version of the data [203]. A key statement of this paper repeats
a point also made in a previous publication [69] that states that two shorter transactions
should be preferred over one large transaction. This environment has been tailored for
an object-oriented language, in particular C# and a proprietary compiler and STM that
performs conflict detection on object granularity. In this thesis we will transfer these
techniques to an unmanaged language with an open source STM. Especially a suitable
way of replacing the information available through the use of a garbage collector with
means to retrieve the information in an unmanaged language is presented. Moreover, our
approach additionally features the readings and correlation of transactions with hardware
performance counters and researches techniques for hybrid TM and architectures with
support for a proprietary hardware TM.

Recent related work in tools that visualize the TM performance also addresses the playback
of execution traces [76]. These are visualized in soft real time which enables replay rates
that range from 0.0001x to 1000x of the original execution. As opposed to previous work,
this work enables the dynamic visualization of transactions and their cross correlations.
Two recorded executions of the same program can be replayed side by side which reveals

32



3.3. Tools for the Optimization of TM Applications 33

differences in the execution through TMProf. TMProf buffers event traces internally and
uses hashes to compress data structures of a transaction. This compressed representation
of the traces is written to disk. TMProf’s visualization consists of a static and a dynamic
view to visualize the transaction’s behavior. While the static view blends short and aborted
transactions into a single large transaction, the dynamic view enables to distinguish these
transactions through another color. TMProf is further used to improve and evaluate the
previously best-performing contention manager, called iFair CM, of the InvalSTM [77].
TMProf reveals that iFair CM aborts readers in favor of writers. Changing this be-
havior so that single writers are aborted more often instead of multiple readers yields a
new contention managers called threadFair CM that also accounts for the number of
times a thread committed. IBalanced CM combines the strength of iFair CM and
threadFair CM. These contention managers are evaluated with a program that executes
a single writer and multiple readers in transactions, a transactional implementation of a red
black tree, and a hashtable with transactions. The two new contention managers yield a
higher throughput. TMProf is designed in a way that future TM hardware e.g., the Haswell
processor, maps canonically to the already existing begin, abort, and commit events. This
facilitates the integration of HTM events into TMProf in the future. In contrast to this work,
our approach for STM also builds on compression and visualization with a static view.
Our trace generation scheme does not take advantage of transaction-specific properties
and is, hence, generally applicable to other use cases that benefit from generated event
traces. Although our approach does not feature the replay of transactional events yet,
our static view does not necessarily come with the issue that short aborted transactions
appear as a single long transaction. On the one hand the programmer could use Paraver’s
zoom functionality for an in-depth inspection of the transactions. On the other hand, the
programmer could click on one of the transactions and see the contained loads and stores
so that the short nature of the transaction becomes obvious. These features allow the
programmer to discover the length and behavior of transactions despite the static view.
Moreover, other profiling and tracing solutions shown in this thesis already visualize the
behavior of an existing HTM system - IBM’s BG/Q architecture.

Lourenço et al. propose a monitoring framework for TM that addresses the programming
language C/C++ [127] with four components: a trace generator, a trace file processor,
trace file analyzers, and a graphical user interface. Since the trace generator has already
been discussed with respect to our work, we start with the trace file processor. This
component serves as an event iterator that avoids loading the full trace file into memory.
Further the trace file processor supports savepoints that mark a point in the trace file to
enable jumping to that point. The trace file analyzers are divided into the chart type that
they create. Statistical information is available through the use of JFreeChart and a
timeline view through a newly developed Java Swing component. In this timeline view,
a user may click on an aborted transaction to find the opponent transaction that will be
highlighted with an arrow. Hence, compared with our work, not all dependencies between
transactions are visualized so that only one abort reason is inspected at a time. This makes
it hard to identify the transaction with the most dependencies in this view. The statistical
information charts are comparable to our statistics but additionally provide statistics on the
abort reason and accessed memory cells. Unfortunately, the framework does not describe
a way to relate these memory accesses to the data structures of the application (as we do
in our approach). Further, a mapping of the execution to the source code, that we already
incorporate, is described as future work. The result section of the paper holds various
charts of the statistics to compare a linked list and a red-black tree implementation with

33



34 3. Related Work

TM. Instead of relying on a state-of-the-art visualization tool like Paraver, they chose to
implement the visualization functionality in a new tool. Both approaches are valid and
have pros and cons. Further, we demonstrate the versatility of the VisOTMA framework
and additionally to the previous approach implement algorithms for the phase detection in
TM applications (cf. Section 6.4).

3.4 FPGAs and Hybrid TM
This section presents related work from hybrid TM systems and profiling of TM and other
applications with a realization in FPGA hardware. These works are related to the event
logging extension of the TMbox architecture that we present in Section 5.2.

Field Programmable Gate Arrays (FPGAs) consist of programmable logic that can be
used for the acceleration of full-system multiprocessor simulations [39, 40, 48, 49]. The
flexibility of FPGAs is beneficial for architectural exploration. In this thesis, we exploit
the FPGA properties to design and implement a low overhead monitoring infrastructure
for a hybrid TM platform.

The tracing and profiling of non-TM programs has a long tradition as well as the search for
the optimal profiling technique [13]. software techniques for profiling, targeting low over-
head, have been researched [68, 144], alongside of Operating System support [216], and
hardware support for profiling [51, 217]. Further, techniques to profile parallel programs
using message passing communication have been developed [182]. In nearby research
fields Faure, Benabdenbi and Pecheux describe an event-based distributed monitoring
system for soft- and hardware malfunction detection [60].

Few works have been published in the context of studying Transactional Memory on
FPGA prototypes. ATLAS is the first full-system prototype of an 8-way CMP system with
PowerPC hard processor cores with TCC-like HTM support [204]. It features buffers for
read and write sets and per-CPU caches that are augmented with transactional read and
write bits. A ninth core runs Linux and serves operating system requests from other cores.

Related work also targets TM for embedded systems: Kachris and Kulkarni describe a
basic and configurable TM implementation for embedded systems which can work without
caches, using a central transactional controller on four Microblaze cores [108]. Pusceddu
et al. present a single FPGA with support for Software Transactional Memory [157].
Recent work, that also utilizes MIPS soft cores, focuses on the design of the conflict
detection mechanism that uses Bloom filters for an FPGA-based HTM [115]. Casper et
al. propose the acceleration of transactional memory for commodity cores (TMACC) [28].
The conflict detection uses Bloom filters implemented on an FPGA. This accelerates
the conflict detection of the STM. Moderate-length transactions benefit from the scheme
whereas smaller transactions do not. TM support for beehive stores transactional data
in a direct-mapped data cache and overflows to a victim buffer [38]. Bloom filters are
also used for the conflict detection. Grinberg et al. demonstrate a system architecture to
investigate Transactional Memory on Altera FPGAs [78]. NiosII soft cores are extended
with engines for transaction dispatch, commit, and a rollback controller. A hierarchical
fabric with configurable delays enables to mimic a distributed shared memory system that
supports up to 16 processors. Statistic counters capture total cycles from program start to
commit of the last transaction as well as average idle times due to ordering issues and other
committing transfers.

34



3.5. Programming with TM 35

Damron et al. present Hybrid Transactional Memory (HyTM) [47]. An approach that uses
best-effort HTM to accelerate transactional execution. Transactions are attempted in HTM
mode and retried in software. The HTM results are based on simulation.

Chung et al. gather statistics on the behavior of TM programs on hardware and describe the
common case behavior [41]. Further, performance pathologies of hardware transactional
memory are described and analyzed.

The programming model of the underlying hardware TM system of TMbox [190] is similar
to the Transactional Coherence and Consistency model [80]. The monitoring techniques
used in this work are also in some parts comparable to the Transactional Application Pro-
filing Environment (TAPE) [31], both developed at Stanford University. Major differences
include the use of multiple ring buses in the TMbox system, compared to a switched bus
network with different timing characteristics and influences on HTM behavior. Further,
the hardware support for profiling with TAPE incurs an average slowdown of 0.27 %
and a maximum of 1.84 % [31] and does not take the profiling of software execution of
transactions into account. Although the overhead looks small at first sight, it should be
noted that even small changes in the timing of a thread may decide whether a dependency
between transactions manifests as a conflict or not. Thus, based on this observation, the
lowest possible profiling overhead is our goal.

Up to now, a comprehensive profiling environment for hybrid TM systems has not been
proposed. Previous approaches either lack the ability to profile TM programs or are de-
signed for a specific hardware or software TM system. As a consequence these approaches
can not capture the application’s behavior comprehensively. An application running on
a hybrid TM system may transition between a hardware and a software execution mode.
These changes can only be tracked and understood by a dedicated solution, such as the one
presented in Section 5.2.

3.5 Programming with TM
In this section, we will review experience reports that describe the programming with TM
in general. First, case studies with students describe the findings whether transactional
memory is perceived to be easier to use. Then, expert programmers tackle the solving of
scientific problems and other problems with TM. All of these approaches would benefit
from using comprehensive methods and strategies for the optimization of TM applications
and are, thus, potential future fields of application for the tools for TM developed in this
thesis.

Case Studies with Students

Until now, the related work targeting the programmer of transactions is scarce. In a study
conducted at the Universität Karlsruhe (TH), 12 students are randomly assigned to 6
groups [150]. All of these groups solve the same parallel programming assignment to
implement a desktop search engine in C or C++ and Pthreads. Three groups are allowed to
use TM – in the form of STM with compiler support from Intel3 – while the three remaining
groups must use locks. Two instructors teach the students parallel programming, equip them
with literature and continuously monitor the progress of the teams with semi-structured
interviews [165]. This study follows the good practices described in [213, 215]. All
3Intel C++ STM compiler prototype edition 2.0.

35



36 3. Related Work

teams complete the assignment although one TM teams needs to be excluded because their
program crashes in the final benchmarking step. Another TM team wins this competition
with the fastest execution time and had a faster development time than the best team using
locks. These findings indicate that TM can increase the productivity when developing
parallel codes and may even yield excellent run times. During the code review several
cases for the misuse of the abort statement have been identified. In order to optimize
the use of transactions, students implemented a broken pattern known as double-checked
locking in the literature [8]. Further, a common mistake has been to read a shared variable
without proper protection through a transaction while writing it outside of transactions.
The authors concluded that performance as well as debugging tools are required to detect
and resolve these cases. Another interesting point of this study is that TM performance
has been found difficult to predict by the students which is backed up by the time spent
for performance tuning. TM teams wrote small programs to benchmark TM performance.
On the other hand, the TM teams spent less time on refactoring and debugging than the
locks teams. A shorter and condensed version of this technical report has been published
later [149].

Rossbach et al. [164] conducted a study at the University of Texas at Austin that covers
the experience of 237 undergraduate students with parallel programming in Java. All
students had to implement nine synchronization variants of a shooting gallery. Each of the
following variants was to be implemented with fine-grain and coarse-grain locks, and TM.
In the first variant multiple shooters (threads) would try to color one randomly selected
lane in a color box. Only one lane access is allowed at a time. Only white lanes can be shot
and when all lanes are colored, the last threads turns into a cleaner thread that colors all
lanes with white. The second variant is similar to the first except that two lanes are colored
in one attempt. The third variant demands a distinct cleaner thread that must be notified
when the color box is colored. The study summarizes results from 3 semesters/years where
the TM implementation changed from DSTM2 [89] to JDASTM [160] after the first year.
These implementations had no compiler support, thus, students had to correctly place read
and write barriers in transactions. This is a major difference compared to the previous
study. As a consequence of the lack of compiler support, students regarded the required
code as a barrier for transactional programming. The complexity of a coarse-grained lock
and a transaction is rated equal. Moreover, both yield fewer errors than fine-grained locks.
On average TM required more development time than coarse-grain locks but less than
using fine-grained locks. The most remarkable finding is that error rates were lower when
programming with TM.

Scientific codes

In contrast to the proposals of extending OpenMP with TM extensions [9, 136], Wong
et al. state that it should be clear that TM is more than a research toy before extending
the OpenMP standard [209]. The paper first introduces the IBM® XL C/C++ Enterprise
Edition for AIX©Version 9.0 compiler and STM run time system [101]. The STM employs
an optimistic scheme and detects conflicts on a 8 byte granularity. Further, function
attributes as well as modifiers for the default behavior of the compiler are introduced.
In case the programmer specifies a transactions with the attribute notrans, (s)he takes
the responsibility for the proper instrumentation. Then, TM is applied to a scientific
application, more precisely an unstructured-mesh multi-physics simulation, in order to
judge the appropriateness of TM for this problem. The authors introduce the Benchmark for
Unstructured-mesh Software Transactional Memory (BUSTM). This benchmark generates

36



3.5. Programming with TM 37

conflicts in a random way. Built-in error detection facilities assure the correct execution.
BUSTM is highly configurable: available cell types include: triangular prisms, hexahedra,
tretrahedra, and pyramids. To resemble real unstructured mesh applications, BUSTM
combines nodes, faces, and cells in almost arbitrary ways. This introduces the indirect
indexing that is hard to synchronize efficiently with locks and the major point for employing
TM. The results show that in a CFD-style experiment with deterministic conflicts the
number of STM retries is lower than the number of errors detected in an unsynchronized
setup. For a Monte Carlo-like experiment with probabilistic conflicts the opposite is true:
many resolved STM conflicts and fewer errors in the unsynchronized setting. The number
of conflicts increases with the number of threads for both experiments. As a concluding
remark, the authors state that STM outperforms omp critical by 10%.

A second publication renews and strengthens the claim to include a special pragma to mark
transactions, namely #pragma tm_atomic, in the OpenMP standard [15]. Instead of
using the STM run time as in the previous study, this time the TM support is provided in
the form of IBM Blue Gene/Q’s Hardware Transactional Memory. For this the benchmark
is renamed to Benchmark for UnStructured-mesh Transactional Memory (BUSTM). In
this study performance is the primary focus. Thus, TM execution is compared with
OpenMP atomic and critical. The experimental results show that for the prism mesh
with an deterministic experiment the number of conflicts with HTM is comparable to the
number of errors when running unsynchronized. Except for eight threads (no rollbacks),
the number of rollbacks increases with the number of threads. TM performs better than
omp critical for all threads counts and better than omp atomic up to eight threads.
Then, omp atomic scales better up to 64 threads. For the tetrahedral mesh with an
deterministic experiment, the number of rollbacks and errors shows the same trend for
more than two threads. Again omp atomic scales linearly up to 16 threads, although
TM is even 10% better up to eight threads. Omp critical is slowest for more than one
thread. For the probabilistic experiments with the prism mesh, TM shows significantly more
conflicts than errors reported by the unsynchronized version. Further, omp atomic and
TM scale well, while omp atomic outperforms TM and shows a super linear speedup.
For the tetrahedral mesh 16 threads generate the most conflicts although the most errors
are reported for two threads. Omp atomic and TM scale well while TM again is not
as fast as omp atomic. To summarize, TM can perform better than omp atomic if
the transaction contains accesses to three memory locations. Further, the low conflict
probability makes the presented algorithms well-suited for TM.

TM with Specific Application Areas

Bradel et al. investigate the applicability of Hardware Transactional Memory for trace-
based parallelization of programs written in Java [20]. These Java programs investigated
in this study exhibit recursions and stem from the JOlden4 benchmark suite. These are
Java programs designed for benchmarking the memory management system. The C
benchmarks from Olden which are ported to Java are called JOlden. The HTM system
used in this study is LogTM. For the benchmarks selected in this study, the approach of
applying HTM yields an average speedup of 2.7 for four threads.

There are case studies that highlight the pitfalls when converting a parallelized application
to use TM for all synchronization [219]. The application is a parallel implementation of
the Quake game server. The transactions employed do system calls and I/O from inside of
4ftp://ftp.cs.umass.edu/pub/osl/benchmarks/jolden.tar.gz

37

ftp://ftp.cs.umass.edu/pub/osl/benchmarks/jolden.tar.gz


38 3. Related Work

transactions, make use of nesting and may be short or long in length. Moreover, some data
is also accessed transactional and non-transactional. A subsequent study compares two
version of QuakeTM: a coarse-grained TM version with 8 transactions and a fine-grained
TM version with 58 transactions [69]. The overhead with STM and the abort rate are the
main factors that should be improved for a better performance with TM.

3.6 Performance, Energy, and Modeling of TM
This section holds works that cover the modeling of performance with TM, the energy
consumption of TM system. Although these approaches are not directly related to the
methods and strategies researched in this thesis, the presentation of works from nearby
research areas may generate new ideas for future work. Thus, through this paragraphs
future directions that could be explored by the methods and strategies for the optimization
of TM applications.

In order to understand TM performance of a simulated HTM system, Porter and Witchel
introduce Syncchar [156]. While previous related work reports the conflict behavior of
HTM systems [186, 159, 151], this work develops a model and compares the prediction
of the model against simulated execution times. Syncchar builds on two metrics: data
independence and conflict density. Data independence represents the likelihood that threads
will not access the same data. The formal definition for the data independence of a lock
In is the mean number of threads not conflicting, provided n threads are concurrently
executing critical sections protected by the same lock. The address sets of all threads are
sampled and conflicts are detected through comparison of the sampled read and write sets.
Sampling is applicable in this setup because the HTM system is simulated so that sampling
the read or write set does not abort the running transaction. Threads involved in a conflict
are recorded in Cn. Then, the data independence is computed as a running mean through
In = n − |Cn|. The conflict density represents the length of the serial schedule that is
necessary to resolve conflicting accesses. Thus, a high conflict density leads to a long
serial schedule with many threads involved whereas a low density results in a short serial
schedule. The formal definition is

Dn =
∑
x∈Cn

∑
y∈
{
Cn−y

} conflicts(x, y)
|Cn − x|

with conflicts
(
x, y
)

is 1 if the address sets of x and y conflict and 0 if not. These two
metrics are the basis for estimating the performance of a lock-based code when turning the
locks into transactions. Syncchar is evaluated with lock-based STAMP codes [24]. The
error of this prediction compared with the transactional execution is 25% on average. The
prediction of the tool deviates more if the run time of the benchmark becomes short with
more threads (e.g., yada with 32 threads). Moreover, Syncchar has also been applied
to optimize TxLinux [163], finding an unprotected writes outside and a read of the same
address inside of a transaction. Once this issue has been fixed, a hang of bonnie++ is
resolved and MAB shows a slight speedup while other program behavior is not influenced.

The analytical modeling of the performance of the TM conflict detection algorithms has also
been covered [85]. Discrete-time Markov chains determine the algorithmic performance of
the three different STM systems, enabling a rating of these systems. The dissimilarity of
TM workloads has been researched with methods from statistics [100].

38



3.7. Adaptive STMs 39

In the design process of multi-processor systems energy consumption plays an increas-
ingly important role. This trend demands to research the mutual effects of combining
Transactional Memory with techniques to reduce energy consumption. Hughes et al.
apply dynamic voltage and frequency scaling and intelligent scheduling to optimize the
throughput/power trade-off in HTMs [99]. Two policies are proposed and evaluated. First,
dynamic voltage and frequency scaling is applied to times when a transaction stalls. Sec-
ond, processing elements are clock gated when they execute an aborted transaction. Results
are based on simulation with the SuperTrans simulator [155] that uses an abstract model
of the TCC and Log-TM implementations for conflict detection and versioning. For all
variants of HTMs exercising the proposed techniques, executing the STAMP and SPLASH
benchmarks results in a reduced average energy delay squared product of 18 %. Further
experiments with synthetic workloads generated with TransPlant [154] reveal further
potential with an average saving of 29 %. Compared with work that proposed to serialize
transactions [141], this approach reduces the average energy delay squared product by
30 %. Moreshet et al. report that replacing locks with transactions for SPLASH2 [210] and
running for 200 lock operations reveals that transactions need fewer cache and memory
accesses and, thus, come with a reduced energy consumption [141, 140].

Ferri et al. propose an energy-efficient HTM on a cycle-accurate SW simulator [64, 63].
Their work evaluates the impact of cache structures and contention management schemes to
find a trade-off between complexity, energy efficiency and performance in HTM systems.

From the presented works in this section, complementing the presented methods and
strategies with a component that accounts for and weights specific optimizations against
their impact on the energy consumption of the application seems an interesting research
direction. Moreover, the models presented here could also help to refine the prediction of
performance when applying optimizations.

3.7 Adaptive STMs
This section reviews works that achieve an adaptive STM system mostly through tuning
STM internal data structures.

The dynamic performance tuning of data structures of the STM in TinySTM has been
researched [62]. The dynamic optimization strategy tunes three important parameters: first,
the hash function that maps a memory location to a lock is covered. Second, the lock array
size is changed dynamically and third, the effects of resizing the lock array for hierarchical
locking are studied. These dynamic tuning techniques target STM internal data structures
and, hence, are orthogonal to the mechanisms for adaptation researched in this thesis. Thus,
future work could even combine both techniques.

So far, the optimizations have global scope and, hence, affect all transactions of all threads.
In [152], Payer and Gross research thread-local adaptive optimization strategies and
propose adaptSTM. They artificially limit the optimization space through using eager lock
acquisition. By this means, optimizations, such as changing the buffering of speculative
values, become possible on a per thread granularity. Further, they research the impact
of various hash functions and finally use a lock array of 222 entries and 5 bits for the
hash for the experiments. Their STM supports extensions of the read set size without
aborting the running transaction through revalidation of the previously read addresses. The
thread-local adaptive policies comprise write strategy, a configurable write hash array to

39



40 3. Related Work

speedup look ups in the write set, a bloom filter for the same purpose, and a tuned hash
function for the write array to increase data locality. These measures are implemented
inside the adaptSTM and evaluated through running the STAMP benchmarks with TL2,
TinySTM version 0.7.3 and 0.9.9. The comparison reveals that adaptSTM is faster than
TL2 for all benchmarks except ssca2 and most benchmarks for both TinySTM versions.
In the latter case the main performance gains are measured in case of an oversubscribed
eight-core machine running with 16 threads. To conclude, adaptSTM performs as good as
or better than TL2 and TinySTM in most cases. This approach relies on the sampling of
additional counters that have been added to the implementation of the STM. The counters,
that monitor transactions, aborts, commits, number of unique write locations, and read and
write locations, describe the thread-local behavior of the last 64 transactions. The authors
state that the overheads introduced through sampling and maintaining the counters are not
significant.

Chakrabarti et al. introduce the Runtime Abort Graph (RAG) [32] that uses annotated
memory references as nodes. An abort relationship is a directed edge from the node of the
aborter to the node of the victim. The nodes additionally contain contextual information
such as the atomic block, source code location, average read set and write set sizes, and
the total number of aborts of this memory reference. The methodology works as follows:
first, the compiler instruments the executable with counters for a training run in order to
take samples. The program executes these points in case the counter reaches zero. The
sampled information about the TM application is stored on disk. In a next post-processing
step a tool reads this data and constructs the RAG. Based on a heuristic that takes the sizes
of the read and the write set into account, the tool estimates the amount of wasted work
locally for each contentious memory reference in an atomic block. In order to minimize
the wasted work, a connection between the aborting and aborted transaction is established,
which is called victim-aborter relationship. The information models the cost of the aborted
victim locally and selects an acquire strategy for that atomic section (eager or lazy). A
greedy algorithm combines these local solutions to find a global optimum for the acquire
strategies. This is necessary because changing the acquire strategy can invert the victim-
aborter relationship and the local model only optimizes for the victim which may find
the best solution in a global scope. This information is fed back to the compiler which
then changes the acquire policy. Hence, the execution of the newly compiled application
now executes with a hybrid acquire policy. Different configurations for the training run
(acquiring all references eagerly or all lazily) yield a different optimized setting after the
profiling run. This shows that the optimizations are not converging yet to a globally best
solution but improve upon the initial setting. For the other experiments the training and
the reference data are identical. For selected STAMP benchmarks and across different
processor counts, this approach yields an average improvement of 9 %.

Bai et al. present a different way of adapting the utilization of an STM system [10]. Their
work uses the executor classes of Java and DSTM [90] to build a key-based transactional
memory executor. Instead of using the usual concept of threads that solve a specific
problem and use transactions for synchronization, their scheme decouples transactions
and so called work items through a producer/consumer pattern. The producer produces
work items that the transactional memory executor assigns to a consumer and an available
processor. Then the consumer executes the transaction on shared data. The assignment
uses a specific key that contains information about the memory locations accessed in the
transaction. For the experiments a custom function computes the keys for the transactions.
This allows to schedule transactions that access the same memory locations on the same

40



3.8. Phase Detection and Prediction 41

Top-down Bottom-up
Online Balasubramonian Balasubramonian

et al. [11] et al. [11, 12]
Huang et al. [96] Duesterwald et al. [57]

Offline Huang et al. [95, 96] Shen et al. [181]
Magklis et al. [130]

Table 3.1: Design space of phase detection, taken from [55]

processor executed by the same consumer. This not only limits contention but also exploits
data locality through reuse of data present in the caches. Additional adaptivity of the TM
executor is achieved through sampling the space of the keys and adjusting the range of the
keys in case of an imbalanced distribution. On average the adaptive executor performs
better than the fixed executor and both outperform a round-robin scheme. The price of this
execution model are high overheads due to the producer/consumer pattern when compared
with threads that execute transactions in a loop. This approach is interesting although
it does not provide a universal solution for computing a key for an arbitrary transaction.
Compared to the work presented in this thesis, this work makes fundamentally different
assumptions about the execution of threads and transactions which make a fair comparison
extremely difficult.

While these works describe important optimization techniques to fine-tune STM parameters
at run time or using a profile and refinement step that involves the compiler, these techniques
try to hide the actual run time behavior from the programmer. Although a programmer
could simply use these approaches, these techniques could cover e.g., the bad layout of
data structures and hide these from the programmer. Whereas tools that visualize the TM
program behavior, as researched in this thesis, would help the programmer to eliminate the
causes of degraded performance instead of covering them.

3.8 Phase Detection and Prediction
In preparation of the phase detection in TM applications, presented in Section 6.4, we give
an overview over common techniques in the area of phase detection and prediction for
sequential and parallel applications in the following. Note that these algorithms for phase
detection and analysis are not related to TM.

Ding et al. [55] present a classic approach for phase detection and a classification scheme
for related work as shown in Table 3.1. According to this scheme, Top-down and Bottom-up
are distinguished as well as Online and Offline approaches. Top-down exploits knowledge
of the source code to divide the program into candidate phases whereas Bottom-up applies
metrics to identify recurring patterns in the execution. Online signifies that the analysis is
performed at run time, whereas offline indicates that parts of the phase detection process
are carried out after the program executed. Applying this classification to the proposed TM
phase detection, we combine a bottom-up approach with offline phase detection, which is
described in detail in Section 6.4. Sherwood et al. propose to take phase detection one step
further by adding a run length encoding Markov predictor to predict program phases [184].
Discussed related work regarding phase detection covers uniprocessor execution. First
work addressing phase detection in distributed shared memory systems has been conducted
by Ipek et al. [104]. The work focuses on data distribution and contention in DSM systems.

41



42 3. Related Work

In MPI applications, phase detection has been applied to obtain energy savings by frequency
and voltage scaling [125]. Casas et al. study the application behavior with the goal to
optimize the code and accelerate research in the scientific topic [26]. The digital signal is
created by analyzing and aggregating time stamped events of trace files. The considered
events are Running and Idle processor states. These are transformed into binary states
(Running equals 1) and accumulated over all processors in the system. The Wavelet
transform is then applied to the resulting digital signal.

Gamblin et al. employ a parallel wavelet transformation to identify load imbalance in very
large parallel systems [70]. The wavelet coefficients are well suited for compression and,
thus, combined with run-length and Huffman encoding. The parallel computation of the
wavelet transform shows a near-perfect speedup [146].

Wavelet-based techniques are also applied to capture the memory bus behavior of com-
mercial applications [98]. In particular a 2-D Haar wavelet is employed to characterize
L2 misses. A calculation of a distributed wavelet transform is presented in [200]. Each
transform stage is separated in three steps: split, predict, and update to enable a distributed
calculation of wavelets in a sensor network. Wavelets are further part of the JPEG 2000
compression standard [187, 1].

Perelman et al. also present techniques for phase detection in parallel shared memory
applications [153]. For each parallel thread a set of sampled BBVs (basic block vectors
holding the execution count) is kept. Separate threads are regarded as independent entities.
With transactional memory this approach is not sufficient anymore as the control flow
directly depends on the interference with other threads. Due to the optimistic concurrency
of the transactional memory model, transactions are executed speculatively and conflicts
are detected. In case of a conflict one transaction is rolled back and executed again. As a
consequence one thread directly influences the execution (in particular the control flow) of
a neighboring thread. Hence, counting basic blocks executions does not sufficiently capture
the phase behavior. In particular the reason for a repeated execution of a basic block is not
revealed. Hence, TM-specific algorithms for the detection of phases in TM applications
are required. We present two algorithms for the phase detection in TM applications in
Section 6.4.

3.9 Open Questions with the State-of-the-Art
Section 3.1 reviews compiler support for TM and also presents approaches that combine
compiler and run time system for optimizing the performance. There is a lack of open
source compiler support for TM that is independent of the thread model in the GCC
suite. Hence, we present design and implementation of an initial TM support in GCC in
Section 7.1. In related work the run time system checks for specific properties to assure
the correctness of compiler optimizations. The question that we long to answer is related:
Can the compiler help to determine a specific property of the TM run time system? In
Section 7.2 we present an approach that extracts and analyzes static information to select
the conflict granularity of an STM system.

Section 3.2 summarizes approaches to extract information from TM and non-TM parallel
programs. What are the pitfalls of generating TM event traces? May compression algo-
rithms help to reduce the pressure on the write bandwidth of the hard disk? What are the
advantages and drawbacks? We answer these questions in Section 5.1.

42



3.9. Open Questions with the State-of-the-Art 43

Section 3.3 shows related work that covers tools for TM and its optimization. None
of these approaches includes the use of hardware performance counters into their work
flow. How can we add the data from hardware performance counters into state-of-the-art
visualization and optimization tools for TM? Can this information help the programmer of
TM applications to gain additional insights? Chapter 6 covers these aspects.

Section 3.4 reviews profiling solutions with FPGA hardware. These do not cover the
monitoring of different execution modes e.g., software and hardware in current hybrid
TM systems yet. What are the challenges to track both modes of execution? Can special
hardware alleviate the monitoring process and what are the associated costs in terms of
hardware and probe effect for the TM application? How does this approach compare with
the previous STM solution? Section 5.2 gives insights into the answers to these questions.

Moreover, current tools require that an inexperienced programmer repeats the steps for
identifying conflicting data structures, modifying the program to reduce these conflicts
and rerun the TM application to see whether the modifications yield benefits. How can
we improve on this trial-and-error process that is the basis for the optimization of TM
applications for the inexperienced programmer? Is there a way to extract the characteristics
of the TM execution and use these to automate the optimization process? What are the
challenges and drawbacks? Section 6.5 present first insights into these questions.

As described in Section 3.8, many algorithms for the detection of execution phases in
sequential and parallel applications have been proposed and evaluated. These algorithms
can not detect execution phases in TM applications yet. How can existing algorithms be
transformed and modified to account for the specialties of transactional execution? What
are the differences to local adaptation solutions which are presented in Section 3.7 and
implemented in STM systems? Do the detected execution phases yield a potential for
optimization through adjusting the TM algorithm? These open questions are answered in
Section 6.4.

What are the advantages of applying TM to numerical algorithms e.g., the method of
conjugate gradients? Can other algorithmic formulations help to bring out the strong side
of TM? What can we learn from visualizing and comparing the two TM application’s
behaviors and their utilization of the microarchitecture? Section 6.3 illustrates our findings.

How is the performance of the first commercially available Hardware Transactional Mem-
ory system? What are the properties of a representative HPC benchmark to rate the
synchronization with TM? What application properties take advantage of the optimistic
concurrency with TM and how does TM perform with respect to other OpenMP-based
synchronization primitives e.g., omp critical or omp atomic? Chapter 8 offers
first performance numbers, a benchmark for TM execution in high performance computing,
and a set of best practices for programming with a commercial hardware transactional
memory.

What are the differences for tool support addressing HTM systems compared with STM
or hybrid TM? How does a tool for measuring TM overheads of the BG/Q hardware
TM system look like? How can performance counters on the BG/Q architecture be used
to enrich the TM performance data and discover the cause for degraded performance?
Chapter 9 displays how to achieve additional insights.

Section 3.5 highlights case studies that target the programming with TM. All of the students
participating in the studies would have been possible candidates to try and evaluate the tools

43



44 3. Related Work

for TM presented in this thesis. We believe that the achieved results would have been even
better if tool support would have been available for them. Section 3.7 reviews adaptivitiy
in STM systems. These have some tuning mechanism built in the TM system to optimize
its performance during run time. Future work should also include the monitoring and
visualization of these systems because an adaptive strategy may prevent the programmer
from discovering principal weaknesses in the organization of the program’s data structures.
Future optimization objectives for TM applications could also include energy-awareness
of the modifications and research how the results differ from using performance/execution
time as objective function (cf. to Section 3.6).

44



4. Concept and Overview

This chapter contains a brief overview over the concept for optimizing TM applications
used in this work. In contrast to the tool support for TM that has been described in related
work that targets STM [7, 191, 127, 123, 220, 29, 76] or HTM [31, 71]. These tools only
consider run time information specific for the TM system and source code information as
input and are designed for a specific TM system that is tightly coupled with a programming
language. We improve upon the state-of-the-art in two ways: first, we consider information
from additional layers of the TM software stack and second, we direct our efforts not only
at a single TM system but target TM systems implemented in software, hardware, or as a
hybrid combination. Each of the TM systems comes with specific properties that are due to
the type of implementation. These properties lead to different performance characteristics.
The proposed methods and strategies for the optimization of TM applications must take
these performance characteristics into account in order to support the application developer
of TM applications.

Our approach extracts information from layers of the TM software stack that have not
been considered until now to enable a broader scope for optimizations. In particular, we
add static information and information retrieved from hardware performance counters to
complement the information about the run time behavior of the TM application in order
to obtain a better understanding of the utilization of the architectural resources. This
information enables the programmer to learn more about the program behavior even in
the absence of pathological TM execution patterns and can be useful in understanding the
manifold side-effects of the TM system and the microarchitecture.

Hence, the approach of combining information from multiple layers of the TM stack,
considering different TM systems and providing novel post-processing tools enables new
insights into the behavior of applications and supports the programmer in optimizing these.
Section 4.1 introduces the concept that comprises different levels of a TM software stack.
Then, Section 4.2 illustrates the systems that we select for demonstrating and implementing
the concept. Further, we highlight the relationship of the components to achieve the
optimization of TM applications on the respective TM systems. Section 4.3 presents the
experimental setups that serve as testbeds for the methods and strategies researched in this
work.

45



46 4. Concept and Overview

Methods and
strategies

to rate and
optimize

Transactional
Memory

applications

TM application

Compiler with
TM support

HTM/STM/hybrid TM

Hardware

Source code

Transaction layout

Static information

Run time information

Run time information

Initiate change of STM strategy

Performance counters

Figure 4.1: Schematic interaction of components in a system with TM software stack.

4.1 Concept for the Optimization of TM Applications

The left hand side of Figure 4.1 illustrates the necessary components for executing a TM
application. The TM application defines the data structures and the parallel threads of
execution. Parallel accesses to shared data structures require synchronization that may use
Transactional Memory or pessimistic synchronization e.g., through the use of locks. In our
work we focus on the use of Transactional Memory with optimistic concurrency. Optimistic
concurrency does not enforce mutual exclusion of critical sections and, thus, requires a
run time system to track accesses to shared data structures in order to identify and resolve
conflicts. The TM-aware compiler transforms the memory accesses in transactions into
calls into a run time system that detects conflicting accesses. Moreover, the compiler also
generates the prologue of a transaction that checkpoints the architecture registers and starts
the transaction. A TM run time system, implemented in hardware, software or as hybrid
combination of both, tracks these memory accesses and resolves conflicts through aborting
a transaction. These TM run time systems may either be executed on top of commodity
hardware or require minor to profound changes of the processor architecture.

The different layers of the TM software stack provide different information that we
propose to combine in methods and strategies to rate and optimize Transactional Memory
applications (see right hand side of Figure 4.1). The application level provides information
about the source code e.g., code line and context of the execution, the TM compiler supplies
static information e.g., instrumented memory locations, the TM run time system adds
information about the TM behavior e.g., TM statistics or event logs, and the hardware offers
hardware performance counters for performance monitoring. Combining the information
from the different layers in methods and strategies enables a better understanding of the TM
behavior as well as optimizations that go beyond those triggered only through monitoring a
single layer in isolation. In order to characterize the performance of the TM system and give
advise to the programmer of TM applications, we need a profound benchmark that mimics
real applications and uses TM as well as other synchronization primitives to compare
their execution times. Especially for high performance computing, we need to establish
a set of best practices for programming with TM. From processing the information, the
strategies may indicate certain actions that affect the performance. On the source code
level, the methods and strategies may point to a change of the transaction layout to benefit
performance. Static information, gathered through the compiler and analyzed in specific
passes, may guide the selection of an STM parameter to obtain a better performance

46



4.2. Components that Implement the Concept 47

Application with Transactional Memory Source Code
Level

GTM MAPT STM API
Static Infor-
mation

Tracing
Extension
hybrid TM

TMbox

TracingTinySTM

TinySTM

XL C/C++

TM tools

IBM Run time
HTM

Runtime
Statistics,
Performance
Counters

Post-Processing Tools for Performance Analysis

Phase Detection EigenOpt Visualization
Paraver

Visualization
Vampir

User Interac-
tion

Figure 4.2: Overview and relationship of components presented in this thesis.

of the application. On the level of the run time system, e.g., selecting a different STM
strategy for conflict detection may be indicated through the methods and strategies. The
foundation for these methods and strategies provides the retrieving of detailed run time
information of the TM system. The information enables the programmer to understand
when transactions started, committed, or aborted. Complementary information from the
hardware performance counters enables to monitor the utilization of the microarchitecture
and e.g., discover stall cycles due to cache misses and relate these to the execution of
transactions.

4.2 Components that Implement the Concept

In the following we describe the components that implement the concept presented in the
previous sections and give an overview over the TM systems that we selected to demonstrate
the tools for TM. While the concept is general enough to be implemented for various TM
systems, we select an STM, a hybrid TM, and a HTM system and exemplarily design and
implement tools for each of these systems. Figure 4.2 illustrates the relationships of the
components that implement the concept for the optimization of TM applications. In the
figure all components that we contribute to the state-of-the-art are framed with a black
solid box whereas the work of others exhibits a dotted frame.

In our concept, the TM application rests on one of three pillars: STM, hybrid TM and
HTM. These three systems enable to compare the different possibilities for optimization
that are enabled through the run time information that we retrieve.

The source code has to address each of the run time systems in a slightly different way.
Applications that target STM either use a pragma/keyword or are hand-instrumented with
the STM API. An extension of the C language with a pragma is achieved with the GNU
TM (GTM) approach that presents the initial basic support for STM in the GCC. With
this work, we contribute to the open source community efforts around GCC and enable
researchers to experiment with STM. From this experience with instrumenting memory
accesses, we derive the Memory Access Patterns in Transactions (MAPT) approach that
uses static information to propose an STM property.

47



48 4. Concept and Overview

Both compiler extensions address TinySTM, a word-based STM that is available as open
source. We augment this STM with a machinery for event logging. During run time,
TinySTM generates event traces that capture the application’s behavior at a fine granularity.
Hence, we named the extension TracingTinySTM. TracingTinySTM accesses hardware
performance counters through the PAPI interface to enrich the TM-specific events with
architecture-specific events. The post-processing tools either transform the traces into a
different format for a visualization tool e.g., Paraver or perform an advanced analysis such
as the detection of phases in the TM application.

As a hybrid TM system, we use the FPGA-based TMbox system. We extend the hardware
of TMbox with an event generation and an event logging unit that enables to trace events
at a granularity that is even finer than that of TracingTinySTM. The event traces contain
information about the execution in hardware and software. A post-processing tool generates
aggregate statistics and converts traces for the visualization with Paraver.

The HTM system is IBM’s proprietary BG/Q architecture. The proprietary IBM XL
C/C++ compiler provides the compiler and run time system for this architecture. The
compiler transforms a special pragma, that marks a transaction in the code, into calls to
start and commit a transaction. The run time provides information about the TM behavior
as summary statistics. With these preconditions, we design a tracing and a profiling tool
that correlates these statistics with the BG/Q hardware performance counters. Vampir, a
state-of-the-art visualization tool, visualizes the snapshots obtained with the tracing tool.

In order to establish a set of best practices for programming with TM on BG/Q, we need a
benchmark that is simple to use and has sufficient parameters to generate different applica-
tion’s behaviors. For high performance computing, we present CLOMP-TM, a benchmark
that compares synchronization with TM with other OpenMP-based synchronization primi-
tives in order to select the fastest. Due to its versatility, CLOMP-TM helps us to correlate a
certain TM behavior with the corresponding performance and derive a set of best practices
for programming with TM.

The choice of the TM run time systems enables us to compare the TM architectures from
different ends of the spectrum. Comparing an open source STM, a highly customizable
FPGA-based hybrid TM system and a proprietary HTM system yields insights how much
information must be available for a post-processing tool and what kind of optimization
yields a better performing TM application on each of the systems.

4.3 Experimental Setup
In the following we highlight our primary experimental platform for STM experiments. The
x86_64 architecture used in our experiments comprises two Intel® Xeon CPUs (called
Westmere) each with 6 cores and hyper-threading technology. Westmere implements
the Nehalem microarchitecture and is implemented in 32 nm technology. It features 24
hardware threads in total. Each core has an exclusive L1 and L2 cache whereas L3 caches
are shared inside a socket. Table 4.1 presents the sizes of the caches and the CPU frequency.
Hereafter we will refer to this architecture as ExpX5670.

A second setup is an Intel® Core2 Quad Processor Q6600 with 4 GBytes of main memory,
8 MBytes L2 Cache, 2.40 GHz and no hyper-threading hereafter denoted with ExpQ6600.

A third setup is an eight core Intel® Xeon® E5410 running at 2.33 GHz, with a L2 cache
size of 6 MBytes with 4 GBytes of main memory and no hyper-threading. We refer to this
system as ExpE5410.

48



4.3. Experimental Setup 49

Intel® Xeon® CPU X5670
CPU frequency 2.93 GHz
Processing Units per Core 2
L1 size 32 KBytes each
L2 size 256 KBytes each
L3 size 12 MBytes each
Number of Cores 12 total
Number of Hardware Threads 24 total
Number of Sockets 2

Table 4.1: Experimental platform ExpX5670.

A fourth setup constitutes of a two socket quad-core with a total of eight AMD Opteron™
cores each being of type processor 2378 clocked with 2.4 GHz, private L1 caches with
64 KBytes, private L2 caches with 512 KBytes, and L3 caches shared inside a socket with
6 MBytes each and 16 GBytes of main memory. This system is named Exp2378.

49





5. TM-specific Trace Generation for
STM and Hybrid TM Systems

This chapter introduces TM-specific solutions to log events in STM and hybrid TM
systems. A carefully designed logging mechanism is required to record the genuine TM
application’s behavior and preserve it for subsequent post-processing steps. The first
solution targets STM systems and describes the difficulties and challenges that logging
events introduces in the TM setting and is similar to [175]. Section 5.1 presents the details
of the implementation that employs compression algorithms and uses multiple threads
for compression. The second solution aims at hybrid TM systems and is tailored to the
FPGA-based TMbox system. Section 5.2 describes the design and implementation of
adding logging mechanisms to the TMbox system architecture, as described in [189, 112].
Section 5.3 compares the run time and the area overhead of both approaches. Section 5.4
concludes this chapter by comparing both event logging architectures and summarizing the
findings.

5.1 Augmenting TinySTM with Trace Generation Facili-
ties

Event traces record the temporal occurrence of events initiated through the application.
Information retrieved from these event traces is often used to improve the application’s
runtime behavior (e.g., find memory access patterns with higher spatial and temporal
locality). One key point is that obtaining these event traces does not change the application
behavior, which is called non-intrusive tracing. In some experimental setups, the goal
of non-intrusiveness can be achieved with smaller costs than in others. For instance, the
coarse-grained nature of MPI tasks makes them generally amenable for profiling with
library calls intercepting the original MPI calls (e.g. PMPI). Since MPI events occur rather
infrequently and mostly at the beginning or end of computation-intensive regions, the trace
generation does not significantly alter the program behavior. In the context of parallel
threads, generating event traces is not as straightforward as in the MPI case. Unfortunately,
a perfect solution for generating traces does not exist. We research and evaluate how to
ameliorate the costs of logging events in a TM context. These efforts are motivated by the

51



52 5. TM-specific Trace Generation for STM and Hybrid TM Systems

discussion of related work, presented in Section 3.2. Current tracing solutions are either
not specifically tailored for TM and may have higher overheads than required for tracing
TM applications (e.g., [113]) or take approaches that introduce locks on the critical tracing
path and can not leverage the full potential of compiler optimizations [29].

5.1.1 Minimizing Application Disturbances

The trace generation introduces overhead when logging events during the runtime of
the application. This overhead may influence two important performance metrics of
a TM application: throughput and number of aborted transactions. The non-uniform
delay of threads when logging events may influence both metrics. Delayed threads may
lead to additionally detected conflicts. With TM this effect is more severe than with
mutual exclusive synchronization: A conflict leads to a rollback of one transaction and
all previous modifications of the transactions are undone and recomputed. In case this
conflict is artificially generated through delaying the thread by the tracing machinery,
the recorded application’s behavior is not genuine. Hence, avoiding additional delays
is one goal. Threads may be delayed when writing the logged events from a buffer
to the hard disk. In prior work Knüpfer et al. propose to store a trace of n threads
[processes] with 1...n streams [113]. If the number of streams is less than n, additional
synchronization is introduced to coordinate two threads that write to the same stream.
In our use case this synchronization comes with the undesired side-effect of artificially
delaying threads. Therefore, we only allow a bijective mapping of n threads to n streams
– e.g., each thread writes to a separate file. In contrast to previous approaches [113], the
trace generation is not encapsulated inside a dedicated library due to performance reasons.
The STM library already stores meta data in thread local storage. Through extending the
meta data and manually inserting calls to log events, we achieve a higher data locality.
Further, the compiler may inline and optimize the tracing code and achieve a higher
performance compared with call back-based approaches. The interface of the TinySTM
remains unchanged, thus, this tracing approach is also transparent to the application
developer. The event logging mechanisms are integrated in the build process of the STM
in a way that these are easily accessible for users.

The design choices follow the need to preserve the original course of events. In order to
reduce the interference between threads, each thread writes to a separate trace file. The
corresponding file handles are stored in the thread local storage. Also, we add functions to
read the OS time, cycle counter (TSC) and PAPI events. PAPI is a platform independent
interface to access and control hardware performance counters [139]. In our setting PAPI
enables us to relate the utilization of the microarchitecture, monitored with the performance
counters, to specific transactions.

Event traces may be captured in two different formats: as ASCII or as binary packets.
The format of the binary packets is shown in Table 5.1. The transactional events are
captured by instrumenting the respective STM functions. We took care when placing
the instrumentation such that events will not be logged prematurely: e.g., after entering
the function stm_commit, the transaction may still abort during the validation of the
read and write sets. The PAPI events are optional and read the hardware performance
counters defined during compile time. These measurements correspond to the execution of
a transaction (from start to abort or commit). The ASCII mode introduces one fprintf
call per event. This first approach writes elements of varying size at once whereas the
binary tracing approach buffers events of fixed size in a dedicated local memory buffer.

52



5.1. Augmenting TinySTM with Trace Generation Facilities 53

Type 8 Bit Payload 64 Bit Payload2 64 Bit
Timing1 tx [%p] OS time [sec]
Timing2 OS time [nsec] padding
RTSC TSC [cycles] padding
Start tx [%p] STM counter
Read1 address padding
Write1 address value
Commit tx [%p] STM counter
Abort tx [%p] STM counter
PAPI1 counter value padding
PAPI2 counter value padding

Table 5.1: Format of timing and transactional events in x86_64 binary trace files with
optional reading of performance counters through PAPI. Extended version of
table in [175].

The buffer size is given in number of event elements. A 10K element buffer signifies that
each thread allocates a buffer of 136[bit] ∗ 10K ≈ 166KBytes.

5.1.2 Implication of Lightweight Trace Generation on Offline Analysis
The goal of a lightweight tracing scheme is to reduce the runtime disturbances of the
application. A trade-off between logging heavy-weight events with high precision and
lightweight events with low precision must be found. Then, an advanced offline analysis
can reconstruct the original course of events. Having a precise notion of time is mandatory
for visualization and especially for finding causalities among the traced events. In the
following, we propose to reconstruct the time line of events based on the very scarce usage
of a heavy-weight time stamp and the frequent logging of a lightweight cycle counter. In
contrast to vector clocks [65], that capture the causality of events and preserve a partial
ordering, our approach interpolates the real time when an event occurred. This enables
to order events even when both events do not have a causal relationship. The function
clock_gettime delivers the time synchronized across all processing cores (heavy-
weight). At Start, Abort, and Commit events, the cycle counter of the core is logged
(with the RDTSC1 instruction). Despite being lightweight, this counter comes with the
disadvantage of not being synchronized across cores. Through also logging it at thread
init and exit, both time stamps are correlated. During offline processing, the time between
two events (e.g. thread init and start) is calculated according to ∆t = ∆c

f
where f is the

frequency of the core and ∆c is the number of cycles between the two events. By adding
∆t to the heavy-weight synchronized time stamp (at initialization of the thread), the real
time of each event is reconstructed. Transactional events in between start and commit
are interpolated by assuming that each event consumes an equal amount of time. Further,
repeating these steps for all threads, enables to establish an order of the concurrently
generated events.

5.1.3 The Influence of Tracing on the Runtime
In the following, we will use a TM application, called bank, to study the influence of the
tracing machinery on the runtime of the application. bankmanages a fixed number of bank
1RDTSC is not influenced by dynamic voltage and frequency scaling of the cores.

53



54 5. TM-specific Trace Generation for STM and Hybrid TM Systems

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

M
em

or
y 

C
on

su
m

pt
io

n 
[b

yt
e]

Time

ASCII
Bin1

Bin10K
Bin1M
woTR

Figure 5.1: Heap size of bank application (from [175]).

accounts and transfers money between them with transactions. Long running read-only
transactions are carried out in turn with short writing transactions. Since bank spends
most time inside transactions, it is a useful stress test for the tracing machinery because of
the high write bandwidth demands. Hence, bank is chosen to study the influence of the
trace generation on the memory consumption and TM metrics.

Memory consumption at runtime is illustrated in Figure 5.1. More precisely the
graphs represent the heap size of the running application with different tracing vari-
ants. These results are generated with valgrind [145] in particular employing the tool
massif to sample the memory consumption. The x-axis shows the sampling points
in time where the heap size is determined. The memory consumption without tracing
(woTR), ASCII tracing (ASCII), and binary tracing with different buffer sizes: 1 element
(Bin1), 10K elements (Bin10K) and 1M elements (Bin1M) are shown on the y-axis in a
logarithmic scale. Bin1M dominates all variants with 70 MBytes memory consumption
at most. The average heap consumption for the pure application bank is less than 1.2
MBytes. Increasing the buffer size to 10K elements increases memory requirements to 1.8
MBytes. The memory demands are negligible compared to the available memory in most
desktop machines (around 4 GBytes). The increased memory requirements lead to a larger
cache footprint which may have a severe impact on the application as it may lead to more
cache misses.

In order to demonstrate the adequateness of the increased memory requirements, we
compare our customized trace generation with a state-of-the-art dynamic instrumentation
tool called Pin [129]. Instrumentation is achieved through so called Pintools which are
written in C/C++. At runtime Pin uses binary instrumentation to connect the unmodified
application and the Pintool. A Pintool usually consists of two parts: an instrumentation
and an analysis part. In our case, the instrumentation registers call backs for the STM
functions2 start, commit, abort and thread create and exit. The analysis part logs the events

2For full traces transactional loads and stores are also instrumented.

54



5.1. Augmenting TinySTM with Trace Generation Facilities 55

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

ASCII Bin10K Bin1M Bin1 Pin woTR

[T
xn

s/
s]

(a) Absolute throughput in transactions per second.

 0

 1

 2

 3

 4

 5

ASCII Bin10K Bin1M Bin1 Pin woTR

[A
bo

rts
/T

xn
] 

(b) Similarity metric Aborts
Txn .

 0

 0.2

 0.4

 0.6

 0.8

 1

ASCII Bin10K Bin1M Bin1 Pin

N
or

m
al

iz
ed

(c) Throughput normalized to execution without trac-
ing.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

ASCII Bin10K Bin1M Bin1 Pin

R
el

at
iv

e 
D

ev
ia

tio
n

(d) Relative deviation of the metric Aborts
Txn from exe-

cution w/o tracing.

Figure 5.2: Influence of trace generation on the TM behavior. Figure taken from [175].

and writes them to a file. However, not all events are available with the Pintool - only the
ones underlined in Table 5.1 are logged. At thread create and exit the trace files are opened
and closed respectively. In order to enable a fair comparison to our approach each thread
writes to a separate file directly and, hence is comparable with ASCII or Bin1.

Influence on the application’s behavior as mentioned before, shared memory ap-
plications, featuring separate threads of execution are sensitive to modifications. Because
these modifications are necessary to generate event traces, the overhead of generating event
traces and the influence of the experimental setup on the application’s runtime behavior
must be studied. As a first indicator which combination of tracing and experimental
setup is suited, we investigate the influence on the throughput of the application. The
application bank runs for a fixed period of time (by default 10 seconds). During this time,
the amount of transactions executed per second is measured. Figure 5.2(a) depicts this
throughput. Correspondingly, Figure 5.2(c) holds the normalized throughput, which is
computed according to TxnsX

TxnswoTR,
where X selects the tracing variant and woTR means

execution without tracing. These performance numbers show that the Pintool limits the
throughput in transactions per second to 22 % whereas all proposed variants reach more
than 76 %.

Further, we seek to quantify the influence of tracing on the TM characteristics. Due
to the optimistic nature of transactional execution, transactions may conflict with each
other. Resolving these conflicts usually leads to an abort of one of the transactions. When
combining the rate of aborts with the rate of transactions, a metric is found that serves

55



56 5. TM-specific Trace Generation for STM and Hybrid TM Systems

Application

Worker Threads

TracingTinySTM

Compression Threads

Mapping

Figure 5.3: TracingTinySTM with support for online trace compression [175].

as a measure for similarity of transactional execution (computed as Aborts
Txn

). In case the
application is not affected by the tracing machinery, the metric yields similar values
because the amount of aborts experienced per transaction is similar. Figure 5.2(b) shows
this similarity metric for our tracing variants and Pin. Computed according to the formula
(X − woTR)/woTR, Figure 5.2(d) demonstrates the relative deviation of the tracing
variants compared without tracing. Since a smaller deviation means similar program
behavior, our tracing variants preserve the application’s behavior better than Pin.

5.1.4 Online Trace Compression
In a multi-core system with a large number of threads executing and generating traces
concurrently, the write bandwidth of the hard disk soon becomes the bottleneck. Therefore,
compressing the trace data prior to writing it to disk seems a viable solution. However,
compression algorithms have to be carried out by or on behalf of the application thread.
This poses a major challenge if the application is not to be influenced by the compression.
As one of our declared goals is to minimize the disturbance of the application, having
the application thread compress the data is counterproductive. While carrying out the
compression the thread would execute non-transactional code instead of playing its original
role with the other threads. Therefore our approach decouples trace generation (done by the
application or worker threads) and trace compression (carried out by compression threads).
This basic principle is also illustrated in Figure 5.3. Due to the API of the TinySTM,
compression threads are spawned and destroyed transparently to the user. E.g., when a
thread initializes its transactional state, a predefined number of compression threads is
created. These threads will then compress a buffer of fixed size when signaled by the
application thread. However, writing or compressing a buffer takes different amounts of
time. Thus, a suitable mapping of application to compression threads must be found.

In [113] the use of the ZLIB library3 for compression has been proposed. Our first
experiments revealed that a thread mapping of approximately 1:10 would be necessary to
keep the application thread from waiting. Thus, our approach uses the slightly different
Lempel-Ziv-Oberhumer (LZO) library which is designed for real-time compression4.
Although the additional speed comes at the cost of a lower compression rate, the results
are still satisfying. The LZO library compresses 4, 607 MBytes to 156 MBytes yielding
a compression factor of 29. However, this is also due to the fact that the binary format
contains padding which compresses easily.
3J. Gailly and M. Adler, zlib, http://www.zlib.net/
4M. F. Xaver and J. Oberhumer, LZO, http://www.oberhumer.com/opensource/lzo/

56

http://www.zlib.net/
http://www.oberhumer.com/opensource/lzo/


5.1. Augmenting TinySTM with Trace Generation Facilities 57

 0

 0.2

 0.4

 0.6

 0.8

 1

1 TT 2 TT 4 TT 8 TT 12 TT 16 TT

N
or

m
al

iz
ed

 to
 w

/o
 T

ra
ci

ng

 

1 CT
2 CT
3 CT

(a) Normalized to execution without tracing.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 TT  4 TT  8 TT 12 TT 16 TT

R
el

at
iv

e 
D

ev
ia

tio
n

 

1 CT
2 CT
3 CT

(b) Relative deviation of Aborts per Transaction
compared without tracing.

Figure 5.4: Throughput and similarity with multi-threaded trace compression (as in [175]).

 2  4  6  8  10  12  14  16
 1000

 10000

 1

 10

Lo
g 

fil
e 

si
ze

 ra
tio

Bin1M/LZO3CT

#Threads

time [ms]

Lo
g 

fil
e 

si
ze

 ra
tio

 0
 5
 10
 15
 20
 25
 30
 35
 40

Figure 5.5: Compression factor computed as SizeBin1M

SizeLZO3CT
as a function of thread count and

computation time (with logarithmic z scale).

The throughput of the application threads executing without tracing is compared
with different mappings of application to compression threads for trace compression. E.g.,
2CT signifies that 1 application thread maps to 2 dedicated compression threads. These
compression threads compress data inside a buffer by calling the LZO library. 1CT and
3CT are constructed accordingly. Figure 5.4(a) shows the Txn/s normalized to execution
without tracing. This throughput ranges between 44 % and 71%. This is a serious drop
when compared to tracing without compression which can be ascribed to the larger memory
footprint. More buffers need to be utilized by the tracing thread and executing the LZO
routines also has an impact on the instruction cache. Further, more threads share the same
computational resources which are eventually saturated. We argue that the similarity in the
application behavior is more important than the measured throughput. Figure 5.4(b) shows
that all tracing variants except 1CT capture the application behavior in an acceptable way
because the relative deviations of the Aborts

Txn
are smaller than 15 %. A negative deviation

means that execution without tracing has a lower Aborts
Txn

rate. Therefore, the setups with
LZO2CT and LZO3CT are adequate for trace generation.

The compression factor of the LZO3CT scheme compared with the Bin1M setup is
shown in Figure 5.5. The logarithmic z-axis holds the compression factor, computed as
SizeBin1M

SizeLZO3CT
. The y-axis displays the number of threads and the x-axis the execution time of

57



58 5. TM-specific Trace Generation for STM and Hybrid TM Systems

 1

 10

 100

 1000

Bayes Genome Intruder Kmeans 
m40n40

Kmeans 
m15n15

Labyrinth SSCA2 Vacation 
n2q90

Vacation 
n4q60

Yada Average

R
un

 ti
m

e 
[s

]

 
 

  ASCII Bin10K Bin1M LZO2CT LZO3CT ZLIB woTR

(a) Tracing all TM events (includes transactional loads and stores).

 0

 5

 10

 15

 20

 25

 30

 35

Bayes Genome Intruder Kmeans 
m40n40

Kmeans 
m15n15

Labyrinth SSCA2 Vacation 
n2q90

Vacation 
n4q60

Yada Average

R
un

 ti
m

e 
[s

]

 
 

  ASCII Bin10K Bin1M LZO2CT LZO3CT ZLIB woTR

(b) Tracing a reduced set of TM events.

Figure 5.6: Average execution times of the STAMP benchmarks. Previously published
in [175].

the benchmark. LZO3CT efficiently reduces the size of the log files when the thread count
is low. Further, the runtime of the bank application should not exceed 5 s to benefit from
reduced file sizes. This time span is comparable with simulators for TM that run for one
day.

5.1.5 Impact of Trace Generation on STAMP Benchmarks
In this section, we study the impact of the proposed trace generation schemes on the
execution of TM benchmarks that stem from multiple application domains. For our experi-
ments all benchmarks from the STAMP TM suite [24] run consecutively and to completion
on the experimental setup ExpX5670 (cf. to Section 4.3). The tracing functionality is
implemented inside the TinySTM (version 0.9.9) [62]. Each of the 10 STAMP benchmarks
solves a problem of fixed size. All reported values are averages over 30 runs to compensate
for variations in the execution. Each benchmark runs with 8 worker threads. The thread
count is sufficient because the STAMP applications show a limited scalability on this
architecture.

58



5.1. Augmenting TinySTM with Trace Generation Facilities 59

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

Bayes Genome Intruder Kmeans 
m40n40

Kmeans 
m15n15

Labyrinth SSCA2 Vacation 
n2q90

Vacation 
n4q60

Yada Average

Fi
le

 S
iz

e 
[b

yt
e]

 
 

ASCII Bin LZO ZLIB

(a) Tracing all TM events with TM loads and stores.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

Bayes Genome Intruder Kmeans 
m40n40

Kmeans 
m15n15

Labyrinth SSCA2 Vacation 
n2q90

Vacation 
n4q60

Yada Average

Fi
le

 S
iz

e 
[b

yt
e]

 
 

ASCII Bin LZO ZLIB

(b) Tracing a reduced set of TM events.

Figure 5.7: File sizes for traces of the STAMP benchmarks [175].

The trace scenarios are as follows:

• ASCII: traces are in the ASCII format without buffering,

• Bin*: binary traces with a 10K and 1M element buffer,

• LZOkCT: LZO compression with k compression threads for each worker thread,

• ZLIB: ZLIB compression without compression threads,

• woTR: without any tracing enabled.

Figures 5.6(a) and 5.6(b) depict the execution times of each individual STAMP benchmark
with and without tracing and the computed average over all benchmarks. The average
shows the largest increase in runtime for the ASCII and plain binary tracing variants. The
labyrinth application surprisingly shows a speed up when tracing is enabled. The TM
statistics between traced and w/o tracing do not differ significantly. As a consequence,
a biased TM behavior does not cause this speedup. The exact reason is still unclear but
further investigations reveal that the runtime of labyrinth has a high variance and the

59



60 5. TM-specific Trace Generation for STM and Hybrid TM Systems

Setup L3 cache misses
Min Max Average

woTR 1.7 107 2.1 108 9.9 107

Bin1M 1.1 107 1.6 108 4.8 107

LZO2CT 1.2 107 1.2 108 2.8 107

Table 5.2: L3 cache misses for labyrinth (cf. to [175]).

number of L3 misses is lower for the tracing variants. The Table 5.2 holds the range and
average value of these misses.

However, labyrinth is an unusual case that eventually leads to a small speedup. The
common case is e.g., kmeans that shows that the tracing threads are competing with the
application threads for architectural resources. This competition leads to additional stall
cycles and increases the cache miss rate; eventually contributing to an increased execution
time. Execution times increase substantially, when all transactional events are traced (cf.
to Figure 5.6(a)). Please note the logarithmic y scale, which also emphasizes the prolonged
times of ASCII and Bin*. Herewith, the benefits of the online compression approaches
are demonstrated. On average LZO3CT yields a 30 % better runtime than ZLIB and 451 %
better than Bin10K. The runtime effects are not as prominent in Figure 5.6(b), when tracing
only a subset of the TM events.

Figure 5.7(a) and Figure 5.7(b) show the average sizes of the trace files with and without
compression. Again, please note the logarithmic y-axis. Regardless of the amount of
data, the ZLIB library provides a higher compression ratio on average but also records
a potentially biased TM behavior because application-level threads also perform the
compression. For the small event set, the LZO library yields a compression factor of 3.94
compared with 8.63 for ZLIB. For the large event set, LZO compresses with a factor of
7.82 and ZLIB with a factor equal to 10.79 on average.

5.2 Event Logging in a Hybrid TM System (TMbox)
In the following, we will demonstrate how a hybrid TM system can be extended with event
logging facilities and compare this approach with the STM-centric trace generation. TMbox
is a hybrid TM system that builds on Field Programmable Gate Arrays (FPGAs) [190].
In an FPGA, reconfigurable logic connects lookup tables, flip flops, block rams, and
hard cores (e.g., ethernet cores or units for digital signal processing). Programming the
FPGA connects and configures these logic components in a way that is described in the
design process. TMbox exploits this flexibility and configurability to provide an excellent
testbed for Transactional Memory research. The reconfigurable logic enables to experiment
with different buffer sizes and explore design trade-offs. For designing and developing a
low-overhead extension to log TM events, the setup of the TMbox system is well suited.

Figure 5.8 illustrates the hardware part of the TM system. A ring bus connects 8 Hon-
eycomb soft cores and the bus controller. In this original configuration 16 cores fit on
one Virtex-5 FPGA XC5VLX155T. The cores support the MIPS R3000 instruction set
architecture and have been extended with special TM instructions: XBEGIN, XCOMMIT,
XABORT, XLB, XLH, XLW, XSB, XSH, XSW and MFTM. These instructions start, commit,
abort, or respectively load and store memory values in transactions or move data from
registers. These instructions trigger state changes in a finite state machine that monitors

60



5.2. Event Logging in a Hybrid TM System (TMbox) 61

DDR
RAM

Core 4 Core 3

Core 2

Core 1

Core 0
Bus

Controller
DDR

Controller

Core 7

Core 6

Core 5

L1 Cache

Honeycomb

TM Unit

Bus Node

Core

TMbox

Figure 5.8: Overview of the TMbox system, showing a bi-directonial ring bus that connects
8 cores and a bus controller (similar to [190]).

whether a transaction is ongoing or not. On a higher level these introduced states appear
as TM Unit which is also illustrated in Figure 5.8. The TM Unit accommodates a cache
with up to 16 entries for transactional loads and stores (these are not held in the L1 cache).
Further, the TM Unit snoops the bus for invalidations. Upon receiving an invalidation to
an address in the read or write set, the running transaction is aborted and possibly retried.
This elegant solution uses two ring buses: one for requests and responses to/from memory
and one for invalidations from writes to memory. Because both buses operate in opposite
directions (also confer to Figure 5.8), an invalidation may cancel a write request on any
node if both carry the same address. Three new bus states enable to execute a commit
operation with multiple writes: TMbusCheck, TMlockBus and TMwrite. These assure that
a commit operation is not interrupted through other bus requests because it locks the bus
first. In HTM mode a transaction may not occupy more than the 16 entries of the TM cache.
Thus, an STM system is added to the hardware to relax this restriction. The TinySTM-ASF,
a hybrid version of TinySTM designed to work with AMD’s ASF extension, is ported to
TMbox. Using the hybrid TM system in the hardware mode effectively reduces the number
of cache lines available for data because ASF requires to also hold the lock address in the
TM cache. If both are stored in the same cache line, the HTM performance is not affected.
The experimental results verify that pure HTM performs faster than Hybrid TM or STM
as long as the transactions fit in the TM cache. The last paragraph contains only a short
introduction to TMbox. For more information please refer to [190]. In the following, we
will highlight how we enhance this TMbox architecture with low-overhead mechanisms to
generate event logs.

61



62 5. TM-specific Trace Generation for STM and Hybrid TM Systems

Figure 5.9: An 8-core TMbox system block diagram and modifications made to enable
logging of events (shown in gray) – taken from [189].

Similar to the previously introduced tracing methodology for STMs, this approach aims
at imposing low-intrusiveness on the TM application through having extremely low run
time overhead [189, 111, 112]. Additionally the design focuses on low-area overhead,
meaning that only a minimal amount of FPGA logic should be added for logging events
and that the added logic should not affect the place and route process of the existing
components in a way that these do not reach their original frequency. This could happen if
the added components negatively influence the critical path of the design and, thus, lower
the achievable frequency. A special requirement for monitoring a hybrid TM system is
to find a way so that hardware as well as software TM execution can be monitored with
the same low-intrusiveness and without duplicating the event logging mechanisms for
each execution mode. We present the design of the event logging architecture in the next
paragraph.

5.2.1 Design of the Event Logging Extensions
The design of the event logging extension for the TMbox system architecture follows
the idea of closely tracking the TM application’s behavior. Compared to the previously
presented STM-approach, the FPGA-based hybrid TM system offers more possibilities
to track state changes at a finer granularity without risking to influence the application’s
behavior. While the STM software solution requires to write the event to a buffer and
eventually flush the buffer to disk, the FPGA offers block RAMs to buffer events and
transfer these via the secondary ring bus whenever it does not block any other operation.
Having a smaller priority for these events compared with regular invalidation traffic assures
that the application’s behavior is not changed in any way. With the previously designed
STM solution prioritizing memory accesses and shifting the flush of the buffer to a preferred
point in time is not feasible. Here the FPGA-based architecture offers more freedom. Partly
this is also due to the fact that the TMbox architecture features two ring buses with one
of them not being used heavily so that the approach takes advantage of the fact that
transferring TM events in a best-effort manner over this ring bus poses an elegant solution.
As a consequence, the HW-based solution provides a continous stream of events as these
are generated whereas the STM solution rather features transfers in bursts (depending on
the size of the buffer).

Figure 5.9 displays a TMbox system with 8 cores that is enhanced with logic to log events.
In order to preserve the events for a later post-processing step, the connection of the FPGA
to the host computer gains importance. Over the PCI-Express channel, that connects
the host computer with the FPGA, the host polls the memory area that holds the TM

62



5.2. Event Logging in a Hybrid TM System (TMbox) 63

Message header Message data
2 bits 4 bits 20 bits 4 bits 4 bits

Message type CPU sender ID δ-encoded timestamp Event type Event data

Table 5.3: Format of the events that are transferred as packets (cf. to [189, 111]).

events. The host copies these events and writes them to trace files. This step preserves the
(otherwise lost) events after the run on the FPGA and enables further post-processing steps
such as behavioral analysis or visualization on the host. Section 6.2.4 holds an example of
a successful optimization through tuning the parameters guided by a post-processing step.

5.2.2 Implementation Details

The presented approach records the TM application’s behavior through tracking fine grain
state changes in the TM hardware [111]. As a prerequisite to tracking these state changes,
we need some means to detect state changes first. Figure 3 in [190] illustrates the finite
state machine of the cache. Specific actions e.g., commit or abort trigger state transitions.
In the extended version for event logging, these transitions trigger the generation of a
corresponding event. In Figure 5.9, the newly introduced component for event logging
is called Event Generation and is shown to extend the Honeycomb processor core. As
already mentioned, the extension is rather made to the finite state machine of the cache that
is closely coupled with the processor. The event generation unit passes a generated event
to the Log Unit. The Log Unit manages a first in, first out (FIFO) queue with 32 entries for
events. This FIFO preserves the order of events so that there is no need to reorder events
during post-processing. The Log Unit equips each event with a time stamp prior to placing
it in the FIFO. The FIFO queue buffers events until a free slot on the secondary ring bus is
available to transfer the event to the Bus Controller. The Bus Controller places the event in
the added PCIe FIFO queue. Experiments reveal that having 32 entries in the FIFO of the
Log Unit is sufficient to correctly handle a hand-written stress test. Even for this test, in
which 8 cores generate events at a high rate, the occupation of the FIFO did not exceed 4
entries. This shows that the chosen parameters are well-suited to handle phases of high
load correctly.

Table 5.3 shows a detailed view of the trace format. The secondary ring bus defines the
trace format so that arbitrary messages are not possible. The message header holds a
message type with 2 bits and a CPU sender ID with 4 bits. The message type distinguishes
invalidations and events. The CPU sender ID may distinguish up to 16 CPUs. The message
data contains a timestamp with 20 bits, an event type with 4 bits and 4 bits event data. The
timestamp is δ-encoded, meaning that only the time difference to the previous event is
recorded. This space-efficient coding scheme enables a cycle-accurate monitoring of events.
The downside is that a timespan between two logged events must not exceed 220 cycles.
Otherwise the synchronization of the events is lost and the reconstructed application’s
behavior in the post-processing step would not match the genuine application’s behavior.
On the TMbox architecture, the processor has a core frequency of 50 MHz, the time span
equals 20 ms. Thus, for our use cases with high transactional activity, this solution suffices.
A possible enhancement would be to generate a keep-alive message prior to the timespan
being exceeded. Then, the next event would either be relative to this artificially generated
message or generate the next keep-alive message if the time span is exceeded again. This
would be a possible solution for this issue. Monitoring the pure STM execution of TMbox

63



64 5. TM-specific Trace Generation for STM and Hybrid TM Systems

Area Overhead
Event Logging Type (per CPU core) Actions Tracked
STM-only NONE SW start tx, SW commit tx,
(x86 host) SW abort tx
STM-only 32 5-LUTs + 1 BRAM SW start tx, SW commit tx,
(FPGA) SW abort tx
HTM-only 129 5-LUTs + 1 BRAM HW start tx, HW commit tx,

HW abort tx,lock bus, unlock bus,
HW inv, HW tx r/w, HW PC

HyTM CG 129 5-LUTs + 1 BRAM HTM-only + STM-only
HyTM FG1 129 5-LUTs + 1 BRAM HyTM CG + SW tx r/w + tx ID
HyTM FG2 129 5-LUTs + 1 BRAM HyTM FG1 + SW inv + SW PC

Table 5.4: Area overhead per processor core and the tracked events in different tracing
configurations – taken from [189].

also poses a challenge because so far the monitoring hardware only tracks changes of
the HTM state. Due to the flexibility of the FPGA and using a soft processor core, it is
possible to add an instruction that only generates a corresponding event. These additional
event logging instructions for the STM part are inserted by the compiler/assembler. Thus,
the user of the architecture does not have to insert those. The other advantage is that
the event generating and logging mechanisms are utilized in the same way as with the
HTM states. Thus, the run time overhead of profiling the software execution of a hybrid
TM system consists of one additional instruction per generated event. The following
paragraph compares the overheads of the different event logging systems at different
logging granularities.

5.3 Comparison of SW- and HW-based Monitoring of TM
Events

This paragraph compares the different tracing variants in terms of area and run time
overhead. Table 5.4 presents the overhead of the proposed event logging mechanism in
terms of area overhead with respect to the number of actions that can be tracked. STM-only
(x86-host) is the binary tracing variant from Section 5.1 with a buffer size of 100 K elements
per thread executed on ExpX5670. Of course this tracing variant does not come with
any overhead in terms of hardware. It tracks start, commit and abort of transactions in
software. A comparable setup, STM-only (FPGA) with the event logging mechanisms
on the FPGA architecture requires 32 lookup tables and one block RAM additionally on
the BEE3 platform using one of four LX155T Xilinx FPGAs at the UPC/BSC. For an
HTM-only setup that monitors the same actions as the previous setups only in hardware
and additionally tracks bus events, reads, writes, invalidations and the program counter, the
area overhead is 129 lookup tables and one BRAM. This is the maximum area overhead
achieved in this experiments that is also matched by the three remaining hybrid designs.
The three hybrid variants are: coarse grain (HyTM CG) that tracks HTM-only and STM-
only events. HyTM FG1, additionally to the events of HyTM CG, also handles reads, writes
and the transaction id. HyTM FG2 adds invalidations and the program counter to the events
of HyTM FG1.

64



5.3. Comparison of SW- and HW-based Monitoring of TM Events 65

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
genome vacation labyrinth ssca2 intruder Average

-2

0

2

4

6

8

10

12

14

16

HyTM CG HyTM FG1 HyTM FG2

E
xe

cu
tio

n
 o

ve
rh

e
a

d
 (

%
)

Figure 5.10: Run time overhead in % for different Hybrid TM tracing levels, core counts
and applications. Each bar is an average over 20 runs – taken from [189].

Figure 5.10 compares the run time overhead for the three hybrid TM event logging
granularities using the EigenBench [94] mimicry of the STAMP benchmarks [24]. The
run times from logging events while tracing the application characteristics of genome,
vacation, labyrinth, ssca2 and intruder provide a thorough picture. Apart
from two outliers – vacation with 2 threads and ssca2 occasionally – with both
showing a small speedup, the general trend is as expected: the tracing variants that log
more event types, also show the higher influence. E.g., HyTM FG2 has the highest run time
overhead between 4 % and 6 % on average depending on the number of cores. Moreover,
genome has the highest influence with HyTM FG2 with a ≈ 13 % longer execution time.
The small speedups may be explained by the impact of small delays on transactional
execution: in case a threads is delayed because a TM event must be generated, it may
not run at the exact same time as without tracing enabled and, hence, may not generate a
conflict with another transaction. This reduces the number of rollbacks and may cause a
small speedup. As the performance numbers confirm, this trend is not very pronounced
and reduces the execution time by ≈ 1 %.

Figure 5.11 finally compares the execution overhead in run time of STM x86 and STM
FPGA. The experiments use 2, 4 and 8 cores and again the Eigenbench variants of genome,
vacation, labyrinth, ssca2 and intruder. The range of application’s behaviors
demonstrates a varying influence. For genome with 2 cores, STM x86 is only influenced
by 3.5 % whereas STM FPGA is close to ≈ 8 %. For genome with 4 and 8 cores both
variants are similar with slight advantages for STM FPGA. On the contrary, ssca2 shows
almost no influence with STM FPGA or even a small speedup and yields ≈ 10 % overhead
on average across core counts. STM x86 extends the run time of intruder with 8 cores
by > 14 %. This is the highest influence measured in this experiment. We observe the
following overall trend for STM x86 a higher core counts also yields a higher influence of
the run time. For STM FPGA this trends does not hold. The highest average influence is
with 2 cores for STM FPGA. Moreover, STM FPGA yields the lower influence on average
due to the additional FPGA hardware and the clever design of the tracing mechanisms.

65



66 5. TM-specific Trace Generation for STM and Hybrid TM Systems

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8
genome vacation labyrinth ssca2 intruder Average

-2

0

2

4

6

8

10

12

14

16

STM (x86) STM (FPGA)

E
xe

cu
tio

n
 o

ve
rh

e
a

d
 (

%
)

Figure 5.11: Runtime overhead in % for STM-only (x86-host) vs. STM-only (FPGA) with
different core counts and applications. All bars represent averages over 20
runs – taken from [189].

The tracing of execution in HTM mode yields lower overheads than that of the STM mode
due to the additonal instructions required. Hence, applications that mostly execute in HTM
mode experience less overhead through the tracing machinery than applications that heavily
use the STM mode. To summarize, the average influence for the considered benchmarks of
< 8 % for STM x86 is also a respectable result, especially when considering that there is
no additional hardware to assist the tracing on the x86 architecture and, thus, this approach
can be ported to any commodity architecture.

5.4 Summarizing the Trace Generation
In this chapter, we present two TM-specific solutions for capturing and preserving the TM
application’s behavior for STM on an x86 architecture and hybrid TM on an FPGA.

For the STM solution, TM events are logged, buffered and compressed inside a word-
based Software Transactional Memory library. This approach substantially increases the
throughput and reduces the application disturbance in comparison with a state-of-the-art
binary translation tool (Pin). The more sophisticated trace generation variants employ
compression algorithms to reduce the amount of data to be written. The ZLIB and the
LZO compression schemes are compared with non-compressing variants. The results show
that especially adding dedicated compression threads does have benefits: for large data
sets the influence on the runtime is reduced significantly. The trace data is compressed
with a factor of up to 10. The compression ratio of the ZLIB algorithm is superior to
LZO, but also leads to an increased runtime for large data sets. Further, LZO has a small
influence on the application behavior compared with ZLIB due to its multi-threaded trace
compression implementation. For capturing the genuine TM application’s behavior this
low-intrusiveness is the most important advantage of the developed LZO scheme. Thus,
retrieving information throughout this thesis is either done with LZO compression and

66



5.4. Summarizing the Trace Generation 67

minimum of 2 compression threads or without compression and a buffer size of 100K or
1M elements.

The presented FPGA-based tracing approach augments the hybrid TM system (TMbox).
An Event Generation and a Log Unit extend each processor core in order to track changes
of the TM state. Each state change of interest triggers the generation of a corresponding
event through the Event Generation unit. The Log Unit receives the event, equips it with
a time stamp and places it in a FIFO. The event is then transferred during the idle times
on a secondary ring bus in order to minimize the intrusiveness. To also monitor software
execution of the hybrid TM system, an additional instruction triggers the generation of a
log event. This event takes the usual route through the hardware. This approach achieves
a continuous stream of events that resembles the application’s behavior. The additional
hardware requirements are modest and the run time overhead is limited to one additional
instruction to monitor the software execution (per event).

A comparison between tracing the software execution of transactions on the FPGA platform
and the x86 host deepens the understanding of the techniques. A general and expected trend
is that the overall influence on the run time is lower for the hardware-assisted tracing with
STM FPGA. As a result some benchmarks show a low influence with STM FPGA-based
tracing and a high influence with STM x86-based tracing (e.g., ssca2 and intruder).
genome with 2 threads also shows a higher influence with STM FPGA compared to STM
x86. The reason for this behavior is that transactions in genome exceed the hardware
capacity during the hybrid TM execution and revert to the slower STM execution with
higher overheads. In general using the STM FPGA machinery for generating traces is
preferable because of its lower run time overhead and lower intrusiveness. In cases where
an architecture with an FPGA is not available, the STM x86 approach has also been shown
to have a low influence on the run time and comes with the advantage of also being portable
to architectures without FPGA extensions.

67





6. Visualization and Tool Support for
TM Applications in Unmanaged
Languages

This chapter presents a framework for the optimization of TM applications written in
unmanaged languages, e.g., C. Section 6.1 presents the design and implementation of
the toolchain that extracts and processes run time information of the STM. Section 6.2
shows how we use this information to uncover optimization potential. We integrate the
optimization of applications with hybrid TM, as described in [189], in Section 6.2.4.
Section 6.3 demonstrates how to apply TM to the method of Conjugate Gradients and
evaluate the performance in detail using hardware performance counters as described in [92,
106, 176]. Phase detection algorithms for TM applications are presented in Section 6.4 and
the EigenOpt approach in Section 6.5. Section 6.6 concludes this chapter.

6.1 A Toolchain for the Optimization Cycle of TM Appli-
cations

Tool support may help the application developer to discover and avoid bottlenecks in
TM applications. Researchers proposed to assist the programmer through visualizing
the transactional memory application’s behavior [220, 127, 123]. These works are the
closest related works and a discussion that contrasts each of these works with our work
is presented in Section 3.3. Since our goals is a tool environment for applications written
in C or C++ which are unmanaged languages, a lot of the techniques presented in [220]
can not be transferred directly because they rely on e.g., the garbage collector. Hence, we
research how to obtain similar information and improve on [127] through filling in the
gaps. [123] uses Java and sampling techniques tailored for the Solaris OS. We aim at
a broader applicability and portability of our tools that additionally include the readings
of hardware performance counters. Thus, we believe that the presented tool environment
works for every language that supports calling functions written in the C programming
language and runs on architectures that TinySTM can be ported to. Moreover, we focus our
optimization efforts on practical aspects e.g., the transaction size and present a programmer
centric and systematic approach to guide the programmer to an efficient TM application.

69



70 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

This chapter introduces a framework for the Visualization and Optimization of TM Appli-
cations (VisOTMA). The framework and its components specifically targets applications
written in unmanaged languages such as C or C++. With VisOTMA the programmer
benefits from the visualization of the run time behavior and receives additional support
to design, rate, and optimize the transaction layout. The key feature of VisOTMA is
the visualization of the application’s behavior that uncovers bottlenecks (e.g., frequently
conflicting transactions) or pathological execution patterns. The visualization is of great
importance for experienced as well as untrained programmers to identify pathological
execution patterns. In the absence of these patterns, our framework additionally supports
the optimization of the application through refining the transaction size. Traditionally,
the transaction size is set intuitively by the programmer and is later refined through an
trial-and-error process. The programmer faces the following dilemma. On the one hand,
the transaction should be as long as possible. This exploits the optimistic concurrency
of transactions by leveraging the additional parallelism over lock-based approaches and
amortizes the costs for setting up a transaction through the available parallelism. On the
other hand, the costs for aborting a transaction should be small. Thus, the number of
memory locations which are affected by a rollback of the transaction must be small. As a
consequence the transaction size should be small. Without further knowledge the applica-
tion developer would have to implement two versions of the application: one with shorter,
one with longer transactions. Benchmarking these gives him or her the confidence that he
or she will choose the right one for production use. Our approach builds on a reference
application that correlates the conflict potential of the application and the transaction size.
Through profiling this reference application, a simple metric is established that helps to
direct the transaction length of the application that should be optimized. Moreover the
metric could also be used when designing a TM application so that the transaction size as
a function of contention becomes a separate constraint in the design process.

Our goal is a comprehensive toolchain for the Visualization and Optimization of TM
Applications (short VisOTMA). VisOTMA is supposed to support the programmer in
designing, rating and optimizing a TM application. Figure 6.1 presents an overview with all
components. The visualization shall highlight bottlenecks in the TM application. Therefore,
static (left hand side) and dynamic/run time information (middle) must be collected and
matched. To preserve this information, we employ static and dynamic instrumentation and
save the data in event logs. A post-processing step then finds dependencies between events.
These are likely to become bottlenecks at run time. A correlation of this data with the
source code of the application helps the programmer. The inexperienced programmer lacks
the knowledge of TM programming that an experienced programmer already acquired.
In our framework a metric (right hand side) substitutes this knowledge concerning the
transaction size and guides the untrained programmer. Some theoretical thoughts on
the performance-critical parameters of a transaction are the foundation for an example
reference TM application, called Parameterizable Synthetic TM Application (PSTMA).
Experimental results with this application show a profitable transaction length as a function
of contention. This application determines for each contention level the best size of a
transaction provided that other parameters of the TM application, e.g., synchronization
to computation ratio, match. In case of large discrepancies, another benchmark, e.g.,
CLOMP-TM, could substitute PSTMA. An algorithm for transforming these findings into
an optimized transaction layout follows. By calculating a simple metric, the untrained
programmer can exploit this knowledge to tune the transaction size.

70



6.1. A Toolchain for the Optimization Cycle of TM Applications 71

TM Application
Source Code

Binary Pro-
gram File libmalloc hook TracingTinySTM PSTMA

fil
e

na
m

e,
co

de
lin

e

st
at

ic
da

ta
st

ru
ct

ur
es

dy
na

m
ic

m
em

or
y

re
q.

T
X

na
l

ev
en

ts

m
et

ri
cs

fo
r

tr
an

sa
ct

io
n

si
ze

Static Dynamic/Run time Metric

. . .trace
files. . .

Paraver

Visualization and Optimization of TM Applications

Post Processing

1

Figure 6.1: Components and interplay in the TM Visualization and Optimization frame-
work.

6.1.1 Studying the Influence of Transaction Size on the Performance
The length of a transaction is of major importance when programming with any kind of
Transactional Memory system. For hardware transactional memory the programmer has to
respect the sizes of buffers and the duration of transactions. Thus, transactions are to be
kept relatively small. For hybrid TM systems the same applies, since the hardware part
is faster than the software part. For Software Transactional Memory there is no simple
scheme to determine the size of a transaction. On the one hand, the transaction should be
as long as possible. This exploits the optimistic concurrency of transactions by leveraging
the additional parallelism over lock-based approaches. Moreover the costs for setting
up a transaction will amortize through the available parallelism. On the other hand, the
costs for aborting a transaction should be small. Thus, the number of memory locations
which are affected by a rollback of the transaction must be small. As a consequence the
transaction size should be minimal. Trapped in this dilemma, the TM programmer neither
knows which argumentation to follow. Further, the size of a transaction also depends on
the characteristic of the application. Thus, a transaction with high conflict potential favors
a different size than one with low conflict potential. The programmer has to take this into
account as well.

In the following the crucial performance aspects of transactional execution are formalized
with a simple analytical model. From this model, we will derive an example reference
TM application. Through introducing the right parameters, this application enables to
determine a profitable transaction size experimentally.

Assume a multi-threaded synthetic application which continuously executes transactions
over a fixed period of time. The execution time t of a transaction depends on the number
of loads (ld), stores (st) and their respective duration (modelled through function t),
the contention level (cl) and some variable bookkeeping overheads. The contention
level expresses the likeliness of conflicting with a concurrently running transaction. The
function ab models the number and duration of actions that are necessary to abort the
transaction. This function depends on the number of loads and more importantly stores in
that transaction. Further, setting up a transaction and validating on commit are encapsulated
in the function penalty (pe) which again depends on the number of loads and stores.

ttxn = st ∗ t(st) + ld ∗ t(ld) + cl ∗ ab(st, ld) + pe(st, ld)

71



72 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

_ _ t r a n s a c t i o n {
f o r ( i =0 ; i < i t e r a t i o n s ; i ++) {

i f ( i == i t e r a t i o n s / 2 )
i f ( r and ( ) < cp )

s t m _ s t o r e (&cv , t i d ) ;
tmp = s t m _ lo a d (& a r r a y [ t i d ] [ i ] ) ;
tmp ++;
s t m _ s t o r e (& a r r a y [ t i d ] [ i ] , tmp ) ;

}
}
Listing 6.1: Algorithmic design of a parameterizable synthetic TM application (PSTMA).

Now, the executed transactions per second (Txns/s) of the application depends on the
average execution time of all transactions. From this simplistic analytical model, we derive
a parameterizable synthetic TM application (PSTMA) that enables us to determine some
key parameters experimentally. This has the advantage over using e.g., the EigenBench mi-
crobenchmark [94] that a means to steer contention is accessible over a separate parameter.
In EigenBench the probability of conflicts depends on a set of variables (W1, R1, A1). Thus,
our PSTMA approach is simpler and directly enables to steer contention. In particular, the
goal of PSTMA is to establish a correlation between the contention level cl, the transaction
size (ld + st) with regard to the amount of executed transactions (Txn/s). Compared
with other TM benchmarks described in this thesis such as CLOMP-TM, PSTMA directly
reflects the previous model and is even simpler. Consequently the results with PSTMA
are not as general as with CLOMP-TM. However, replacing PSTMA with CLOMP-TM in
case a TM application does not match PSTMA is a viable option. Listing 6.1 describes the
algorithm of the application (PSTMA).

Constructing the application as described in Listing 6.1 has the following advantages: first,
the variable generating contention cv and the number of loads and stores are decoupled1.
Therefore, we can use one application parameter to steer contention (called contention
parameter – short cp). The function rand() generates a conflict with a parameterized
probability. A different design choice would have been to partly overlap the memory
regions which are accessed through the loads and stores. However, this would have
introduced a secondary parameter that describes whether differently overlapping memory
regions influence the application’s throughput. Second, the number of loop iterations
decides on the length of a transaction. The number of transactional loads and stores are
fused in the parameter iterations. After processing half of the loads and stores of the
transaction, the contention variable (cv) is written. This resembles the occurrence of a
conflict after the half of the transactional loads and stores have been carried out. Through
this setup, equally many transactional loads and stores are executed before and after a
potential conflict is generated. Subsequently, this setup prefers neither early nor late
conflict detection schemes because the time that is spent with and without pending conflict
are equally long. These simplifying assumptions are necessary to reduce the complexity
and find an entry point to a structured optimization process.

Before elaborating on the findings of the execution of the PSTMA, we will sketch how to
exploit the acquired knowledge. This PSTMA experiment enables us to detect a beneficial
1array is indexed with thread id and herewith touches only thread-local memory.

72



6.1. A Toolchain for the Optimization Cycle of TM Applications 73

/ * I n d e p e n d e n t o f ATO * /
( 1 ) d e t e r m i n e xmax where TpPSTMA i s maximal .
( 2 ) f i n d i n t e r v a l s such t h a t
∀x ∈ [x1, x2] : TpPSTMA(x) > (1− p) ∗ TpPSTMA(xmax)
where p ∈ [0, 1] r e p r e s e n t s t h e a c c e p t a b l e d i s t a n c e from t h e Optimum .

/ * ATO s p e c i f i c s t e p s * /
( 3 ) d e t e r m i n e clATO, stATO, ldATO e x p e r i m e n t a l l y
( 4 ) i f ( (stATO + ldATO) ∈ [x1, x2] )

/ * ATO i s i n p−r e a c h of Tp_{max} * /
e l s e {

/ * found o p t i m i z a t i o n p o t e n t i a l * /
i f ( ( s t _ {ATO} + l d _ {ATO} ) < x1 )

/ / t r a n s a c t i o n s a r e t o s m a l l
i f ( ( s t _ {ATO} + l d _ {ATO} ) > x2 ) ;

/ / t r a n s a c t i o n s a r e t o l a r g e
}

Listing 6.2: Proposed optimization algorithm for TM applications based on PSTMA.

transaction length for a given contention level. The optimization algorithm is presented in
Listing 6.2 where ATO is short for Application to Optimize. Thus, through determining
the contention level of the ATO experimentally, our PSTMA application enables to find
a profitable transaction size. The idea is to change the transaction size of the ATO so
that it is closer to the optimal value of the PSTMA of the same contention level. An
example of applying this algorithm to the transactified fluidanimate benchmark is
presented in Section 6.2.1. When comparing the presumably optimal transaction size
of the PSTMA, with the actual transaction size in the ATO, the programmer may take
the following counter measures. In case the transactions size is to small, the following
counter measures are suited if they are applicable: fuse two neighboring transactions to
one, unroll embracing loop such that two transactions can be fused. If the transactions size
is to large, the transaction needs to be split. However, this has an impact on the semantic
of the transaction. The resulting two transactions come at the cost of having a different
atomicity as the previous one. Thus, the programmer needs to think about the side effects
of publishing the intermediate results of the first transaction.

After explaining the theoretical thoughts about the design of the application and how to
exploit the results, the findings of the experiments with the PSTMA follow. The throughput
in Txn/s is depicted in Figure 6.2. Reported values are averages over 30 runs on ExpX5670
to account for variations in execution times. For some iterations a noticeable drop in the
throughput is observable. These drops correlate with an occasionally higher abort rate
which may be due to STM internal increase of the read or write set sizes because these
aborts also appear with a contention level of 0.

More importantly, a higher throughput for smaller transactions becomes obvious. This is a
logical consequence of the fact that smaller transactions with fewer loads and stores are
executed and rolled back faster than longer ones. Further, due to the shorter run times, a
conflict with other transactions is less likely to manifest. However, this insight is rather
obvious and does not help a programmer when designing a TM application because of the

73



74 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

 0
 2000

 4000
 6000

 8000
 10000  0

 0.2

 0.4

 0.6

 0.8

 1

0.0⋅10
0

5.0⋅10
5

1.0⋅10
6

1.5⋅10
6

2.0⋅10
6

2.5⋅10
6

3.0⋅10
6

[T
x

n
s/

s]

[iterations]
[contention level]

[T
x

n
s/

s]

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

Figure 6.2: Throughput in Txn/s with PSTMA depending on the contention level and the
number of loop iterations inside transactions on ExpX5670.

following. Assuming a problem with fixed size, the algorithmic solution requires a fixed
amount of load and store operations to shared memory. A programmer needs to know how
to encapsulate these loads and stores in transactions such that the resulting program runs
efficiently. Therefore, the amount of loads and stores inside a transaction with respect to the
achievable throughput in Txn/s needs to be studied. With this information adjusting the
transaction layout is feasible. Since the PSTMA runs for a fixed period of time, a throughput
of ld+st

s
satisfies the before mentioned criteria. Through the construction of the PSTMA,

this metric is calculated according to: (ld+st)
s

= ld+st
Txn
∗ Txns

s
= 2 ∗ iterations ∗ Txns

s
. Here,

the conditional store to the contention variable is omitted for clarity. Figure 6.3(a) shows
the results of calculating the ld+st

s
. A brighter color indicates a higher throughput.

In Figure 6.3(a) the relative difference due to the changes of the contention level are difficult
to assess. Thus, we derive a general performance trend that expresses the correlation of
the throughput (for loads and stores) and the contention level. Therefore we normalize
to the highest achievable throughput for a particular contention level. This is calculated
according to: ∀i :

Tpcli (ld,st)

Tpmax,cli
(ld,st)

.

The results in Figure 6.3(b) show that the highest throughput per load and store (bright
color) depends on the contention level. Without contention the value ranges around 1 000
and 4 000 iterations and rises to 6 000 to 8 000 for a contention level of 1. This suggests that
a transaction size should contain between 1 000 and 8 000 loads and stores. These findings
attenuate the intuitive explanation that long transactions in a scenario with high contention
are not profitable due to the amount of operations that have to be reverted. Nevertheless, it is
still wise to avoid high contention through a smart design of the application to avoid wasted
work through aborted transactions. For PSTMA the figure shows that long transactions in
a scenario with high contention yield the higher throughput of load and store operations.
Note that this observation applies to the use of transactions in a simplified scenario as
with PSTMA. Here, contention is always generated with the same variable and TinySTM
supports that transactions wait for a lock that is taken by another transaction as long as the
wait does not cause a circular dependency when using commit-time locking. The results
are generated with encounter-time locking and a write-through strategy, but this discussion
shows that PSTMA only covers a special case in the processing of transactions that can
not be generalized easily. Further, the experimental setup with TinySTM influences the
performance and should be identical. In the real world, the programmer will also have
the choice to use other synchronization mechanisms to avoid the high costs for rollbacks.

74



6.1. A Toolchain for the Optimization Cycle of TM Applications 75

 0
 2000

 4000
 6000

 8000
 10000  0

 0.2

 0.4

 0.6

 0.8

 1

0.0⋅10
01.0⋅10
82.0⋅10
83.0⋅10
84.0⋅10
85.0⋅10
86.0⋅10
87.0⋅10
88.0⋅10
89.0⋅10
81.0⋅10
9

[(
ld

 +
 s

t)
/s

]

[iterations]
[contention level]

[(
ld

 +
 s

t)
/s

]

 0
 1e+08
 2e+08
 3e+08
 4e+08
 5e+08
 6e+08
 7e+08
 8e+08
 9e+08
 1e+09

(a) Loads and stores per second as a metric for efficient transactional execution.

 0
 2000

 4000
 6000

 8000
 10000  0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

N
o

rm
a
li

z
e
d

[iterations]

[contention level]

N
o

rm
a
li

z
e
d

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(b) Normalized loads and stores to highest throughput in that contention level.

Figure 6.3: Throughput in transactional loads and stores per second. Normalizing these
loads and stores reveals whether a given transaction size is profitable for a
particular contention level.

Moreover, the memory access pattern with PSTMA is uniform to all threads with just
one contention variable so that a more complex memory access pattern should also be
considered to mimic the application under test. The use of CLOMP-TM, introduced later in
Section 8.3.3, is appropriate in cases where the TM application is not sufficiently modeled
through PSTMA or to achieve a comparison with other synchronization mechanims. Often
the programmer is not able to apply this knowledge right away, but will be confronted
with the task of optimizing a previously written application. Thus, before turning the
theoretical thoughts of this section into an optimized TM application, the programmer has
to determine the actual application’s behavior.

6.1.2 Retrieving TM Events and Memory Requests

The important step before optimizing or visualizing a TM application is to capture its run
time behavior. Thus, the application’s TM events and memory requests need to be tracked
at run time and be preserved. This thesis covers the step of capturing the application’s
TM events combined with measurements of the intrusiveness of the tracing machinery in
Chapter 5. To retrieve the transactional loads, stores, aborts and commits, we rely on event
traces generated at run time. These transactional events are matched with the readings of
the hardware performance counters with PAPI. This enables to quantify the pressure that

75



76 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

# Format :
# p t h r e a d _ s e l f , s i z e , v i r t u a l a d d r e s s , i p o f c a l l e r , TSC
139758356580096:336 :0 x2cba010 : 0 x401c93 :2828473027711794
. . .

Listing 6.3: Example illustrating trace format for logging dynamic memory requests with
malloc.

specific STM functions put on particular architectural resources. Further, we employ a
technique for logging memory management requests without modifications of the source
code. Only the combination of both enables correlating an STM-specific event with an
address and a particular data structure which has been allocated dynamically. This is a
prerequisite for a comprehensive optimization of the application.

Statically Allocated Memory

The interesting statically allocated memory comprises i.e. global variables and small
arrays. The memory addresses are assigned by the linker. Thus, the program binary already
contains all necessary information. For extracting these information, the Linux environment
provides a tool called objdump. However, other operating systems provide similar tools.
Thus, this does not prevent the adoption of the presented techniques for other operating
systems. Objdump provides the name of the variable and the corresponding address
when the application is compiled with debug symbols. Other tools (in our case grep)
process the output to search for a particular address from the TM trace files. Herewith the
connection between the statically allocated memory and the TM event traces is established.

Capturing Dynamic Memory Requests

In order to obtain a complete view of the memory accesses of a TM application, accesses
to dynamically allocated memory must be tracked as well. For capturing these dynamic
memory requests, we rely on a library called libmalloc_hook. Tao et al. proposed this
library in [199]. More specifically, this library intercepts calls to malloc and free by
means of the LD_PRELOAD mechanism. This very same mechanism has been exploited
for dynamic instrumentation purposes in the context of the DynamoRIO project [22]. This
mechanism enables to call a self-made library prior to calling the original one. Thus, we
extract the following information for each call to malloc: the thread identifier returned by
pthread_self, the size of the allocated memory in bytes, the virtual start address, the
value of the time stamp/cycle counter, and the instruction pointer of the caller. Listing 6.3
illustrates an example of an invocation of malloc and the trace format. For free this is
reduced to the virtual address, the time stamp counter (TSC), and the instruction pointer of
the caller as is illustrated in Listing 6.4.

We correlate the obtained information with other information about TM events as follows.
With the instruction pointer of the caller, the code location of a dynamic memory request
is correlated with the file and line number by using the addr2line tool that relies
on debugging symbols in the binary. The file and line number are required to identify
the name of the data structure related to the recorded virtual address. The time stamp
counter enables to merge the memory event traces with the traces of the TM events and
establish a correct ordering of events for each thread. This is the prerequisite to incorporate

76



6.1. A Toolchain for the Optimization Cycle of TM Applications 77

# Format :
# p t h r e a d _ s e l f , v i r t u a l a d d r e s s , i n s t r u c t i o n p o i n t e r , TSC
139758356580096:0 x2cba010 : 0 x402907 :2828473087443556
. . .

Listing 6.4: Example illustrating trace format for logging dynamic memory requests with
free.

memory management information in the visualization process. Moreover, the information
is also required to generate overall statistics on the memory allocated and freed during a
program run, identify the point in time when it happened and, thus, reveal an inefficient
use of memory management routines of the application. The library libmalloc_hook
also records calls from the STM and other system libraries. This additionally enables
investigating the memory requests of the STM library under the condition that these are
also compiled with debugging symbols.

6.1.3 Visualization with Paraver

Paraver is a visualization tool that is developed at the Barcelona Supercomputing Center
(BSC) former at the CEPBA-UPC. The power of Paraver has been demonstrated in [30]
where the Sweep3D benchmark was optimized. Further, Paraver has been extended with an
interface to the CAPO tool. CAPO supports the programmer to parallelize the code [107].
However, Paraver is powerful and many more applications of it can be found.

For the visualization of the transactional memory application behavior, the following
attributes were the dominant ones: customizable semantic of events, visualization of large
event traces, the possibility to build derived metrics, and the layered approach. The latter
enables to write filters that enable/disable the visualization of selected events. This helps
to focus the programmer’s attention (e.g., on communication patterns). With transactional
memory the communication is implicit through reading or writing shared memory locations.
In contrast to explicit communication through dedicated primitives (e.g., in the context
of MPI), these implicit communication patterns need to be extracted from the TM event
traces. The necessary transformations and the extraction of communication patterns is
described in the following two paragraphs.

Transformation of Data

The TM event trace files contain an event log of all transactional events of a specific thread.
Thus, all events happened in-order and are recorded accordingly. Specific events (e.g.,
start, commit, abort) are logged together with a time stamp (TSC). Each thread writes to
a separate trace file. Paraver visualizes one trace file that contains the information of all
threads. Thus, a ParaverConvert tool needs to merge and process these trace files. Further,
the two formats do not compose canonically because Paraver distinguishes between states
and events. States are defined through a duration. Consequently states have a start and an
end time stamp. Therefore, the TM events need to be mapped to the states and events of
Paraver. Mapping all traced TM events onto Paraver events would lead to a non-informative
visualization because events are displayed as small flags in the horizontal time line view.
Thus, we decided to fuse the start and the outcome of a transaction in one state. The
state itself depends on the outcome of the transaction. Thus, only commit and abort states

77



78 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

T1

T2
0 ns 1.004.493.078 ns

Figure 6.4: Example of a TM application visualized with Paraver. Bank runs with 2 threads
on ExpX5670.

s e t
g e t _ a d d r _ s e t ( i , j ) {

/ / d e t e r m i n e o v e r l a p o f t r a n s a c t i o n s
i f (Si >= Sj )

i f (Si < Ej )
r e t u r n c o n f _ a d d r _ s e t ( i , j ) ;

i f (Sj >= Si )
i f (Sj < Ei )

r e t u r n c o n f _ a d d r _ s e t ( i , j ) ;
r e t u r n ∅

}

s e t
c o n f _ a d d r _ s e t ( i , j ) {

s e t ret = ∅ ;
∀a ∈ Li∃b ∈ Wj : (a = b)⇒ ret = ret ∪ a;
∀a ∈ Lj∃b ∈ Wi : (a = b)⇒ ret = ret ∪ a;
∀a ∈ Wi∃b ∈ Wj : (a = b)⇒ ret = ret ∪ a;
r e t u r n ret ;

}
Listing 6.5: Detecting communication patterns between transactions.

exist. These are displayed as fully colored bars. ParaverConvert maps transactional load
and store events to newly defined Paraver TM load and store events. Figure 6.4 shows
an example of a TM application (a bank application) run with 2 threads on ExpX5670
that is visualized with Paraver. On the y-axis two threads are displayed. Both threads are
executing transactions concurrently (apart from the gap in T1). The concurrent execution
leads to conflicts between the threads and these lead to an abort of transactions. Aborted
transactions are colored red. Transactions that committed successfully are green.

Detecting Contention in Transactions

In the following we present the algorithm to extract the communication patterns between
transactions that has been implemented in the ParaverConvert tool. Let Si be the start point
of txni and Ei be the end point of txni. E manifests either as commit or as abort event.
Let Li be the set of memory addresses touched by a stm_load and Wi represents the set of
memory addresses of a stm_write in txni. Let Cij be the set of conflicting addresses of
txni and txnj . The algorithm to detect conflict potential between two transactions looks
as indicated in Listing 6.5. First, the time stamps are checked whether both transactions
overlap. Otherwise an empty set is returned. If the transactions overlap, the read and write

78



6.1. A Toolchain for the Optimization Cycle of TM Applications 79

T1

T2
177.125.855 ns 177.612.063 ns

Figure 6.5: Dependencies between transactional accesses of two threads visualized with
Paraver.

sets are compared whether a conflict may occur. This requires to check the read set of txni
against the write set of txnj and vice versa. As a last step the write sets of both transactions
are compared. The algorithm is similar to the one presented in [220]. Moreover, this
algorithm also considers transactions that overlap partially and did not actually conflict
during the traced run. This is enhanced by adding a sliding window that replaces the check
for the overlapping transactions. When setting the sliding window to two times the size of
the longest transaction, the amount of compared transactions increases significantly. Thus,
the algorithm is capable of accounting for some amount of variability during the execution
and is more general than previous ones.

By regarding all addresses in the read and write sets, the programmer does not first fix the
address that is responsible for a specific conflict only to find out that the next one needs
to be fixed as well [220]. Also this point has been made previously in the context of a
managed language, it holds for our case as well. When regarding all addresses that may
lead to a conflict the programmer can revise the memory layout to avoid these conflicts.
For the integration with Paraver, the pass through the event traces emits the discovered
dependencies as communication events. The affected addresses and their points in time are
encoded in this event. These events are derived from the Paraver MPI send and receive
events. Similar to them, the newly generated events express the dependency between
two transactions similar to expressing the dependency between two MPI tasks. However,
extracting these communication events from the trace files is more cumbersome due to the
implicit communication between the threads.

The communication patterns in transactions can now be visualized with Paraver. Figure 6.5
shows an example TM application with the Paraver filter for communication events enabled.
In particular yellow lines connect the transactions where an address may cause a conflict
between these transactions. When clicking on one of the involved transactions, information
about the events of that transaction are shown in a separate window. Thus, the timely
occurrence of these events as well as the memory address are listed. This information
is correlated with the dynamically and statically allocated data structures. Then, the
programmer knows which data causes contention and may adjust the memory layout.

Statistics on Transactional Execution

Of great importance for the programmer is a well-defined set of statistics enabling to
find the hot spots. In our particular case the generation of statistics is integrated in the
transcoding of the TM event traces. This has the advantage that the events are read
anyway and accumulating a few counters when encountering an event does not cost much.
Thus, the statistics come essentially for free during the post processing step. Of great
importance are overview statistics that reveal the number of transactional events executed
in total. These give a first impression whether the program behaves as expected. If the
number of executed transactions is high and the abort rate very low it will probably not

79



80 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

Gl ob a l S t a t i s t i c s :
T r a n s a c t i o n s : 951 Abor t : 272 ( 0 . 2 8 6 ) Commit : 679 ( 0 . 7 1 4 )
Commit : Loads = 679000 S t o r e s = 679438
Abor t : Loads = 136000 S t o r e s = 136272
Time : Commit = 97679447 ( 0 . 8 3 0 )

Abor t = 19976802 ( 0 . 1 7 0 )

Listing 6.6: Global statistics on transactional execution with number of aborts, commits
and impact on the global execution of the application.

pay off to optimize the application. More important for the individual optimizations are
the thread specific statistics. The global thread view summarizes the transactional events
of the threads. If one thread executes substantially more transactions than another one this
indicates a load balancing problem. In case one threads experiences significantly more
aborts than others, the relationship between transactions (who aborts whom) should be
investigated. Listing 6.6 holds an example of the global statistics. 951 transaction have
been attempted. Other publications such as [123] refer to this as physical transactions.
From these 951 attempts 679 committed successfully whereas 272 aborted and have been
executed again. The committing transactions carried out 679 000 transactional loads and
679 438 stores whereas the aborting transactions 136 000 loads and 136 272 stores. The
Time entry reports the respective time in nanoseconds for the execution of committing and
aborting transactions.

The global statistic is important to gain an overview but may hide the fact that one
transaction experiences or causes most of the aborts. For closer investigations, a per thread
statistic contains the highest level of detail. Here, each transaction is listed with the amount
of loads and stores carried out. These are divided into aborts and commits such that it is
possible to tell where the most work and time has been wasted. Thus, all loads or stores
that had to be undone because of an abort are listed here. This reveals the transaction
with the most potential for optimization. A record for an example transaction is shown in
Listing 6.7. The local and global values show the share of commits or aborts with respect
to all attempts of this transaction and all transactions throughout the program run. For
example, aborting this transaction accounts for 14 % of the global transactions but causes
only 8 % wasted work. This indicates that other transactions cause more wasted work
although aborting less often and, hence, must be larger.

Re tu rn Address : 40164 d
T r a n s a c t i o n s : 481 ( g l o b a l : 951)
Abor t : 136 ( g l o b a l : 0 . 143 l o c a l : 0 . 2 8 3 )
Commit : 345 ( g l o b a l : 0 . 363 l o c a l : 0 . 7 1 7 )
Abor t : Loads = 68000 S t o r e s = 68136
Commit : Loads = 345000 S t o r e s = 345224
Time : Abor t = 9792472 ( g l o b a l : 0 . 083 l o c a l : 0 . 1 6 7 )

Commit = 48974513 ( g l o b a l : 0 . 416 l o c a l : 0 . 8 3 3 )

Listing 6.7: Per transaction statistics with number of aborts, commits and impact on the
global execution of the application.

80



6.1. A Toolchain for the Optimization Cycle of TM Applications 81

# Format : a d d r e s s −> number o f c o n f l i c t s
139749511662944 −> 101
139749511662688 −> 111
139749511662800 −> 117
139749511665392 −> 118

Listing 6.8: Sorted list of addresses with number of contentious accesses.

A complementary statistic contains the memory address and the number of conflicts it
has been involved in. These statistic is also generated for each thread separately and also
distinguishes between read and write accesses. The sorted list reveals the address with
the most dependencies (for read or writes of other transactions) to the programmer. An
example is shown in Listing 6.8.

This also helps to focus the optimization to the frequently conflicting addresses. The
techniques described in Section 6.1.2 and Section 6.1.2 determine the corresponding
variable or memory region.

In the programming language C, we need to capture the context of the start and the end
of a transaction. This is difficult because TM events are logged inside the STM library
and the STM API should not change. Inside the library the context, from which the STM
function has been called, is lost and we can not work around this by passing additional
parameters to the function. Thus, we need to reconstruct the context from where the
TM application called the STM library. We solve this by means of the return address.
This return address is additionally logged at transactional events such as start, abort,
commit through an inline assembly instruction. With the return address of the begin of the
transaction the following loads and stores can be assigned to that particular transaction.
Moreover, the tool addr2line enables to map the return address to the code line of the
source code. Thus, a full reconstruction of the executed transaction from the TM event
traces is possible. However, a similar lightweight solution for the complete call stack is
still under construction. In terms of portability and usability, the best candidate so far is the
backtrace function implemented in libc but this adds significant overhead compared
to a single assembly instruction that we currently use.

As an important feature the VisOTMA framework integrates the reading of hardware
performance counters. The PAPI interface is used to read performance counters at a
transaction granularity as also shown in Section 5.1.1. The TracingTinySTM sets the type
of the PAPI events of interest to the programmer at compile time. These events are read
on transaction start, commit, or abort emitted as separate event. Hence, the difference
between the commit or abort and start values correlates with the amount of events generated
through the execution of the transaction. These events help the programmer to determine
the effective amount of wasted work when an transaction aborts more precisely. So far
the wasted work is estimated based on the size of the read and write sets. This is a good
indicator but does not cover expensive floating point operations that have been carried
out on the loaded data. Hence, our approach improves upon the state-of-the-art through
enabling the programmer to measure the amount and type of instructions that have to be
undone. E.g. when measuring instructions retired with the PAPI counters, these event
counts also include the overheads introduced through the use of an STM system and, hence,
represent the true amount of work that has been wasted in case the transaction aborts and
not just the instructions present in the transaction.

81



82 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

cp ApT [min,max] Txn size
0.0 0.097 [0.079, 0.115] 3 500
0.1 0.122 [0.101, 0.148] 3 750
0.2 0.182 [0.160, 0.208] 3 250
0.3 0.276 [0.251, 0.315] 4 000
0.4 0.402 [0.376, 0.448] 3 750
0.5 0.575 [0.540, 0.630] 1 000
0.6 0.814 [0.770, 0.895] 3 750
0.7 1.154 [1.093, 1.262] 4 000
0.8 1.700 [1.603, 1.898] 4 000
0.9 2.677 [2.519, 2.921] 5 000
1.0 5.144 [4.843, 5.665] 7 500

Table 6.1: Relation of contention parameter and ApT .

6.2 Revealing Optimization Potential
The STM library, we are using throughout the experiments is TinySTM [62]. In the
following, we demonstrate how we transactify and optimize a real-world application
from the PARSEC benchmarks suite with the VisOTMA framework. Here, the focus is
on optimizing the size of the transaction. Then, we demonstrate the usefulness of the
visualization component when detecting pathological TM execution patterns. In particular
the StarvingElder and FriendlyFire pattern reveal the strength of the visualization in
highlighting the bottlenecks.

For our experiments all TM applications run alone and consecutively on the Westmere
system ExpX5670 (cf. to Section 4.3). The tracing functionality is implemented inside the
TinySTM (version 0.9.9) [62] as described in Section 5.1. All reported execution times are
averages over 30 runs to compensate for variations in the execution.

6.2.1 Transaction Size

Comparing the transaction length of the PSTMA and a transactional benchmarks is straight-
forward. A comparison of the read and written memory locations of the respective applica-
tions yields the desired results. When identifying the contention level of an application, the
course of action is not as obvious. The PSTMA comes with the parameter cp to generate
contention. However, this can not be compared directly to the statistics gathered from
the transactional execution of a STAMP application [24]. In these cases contention is not
generated artificially. Thus, a metric that expresses the level of contention more meaningful
is desired. Therefore, we relate the abort rate (Aborts/s) where s is short for seconds
to the throughput in transactions (Txns/s) such that Aborts/Txn, as from now called
ApT results. This reflects how many aborts are carried out on average for a committed
transaction. This metric is derived from the trace data of PSTMA and STAMP equally
well. Further, the metric reflects the contention level since contention leads to aborted
transactions.

While PSTMA has specific parameters to define the TM characteristic, real world TM
applications are defined through other problem related parameters. As a consequence
the programmer needs to match the measured transactional characteristics with the ones
from the PSTMA. The metric that is representative and straightforwardly captured for an

82



6.2. Revealing Optimization Potential 83

i f ( b o r d e r [ i n d e x ] ) {
_ _ t r a n s a c t i o n {

c e l l . a [ j ] += acc ;
}

}
e l s e {

c e l l . a [ j ] += acc ;
}

i f ( b o r d e r [ indexNe igh ] ) {
_ _ t r a n s a c t i o n {

n e i g h . a [ i p a r N e i g h ] −= acc ;
}

}
e l s e {

n e i g h . a [ i p a r N e i g h ] −= acc ;
}

Listing 6.9: Representative code piece of a transactional version of fluidanimate with
small Txns.

application is ApT . Table 6.1 illustrates the mapping of the transactional characteristics of
PSTMA to the ApT metric. The left column contains the contention parameter of PSTMA.
The corresponding ApT value (which is an average over all runs and iterations) is listed
in the middle column. Due to the variation in run time, the ApT value varies. In order to
facilitate the matching of application and PSTMA, we also report the min and max values
as interval in the right column. This interval serves as entry point for the metric ApT of
the TM application. Comparing the ApT value of a program with the intervals enables to
rate and find the best assumed transaction size for that application.

In the following, we illustrate the details of this simple optimization as described in
Listing 6.2. We transactify and optimize the PARSEC benchmark fluidanimate [35,
142]. For a full evaluation and a description of the benchmark, please refer to Section 6.2.3.
We start by replacing the fine-grained locks with transactions. Further, STM initialization
functions are added and the lock array is removed. This yields our simple first version, in
the following called small Txns. A representative piece of code is listed in Listing 6.9.

We run the small Txns version of fluidanimate with the statistical module. This
provides simple statistics of this run almost for free: Txns = 9 347 885, Aborts = 10 004.

Then the ApTsmall Txns = 10 004
9 347 885

≈ 0.0011 is computed. Comparing ApTsmall Txns with
the results of the execution of PSTMA (see Table 6.1) yields that the first line with cp = 0
matches best. The most profitable transaction sizes for PSTMA with cp = 0 is 3 500. A
comparison with the actual transaction length reveals optimization potential. Thus, the
transactions must be enlarged without adding unnecessary instrumentation (also known as
over instrumentation).

Optimizing the small Txns version of fluidanimate is achieved by carefully inspecting
the source code. The conditions in Listing 6.9 can be collapsed as is illustrated in List-
ing 6.10. In the case that both conditions are true, the executed transaction contains twice

83



84 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

i f ( b o r d e r [ i n d e x ] && b o r d e r [ indexNe igh ] ) {
/ * long t r a n s a c t i o n * /
_ _ t r a n s a c t i o n {

c e l l . a [ j ] += acc ;
n e i g h . a [ i p a r N e i g h ] −= acc ;

}

i f ( ! b o r d e r [ i n d e x ] && b o r d e r [ indexNe igh ] ) {
c e l l . a [ j ] += acc ;
_ _ t r a n s a c t i o n {

n e i g h . a [ i p a r N e i g h ] −= acc ;
}

}

i f ( b o r d e r [ i n d e x ] && ! b o r d e r [ indexNe igh ] ) {
_ _ t r a n s a c t i o n {

c e l l . a [ j ] += acc ;
}
n e i g h . a [ i p a r N e i g h ] −= acc ;

}

i f ( ! b o r d e r [ i n d e x ] && ! b o r d e r [ indexNe igh ] ) {
c e l l . a [ j ] += acc ;
n e i g h . a [ i p a r N e i g h ] −= acc ;

}
Listing 6.10: Transactified fluidanimate with the long Txns version.

as much transactional accesses as the ones executed before. The name of this optimized
version is long Txns. The later evaluation (in Section 6.2.3) will show that this optimization
not only decreases the run time of the TM version but also increases the scalability for
small as well as large input data sets.

6.2.2 Visualization of Pathological TM Cases
In the following the VisOTMA framework highlights pathological TM application behavior.
We generate these cases with the EigenBench microbenchmark [94] which is inspired
by the pathological behavior described in [17]. We select the two pathological cases to
demonstrate the strength of our VisOTMA tool: StarvingElder and FriendlyFire.

StarvingElder – Figure 6.6(a) depicts an overview of a full program run exercising
the StarvingElder pattern. Paraver visualizes the concurrently running threads in a time
line view. Each transaction executed by a thread is colored according to the outcome
of that transaction. A green transaction represents a successful commit whereas a red
transaction has been aborted. Thus, the relationship between the transactions in the
StarvingElder pattern becomes clear at first sight: T8 aborts as long as other transactions
execute. Additionally, it is almost the only thread experiencing aborts. However, from
this view the length of the transactions can not be determined. To see these important
details, the programmer simply zooms in and yields Figure 6.6(b). This figure shows that

84



6.2. Revealing Optimization Potential 85

T8

T7

T6

T5

T4

T3

T2

T1

0 ns 95.442.610 ns

(a) Overview.

T8
T7
T6
T5
T4
T3
T2
T1

23.877.965 ns 25.138.658 ns

(b) Zoomed.

Figure 6.6: Paraver visualizing the StarvingElder pattern generated with the EigenBench
microbenchmark.

small transactions repeatedly abort the long running transactions of T8. Moreover, small
transactions are also aborted occasionally but due to their size, the penalty of a rollback
is smaller. In order to investigate the statistics and the load/store events the programmer
simply marks the transaction in the visualization. The statistics support the previous
impression by showing that the long transaction aborts 2 800 times but contributes only
21 % to the total number of aborts in the program. Thus, aborts of small transactions also
account for a large number of aborts. A possible optimization would be to balance the
transaction sizes of all threads and make the transactions equally long. This would prevent
that one long running transaction is aborted by short running ones, can not make progress
due to the many rollbacks, and “starves”.

FriendlyFire – The FriendlyFire pattern consists of two (or potentially more transactions)
that continuously conflict and abort each other. Figure 6.7 visualizes the communication
pattern of this two transactions and reveals the conflicting addresses. By simply clicking the
yellow colored dependencies between transactions, the programmer identifies the source of
the conflicts. The involved address is then correlated with either statically or dynamically
allocated memory and a source code location. Then, appropriate counter measures have
to be applied. A solution in this case can be to encapsulate the conflicting addresses in
closely nested transactions. Closed nesting supports partial rollbacks of an encapsulated
transaction which must be supported by the STM run time system. In case the STM does
not support it, the programmer may decide to split the transactions to minimize the penalty
on rollbacks or selectively revert to conventional locks for the highly contended addresses.
Whichever of the techniques the programmer chooses, each of the presented techniques
requires the identification of the source of conflicts that is enabled through VisOTMA.

T1

T2
114.866.333 ns123.177.979 ns

Figure 6.7: Zoomed in dependencies of the FriendlyFire pattern.

85



86 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

6.2.3 Evaluation of a Transactified PARSEC Benchmark

PARSEC represents the Princeton Application Repository for Shared-Memory Computers
that comprises parallel programs suited to rate the performance of multiprocessor machines.
PARSEC in version 2.1 comprises 10 applications, 3 kernels, 9 libraries, and 3 tools [35].
From this variety we select the application fluidanimate. As the name suggests, it
simulates fluid flows with the smoothed particle hydrodynamics method. This method is
used to solve the Navier-Stokes equations as described in [142]. The fluid is modelled with
particles interacting with each other. Due to the short range of these interactions, it uses a
grid with fixed distances. As a result the detection of interacting particles is faster. First,
the algorithm computes the density of the fluid at each position of a particle. Second, the
acceleration of each particle is computed according to the forces imposed by gravity, fluid
pressure, and fluid viscosity. Third, collision detection with a box is performed that results
in collision response based on the penalty method. Fourth, the numerical time integration
computes the new position and velocity for each particle from the previously calculated
acceleration.

The parallel implementation of fluidanimate uses Pthreads and C++. Synchronization
is originally achieved by means of fine-grained locking (FGL). The grid is partitioned into
subgrids of equal size. Each of these is assigned to a thread. Only accesses to adjacent
cells at the subgrid boundary need to by synchronized among threads. Thus, these are
guarded with fine-grain locks. Updates of particles not in the subgrid boundary cells do
not need locks. In addition to the FGL variant, we also implemented a version with one
single global lock (SGL) and two TM variants: called small and long Txns. The small Txns
replaces all lock and unlock operations of the array of mutexes with a transaction. This
results in transaction with one transactional read and one transactional write operation.2

Listing 6.9 demonstrates a representative code snippet with the small Txns. Two if clauses
separate the synchronized (in this case transactional) accesses from normal accesses. In
the version with long Txns the conditions are refactored as shown in Listing 6.10. In case
that both conditions are true, one transaction contains twice as much transactional accesses
as before.

The performance results of this optimization are significant. Figure 6.8(a) presents the
execution time for the simlarge input data set and shows that long Txns outperforms small
Txns for 8 and 16 threads. The speedup due to this simple yet effective optimization is
1.30 for 8 threads and 1.43 for 16 threads on ExpX5670. When looking at the speedup
over the execution of the respective single thread in Figure 6.8(b), the long Txns version
again shows a better speedup than small Txns. To verify these findings, we execute the
same versions with the native input data set. Here, the results of the simlarge runs are
approved: long Txns yields a speedup of 1.29 for 8 and 1.39 for 16 threads over small Txns
(cf. Figure 6.8(c)). This shows as a speedup that slightly increases from 8 to 16 threads for
long Txns and decreases for small transactions (see Figure 6.8(d)). From a performance
perspective the fine-grained locking version is best, but also has the highest complexity for
the programmer. For a fair comparison from a programmer’s perspective, a single global
lock is comparable to TM. For fluidanimate both TM variants outperform SGL for 8
and 16 threads. For small thread counts the inherent overhead of Software Transactional
Memory (which has been quantified in [27]) dominates the performance. However, the

2In case the transaction operates on the data type Vec3, the transactional loads and stores are carried out
separately for each dimension.

86



6.2. Revealing Optimization Potential 87

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  4  8  16

Ti
m

e 
[s

]

#Threads

FGL
SGL

small Txns
long Txns

(a) Execution time of fluidanimate with input
data set simlarge.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2  4  8  16

Sp
ee

du
p 

ov
er

 s
in

gl
e 

th
re

ad

#Threads

FGL
SGL

small Txns
long Txns

(b) fluidanimate normalized to respective sin-
gle thread execution time.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 1  2  4  8  16

Ti
m

e 
[s

]

#Threads

FGL
SGL

small Txns
long Txns

(c) Execution time of fluidanimate with input
data set native.

 1

 2

 3

 4

 5

 6

 7

 8

 2  4  8  16

Sp
ee

du
p 

ov
er

 s
in

gl
e 

th
re

ad

#Threads

FGL
SGL

small Txns
long Txns

(d) fluidanimate normalized to respective sin-
gle thread execution time.

Figure 6.8: Comparing the execution time of a transactified PARSEC benchmark with
small and long transactions on ExpX5670.

87



88 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

Phase 1 Phase 2

a) Phased behavior:

b) Starvation of threads 3 to 7. c) Killer transaction (thread 7). d) Repetitive aborts (conflicts not shown).

Legend: HTM / STM Committed TX STM Aborted TX HTM Aborted TX Conflict (aborter to aborted)

Figure 6.9: Intruder benchmark from the STAMP suite [24] executed on the TMbox
system with 8 threads. Intruder exhibits two execution phases, a starvation
pattern involving threads 3, 5, 6, and 7, a killer transaction executed by thread
7 and repetitive aborts. Figure is taken from [189].

proposed TM optimization moving from short to longer transactions while having low
contention has been beneficial and shows a far better scalability.

6.2.4 Optimization of Hybrid TM with TMbox

In order to integrate the event traces of the hybrid TM system TMbox in the VisOTMA
framework, a simple tool, called Bus Event Converter, reconstructs the original order of
TM states from the event logs (cf. to Section 5.2). Moreover, Bus Event Converter gathers
aggregate statistics of the TM execution and emits these and the original TM states as a
Paraver trace file to enable visualization of the application’s behavior [189]. Especially
transitions from hardware to software TM execution are of interest for the performance of
the execution with hybrid TM.

Figure 6.9 illustrates the execution of the original intruder benchmark, a network
intrusion detection application, from the STAMP suite with 8 threads on the TMbox
architecture. The visualization reveals two execution phases of the benchmark.

First, all threads assemble the packets for the later detection. This phase is characterized
through a higher rate of transactions that corresponds with more transactions being executed
in parallel.

During the second phase, intruder performs the detection of attacks. The transactions
are larger and conflict more often. Further, the visualization also reveals pathological TM
executions [17]. The beginning of the execution exhibits a starvation pattern: threads 3,
5, 6 and 7 are repeatedly aborted due to conflicts with threads 1, 2 and 3. This hinders
the progress of the repeatedly aborted threads and, hence, is called starvation. Half
way through the execution, the visualization uncovers a killer transaction, that is a long
running transaction that aborts many shorter transactions. These pathological executions
are embedded in the overarching execution of the two phases and, hence, do not dominate
the execution.

88



6.2. Revealing Optimization Potential 89

CPU 0

CPU 1

CPU 2

CPU 3

CPU 0

CPU 1

CPU 2

CPU 3

CPU 0

CPU 1

CPU 2

CPU 3

CPU 0

CPU 1

CPU 2

CPU 3

0 0.5 1 1.5
Time (s)

a)

b)

c)

d)
Aborted TXCommitted TXLegend:

TM Design SW(Cm/Ab) HW(Cm/Ab)

STM-only 410/22 0/0
HybridTM-16 211/15 199/226
HybridTM-64-CTL 11/8 399/81
HybridTM-64-ETL 10/5 400/117

Software/Hardware and Commit/Abort distribution:

a)
b)
c)
d)

Figure 6.10: Optimizing the execution times of the intruder benchmark (execution
through Eigenbench) on TMbox. The optimization starts from an STM-only
version in Figure 6.10(a), over a hybrid version with 16 entries per TM
cache in Figure 6.10(b), through 64 entries per TM cache with commit time
locking in Figure 6.10(c), to the hybrid version with encounter time locking
in Figure 6.10(d). Figure taken from [189].

In the following, we demonstrate how the visualization helps to refine the execution on the
TMbox system [189] and make the assumption that a thread k runs only on CPU k.

Figure 6.10 illustrates the optimization of an hybrid TM application at the example of the
intruder benchmark mimicked through the corresponding Eigenbench parameter set.

Figure 6.10(a) shows the execution time and behavior with the STM-only version. The
gathered statistics reveal many short transactions that fit for a HTM acceleration and long
running transactions that require software execution.

Figure 6.10(b) shows the execution of intruder with hybrid TM with hardware and
software execution of transactions. The execution is longer than with STM-only. The
TMbox system supports 16 entries in the TM cache. This is not enough to speedup thread
3 that shows the longest run time. The size of the transactions suggests that increasing the
number of entries in the TM cache yields performance improvements.

With 64 entries in the TM cache the execution time is faster than with STM-only (see
Figure 6.10(c)). Now thread 3 and thread 1 have a higher amount of transactions executed
in hardware. Thread 2 suffers from long, aborted transactions running in software that goes
along with a high amount of wasted work. The commit time locking strategy of the STM
detects conflicts late so that switching to encounter time locking reduces the amount of
wasted work.

Figure 6.10(d) holds the execution with 64 entries in the TM cache and encounter time
locking. The execution time from the STM-only version to the final hybrid version has
been decreased by 24.1 %. This demonstrates that the visualization and the statistics of the
run time behavior of a TM application can be useful to tune the execution of a hybrid TM
system.

89



90 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

1 #pragma omp f o r p r i v a t e ( i ) s c h e d u l e ( s t a t i c )
2 f o r ( i =0 ; i <n ; i ++) { / * s p a r s e q [ i ] = A*p [ i ] * / }
3 . . .
4 #pragma omp f o r r e d u c t i o n ( + : pq ) s c h e d u l e ( s t a t i c )
5 f o r ( i =0 ; i <n ; i ++) { pq += p [ i ]* q [ i ] ; }
6 . . .
7 #pragma omp f o r s c h e d u l e ( s t a t i c )
8 f o r ( i =0 ; i <n ; i ++) { u [ i ] = u [ i ] + a l p h a *p [ i ] ;
9 r [ i ] = r [ i ] − a l p h a *q [ i ] ; }

10 . . .
11 #pragma omp f o r r e d u c t i o n ( + : r r ) s c h e d u l e ( s t a t i c )
12 f o r ( i =0 ; i <n ; i ++) { r r += r [ i ]* r [ i ] ; }
13 . . .
14 #pragma omp f o r s c h e d u l e ( s t a t i c )
15 f o r ( i =0 ; i <n ; i ++) { p [ i ] = r [ i ] + b e t a *p [ i ] ; }

Listing 6.11: Mapping of CG to OpenMP for parallelization (extended version of [92, 106,
105]).

6.3 Conjugate Gradients Solver
The algorithm of Conjugate Gradients (CG) is applicable to positive definite matrices to
solve the problem Au = b. Based on the Arnoldi method, the residuals are conjugated
to construct the search directions. Therefore search vectors from previous steps must
not be stored. For further information regarding the CG method, we refer the reader to
the book “Iterative Methods for Sparse Linear Systems” authored by Saad [167]. CG is
a very well reseached algorithm that may deliver superlinear convergence [43]. These
properties combined with a simple formulation make the method of Conjugate Gradients
popular in many research fields. Among these are computational fluid dynamics and the
analysis of structural mechanics. These fields employ finite element, finite difference and
volume methods for simulation by solving linear systems. In many cases a preconditioner
transforms the problem and CG is applied after that. Algorithm 6.1: basic CG algorithm
without preconditioning as formulated in [197].

qk = Apk, (6.1)

αk =
ρk

pk · qk
, (6.2)

uk+1 = uk + αkpk, (6.3)
rk+1 = rk − αkqk, (6.4)
ρk+1 = rk+1 · rk+1, (6.5)

βk+1 =
ρk+1

ρk
, (6.6)

pk+1 = rk+1 + βkpk. (6.7)

The scalar product (also known as dot product) is denoted as ·. Since the vectors exist
in an Euclidean space, it can also be called inner product. In order to implement the CG

90



6.3. Conjugate Gradients Solver 91

algorithm from the above equations, we need to map it to OpenMP and identify the suited
places to employ TM. The inner product is the only pattern that requires updating a variable
that is shared among threads. Then a single thread performs all scalar computations (as in
Equation 6.6). As a consequence only the two reductions qualify for employing TM or
other synchronization mechanisms. For dense matrices, the time for the multiplication of
the matrix with the vector dominates the overall time for the algorithm. This is different
for the sparse matrices that are common in computational fluid dynamics and structural
mechanics, in case the number of non-zeros falls in the same complexity class defined
through (nnz ∈ (n)) the matrix-vector product as well as the inner product have the same
complexity. This increases the relevance of computing the inner product with respect to
the overall algorithm and additionally motivates to research the impact of using TM.

The two reductions in normal CG are each implemented in two ways: Fast and Slow. Fast
uses a thread-local variable (e.g., named pq_priv in Listing 6.12) to accumulate the
results over a private part of the vector that is assigned to this specific thread. Then, a
single update adds the thread-local variable to the shared memory one (e.g., named pq)
that is guarded by a critical section or transaction. Thus, contention between threads only
arises from the update of the shared memory variable. In the following we will analyze
both patterns for one iteration of the outer loop. The Fast version of CG updates one
shared memory location per thread and reduction pattern. Thus, the number of executed
transactions txn equals the number of threads (th) times the number of reductions red
where red equals 2 for normal CG. Hence txn ∼ th. The Slow version updates the shared
memory location in one transaction or critical section and does not use a thread-local
variable, resulting in one update per iteration of the parallel for loop which is defined
through the dimension (dim). Hence txn ∼ dim. In our case dim� th which emphasizes
the difference between Fast and Slow patterns.

Due to the fact that each reduction only updates one shared memory location, OpenMP
atomic is a perfect fit for the implementation because it maps to a processor instruction that
assures the atomicity of the update (if the processor supports atomics). The Fast version,
again, uses thread-local variables whereas the Slow version does not. This atomicity is
limited to one memory location and can not be extended. Thus, the Atomic Fast uses the
thread-local variables to update the shared memory locations and the Atomic Slow updates
the shared memory location for each new value. Since each value must be updated with a
separate atomic instruction there is no need to distinguish between long and short sections
for atomic. These self-made reductions are complemented by the OpenMP reduction,
denoted as Reduction, that the programmer specifies through using a #pragma omp
for reduction(+:var) schedule(static).

1 f o r ( i = t h r e a d −> s t a r t ; i < t h r e a d −>end ; i ++) {
2 pq += p [ i ]* q [ i ] ;
3 }
4 START( t h r e a d −>id , RW) ;
5 p q _ p r i v += ( double )LOAD_DOUBLE(&pq ) ;
6 STORE_DOUBLE(&pq , p q _ p r i v ) ;
7 COMMIT;

Listing 6.12: Fast version of a reduction that is implemented with TM macros (similar
to [92, 106, 105]).

91



92 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 5  10  15  20

T
im

e
 [

s]

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Critical Slow

STM Slow

Atomic Slow

Figure 6.11: Execution time of normal CG with 1 to 24 threads on ExpX5670.

Figure 6.11 shows the run time of the normal CG on the y-axis over the number of threads
on the x-axis. Please note that the run times of the Reduction, Critical Fast, and Atomic
Fast patterns are nearly identical so that only Atomic Fast is readable. These cases show
the lowest execution time as the number of threads increases. The run times of STM Fast
follow the same trends but with a small offset that indicates a longer execution time. All
Fast variants significantly outperform the Slow variants: Atomic Slow performs best among
them with an moderate increase in execution time for higher thread counts. Critical Slow
and STM Slow perform worse with STM Slow having the longest execution time with 8
threads. None of the Slow variants reaches the respective single thread execution time.

In an earlier version of this work, we found a peak in the run time for 24 threads with
OpenMP [92, 106, 105]. The dimension of the underlying matrix is set to 5M in this case.
The execution time did not differ much with eight threads on ExpX5670. A special case is
24 threads and OpenMP: the calculation takes slightly longer than with a single thread. A
model that describes the effects of the scheduling on the run time of the application explains
the peak with 24 threads. Christmann et al. developed this model for researching the
impact of oversubscription on the application throughput [37]. The scheduling algorithm
must fulfill the following three criteria:

1. the scheduling must be fair such that each process gets a fair share of time,

2. it has to balance the load across cores (or hardware threads),

3. and it must pin a process to a processing element as long as possible.

For a system with N processing elements that already runs r threads, their formula
estimates the minimum δmin and maximum δmax occupation of a processing element
when a second application runs x threads. Assuming that the three scheduling criteria
are satisfied, the following formulas describes the occupation of a single processing

92



6.3. Conjugate Gradients Solver 93

element [37]: δmin = max(b r+x
N
c, 1) and δmax = d r+x

N
e. The actual occupation δ ranges

in between δmin and δmax. The following formula estimates the number of processing
elements that will be granted to an application with x threads: n(x, δ) = min(x

δ
, N).

which is limited by N processing elements. In the paper, Christmann et al. further apply a
linear transformation and show that the model matches their experiments. In the following,
we argue that this model also explains the scheduling artifacts that we observed in previous
experiments [92, 106, 105]. Our previous case with the Linux kernel 2.6.32-29-server
meets all of these assumptions. The explanation for the peak in execution time is that a
fully loaded node (with 24 OpenMP threads) competes with some background process for
computing resources. Eventually, after a long stall time, one of the OpenMP threads gets
migrated to a different processing element. The combination of these tasks, including the
long stall until the scheduling decision is made, leads to a prolonged overall execution time.
The experiments presented here, verify that a later Linux kernel (with version number
3.0.0-23-server) that enables a fair scheduling of groups instead of processes does not show
this behavior anymore.

6.3.1 Pipelined Conjugate Gradients Solver

Inspired by Meurant’s algorithm [135], Strzodka and Göddeke refine the pipelined Conju-
gate Gradients solver to enable mixed precision and pipelined algorithms that accurately
solve partial differential equations with low precision components on FPGAs [197]. From
these collection of proposed algorithmic variants of the conjugate gradient method, we
choose the basic pipelined CG variant because some of its properties seem worthwhile to
explore in the context of synchronization with transactional memory. The idea behind the
pipelined CG is that all computations on vector elements should be done in parallel. With
these rearrangement it becomes feasible to stream a vector instead of having to store all
elements of the vector. First, Strzodka and Göddeke reorder all vector operations so that
these can be performed in parallel [197]:

uk+1 = uk + αkpk, (6.8)
rk+1 = rk − αkqk, (6.9)
pk+1 = rk+1 + βkpk, (6.10)
qk+1 = Apk+1. (6.11)

The main contribution of this algorithm is to eliminate the requirement to compute all
elements of the vector rk+1 in order to compute pk+1. Strzodka and Göddeke lift this
restriction through introducing σk = ρk+1 that does not require knowledge of rk+1: σk =
αk(αkqk · qk − pk · qk). Then the scalar products are computed after the reordered vector
operations shown in Equation 6.8:

ρk+1 = rk+1 · rk+1, (6.12)

αk+1 =
ρk+1

pk+1 · qk+1

, (6.13)

σk+1 = αk+1(αk+1qk+1 · qk+1 − pk+1 · qk+1), (6.14)

βk+1 =
σk+1

ρk+1

. (6.15)

This variant is useful in the case of a sparse matrix A that enables to compute one step of
the algorithm in a fully pipelined fashion. The pipelined CG variant is suited in case the

93



94 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

1 do {
2 #pragma omp p a r a l l e l
3 {
4 #pragma omp f o r p r i v a t e ( i ) s c h e d u l e ( s t a t i c )
5 f o r ( i =0 ; i <dim ; i ++) u [ i ] += a l p h a *p [ i ] ;
6 #pragma omp f o r p r i v a t e ( i ) s c h e d u l e ( s t a t i c )
7 f o r ( i =0 ; i <dim ; i ++) r [ i ] −= a l p h a *q [ i ] ;
8 #pragma omp f o r p r i v a t e ( i ) s c h e d u l e ( s t a t i c )
9 f o r ( i =0 ; i <dim ; i ++) {

10 p [ i ] = r [ i ] + b e t a *p [ i ] ; q [ i ] = 0 ;
11 }
12 #pragma omp f o r p r i v a t e ( i , j , s t a r t , end , temp ) \
13 s c h e d u l e ( s t a t i c )
14 f o r ( i =0 ; i <dim ; i ++) {
15 s t a r t = row [ i ] ; end = row [ i + 1 ] ;
16 f o r ( j = s t a r t ; j <end ; j ++) {
17 temp = c o l [ j ] ; q [ i ] += v a l [ j ]* p [ temp ] ;
18 }
19 }
20 #pragma omp s i n g l e
21 {
22 rho = 0 . 0 ; pq = 0 . 0 ; qq = 0 . 0 ;
23 }
24 #pragma omp f o r r e d u c t i o n ( + : rho ) \
25 r e d u c t i o n ( + : qq ) \
26 r e d u c t i o n ( + : pq ) s c h e d u l e ( s t a t i c )
27 f o r ( i =0 ; i < dim ; i ++) {
28 rho += r [ i ] * r [ i ] ;
29 qq += q [ i ] * q [ i ] ;
30 pq += p [ i ] * q [ i ] ;
31 }
32 #pragma omp s i n g l e
33 {
34 a l p h a = rho / pq ;
35 s igma = a l p h a * ( a l p h a *qq − pq ) ;
36 b e t a = sigma / rho ;
37 }
38 } / * End o f OpenMP p a r a l l e l r e g i o n . * /
39 i t e r a t i o n ++;
40 norm_r = s q r t ( rho ) ;
41 } whi le ( norm_r > e p s i l o n ) ;

Listing 6.13: Implementation of the pipelined CG with OpenMP Reduction.

94



6.3. Conjugate Gradients Solver 95

matrix A is sparse and does not require global communication. Therefore, the pipelined
CG is e.g., applicable for solving the stationary heat equation without heat source.

Listing 6.13 shows the main loop of the implementation of the pipelined CG algorithm with
OpenMP. This loop, starting from line 1, iterates until |rk+1| <= ε being the convergence
criteria for the algorithm. The algorithm converged to a solution when it found a solution
that satisfies this condition. In the following, we will discuss the mapping of the algorithm
from the Equation 6.8 and Equation 6.12 to this implementation. First, uk+1 and rk+1 are
both computed according to Equation 6.8 and Equation 6.9 in line 4 and 5 (u) and 6 and 7
(r) in an OpenMP for loop. Then line 8 to 11 perform the computation of pk+1 as described
in Equation 6.10 and reset the vector q. The sparse matrix multiplication, involving A
and p, takes place in the lines 12 to 18 according to Equation 6.11. The implementation
resets the scalar variables in line 19 to 22. Then, the three reductions compute the inner
products rk+1 · rk+1, pk+1 · qk+1, qk+1 · qk+1 in lines 23 to 30. In comparison with the
CG according to Saad [167], that demanded two separate reductions, the computation with
pipelined CG requires three reductions. The advantage is that one enlarged critical section
or transaction embraces all three of them. These three reductions implement the vector
operations of Equation 6.12, Equation 6.13, and Equation 6.14. Please note that all of
the above steps except resetting the scalar variables are performed in parallel. Computing
Equation 6.15 again requires to serialize the execution (using #pragma omp single
statement in line 31) and compute the values of αk+1, σk+1 and βk+1. Another way of
avoiding this serialization would have been to end the parallel section in line 31 instead
of line 37. However, this minor detail does not make a large difference. Finally line
38 (already outside the parallel section) increments the number of iterations and line 39
computes the norm of rk+1. The result is compared with ε in the while statement. In case
the norm of rk+1 already satisfies the condition, the implementation will output the result
and also compute the error (not shown in Listing 6.13. Otherwise, the algorithm performs
another iteration of the loop until the solution satisfies the condition.

The implementation in Listing 6.13 reveals that our approach does not take advantage
of the fact that pipelined CG supports the streaming of vectors. Instead our approach
aims to implement the reduction, that can now be made three times larger than before,
assuming a constant vector size. This different reduction pattern enables us to use larger
transactions (or critical sections) and again to implement them in two different ways. These
different ways of implementing the reduction pattern are compared and analyzed in the
following. The Reduction case uses the OpenMP reduction concatenating three reductions
in one pragma: #pragma omp for reduction(+:rho) reduction(+:qq)
reduction(+:pq) schedule(static). The three reductions are implemented in
three ways: Fast, Slow Long and Slow Short. Fast executes the accumulation with a thread-
local variable over a thread private part of the vector. After finishing this calculation, one
update adds the thread-local variable (e.g., pq_priv) to the shared memory one (e.g., pq).
Thus, contention between threads stems from the update of the shared memory variable.
Regardless of the dimension this pattern leads to th updates of the shared variable which is
a huge gain compared with the Slow pattern. Of course the complexity to implement the
Fast pattern is slightly higher. We expect this variant to perform better and therefore label
it Fast. The Fast version of pipelined CG updates all three shared memory variables in one
transaction/critical section. This enlarges the size of the transaction because instead of one
update with normal CG for each of the reductions, there are three updates in pipelined CG.
Slow Long updates the three shared memory locations in one transaction or critical section
and does not use a thread-local variable for storing intermediate results. Slow Short also

95



96 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

 1

 2

 4

 8

 16

 32

 64

 128

 256

 5  10  15  20

T
im

e 
[s

]

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Crit. Slow Long

STM Slow Long

Atomic Slow

Crit. Slow Short

STM Slow Short

Figure 6.12: Execution time of pipelined CG with 1 to 24 threads on ExpX5670. Figure as
in [176].

does not use thread-local variables to store intermediate results and performs each update
of a shared memory location in a dedicated transaction or critical section. Thus, both Slow
variants require the same amount of updates of the shared variable and differ only in the
granularity of the applied synchronization mechanism. Assuming a dimension of dim, the
shared variable is updated dim times. If the work is distributed evenly among th threads,
each threads performs dim

th
updates. For dim >> th this pattern creates contention on

the shared variable because each thread needs to access it multiple times. In a multi-core
system this will result in coherency traffic that will invalidate the datum in the other caches,
leading to performance loss. For TM this leads to an increasing number of rollbacks. Since
we expect this variant not to perform as good as the Fast variant, we denote it as Slow.
For OpenMP atomic the Fast version uses thread-local variables whereas the Slow version
does not. If possible omp atomic maps to a native atomic instruction that updates one
memory location without being interrupted by other processors. This atomicity is limited to
one memory location and can not be extended. Thus, the Atomic Fast uses the thread-local
variables to update the shared memory locations and the Atomic Slow updates the shared
memory location for each new value. Since each value must be updated with a separate
atomic instruction there is no need to distinguish between long and short sections.

The execution time of the pipelined CG method is depicted in Figure 6.12. The y-axis holds
the average execution time in seconds over 17 runs and the x-axis the number of threads.
Again, the Fast versions of Atomic, Critical and Reduction show a nearly identical behavior
and are hard to distinguish. Fast STM also has a slightly higher execution time than e.g.,
Reduction but the gap appears smaller than before. The ranking of the slow variants is as
follows: Atomic Slow Long, Critical Slow Long, STM Slow Long, Critical Slow Short, STM
Slow Short. Again, neither slow variant achieves the run time of respective single thread.
Thus, all slow variants show a slowdown for the execution with more than two threads.

96



6.3. Conjugate Gradients Solver 97

Dimension Epsilon Start vector Solution
5 ∗ 106 1 ∗ 10−13 ~0 ~1

Table 6.2: Parameter settings for the example problem solved with the two implementations
of the conjugate gradients method. Table similar to [176].

The interesting insight is that neither of the short variants (STM or critical) performed as
good as or better than a long variant. Thus, enlarging the granularity of critical sections
under the given conditions results in a better performance but the only way to achieve
a speedup is the use of thread-local variables that avoid frequent updates of the shared
memory and hereby reduce contention for shared locations.

6.3.2 Comparison of CG and Pipelined CG
In order to compare normal CG and pipelined CG, that are both capable of solving systems
of linear equations with symmetric and positive-definite matrices, we apply them to an
example that describes the steady state conduction of heat with the method of finite
differences. This example solves the stationary heat equation without heat source in one
dimension. The key parameters for the following experiments are shown in Table 6.2. Both
CG variants execute a loop that iterates over the numerical algorithm. Each iteration refines
the current solution and herewith reduces the error. The error is computed as the euclidean
norm of b− Auk. The algorithm iterates as long as the error is greater than epsilon. In
case a solution exists that satisfies the criteria, the process is also said to converge to this
solution. In practice the convergence may be perturbed through round-off errors that affect
the numerical stability. Whether an algorithm is suited to find a solution to a given problem
also depends on the algorithmic details as well as the implementation. Thus, a different
formulation of the same algorithm may show a different convergence behavior. Moreover,
even implementation details such as the order of elements when summing up a vector, may
have an impact on the convergence behavior. Thus, the impact of new technologies, like
TM, on the convergence behavior has to be researched thoroughly. We implement both
CG variants in the programming language C and parallelize them, as described earlier,
with OpenMP and the described synchronization mechanisms. GCC in version 4.6.1
generates both executables with the compiler options -fopenmp -O3 -g3 that affect
performance.

Software Transactional Memory Characteristics

The transactional characteristics of both CG variants are discussed first because these
may dominate the utilization of architectural resources. For example a transaction that
performs mainly integer operations and aborts frequently and, thus, repeats these operations
multiple times contributes a larger share of integer operations than a transaction that
successfully commits. Hence, large abort rates may change the heavily utilized functional
units. Figure 6.13 depicts the absolute number of aborted transactions of all threads for the
Fast (left hand side) and the Slow variants (right hand side) of normal CG and pipelined
CG. All of the presented numbers are averages over 17 runs.

For the Fast version (illustrated in Figure 6.13(a)) the number of aborts is below 100 for up
to 16 threads and normal CG and pipelined CG. With 24 threads it rises to≈ 340 for normal
CG and ≈ 1800 for pipelined CG. This is the only configuration for the Fast versions that
normal CG has significantly less aborts than pipelined CG. This is remarkable because

97



98 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  2  4  6  8  10  12  14  16  18  20  22  24

#
A

b
o

rt
s

#Threads

Normal CG Fast Pipelined CG Fast

(a) Aborts with Fast versions of normal and pipelined
CG

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 0  2  4  6  8  10  12  14  16  18  20  22  24

#
A

b
o

rt
s

#Threads

Normal CG Slow

Pipelined CG Slow Long

Pipelined CG Slow Short

(b) Aborts in Slow versions of normal and pipelined
CG

Figure 6.13: Aborts with normal and pipelined CG with the number of threads ranging
from 1 to 24 on ExpX5670. Figure similar to [176].

pipelined CG executes three times the number of loads and stores per transaction and
herewith should have a higher probability of conflict. The fact that all of these transactions
access the same three variables in the same order lead to a scenario where a transaction
will conflict with another transaction if they both run at the exact same time. Because
pipelined CG requires more time to execute the longer transactions, this increases the
conflict probability because a longer time inside a transaction although means a longer
time in which a second thread may start a transaction and conflict with the former. This
effect is dominating only at 24 threads because prior to that, both versions of CG perform
equal. The relative abort rate for Fast with 8 threads is ≈ 3.5 % for normal CG and ≈ 6 %
for pipelined CG.

Figure 6.13(b) demonstrates the reason for the missing performance with the Slow variants.
For only 2 threads normal CG already has ≈ 460 ∗ 106 aborts. For pipelined CG the aborts
for 2 threads are ≈ 440 ∗ 106 for the short and ≈ 687 ∗ 106 for the long variant. The reason
for these high aborts are the transactions that update a single variable (or in the best case
three variables) for each iteration of the loop. Due to these high abort numbers, the threads
will not make progress and, hence have long execution times and poor performance with
the Slow variants.

After studying the transactional characteristics in the previous paragraph, we would like
to demonstrate the additional values and the flexibility of the VisOTMA framework by
doing an in-depth analysis of the Fast versions of normal CG and pipelined CG. When
first visualizing the TM application behavior with Paraver, we found many gaps between
extremely small transactions. Thus, only a high zoom level would allow us to find the
aborted transactions. After investigating these cases and finding that the overall TM
performance for Fast is good (also cf. to previous paragraph), we decided to focus
on the blank spots between the transactions. A code study reveals that, apart from the
computational parts, OpenMP constructs are most likely to consume the missing time in
between the transactions.

Listing 6.11 and Listing 6.13 show that both CG variants perform 5 OpenMP for loops.
By default these for loops come with an implicit barrier at the end of the execution. Thus,

98



6.3. Conjugate Gradients Solver 99

T1

T2

T3

T4

T5

T6

T7

T8

Time

(a) Visualization of normal CG

T1

T2

T3

T4

T5

T6

T7

T8

Time

(b) Visualization of pipelined CG

Figure 6.14: Visualization of normal and pipelined CG with 8 threads on ExpX5670.
Zoomed to relate transaction time (in green) with barrier wait time (in orange).
Figure similar to [176].

the fastest thread waits for the slowest one to complete its work and reach the barrier.
OpenMP enables the programmer to specify the nowait clause to omit this barrier [44].
On the other hand there is also the explicit #pragma omp barrier construct that
produces a barrier. These manifold possibilities to generate barriers in OpenMP code
and the importance for CG code, convinced us to investigate the barrier wait times to
relate these to the transaction execution times. In our particular setup using the GCC
compiler, libgomp is the OpenMP run time system and GCC does the expansion of
OpenMP pragmas and the outlining of functions. In order to implement timed barriers,
we needed to intercept the call to the original barrier call with one that would record
the cycle counter of the processor on entry and exit of the barrier. These readings are
then written to a thread-local trace file. Using the timed instead of the regular barriers
is achieved through a simple replacement on assembly level. Through simply replacing
the call to GOMP_barrier with a call to ote_GOMP_barrier, we achieved the desired
functionality. Thus, ote_GOMP_barrier records the cycle counter before and after calling
GOMP_barrier. Separate additional trace files for tracing these barriers are necessary
because barriers do not depend on transactions and the STM may not be initialized when
calling a barrier. Thus, a post-processing step merges the barrier traces with the TM traces.
Both trace files have the same time base and, hence, timed correlation and the visualization
of the merged traces requires to register the new events at the various processing stages but
is straightforward.

Figure 6.14 shows results of this effort for normal CG and pipelined. The picture holds
a timeline view of barriers and transactions executed by 8 threads. The threads, denoted
with T1 to T8 each occupy a slot on the y-axis. The x-axis shows the progress of time.
The orange bars demonstrate the wait time of a particular thread at a barrier. These orange
bars dominate the Figure 6.14(a). Green bars illustrate how much time the execution of
a transaction with a commit takes. These bars are present only on the right hand side of
Figure 6.14(a) and are extremely small. Figure 6.14(b) illustrates the run time behavior
of the pipelined CG variant that exercises a similar execution pattern. Again transaction
times are hardly visible although these transactions have three times the amount of loads
and stores of those transactions in normal CG.

99



100 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

   0.0312

   0.0625

    0.125

     0.25

      0.5

        1

        2

        4

 5  10  15  20

S
p

ee
d

u
p

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Critical Slow

STM Slow

Atomic Slow

(a) Speedup of normal CG

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 5  10  15  20

S
p

ee
d

u
p

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Crit. Slow Long

STM Slow Long

Atomic Slow

Crit. Slow Short

STM Slow Short

(b) Speedup of pipelined CG

        1

      1.5

        2

      2.5

        3

 5  10  15  20

S
p

ee
d

u
p

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(c) Speedup of normal CG for fast versions only.

 1

 1.5

 2

 2.5

 3

 5  10  15  20

S
p

ee
d

u
p

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(d) Speedup of pipelined CG for fast versions only.

Figure 6.15: Speedup with normal and pipelined CG with the number of threads ranging
from 1 to 24 on ExpX5670. Figure similar to [176].

Additionally, we discover that pipelined CG shows a small perturbation that influences the
start time of the transactions. Whereas in Figure 6.14(a) with normal CG all threads start
their transaction at almost exactly the same point in time, Figure 6.14(b) reveals that three
threads start executing the transaction before all other threads. This behavior of pipelined
CG is likely the cause for a better conflict rate than expected. Surprisingly both figures
highlight that the wait times at the barriers (colored in orange) exceeds the execution time
of a transaction (shown in green). These findings not only motivate research to avoid
or omit these barriers but also show that in a very regular setting, such as with the CG
algorithm, TM can not show its strong side because the effects of optimistic concurrency,
that enable some threads to proceed faster than others are potentially turned into wait times
at the barriers, waiting for the slowest thread that has been aborted to enable the progress
of the fast threads.

Speedup

This paragraph compares the achieved speedup of normal CG with that of pipelined CG.
The speedup is computed according to S(n) = T (1)

T (n)
, where T (n) denotes the execution

100



6.3. Conjugate Gradients Solver 101

time with n threads and T (1) is the respective single thread execution time (cf. to [86]).
Often Tseq is used instead of T (1) with Tseq being the serial reference implementation
that does not incur the overheads of a threaded implementation. In these cases often
Tseq < T (1) holds so that the resulting S(n) would be smaller.

Figure 6.15(a) depicts the speedup for normal CG whereas Figure 6.15(b) shows it for
pipelined CG (both times on the y-axis). The x-axis holds the number of threads. Although
the plots of the runtimes from previous sections contain the same information, this plot
more evidently shows a slow down (speedup < 1) for the slow variants and a speedup for
the fast variants. Setting the scale of the y-axis is a compromise to fit all variants on one
plot. This makes identifying the maximum achieved speedup difficult because of the low
resolution in this segment. Therefore, a second plot focuses on displaying the results of the
fast variants only.

Figure 6.15(c) and Figure 6.15(d) show the speedup with a linear scale on the y-axis. This
plot illustrates that the achievable speedup over the respective single thread performance is
higher with pipelined CG, achieving the highest speedup of 2.97 with the regular reduction
and 24 threads. For normal CG, STM Fast with 8 threads achieves the best speedup of
2.38. The overhead of the single thread execution has a large influence on the reported
speedups because a larger overhead (e.g., with STM) leads to a slower execution time. If
the speedup is computed relative to this single thread execution time, this yields a higher
speedup because the baseline has been worse. This effect could be avoided by having
a fixed serial execution time for all benchmarked variants. Here, this effect leads to the
situation that STM Fast has a higher speedup for e.g., pipelined CG with 8 threads but a
higher execution time than e.g., Reduction.

Convergence Behavior

This paragraph presents the results of examining the convergence behavior of normal CG
and pipelined CG applied to a problem that solves the stationary heat equation without heat
source. The parameters setting is identical with the one that has been shown in Table 6.2.
Both variants of CG show a consistent convergence behavior across all tested thread counts
and synchronization mechanisms. Normal CG converges after 25 iterations to a solution
that satisfies the criteria. Pipelined CG finds a solution to the problem that satisfies the
convergence criteria after 26 iterations. Therefore, even for the simple problem chosen
in this experiment, the choice of the implementation strategy has a huge impact on the
convergence behavior. Pipelined CG needs to perform one additional iteration which is
equal to a relative increase of computational complexity of 4 %.

Utilization of Architectural Resources

In the following, we will inspect the utilization of architectural resources by the synchro-
nization mechanisms as well as the two different algorithms. Pipelined CG excercises a
different compute pattern and has to perform one additional iteration to find a solution
that satisfies the convergence criteria for the selected problem. These changes are going to
impact the number of retired instructions, the number of loads and stores, the number of
floating point operations, the branch prediction and the use of the synchronization primi-
tives. We will highlight the differences in this section and research the synchronization
mechanisms for each of the algorithms.

101



102 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

    3e+09

  3.2e+09

  3.4e+09

  3.6e+09

  3.8e+09

    4e+09

 5  10  15  20

#
L

o
a
d

 I
n

s
tr

u
c
ti

o
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(a) Normal CG load instructions

    3e+09

  3.2e+09

  3.4e+09

  3.6e+09

  3.8e+09

    4e+09

 5  10  15  20

#
L

o
a
d

 I
n

s
tr

u
c
ti

o
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(b) Pipelined CG load instructions

    9e+08

    1e+09

  1.1e+09

  1.2e+09

  1.3e+09

 5  10  15  20

#
S

to
re

 I
n

s
tr

u
c
ti

o
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(c) Normal CG: store instructions executed

    9e+08

    1e+09

  1.1e+09

  1.2e+09

  1.3e+09

 5  10  15  20

#
S

to
re

 I
n

s
tr

u
c
ti

o
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(d) Pipelined CG: store instructions executed

Figure 6.16: Load and store instructions with both CG variants on ExpX5670.

Influence of thread count on executed loads and stores. Figure 6.16(a) depicts
the number of load instructions on the y-axis and the number of threads on the x-axis for
normal CG. The number of loads increases with the number of threads up to 16 for all
synchronization variants. For 24 threads the number of loads is similar to the case with 16
threads. STM Fast performs 8 % more load instructions than the other fast variants with
8 threads. Figure 6.16(b) highlights the same trend for pipelined CG. For 8 threads and
pipelined CG STM Fast executes 12 % more loads instructions than Reduction. Pipelined
CG shows an average increase in loads over normal CG that ranges between 4 % (for
Reduction, Critical Fast and Atomic Fast) and 8 % (for STM Fast). This difference can be
explained by executing the additional iteration to achieve convergence.

The y-axis of Figure 6.16(c) reveals the number of store instructions of normal CG whereas
the x-axis illustrates number of threads. The number of stores is constant for all thread
counts and on average 28 % higher for STM Fast compared with the other fast variants.
Figure 6.16(d) illustrates the same trend for pipelined CG: STM Fast carries 43 % more
store instructions on average than the other fast variants. On average normal CG executes
4 % more stores than pipelined CG and Reduction and 16 % more stores for STM Fast. The
result for Reduction perfectly matches the expected increase due to the additional interation

102



6.3. Conjugate Gradients Solver 103

 1.34e+08

 2.68e+08

 5.37e+08

 1.07e+09

 2.15e+09

 4.29e+09

 8.59e+09

 1.72e+10

 5  10  15  20

#
L

1
 D

C
M

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Critical Slow

STM Slow

Atomic Slow

(a) Normal CG and L1 data cache misses

 1.34e+08

 2.68e+08

 5.37e+08

 1.07e+09

 2.15e+09

 4.29e+09

 8.59e+09

 1.72e+10

 5  10  15  20

#
L

1
 D

C
M

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Crit. Slow Long

STM Slow Long

Atomic Slow

Crit. Slow Short

STM Slow Short

(b) Pipelined CG and L1 data cache misses

  4.1e+03

 1.64e+04

 6.55e+04

 2.62e+05

 1.05e+06

 4.19e+06

 1.68e+07

 6.71e+07

 5  10  15  20

#
L

1
 I

C
M

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Critical Slow

STM Slow

Atomic Slow

(c) Normal CG showing L1 instruction cache misses

  4.1e+03

 1.64e+04

 6.55e+04

 2.62e+05

 1.05e+06

 4.19e+06

 1.68e+07

 6.71e+07

 5  10  15  20

#
L

1
 I

C
M

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Crit. Slow Long

STM Slow Long

Atomic Slow

Crit. Slow Short

STM Slow Short

(d) Pipelined CG showing L1 instruction cache
misses

Figure 6.17: Level 1 instruction and data cache misses for both CG variants on ExpX5670.

that is required to satisfy the convergence criteria. Further, an overall insight is that the
number of stores is independent of the number of threads whereas the number of loads
increases with the number of threads.

L1 data and instruction cache misses are of major importance for the performance
of an application as each load exercises the memory hierarchy to bring the datum to the
processor. In case of a L1 cache miss, the datum must be retrieved from the second level
cache that has a higher latency and results in a slower execution.

For the L1 data cache, Figure 6.17(a) and Figure 6.17(b) show the total number of L1 data
misses on the y-axis over an increasing number of threads on the x-axis for normal CG and
pipelined CG respectively. Both show a similar trend for the slow and fast variants of the
synchronization mechanisms: the fast variant does not increase significantly with more
threads - it stays constant. The slow variants reveal a significant increase that appears to
follow a logarithmic function with an increasing number of threads. The Reduction pattern
with 4 threads shows 2.37 ∗ 108 L1 data cache misses with normal CG whereas pipelined
CG generates 2.81 ∗ 108 misses. This is significantly more than a relative increase of

103



104 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

4 % that is explained by the additional iteration to reach convergence (cf. Section 6.3.2).
Therefore, the algorithmic structure of pipelined CG puts a higher pressure on the L1 data
cache.

The utilization of the L1 instruction cache is similar to the L1 data cache. Figure 6.17(c)
holds the number of L1 instruction cache misses on the y-axis and the number of threads
on the x-axis for normal CG. STM Slow and Critical Slow have the highest counts that
seem to follow a logarithmic function. The interesting result is that Atomic Slow has
a lower instruction miss count than STM Fast. This means that the overheads of STM
are more prominent on the L1 instruction than on the L1 data cache. Atomic Fast and
Reduction yield the lowest L1 instruction cache misses. Figure 6.17(d) shows a similar
plot for pipelined CG. Similarly, STM Slow Short and STM Slow Long have the highest L1
instruction misses followed by Critical Slow Short and Critical Slow Long. In this case,
Atomic Slow does not perform as good as STM Fast but the overheads with STM are still
significant compared to Critical Fast and Reduction. Interestingly, Atomic Fast shows a
peak in the miss rate for two threads that is higher than the misses for STM Fast.

The poor performance of the slow variants in L1 instruction as well as data caches, that
becomes even worse with an increasing number of threads, explains the observed slowdown
for these implementations. This observation holds for both CG variants.

L2 data cache misses are important for the performance because a cache miss needs
to be retrieved from the L3 cache. Resulting in a even larger penalty. Similarly, the
number of access of the L2 cache equals the number of misses in the L1 data cache and
has been studied in the previous paragraph. Therefore, we focus on L2 data cache misses.
Figure 6.18(a) holds these for normal CG where Figure 6.18(b) shows L2 data cache
misses for pipelined CG. The results for both are similar to the L1 cache misses and can be
summarized as follows: the slow variants show an increase that resembles a logarithmic
function as the number of threads rises. The fast variants also show an increase in L2 cache
misses for higher thread counts but with smaller slope. In order to ease the understanding
of these plots, Figure 6.18(c) and Figure 6.18(d) show the respective L2 cache miss rates.
The findings are consistent with the previous observations and show that the slow variants
show a steep increase (that resembles a logarithmic function) as the thread count rises,
whereas the fast versions show a linear increase. For both CG variants the cache miss rate
is above 76 % for 24 threads.

The fact that the L2 cache miss rate increases with higher thread counts leads to longer
wait times for data and, thus, limits the scalability of both CG variants. More importantly
this behavior is consistent across CG variants as well as synchronization mechanisms and
highlights the importance of the latency of these data memory accesses. In the case of
synchronizing threads with STM, additional L2 misses may be due to the higher number
of aborts at higher thread counts. However, the comparison with other synchronization
mechanisms, that show a similar L2 behavior as STM, demonstrates that the higher number
of aborts is not the dominating factor.

Studying the instructions retired and floating point instructions. Due to the
subdue performance of the slow variants, we will focus the following discussion on the
fast variants only. Figure 6.19(a) depicts the retired instructions for normal CG. STM Fast
retires 3.3 % more instructions than Critical Fast with 8 threads. This again, is due to
the large overheads associated with executing shared memory accesses through a STM
library that performs conflict detection. For pipelined CG, the trend is similar (cf. to

104



6.3. Conjugate Gradients Solver 105

 4.19e+06

 1.68e+07

 6.71e+07

 2.68e+08

 1.07e+09

 4.29e+09

 1.72e+10

 5  10  15  20

#
L

2
 D

C
M

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Critical Slow

STM Slow

Atomic Slow

(a) L2 data cache misses of normal CG

 4.19e+06

 1.68e+07

 6.71e+07

 2.68e+08

 1.07e+09

 4.29e+09

 1.72e+10

 5  10  15  20

#
L

2
 D

C
M

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Crit. Slow Long

STM Slow Long

Atomic Slow

Crit. Slow Short

STM Slow Short

(b) L2 data cache misses of pipelined CG

    0

  0.2

  0.4

  0.6

  0.8

    1

 5  10  15  20

L
2

 D
C

M
 r

a
te

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Critical Slow

STM Slow

Atomic Slow

(c) L2 data cache miss rate of normal CG

    0

  0.2

  0.4

  0.6

  0.8

    1

 5  10  15  20

L
2

 D
C

M
 r

at
e

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

Crit. Slow Long

STM Slow Long

Atomic Slow

Crit. Slow Short

STM Slow Short

(d) L2 data cache miss rate of pipelined CG

Figure 6.18: Data cache misses in L2 for both CG variants on ExpX5670.

Figure 6.19(b)) but it also becomes apparent that pipelined CG requires more instructions
than normal CG. An increasing number of threads retires more instructions (up to 16
threads). The explanation is that each of the threads executes the same functions that have
been outlined by the OpenMP passes of the compiler. Thus, each new thread increases
the number of instructions retired. Then, for 24 threads the number of retired instructions
stays constant (pipelined CG) or decreases (normal CG but not for STM fast). To correlate
these measurements with the TM statistics is difficult because the higher number of aborts
measured with 24 threads does not correlate with a smaller number of instructions retired.
One might suspect an aliasing of performance counters that leads to a smaller number of
instructions being reported.

Figure 6.19(c) and Figure 6.19(d) illustrate the number of floating point instructions
executed on the y-axis over the number of threads on the x-axis for normal and pipelined
CG respectively. Across all thread counts, the number of floating point instructions is
stable (or subject to marginal changes as with STM Fast and pipelined CG). Pipelined CG
requires 25 % more floating point instructions than normal CG to solve the same problem of
which only 4 % are due to a changed convergence behavior. Thus, the different algorithmic
structure has a large influence on the necessary computation. This finding matches the goal

105



106 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

    9e+09

  9.5e+09

    1e+10

 1.05e+10

  1.1e+10

 1.15e+10

  1.2e+10

 1.25e+10

  1.3e+10

 5  10  15  20

#
In

s
tr

u
c
ti

o
n

s
 R

e
ti

re
d

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(a) Instructions retired with normal CG.

    9e+09

  9.5e+09

    1e+10

 1.05e+10

  1.1e+10

 1.15e+10

  1.2e+10

 1.25e+10

  1.3e+10

 5  10  15  20

#
In

s
tr

u
c
ti

o
n

s
 R

e
ti

re
d

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(b) Instructions retired with pipelined CG.

    2e+09

  2.1e+09

  2.2e+09

  2.3e+09

  2.4e+09

  2.5e+09

  2.6e+09

  2.7e+09

  2.8e+09

 5  10  15  20

#
F

lo
at

in
g

 P
o

in
t 

In
st

ru
ct

io
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(c) Floating point instructions in normal CG.

    2e+09

  2.1e+09

  2.2e+09

  2.3e+09

  2.4e+09

  2.5e+09

  2.6e+09

  2.7e+09

  2.8e+09

 5  10  15  20

#
F

lo
at

in
g

 P
o

in
t 

In
st

ru
ct

io
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(d) Floating point instructions in pipelined CG.

Figure 6.19: Instructions retired and floating point instructions executed on ExpX5670.

of pipelined CG to trade additional computations for a relaxed algorithm that potentially
enables the streaming of a vector. Moreover, pipelined CG also shows differences in the
synchronization mechanisms such that Reduction executes less FP instructions than STM
Fast which requires less FP instructions than Critical Fast and Atomic Fast.

Branch instructions and their prediction is also of importance for the overall perfor-
mance of the application. Figure 6.20(a) and Figure 6.20(b) show the number of conditional
branch instructions executed over the number of threads for normal CG and pipelined CG
respectively. Both figures show that all synchronization variants perform a similar number
of conditional branches which increases with the number of threads. Except for normal CG
with 24 threads, STM Fast does not perform more branches than the other synchronization
variants. For the performance of the application, the number of mispredicted branches is of
great importance because each mispredicted branch comes with a penalty (e.g., through a
flush of the processor pipeline). Therefore, Figure 6.20(c) and Figure 6.20(d) exhibit the
number of mispredicted branches on y-axis and the number of threads on the x-axis for
normal and pipelined CG. In both cases STM Fast and Reduction show an increasing num-
ber of mispredictions as the number of threads increases whereas Critical Fast and Atomic

106



6.3. Conjugate Gradients Solver 107

  1.2e+09

  1.4e+09

  1.6e+09

  1.8e+09

    2e+09

  2.2e+09

 5  10  15  20

#
C

o
n

d
it

io
n

a
l 

B
ra

n
c
h

 I
n

s
tr

u
c
ti

o
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(a) Conditional branch instructions of normal CG

  1.2e+09

  1.4e+09

  1.6e+09

  1.8e+09

    2e+09

  2.2e+09

 5  10  15  20

#
C

o
n

d
it

io
n

a
l 

B
ra

n
c
h

 I
n

s
tr

u
c
ti

o
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(b) Conditional branch instructions of pipelined CG

    5e+05

    1e+06

  1.5e+06

    2e+06

  2.5e+06

    3e+06

  3.5e+06

    4e+06

  4.5e+06

 5  10  15  20

#
M

is
p

re
d

ic
te

d
 B

ra
n

ch
 I

n
st

ru
ct

io
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(c) Mispredicted branches of normal CG

    5e+05

    1e+06

  1.5e+06

    2e+06

  2.5e+06

    3e+06

  3.5e+06

    4e+06

  4.5e+06

 5  10  15  20

#
M

is
p

re
d

ic
te

d
 B

ra
n

ch
 I

n
st

ru
ct

io
n

s

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(d) Mispredicted branches of pipelined CG

    0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

 5  10  15  20#
M

is
p

re
d

ic
te

d
 B

ra
n

ch
es

/#
C

o
n

d
. 

B
ra

n
ch

 I
n

st
r.

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(e) Rate of mispredicted branch instructions for nor-
mal CG

    0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

 5  10  15  20#
M

is
p

re
d

ic
te

d
 B

ra
n

ch
es

/#
C

o
n

d
. 

B
ra

n
ch

 I
n

st
r.

#Threads

Reduction

Critical Fast

STM Fast

Atomic Fast

(f) Rate of mispredicted branch instructions for
pipelined CG

Figure 6.20: CG with conditional branch and mispredicted branch instructions on
ExpX5670.

107



108 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

 0

 20

 40

 60

 80

 100

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

%
 o

f 
In

st
ru

c
ti

o
n

s 
R

e
ti

re
d

1 Thread 2 Threads 4 Threads 8 Threads 12 Threads16 Threads24 Threads

 PAPI_FP_INS

PAPI_BR_INS

PAPI_LD_INS

PAPI_SR_INS

OTHER_INS

(a) Normal CG

 0

 20

 40

 60

 80

 100

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

R
e
d

u
c
ti

o
n

C
ri

ti
c
a
l 

F
a
st

S
T

M
 F

a
st

A
to

m
ic

 F
a
st

%
 o

f 
In

st
ru

c
ti

o
n

s 
R

e
ti

re
d

1 Thread 2 Threads 4 Threads 8 Threads 12 Threads16 Threads24 Threads

 PAPI_FP_INS

PAPI_BR_INS

PAPI_LD_INS

PAPI_SR_INS

OTHER_INS

(b) Pipelined CG

Figure 6.21: Breaking down the total amount of instructions in CG on ExpX5670. Figure
similar to [176].

Fast reach the peak at 12 threads and then the number of mispredictions decreases as the
number of threads increases further. It should be noted that the number of mispredicted
branches is not significantly higher for any of the synchronization patterns or one of the
algorithmic variants. The relative number of mispredicted branches for all synchronization
patterns, algorithmic variations and threads counts is below 0.2 %. This excellent value
is due to the regular structure of the CG method that is simple to predict for the branch
prediction unit (cf. to Figure 6.20(e) and Figure 6.20(f)).

Which instruction type contributes the largest share? Figure 6.21 shows a
breakdown of instructions retired into the measured type of instructions. The available
types are: floating point instructions (denoted as PAPI_FP_INS), branch instructions (la-
beled PAPI_BR_INS), load and store instructions (PAPI_LD_INS and PAPI_SR_INS
respectively) and remaining instruction with the label OTHER_INS. Other instructions
have not been measured but computed as the difference from the measured ones with the
remainder of the retired instructions (PAPI_TOT_INS). The Figure has a normalized y-axis
that shows 100 % of the retired instructions. Each of the instruction types has a box that
represents its share of the retired instructions. These bars are grouped according to the
thread count and each group shows the used synchronization mechanisms (Reduction, Crit-
ical Fast, STM Fast and Atomic Fast). The number of threads for each group is also found
below the label. Figure 6.21(a) shows the breakdown for normal CG and Figure 6.21(b)
shows pipelined CG. For both the following trends can be derived: the share of floating
point instructions decreases as the number of threads increases although the actual number
of floating point instruction is constant. This is due to the fact that the number of other in-
structions increases as the number of threads increases. These additional instructions stem
from the spawning/coordinating more threads. For normal CG and Reduction the share of
FP instructions decreases from 22 % for 1 thread down to 17 % for 16 threads. Pipelined
CG and Reduction yields similar numbers: the FP rate decreases from 25 % for 1 thread to
20 % for 16 threads. A similar trend can be noted for the number of loads and stores: for
Reduction the share decreases from 43 % for 1 thread to 37 % for 16 threads for normal CG
and from 41 % for 1 thread to 36 % for 16 threads for pipelined CG. Further, the different
share for STM Fast deserves mentioning: for normal CG the loads and stores decrease

108



6.3. Conjugate Gradients Solver 109

from 47 % for 1 thread to 41 % for 16 threads (with identical values for pipelined CG). The
share of branch instructions increases: for pipelined CG and Reduction it increases from
12 % with 1 thread to 17 % with 16 threads and for normal CG it increases from 13 % with
1 thread to 17 % with 16 threads. STM Fast shows a similar increase. On the other hand the
share of other instructions increases for normal CG and Reduction from 22 % (1 thread) to
29 % (with 16 threads) and for pipelined CG from 21 % for 1 thread to 27 % for 16 threads.
For STM Fast the increase is from 19 % (1 thread) to 25 % (16 threads) for normal CG and
from 14 % (1 thread) to 21 % (16 threads) for pipelined CG.

To summarize these findings, we conclude that loads and stores contribute the highest
share to the retired instructions (≈ 40 %), floating point instructions contribute ≈ 20 %
and branch instructions ≈ 15 % while other instructions contribute ≈ 25 % and become
increasingly important with larger thread counts. The actual numbers for the synchroniza-
tion variants, thread count and algorithmic choice may vary, but this general trend holds.
Therefore, the dominant instructions for CG in the examined setting are loads and stores.

6.3.3 Findings with Normal and Pipelined CG

Our first finding is that the right way of organizing the reductions is the key to performance.
A reduction implemented with direct updates of the shared variable, as seen in the Slow
synchronization variants, will not yield a speedup over execution with one thread regardless
of the synchronization primitive. Instead thread-local variables that hold intermediate
results, as demonstrated with Fast synchronization variants, are a requirement to achieve
speedups.

Moreover, the pipelined CG with larger transactions is a strong competitor for normal CG
because the number of aborts is modest up to 16 threads. As a downside, pipelined CG
required one more iteration to achieve convergence compared with normal CG for our
example case. For both CG variants, the wait time at the barriers dominates the time for
synchronization in the reduction operations of the Fast variants. This also undermines
the gains of the parallel execution as well as those due to the optimization of TM. The
regular problem structure of CG demands that barriers synchronize all threads after a step
in the loop. Thus, a thread that executes a transaction and forces another thread to abort
and execute again, simply waits longer at the next barrier for the remaining threads. This
basic scenario still holds for longer transactions with pipelined CG. As a result, the CG
algorithm is not suited to demonstrate a performance gain with STM. On the other hand,
the competitive execution time of pipelined CG with larger transactions and still moderate
contention confirms the basic idea of optimizing the TM behavior through employing
larger transactions.

The large difference in execution time for transactions and barriers suggests that future
research should target more efficient barrier synchronization or techniques to elide barriers.
Common to both CG variants, we found that higher thread counts lead to more L2 cache
misses that hinder the scalability and that loads and stores contribute the largest amount to
all kinds of instructions retired.

109



110 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

     
0

50.000

100.000

150.000

200.000
CTL
ETL
WT

Point in time

T
ra

ns
ac

tio
ns

/u
ni

t o
f t

im
e

(a) Sampling the throughput in transactions per unit
of time of three different STM strategies.

1 7 134 10 16 19
0

5.000.000

10.000.000

15.000.000

20.000.000
CTL
ETL
WT

Point in time

A
bo

rt
s/

un
it 

of
 ti

m
e

(b) STM strategies with aborts per unit of time.

Figure 6.22: Comparison of three STM strategies executing an application which executes
either read-only or write-only transactions during a fixed time interval.

6.4 Phase Detection in TM Applications

In contrast to traditional mutual exclusion locks, TM follows an optimistic approach and
concurrently executes transactions. To track the memory accesses of different transactions
to the same data structures, a run time system (e.g., STM) detects and resolves these
conflicts dynamically. Researchers proposed a large variety of STM algorithms for conflict
detection, data versioning, and contention management. However, even a simple word-
based Software Transactional Memory system (e.g. TinySTM [62]) forces the programmer
to decide

• when conflicts are detected (early with encounter-time locking or late with commit-
time locking),

• where speculative data is stored (in-place also called write-through or in a buffer
also called write-back),

• whether reads are visible to writers or invisible.

The first two design decisions covering the conflict detection and the buffering of transac-
tional data can be combined to three STM strategies. We denote these strategies as ETL
(write-back with encounter time locking), CTL (write-back with commit-time locking) and
WT (write-through with encounter time locking). The performance of a TM application
depends on the choice of the STM strategy: workloads with a small abort rate perform
better with an optimistic strategy (e.g., WT or CTL). In particular, data versioning in
memory (write-through) features fast commit operations and slow aborts. On the other
hand, applications with high abort rates favor a pessimistic strategy (e.g., ETL). Figure 6.22
illustrates these performance differences generated with a synthetic TM application. This
TM application is run for 10 seconds and internal counters track successfully completed
transactions and aborts. These counters are read and reset at fixed intervals of 500 ms. Each
second, the TM application transitions between the execution of read-only and write-only
transactions. While the former transactions do not conflict, the latter suffer from writing to
exactly the same memory locations in the same order. Figure 6.22(a) holds the throughput
of the STM system in transactions per unit of time on the y-axis. The alternating exe-
cution of read-only and write-only transactions manifests in peaks and local minima of

110



6.4. Phase Detection in TM Applications 111

the throughput. The Aborts per unit of time (plotted in Figure 6.22(b)) complement the
picture. Although all STM strategies reveal a similar application’s behavior, performance
differences become apparent. Subsequently, a throughput-oriented STM would employ the
WT strategy for the read-only and ETL for the write-only phases. However, an STM with
the objective to minimize the number of aborts would settle for the CTL strategy (cf. to
Figure 6.22(b)).

Although we created the example application artificially, we postulate that TM applications
exhibit phase behavior. In order to systematically investigate the phase behavior of TM
applications, this section introduces two novel algorithms for phase detection in TM appli-
cations [72] that are integrated in the VisOTMA framework. The components, alltogether
forming the Transactional Memory Phase Detector (TMPD), enable a programmer to
systematically investigate the TM application’s behavior, using a compelling user interface,
and help to make a profound decision which STM strategy to select. In contrast to previous
work that selects one strategy for the whole program run, our approach detects program
phases and, thus, uncovers further optimization potential. This section contributes the first
algorithms for offline phase detection in TM applications to the state of the art.

6.4.1 Comparison with Related Work

A survey of phase detection techniques for sequential and parallel applications is given in
Section 3.8. These approaches do not cover TM applications yet. The goal of detecting
phases in TM applications is to have a runtime system that can adapt to these phases and
show a shorter run time or lower abort rate than before. With this background, related
work in the field of adapting transactional memory systems (cf. to Section 3.7) is of
great importance. Marathe et al. present an Adaptive Software Transactional Memory
(ASTM) [131]. ASTM target obstruction-free or lock-free STMs that detect conflicts on
object granularity. As two ends of the spectrum, ASTM uses DSTM (eager-acquire) and
OSTM (lazy-acquire) that differ in details of the organization of the meta data and progress
guarantees. These differences lead to huge performance differences depending on the
workload [132]. DSTM favors write-dominated workloads (and performs significantly
better than OSTM). On read-dominated applications, OSTM performs twice as fast as
DSTM. These performance differences motivate ASTM. ASTM lends from both STMs
to perform well on both kinds of workloads. Moreover the work also demonstrates that a
history helps to adapt the semantics of acquiring an object. The throughput of ASTM is on
a par with the best of the considered STMs.

Inspired by these findings and the dramatic gains in performance, our work aims to detect
phased executions in TM applications in general in order to trigger the adaptation of
an STM, such as ASTM, at a finer granularity. In contrast to the work presented in
Section 3.7 that either uses local adaptation of acquire strategies or tunes STM-specific
parameters implemented inside the STM system, our approach aims at rating the global
behavior of the TM application and providing an approach that is orthogonal to the specific
STM system. Through the use of post-processing tools and visualizing the behavior of
the application, even an inexperienced programmer can take advantage of our approach.
Moreover, considering the global behavior of the TM application also promises larger
gains through exploiting the phase changes. Due to the global scope, this approach is not
limited to changing only the acquire strategy or other STM intrinsic parameters but also
needs to face an additional synchronization of threads for policy changes.

111



112 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

TM application

TracingTinySTM

Trace files

Signal creation

Phase detection
algorithms for TM

Run Time

Post Pro-
cessing

Figure 6.23: Workflow for phase detection in transactional memory applications.

6.4.2 Design of the TM Phase Detector
This section depicts the concept to enable offline phase detection in transactional memory
applications. A schematic overview is given in Figure 6.23. The TM application (without
modifications) is run on top of an extended STM system. The enhanced TinySTM, now
called TracingTinySTM, generates event traces. Chapter 5 describes the design and
performance of the TracingTinySTM as well as the information contained in the trace
files. The Transactional Memory Phase Detector (TMPD) processes these trace files in a
post-processing step. The TMPD incorporates two novel algorithms for phase detection
in TM applications. These algorithms dupped Signal Analysis and Wavelet Transform
are introduced in this chapter. In order to make the raw trace files amendable for these
algorithms, a first processing step transcodes and aggregates the information from the trace
files. The result of this step is a simple aggregate representation that reflects the conflict
potential in form of a signal. In the following, we introduce the TMPD components with
emphasis on the signal creation and phase detection algorithms.

Creating a Signal from Event Traces This paragraph highlights in the following the
generation of the digital signal. To enable signal generation in a transactional memory con-
text, we customized an approach described in the literature [26]. In this previous approach,
the considered events are Running and Idle processor states derived from trace files with
time stamps. The methodology is appropriate because the automatic phase detection is
desgined for large-scale MPI applications such as weather research and forecasting and
applied to e.g., the Nonhydrostatic Mesoscale Model. However, time stamping all transac-
tional events in a multi-threaded environment results in a large overhead. Consequently,
we developed a lightweight time-stamping scheme, which allows to reconstruct the total
order of transactions without introducing an additional synchronization point. The key
is the combination of two time-stamping mechanisms: a heavy-weight operating system
time stamp that is synchronized across all processor cores and a light-weight core-specific
cycle counter (TSC). While the former is only taken at the startup of a thread, the latter
is taken during startup and at all transactional start, abort and commit actions, though
not at reads and writes. Due to the synchronized OS time stamp, an absolute ordering of
events is possible by calculating the relative number of cycles which elapsed since thread
startup. A calculation transforming the cycles into elapsed time enables us to operate with
absolute time stamps. Herewith, two transactions are examined whether their execution
times overlap. Moreover, Table 5.1 in Chapter 5 reveals that on each transactional read or
write access the data address is logged. We use these addresses in the next step to identify
whether two transactions access the same memory or not.

112



6.4. Phase Detection in TM Applications 113

t0 t1 t2 t3

1

2

time tco
nfl

ic
tp

ot
en

tia
la

apply

window

t0 t1 t2 t3

Phase 0

∆
1

Phase 1 Phase 2
∆

21

2

time t

a

Figure 6.24: Digital Signal created from conflict potential of concurrently running transac-
tions on the left hand side. After applying the window of fixed size, the phase
detection is performed.

The signal is calculated according to Equation 6.17. Let h(t) be the amplitude that depends
on the conflict potential of the transactions i and j at time t.

hij(t) =

{
1, conflict at time t detected
0, no conflict is detected or i = j.

(6.16)

Two transactions are said to be conflicting if the following criteria are satisfied:

1. the transactions overlap in time and

2. at least one of the transactions writes the data address which the other transaction
accesses (reads or writes).

The first point enables to abstract from the actual execution while preserving the character-
istic of the application. In particular, we tackle the issue to conclude from the trace files,
generated during one determinate execution of the application, to a general phase behavior.
Especially when considering TM workloads, the OS scheduling impacts performance: two
threads A and B scheduled together may create a conflict if A starts a transaction before
B commits the ongoing transaction e.g., because both write the same address. Whereas
delaying the start of the transaction in thread A until B is about to commit, does not
result in a conflict. In TM, this means that in the first case a transaction is aborted and
executed again whereas in the second case both transactions run without conflict. From the
standpoint of the conflict probability both cases are equal because whether or not a conflict
will manifest during the next execution depends on the operating system. We attempt to
mitigate this issue by comparing all memory accesses (reads and writes) of overlapping
transactions. In case we detect a conflict inducing access pattern to the same address, the
conflict potential for these two transactions increases by one. Further conflicts of these
two transactions are not accounted for. In the following, we will formalize this method.
The inspection of the two overlapping transactions produces hij for transactions i and j
as defined earlier in Equation 6.16. For each point in time t, the amplitude of the digital
signal a is calculated through summing up over hij:

a(t) =
n∑
i=1

n∑
j=i+1

hij(t). (6.17)

In order to clarify this procedure, we show an example with three transactions. The left
hand side of Figure 6.24 illustrates two transactions that conflict at time t1. Then, a third

113



114 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

V 2: 9 7 3 5

V 1: 8 4 W 1: 1 -1

V 0: 6 W 0: 2

Figure 6.25: Haar wavelet transform of the digital signal [196].

transaction also has a conflict with one of the previous transactions at time t2 – as a
consequence, the signal rises and then drops at t3. At t3, all transactions are finished such
that no conflict potential remains: the signal is zero.

The amplitude range of the signal depends on the number of threads n: amax = (n∗(n−1))
2

,
with amax being the maximal amplitude of the digital signal. This digital signal is used as
the basis for two phase detection algorithms: Signal Analysis and Wavelet Transform.

Signal Analysis Once the digital signal, representing the conflict potential of transac-
tions, is created, the signal analysis algorithm proceeds. The algorithm first divides the
signal into sections of fixed size (called windows). The window size is part of the algo-
rithm’s parameter set and can be specified by the user. Varying the window size enables
the detection of program phases of differing lengths. For each section, the arithmetic
mean signal is calculated and stored in an array. For subsequent sections, the mean values
are compared. If the difference exceeds the user-defined threshold th, a phase change
is detected and reported. Obviously a phase detection procedure requires to set th such
that th ∈ ]0, amax[. With th = 0, every signal change results in a detected phase whereas
th = amax will not yield any detected phase changes. However, a meaningful value for th
is to be determined experimentally.

The right hand side of Figure 6.24 illustrates the detection of phase changes with the
algorithm Signal Analysis. First we apply a window of size s with s = t2 − t0. The
window evens out the two plateaus between [t0, t1] and [t1, t2] from the original signal so
that the average of the previous plateaus remains in [t0, t2]. In [t2, t3] the averaging window
does not change the original signal. Setting the threshold th = 1 yields two detected
phase changes. For this detection, we compare ∆1 and ∆2, that are the differences of the
adjacent windows, to the threshold th. The algorithm detects a phase change if ∆ > th.
Thus, for the simple example, the Signal Analysis algorithm detects two phase changes.
In order to exploit these phase changes, the threshold th must be high and the number of
detected phase changes should be low. In case th is high, the adjacent program sections
have different characteristics. In case the number of phase changes is small, the overhead
of changing from one STM system to the next is limited. In order to successfully exploit
the phase behavior, both criteria must be satisfied.

Wavelet Transform Wavelets originate from functional analysis and enable the de-
composition of functions in coarse and fine/high frequency parts [196]. The coarse part
describes the overall shape whereas the level of detail is controlled with the finer parts.
This makes wavelets amendable for compression because some of the coefficients that
relate to high frequency parts of the image can be left out without causing visible artifacts.
Other desired properties of wavelets are that, in contrast to other transformations from

114



6.4. Phase Detection in TM Applications 115

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 o
ve

r 
w

in
d

ow
 s

iz
e

0.0

Time

(a) Averaged signal for a window size that is equal to 1% of the signal length.

0.0

0.1

0.2

0.3

A
ve

ra
ge

 o
ve

r 
w

in
d

ow
 s

iz
e

Time

(b) Averaged signal for a window size that is equal to 10% of the signal length.

Figure 6.26: Influence of using the average value of a window with different sizes for the
signal analysis algorithm.

the time into the frequency domain like the fourier transform, wavelets are preserving
the locality. Therefore, one can match the original signal with its wavelet transformed
counter part. Moreover, the wavelet transformation supports multi-resolution so that it
supports refinement of an initial transformation if this is desired. Several applications of
the wavelet transform have been shown in Chapter 3.8. For our particular goal, we employ
the one-dimensional Haar wavelet transformation as it is straightforward to implement
and fast. Stollnitz et al. present a thorough introduction to wavelets and their application
in computer graphics in [196]. Figure 6.25 illustrates the one-dimensional Haar wavelet
transformation. The digital signal is represented as vector V 2. From the first two elements
of V 2 the arithmetic mean is stored in V 1. This is the coarse part of the signal obtained
through averaging. Further, the difference to this mean is kept in W 1. In a next step V 1

is used to compute V 0 and W 0. The user can specify the number of iterations N (in this
example N = 2). The vectors W are needed for the lossless reconstruction of the original
signal and contain the high frequency parts of the signal obtained through calculating the
differences. In computer grafics these are also named detail coefficients. In order to execute
a fully fledged phase detection with Haar wavelets, we would have to preserve these detail
coefficients and later on use a K-means clustering algorithm to determine how similar
two of the resulting vectors are (cf. to [98]). For our purpose here, the high frequency
parts are of minor importance because only a TM phase behavior that differs significantly
in the coarse grain coefficients will lent itself to being exploitable. Therefore, we omit
the high frequency parts and also do not require the K-means clustering. For additional
savings in time and space we do not compute the vectors W . With the remaining vector V ,
adjacent values are compared to a threshold value and a phase change is detected. Thus,
after applying this reduced Haar wavelet transform, we can not expect the detected phases
to have a different quality than those detected with Signal Analysis but the comparison will
provide an insight into the relations of the parameter settings for both algorithms.

6.4.3 Applying Phase Detection Algorithms to the STAMP Suite
In this section the results of the phase detection algorithms are evaluated. Starting with
the artificial example application from Chapter 1, we illustrate the impact of specific

115



116 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

Name Input parameter set
bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2
genome -g256 -s16 -n16384
intruder -a10 -l4 -n2038 -s1
kmeans-low -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt
kmeans-high -m15 -n15 -t0.05 -i random-n2048-d16-c16.txt
labyrinth -i random-x32-y32-z3-n96.txt
ssca2 -s13 -i1.0 -u1.0 -l3 -p3
vacation-low -n2 -q90 -u98 -r16384 -t4096
vacation-high -n4 -q60 -u90 -r16384 -t4096
yada -a20 -i yada/inputs/633.2

Table 6.3: STAMP input parameter sets used for evaluation of phase detection algorithms.

algorithmic parameters. With parameters deduced from the findings in this small example,
we evaluate the STAMP benchmark suite which contains widely-accepted transactional
memory benchmarks [24].

Parameter choice. The detection of program phases depends on the parameter setting
of the algorithm. In the following example, we study the impact of setting the window
size of the algorithm signal analysis to 1 % and 10 %. A larger window size leads to a
larger amount of averaged values of the signal, thus, reducing the influence of a single
value. When weighting each value equally, frequent phase changes with small duration
may occur. Figure 6.26 highlights the impact on the resulting signal. The x-axis represents
the time whereas the y-axis holds the conflict potential of the transactions. Please recall
that the application is by construction changing between two modes of execution: running
conflicting or read-only transactions. When setting the parameter window size to 1 %
(Figure 6.26(a)) this behavior is clearly preserved. The plots show two threads. The
conflict potential transitions between 0.7 (with conflicts) and 0 (without conflicts). Thus,
the application behavior is very well preserved. However, when setting the window size to
10 % (cf. to Figure 6.26(b)), the signal ranges from 0.3 to 0.35 and a phase change can not
be detected. Thus, the latter parameter setting is not adequate to capture the phase behavior
for this example.

The STAMP benchmark suite contains eight benchmarks equipped with different input
data sets. Two programs (kmeans and vacation) have input data set for different
transactional behavior (high or low contention). Each benchmark executes with 8 threads
on Exp2378 and runs to completion with the small input sizes. The parameter sets for the
benchmarks are listed in Table 6.3. Trace files, generated during the execution, are then
post-processed by the phase detection algorithms.

Figure 6.27 depicts the phase changes detected in the STAMP applications when using
the algorithm Signal Analysis. The parameter space of the algorithm is explored: the
threshold (th ∈ (1, 10)) as well as the window size ((1 %, 25 %) of the signal size) are
varied. These ranges are well within the theoretical limits (0 < th < a = 27) and
guided by the findings in the last section. The z-axis depicts the number of detected
phase changes. Bayes (in Figure 6.27(a)), intruder (in Figure 6.27(d)), kmeans
with high contention (in Figure 6.27(e)), kmeans with low contention (in Figure 6.27(f)),
ssca2 (in Figure 6.27(g)) and yada (in Figure 6.27(i)) show phase changes (the actual
number ranges from 2 to 28) for small values of th and small to middle sized windows.

116



6.4. Phase Detection in TM Applications 117

(a) Bayes benchmark. (b) Labyrinth benchmark.

(c) Genome benchmark. (d) Intruder benchmark.

(e) Kmeans with high contention. (f) Kmeans with low contention.

(g) Ssca2 benchmark. (h) Vacation with high contention.

(i) Yada benchmark.

Figure 6.27: Phase Detection with Signal Analysis of STAMP benchmarks.
117



118 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

Labyrinth (cf. to Figure 6.27(b)) and genome (cf. to Figure 6.27(c)) show phase
changes only for small values of th and small window sizes. For vacation (cf. to
Figure 6.27(h) with both versions - one without plot) no phases changes are detected with
Signal Analysis.

In Figure 6.28 the Wavelet Transform is applied to trace files of the STAMP benchmarks.
The parameter setting includes N , the number of iterations, and th. Due to the smaller
window sizes for small values of N (window equals 2N ), substantially more phase changes
are detected for small values of th. Even both version of vacation (cf. to Figure 6.28(h)
and Figure 6.28(i)) exhibit phase changes, although only up to 4 with low contention.
Compared to this small maximum number, the phase changes detected with ssca2 (cf.
to Figure 6.28(g)), kmeans with high (shown in Figure 6.28(e)) and low contention (cf.
to Figure 6.28(f)), intruder (cf. to Figure 6.28(d)) and bayes (cf. to Figure 6.28(a))
are high (up to 2 ∗ 106). Labyrinth (cf. to Figure 6.28(b)) and genome (cf. to
Figure 6.28(c)) show up to 200 phase changes. Phase detection with yada did not finish in
due time. All detected phases with the Wavelet method have in common that the threshold
value th must be very small (≈ 1− 2).

Performance Gains. As a last step, we would like to draw the attention to the possible
performance gains from exploiting phases. In the synthetic example from Figure 6.22,
the phase changes are visible and we can calculate the highest possible throughput. The
assumption is a zero overhead mechanism that selects the strategy with the highest through-
put (in transactions per second) at the sampling points. The selection alternates between a
write-through strategy (WT) for read-only transactions and ETL (encounter-time locking
with write back) for writing transactions. Compared to the overall throughput in transac-
tions per second of the WT strategy (highest), the improvement is 4.3 %. If the programmer
selects an STM strategy at random, the resulting performance equals the average through-
put of all three strategies. Thus, compared to the average throughput of the three strategies,
the proposed combined strategy achieves a 20 % improvement in transactions per second
for this synthetic example. These numbers are the theoretical maximum and will be hard
to achieve in practice.

Especially the results from the previous paragraph demonstrate that phase changes in
practice are not as pronounced as in the synthetic example. Otherwise, we would detect
phase changes for higher values of the threshhold th. Moreover the phases are short -
with longer phases, the detection of phases would also report changes for larger window
sizes (or higher values of N for Wavelets). Regarding both findings together, we draw
the conclusion that successfully exploiting the discovered TM phase behavior through
changing the STM strategy for a blocking STM appears to be infeasible. The reason is that
the phases are not long enough and the similarity of these phases is high. Thus, a blocking
STM system does not show a tremendous performance difference and the overhead of
switching the STM strategy will not amortize over time.

6.4.4 Discussion of Phase Detection for TM

In this previous section, we present a systematic approach to detect phase behavior in
transactional memory applications that is integrated in the VisOTMA framework. We
introduce the Transactional Memory Phase Detector (TMPD) together with two adapted
phase detection algorithms: Signal Analysis and Wavelet Transform. The results show that
we succeed to identify phase behavior in an artificial show case as well as in the STAMP

118



6.4. Phase Detection in TM Applications 119

(a) Bayes benchmark. (b) Labyrinth benchmark.

(c) Genome benchmark. (d) Intruder benchmark.

(e) Kmeans with high contention. (f) Kmeans with low contention.

(g) Ssca2 benchmark. (h) Vacation with high contention.

(i) Vacation with low contention.

Figure 6.28: Phase Detection using Haar Wavelets of the STAMP benchmarks.

119



120 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

transactional memory benchmarks and studied the influence of the parameter settings on
the phase changes. For the artifical case, a performance gain between 4.3 % and 20 % can
be estimated if the overhead for changing the STM strategy is neglected. For the practical
STAMP benchmarks, changing the STM strategy for the considered blocking, word-based
STM appears to be infeasible. The reason is that the phases are not long enough and
the similarity of these phases is high. Thus, a blocking STM system does not show a
tremendous performance difference and the overhead of switching the STM strategy, that
also must be considered in a realistic scenario, will not amortize over time.

120



6.5. EigenOpt 121

TM Application

Analysis

TM event
traces

EigenBench
parameters

Programmer
attempts to
realize most
promising
optimization

Run applica-
tion mimicry

Tweak param-
eters

Repository for
optimizations

1

Figure 6.29: Components and interactions to illustrate the optimization workflow with
EigenOpt.

6.5 EigenOpt
In this section, we built on the previous idea on using a proxy application, such as PSTMA
or CLOMP-TM, to optimize the TM application of interest. Now the focus is on the
automation of the optimization process. The idea is to capture the important orthogonal TM
characteristics through combining TM events with the readings of hardware performance
counters. We use these orthogonal characteristics as input parameters of the EigenBench
benchmark [94]. With these parameters the EigenBench benchmark can simulate the TM
application behavior. Hence, changes in the parameter set of the benchmark reflect changes
in the TM application. We aim to exploit this correlation to simulate optimization attempts
through changing the parameters according to a set of optimization patterns and exclude
optimization directions with diminishing returns. In case the changed parameter setting
reveals a speedup compared with the original one, the optimization must be transferred
to the TM application. This may not always be possible, e.g., due to the placement of
transactions in the code, but in case the optimization of the TM application succeeds,
the performance gains should be similar to the simulated ones. This approach has been
described in more detail in [19] and exploits properties of the EigenBench benchmark to
optimize a TM application, hence we call the approach EigenOpt.

Figure 6.29 illustrates the workflow with EigenOpt. The TM application at the top is
not optimized directly. Instead, we generate TM event traces and process these in an
analysis phase to extract the parameters for EigenBench. Now the EigenOpt circle starts:
The parameters can now be tweaked to resemble an optimization of the application.
The resulting application mimicry with EigenBench is run and evaluated. In case the
performance is better than the original application, the parameters may be tweaked further.
In case a substantial performance gain has been achieved in the simulation, the programmer
attempts to realize the optimization with the TM application. The far goal of this approach
would be to have a repository for optimizations that have been applied successfully in the
past combined with an illustration of the respective programming pattern.

6.5.1 Parameters of Eigenbench
In the following, we will briefly highlight the necessary parameters for the EigenBench
benchmark to describe the TM application’s behavior in a sufficient level of detail [94].

121



122 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

Name Meaning Name Meaning
N Number of threads R3i Reads of cold array inside Txn
S Random seed W3i Writes of cold array inside Txn
tid Thread id R3o Reads of cold array between Txns
loops Number of Txns per thread W3o Writes of cold array between Txns
A1 Size of Array1 (hot array) Nopi No-ops between TM accesses
A2 Size of Array2 (mild array) Nopo No-ops outside Txn
A3 Size of Array3 (cold array) Ki Scaler for in-Txn local ops
R1 Reads/Txn of hot array Ko Scaler for out-Txn local ops
W1 Writes/Txn of hot array persist Restore random seed if violated
R2 Reads/Txn of mild array lct Probability of address repetition
W2 Writes/Txn of mild array

Table 6.4: Parameters used in EigenBench. Taken from [94].

Characteristic Definition (Eigenbench Parameters)
Concurrency Number of concurrently running threads (N )
Working set size Size of frequently used memory (A1 + A2 + A3)
Transaction length Number of shared accesses per transaction

(Tlen = R1 +R2 +W1 +W2)
Pollution Fraction of shared writes to shared accesses ((W1 +W2)/Tlen)
Temporal locality Probability of repeated address per shared access (lct)
Contention Probability of conflict of a transaction (see Equation (1) [94])
Predominance Fraction of total shared cycles to total execution cycles

(Tlen ∗ α/(Tlen ∗ α + Cin + Cout))
Density Fraction of non-shared cycles executed outside of transactions to

total non-shared cycles (Cout/(Cin + Cout))

Table 6.5: Orthogonal TM characteristics; similar to [94].

These EigenBench parameters have been selected so that they are orthogonal and are
independent of each other - analogue to orthogonal vectors in linear algebra. Table 6.4
holds these parameters for EigenBench and an explanation. The benchmark uses three
arrays A1, A2 and A3 to generate a characteristic TM application’s behavior according
to the settings of the parameters. While A1 is transactionally accessed from all threads
and generates contention among the threads, threads in transactions only access disjoint
portions of A2. Hence, A1 is called cold array whereas A2 is called mild. Threads access
A3, a cold array, outside of transactions and also disjointly. Ri specifies the number of read
accesses to Ai whereas Wi defines the number of write accesses to Ai. Hence, the sum of
R1 + W1 + R2 + W2 defines the length of a transaction. The parameter loops defines
the number of transactions executed per thread in the benchmark.

Table 6.5 describes the orthogonal TM characteristics generated with these parameters.
The number of concurrently running threads is simple to understand and measure. The
working set size can also be measured through counting the accesses inside and outside of
a transaction. The transaction length is already present in the trace files through logging
all read and write accesses in transactions. Current TM event traces already contain
this information. Other parameters such as accesses to the three arrays are difficult to
discern. Moreover instructions/cycles spent inside or outside of transactions are currently
not part of the information retrieved. Hence, substantial changes to the tracing machinery

122



6.5. EigenOpt 123

C Identifier Events
stm_init_thread TIMING1, TIMING2, RTSC
TM_THREAD_ENTER NONTXSTART, PAPI1, PAPI2, [INST]
TM_BEGIN NONTXEND, PAPI1, PAPI2, [INST]
stm_start START, RTSC, RETURN, PAPISTARTSET
TM_SHARED_READ –
stm_load() READ, [RTSC]
TM_SHARED_WRITE –
stm_store WRITE, [RTSC]
stm_commit COMMIT, RTSC, RETURN, PAPI1, PAPI2, [INST]
TM_END: NONTXSTART, PAPI1, PAPI2, [INST]
TM_RESTART –
stm_rollback ABORT, RTSC, PAPI1, PAPI2, [INST]
TM_THREAD_EXIT NONTXEND, PAPI1, PAPI2, [INST]
stm_exit_thread TIMING1, TIMING2, RTSC

Table 6.6: Additional event types required for EigenOpt. Compile-time options enable the
events in square brackets. Taken from [19].

are necessary in order to enable an analysis that extracts the required parameters for
EigenBench.

6.5.2 Changes to the TracingTinySTM

Table 6.6 illustrates all events that the tracing machinery must capture to enable EigenOpt.
A new event is required to distinguish between transactional and non-transactional execu-
tion. Hence, the start of a non-transactional execution is marked with the NONTXSTART
event. The counters track the application during the non-transactional execution that is
ended with a NONTXEND event. As expected a NONTXEND event indicates the begin of
a transaction so that the counters are read and reset. The reading of the user-defined PAPI
events that are complemented with an event that tracks the number of executed instructions
(represented through INST). These events enable to distinguish computation inside and
outside of transactions.

6.5.3 Adjustments to Post-Processing Tools

The post-processing tools, that use the TM event traces as inputs, must analyze and extract
the parameters for the EigenBench microbenchmark. Hence, we register the new events
with the parser of the trace files and associate each transaction with non-transactional
values that are related to the code before that transaction. The size and the type of accesses
to the contentious array A1 of EigenBench are determined through identifying contentious
addresses in the read and write sets. These accesses are counted as R1 or W1 respectively.
Reads and writes that are not causing contention are accounted to array A2. To find out
how often these addresses are repeated and determine the parameter lct, ParaverConvert
must divide the number of unique accesses by the number of total accesses per transaction.
Hence, the number of unique accesses for each transaction must be computed additionally.
Unfortunately, this scheme does not yet account forA3 with accesses outside of transactions.
Hence, these counts must be estimated by other means either through profiling or through
counting accesses in the program.

123



124 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

0

50000

100000

150000

200000

250000

2 4 6 8 12 16 24 32 48 64

Tr
a
n

sa
ct

io
n

s
/

se
co

n
d

s

Number of Threads

Transaction Tracing with dummy output
Globa l Tracing with dummy output

Transaction Tracing with PAPI enabled
Globa l Tracing with PAPI enabled

Figure 6.30: Influence of reading PAPI counters on throughput of TM system. Taken
from [19].

Due to the lack of experience in the computation of these parameters, the analysis outputs
three granularities of aggregated trace data:

• per atomic block – gathering statistics for each atomic block defined in the source
code separately,

• per thread – collecting statistics for each thread separately, and

• per application – using averages over multiple transactions and multiple threads.

We expect per atomic block to come closest to the behavior of the original application
because it enables the highest resolution of parameters. per thread averages the parameters
of all transactions of a thread whereas per application additionally averages the parameters
of the threads, hence both metrics should yields more coarse grain parameters. The
post-processing tool uses a separate file for each of the three metrics.

6.5.4 Intrusiveness with EigenOpt

The intrusiveness of introducing additional PAPI events and reading the hardware per-
formance counters is quantified in this section. Our experiments aim at distinguishing
whether the reading of hardware counters through PAPI introduces the delays and adds
to the intrusiveness or the writing of the additional events that are handled by the tracing
machinery. Therefore, we compare the two tracing strategies Transaction Tracing and
Global Tracing in two different settings. In the first setting the PAPI interface is used
to read and reset the hardware performance counters as described before (called PAPI
enabled). In the second setting dummy values are passed to the event logging system to
mimic the same utilization as with PAPI while at the same time by-passing the overheads
associated with reading and resetting the counters. This setting is called dummy output.

Figure 6.30 illustrates the differences with the two tracing strategies and clarifies the
overhead of PAPI. The y-axis holds the Transactions executed per second. The x-axis
shows the number of threads. For both tracing strategies and all threads the figure clearly
shows that the dummy output yields a higher throughput in transactions per second.
Hence, the influence of the overheads associated with accessing the performance counters

124



6.5. EigenOpt 125

10

20

30

40

50

60

70

80

90

2 4 6 8 12 16 24 32 48 64

A
b
o
rt

R
a
te

Number of Threads

Transaction Tracing with dummy output
Globa l Tracing with dummy output

Transaction Tracing with PAPI enabled
Globa l Tracing with PAPI enabled

Tracing disabled

Figure 6.31: Influence of reading PAPI counters on the abort rate. Taken from [19].

through PAPI are significant. Hence, the tracing machinery is not the main source for the
intrusiveness but the indispensable use of the hardware performance counters. Moreover,
this experiment also reveals that Transaction Tracing yields a higher throughput than
Global Tracing.

As we mentioned before in Chapter 5, a degraded throughput does not necessarily mean a
high intrusiveness in terms of altered transactional behavior. Hence, we also compare the
abort rate, that is aborts per commit of a transaction, of the four described variants with
execution without tracing. Figure 6.31 shows the findings. The y-axis holds the abort rate.
The x-axis shows the number of threads. While the deviation with 2 and 4 threads is high,
higher thread counts (greater than 8) clearly show that the variant without tracing shows
the lowest abort rate. Both strategies with dummy outputs come fairly close and only show
a slightly increased abort rate. Both variants with PAPI enabled show a clearly increased
abort rate. Again, Transaction Tracing yields a better abort rate than Global Tracing.

From the results of this experiments we conclude that accessing PAPI performance coun-
ters has a major influence on the recorded TM application behavior. While the tracing
machinery is adequate to handle the amounts of trace data and only introduces a small
probe effect, the reading and resetting of performance counters is the source of additional
overheads and contributes the larger part to the probe effect. Moreover, the strategy of
Transaction Tracing shows a lower intrusiveness than Global Tracing.

Improving the Quality of the EigenBench Parameters

The parameters of EigenBench do not account for the overhead that is associated with
using an STM library. When an access to shared memory is carried out by means of an
STM library, each shared memory access (e.g., write to A1) results in multiple memory
accesses that do the STM book keeping, e.g. check locks, buffer the speculative value, to
provide isolation between transactions. For our apporach this means that we will measure
all the instructions carried out by the STM and need to find a way to deduce the original
EigenBench parameter. The previous example with a single memory access illustrates that
the measured counts are higher than the original parameters. Hence, we need to find a way
to account for and reduce this systematic over-estimation.

125



126 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

Iteration R3i W3i Nopi R3o W3o Nopo
InTxn 10 10 10 0 0 0
1 1 595 1 067 2 540 266 198 604
2 179 107 116 979 268 518 266 198 604
3 19 809 914 12 845 297 24 753 117 266 198 604
NonTxn 0 0 0 10 10 10
1 270 200 535 1 588 1 063 2 610
2 270 200 535 178 748 116 723 267 699
3 270 200 535 19 765 394 12 916 327 29 687 539

Table 6.7: Cases InTxn and NonTxn with known inputs are used to quantify the parameters
that accumulate over repeated runs of the simulation due to the overheads of
STM. Taken from [19].

Table 6.7 illustrates two test cases that execute with the original EigenBench parameters
shown in line InTxn and NonTxn respectively. A simulated run with these parameters yields
the parameters after one iteration. InTxn does not use any non-transactional parameters and
sets these to zero for this experiment whereas NonTxn sets the in-transactional parameters
to zero. The remaining parameters are transferred from one simulation run to the next such
that iteration two uses the parameter set determined with iteration one and so on. Clearly
the table illustrates that the free parameters grow super-linearly whereas the fixed ones yield
the same values each time. This illustrates on the one hand that for fixed parameters the
results are stable and reproducible and on the other hand that the fast growing parameters
should be mitigated through a factor. Hence, we determine a factor for each parameter in
Table 6.7 that is used as a divisor to enable reproducible results with this kind of iterative
experiments. These divisors are output into a separate configuration file in order to reduce
the overheads accumulated in the parameter sets. Of course this simple scheme does not
work equally well for all cases but at least it approximates the original and the measured
input parameters as further experiments with mixed workloads reveal [19].

Characteristic Intruder per application per atomic block per thread
Transaction Percentage 65.3% 88.4% 83.6% 89.6%
Transaction Size 4 460 10 900 8 860 9 890
Read Set Size Ratio 95.5% 84.1% 67.9% 84.1%
Write Set Size Ratio 99.9% 96.7% 74% 96.7%
Read Set Conflict Density 0.4% 0.02% 0.003% 0.03%
Write Set Conflict Density 5.3% 0.3% 0.006% 0.4%
Read Set Size 15.9 16.8 2.93 16.8
Write Set Size 1.58 0.994 0.43 0.996
Write Read Ratio 9.21% 5.53% 1.36% 5.54%

Table 6.8: Transactional characteristics of the intruder benchmark executed with four
threads on ExpQ6600. Similar to [19].

126



6.5. EigenOpt 127

Parameter Case1 Case1 with two transactions
A1 30 938 30 938
A2 32 000 32 000
R1 29 15
W1 11 6
R2 99 50
W2 38 19
lct 48 48
loops 25 000 50 000
R3i 0 0
W3i 0 0
Nopi 0 0
R3o 73 35
W3o 21 10
Nopo 51 25

Table 6.9: Parameters obtained from traces of Case1 with one long transaction and sim-
ulation of adjusted parameters with two shorter transactions. Executed with
100 000 transactions and four threads on ExpQ6600 using the per application
metric. Similar to [19].

6.5.5 Results with EigenOpt

Intruder Benchmark

As a first benchmark, we use the intruder benchmark from the STAMP suite [24].
This benchmarks helps to see whether our approach is already fit for more complex and
real-life applications. In order to compare the execution and the measured parameters,
we use TM characteristics from [100] to describe the TM behavior. The overheads have
been removed from the measured values with the techniques described in Section 6.5.4.
Table 6.8 holds the original parameters and the measured parameters per application, per
thread, and per atomic block. Obviously, the per atomic block metric yields parameters
that deviate the most from the original parameters. While the per application and per
thread metrics are better, these are still not close. For the read and write set conflict density
both metrics deviate by more than a factor of 10. With these large differences from the
original parameters, there is no value in trying to optimize the intruder benchmark
because the mechanically retrieved parameters do not resemble the original application’s
behavior close enough. Hence, we test a simple test case in the next section.

Test Application

In order to demonstrate the usefullness of this approach we use a simple test application that
updates a fixed number of consecutive memory locations in parallel (cf. Figure 6.7 in [19]).
In this application, from hereon called Case1, the application first reads all and later writes
these locations inside the same transaction. Further we add dummy computation inside
and outside of transactions to increase in-transaction times and reduce the pressure through
repeated execution of transactions.

Table 6.9 holds the original and simulated characteristics of Case1 and illustrates that
both are close enough so that the simulation resembles the original execution. Hence,

127



128 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

we proceed by setting up two scenarios with different contention levels in the following.
Our findings show that a higher abort rate must not mean a longer execution time but
also illustrate that even the simple question whether to use one long or rather two short
transactions may have two different answers depending on the contention level. Hence,
simulation helps to find out whether a change is profitable or not. In the following, we
focus on the results whereas a detailed description of the process with additional parameter
sets and an additional example is presented in [19].

Table 6.10 holds the performance data that represents the first optimization attempt. Case1
shows the initial performance of the test application with a high abort rate. A possible
optimization attempt is to split the large transaction into two smaller ones, herewidth
reducing the size of the read and write sets in the STM and the execution time of a
transaction. A shorter execution time reduces the likehood of a conflict while a smaller
read and write sets reduce the amount of wasted work in case a transaction rolls back.
Case1 with two transactions illustrates the changed application’s behavior and shows a
reduced execution time and a smaller abort rate. The speedup in execution time due to the
two transactions is 2.65 x with respect to the original case with only one transaction. Of
course this large performance gain may not be generalized but the small test illustrates
that significant improvements are possible. This example shows that an optimization that
has been simulated first with the parameters of the EigenBench microbenchmark and its
execution, may be transferred to the original application and yield performance gains.

Table 6.11 demonstrates that these optimization are difficult to carry out without simulation.
The very same Case1 with a different parameter setting that increases the number of
memory locations by a factor of 62.5 yields a decreased abort rate for the original case
and the case with two transactions is slower although it yields a lower abort rate. Here
the decreased data locality lead to a lower contention so that the overhead of setting
up and committing two transactions instead of one does not outweigh the additional
computation required due the higher abort rate. The relative difference in run time is−7.9 %
compared with only one transaction. This example shows that even simple changes to an
application yield a significantly different run time behavior and the return of investment of
optimizations depends on many factors e.g., in-transaction times, contention, computation
outside of a transaction, data locality. The fact that the EigenOpt approach determines and
accounts for these parameters makes it valuable while the imprecise data that is collected
due to the STM overheads and the intrusiveness of the approach must still be significantly
improved.

6.5.6 Outlook for EigenOpt
The run time information required to extract and compute the necessary characteristics for
EigenBench, put a high pressure on the event logging machinery and the frequent reading
of hardware performance counters increases the intrusiveness. Our two examples show
that the gains of the same optimization applied to two slightly different scenarios may

Testcase Time in seconds Abort rate (in %)
Case1 7.21 23.54
Case1 with two transactions 2.72 4.32

Table 6.10: Test case with high contention and one and two transactions. Run with 8
threads on ExpX5670 and reporting averages over 100 runs.

128



6.6. Conclusions 129

Testcase Time in seconds Abort rate (in %)
Case1 9.03 2.19
Case1 with two transactions 9.74 0.79

Table 6.11: Test case with low contention. Run with 8 threads on ExpX5670 and reporting
averages over 100 runs.

yield a speedup of s 2.65 x over the previous version of the code or a relative difference
in execution time of −7.9 % depending on the level of contention. We deduce from these
findings that successful optimizations depend on many factors e.g., in-transaction times,
contention, computation outside of transaction, data locality that all have to be taken into
account. The EigenOpt approach considers all of these parameters which is the strong
side. Unfortunately, the high intrusiveness biases the trace information so that the results
presented for the mimicry of the intruder benchmark with EigenBench show a large
deviation from the expected values. Hence, further research should investigate how to
reduce the intrusiveness/probe effect on the TM application. A promising approach for TM
applications using STM is sampling. Sampling takes statistical samples at a fixed interval
and interpolates the application profile from these measurements. A sampling tool that also
includes the reading of hardware performance counters is Open|SpeedShop. We believe
that Open|SpeedShop could significantly reduce the intrusiveness while at the same time
providing the required level of detail although with some uncertainty due to the statistical
sampling.

6.6 Conclusions
In this chapter we present a framework and its components for the Visualization and
Optimization of TM Applications (VisOTMA). VisOTMA supports the experienced as well
as the untrained programmer of TM applications when designing, rating and optimizing
a TM application. Through visualization of the TM application’s behavior, we enable
the programmer to identify pathological execution patterns that are known to degrade
performance. Moreover, the question of a profitable transaction length is addressed in
detail. In order to guide the programmer, we present a simple reference application and an
optimization algorithm. Further, techniques to capture TM events and dynamic memory
requests are employed. The resulting log files enable a comprehensive post-processing and
visualization process even for unmanaged languages e.g., C or C++. Thus, our approach
improves on the existing solutions through providing a correlation of TM events with
the line in the source code and a mapping of addresses in transactional loads and stores
to data structures of the application as well as collecting and providing the readings of
hardware performance counters. Especially, combining the visualization (Paraver) with the
comprehensive transactional statistics inside the VisOTMA framework is useful to uncover
bottlenecks of TM applications.

We demonstrate the ability of the VisOTMA framework to identify the sources of conflicts
in two well-known pathological TM cases (StarvingElder and FriendlyFire). We show how
an inexperienced programmer may optimize the TM application even in the absence of
performance-critical patterns. This is achieved by tuning the transaction size according to a
metric provided by the VisOTMA framework. Through simply enlarging the transactions,
an unexperienced programmer can tune a C++ application simulating a fluid and yields a
speedup up to 1.43 over the intuitive transactional version.

129



130 6. Visualization and Tool Support for TM Applications in Unmanaged Languages

We highlight the versatility of the VisOTMA framework through visualizing the behavior
of a hybrid TM system called TMbox. Optimizing the execution of intruder on TMbox
illustrates that porting an application from STM to hybrid TM does not yield performance
gains for free. Instead, a careful investigation of the run time behavior of the application
combined with tuning the STM parameters yields the relative performance improvement
of 24.1 % when moving from STM to a hybrid-ETL variant.

VisOTMA enables us to investigate the applicability of TM to the method of Conjugate
Gradients. We carefully select a second formulation of the algorithm and use the hardware
performance counters to compare the run time behavior of both algorithmic variants. We
investigate the convergence behavior and dissect the utilization of the microarchitecture.
With small extensions of VisOTMA components, we extent the capabilities to also trace
the wait time at OpenMP barriers. This reveals the cause for the limited speedups with
both variants.

Furthermore, we present TMPD, a component that enables the detection of execution phases
in TM applications based on the conflict probability. Two algorithms for the detection of
phases are transferred to TM: SignalAnalysis and a Wavelet-based scheme. We analyze
most of the STAMP benchmarks with both algorithms and find that the threshold for
detecting a phase change must be low and the window size must be small in order to detect
phase changes. These parameters are not very encouraging when wanting to exploit these
phase changes because it means that differences between phases are small and only exist
for a short period of time. These findings make exploiting phase changes and achieving a
speedup in a blocking STM system difficult.

Finally, we research how to simulate the effects of optimization with a configurable
benchmark called EigenBench. The approach, named EigenOpt, relies on the readings
of the hardware performance counters to extract the characteristic TM behavior of the
TM application and obtain the parameter settings. In a simulation phase these settings are
changed to reflect specific optimizations of the application. When this simulation yields
performance gains, the optimization must be ported back to the application. Although this
approach has been shown to work for simple test cases, we found that for more complex
benchmarks, such as intruder, the intrusiveness of the tracing machinery must be
reduced significantly in the future in order to achieve a higher precision of the parameters.

130



7. Compiler Support for TM and
Guidance Through Static
Information

The following Chapter 7 comprises two sections that address the compilation process
of a TM application. Section 7.1 highlights the initial design and implementation of
transactional memory support for the C programming language in GCC, as presented
in [172, 174]. In addition to the major design decisions, further research directions and first
results, this section also shows the progress of the GCC TM branch through evaluating later
implementations and comparing the performed optimizations. Section 7.2 introduces an
approach that uses static information to select a particular STM property, similar to [173].
Through a heuristic that analyzes the memory access patterns in transactions, the compiler
decides between a word-based and a cache line-based conflict detection. An evaluation of
this technique shows that it can be beneficial for novice programmers. Due to the special
focus of both sections, each of the sections concludes independently of the other.

7.1 Towards TM for GCC
This chapter describes the design of a transactional extension for the C language, imple-
mented in the GNU Compiler Collection (GCC). This design derives from the pioneering
work of Intel [4]. Ali-Reza Adl-Tabatabai from Intel leads an important standardization
effort with the goal to establish a common semantic (and memory model), syntax, Applica-
tion Binary Interface (ABI), and interactions with existing programming languages and
practices for Software Transactional Memory.

Participating in this important standardization effort is a necessary step towards a mature
TM technology, upon which software developers and parallel computing research depend.
In this context, we highlight some important ongoing research opportunities and challenges.

Transactional memory is a set of a parallel programming constructs and the accompanying
programming patterns [91, 84]. It borrows database semantics, terminology and designs to
address the atomic execution problem. In contrast to traditional low-level synchronization
mechanisms, the programmer does not manage locks directly but relies on a more abstract,

131



132 7. Compiler Support for TM and Guidance Through Static Information

1 int gvar;
2 int main () {
3 int a = 15;
4 #pragma tm atomic
5 {
6 gvar = ++a;
7 }
8 printf ("Global variable %d\n", gvar);
9 }

Listing 7.1: C extension with a pragma to specify transactions [172].

structured concept: an atomic block, hereafter called a transaction. From the programmer’s
point of view, atomicity is understood as two-way isolation of shared memory loads and
stores within a transaction. From an implementation point of view, it allows for optimistic
concurrency, with speculative conversion of the coarse-grain critical section into finer-
grain, object-specific ones. The ability to correctly and efficiently transpose coarse-grain
transactions into fine-grain, speculative concurrency is the key challenge for TM research
and development. Both semantical and performance issues lead to a vast amount of
studies and results [83]. Because of this implicit support for speculative execution, TM
programming patterns generally include failure atomicity mechanisms, with programmer-
controlled abort and retry constructs. These constructs are, for a part, complementary to
parallel programming, and can improve the software development productivity at large.

Based on this design and implementation effort, we are conducting research on compiler
optimizations to reduce the performance penalty of STM systems. We also study the
potential of TM to support automatic parallelization, enhancing the support for generalized
and sparse reductions in the automatic parallelization pass of GCC.

As related work has already been discussed, the design and implementation address the
context of unmanaged languages only, with a word-based instrumentation of shared
memory accesses in transactions. In this context, it is also natural to assume weak isolation
of transactions with respect to non-transactional code; this comes with obvious limitations
in terms of concurrency guarantees and cooperation with legacy code [83].

Many semantical variants of transactions have been proposed and investigated. The
baseline semantics in our design is the one of a critical section guarded by a single lock,
shared by all transactions. This choice is consistent with the original concept [91] and
with most industrial designs; it offers composability and liveness guarantees, and is the
only one for which a sound, intuitive and reasonably efficient weakly-consistent memory
model has been proposed [133]. Our design is compatible with multiple transactional
memory runtimes, facilitating its adoption in research environments and leveraging existing
software support.

7.1.1 Design

This section presents the design decisions and additional mechanisms for TM support in
GCC (called GTM). One of the major design goals is to be orthogonal to other parallel
programming models. Thus, the implementation is not based on OpenMP.

132



7.1. Towards TM for GCC 133

We wish to support the optimistic execution of transactions, in the form of the simple
example in Listing 7.1. To make this possible in C and in GCC, several enhancements
are necessary. Besides some minor modifications to the C front-end to add support
for the #pragma tm atomic and __tm_abort, we implemented two compilation
passes: the expansion and the checkpointing pass. New GIMPLE tree codes GTM_TXN,
GTM_TXN_BODY, and GTM_RETURN are introduced while parsing the transactified source
code. The construction of the control flow graph is altered according to the OpenMP
scheme for atomic sections: a basic block is split everytime a GTM_DIRECTIVE is
encountered; this scheme simplifies the identification and management of transactions
during the expansion pass.

7.1.2 Expansion
The first pass is called gtm_exp. It performs the following expansion tasks:

• function instrumentation, for all functions marked as callable from a transaction;

• recombination of the previously split basic blocks;

• instrumentation of shared-memory loads and stores with calls to the STM runtime —
read or write barriers.

We currently instrument all pointer-based accesses. GCC’s escape information will be
used to later restrict this instrumentation to shared locations only.

In addition, the pass checks for language restrictions that apply for transactions. For
instance, invocations of __tm_abort are only valid in the scope of a transaction. To
access and process transactions conveniently, a gtm_region tree is built. The region
tree facilitates the flattening of inner transactions.

7.1.3 Checkpointing
In case a transaction is rolled back, the effects on registers and stack variables have to be
undone. The procedure to revert to the architectural state before entering the transaction
consists of a call to setjmp combined with saving the contents of variables. We refer to
this mechanism as checkpointing. An alternative to checkpointing variables, is to copy and
restore the active stack frame as described in [61]. When the transaction rolls back the
old stack frame is substituted for the new one to restore the previous state. Which of the
two approaches is superior depends on the use case. If many variables are live-in to the
transaction, copying a continuous amount of memory is expected to be faster than copying
each variable exclusively. In case the amount of live-in variables is small compared to
the active stack frame, copying and replacing variables is faster. We believe that the latter
use case is more common. Thus, the second compiler pass implements the checkpointing
scheme similar to the one in [202]. In addition the setjmp/longjmp mechanism is used
to restore the actual register file. During the compiler pass one additional basic block is
introduced. This basic block is connected via the control flow so that it is executed in case
of a rollback and restores the values of variables. The saving of the values (and storing them
into a temporary variable) is done before calling setjmp. In order to reduce the number of
copy and restore operations, only variables that are live-in to the transaction are considered.
The availability of liveness information require the pass to operate on SSA-form. For
a seamless integration with the previous gtm_exp pass, the gtm_checkpoint pass
removes the marker and adds the real checkpointing scheme. The outcome of this procedure

133



134 7. Compiler Support for TM and Guidance Through Static Information

. . .
txn_handle.14 = __builtin_stm_new ();
jmp_buf.15 = __builtin_stm_get_env (txn_handle.14);
txn_save_a.16_13 = a_2;
ssj_value.16 = _setjmp (jmp_buf.15);
if (ssj_value.16 == 0)

goto <bb 5>;
else

goto <bb 4> (<L2>);

<L2>:;
a_15 = txn_save_a.16_13;

# a_16 = PHI <a_15, a_2>
<bb 5>:
__builtin_stm_start (txn_handle.14, jmp_buf.15, &0);
. . .

false

true

fall through

live-in: a

Figure 7.1: Checkpointing mechanism after the gtm_checkpoint pass.

is illustrated in Figure 7.1: the instruction sequence before the call to setjmp captures the
value of the live-in variable a and saves it into the temporary variable txn_save_a. In
case the transaction has to roll back, the library executes a call to longjmp and returns
to the location where the setjmp was called. Thus, it returns from the setjmp with a
non-zero return value. Subsequently, the basic block on the right hand side of Figure 7.1
gets executed and the value of the variable is restored to a. The Φ node on the next basic
block merges the different versions of a.

7.1.4 Optimizations and Extensions

This paragraph outlines some opportunities and directions for optimization.

First exploiting the properties of the underlying intermediate representation (GIMPLE)
yields some benefits. GIMPLE distinguishes between memory and register variables. Thus,
a variable living in memory needs to be loaded into a register prior to being used. All
memory loads are already assigned to a temporary variable. In order to reduce the number
of introduced temporaries, the existing loads and stores could be directly substituted by
calls to the STM run-time, reducing the number of temporary variables and, so, the work
of optimizers.

Second the STM barriers, represented as builtins (or intrinsics), should make use of
the function attributes provided within GCC. Optimizers determine the amount of valid
optimizations depending on the function attribute. The current approach is to set an attribute
signifying that the function call does not throw an exception for all barriers. Relaxing this

134



7.1. Towards TM for GCC 135

conservative choice for stm_load barriers to a pure attribute, usually used for functions
not writing to memory, seems promising to enable few optimizations while preserving the
correctness of the optimized code. Not all STM barriers qualify for relaxed attributes. For
instance the stm_start and stm_commit-barriers enclosing the body of a transaction,
are to remain as strict as possible. Otherwise store sinking or load hoisting optimizers may
sink stores out of transactions and loads into them. Both optimizations potentially violate
the intention of the programmer and weaken the boundaries set by transactions. Thus, the
resulting code would not be correct.

The third optimization is to subdivide the passes in order to exploit the optimizations on
SSA form. The expansion pass would be split into two phases. The remaining first part
would only expand the stm_start and stm_commit barriers. Whereas the second
part is placed at the end of the SSA optimization passes and introduces the stm_load
and stm_store barriers. The proposed design utilizes the optimizations on SSA form
and respects the properties of transactions.

When transactions occur in OpenMP parallel sections, we may rely on the shared/private
clauses to refine the set of variables and locations to be instrumented by memory barriers.
This optimization was proposed in previous transactional extensions to OpenMP [136, 9],
but it may of course be designed as a best-effort enhancement of our language-independent
TM design.

Further design and implementation of these optimization is under way in the context of
the transactional-memory branch of GCC. This branch initiated from our design,
and was opened in October 2008 by Richard Henderson (Red Hat). The branch targets the
same ABI as Intel1. It implements an Inter-Procedural Analysis (IPA) pass to decide which
functions to clone. GCC’s exception handling machinery assures the correct treatment
of transactions through the optimization passes. This ensures a conservative interaction
with SSA-based optimizations although it does not prevent them entirely. The branch is
fully functional by now and has been improved and merged with mainline GCC. With the
release of GCC 4.7.0, transactional memory is available as an experimental feature.

Transactional environments require special mechanisms to enable developers to apply
common programming patterns. It is the case of the publication and privatization patterns
that frequently arise while programming with locks [133]: they feature concurrent accesses
to shared variables inside and outside transactions. The absence of races is guaranteed by
the lock semantics and by any weak memory model that subsumes Release Consistency
(RC).

Semantical support for these patterns is particularly helpful when transactifying legacy
code with non-speculative critical sections. Indeed, weak isolation and weak memory
consistency models do not guarantee that such publication and privatization patterns will
behave consistently with a lock-based implementation. Current STM designs propose
quiescence as the mechanism to solve the problem occuring while one transaction tries
to privatize a data member whereas the other tries to write into it [133]. Quiescence
enforces an ordering of transactions so that transactions complete in the same order as
they started. Besides allowing the programmer to use well known constructs and follow
classical programming patterns, this mechanism comes with a significant performance
penalty. We believe that further research in this area is inevitable to speed up the execution

1http://software.intel.com/en-us/articles/intel-c-stm-compiler-
prototype-edition-20#ABI

135

http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20#ABI
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20#ABI


136 7. Compiler Support for TM and Guidance Through Static Information

of transactions while retaining a consistency model compatible with easy transactification
of lock-based code — here single-lock semantics is sufficient [133].

Calling legacy code from inside transactions constitutes another problem for programming
in a transactional environment, because effects of these functions can not be rolled back.
The same holds true for system calls. The solution is to let transactions execute in, or
transition to, irrevocable mode. The runtime assures that the irrevocable transaction is
the only one executing and, thus, can not conflict with other transactions. Hence, the
transaction runs to completion. [206] presents possible implementations and applications
of irrevocable transactions, whereas [195] also evaluates different optimized strategies to
implement irrevocability. Further research concerning irrevocability could benefit from the
presented implementation.

Link-Time Optimization (LTO) as well as Just-In-Time (JIT) compilation are well-known
compilation approaches that are not yet extensively applied to transactional workloads.
The former has a high potential for pointer-analysis-based optimizations (like escape
analyses to eliminate unnecessary barriers), while the latter can substitute dynamic code
generation and transaction instrumentation rather than static cloning of functions callable
from transactions.

7.1.5 Parallelization of Irregular Reductions

Reduction operations are a computational structure frequently found in the core of many
irregular numerical applications. A reduction is defined from associative and commutative
operators acting on simple variables (scalar reductions) or array elements inside a loop
(histogram reductions). If there are no other dependencies but those caused by reductions,
the loop can be transformed to be executed fully parallel, since — due to the associativity
and commutativity of their operands — iterations of a reduction loop can be reordered
without affecting the correctness of the final result.

Currently, the automatic loop parallelization pass in GCC is capable of recognizing scalar
reductions. Once the reduction pattern has been detected the code generation step relies on
the OpenMP expansion machinery to distribute iterations of the loop into several threads.
Reduction parallelization employs a privatization algorithm: the transformed loop has a
parallel prefix, where each thread accumulates partial results in local copies of the reduction
variable, followed by a cross-thread merging phase in which partial results are combined
into the shared (reduction) variable.

The reduction recognition routine in the automatic parallelization pass can be extended
to detect sparse reductions. Sparse reductions correspond to inductive dependences on
the reduction variable/array that only exists for a fraction of the loop iterations. This
is generally the case for moderate-to-large reductions with indirection variables (e.g.,
histograms), as well as some reductions guarded with data-dependent control flow.

A parallel reduction algorithm has to be chosen for the code generation of sparse reductions.
A simple solution is that of enclosing the accesses to the reduction variable/array within
a critical section. The main drawback of the typical lock-based implementation of this
method is that it exhibits a very high synchronization overhead. We can leverage the
infrastructure for transactional memory programming within GCC to devise an alternative
approach to reduction parallelization in which we enclose the critical section in an atomic
transaction, and let the underlying STM runtime detect and resolve possible conflicting

136



7.1. Towards TM for GCC 137

1 int image[1024][768];
2 int main ()
3 {
4 int hist[256];
5
6 #pragma omp parallel for
7 for (i=0, i<1024; i++)
8 for (j=0; j<768; j++)
9 {

10 /* Some reduction-independent
11 * work parameterized with M
12 */
13 WORK;
14 pixval = image[i][j];
15 /* Begin critical section */
16 hist[pixval]++;
17 /* End critical section */
18 }
19 }

Listing 7.2: Example of a reduction pattern with nested loops [172].

accesses to same array locations. Many scientific and numerical applications operate on
large and sparse datasets; they are amenable to transactional parallelization since we can
optimistically assume that only few conflicting accesses to the same memory locations will
manifest at runtime.

As a motivating example we show here the results of parallelization of a synthetic loop
containing a histogram reduction, see Listing 7.2. To model the effect of varying amount of
work besides the reduction within the loop, we employ a WORK section consisting in an
additional loop nest which iterations have been parameterized with variable M . This loop
only operates on data independent of the reduction operation. Loop iterations are distributed
between 4 threads, and we compare three different synchronization schemes, namely locks
with Pthreads, OpenMP critical directive and transactions. The latter is achieved
through the use of the #pragma tm atomic. Calls to the STM library (TinySTM
v.0.9.0b1 [62]) for read/write barrier instrumentation and transaction rollback/restart are
automatically instantiated by the GTM compiler.

To account for the effect of different degrees of contention, we consider histogram creation
for two synthetic images: a completely black image (our worst case), and an image with
randomly generated pixel values.

We show in Figure 7.2 the results of the execution of the example loop on a Intel Core 2
Quad CPU (L2 cache with 4MBytes). On the x-axis we consider increasing amounts of
work in the loop body by increasing the value of the parameter M. On the y-axis we plot
the speedup of the various parallelization schemes against the serial version of the loop.

In the random image there is low contention for array locations, and the performance of
the optimistic TM approach is always better than the others. We can achieve speedups with
this technique even for small values of M . However, as expected, high contention on array

137



138 7. Compiler Support for TM and Guidance Through Static Information

black image (worst case)

0

0,5

1

1,5

2

2,5

3

50 100 200 400 600 800 1000

M (work factor)

S
p

e
e
d

u
p

 .

LOCKS

CRITICAL

TM

randomly generated pixels

0

0,5

1

1,5

2

2,5

3

3,5

50 100 200 400 600 800 1000

M (work factor)

S
p

e
e
d

u
p

 .

LOCKS

CRITICAL

TM

Figure 7.2: Speedup over sequential execution using locks, OpenMP critical sections, and
transactions; first published in [172].

elements has a strong impact on the performance of TM. This can be seen comparing the
trend of the TM curve in the two plots, and is justified by the fact that the overhead for
frequent transaction rollback and restart is greater than that carried by the locks. Clearly
this behavior is also affected by the value of M . When there is little work besides the
reduction in the loop the overhead is predominant for all of the proposed techniques, but in
high-contention scenarios TM is the one that is mostly affected by this parameter, not only
because it influences the frequency of aborts and rollbacks, but also because the overhead
for starting and committing a transaction is not amortized by other computation.

These two factors are directly related to the sparsity of the dataset on which we operate
and to the granularity of the transaction, for this reason we consider them as the two main
parameters to be investigated in real workloads to discover the boundaries wherein a reduc-
tion parallelization algorithm that exploits transactions is successful. First experimental
results are encouraging, since they show that adequately tuning these parameters, a trans-
actional approach to irregular reduction parallelization can bring significant performance
improvements with respect to the use of locks.

7.1.6 Overinstrumentation with GCC

Another experiment aims at quantifying the influence of over-instrumentation on the
performance of a TM application. For this experiment, we select kmeans from the
STAMP benchmarks suite and compare the run times of an hand-instrumented and a
GTM-instrumented version. kmeans1 stands for execution with the low contention pa-
rameter set whereas kmeans2 represents the high contention case. This section presents
a comparison of compiler translated and hand instrumented atomic blocks. As compiler
we partially ported the transactional memory enabled GCC, which is available under
http://gcc.gnu.org/svn/gcc/branches/transactional-memory/, to
generate code for TinySTM. The trans-mem branch originates from the previously pre-
sented GTM design, but was revised and enhanced by Richard Henderson (Red Hat).
The revision addressed the integration of transactions with GCC’s exception handling
infrastructure and the integration with the interprocedural analysis passes and optimizers.

The experiments are conducted on our experimental platform ExpE5410. The operating
system is a x86_64 GNU/Linux based on a kernel version 2.6.24-22-xen and virtualization

138

http://gcc.gnu.org/svn/gcc/branches/transactional-memory/


7.1. Towards TM for GCC 139

 0

 5

 10

 15

 20

 25

kmeans1 kmeans2 kmeans1 kmeans2

A
ve

ra
ge

 ru
n 

tim
e 

in
 se

co
nd

s (
s)

 

Kmeans executed with 8 Threads and dynamically linked TinySTM

GCC-TM with -O0
Hand instrumented with -O0

GCC-TM with -O1
Hand instrumented with -O1

Standard deviation

Figure 7.3: Run time of benchmark kmeans with compiler and hand instrumented trans-
actions.

extensions. The STM library is TinySTM in version 0.9.9. The benchmark kmeans is
taken from the STAMP benchmark suite (version 0.9.10) and is run with two input data
sets [24]. The first one has low contention whereas the second one suffers from high
contention - both are run with the largest input data sets. Run times of nine runs are
aggregated and averaged to generate reliable results. Figure 7.3 presents the average run
times together with the standard deviation. Different compiler optimization levels are
shown: -O0 no optimization and -O1 with a basic set of optimizations. The results for
kmeans show that optimized compiler version performs better than the unoptimized one,
although still yielding a slow down of ≈ 40 % compared to the hand instrumented code.

A closer examination of the various assembly files of kmeans reveals that both hand
instrumented versions contain 4 read and 4 write barriers. The compiler instrumented
transactions contain 16 read and 4 write barriers without optimizations and 8 read and
4 write barriers with basic optimizations enabled. These additional barriers explain the
large differences in run time and beg for more advanced optimizations to identify and
eliminate these unnecessary barriers. In the following section, we continue this experiment
to quantify the impact of advanced optimizations on the performance.

Yoo et al. report false sharing with kmeans that accounts for 40 % of the aborts [214].
Surprisingly the benchmark shows a good scalability despite the false sharing. In their
experiments, the compiler instrumented the transactions whereas in ours the programmer or
the compiler did the instrumentation. As seen in the paragraph above, kmeans does benefit
from the programmer’s application-level knowledge that avoids to instrument pointer
dereferencing. Since Yoo et al. also apply further optimizations that pass these knowledge
to the comiler, we would have expected a greater gain. More specifically they introduce the
#pragma tm_waiver to signal to the compiler that the corresponding block or function
does not need instrumentation. Given our previous findings on the barrier instrumentation

139



140 7. Compiler Support for TM and Guidance Through Static Information

 0

 5

 10

 15

 20

 25

Hand-instr.

and -O0   

GCC-TM  

with -O0

Hand-instr.

and -O3   

GCC-TM  

with -O3

A
v
er

ag
e 

ru
n
 t

im
e 

in
 s

ec
o
n
d
s 

(s
)

 

gcc-tm-4.6.0

gcc-tm-4.7.0

Figure 7.4: Comparison of the run times of Kmeans with low contention and hand-
instrumented or compiler-instrumented transactions compiled with gcc-tm-4.6
or gcc-tm-4.7.

of Kmeans with GTM, we would expect these annotations to reduce the number of barriers
for the pointer dereferencing and yield a speedup. The reported differences in run time in
their results are small.

7.1.7 Improvements with GCC-4.7

In this section we study the impact of advancing the TM-specific compiler optimization
in GCC and implementing the Application Binary Interface (ABI) for STMs. The ABI
is the product of a standardization process that was initiated by Intel. The goal is a
uniform application binary interface for STMs that is widely supported through industrial
and academic STM systems. The ABI decouples the compiler from the STM system and
ensures the interoperability of compilers and STMs that have been developed independently.
The transactional memory branch targets this ABI. Richard Henderson from Red Hat
Inc. maintains the transactional memory branch and contributed important parts of the
implementation as did Aldy Hernandez.

Our goal is to quantify the effects of the advanced TM-specific compiler optimizations
on the performance of the application. In order to achieve this goal, we use an early
checkout from the transactional memory branch (version 4.6.0 showing the 13th of April
2010 as date) and compare it with the final merge of the transactional memory branch
into mainline GCC. Here we use the version 4.7.0 that has been released on the 22nd of
March 2012. Both versions come with the corresponding libITM that also evolved over
time. We are going to refer to these versions as gcc-tm-4.6 and gcc-tm-4.7 respectively. Of
course advancing the compiler from revision number 4.6 to 4.7 comes with many more
changes than just TM-specific optimizations2. Thus, we need to find a way to distinguish
the impact of newly introduced TM optimizations from general optimizations that also
have a benefit for TM. Therefore we use the hand instrumented kmeans application from
the STAMP benchmark suite as a baseline. As STM we are again using TinySTM (version

2http://gcc.gnu.org/gcc-4.7/changes.html

140

http://gcc.gnu.org/gcc-4.7/changes.html


7.1. Towards TM for GCC 141

 0

 2

 4

 6

 8

 10

 12

 14

 16

Hand-instr.

and -O0   

GCC-TM  

with -O0

Hand-instr.

and -O3   

GCC-TM  

with -O3

A
v
er

ag
e 

ru
n
 t

im
e 

in
 s

ec
o
n
d
s 

(s
)

 

gcc-tm-4.6.0

gcc-tm-4.7.0

Figure 7.5: Comparison of the run times of kmeans with high contention with gcc-tm-4.6
and gcc-tm-4.7 and hand-instrumented and compiler-instrumented transactions.

0.9.9) which is also compiled with the compiler under test and a fixed optimization level of
-O3. This mimics the shipping of an optimized STM to the customer. The application is
compiled with the compiler under test setting the reported optimization level. All reported
results are averages over 30 runs with 8 threads on the experimental setup ExpX5670 (cf.
to Section 4.3).

Figure 7.4 illustrates the run times of Kmeans with low contention: for hand-instrumented
transactions addressing TinySTM compiled with gcc-tm-4.6 or gcc-4.7 (without setting the
flag to trigger any TM passes) with an optimization level of -O0 the run time is ≈ 10 s.
When GCC does the TM instrumentation (indicated with GCC-TM in the figure), there is a
huge gain from gcc-tm-4.6 (run time ≈ 23 s) to gcc-tm-4.7 (run time ≈ 16 s). We observe
a similar trend with optimization level -O3: while the run time with hand-instrumented
transactions even increases from ≈ 3.8 s to ≈ 3.9 s, the GCC-instrumented transactions
decrease from ≈ 18.3 s to ≈ 5.4 s when going from gcc-tm-4.6 to gcc-tm-4.7.

Similarly Figure 7.5 demonstrates the impact of advancing the GCC compiler on Kmeans
with high contention. Again, hand-instrumented transactions that target TinySTM show
only very small improvements. With optimization level -O0 the run time improves from
≈ 2.2 s to ≈ 2.1 s and stays constant with optimization level -O3 with ≈ 1.6 s. For the
instrumentation with GCC-TM the findings are different: with -O0 the run time improves
from ≈ 14.7 s to ≈ 5.4 s and with -O3 from ≈ 7.4 s to ≈ 2.0 s.

In order to make the previous measurements straightforward to comprehend, Figure 7.6
shows the speedup of gcc-tm-4.7 over gcc-tm-4.6. The speedup is computed according
to the equation Run timegcc−tm−4.6

Run timegcc−tm−4.7
. The hand-instrumented cases with TinySTM do only

marginally benefit from the compiler improvement (or may even suffer a small degradation
as with -O3). On the other hand the GCC instrumented transactions show speedups between
≈ 1.4 for kmeans with low contention and optimization level -O0 and ≈ 3.6 for kmeans
with high contention and optimization level -O3. These performance numbers show that
TM-specific optimizations have a far larger impact than other improvements.

These huge differences in run time need to be invested closer to identify the dominant

141



142 7. Compiler Support for TM and Guidance Through Static Information

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Optimization

 level -O0

Kmeans with -m15 -n15

Optimization

 level -O3

Optimization

 level -O0

Kmeans with -m40 -n40

Optimization

 level -O3

S
p
ee

d
u
p
 w

it
h
 g

cc
-4

.7
 o

v
er

 g
cc

-4
.6

 

Hand-instr.

GCC-TM

Speedup = 1

Figure 7.6: Speedup of gcc-tm-4.7 over gcc-tm-4.6 measured with kmeans with high
(left hand side) and low contention (right hand side) to study the impact of
optimizations on hand-instrumented and compiler-instrumented transactions.

optimizations. These differences in the implementation of the TinySTM and the libITM
requires a precise investigation of the number and type of read and write barriers issued
to clearly separate compiler improvements from improvements of the run time system.
Similar to the experiments in the previous Section 7.1.6, we are going to investigate the
number and types of barriers that GCC issues for kmeans.

Table 7.1 holds the read barriers issued with the optimization levels O0 and O3 by gcc-tm-
4.6 and gcc-tm-4.7. With -O0 specified both compilers generate only basic full barriers.
In the table these basic barriers (e.g., RU4 stands for read unsigned 4 Bytes) form the
first group. Barriers in this group perform the intended task but do not exploit the static
knowledge of the compiler. Barriers in the second group (e.g., RfWU4 named read-for-

Types of gcc-tm-4.6 gcc-tm-4.7
read barriers with -O0 with -O3 with -O0 with -O3
RU4 2 0 2 0
RU8 9 2 9 2
RF 5 2 5 1
RM128 0 1 0 2
RfWU4 0 1 0 1
RfWU8 0 1 0 1
RfWF 0 1 0 2
RfWM128 0 1 0 0
Total 16 9 16 9

Table 7.1: gcc-tm-4.6 and gcc-tm-4.7 with two optimization levels generate read barriers.

142



7.1. Towards TM for GCC 143

Types of gcc-tm-4.6 gcc-tm-4.7
write barriers with -O0 with -O3 with -O0 with -O3
WU4 1 0 1 0
WU8 1 0 1 0
WF 2 1 2 0
WM128 0 0 0 1
WaWU4 0 1 0 1
WaWU8 0 1 0 1
WaWF 0 1 0 2
WaWM128 0 1 0 0
Total 4 5 4 5

Table 7.2: Comparison of the write barriers issued by gcc-tm-4.6 and gcc-tm-4.7 with two
optimization levels.

write unsigned 4 bytes) are generated by the compiler when the transaction also writes
the address it is currently going to read. With this special barrier (and with an STM that
supports this kind of optimization), the STM omits accessing the data first as a reader and
later as a writer. Instead it directly accesses the data as a writer (without actually writing to
it) which avoids the need to upgrade from a reader to writer lock internally in the STM.
The later write access only has to provide the new value. With optimization level O3,
two findings holds for both versions of the compiler: the total number of read barriers
decreases from 16 to 9 and the number of barriers from the second group rises from 0 to 4.
A closer look reveals that gcc-tm-4.6 selects 2 RF and 1 RM128 while gcc-tm-4.7 selects 1
RF and 2 RM128 barriers. gcc-tm-4.6 chooses 1 RfWF and 1 RfWM128 barrier whereas
gcc-tm-4.7 issues 2 RfWF barriers and no RfWM128 barrier.

Table 7.2 illustrates the write barriers generated by both compilers and two optimization
levels. With optimization level -O0 both compilers only select basic barriers from the
first group. With -O3 enabled, gcc-tm-4.6 and gcc-tm-4.7 mainly select barriers from
the second group. Only one basic barrier remains. With gcc-4.6 this barrier is WF and
with gcc-tm-4.7 WM128. Another difference is that gcc-tm-4.6 issues 1 WaWF and 1
WaWM128 barrier whereas gcc-tm-4.7 selects 2 WaWF and no WaWM128 barrier.

The base optimization case with -O0 is the ideal case to quantify the impact of the improve-
ment of the libITM run time on application performance because gcc-tm-4.6 and gcc-4.7
generate the same amount of barriers of the same type. Thus, the performance of libITM
run time system dominates the performance of the TM application. The experiments with
hand-instrumented transactions and TinySTM that showed only a marginal improvement
(if any) support this claim. Figure 7.6 clarifies that for -O0 the gcc-tm-4.7 compiler and
libITM run time system yields a speedup from ≈ 1.45 up to ≈ 2.95 depending on the
contention for kmeans. Thus, we ascribe these speedups to an optimized implementation
of the libITM run time system. With -O3 the gains of gcc-tm-4.7 are even greater: the
improved selection of the optimized read-for-write and write-after-write barriers, yield a
speedup of ≈ 3.57 over gcc-tm-4.6. These results demonstrate that the gcc transactional
memory branch, that is maintained by Red Hat Inc., makes progress and alleviates the
overheads of STM through a combined compiler and run time approach. On the other
hand, these barrier counts also show that there is still a long way ahead because the number
of compiler generated barriers still differs from the number of necessary barriers that is
achieved with hand-instrumentation (4 read and 4 write barriers). In particular the derefer-

143



144 7. Compiler Support for TM and Guidance Through Static Information

encing of pointers to locations that have not escaped yet can be avoided in the considered
case. Due to the conservative assumptions of the compiler, removing these barriers is not
feasible as of now. A future more general analysis could focus on link-time optimizations.
At link time, potentially separately compiled modules/external libraries are linked together
resolving the defined symbols. Thus, the linker has a broader view on the definition and
the usage of symbols than the compiler. With this knowledge a whole-program analysis
combined with an advanced alias-analysis may safely omit barriers because the linker is
able to exclude the external linkage of a symbol.

7.1.8 Concluding Remarks for TM in GCC

We presented an initial transactional memory extension of the GNU Compiler Collection,
and stressed its language-independent and STM-oriented design (yet compatible with
hybrid hardware/software implementations). This integration also provides the foundation
to integrate TM in an enhanced automatic parallelization strategy, where much of its
design and implementation can be reused for the parallelization of sparse, generalized
reductions. For these we demonstrate possible performance gains with a manual version.
We also highlighted key optimization challenges and opportunities; together with Yoo et
al. [214] and the more pessimistic study of Cascaval et al. [27], we stress the importance
of compiler and joint language-compiler studies for the future adoption of TM in real
world applications. To assess the quality of the ongoing work on the transactional memory
branch (that originates from the presented GTM design) by Red Hat Inc., we study the
evolution of the compiler optimizations and their impact on the performance of the TM
application. We conclude that GCC’s compiler and the libITM run time system already
made very good progress in tackling the overheads associated with STM and identified
directions for future optimizations.

7.2 Selection of the Conflict Detection Granularity in an
STM

Many researchers advanced the state-of-the art in TM run time systems, as we already
mentioned in Chapter 2. A favoured subject is the conflict detection algorithm that
can differ in when conflicts are detected (so called early or late detection) and where
speculative data is buffered (in a dedicated buffer or in-place). Another important design
aspect addresses the granularity with which conflicts are detected. Some designs feature
conflict detection on word size whereas others favor conflict detection on cache line
size. In the absence of hardware transactional memory, programmers, who are interested
in a new synchronization paradigm, usually utilize a software-based solution, called
Software Transactional Memory (STM). Some STMs are highly parameterizable forcing
the programmer to choose the desired STM properties. However, different applications
prefer different STM characteristics. Since the programmer may not be aware of the
preferred STM system for the application, we aim to guide her through compiler support.
This approach relies on static information of the program to select a particular STM
property. The compiler, more precisely the Low Level Virtual Machine framework [119],
is extended with an analysis pass that analyzes memory access patterns in transactions [59].
The findings are then processed by a novel algorithm which proposes a specific STM
system. Thus, based on the analysis of the source code, the programmer may select a fitting
STM system.

144



7.2. Selection of the Conflict Detection Granularity in an STM 145

Figure 7.7: Comparing the memory consumption of a word-based (left bar) and a cache
line-based (right bar) conflict detection scheme (similar to [173, 59]).

The focus of this work is on the conflict detection granularity in STM systems. We seek to
distinguish between word size and cache line-based conflict detection. One of the issues
with cache line-based conflict detection is the occurrence of false sharing. False sharing
occurs when different parts of the same cache line are accessed by different processors. In
terms of application behavior there is no sharing of data, but due to the cache coherence
protocol that operates at the granularity of a cache line, the false sharing is classified as
true sharing [178]. An invalidate-based coherence protocol will invalidate the cache line of
the distant processors upon a write. On the distant processors the next access to that cache
line will result in a miss. The overhead due to the repeated transfer of the cache line results
in a loss of performance.

In the context of a multi-processor system, false sharing results in cache miss and stall
times [86], whereas in the transactional memory domain, false sharing results in falsely
detected conflicts. These false positives result from a false sharing of STM internal locks
and are resolved by aborting one of the involved transactions. Consequently, all computed
values are rolled back and execution resumes from the beginning of the transaction. Thus,
one false conflict may render all previous computations in a transaction useless.

For this research we use a state-of-the-art software transactional memory system called
TinySTM [62]. TinySTM uses a time-based TM algorithm to ensure the transactional
properties. Conflicts are originally tracked and detected on a word granularity. A proper
conflict detection is assured by employing locks that are held in a lock array. In case a
transaction loads data from or stores data to a memory address, the address is fed into
a hash function that maps it to a lock in the array. In a word-based conflict detection
scheme, each word is mapped to a lock. For a cache line-based conflict detection all
addresses in the same cache line (that we determine to be 64 Bytes) hash to one lock. This
coarsens the granularity at which conflicts are detected and reduces the amount of locks
required to cover the same memory space. Figure 7.7 illustrates the different memory
requirements for both variants. The memory consumption is measured with valgrind
and reveals that the lock array dominates the memory consumption. Thus, the cache
line scheme consumes significantly less memory than the word-based scheme. However,

145



146 7. Compiler Support for TM and Guidance Through Static Information

Figure 7.8: False sharing in the context of transactional memory: the throughput of a word-
based (left bar) and a cache line-based (right bar) conflict detection scheme are
compared (taken from [173, 59]).

this advantage in memory consumption comes at the prize of being vulnerable to false
sharing. Figure 7.8 compares the throughput of a word-based and a cache line-based
conflict detection granularity. In this use case two threads exercise a false sharing pattern.
The amount of adjacent accesses of one thread to the same cache line varies between 1
and 2. Both scenarios exhibit false sharing but differ in throughput. This example clearly
demonstrates the downside of a cache line granularity as in both cases the word scheme
has a higher throughput. Thus, an application exhibiting a similar memory access pattern
that is run with cache line granularity would have suffered a slowdown.

This example demonstrates that a decision between cache line and word granularity
influences two aspects of the run time behavior of the application. First, the memory
requirements, since cache line granularity demands less memory. Second, the run time as a
false sharing pattern leads to an increased amount of rollbacks (only cache line granularity).
Since this decision should not be taken lightly, we present a compiler-based approach to
decide, which alternative promises better performance.

7.2.1 Detection of Memory Access Patterns in Transactions
In this section, the solution for the detection of memory access patterns in transactions
(short MAPT) is presented. The MAPT is logically divided into three phases. First, the
data aggregation phase gathers relevant information about transactional memory accesses.
Second, an analysis phase processes and analyzes these data. Third, a decision phase ranks
the findings and decides in favor of one STM system. Figure 7.9 illustrates the structure of
this approach.

The implementation of MAPT is embedded in the Low Level Virtual Machine (LLVM)
framework. LLVM does not natively support the detection of parallel functions. Thus,
we present a method to identify parallel functions first. In this approach, functions, that
are identified for parallel execution, are assumed to run in parallel. Inside these functions
only transactional memory accesses are of importance to the analysis. Subsequently, a

146



7.2. Selection of the Conflict Detection Granularity in an STM 147

LLVM Bytecode

Parallel Functions

Determine Transactions

Data
structures

in memory
Indices

Analysis of mem-
ory accesses

Emit favored
STM system

Data
Aggregation

Analysis

Decision

Figure 7.9: The LLVM compiler pass is divided in three logical phases: data aggregation,
analysis and deciding which STM to select (cf. to [173, 59]).

pass collects information on transactions and data structures accessed inside transactions.
The following analysis detects false sharing. Therefore the pass records all indices for
transactional accesses. These data constitutes the basis for the analysis of memory accesses.
The analysis decides in favor of one STM system as a result.

Data Aggregation

The following paragraphs provide details on the implementation and integration of MAPT
in the Low Level Virtual Machine framework.

Parallel Functions are not identified natively in the Low Level Virtual Machine frame-
work. This is due to the fact that many languages (e.g., C) were developed for sequential
execution. Thus, library-based approaches (e.g., Pthreads) add the concept of threads. A
programmer utilizes an API to create, destroy and synchronize threads. In the MAPT pass
the knowledge about this API serves as an entry point to identify functions which may run
in parallel.

In particular MAPT targets the POSIX thread model Pthreads. In that case, a programmer
creates a new thread by calling pthread_create. Thus, a first step in the MAPT pass
is to find the call and extract the arguments. Thus, the LLVM intermediate representation is
scanned for a call instruction with that particular function name. Then, the third argument
of this function call is processed. This argument contains a pointer to the function which
will be executed by the newly spawned thread. In search for not yet processed functions
called from this one, MAPT recursively visits functions with a static call site. The use
of function pointers combined with a dynamic call site leads to functions escaping this
analysis. This issue needs to be addressed in the future in order complete the MAPT
approach. Further, there is the risk of entering an endless loop when processing recursive
function calls. We avoid this by storing all processed functions in a table and checking the
table before descending.

147



148 7. Compiler Support for TM and Guidance Through Static Information

Transactions are identified by examining the parallel functions. Calls to the STM run
time system define these transactions. In particular calls to stm_start and stm_commit
embrace a transaction body. The body contains transactional loads and stores from and to
memory locations.

Data Structures. An stm_load takes the address of the memory location as argument.
Relating the address and the corresponding data structure requires some work. LLVM
represents a load-store architecture which means that each address is loaded into a register
first. Thus, MAPT tracks the register content back to the name of the data structure. Often,
this involves also tracking the index in a static data structure (e.g., array accesses). In case
the index belongs to a simple loop which can be analyzed by the LLVM loop analysis,
the information about loop bounds and iteration width is also of interest. Then, our pass
records the gathered data in a table. These data is grouped according to the identifier
of the thread and contains the name of the data structure and the possible values of the
index (in case this information is available). In order for this approach to work, the static
analysis needs a hint with how many threads the program is going to be executed. Thus,
the programmer has to provide these information to the MAPT pass by setting a variable
in LLVM.

Further, the current scheme only covers simple (1-dimensional) loops and does not use
pointer analysis to detect aliasing pointer accesses to data structures. More refined pointer
analysis techniques and advanced loop structures must be part of future research.

Analysis Phase

The analysis phase processes the global data gathered in previous steps. The algorithm for
the analysis is split in two parts. First, false sharing is detected and identified. Second, a
heuristic is employed to cover access patterns which result in accesses to the same elements
in one cache line.

Detecting False Sharing is a major concern of this approach. These cases are identified
by comparing the index sets of different threads. The width of a memory access is
determined through the data structure it accesses. Therefore, computing the amount of
elements per cache line is feasible. By computing the intersection of the index sets for
different threads, a false sharing pattern can be detected if the following two conditions
are met: (a) the data structure is aligned at a cache line boundary in memory; (b) the
computed intersection is empty but indices from both sets fall within one cache line. The
size of the cache line can not be derived statically and is provided by the programmer. The
microarchitecture defines the size of the cache line. Therefore, new processors may require
different settings. For our use case, the cache line size is set to 64 Bytes.

Heuristic for accesses to the same cache line. This heuristic complements the detection of
performance-critical memory access patterns (e.g., false sharing) by enriching the decision
process with empirical data. Based on profiling one example application (that performs
concurrent memory accesses to the same cache line), a metric (also called heuristic) is
extracted. A-priori it is not known which conflict detection granularity enables a higher
throughput in this use case. This heuristic helps to solve the issue and decides for one
conflict detection granularity. This allows to decide on a broader basis if more performance-
critical memory access patterns are not detected. Table 7.3 illustrates the turnover point in
the throughput (in Txns

s ) of the two TM conflict detection granularities when the number

148



7.2. Selection of the Conflict Detection Granularity in an STM 149

Accesses per Throughput [105 Txns
s ] Throughput [105 Txns

s ] Relative Difference
cache line Word-based (tp_W ) CL-based (tp_C) tp_C−tp_W

tp_W

16 4.7 5.6 19.1%
8 9.0 9.7 7.8%
4 15.0 16.0 6.7%
3 19.9 20.3 2.0%
2 24.1 23.2 −3.8%
1 37.1 35.3 −4.9%

Table 7.3: Throughput of both conflict detection variants profiled with an example applica-
tion with overlapping memory accesses (similar to [173, 59]).

of consecutive accesses to the same cache line varies. Additionally, the influence of a
second parameter that defines the number of elements in the shared data structure, has
been integrated (without Figure). The relative difference ( (tp_C−tp_W )

tp_W ∗ 100) ranges from
−4.9% to 19.1% (cf. Table 7.3). In the first case the word-based solution provides higher
throughput, whereas in the latter case the cache line-based scheme is superior. Based
on the measured values, a turn-over point is calculated such that this heuristic can be
integrated in the algorithm. Since the heuristic is based on evidence from real executions
(and thus influenced by the memory subsystem etc.), the previous profiling run of the
example application have to be repeated when targeting a new architecture and a new
turn-over point must be identified.

Decision

For now, we employ a simple decision scheme: in case a performance-critical memory
access pattern (e.g., false sharing) is detected, the decision is in favor of a word-based
granularity. In case accesses to the same cache line are detected, the heuristic decides
which of the two granularities to use.

7.2.2 Evaluation
Experimental Setup

The experimental setup comprises an AMD Athlon(TM) 64 X2 Dual Core Processor
running at 2 GHz with 4096 MBytes of main memory. TinySTM (in version 0.9.9) has
been adjusted to obtain two different versions: one using conflict detection on a word,
one on a cache line granularity. The LLVM framework (version 2.5) has been enhanced
with capabilities for analysis of memory access pattern in transactions (MAPT). The
enhanced framework is evaluated using two manually written test cases and one bank
application to demonstrate the validity of this approach. These tests are complemented by
two benchmarks from the STAMP transactional memory benchmark suite to emphasize
performance gains on real world transactional memory workloads [24]. Transactions
are instrumented manually with calls to the TinySTM. However, the influence of hand-
instrumentation on the MAPT pass should be low. For some applications the number of
STM calls in transactions differs from the compiler-instrumented version [174].

Test Cases

First, results of evaluating three test cases are presented in Table 7.4. Performance changes
are reported as relative improvements according to (tp_sel−tp_non)

tp_non ∗ 100. The throughput of

149



150 7. Compiler Support for TM and Guidance Through Static Information

Test case Word-based Cache Line-based MAPT proposes Difference (in %)
separate 9 173 365 6 991 694 Word Granularity 31.2%
overlap 473 177 540 424 CL Granularity 14.2%
bank 396 824 390 573 CL Granularity −1.6%

Table 7.4: Throughput in transactions per second of three test cases (cf. to [173]).

Benchmark K-means Bayes
Word-based 6.1 s 7.1 s
Cache Line-based 5.2 s 5.9 s
MAPT proposes Cache Line Cache Line
Difference 14.7% 16.9%

Table 7.5: Run times of selected STAMP benchmarks (as in [173]).

the selected variant (named tp_sel) is compared with the variant which was not selected
(named tp_non). A higher throughput is better and, thus, an improvement. In the first test
case, dubbed separate, different threads access separate elements in the same cache line.
The MAPT analysis proposes the word granularity which results in an improved throughput.
Second, overlap showcases how overlapping accesses are treated. The compiler favors
cache line granularity which results in improved throughput. For bank, a TM application
managing accounts in a bank, the cache line granularity is proposed but results in a small
slowdown compared with word size. Inside the bank implementation the accounts for
transfers are chosen at random. This makes a static analysis, for this part of the application,
infeasible. As a result MAPT proposes the granularity which does not perform best.
However, a loss of 1.6% is tolerable.

STAMP Benchmarks

For evaluation, we selected two benchmarks from the Stanford Transactional Applications
for Multi-Processing (STAMP) suite [24]. In particular we choose

• bayes, an algorithm from the machine learning domain which learns the structure
of a Bayesian network, and

• kmeans a data mining algorithm implementing the K-means clustering.

The chosen applications have different transactional characteristics: bayes exhibits
long transactions, large read/write sets and high contention whereas kmeans has short
transactions, small read/write sets and low contention [24]. The results of our static analysis
are shown in Table 7.5. Performance changes are reported as relative improvements.
The run time of the selected variant (named rt_sel) is compared with the variant that
was not selected (named rt_non). The relative improvement is calculated according to
(rt_non−rt_sel)

rt_non ∗ 100 because a lower execution time is better and, thus, an improvement.
In both cases the algorithm proposes the cache line-based conflict detection granularity.
This is correct despite the fact that the main data structures in memory were not analyzable
statically. Due to the different input sets for the benchmarks, the programs read data at
run time from files, hereby withdrawing from static analysis. However, there are relative
performance improvements of 14.7% for kmeans and 16.9% for bayes.

150



7.2. Selection of the Conflict Detection Granularity in an STM 151

7.2.3 Conclusion and Outlook for MAPT

This chapter presents a novel approach for detection and analysis of memory access
patterns in transactions. The MAPT approach enhances the LLVM compiler framework
and proposes an STM conflict detection granularity to the programmer. These mechanisms
are evaluate with test cases and benchmarks from the STAMP benchmark suite. The results
are promising and validate that an improved throughput can be achieved for the test cases
as well as a reduced execution time is possible for the two benchmarks.

Further, the analysis pass shall be complemented with the results of a pointer analysis to
address the limitations in the presence of function and data pointers.

151





8. First Experience with BG/Q
Performance

The first experience with the performance of TM on the new BG/Q architecture is presented
in this chapter and is similar to [171]. An introduction in Section 8.1 motivates the use
of TM in high performance computing (HPC). Section 8.2 compares our approach with
closely related work. Section 8.3 describes our experimental setup, the TM architecture of
the BG/Q system, and our benchmark used to determine overheads. Section 8.4 presents
low-level measurements, followed by the lessons learned in Section 8.5. Section 8.6 shows
how we can use our lessons learned to add transactions to a Monte Carlo code and to a
Smoothed Particle Hydrodynamics method. Section 8.7 summarizes the findings of the
first experience with the BG/Q architecture.

8.1 Demands on Transactional Memory in HPC
Achieving efficient and correct synchronization of multiple threads is a difficult and error-
prone task. The correct use of lock-based schemes requires a strict coding discipline
to place matching lock and unlock operations into the code in a way that avoids race
conditions and/or deadlocks. Additionally, lock-based synchronization often leads to high-
overheads, either due to lock contention, when using coarse-grained locks, or unnecessary
lock overhead, when using fine-grained locks. This not only slows down the process using
the locks, but also has a global effect in large scale programming since it creates skew
between processes as well as load imbalance, both major factors limiting the scalability of
applications.

Transactional Memory (TM) has been proposed almost two decades ago to tackle these
issues in shared memory systems [91]. TM simplifies synchronization by providing a
single simple construct: the programmer wraps the critical instructions in a transaction
(also called atomic block). These transactions are then executed optimistically in parallel
and conflicting accesses are resolved by a TM run time system. As a consequence only the
effects of entire and completed transactions are visible to concurrent threads, avoiding the
visibility of intermediate memory states.

Except for a few, prototype implementations in research processors, TM has mainly
been confined to software solutions and therefore has been burdened with significant

153



154 8. First Experience with BG/Q Performance

runtime overheads. These overheads severely restrict its applicability with the consequence
that non-performance critical areas, for which the increase in programmability and ease
of verification justify the additional cost, are the primary target. In high performance
computing, however, the applicability of these approaches has been limited.

The recently introduced Blue Gene/Q (BG/Q) system by IBM for the first time provides
Hardware Transactional Memory (HTM) in a commercially available platform [81]. BG/Q
is designed as a large scale platform for scientific computing workloads. The first machine
is installed at Lawrence Livermore National Laboratory and provides more than 1.5 million
compute cores (with a total of 6 million hardware threads), making scalability one of the
premier challenges on this machine.

This chapter presents the first comprehensive performance evaluation of BGQ’s HTM capa-
bilities from the application’s perspective, although other recent papers have also measured
certain aspects of performance [15] and [201]. Not every lock-based application will be
suitable for HTM and it is important to understand what code properties lead to efficient
executions and, hence, which codes can benefit from using HTM. In order to help code
developers with this task, we provide a precise evaluation of the strengths and weaknesses
of the architecture as well as what is required to map applications to the architecture in an
efficient way. In particular, we focus on the synchronization primitives for parallel pro-
gramming in shared memory architectures with OpenMP and provide detailed benchmark
results. Our experiments take into account the application’s characteristic (high or low
contention), the influence of environment variables, the effects of enlarging transaction
sizes, and hybrid parallelization with MPI. We apply our results to the optimization of a
Monte Carlo Benchmark (MCB), which functions as a proxy application for several large
scale Monte Carlo simulations, and a Smoothed Particle Hydrodynamics method from the
PARSEC benchmark [35].

Specifically, we make the following contributions:

1. We introduce a new benchmark, CLOMP-TM, that is aimed at evaluating TM
systems for scientific workloads.

2. We characterize the performance of HTM combined with OpenMP on BG/Q using
CLOMP-TM.

3. We study the influence of thread count, environment variables and memory layout
on TM performance.

4. We determine a fitting task to thread ratio for hybrid MPI/OpenMP codes with
different synchronization primitives.

5. We identify code properties that are likely to yield performance gains with TM.

6. We condense the findings into best practices and apply them to a realistic Monte
Carlo Benchmark code and a Smoothed Particle Hydrodynamics method.

For both case studies, an optimized TM version, executed with 64 threads on one node,
significantly outperforms a simple or naive TM version validating the best practices derived
from our observations with CLOMP-TM.

8.2 Comparison with Related Work
The only paper describing an early experience with a commercial hardware transactional
memory implementation published in a major conference, to our knowledge, is by Dice et

154



8.3. Experimental Setup with BG/Q 155

al. [53]. The paper describes and evaluates the hardware transactional memory feature of
SUN’s Rock processor [33], which is no longer available, and focuses on the evaluation of
concurrent data structures such as Red Black trees and Hashtable, and the construction
of a minimum spanning forest [109]. The parallelization of these codes uses threads only.
Thus, no experiments are made that estimate the performance of a hybrid parallelization
with MPI. Further, there is an important difference between the HTM implementations of
Rock and BG/Q. Rock is a checkpoint-based architecture which is exploited in the context
of TM to save and restore the architectural state of the registers in hardware. In BG/Q
the TM runtime performs this task in software, while only conflict detection is done in
hardware. This important difference will affect the performance of both architectures and
makes transferring results of previous studies from the Rock to the BG/Q architecture
extremely difficult.

A description of a second commercial HTM implementation can be found in a paper by
Click [42]. The goal is to accelerate the synchronized keyword in Java. Thus, no
extensions to the language are made and explicit programming with transactions is not
possible. Instead a heuristic decides whether to run a critical section as a transaction or not.

Most STM papers use STAMP, a benchmark suite for transactional memory research [24].
The codes comprise: Bayesian network learning, gene sequencing, network intrusion de-
tection, K-means clustering, maze routing, graph kernels, a client/server travel reservation
system, and Delaunay mesh refinement. This covers many application areas in which STMs
have been used, but do not represent codes from the area of high performance computing,
for which HTM is a promising approach to overcome synchronization overheads and to
improve scaling of hybrid thread/MPI codes. In this work, we therefore focus on a new
benchmark explicitly designed to cover this area and present results that demonstrate how
HTM can be deployed in HPC.

8.3 Experimental Setup with BG/Q

For all following experiments we use an early prototype of BG/Q installed at IBM. TM is
available through IBM’s XL C/C++/Fortran Compiler suite for BG/Q, which provides new
language primitives that allow users to specify transactions.

8.3.1 Overview of BG/Q’s TM Hardware

The BG/Q prototype we had access to had 32 nodes with 16 cores each. Each core can
execute up to four hardware threads. Transactional memory is implemented within the
L2 cache, which consists of 16 banks of 2 MBytes each located across a full crossbar
from the 16 compute cores. The L2 cache has a cache line size of 128 Bytes. Memory
accesses that can lead to conflicts between transactions, are tracked by the L2 cache, which
is the point of coherency. Conflict detection between different transactions is completed in
hardware, while conflict resolution is coordinated through the TM software stack. Note
that, in addition to TM, the L2 cache also implements an improved set of atomic operations
that targets faster thread synchronization. Comparisons in the remainder of the chapter
between TM and atomic operations therefore provide results between two novel and highly
optimized schemes. More information on BG/Q’s hardware in general can be found in a
recent presentation by Haring at Hot-Chips [81].

155



156 8. First Experience with BG/Q Performance

8.3.2 Application Perspective in BG/Q’s TM Software Stack

By default, the TM runtime uses a lazy (or optimistic) conflict detection scheme at commit
time, as the runtime suppresses the hardware from sending interrupts to the conflicted
threads as conflicts are detected. However, applications/users can enable a pessimistic de-
tection scheme by setting the TM_ENABLE_INTERRUPT_ON_CONFLICT environment
variable. That is, conflict arbitration happens immediately at the time of conflicts. Either
scheme needs to be carefully chosen as an already doomed thread, if allowed to finish, may
cause further spurious conflicts.

The TM runtime also relies on a lazy versioning (i.e., write-back) scheme as all speculative
writes are buffered in the multi-versioned cache until commit time. Strong atomicity
(i.e., opacity) is guaranteed unless a thread is running in irrevocable mode. In such
a case, the thread runs non-speculatively and all writes take effect immediately. The
TM_MAX_NUM_ROLLBACK environment variable controls when a thread should enter
into irrevocable mode. The irrevocable mode is a mechanism that guarantees that a thread
makes progress. The contention manager favors an older thread to commit based upon
the timebase register value of the thread at the time when speculation starts. Aborting a
transaction does not back-off for a pre-determined time, rather, a thread retries immediately.
The runtime also implements flat nesting whereby commits and rollbacks are to the
outermost TM region. As an additional feature, the runtime monitors the TM behavior
of the application and provides the resulting TM statistics to the user. All TM statistics
presented in this work, are retrieved by this method.

8.3.3 The CLOMP-TM Benchmark

Since current TM benchmark suites do not provide the necessary coverage for scientific
applications, we focus on the development of a new benchmark, specifically designed to
expose the range of properties needed to characterize scientific workloads: CLOMP-TM1.
It is designed to compare multiple synchronization constructs. In fact, it was created to help
us mimic the application characteristics of several large scale, multi-physics applications
used in production at DOE laboratories. It achieves this flexibility and wide coverage
through a series of parameters that allow us to explore varying transaction granularities
and conflict rates, coupled with typical computational kernels found in scientific codes.

CLOMP-TM originates from the publicly available CLOMP benchmark [21] used for
evaluating OpenMP implementations. CLOMP resembles an unstructured mesh with a
set of partitions. Each partition holds a linked list of zones. To vary the pressure on the
memory system, the size of these zones can be configured. Computation, that is performed
when updating a zone, only uses the first 32 Bytes of each zone. The computation per
zone update can be scaled by a factor. While the original CLOMP aims to quantify
overheads due to threading and the specific OpenMP implementation, the CLOMP-TM
aims at quantifying and comparing synchronization overheads of multiple synchronization
constructs. CLOMP-TM can be configured to resemble the synchronization characteristics
of typical scientific applications used in HPC. Thus, performance results of CLOMP-TM
not only enable us to provide detailed characteristics of the low-level properties of the
BG/Q, but also, and more importantly, to project the performance impact of TM on large
scale parallel applications.

1For the experiments CLOMP-TM version 1.59 is used and made available at
https://asc.llnl.gov/sequoia/benchmarks/#clomptm.

156

https://asc.llnl.gov/sequoia/benchmarks/#clomptm


8.3. Experimental Setup with BG/Q 157

Name Description Contention
None Threads do not conflict. No contention.
Adjacent Updates of adjacent memory No to small

addresses. contention.
Random Repeatable but randomly High contention.

seeming updates.
FirstParts Only the first parts are updated. Highest contention.

Table 8.1: Different contention levels in the CLOMP-TM benchmark (cf. to [171]).

Name Implementation Description
Bestcase — Bestcase without synchronization.
Serial Ref — Serial reference implementation.
Small TM #pragma tm_atomic Synchronizing each update with a

transaction.
Small Atomic #pragma omp atomic Synchronizing each update with an

atomic operation.
Small Critical #pragma omp critical Synchronizing each update with

OpenMP’s critical section.
Large TM #pragma tm_atomic All scatter zone updates in one

transaction.
Large Critical #pragma omp critical All scatter zone updates in one critical

section.
Huge TM X #pragma tm_atomic X times Large TM in one transaction.

Table 8.2: Description of synchronization constructs used in CLOMP-TM [171].

Major changes over CLOMP

In order to study the impact of TM in the presence of loop dependencies and the resulting
conflicts, CLOMP-TM adds explicit and controllable dependencies to the loop structures
of CLOMP. Besides the implementation with TM, CLOMP-TM also tests optimistic
execution not secured by any synchronization2 or using other constructs such as atomics or
OpenMP-based constructs with the same level of abstraction in terms of programming.

For a meaningful comparison of optimistic and pessimistic synchronization constructs,
multiple memory access patterns have to be considered. These memory access patterns
determine the likelihood of a conflict between concurrent accesses of two threads. A single
parameter defines the zones that are updated by a thread. The contention arises when
multiple threads update the same zones. These different contention scenarios are shown in
Table 8.1.

In comparison to the CLOMP benchmark, the updates of a zone are enlarged. This new
construct is called scatter zone and enables larger critical sections, which resembles the
update of multiple variables (e.g., coordinates with multiple dimensions x, y, and z) in one
critical section. For the large versions of the synchronization constructs, the parameter
scatterCount defines the number of updated zones in a single synchronized block.

2In this configuration CLOMP-TM does not return correct results, but the timings can be used to study
conflict free cases.

157



158 8. First Experience with BG/Q Performance

Each iteration executes the selected computation pattern. Available patterns with increasing
complexity are: none, divide, manydivide, and complex. None performs no computation,
divide performs a single, manydivide multiple, floating point divide operations and complex
exercises math functions e.g., log and sqrt. CLOMP-TM is carefully designed to
eliminate as much noise as possible: I/O is performed only outside of timing loops and
all the loops are through with several iterations just before the timing loops to eliminate
start up costs and cold cache effects. Table 8.2 holds the synchronization constructs to be
compared.

Comparison of CLOMP-TM with TM Benchmarks

Apart from the heavily cited STAMP benchmark suite [24] that does not represent the
scientific application behavior we are interested in, a growing number of parameterized
workloads gains popularity. An important example is the WormBench workload [218].
WormBench is derived from the popular snake game and has been designed to evaluate
and verify the efficiency of a TM system. WormBench is written in C# and enables
performance comparisons between TM and global locks. Parameters are size of the world
(matrix), number of worms (threads), body and head size of a worm and operations to be
performed while moving. In contrast, CLOMP-TM enables a comparison with a single
instruction atomic update, an unsynchronized version and two sizes of transactions and
critical sections, respectively. For our workloads C# does not play an important role and
we believe that a more versatile benchmark to model scientific workloads is needed, which
lead us to develop CLOMP-TM. A more suited candidate for the modeling of arbitrary TM
workloads is Eigenbench [94]. Eigenbench uses orthogonal metrics to model a specific
workload. For our use case, not knowing a priori how TM will perform, we would have to
rewrite the application with transactions, measure the metrics, derive a configuration for
Eigenbench and use this to model our workload. With CLOMP-TM, the user only needs to
know the number of shared memory accesses and the number of floating point operations
per loop iteration to set the right parameters that will resemble the application behavior.

8.4 Characterizing TM Performance using CLOMP-TM
For the CLOMP-TM cases presented in this work, synchronization overheads can dramati-
cally affect speedup. We vary the parameters of CLOMP-TM to learn how the parameters
affect the speedup and to find out what code properties qualify for TM. These results
will help application developers to tune their codes (e.g., through picking a better suited
synchronization primitive), but the achievable speedup is determined by the properties of
the application (e.g., ratio of computation and synchronization, contention for memory
locations).

For our initial experiments targeted at understanding the potential for TM, we chose the pa-
rameters for CLOMP-TM in a way that TM outperforms a highly efficient implementation
of omp atomic. In this configuration, CLOMP-TM performs 8 divide operations per
zone update with a stride of 4. Threads do not contend for memory locations. We increase
the size of the scatter zone so that an increasing amount of updates are carried out in Large
TM. Figure 8.1 a) illustrates that in the case of 32 threads performing 5 zone updates is
the cross-over point for Large TM over Small Atomic. For 64 threads the number of zones
is twice as high (see Figure 8.1 b)). Please note that the large amount of computation per
zone update masks the overheads of synchronization.

158



8.4. Characterizing TM Performance using CLOMP-TM 159

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50

S
p

ee
d

u
p

 (
o

v
er

 s
er

ia
l)

 w
it

h
 3

2
 t

h
re

ad
s

  
Atomic updates covered by a Large TM region (sc parameter)

Bestcase

Small TM

Large TM

Small Atomic

Small Critical

Large Critical

(a) 32 threads.

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50

S
p

ee
d

u
p

 (
o

v
er

 s
er

ia
l)

 w
it

h
 6

4
 t

h
re

ad
s

  
Atomic updates covered by a Large TM region (sc parameter)

Bestcase

Small TM

Large TM

Small Atomic

Small Critical

Large Critical

(b) 64 threads.

Figure 8.1: CLOMP-TM performing 8 divide operations with a stride of 4
per zone update with excellent speedups of Large TM over Small
Atomic. Run with clomp-tm-bgq-divide4 -1 1 256 128 256
stride1,1,stride1%/2 sc 1 0 6 100. First published in [171].

numParts 64
zoneSize 128

zone alignment 128
scatter 3

flopScale 1
timeScale 100

Zones per Part 100
Total Zones 6400

Zone Calc Stride 1
Extra Zone Calcs 8

Zone Calc Flag -DDIVIDE_CALC
Zone Calc Formula ((1.0/(x+2.0))-0.5)

Table 8.3: Parameters for CLOMP-TM; similar to [171].

159



160 8. First Experience with BG/Q Performance

 0

 10

 20

 30

 40

 50

 60

Bestcase Small TM Small Atomic Small Critical

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

  
  
  
  
  
  
  

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

y=1

(a) Speedup with None [171].

 0

 10

 20

 30

 40

 50

 60

Bestcase Small TM Small Atomic Small Critical

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

  
  
  
  
  
  
  

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

y=1

(b) Speedup with Adjacent.

 0

 10

 20

 30

 40

 50

 60

Bestcase Small TM Small Atomic Small Critical

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

  
  
  
  
  
  
  

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

y=1

(c) Speedup with Random [171].

 0

 10

 20

 30

 40

 50

 60

Bestcase Small TM Small Atomic Small Critical

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

  
  
  
  
  
  
  

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

y=1

(d) Speedup with firstParts.

Figure 8.2: CLOMP-TM performing 8 divide operations per zone update with small critical
sections [171].

8.4.1 Synchronization Overhead
To understand the tradeoffs in using TM, we first study the synchronization overhead
associated with different approaches and contrast them to the TM results. We obtain the
results in this section by using the parameters shown in Table 8.3. Memory is allocated by
the main thread. This is sufficient because memory accesses are uniform in BG/Q. The
setting of zonesPerPart equal to 100 stems from the original CLOMP and mimics the loop
sizes of many multiphysics applications [21]. The chosen computation pattern is divide.
For each zone update 8 extra divide calculations are executed. The environment variable
OMP_WAIT_POLICY has been set to ACTIVE for all runs.

Figure 8.2 shows the speedup of the different synchronization mechanisms for updating
one memory location at a time. Small Atomic achieves the highest speedup for a small
critical section compared to Small TM and Small Critical. This relation holds for the access
patterns None that generates no conflicts and Adjacent that only generates conflicts for
more than 16 threads. For smaller thread counts, the zones, that each thread updates, do
not overlap between threads. This Adjacent pattern is an interesting case that illustrates
that the programmer must be very careful when designing the memory layout of the

160



8.4. Characterizing TM Performance using CLOMP-TM 161

 0

 10

 20

 30

 40

 50

 60

Bestcase Large TM Large Critical

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

  
  
  
  
  
  
  

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

y=1

(a) Speedup with None [171].

 0

 10

 20

 30

 40

 50

 60

Bestcase Large TM Large Critical

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

  
  
  
  
  
  
  

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

y=1

(b) Speedup with Adjacent.

 0

 10

 20

 30

 40

 50

 60

Bestcase Large TM Large Critical

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

  
  
  
  
  
  
  

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

y=1

(c) Speedup with Random [171].

 0

 10

 20

 30

 40

 50

 60

Bestcase Large TM Large Critical

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

  
  
  
  
  
  
  

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

y=1

(d) Speedup with firstParts.

Figure 8.3: CLOMP-TM performing 8 divide operations per zone update with large critical
sections (cf. to [171]).

 0

 10

 20

 30

 40

 50

 60

B
es
tc
as
e

H
u
g
e 
T
M
 1

H
u
g
e 
T
M
 2

H
u
g
e 
T
M
 5

H
u
g
e 
T
M
 1
0

H
u
g
e 
T
M
 2
0

H
u
g
e 
T
M
 5
0

H
u
g
e 
T
M
 1
0
0

S
p
ee
d
u
p
 (
o
v
er
 s
er
ia
l)

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

y=1

Figure 8.4: CLOMP-TM (v. 1.36) performing 8 divide operations per zone update with
huge critical sections. Speedup shown with None [171].

161



162 8. First Experience with BG/Q Performance

application with respect to the sharing between threads. Also, with contention, generated
by the Random and firstParts memory access patterns, Small Atomic provides the fastest
synchronization.

Large TM outperforms Large Critical as can be seen for no and high contention cases
of Figure 8.3. Thus, for critical sections with more than one memory update, TM is the
preferred method. The Huge TM with 100 times the size of Large TM performs extremely
well in case of no contention (see Figure 8.4). Further experiments with higher contention
cases reveal that this speedup is very fragile. These experiments demonstrate (and the TM
statistics confirm) that longer transactions are more susceptible to contention and should
be deployed with great care.

8.4.2 Conflict Probability

The performance of any TM application depends on the number of conflicts it has to
encounter that lead to potentially costly rollbacks. We study this issue by extending
CLOMP-TM with a special mode that enables transition between scatter modes. Thus,
a parameter has been added that defines the number of intended conflicts for a run. For
our experiments we compute this parameter from a conflict probability (cp) as follow:
total zones ∗ scatter ∗ cp. Updates are counted as intended conflicts and performed inside
a large transaction. Note, however, that not all intended conflicts lead to an actual conflict
and some conflicts can cause multiple rollbacks.

Figure 8.5(a) illustrates the impact of the number of retries on the achievable speedup.
We can clearly see that a linear increase of the conflict probability (shown as intended
conflicts) leads to an exponential decrease of the speedup. In this experiment the zone
size is set to 128 Bytes. In case it is smaller (e.g., 64 or 32 Bytes) conflicts may be falsely
detected because two zones are mapped to the same cache line. These False Positives are
eliminated when the zone size equals the size of the L2 cache line.

8.4.3 Tuning the BG/Q TM Runtime Environment

The TM runtime system in BG/Q provides a series of parameters that can be used to
fine tune the performance of HTM applications. These parameters are available to the
user through environment variables that can be set before the code’s execution. The most
significant one is TM_MAX_NUM_ROLLBACK (RBM), which controls the number of times
a transaction can be aborted and rolled back before the runtime gives up on it and executes
it in irrevocable mode, i.e., the transaction is executed non-transactionally under a global
lock so that other transactions can not interfere. The TM runtime will further mark this
transaction and execute it in irrevocable mode right away on a subsequent execution.

Figure 8.5 shows results with 32 threads and RBM set to 1 and 10. In Figure 8.5(a) RBM
is set to 10 and shows a significant higher number of retries than Figure 8.5(b) (RBM 1).
The relative number of serialized transactions is higher for RBM 1. Both observations are
due to the RBM setting, since a smaller RBM value serializes after fewer retries. In terms
of speedup, RBM 10 outperforms RBM 1 due to less frequent serialization. The effects of
the adaptive TM runtime on the performance need closer investigation.

Figure 8.6 demonstrates the influence of RBM 1, RBM 5 and RBM 10 on the achievable
speedup with TM. For all contention levels and Small TM the differences between RBM 5
and RBM 10 are insignificant. For higher contention and Large TM, RBM 10 has slight

162



8.4. Characterizing TM Performance using CLOMP-TM 163

 0

 5000

 10000

 15000

 20000

 0  5  10  15  20  25  30  35  40  45  50

 0

 2

 4

 6

 8

 10

 12

 14

N
u

m
b

er
 o

f 
ro

ll
b

ac
k

s 
p

er
 l

o
o

p
 i

te
ra

ti
o

n

S
p

ee
d

u
p

 o
v

er
 s

er
ia

l

Conflict Probability (in %)

CLOMP-TM with 32 threads, RBM 10 and zone size 128 bytes

Intended conflicts Retries Serialized Speedup

(a) 32 threads with RBM 10.

 0

 5000

 10000

 15000

 20000

 0  5  10  15  20  25  30  35  40  45  50

 0

 2

 4

 6

 8

 10

 12

 14

N
u

m
b

er
 o

f 
ro

ll
b

ac
k

s 
p

er
 l

o
o

p
 i

te
ra

ti
o

n

S
p

ee
d

u
p

 o
v

er
 s

er
ia

l

Conflict Probability (in %)

CLOMP-TM with 32 threads, RBM 1 and zone size 128 bytes

Intended conflicts Retries Serialized Speedup

(b) 32 threads with RBM 1.

Figure 8.5: Influence of TM_MAX_NUM_ROLLBACK (RBM) on retries/speedup.
Run with clomp-tm-bgq-divide1 -1 1 x1 d6144 128
firstZone,cp,randFirstZone 3 1 0 6 100. First published
in [171].

163



164 8. First Experience with BG/Q Performance

 0

 5

 10

 15

 20

 25

 30

 35

 0  20000  40000  60000  80000  100000  120000  140000  160000

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

 w
it

h
 3

2
 t

h
re

ad
s

Potentially conflicting updates (cp parameter)

cp 0% 15.3% 30.5% 45.8%

Small TM RBM 1

Small TM RBM 5

Small TM RBM 10

Large TM RBM 1

Large TM RBM 5

Large TM RBM 10

Bestcase

Small Atomic

Figure 8.6: Studying the influence of setting TM_MAX_NUM_ROLLBACK
with CLOMP-TM and changing the level of contention [171].
Run with clomp-tm-bgq-divide4 32 1 256 128 256
stride1,cp,stride1%/2 10 1 0 6 100.

advantages over RBM 5. RBM 1 shows the worst performance for the presented level of
contention.

A second important parameter for TM is the scrub rate. It triggers a garbage collection
for TM SpecIds, which mark entries in the cache as belonging to the same or different
transactions. Figure 8.7 shows that varying the scrub rate has a large impact. For our
benchmark with a lot of transactions and short intervals between these, a scrub rate of 6 is
best.

In the next paragraph, we will research another important aspect: the influence of the scrub
rate on the number of rollbacks. Figure 8.8 shows the number of rollbacks of Small TM
and Large TM on the y-axis and the scrub rate on the x-axis. All four plots show that the
variation in rollbacks depends on the size of the transaction for this parameter setting. For
Large TM the influence is higher (but for Large TM the total amount of rollbacks is higher).
For Small TM the rollbacks are almost always zero except for occasional peaks for one
setting of the scrub rate. This is an interesting phenomenon because it shows the random
influence that changing the scrub rate can have through randomly delaying threads (cf. to
Figure 8.8(b)). For Large TM and 4 threads the highest conflicts occur with the highest
scrub rate but the relative differences are not high. Figure 8.8(b) and Figure 8.8(c) show for
Large TM with 8 and 16 threads respectively that small values for the scrub rate can yield
less conflicts than higher values. An explanation is that scrubbing may even prevent some
conflicts because it blocks access to the L2 cache and thus other threads from proceeding.
For Large TM and high thread counts (32 and above) the trend is that a higher scrub rate
yields more conflicts (see Figure 8.8(d)). These findings help to understand the various
ways in which the setting of the scrub rate combined with the number of threads influences
the TM behavior of the application.

164



8.4. Characterizing TM Performance using CLOMP-TM 165

 0

 10

 20

 30

 40

 50

 60

 0  20  40  60  80  100

S
p
ee

d
u
p
 (

o
v
er

 s
er

ia
l)

 w
it

h
 6

4
 t

h
re

ad
s

  
 Scrub rate

Bestcase

Small TM

Large TM

Small Atomic

Small Critical

Large Critical

Figure 8.7: Influence of the scrub rate for SpecIds on performance with 64
threads [171]. Run with clomp-tm-bgq-divide1 -1 1 64 100
128 InPart,10,firstParts 10 1 0 sr 100

(a) 4 threads. (b) 8 threads.

(c) 16 threads. (d) 64 threads.

Figure 8.8: Influence of the scrub rate for SpecIds on the amount of roll-
backs. Run with clomp-tm-bgq-divide1 -1 1 64 100 128
InPart,10,firstParts 10 1 0 sr 100

165



166 8. First Experience with BG/Q Performance

1 MPI_Barrier (MPI_COMM_WORLD ) ;
2 g e t _ t i m e s t a m p (& b e s t c a s e _ s t a r t _ t s ) ;
3 d o _ b e s t c a s e _ v e r s i o n ( ) ;
4 g e t _ t i m e s t a m p (& b e s t c a s e _ e n d _ t s ) ;
5 MPI_Barrier (MPI_COMM_WORLD ) ;

Listing 8.1: Use of MPI barriers for CLOMP-TM with MPI.

8.4.4 CLOMP-TM with Mixed Scatter Modes
So far, we have only discussed settings with a single scatter mode at a time (see Table 8.1).
This leads to a fixed TM application behavior that defines the contention between threads
for the whole program run. As a result, TM either performs excellent because of the lack of
conflicts (e.g., scatter mode None) or suffers from the frequent retries (e.g., firstParts). This
model, while useful to get point results, is too restricted to model all scientific workloads
and expose the potential of TM. CLOMP-TM therefore additionally supports two different
scatter modes that execute alternately. It uses a parameter to define how often the second
scatter mode will be used, i.e., increasing this parameter leads to more updates with the
second scatter mode.

8.4.5 Using TM in the Context of MPI Applications
Up to this point, we focused on single node experiments using OpenMP as the method
for threading. To work across nodes and hence to exploit the vast parallelism available
in BG/Q systems, scientific applications will require additional parallelization with MPI.
Consequently, it is important to understand the interplay between OpenMP threading with
TM support and having multiple MPI tasks on the node.

In the following we study the side effects of running multiple MPI tasks, each executing
CLOMP-TM, on one node. Our goals are:

1. to verify the robustness of the results above,

2. identify bottlenecks due to the sharing of architectural resources,

3. and determine a fitting MPI task to OpenMP thread ratio.

We extended CLOMP-TM to execute multiple instances of its core functionality, synchro-
nized by MPI operations. Besides calls to init and finalize MPI, we inserted MPI_Barriers.
These barriers are placed such that all MPI tasks execute the code for the same synchro-
nization primitive. An example for the placement of the MPI_Barrier calls is shown in
Listing 8.1. To execute in this lock step fashion guarantees that all MPI tasks execute the
code for the same synchronization primitive. As a consequence, we can directly control
the contention on the architectural resources that are necessary for synchronization (such
as the L2 cache). Thus, the methodology provides a clear and controllable mechanism to
study the architectural resources needed by individual synchronization primitives.

Figure 8.9 illustrates the performance of CLOMP-TM with MPI for small and large critical
sections using strong scaling, i.e., the total amount of work is constant for all task counts.
We achieve this by dividing the number of parts (initially 1024) as well as the number of
updates in the second scatter mode by the number of MPI tasks. All MPI tasks execute as
many threads as possible without oversubscribing the node (e.g., 1 MPI task executes 64
threads).

166



8.4. Characterizing TM Performance using CLOMP-TM 167

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10  12  14  16

S
p

ee
d

u
p

 o
v

er
 s

er
ia

l 
*

 #
M

P
I 

ta
sk

s

#MPI tasks

Bestcase

Small TM

Large TM

Small Atomic

Small Critical

Large Critical

(a) No to low contention (rollback per transaction ≈ 0).

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10  12  14  16

S
p

ee
d

u
p

 o
v

er
 s

er
ia

l 
*

 #
M

P
I 

ta
sk

s

#MPI tasks

Bestcase

Small TM

Large TM

Small Atomic

Small Critical

Large Critical

(b) High contention (rollback per transaction ≈ 1).

Figure 8.9: CLOMP-TM with MPI performing 8 divide operations with a stride
of 4 per zone update with no and high contention [171]. Run with
clomp-tm-mpi-bgq-divide4 -1 1 (1024/taskno) 128 256
stride1,cp,stride1%/2 10 1 0 6 100. cp is set to 16

taskno
for the

left and 1.12∗106

taskno
for the figure on the right.

167



168 8. First Experience with BG/Q Performance

Figure 8.9(a) shows the average speedup of the threads in each MPI task multiplied by
the number of MPI tasks on the y-axis. The number of MPI tasks is plotted on the x-axis.
In this case with extremely low contention, Large TM performs almost as well as Small
Atomic. The surprise is that for large task counts, Small and Large Critical perform better
than Small TM. Especially Small Critical, which is protecting one memory location, has
been optimized heavily in the new BG/Q L2 cache and is now a strong alternative for TM
if the granularity in the codes allows for this. With increased contention (Figure 8.9(b))
Large TM and Small TM perform slightly worse but the overall trend with respect to the
critical section remains. Large Critical benefits from the smaller thread numbers at higher
task counts because the cost for serialization is reduced.

8.4.6 Finding a Competitive Task to Thread Ratio
The architecture of one BG/Q node features 16 compute cores each equipped with 4-way
hyper-threading. As demonstrated in earlier papers [21], an OpenMP barrier has a higher
overhead for higher thread counts. Thus, a hybrid parallelization with MPI and OpenMP
may achieve higher performance than an OpenMP only implementation. In order to be
able to compare results of OpenMP and hybrid parallelization, we use a simple metric.
For the hybrid case, we multiply the reported OpenMP speedup with the number of MPI
tasks. Figure 8.9 shows that the Bestcase across MPI tasks is stable. Across all tested
memory access patterns and MPI tasks configurations, the OpenMP version with the
highest possible thread count performs best. While this is not surprising since the BG/Q
architecture requires at least two threads per core to be able to reach full instruction issue
bandwidth, it is nevertheless an important first insight that we gain from this experiment.
For architectures with hyper-threading, the additional HW threads are often turned off
because they lead to a slowdown. For the BG/Q architecture running the CLOMP-TM
(with MPI) benchmark this is not the case. Every thread (even beyond the minimum of two
needed for full issue bandwidth) contributes an important part of the reported performance.
For the executed strong scaling experiments, however, the results of finding a preferable
task to thread ratio are inconclusive. All tested ratio perform well and differences are
extremely small.

In all high contention cases Small Atomic performs best. For cases with little to no
contention Large TM may perform almost as well as Small Atomic. The large transactions
benefit from the optimistic concurrency and the overhead for setting up the transaction is
amortized due to the long transaction size. Unfortunately, this effect is limited to scenarios
where expensive roll back operations are infrequent.

8.5 Lessons Learned
The experiments described above give us a clear characterization of HTM on BG/Q and
provide the necessary information to understand which kind of applications can benefit
from HTM. In the following we summarize these findings in a set of best practice guidelines
that will help code developers on BG/Q decide if and how to best exploit HTM.

In particular, codes that exhibit the following properties are likely candidates for HTM:

• critical section should have low contention so that conflicts are unlikely,

• critical sections should access more than one memory location (preferably in the
range of 10 to 20) so that omp atomic is not applicable and TM’s property of
providing atomicity for updates of multiple memory locations is valuable,

168



8.6. Application Case Studies 169

• high computation to synchronization ratio so that computation can mask the over-
heads of synchronization.

For synchronization with OpenMP, both the size of the code region that needs to be
executed atomically and the potential conflict rate play an important role:

• For code regions that only require atomic updates using one instruction, omp atomic
shows the best performance, since it can be mapped to the efficient atomic instruc-
tions implemented in the BG/Q L2 cache.

• For larger critical sections with low to moderate contention and conflict potential
(<< 1 rollback per transaction), TM using the tm_atomic primitive is beneficial,
since the costs of conflicting transactions are amortized by avoiding serialization.

• In case of very high contention (> 1 rollback per transaction) and small critical
sections, omp critical also outperforms TM, since TM conflicts and rollbacks start
dominating leading to higher overhead.

• For applications that are not utilizing the full memory bandwidth with a high trans-
actional execution time and short times in between transactions, setting the scrub
rate to 6 yields better performance.

These findings complement a previous study on using Software Transactional Memory for
scientific codes using a different and more specific setup [14]. Additionally, researchers
already identified codes that match the criteria from above and are expected to benefit from
TM [208]. This work was limited to STM methods and has only recently been verified on
a HTM system, publishing first performance results of the BG/Q architecture [15]. Our
current recommendations verify the applicability of these previous preliminary studies
to HTM, extend them by adding tradeoffs offered by the new adjustable performance
parameters found in IBM’s HTM solution, and generalize them to a more comprehensive
guide for application developers.

8.6 Application Case Studies

8.6.1 MCB: A Proxy Application for Monte Carlo Simulations
In this section we apply the best practices from the previous section to a benchmark closely
representing a real world application. The Monte Carlo Benchmark (MCB) models a Monte
Carlo simulation, a popular technique for physics simulations. In contrast to classical
simulation approaches, Monte Carlo simulations do not compute their result explicitly, but
instead adaptively sample the simulation domain and execute individual simulations for
each sample. This process is repeated until the probability of a result can be quantified.

The initial MCB code was already parallelized with MPI and OpenMP using omp critical
and omp atomic to synchronize OpenMP threads (denoted as Critical & Atomic in the
following). As a first, naive TM implementation, referred to as TM naive, we replace all
critical sections with transactions and set the TM environment variables to their default for
TM simple and Critical & Atomic.

Additionally, we create an optimized version, called TM opt, following the lessons in the
previous section. In TM opt we use a hybrid strategy matching the characteristics for each
synchronization construct: synchronizations that involve only one instruction use omp
atomic, while all omp critical constructs are replaced with tm_atomic.

169



170 8. First Experience with BG/Q Performance

Code version Critical & Atomic TM naive TM opt
Speedup 27.57 20.06 27.45

Table 8.4: MCB with one MPI task and 64 threads (strongScaling) – speedup over baseline.

Table 8.4 shows the results of the experiments with one MPI task and 64 threads in a
strong scaling experiment with 5 ∗ 106 particles. Each value is an average of “samples per
second” over 30 runs and normalized to baseline: “samples per second” with one MPI
task and one thread. TM opt has a speedup over baseline of 27.45 and performs almost
as good as the original version, but at reduced code complexity and programmer effort.
The result of TM naive demonstrates that the lessons learned in this work are essential to
getting good performance. Further experiments reveal a limited potential for optimizing
the synchronization of threads in MCB. Commenting out all occurrences of omp atomic
and omp critical (and ignoring the fact that this results in wrong answers for the
simulation) yields ≈ 5% performance improvement.

8.6.2 Fluidanimate from the PARSEC Suite

In addition to the Monte Carlo Benchmark, we use fluidanimate from the PARSEC
benchmark suite [35]. fluidanimate implements a Smoothed Particle Hydrodynamics
(SPH) method to animate fluid dynamics. To include it in the PARSEC suite, the application
has been parallelized with Pthreads and fine-grained locking. Under the assumption that
particles can not travel more than one cell in one time step, this parallelization uses an
array of locks to protect the boundaries. An if-statement checks whether a lock needs
to be taken. This synchronization pattern is rather sophisticated and by far exceeds the
complexity of a single global lock. Because the programming complexity of TM can be
compared with a single global lock, we added two versions: one with a coarse grain lock
(cgl) and a simple TM version (TM simple) that replaced all lock acquire and lock release
operations (that occur in three code segments) with a transaction.

Then, we apply the lessons learned from Section 8.5. First, we enlarge all three transactions
by removing the if-statement and changing the two outer loops to be inner loops. More
measurements reveal that for the third transaction having three nested inner loops is best.
Further, we reduce the scrub rate to 6 so that SpecIds from the TM hardware will be
reclaimed faster. All measures combined deliver the performance shown for TM opt
in Figure 8.10. For the small input data set (simlarge) and medium thread counts, TM
opt outperforms the fine-grained locking (cf. Figure 8.10 a)). For the larger input data
set (native) the lessons learned are necessary to increase the scalability with TM and
come into sight of fine-grained locking (Figure 8.10 b)). The execution with native
input data sets increases the input data size and the frame rate simultaneously. We were
interested to know which of these parameters influences the performance in favor of TM.
The result is that the smaller input data favors TM whereas the frame rate simply serves
as a multiplier of the observed performance. Further, this experiment reveals that the
BG/Q architecture is extremely stable with very little noise. The observed performance
of the synchronization patterns shows that even with Hardware Transactional Memory,
expert-level use of lightweight efficient fine-grained locks will be hard to beat. Moreover,
we identified the need to research tools with support for TM that enable an in-depth
understanding of the TM behavior and the causes for performance degradation. From a
programmability perspective, employing TM is as simple as using a single global lock.

170



8.7. Summarizing the First Experience with BG/Q 171

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  10  20  30  40  50  60  70

S
p

ee
d

u
p

 (
o

v
er

 s
er

ia
l)

#Threads

FGL

CGL

TM simple

TM opt

(a) Input data set simlarge.

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50  60  70

S
p

ee
d

u
p

 (
o

v
er

 s
er

ia
l)

#Threads

FGL

CGL

TM simple

TM opt

(b) Input data set native.

Figure 8.10: fluidanimate with coarse-grained and fine-grained locking as well as
simple and optimized transactions.

For this experiment, even the unoptimized TM version outperforms the single global
lock in terms of speedup and scalability. Therefore TM takes an important step towards
simplifying shared memory programming.

8.7 Summarizing the First Experience with BG/Q

In this chapter we evaluated BG/Q’s TM hardware from the perspective of an application
developer. We introduced CLOMP-TM, a benchmark designed to represent scientific
applications, and used it to contrast HTM against traditional synchronization primitives,
such as omp atomic and omp critical. We then extended CLOMP-TM with MPI to mimic
hybrid MPI/OpenMP parallelization. Additionally, we studied the impact of environment
variables on the performance. Finally, we condensed the findings into a set of best practices
and applied them to a Monte Carlo Benchmark. An optimized TM version of MCB with 64

171



172 8. First Experience with BG/Q Performance

threads achieved a speedup of 27.45 over the baseline. Further, an optimized TM version of
the Smoothed Particle Hydrodynamics method from the PARSEC suite achieved a speedup
of 14.5 with 64 threads and significantly outperformed a simple TM version (speedup of
4.4) as well as a coarse grain lock (speedup below 1) and verified the usefulness of the
best practices. Moreover, our results also show that an expert-level use of lightweight
efficient fine-grained locks is hard to beat with TM. For MCB, a synchronization pattern
that combines omp atomic and omp critical achieved a slightly larger speedup of 27.57
over baseline. These findings illustrate that performance with HTM does not come for
free and, even when following the guidelines developed and presented in this chapter,
performance with TM may not quite measure up to the expert-level use of locks for the
scientific applications considered. However, TM comes with the advantage of improving
the programmability and productivity because the user does not have to explicitly manage
locks (which is known to be error-prone). Thus, the use of TM or locks depends on
the expected gain when comparing development effort with performance improvements.
Our findings motivate further research to refine our lessons learned and develop tools for
programming with TM.

172



9. Tool Support for TM on BG/Q

This chapter presents three tools for HTM with implementations for the BG/Q architecture.
This idea has also been sketched in [177]. Section 9.1 motivates the need for specific tools
that support HTM. The design of the tools, that feature profiling, tracing and measuring
overheads of transactions, is presented in Section 9.2. All tools incorporate the reading of
architecture-specific hardware performance counters. Section 9.3 illustrates how the tools
with these performance counters help to track down performance issues in applications
with transactions. In particular, we profile a hydrodynamics proxy application, present the
results in Section 9.4 and reveal the cause for suboptimal TM performance. Visualization
of the trace data with Vampir is shown in Section 9.5. Section 9.6 briefly compares the
approach with related work and Section 9.7 concludes this chapter.

9.1 Introduction and Motivation for Tools on BG/Q
The BG/Q architecture is the first commercially available architecture that supports hard-
ware transactional memory. As we already described in the previous chapter, the user must
follow a set of guidelines in order to exploit the full potential that the new synchronization
mechanisms of this architecture offer, where each node is capable of running 64 threads in
parallel. The guidelines include the synchronization with Transactional Memory (TM) in
order to select a synchronization mechanism for the application that yields the best perfor-
mance. Due to the optimistic concurrency, the conflict probability with other transactions
is the dominant factor for the performance of TM. Chapter 8 shows that a low conflict
probability alone is not sufficient for TM to be the fastest synchronization alternative.
According to these findings, the transaction length also plays an important role for the
performance as well as using the correct settings for TM related environment variables.
A different study compares the performance of TM in the two execution modi on BG/Q
with Software Transactional Memory with privatization and OpenMP critical [201]. This
paper provides insights in the architecture of the TM subsystem and gives additional advice
when to use which TM mode. For a programmer this kind of guidance is very important,
but does not provide the insights needed to understand and tune a particular case. Hence,
we identify key performance counter event types that not only explain the observations
of the current TM performance, but are also indicative of TM performance with respect
to other synchronization mechanisms. We present three tools for TM that combine these

173



174 9. Tool Support for TM on BG/Q

performance counters with statistics from the TM run time to help the programmer to find
and correct the cause for the lack of performance. We present a profiling tool for hybrid
parallelized programs with MPI and OpenMP that is capable of aggregating TM statistics
and performance counters for each MPI rank to obtain an overview over MPI execution
with OpenMP and TM. This helps to isolate performance issues in particular ranks. For an
in-depth investigation of these ranks, we present two additional tools for TM. The next tool
generates traces of the execution of the TM application and preserves the information as
snapshots so that the application behavior can be visualized in great detail. The final tool
for TM targets overhead measurements that enable us to obtain a better understanding of
the utilization of the architectural resources during the execution phases of a transaction.

This chapter makes the following contributions to the state-of-the-art:

• enriches the set of best practices for efficient synchronization with TM with a set of
tools that enable each programmer to explore the subtleties of TM execution:

– the first tool that profiles applications using MPI and OpenMP with TM on
BG/Q,

– a tracing tool for TM that enables in-depth inspection of thread-level execution
and utilization of the architecture through visualization with a state-of-the-art
visualization tool,

– a tool that measures overheads associated with TM, designed to dissect these
overheads and direct optimization efforts for the TM stack,

• presents detailed multi-threaded overhead measurements of the TM subsystem
dividing transactional execution into three separate phases in Section 9.3.2,

• uncovers the subtle interaction of the TM system and the prefetching on BG/Q and
study the implications for design of the application and choosing the TM mode,

• obtains a comprehensive understanding of the performance of synchronization mech-
anisms in LULESH, a Lagrange hydrodynamics proxy application, and finds the
cause for the missing performance with TM.

9.2 Design of a TM Tool for IBM’s Run Time Stack

9.2.1 A Profiling Tool for TM

The requirements for a profiling tool for TM follow those of profiling in general: low-
intrusiveness and a low memory footprint that does not increase with a longer program run
time. In order to fulfill these requirements, we adopt the caliper concept that has already
been successfully applied in other tools such as TAU [183]. The user specifies the code
regions of interest by wrapping them in a caliper begin and caliper end primitive. In the
following, we will refer to the entity that is defined through the mentioned primitives as
a bucket. During the execution of the program, all counted values are aggregated in the
respective buckets as indicated through the begin and end statements. Thus, a bucket holds
the performance counter data of the code that it embraces. In case the code iterates over
a bucket, the tool updates its performance counter values each time and aggregates them.
Through this profiling approach, the tool’s memory consumption is linear in the number
of buckets, not in the run time of the program. Hence, the tool design enables a longer

174



9.2. Design of a TM Tool for IBM’s Run Time Stack 175

1 tmt_begin ( char * b u c k e t _ l a b e l ,
2 char * v a l u e s ) ;
3
4 tmt_end ( char * b u c k e t _ l a b e l ,
5 char * v a l u e s ) ;
6
7 tmt_annotate ( void * addr , i n t MPI_type ,
8 char * v a r _ d e s c r i p t i o n ,
9 char * b u c k e t _ l a b e l ) ;

Listing 9.1: Application programming interface for the TM profiling tool.

program run time without increasing the demand for memory. This is an essential property
of the tool in order to profile large-scale applications. Naturally, the aggregation step
reduces the amount of information so that some details of the application execution will not
be available during the post processing step. In order to minimize the loss of information,
each bucket records the running minimum, maximum and sum of the performance counter
readings so that outliers are preserved.

Although the use of the profiling tool requires manual code changes, these changes are
straightforward and enable to direct the profiling efforts to application parts of interest and
continously refine the profiling data through adding/removing instrumentation. Listing 9.1
illustrates the application programming interface that the user may utilize to instrument the
application. The matching functions tmt_begin and tmt_end open and close a bucket
respectively. These buckets support the nesting of buckets. In this case the outer nesting
level will also contain the counters of the inner nesting level. Further, buckets may partially
overlap. Then both buckets count the overlapped code region. The first parameter of both
API functions is a string that defines the name or label of the bucket. This label is used
to match the opening and closing of a bucket. At the opening, the tool allocates memory
for the bucket and reads all specified counters and saves these readings in a structure that
is maintained per thread for thread-local counters or globally for shared counters. The
counters (for performance events and TM statistics) then continue to track the code section
that the bucket contains. At the end of the bucket, the call into the tool triggers the reading
of the counters to a temporary buffer and compares the bucket labels whether this end call
matches the last begin. If this is the case, the tool computes the differences of the respective
counters and processes these in the following way: each bucket holds data structures for
each of the counters that track the minimum, maximum and sum. The semantic differs
slightly between thread-local and shared counters: for the thread-local counters (e.g., L1
hits, TM statistics) the minimum refers to the minimum of all computed differences for
this bucket of all threads. The same holds for the maximum but the sum is summarizing
over all differences of that bucket and all threads. Thus, an average that falls within the
minimum and the maximum requires to divide the sum by the number of threads and the
number of times the buckets has been accessed. For the shared counters, the minimum,
maximum and sum all apply to invocations of the bucket because only one thread reads
these counters. Hence, the average can be computed by dividing the sum by the number of
accesses to the bucket.

As a second parameter, the user may pass application-specific data to the tool. This
additional mechanism enables the correlation of data from the application domain with
performance data. This relation enables to attribute a performance issue, e.g., to a specific
time step or application parameter that changes over time. However, this parameter is

175



176 9. Tool Support for TM on BG/Q

NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

NULL
NULL

Pointer Array

4

17

Stack

SP

Bucket label: MPI_Init
Begin file: tmt_prof.c
Begin function: tmt_mpi_init
Begin line: 2844
Begin idx: 4
End file: tmt_prof.c
End function: MPI_Finalize
End line: 2921
Accesses: 1
Nesting depth: 0
Event name Min Max Sum
Transactions 281600 281600 18022400
Rollbacks 0 0 0
SerializedJMV 0 0 0
SerializedMAXRB 0 0 0
SerializedOTHER 0 0 0
PEVT_CYCLES · · · · · · · · ·
PEVT_INST_ALL · · · · · · · · ·
· · · · · · · · · · · ·
PEVT_L2_HITS · · · · · · · · ·
· · · · · · · · · · · ·

Buckets with profiling data

Bucket label: Small TM
Begin file: clomp_tm.c

Figure 9.1: Data structures of the profiling tool for TM with a simplified example showing
two nested buckets.

more suited for the tracing tool – that is discussed later, but uses the same API – where the
user can inspect it during the post-processing step. For the profiling tool the third function
in the API, tmt_annotate, enables to associate a variable with a bucket. Once this
relationship is established, each time the bucket is accessed and read, the variable(s) that
are registered with this bucket will also be read. Since the user needs to pass the MPI type
when registering the variable, the variable may be subject to the same computation as the
regular counter data from the bucket. This means that a running minimum, maximum, and
sum of the variable describe the range and the average is computed by dividing the sum
through the number of times the bucket has been accessed.

Figure 9.1 illustrates the data structures of the TM profiling tool. A plain pointer array
holds references to all buckets. A hash function determines the index of a bucket in the
pointer array through hashing over the bucket label, begin file, begin function, begin line
and backtrace (if desired). A hash collision transforms the first bucket into a linked list.
Thus, from then on this list must be walked to retrieve the correct bucket. At the begin of
a bucket, the tool computes the index, looks up the bucket with it or allocates a new one.
Further, the tool pushes the index on the stack to keep track of all active buckets. At the
end of the bucket, a pop operation on the stack retrieves the last index and the look up of
the bucket continues. In addition to the counter data, the buckets with the profiling data
also hold the label of the bucket, file, function, number of the begin and the end call, the
number of accesses, the nesting depth and a backtrace that includes the active function calls
that form the call path for this bucket. This information suffices to identify problematic
spots in the execution phases of a program and to correlate them with the source code.

The tool can also detect cases where a problematic execution only manifests itself depend-

176



9.2. Design of a TM Tool for IBM’s Run Time Stack 177

Thread
local keys

Snapshots

Snapshot label: Small TM
File: clomp_tm.c
Function: main
Line: 2844
Transactions 281600
Rollbacks 0
· · · · · ·
PEVT_CYCLES · · ·
PEVT_INST_ALL · · ·
· · · · · ·

· · ·

Common data

Event names
Private events
Shared events

PEVT_L2_MISSES 2118580
PEVT_L2_HITS 11016362
· · · · · ·

· · ·

MPI rank 0
Open
Trace
Format

Visualization
with Vampir

Figure 9.2: Overview of the tracing tool for TM with data structures and work flow.

ing on the call path. The tool provides the backtrace option that creates a new bucket in
case a program executes the same tmt_begin statement through a different call path.
The tool implements this option through additionally passing the backtrace to the hash
function that determines the index of a bucket. With these additional buckets, the tool
reveals the correlation of a problematic application behavior with a specific call path. The
additional buckets increase the memory consumption so that it is linear in the number of
defined buckets times the maximum number of different call paths of these buckets. In
practice the number of different call paths for a bucket is low so that the additional memory
consumed is low. These profiling measures are adequate to gain an overview of the (TM)
performance of the application, identify imbalanced threads, take counter measures to
optimize the program and direct the attachment of a tracing tool.

9.2.2 A Tracing Tool for TM
In order to enable an in-depth inspection of the application’s behavior at the thread-level,
we also design and implement a tracing tool that complements the profiling tool. The
tracing tool uses snapshots of the performance counters and the TM statistics to capture the
state of the program execution. In contrast to the state-of-the-art in tracing tools which use
asynchronous sampling to achieve a scalable tool that preserves both the calling contexts
and time information [198], we rely on the careful placement of instrumentation routines
through the programmer. Our methodology focuses the instrumentation to code sections of
interest and works well with TM which sampling does not. Asynchronous sampling may
interrupt a transaction which will at least change the execution mode of that transaction if
not abort it. Thus, the application behavior recorded by sampling a TM region is biased
compared with the unobstructed execution.

Figure 9.2 depicts the main data structures of our tracing tool. Thread local keys serve
as an entry point to thread specific performance snapshots. Each snapshot contains in-
formation on the file, function and line of the program execution as well as a complete
TM report obtained from the TM run time system and the counter values of the per-thread
BGPM performance counters. The tool saves pointer to the values of the shared BGPM
performance counters in a shared data structure that also holds the event names of all

177



178 9. Tool Support for TM on BG/Q

1 tmt_snapshot ( char * s n a p s h o t _ l a b e l ,
2 char * v a l u e s ) ;
3
4 tmt_annotate ( void * addr , i n t MPI_type ,
5 char * v a r _ d e s c r i p t i o n ,
6 char * s n a p s h o t _ l a b e l ) ;

Listing 9.2: API for the tracing tool for TM.

events and the event sets that BGPM requires. Only one thread reads and saves the shared
counters at a snapshot. This synchronizes the reading of the private and the shared counters
and facilitates to relate both while at the same time being memory efficient. A singly
linked list connects the shared counter data as well as the snapshots respectively. In a
program with multiple MPI ranks, the tool collects the performance data for all ranks
separately, merges the data and writes them to trace files. The tool supports the Open Trace
Format (OTF) [113] so that the performance data can be visualized with Vampir [143]. The
strength of Vampir is the variety of views, including the performance radar that features
an intuitive way of coloring performance data to highlight peaks, that enables a user to
compose the performance data in a way that it is most effective for him or her.

This tracing tool differs from the previous tracing tools presented in this thesis in that it does
not trace single events, but instead traces snapshots of the program execution. Although
the granularity is different compared to the previous tools, the memory requirements are
still linear in the run time of the program. Similar to the approach presented in Chapter 5, a
fixed buffer for the tracing data that is flushed periodically or when full, could alleviate this
issue. Listing 9.2 shows the prototype of the functions that the user inserts in the program
code to address the tracing tool. The function tmt_snapshot triggers the generation of
a snapshot in all OpenMP threads. For more fine grained control a second trigger function
exists that allows snapshots on a per thread basis: tmt_thread_snapshot. The two
function arguments are a label for the snapshot that helps the user to relate it to the code
and a string that can be used to pass the contents of an application-specific variable to
the tool. tmt_annotate serves the same purpose as in the previous tool and registers a
variable with a specific snapshot so that the tool saves the content of the variable each time
it takes this particular snapshot.

9.2.3 A Tool for Measuring TM Overheads

Previous work on performance analysis of the Transactional Memory subsystem on BG/Q
already explored some of the overheads [201]. In the paper, the single-thread performance
is evaluated in great detail. L1 instruction per 100 instructions and the increase in instruction
path length relative to the serial execution are reported for a single thread and all STAMP
benchmarks. These first insights are important and provide valuable information to the
reader. In practice, most users are interested to know how the performance and the
overheads evolve when running with multiple threads. This area of the TM system of
the BG/Q architecture has not been explored exhaustively. In order to close this gap
and provide additional performance information to the user, we research how to design a
simple tool that is capable of measuring a break down of the overheads associated with
transactions. A new tool is required because the TM system of the BG/Q architecture
consists of a hardware and a software part. Both parts are closely coupled and, due to
the proprietary nature of the architecture, not generally available. Simply attaching a

178



9.2. Design of a TM Tool for IBM’s Run Time Stack 179

Normal

Transaction
Setup

Prolog of a
transaction

Speculation Wasted

Successful
transaction

Successful
transaction Abort of a transaction

Repeated
abort of a
transaction

Code outside
of transac-
tions

Figure 9.3: Finite state machine that describes how the transactional actions select the
correct bucket.

common tool without accounting for the specialties of TM execution, works as long as no
speculation takes place. When a transaction executes, the tool could inadvertently interfere
with the SW/HW interface, e.g., by overwriting some registers. This can trigger a bug in
the OS and cause the transaction to hang. In a second scenario the tool could change the
execution mode, e.g., through writing to memory mapped I/O while the transaction is in
flight. This would cause the transaction to execute in a special jail mode that serializes the
execution. In this case the tool would dramatically change the application behavior and the
user would come to a conclusion that would not match the behavior of the application run
without the tool. To mostly circumvent these issues, we take an approach that intercepts
the function calls into the TM run time at the assembly level. The required information is
the function signature of the start and end function of a transaction which we got from the
run time group at IBM1.Through replacing these calls with calls to our tool, we are able
to retrieve the performance data. Our tool calls the original function after accumulating
the counted values to a specific bucket. A bucket accumulates all counter information that
relates to a certain type of execution of the code.

Figure 9.3 illustrates how the transactional actions affect the selection of a bucket. The
picture shows four buckets: Normal, Transaction Setup, Speculation and Wasted. The three
buckets that subdivide the TM execution phases are shown with a gray background. Note
that the concept of buckets in the overhead tool is different from that in the profiling tool.
The commonality is that both relate execution of code with performance counters. The
overhead tool defines implicit global buckets that cover the whole program run and the
profiling tool uses explicitly defined buckets that are restricted to the corresponding source
code region. The scheme works as follows: prior to setting up a transaction, the tool reads
the counters and accumulates them in the Normal bucket. The execution before entering a
transaction is non-transactional and, thus, corresponds to the Normal bucket. Then, during
the setup of the transaction, the code prepares the parameters that must be passed into
the run time system and saves the minimal context [201]. After that, the actual start of

1Amy Wang, IBM, personal communication.

179



180 9. Tool Support for TM on BG/Q

the transaction is initiated by calling into the run time and transferring the control to the
hardware. The tool intercepts this call, reads the counters and accumulates them in the
bucket Transaction Setup. Hence, the bucket Transaction Setup contains the preparation
of the parameters but not the call into the run time (and the operating system). These are
part of the Speculation or Wasted bucket due to the following technical reason: After the
transaction is started through the call into the run time system, our tool also executes under
transactional semantics which would undo the collected information during a rollback
operation. Moreover, reading or writing performance counters could also influence the
execution mode of the transaction and, thus, bias the application behavior. Hence, the
careful placement of the calls into our tool prevents these issues because the tool is only
called outside of the transactional context. As a consequence, the transaction executes
unperturbed and may either be successful, then the tool adds the counters to the Speculation
bucket, or the transaction aborts, then the tool would add the counters to the Wasted bucket.
In case a transaction aborts multiple times, all of these executions add to the Wasted bucket.
Eventually the transaction commits and updates the Speculation bucket. After the commit,
the non-speculative execution resumes so that the counters add to the Normal bucket prior
to setting up a transaction. With these 4 buckets the code space is sufficiently divided
to distinguish between non-speculative execution, overhead due to setup of transactions,
successful speculation and wasted execution due to rollbacks.

9.2.4 Common Implementation Details for the Tools

Integration with MPI

In order to seamlessly integrate the tools with an MPI application, the tools take advan-
tage of PMPI, the MPI standard profiling interface [110]. The MPI standard requires a
mechanism to intercept the MPI function calls and defines a duplicate function signa-
ture with a PMPI prefix. Often MPI implements these functions as weak symbols that
call a PMPI_ version that implements the functionality or replicate code to avoid extra
function call overheads. Thus, our tools need to provide an implementation for all calls
it needs to intercept, such as MPI_Init and MPI_Finalize, to add their own tool
functionality that, after performing the profiling or tracing actions, calls the corresponding
PMPI function. During the execution of the program, the tool intercepts all MPI calls for
which it provides an implementation. So far our tools intercept MPI_Init to initialize
all shared data structures and setup the tool and MPI_Finalize to collect/aggregate the
performance data of all ranks and write these to trace file(s).

API and Source Code Information

The API of the tracing and the profiling tool is simple and does not require the user to pass
information about the code lines or source files. This information is available to the tool
even without the use of debugging symbols. The simple trick uses the macro expansion
of the preprocessor. The API functions are defined as macros that expand to function
calls with prepended __FILE__, __FUNCTION__ and __LINE__ macros. The first
expansion round of the preprocessor replaces the API calls in the application with these
extended function calls. At the end of the expansion process, the preprocessor expands the
file, function and line macros so that these confer application level to the tool. Since the
preprocessor generates this information, it is independent of the use of debugging symbols.
Through exploiting this multi-step expansion process, the user is relieved of supplying the
application-level information while the information is still available to the tool.

180



9.3. TM Tools: Experimental Setup and Measurements 181

Interoperability of the Profiling and the Tracing Tool

The API of the profiling tool (cf. to Listing 9.1) shows the same function signatures as the
API of the tracing tool (cf. to Listing 9.2). This similarity enables users to instrument the
application once for the profiling tool and reuse the same instrumentation with the tracing
tool simply through linking to a different tool library. This minimizes the overhead of
going from one tool to the other while at the same time preserving the measurement points.
However, the semantic of the profiling tool using the bucket concept and the tracing tool
with the snapshot concept are different. Hence, the user must be aware of these differences
and may also have to arrange for a shorter run time with the tracing tool to account for the
higher memory requirements that result in larger trace files. Apart from that, the tracing
tool provides an implementation that maps the invocation of tmt_begin and tmt_end
to the tmt_snapshot function to ensure the interoperability.

9.3 TM Tools: Experimental Setup and Measurements

9.3.1 Experimental Setup: BG/Q

The experimental setup differs slightly from the one used in the previous chapter and
consists of a BG/Q production system with 512 nodes located at the site of LLNL. Unless
stated otherwise the experiments run on one node only with 64 threads for the application.
The compiler is the IBM XL C/C++ for Blue Gene product in version 12.1.

The Blue Gene/Q compute chip (BQC) is the heart of the node; Haring et al. present
a detailed description [82] that we condense in a targeted summary in the following. A
BQC consists of 18 cores that surround the on-chip L2 cache. The application may use
16 cores, one is reserved for the operating system and one is a spare that increases the
manufacturing yield and is disabled when all cores are functional. The core is based on
a PowerPC A2 processor core that is extended by a SIMD quad floating-point unit, a L1
prefetching unit and a wakeup unit. A crossbar connects all processor cores with the L2
cache. Moreover, each core supports 4-way simultaneous multi-threading enabling a total
of 64 application threads to run in parallel on one node. The BQC is a system-on-chip that
also accommodates two memory controllers, that connect with DDR3 RAM, a network
and messaging unit and two interfaces for I/O on the chip.

In the following, we will highlight the A2 processor core with the BQC-specific exten-
sions. The A2 core implements the 64-bit Power instruction set architecture. The 4-way
simultaneously threaded core can issue two instructions concurrently: one floating point
instruction and one integer, branch, load or store instruction. The execution of these
instructions for a thread is in-order. The A2 core has two L1 caches: a 16 KBytes 8-way
set associative data cache and a 16 KBytes 4-way set associative instruction cache. Both
L1 caches have a cache line size of 64 Bytes. The L1 prefetch unit (L1P) is one of the
BQC extensions that supports two types of prefetching: stream and list prefetching. In
this work, we only consider stream prefetching that recognizes a stream of contiguous,
increasing addresses and prefetches these in chunks of 128 Bytes. L1P holds these in
a buffer that accommodates 32 entries and maintains these coherent with other copies
in the system. The L1P connects through the crossbar with the L2 cache, the network
interface and the PCI-Express interface. The L2 cache is a write-back cache, organized in
16 slices each with 2 MBytes of embedded DRAM and 16-way set associative. In addition,
the L2 cache also implements atomic memory operations. The L2 complements these

181



182 9. Tool Support for TM on BG/Q

 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60  70

T
o

o
l 

o
v

er
h

ea
d

 [
cy

cl
es

]

#Threads

          TLW    TTM  TTMBGPM

Figure 9.4: Tool overhead for measuring an empty code region with three different levels
of information and over multiple thread counts for the TM overhead tool.

with primitives to enable memory speculation required for TM or speculative execution.
Speculative changes to memory state are tracked by the L2 and shielded from the main
memory. Thus, the L2 also tracks transactions, detects conflicts and supports the commit
operation. A specific speculation identifier (short SpecId) marks all speculative entries in
the L2 of the same transaction. Wang et al. describe the interaction of TM with processor
components such as the L1 and the L1P (both denoted in the following as L1) [201]. TM
on BG/Q features two different execution modes: the long-running and the short-running
mode. The long-running mode uses TLB aliasing to store speculative data in the L1 cache.
The L1 cache can accommodate 4 transactional versions (one for each hardware thread)
and 1 non-transactional version of a virtual address. This method requires to flush the
L1 when entering a transaction because the L2 would not notice e.g., load hits in the L1
otherwise. Through the cache flush, all loads miss in the L1 cache and require a load from
L2, which then can track the speculative load. This mode favors long-running transactions
that require the L1 because of the frequent reuse of data inside the transaction. The L1
cache flush increases the costs for the reuse of data between code that executes before and
inside of the transaction and before and after the transaction. The short-running mode, on
the other hand, addresses short-running transactions. The mode evicts the line from the
L1 on a transactional store. Upon a transactional load the data is loaded from L2, which
enables the L2 to track transactional stores and loads after stores. Transactional loads
that hit in the L1, notify the L2 via the store queue. Although the short-running mode
does not flush the cache, this mode comes with a penalty for transactional read-after-write
patterns. The programmer may chose the appropriate mode for the application by setting
an environment variable before running the program. In the following, we will introduce
the methodology to gain in-depth insights into the transactional execution of these modes
and the discuss implications on designing the length and contents of transactions.

182



9.3. TM Tools: Experimental Setup and Measurements 183

9.3.2 Tool Overhead of the Overhead Tool

In order to report performance numbers of high quality, we continue with the discussion of
the overheads introduced through the tool and the counter measures we take to mitigate the
effects. Figure 9.4 depicts the normalized tool overhead for two consecutive accesses to
two different buckets. In order to determine the amount of elapsed processor cycles, the
tool reads the time base register of the Power PC 64 bit architecture with an inline assembly
instruction. The y-axis holds the cycles accumulated in the second bucket normalized to
the number of iterations2. With this experiment, we estimate the inherent tool overhead
that will be subtracted from all reported performance numbers to increase the quality of
the reported measurements. The experiment reveals that the number of threads has a slight
influence on the tool so that more threads have a higher overhead. Moreover, the amount of
information read and processed by the tool also has a slight influence although the counter
is read and written first and last in the tool in order to minimize the perturbation of the
readings. The TLW only uses the cycle counter, TTM additionally retrieves TM statistics (at
the begin and the end of the run) from the TM run time to use them as summary statistics.
Figure 9.4 acknowledges that reading these statistics does not have a large impact on the
overhead because it is infrequent and not on the critical path still it may perturb the caches.
In case the BGPM counters are also read and reset at the buckets (TTMBGPM), we see an
increase in the overhead. This overhead with BGPM is expected because the tool requires
to read and reset them on the critical path in order to obtain the desired information. Due
to reading the time base register at the function entry and exit to the tool, the influence on
the reported cycle counts is still low.

9.3.3 Break Down of TM Overheads

In order to precisely understand which part of a transaction requires the most cycles to
execute, we conduct an experiment that enables us to correlate the amount of cycles to a
specific part of a transaction. For this experiment, we use the tool TTM designed for these
kind of overhead measurements that Section 9.2.3 describes. The TTM tool normalizes
the cycles accumulated in the different buckets to the number of executed transactions.
Thus, we know how many cycles a transaction spends in each of its execution phases for a
given workload. The gathered information will enable us to guide optimization attempts of
the current TM system and project execution times of future TM systems. The workload
for these measurements is CLOMP-TM with two parameter settings that do not generate
contention but differ in the access pattern of the zones and the zone sizes. This variation
should increase the reliability of the reported numbers. All reported numbers are averages
over 10 runs, the minimum and the maximum of these runs are marked with whiskers
in the figures. Due to the low noise in the system, these whiskers are difficult to notice.
Gnuplot generated the figures after post-processing with a simple bash script.

Figure 9.5 illustrates the cycles spent in two distinguished phases of a transaction for the
long and short-running TM mode on the y-axis over the number of threads. The figure also
compares the execution of small and large transactions in CLOMP-TM over the possible
range of threads. Figure 9.5(a) reveals that the cycles required for the setup of a transaction
differ depending on the length of a transaction. The setup of a transaction comprises the
saving of live-in registers. The compiler determines these registers through live range
analysis [201]. Small TM performs the computation of the extra calculations before the

2The test case iterates 105 times over the pattern. The result is then normalized to one reading.

183



184 9. Tool Support for TM on BG/Q

 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50  60  70

S
et

u
p

 o
f 

a 
tr

an
sa

ct
io

n
 [

cy
cl

es
]

#Threads

  SmallTM TMmodeShort

SmallTM TMmodeLong

LargeTM TMmodeShort

LargeTM TMmodeLong

(a) Setup of a Transaction.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  10  20  30  40  50  60  70

S
et

u
p

 o
f 

a 
tr

an
sa

ct
io

n
 [

cy
cl

es
]

#Threads

  SmallTM TMmodeShort

SmallTM TMmodeLong

LargeTM TMmodeShort

LargeTM TMmodeLong

(b) Setup of a Transaction.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  10  20  30  40  50  60  70

S
u

cc
es

sf
u

l 
tr

an
sa

ct
io

n
 [

cy
cl

es
]

#Threads

  SmallTM TMmodeShort

SmallTM TMmodeLong

LargeTM TMmodeShort

LargeTM TMmodeLong

(c) Successful Transaction.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  10  20  30  40  50  60  70

S
u

cc
es

sf
u

l 
tr

an
sa

ct
io

n
 [

cy
cl

es
]

#Threads

  SmallTM TMmodeShort

SmallTM TMmodeLong

LargeTM TMmodeShort

LargeTM TMmodeLong

(d) Successful Transaction.

Figure 9.5: Detailed breakdown of a transaction in time for setup and ex-
ecution distinguishing between execution in long-running or short-
running mode across the number of threads. Left hand side
run with clomp_tm_divide1 -1 1 64 100 128 None 3 1 0 6
100 and right hand side with clomp_tm_divide1 -1 1 256 128
256 stride1,1,stride1%/2 10 1 0 6 100.

transaction whereas Large TM performs the calculation inside of the transaction. Hence,
Large TM must save more live-in registers which leads to the following observation. On
average the short transactions with Small TM are faster to set up across all thread counts.
For the long transactions with Large TM, the setup in the long-running TM mode costs
more for low thread counts whereas in the short-running TM mode the higher thread counts
are more costly.

Figure 9.5(b) confirms the trends of the first observation although the difference with
Large TM in short-running mode with 64 threads is not as prominent. For the discussion
of Figure 9.5(c) please remember that Large TM performs three times (and for the case
with the stride even ten times) as many memory updates in a single transaction. Thus,
the seemingly higher overheads for Large TM are relative to a larger amount of updated
memory locations. Taking this into account, Large TM with the short-running mode is on
a par with Small TM. Large TM in the long running mode performs better than Small TM
in the same mode. Especially at higher threads counts, the long-running mode shows a
better performance than the short-running mode. For low thread counts, the short-running

184



9.3. TM Tools: Experimental Setup and Measurements 185

mode requires less cycles. Figure 9.5(d) confirms this behavior for the second parameter
set with slightly shifted graphs so that the trend is identical.

9.3.4 Influence of Scrub Rate on Application’s Behavior
In the previous chapter, we demonstrated the influence of the scrub rate on the performance
of the CLOMP-TM benchmark. Now, we want to extend the study through identifying a
correlation between setting the scrub rate and BGPM performance events with respect to
the TM execution mode. Therefore we use the profiling tool, post-process the data with
a bash script that uses gnuplot to viusalize the performance data. The resulting bar plots
show – in some cases normalized – BGPM event counts or cycles on the y-axis and the
buckets on the x-axis.

In the following, we present BGPM events measured during an execution with a scrub
rate of 66 and a scrub rate 6. In order to clarify the results, we normalize the reported
values. Hence, Figure 9.6 shows the ratio of BGPM events of an execution with a scrub
rate of 66 divided through the respective event counts with a scrub rate of 6 on the y-axis.
The x-axis holds the different synchronization mechanisms. The left hand side shows the
execution with the long-running TM mode and the right hand side the short-running TM
mode. This figure groups metrics that show similar trends despite the different execution
modes. Figure 9.6(a) and Figure 9.6(b) depict that for both execution modes only Large
TM yields a significant speedup with a scrub rate of 6 while all other synchronization
primitives are not affected. Figure 9.6(c) and Figure 9.6(d) show that Large TM with a
scrub rate of 66 executes between 30 % and 40 % more instructions depending on the TM
mode. Figure 9.6(e) and Figure 9.6(f) reveal that a scrub rate of 66 fetches at least 3.8 times
more instructions for Large TM with both TM modes. Figure 9.6(g) and Figure 9.6(h)
demonstrate that Large TM with a scrub rate of 66 may execute 3.5 times more L1P loads.
Further results (without figure) show that the L1P store operations are not affected by
changing the scrub rate.

Figure 9.7 illustrates event types where the influence of the scrub rate also depends on the
TM mode and shows the influence on the branches executed. Figure 9.7(a) demonstrates
that a scrub rate of 66 yields more than 3 times more L1P hits for Large TM in the long
running mode whereas Figure 9.7(b) shows that the short-running mode yields only ≈ 1.1
times more L1P hits. Figure 9.7(c) illustrates that the changing the scrub rate only has a
small impact on the L1P misses with Large TM and a scrub rate of 66 may even yields less
L1P misses with Small Atomic. Figure 9.7(d) highlights that in the short running mode
Large TM with a scrub rate of 66 yields a lower number of L1P misses. Figure 9.7(e) and
Figure 9.7(f) highlight that the number of conditional branches in both TM modes is as
least 2 times higher with a scrub rate of 66 and Large TM. A similar observation holds
for unconditional branches that increase by ≈ 9 times for both modes as illustrated in
Figure 9.7(g) and Figure 9.7(h) with Large TM and a scrub rate of 66.

The findings documented in this paragraph are important to understand the various ways
in which the setting of the scrub rate may influence the observed BGPM performance
events. The identified relationships may help programmers understand the readings of
the performance counters better in cases where setting the scrub rate to reduced values is
not indicated due to the fact that memory bandwidth, that is used for scrubbing is needed
by the application. Moreover, we learned that neither a higher number of L1P hits nor
a reduced number of L1P misses automatically leads to better performance. Instead the
scrub rate of 6 yields the better performance for both execution modes. This illustrates,

185



186 9. Tool Support for TM on BG/Q

 0

 1

 2

 3

 4

 5

 6

N
o

rm
al

iz
ed

 P
E

V
T

_
C

Y
C

L
E

S

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) Cycles normalized.

 0

 0.5

 1

 1.5

 2

 2.5

 3

N
o

rm
al

iz
ed

 P
E

V
T

_
C

Y
C

L
E

S

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) Cycles normalized.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

N
o
rm

al
iz

ed
 P

E
V

T
_

IN
S

T
_

A
L

L

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(c) Instructions normalized.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

N
o
rm

al
iz

ed
 P

E
V

T
_

IN
S

T
_

A
L

L

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(d) Instructions normalized.

 0

 1

 2

 3

 4

 5

 6

N
o

rm
al

iz
ed

 P
E

V
T

_
IU

_
IC

A
C

H
E

_
F

E
T

C
H

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(e) Instruction fetches normalized.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
o

rm
al

iz
ed

 P
E

V
T

_
IU

_
IC

A
C

H
E

_
F

E
T

C
H

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(f) Instruction fetches normalized.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
o
rm

al
iz

ed
 P

E
V

T
_
L

1
P

_
B

A
S

_
L

D

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(g) L1P loads normalized.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

N
o
rm

al
iz

ed
 P

E
V

T
_
L

1
P

_
B

A
S

_
L

D

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(h) L1P loads normalized.

Figure 9.6: Studying the influence of setting the scrub rate from 66 to 6 on transactions
in the long-running mode (left hand side) and short-running mode (right hand
side). Run with clomp_tm_divide1 -1 1 64 100 128 None 3 1
0 6 100.

186



9.3. TM Tools: Experimental Setup and Measurements 187

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
o
rm

al
iz

ed
 P

E
V

T
_

L
1

P
_

B
A

S
_

H
IT

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) L1P hits normalized.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

N
o
rm

al
iz

ed
 P

E
V

T
_

L
1

P
_

B
A

S
_

H
IT

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) L1P hits normalized.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

N
o
rm

al
iz

ed
 P

E
V

T
_
L

1
P

_
B

A
S

_
M

IS
S

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(c) L1P misses normalized.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

N
o
rm

al
iz

ed
 P

E
V

T
_
L

1
P

_
B

A
S

_
M

IS
S

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(d) L1P misses normalized.

 0

 0.5

 1

 1.5

 2

 2.5

N
o

rm
al

iz
ed

 P
E

V
T

_
IN

S
T

_
X

U
_
B

R
C

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(e) Conditional branches normalized.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
o

rm
al

iz
ed

 P
E

V
T

_
IN

S
T

_
X

U
_
B

R
C

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(f) Conditional branches normalized.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

N
o
rm

al
iz

ed
 P

E
V

T
_

IN
S

T
_
X

U
_

B
R

U

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(g) Unconditional branches normalized.

 0

 2

 4

 6

 8

 10

 12

N
o
rm

al
iz

ed
 P

E
V

T
_

IN
S

T
_
X

U
_

B
R

U

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(h) Unconditional branches normalized.

Figure 9.7: Studying the influence of setting the scrub rate from 66 to 6 on transactions
in the long-running mode (left hand side) and short-running mode (right hand
side). Run with clomp_tm_divide1 -1 1 64 100 128 None 3 1
0 6 100.

187



188 9. Tool Support for TM on BG/Q

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

T
im

e 
B

as
e 

R
eg

is
te

r

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_tbr

Serial_Ref

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) Cycles with a scrub rate of 66.

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

T
im

e 
B

as
e 

R
eg

is
te

r

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_tbr

Serial_Ref

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) Cycles with a scrub rate of 6.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

P
E

V
T

_
IU

_
B

A
R

R
IE

R
_

O
P

_
S

T
A

L
L

_
C

Y
C

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(c) Stall cycles with a scrub rate of 66.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

P
E

V
T

_
IU

_
B

A
R

R
IE

R
_

O
P

_
S

T
A

L
L

_
C

Y
C

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(d) Stall cycles with a scrub rate of 6.

Figure 9.8: Stall cycles as an indicator for adjusting the scrub rate in the long-running
mode. Run with clomp_tm_divide1 64 1 64 100 128 None 3
1 0 sr 100.

that isolated performance events are not a useful metric to rate the overall performance of
the TM application. Instead using a metric that puts these counts in relation to the number
of L1P loads and stores would have revealed that the higher number of hits is with respect
to an even higher number of loads. From this perspective a user would not set the scrub
rate to 66. Moreover, none of the before-mentioned events indicates that the scrub rate
benefits from an adjustment. The key event for this is discussed in the following.

For CLOMP-TM we found a strong correlation between adjusting the scrub rate and
the reduced number of stall cycles for Large TM represented through the BGPM event
PEVT_IU_BARRIER_OP_STALL_CYC. Figure 9.8(a) shows the cycles of the respective
synchronization variants with a scrub rate of 66 and Figure 9.8(c) illustrates the correspond-
ing stall cycles. For Large TM the number of stall cycles is significant in the long-running
mode and decreases when setting the scrub rate to 6. Figure 9.8(b) shows the cycles of all
synchronization variants and Figure 9.8(d) illustrates the corresponding stall cycles. The
reduction in the overall cycles executed by Large TM correlates with the reduced number
of stall cycles. Large Critical shows the same behavior as before.

For the short-running mode, Figure 9.9 exhibits the same behavior for all synchronization
mechanisms. The only synchronization mechanism with a number of significantly reduced
stall cycles is Large TM. All other synchronization mechanisms (surprisingly including
Small TM) are not affected. From these observations we conclude that a high stall cycle
count for long transactions is reduced through setting the scrub rate to a smaller value,
since this allows the hardare to reclaim the SpecIds faster.

188



9.3. TM Tools: Experimental Setup and Measurements 189

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

T
im

e 
B

as
e 

R
eg

is
te

r

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_tbr

Serial_Ref

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) Cycles with a scrub rate of 66.

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

T
im

e 
B

as
e 

R
eg

is
te

r

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_tbr

Serial_Ref

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) Cycles with a scrub rate of 6.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

P
E

V
T

_
IU

_
B

A
R

R
IE

R
_

O
P

_
S

T
A

L
L

_
C

Y
C

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(c) Stall cycles with a scrub rate of 66.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

P
E

V
T

_
IU

_
B

A
R

R
IE

R
_

O
P

_
S

T
A

L
L

_
C

Y
C

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(d) Stall cycles with a scrub rate of 6.

Figure 9.9: Stall cycles as an indicator for adjusting the scrub rate in the short-running
mode. Run with clomp_tm_divide1 64 1 64 100 128 None 3
1 0 sr 100.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

P
E

V
T

_
L

1
P

_
B

A
S

_
H

IT

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) L1P_BAS_HIT in long-running mode with a scrub
rate of 6.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

P
E

V
T

_
L

1
P

_
B

A
S

_
H

IT

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) L1P_BAS_HIT in short-running mode with a scrub
rate of 6.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

P
E

V
T

_
L

1
P

_
B

A
S

_
H

IT

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(c) L1P_BAS_HIT in long-running mode with a scrub
rate of 66.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

P
E

V
T

_
L

1
P

_
B

A
S

_
H

IT

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(d) L1P_BAS_HIT in short-running mode with a scrub
rate of 66.

Figure 9.10: L1P utilization in the long-running and short-running mode. Run with
clomp_tm_divide1 64 1 64 100 128 None 3 1 0 6 100.

189



190 9. Tool Support for TM on BG/Q

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

P
E

V
T

_
L

2
_

R
E

Q
_

R
E

T
IR

E

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) L2_REQ_RETIRE in long-running mode with a
scrub rate of 6.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

P
E

V
T

_
L

2
_

R
E

Q
_

R
E

T
IR

E

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) L2_REQ_RETIRE in short-running mode with a
scrub rate of 6.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

P
E

V
T

_
L

2
_
R

E
Q

_
R

E
T

IR
E

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(c) L2_REQ_RETIRE in long-running mode with a
scrub rate of 66.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

P
E

V
T

_
L

2
_
R

E
Q

_
R

E
T

IR
E

clomp_tm_bgq_divide_tmt_prof_N1_n1_sc_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(d) L2_REQ_RETIRE in short-running mode with a
scrub rate of 66.

Figure 9.11: L2_REQ_RETIRE and the long-running and short-running mode. Run with
clomp_tm_divide1 64 1 64 100 128 None 3 1 0 sr 100.

9.3.5 Implications of the TM Mode on the Microarchitecture

Figure 9.10 illustrates the impact of the TM mode on the L1P unit. In the long-running
mode, a transaction flushes the L1 data cache before the begin. Hence, all data must be
retrieved from the L2 cache. Figure 9.10(a) depicts that both TM variants show significantly
less L1P hits than all other synchronization variants with a scrub rate of 6 and the long-
running mode. Moreover, Figure 9.10(c) confirms that this observations holds even for
a scrub rate of 66. Figure 9.10(b) demonstrates that the hits in L1P are higher for the
short-running mode. This also holds with a scrub rate of 66 (cf. to Figure 9.10(d)). The
reason is that the short-running mode does not flush the cache; instead it evicts dirty lines
from the L1 and propagates loads over the L1P store queue to the L2.

Figure 9.11 demonstrates how the L2_REQ_RETIRE event depends on the execution mode.
L2_REQ_RETIRE counts the number of accesses to the L2 that retire after a look up and
do not enter the hit or miss queue. Among these events is the L1 hit notification that notifies
the L2 of L1 read hits in a transaction in the short-running mode. Figure 9.11(b) illustrates
the distribution of the L2_REQ_RETIRE events over the synchronization primitives in the
short-running mode and a scrub rate of 6. Small TM has the highest counts followed by
Large TM. In the long-running mode, as illustrated in Figure 9.11(a), all synchronization
variants have roughly the same number of events. This does not change when the scrub
rate changes to 66 as shown in Figure 9.11(c). For the short-running mode it does have an
impact, as can be seen in Figure 9.11(d). The counts for Small TM rise slightly while the
ones for Large TM drop.

190



9.3. TM Tools: Experimental Setup and Measurements 191

 0

 500

 1000

 1500

 2000

 2500

 3000

P
E

V
T

_
L

2
_

S
P

E
C

_
R

E
T

R
Y

clomp_tm_bgq_divide1_tmt_prof_N1_n1_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) SpecRetry event with None and a scrub rate of 6.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

P
E

V
T

_
L

2
_

S
P

E
C

_
R

E
T

R
Y

clomp_tm_bgq_divide1_tmt_prof_N1_n1_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) SpecRetry event with firstParts and same scrub rate.

Figure 9.12: Studying the influence of the access pattern on the L2 SpecRetry event with
the long-running mode. Run with clomp_tm_divide1 -1 1 64 100
128 <pattern> 3 1 0 6 100.

SpecRetry is the event associated with a request made to the L2 that has to be retried later
because it conflicts with an ongoing commit operation. The counts of SpecRetry increases
by a factor of≈ 4 for scatter of 2 and Small TM when going from stride of 1 to 4 (compared
with a factor of ≈ 2 for Large TM). We observe the same trend for scatter with 20 memory
updates. Our explanation is that the stride of 4 changes the timing of L2 accesses and,
thus more operations collide with ongoing commit operations. Although, a factor of 2 to
4 looks large at first sight, the numbers of the SpecRetry event must be viewed relative
to the absolute number of updates in a transaction. Then, the relevance of these counts
shows that the quotient of #SpecRetry

#Transactions
<< 1. Thus, for the two cases with the strides

these SpecRetry counts are not relevant. Figure 9.12 illustrate a wider range of measured
SpecRetry events. For the case None without contention, Figure 9.12(a) illustrates that the
SpecRetry event occurs more often with Small TM than with Large TM. Figure 9.12(b)
demonstrates that the gap for the SpecRetry between Small TM and Large TM widens with
contention (firstParts). Further, the occurrence of the event has a different quality.

Further, experiments (not shown) indicate that changing the scrub rate has an effect on
the occurrence of the SpecRetry events but the outcome is difficult to predict. Rather the
SpecRetry events and the scrub rate must be considered in relation to other events such as
the PEVT_IU_BARRIER_OP_STALL_CYCLES to obtain a better understanding of the
behavior.

9.3.6 Long Transactions at Any Cost?
The long-running mode of the TM system requires to flush the L1 cache prior to entering a
transaction. In some cases (e.g., bayes from the STAMP suite reported in [201]) this leads
to a performance that is outperformed by an STM that supports privatization. Let’s assume
a simple programming pattern where a transaction updates shared variables with the result
of a previous computation. Considering the cache flush at the begin of a transaction, a
programmer is tempted to avoid the associated penalty through moving the computation
inside the transaction. Then, the cache flush would not affect the computed result and
provided that the data that serves as input to the computation misses in the L1, this may
be a worthwhile scenario. In the following, we will present the observations made by
studying the implications of this optimization on the utilization of the microarchitecture.
For this experiment, we compare two versions of the CLOMP-TM benchmark. The
first version, called CompBeforeTM performs the computation for Small TM and Small

191



192 9. Tool Support for TM on BG/Q

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

N
o

rm
al

iz
ed

 C
y
cl

es

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_tbr

Serial_Ref

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) Speedup of CompInTM over CompBeforeTM with
long-running mode.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

N
o

rm
al

iz
ed

 C
y
cl

es

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_tbr

Serial_Ref

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) Speedup of CompInTM over CompBeforeTM with
short-running mode.

Figure 9.13: Studying the influence of moving the computation inside the transaction with
both TM modes. Run with clomp_tm_divide1 -1 1 64 100 128
None 3 1 0 6 100.

Critical before the transaction or critical section respectively. The second version, called
CompInTM, moves these computations inside the transaction/critical section. At a first
sight, this code change conforms with the policy of favoring longer transactions. Note
that these changes do not affect Large TM because the large transactions already include
the computation. Figure 9.13 illustrates the speedup of CompInTM over CompBeforeTM.
Figure 9.13(a) demonstrates that this simple change does have a performance impact on
Small TM in the long-running mode, reducing its performance by ≈ 10 %. For Small
Critical the performance reduces by ≈ 50 %. In the short-running mode, as Figure 9.13(b)
illustrates, the picture is identical. Regardless of the TM execution mode, CompInTM
shows a slowdown compared with CompBeforeTM. For Small Critical the performance
penalty is even higher than for Small TM.

For Small Critical the longer critical section size in the CompInTM version yields longer
hold times of the lock that in turn blocks other threads, which spin on the lock acquisition.
As a side effect more instructions are executed in total. For Small TM this simple explana-
tion does not hold as transactions are lock-free. Thus, each transaction may proceed as soon
as it starts. A closer look at Figure 9.14(a), which shows the L1P hits of CompBeforeTM
and Figure 9.14(b), which shows the L1P hits of CompInTM reveals that the already low
amount of the L1P hits degraded further. Figure 9.14(c) and Figure 9.14(d) complement
the picture by showing the L1P misses. Thus, the simple change significantly reduced the
number of L1P hits for Small TM. Since the computation executes a stride that touches all
cache lines of a zone and is prefetchable, the transaction prologue not only flushes the L1
caches but also perturbs the prefetching in a way that affects TM performance.

Further, Figure 9.15 uncovers that the stall cycles increase by 47 % for CompInTM com-
pared with CompBeforeTM. This fits the picture that CompInTM yields higher latencies for
memory accesses because the frequent misses in the L1P.

9.4 Profiling LULESH
LULESH stands for Livermore Unstructured Lagrange Explicit Shock Hydrodynamics
application that solves the Sedov blast wave problem for a symmetrical blast wave in three
dimensions modeling one octant. LULESH is one of the challenge problems in the DARPA
Ubiquitous High Performance Computing program. The idea is to test optimization

192



9.4. Profiling LULESH 193

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

P
E

V
T

_
L

1
P

_
B

A
S

_
H

IT

clomp_tm_bgq_divide1_tmt_prof_N1_n1_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) Hits in L1P with CompBeforeTM.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

P
E

V
T

_
L

1
P

_
B

A
S

_
H

IT

clomp_tm_bgq_divide1_tmt_prof_N_n1_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) Hits in L1P with CompInTM.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

P
E

V
T

_
L

1
P

_
B

A
S

_
M

IS
S

clomp_tm_bgq_divide1_tmt_prof_N1_n1_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(c) L1P misses CompBeforeTM.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

P
E

V
T

_
L

1
P

_
B

A
S

_
M

IS
S

clomp_tm_bgq_divide1_tmt_prof_N_n1_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(d) L1P misses CompInTM.

Figure 9.14: Studying the influence of moving the computation inside the transaction in
the long-running mode. Run with clomp_tm_divide1 -1 1 64 100
128 None 3 1 0 6 100.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

P
E

V
T

_
IU

_
B

A
R

R
IE

R
_
O

P
_

S
T

A
L

L
_

C
Y

C

clomp_tm_bgq_divide1_tmt_prof_N1_n1_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(a) Stall cycles with CompBeforeTM.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

P
E

V
T

_
IU

_
B

A
R

R
IE

R
_
O

P
_

S
T

A
L

L
_

C
Y

C

clomp_tm_bgq_divide1_tmt_prof_N1_n1_sc3_t64_bgpm

Bestcase

Small_TM

Large_TM

Small_Atomic

SmallCritical

LargeCritical

(b) Stall cycles with CompInTM.

Figure 9.15: Studying the influence of setting the scrub rate on the stall cycles with
the long-running mode. Run with clomp_tm_divide1 64 1 64 100
128 None 3 1 0 6 100.

193



194 9. Tool Support for TM on BG/Q

strategies on LULESH and if they are successful port them back to production codes.
LULESH uses a Lagrangian hydrodynamics methodology. In contrast to the Eulerian
formulation that expresses flow variables at fixed spatial positions over time, the Lagrangian
formulation defines flow variables as functions of time and material elements [120]. While
the Eulerian formulation leads to material flowing through a fixed mesh, the Lagrangian
formulation constructs the mesh of material elements and aligns their interfaces with
the element boundaries. Over time the mesh changes according to the movement of the
elements. Lagrangian methods are suited to model multiple materials or moving boundaries.
A Technical Report holds all details of LULESH and the underlying physics [120] from
which we extract the steps of the algorithm. LULESH first creates the domain(s), then the
material index set, initializes the problem state and creates the boundary conditions. Then
LULESH carries out the following two steps until the final simulation time is reached:
calculate the time for the next increment and advance the variables by the calculated time
using the leap frog time integration method. The leap frog scheme first computes the new
values for the node variables and then for the element variables.

In the following, we demonstrate the usefulness of the profiling tool for TM in order to find
the best synchronization mechanism for LULESH. First, we loosely divide the LULESH
application by augmenting it with calls to the buckets. We introduce a TimedBucket that
embraces the timed loop. Inside the timed loop, we add the LagrangeLeapFrog bucket and
the TimeStepIncrement bucket on the next nesting level. The LagrangeLeapFrog bucket is
further subdivided into three small buckets one of them being the bucket LagrangeNodal
on the inner most nesting level. These five buckets partition the application in sufficiently
small parts so that a thorough analysis of the application is feasible without too high
overheads in run time.

We run the LULESH version that uses OpenMP threads, short luleshOMP, with the follow-
ing synchronization mechanisms: Bestcase, TM, Memory, Atomic, and Critical. Note that
TM, Atomic, and Critical only differ in the synchronization mechanisms used. Bestcase
does not use synchronization (and potentially reports a wrong answer). Memory avoids the
use of synchronization primitives through the use of additional memory. A first look at the
measurements of luleshOMP TM reveals that only LagrangeNodal executes transactions.
Thus, in the following we will focus the discussion on the bucket LagrangeNodal. Please
note that the cycles reported here are per thread and per execution of the embracing code
section. Thus, to assess the impact on the overall run, the reported values must be multi-
plied by the number of accesses to the buckets, which is 1816 times in case of the bucket
LagrangeNodal for the chosen input data set3.

LULESH provides interesting insights in the interaction of the scrub rate with the chosen
mode. The long-running mode generates almost identical results when the scrub rate goes
from 66 to 6. Whereas the short-running mode responds with a speedup of 1.96 x.

Figure 9.16 shows the results from running LULESH in the long-running TM mode with
respect to other synchronization mechanisms by showing the number of cycles for the
execution of the LagrangeNodal function on the y-axis and the different synchronization
variants on the x-axis. The scrub rate is set to 66 for Figure 9.16(a) and to 6 for Fig-
ure 9.16(b). Because adjusting the scrub rate may also influence the other synchronization
mechanisms through reducing the available memory bandwidth. Both figures are almost
identical, which means that in the long-running TM mode reducing the scrub rate for

3All LULESH runs solve a problem with 703 elements.

194



9.4. Profiling LULESH 195

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

T
im

e 
B

as
e 

R
eg

is
te

r 
[c

y
cl

es
]

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(a) Scrub rate of 66.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

T
im

e 
B

as
e 

R
eg

is
te

r 
[c

y
cl

es
]

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(b) Scrub rate of 6.

Figure 9.16: LULESH executed with different scrub rates and long-running TM mode.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

T
im

e 
B

as
e 

R
eg

is
te

r 
[c

y
cl

es
]

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(a) Scrub rate of 66.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

T
im

e 
B

as
e 

R
eg

is
te

r 
[c

y
cl

es
]

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(b) Scrub rate of 6.

Figure 9.17: LULESH executed with different scrub rates and short-running TM mode.

LULESH neither has an effect on TM performance nor affects the execution of the other
synchronization mechanisms.

Figure 9.17 reports the results from running LULESH in the short-running TM mode. In
this case adjusting the scrub rate from 66 (cf. to Figure 9.17(a)) to 6 (cf. to Figure 9.17(b))
yields a speedup of 1.96 for the execution with TM. Again, the other synchronization
variants are not affected by tuning the scrub rate.

Figure 9.18 reveals the reason for the low performance with TM in the long-running mode:
misses in the L1P unit. First, the stall cycles for TM are high compared with Bestcase
but reducing the scrub rate does not have a positive influence as shows a comparison of
Figure 9.18(a) with Figure 9.18(b). The L1P hits of TM are even higher than those of
Bestcase and constant under changes of the scrub rate as is illustrated in Figure 9.18(c) and
Figure 9.18(d). Only the L1P misses that are shown in Figure 9.18(e) and Figure 9.18(f)
are the highest for TM.

Figure 9.19 reveals the reason for the low performance with TM in the short-running mode:
misses in the L1P unit, which is the same reason as with the long-running TM mode. First,
the stall cycles for TM are the highest compared with the rest but reducing the scrub rate
has a positive influence as the comparison of Figure 9.19(a) with Figure 9.19(b) reveals.
The L1P hits of TM are not as high as those of Bestcase and constant when changing
the scrub rate as is illustrated in Figure 9.19(c) and Figure 9.19(d). Although for the
short-running mode the L1P misses that are shown in Figure 9.19(e) and Figure 9.19(f) are
the highest for TM. Hence, we found that the same reason causes the low performance for
both TM modes compared with Bestcase or Memory and 64 threads.

195



196 9. Tool Support for TM on BG/Q

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

#
 P

E
V

T
_

IU
_

B
A

R
R

IE
R

_
O

P
_

S
T

A
L

L
_

C
Y

C

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(a) Stall cycles with a scrub rate of 66.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

#
 P

E
V

T
_

IU
_

B
A

R
R

IE
R

_
O

P
_

S
T

A
L

L
_

C
Y

C

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(b) Stall cycles with a scrub rate of 6.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

#
 P

E
V

T
_

L
1

P
_

B
A

S
_

H
IT

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(c) L1P hits with a scrub rate of 66.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

#
 P

E
V

T
_

L
1

P
_

B
A

S
_

H
IT

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(d) L1P hits with a scrub rate of 6.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

#
 P

E
V

T
_

L
1

P
_

B
A

S
_
M

IS
S

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(e) L1P misses with a scrub rate of 66.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

#
 P

E
V

T
_

L
1

P
_

B
A

S
_
M

IS
S

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(f) L1P misses with a scrub rate of 6.

Figure 9.18: BGPM events of LULESH with different scrub rates and long-running TM
mode.

In a setup with 64 threads each core executes 4 threads due to the hyper-threading technol-
ogy. Hence, resources are shared among threads so that 4 threads compete for the private
L1 cache. In the following experiments, we are going to reduce the number of parallel
threads to 16 so that each core executes only one thread. This frees the experiment of
effects caused by the sharing of resources through hyper-threading because threads are
assigned to cores in a round-robin fashion so that each core only executes one thread. This
experiment helps us to obtain a better understanding of the influence of hyper-threading on
the utilization of the microarchitecture.

Figure 9.20(a) illustrates that even with only 16 threads and a scrub rate of 66 TM experi-
ences more L1P misses than Bestcase or Memory when running in the short running mode.
Figure 9.20(b) confirms this observation with a reduced scrub rate of 6.

196



9.4. Profiling LULESH 197

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08
#

 P
E

V
T

_
IU

_
B

A
R

R
IE

R
_

O
P

_
S

T
A

L
L

_
C

Y
C

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(a) Stall cycles with a scrub rate of 66.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

#
 P

E
V

T
_

IU
_

B
A

R
R

IE
R

_
O

P
_
S

T
A

L
L

_
C

Y
C

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(b) Stall cycles with a scrub rate of 6.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

#
 P

E
V

T
_

L
1

P
_

B
A

S
_

H
IT

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(c) L1P hits with a scrub rate of 66.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

#
 P

E
V

T
_

L
1

P
_

B
A

S
_

H
IT

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(d) L1P hits with a scrub rate of 6.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

#
 P

E
V

T
_

L
1

P
_

B
A

S
_

M
IS

S

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(e) L1P misses with a scrub rate of 66.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

#
 P

E
V

T
_

L
1

P
_

B
A

S
_

M
IS

S

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(f) L1P misses with a scrub rate of 6.

Figure 9.19: LULESH with BGPM events executed with different scrub rates and short-
running TM mode.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

#
 P

E
V

T
_

L
1

P
_

B
A

S
_
M

IS
S

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(a) L1P misses with a scrub rate of 66.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

#
 P

E
V

T
_

L
1

P
_

B
A

S
_
M

IS
S

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(b) L1P misses with a scrub rate of 6.

Figure 9.20: L1P misses with LULESH and 16 threads executed in short-running mode.

197



198 9. Tool Support for TM on BG/Q

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

#
 P

E
V

T
_
L

1
P

_
B

A
S

_
M

IS
S

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(a) L1P misses with a scrub rate of 66.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

#
 P

E
V

T
_
L

1
P

_
B

A
S

_
M

IS
S

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(b) L1P misses with a scrub rate of 6.

Figure 9.21: L1P misses with LULESH and 16 threads executed in long-running mode.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

#
 P

E
V

T
_

L
1

P
_

B
A

S
_
H

IT

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(a) L1P hits with 16 threads.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

#
 P

E
V

T
_

IU
_

B
A

R
R

IE
R

_
O

P
_
S

T
A

L
L

_
C

Y
C

lulesh bucket LagrangeNodal

luleshOMP Bestcase

luleshOMP TM

luleshOMP Memory

luleshOMP Atomic

luleshOMP Critical

(b) Stall cycles with 16 threads.

Figure 9.22: L1P hits and stall cycles with LULESH and 16 threads executed in short-
running mode with a scrub rate of 6.

Figure 9.21(a) and Figure 9.21(b) show that in the long-running mode TM again yields a
significantly higher number of L1P misses than Bestcase or Memory.

A comparison of Figure 9.20 and Figure 9.21 reveals that even with 16 threads the TM
execution in the short-running mode experiences significantly less L1P misses than TM
execution in the long-running mode due to the cache flush at the begin of a transaction.

Figure 9.22(a) shows the L1P hits for the short-running mode and a scrub rate of 6 with 16
threads. TM has less hits than Bestcase or Memory with a larger difference. Further, the
stall cycles of TM, as shown in Figure 9.22(b), are higher than the stall cycles of Bestcase
with a large difference or Memory with a small difference.

These findings illustrate that the reason for the additional L1P misses with TM is not due to
the sharing of resources introduced by the hyper-threading technology. Because Bestcase
and TM execute the same memory accesses (but Bestcase performs no synchronization),
the additional L1P misses are introduced by the TM mechanisms and prohibit a faster run
time. Further, both TM modes show a higher L1P miss count but only the long-running
mode flushes the L1 cache. Either a data structure in LULESH maps to the same line as
a data structure required for TM execution (e.g., transaction handle) or LULESH with
TM suffers from similar perturbations of the prefetching as we have seen in Section 9.3.6.
While the latter is an issue with the TM software stack, the former requires actions of the
programmer to rearrange the data structures.

198



9.5. A Case Study with Vampir Visualizing TM Performance Data 199

Summarizing the Findings with LULESH
The insights from running LULESH are that the long-running mode does not benefit from
setting the scrub rate to a reduced value but the short-running mode yields a speedup of 1.96
for the execution with TM. Still, the Bestcase and Memory versions of LULESH are faster.
We found that the reason for this low performance is the same for both TM modes. For
both execution modes, the higher rate of L1P misses causes the performance degradation
with TM. This is surprising because the long-running mode flushes the L1 cache whereas
the short-running mode by-passes the L1 on stores only. Through further investigations we
excluded the use of the hyper-threading technology as a source of contention for the L1
cache. From further performance data we deduce that either LULESH with TM triggers
the same prefetching issue as we have seen before, or application data structures map to
the same locations in L1 cache as TM-specific data structures and cause the contention. In
either case, the use of the profiling tool for TM has been extremely helpful in identifying
the issue and narrowing down the causes.

9.5 A Case Study with Vampir Visualizing TM Performance
Data

As discussed earlier, the tracing tool can write trace files in the OTF format and that allows
visualizations in tools like Vampir. An example visualizing CLOMP-TM performance data
is shown in Figure 9.23. CLOMP-TM has been executed with the tracing tool to obtain the
event traces. The strength of Vampir is the variety of views that enables a user to compose
the performance data in a way that it is most effective for him or her.

Figure 9.23(a) illustrates the simple but expressive view of one thread that, in this case,
shows the amount of transactions executed over time as a rate, in this case executing
400 000 transactions per second. This view can be configured to show the differences (as
it does now), the accumulated values to the next or the last reading and the values at the
measurement points. With these options, the user will find a suitable way of representing
the data. In this particular figure the first plateau shows the warm up phase before the Small
TM execution. CLOMP-TM inserts these warmup phases outside of the timed loops to fill
the instruction and data caches to avoid cold start cache effects. The longer plateau up to
second 13.5 is the execution of Small TM. Then, the warm up phase of Large TM follows.
The execution of Large TM completes at second 14.1. After that CLOMP-TM executes the
Small Critical and Large Critical variants that do not execute transactions.

Figure 9.23(b) shows the rate of the hits in L1P for thread 0. Comparing Figure 9.23(a)
and Figure 9.23(b) reveals that the execution of the transactions in Small TM and Large
TM is directly correlated with a low hit rate in the L1P. Figure 9.23(c) confirms this
observation for the first 5 threads. The different way of representing the information is
called performance radar in Vampir. The color of a field indicates the rate of the event for
the corresponding thread. With this simple scheme the information density is higher than
with a simple plot over time. In this particular case the plot reveals another interesting
aspect: the better L1P hit rate during the warmup phases of Small TM and Large TM are
unique to thread 0. This means that these hits stem from the sequential work (e.g., printing
to the screen) that is done by thread 0 only.

Figure 9.23(d) complements the picture by also presenting higher L1P miss rates during
the execution of Small TM and Large TM. The reason for these misses and the lack of

199



200 9. Tool Support for TM on BG/Q

(a) Transactions.

(b) L1P Hits of TM and critical sections for thread 0.

(c) L1P Hits for the first 5 threads.

(d) L1P Misses.

(e) Barrier stall cycles.

(f) Instruction cache fetches with transactions and critical sections.

Figure 9.23: Vampir visualizing the application’s behavior with counter plots over time and
the performance radar. Run with clomp_tm_divide1 -1 1 256 128
256 stride1,1,stride1%/2 3 1 0 6 100 in the long-running
mode.

200



9.6. State of the Art 201

hits is the L1 cache flush at the begin of a transaction when the TM system works in the
long-running mode. According to the presented performance data, the L1 cache flush
includes flushing the L1P. Thus, subsequent L1P requests miss. Figure 9.23(d) illustrates
that Small TM yields a higher miss rate (and also a lower hit rate) than Large TM. The
prefetching in Large TM has more time to prefetch data because the transaction updates
more memory locations and takes longer. Thus, the penalty is not as high as with Small
TM where, after updating one memory location, the next transaction will again flush the L1
cache.

Figure 9.23(e) illustrates that Small TM as well as Large TM suffer from a similar rate
of stall cycles but yield less stall cycles than the synchronization variants using omp
critical. Additionally, Figure 9.23(f) shows the rate of instruction fetches and identifies
the demanding parts of the benchmark. Moreover, due to the spinning of the threads, the
synchronization with omp critical has a higher fetch rate than the TM parts (where
Large TM also shows a slightly higher rate than Small TM).

9.6 State of the Art
A profiling method based on transactional events for BG/Q has recently been proposed
by Gaudet et al. in [71]. In this one page abstract they base their profiling on the logging
of time-stamped, transactional events. The goal is to develop a heuristic that adjusts the
serialization threshold to the execution of the application. A handicap of this approach
is that events may be lost on a rollback of a transaction. Further, they keep events in a
thread-local buffer and write them to a file when the program finishes. As a result they
state that the rate of transactional events is very important to compare the two execution
modes. The long running mode has a higher rate of events that lead to a faster execution.
Compared with our approach, their approach tracks events at a fine granularity and may run
into memory problems when an application executes millions of transactions per thread.
Our profiling approach aggregates data at user-defined boundaries and mostly has constant
memory requirements. Further, their approach cannot help to identify the cause of a
slow rate of events. Our approach pairs the transactional statistics with the readings of
performance counters so that we can give a qualitative answer as to why specific events are
delayed and propose appropriate counter measures.

So far, the remaining tools for TM presented in Chapter 3.4 are not yet ready for the
HTM on the BG/Q architecture. The reason is that the TM run time system is proprietary
and most tools require some sort of instrumentation of the run time system to gather the
performance data. Other techniques, e.g., sampling, cause problems with the interaction of
the TM run time so that a sampling action in a transaction may either freeze or change the
execution mode of the transaction through a jail mode violation. Then the user observes a
behavior of the transaction that would be altered through the sampling and, hence, different
from the original execution. Moreover, these tools do not yet support hybrid parallelization
that uses message passing in addition to threads.

Up to now, traditional analysis tools, such as the ones described in the following, do
not support TM. Score-P is a measurement infrastructure that supports profiling, event
trace recording, and online analysis of HPC applications at petascale [114]. Other tools,
that also compose with Score-P, are Periscope [74], Scalasca [73], Vampir [143], and
TAU [183]. Other popular tools for HPC that use sampling are Open|SpeedShop [179] and
HPCTOOLKIT[2]. Thus, our tools close the gap between HPC tools without TM support
on one side and highly specialized TM tools without the fitness for BG/Q on the other side.

201



202 9. Tool Support for TM on BG/Q

9.7 Conclusion
In this chapter, we introduce three TM-centric tools that enable the user to gain in-depth
insights into the parallel execution at the thread-level. A profiling tool, a tracing tool and a
tool designed for determining the overheads of TM execution provide the application devel-
oper with complementary information. The three tools access BG/Q performance counters
directly through the BGPM interface and complement these readings with statistics from
the TM run time. We demonstrate that the overhead tool is capable breaking down the
cycles associated with the different execution phases of a transaction. With the profiling
tool, we understand the side effects of performing computation before or inside of trans-
actions with respect to the TM execution mode and the utilization of the prefetching unit.
We investigate the influence of changing the scrub rate on a variety of BGPM events and
explain how to interpret the readings. After identifying key BGPM performance counter
events that enable to identify performance issues with TM quickly, we use the profiling tool
to uncover the performance issue of TM in the LULESH hydrodynamics proxy application.
Further, the tracing tool enables us to visualize the CLOMP-TM benchmark in a time line
view and highlight the subtle interaction of the threads. Overall, we see that tool support
for TM on BG/Q helps identifying the reasons for degraded performance and supports
tuning the right parameters (e.g., scrub rate).

202



10. Conclusion and Future Work

This Chapter 10 concludes the thesis in Section 10.1 by summarizing and concluding each
topic. Section 10.2 present some ideas about future work.

10.1 Summary and Conclusion

In the following, we shortly summarize the findings from optimizing TM applications that
either use STM, hybrid TM or HTM.

10.1.1 Information Retrieval for Hybrid TM and STM

In order to retrieve information about the run time behavior of TM applications with hybrid
TM and STM, we presented two TM-specific solutions. These capture and preserve the
TM application’s behavior for STM on an x86 architecture and hybrid TM on an FPGA
through generating event traces.

For the STM solution, TM events are logged, buffered and compressed inside a word-
based Software Transactional Memory library. This approach substantially increases the
throughput and reduces the application disturbance in comparison with a state-of-the-art
binary translation tool (Pin). The more sophisticated trace generation variants employ
compression algorithms to reduce the amount of data to be written. The ZLIB and the
LZO compression schemes are compared with non-compressing variants. The results show
that especially adding dedicated compression threads does have benefits: for large data
sets the influence on the run time is reduced significantly. The trace data is compressed
with a factor of up to 10. The compression ratio of the ZLIB algorithm is superior to
LZO, but also leads to an increased run time for large data sets. Further, LZO has a small
influence on the application behavior compared with ZLIB due to its multi-threaded trace
compression implementation. For capturing the genuine TM application’s behavior this
low-intrusiveness is the most important advantage of the developed LZO scheme. Thus,
retrieving information throughout this thesis is either done with LZO compression and
minimum of 2 compression threads or without compression and a buffer size of 100 K or
1 M elements.

203



204 10. Conclusion and Future Work

The presented FPGA-based tracing approach augments the hybrid TM system (TMbox).
An Event Generation and a Log Unit extend each processor core in order to track changes
of the TM state. The event is then transferred during the idle times on a secondary ring bus
in order to minimize the intrusiveness. To also monitor software execution of the hybrid
TM system, an additional instruction triggers the generation of a log event. This event
takes the usual route through the hardware. This approach achieves a continuous stream of
events that resembles the application’s behavior. The additional hardware requirements are
modest and the run time overhead is limited to one additional instruction to monitor the
software execution (per event).

A comparison between tracing the software execution of transactions on the FPGA platform
and the x86 host deepens the understanding of the techniques. A general and expected
trend is that the overall influence on the run time is lower for the hardware-assisted tracing.
As a result some benchmarks show a low influence with STM FPGA-based tracing and a
high influence with STM x86-based tracing (e.g., ssca2 and intruder). genome with
2 threads also shows a higher influence with STM FPGA compared to STM x86. In general
using the STM FPGA machinery for generating traces is preferable because of its lower
run time overhead and lower intrusiveness. In cases where an architecture with an FPGA
is not available, the STM x86 approach has also been shown to have a low influence on the
run time and comes with the advantage of being portable without requiring programmable
hardware.

10.1.2 Optimization of TM Applications

We presented a framework for the Visualization and Optimization of TM Applications
(VisOTMA) that provides tools for STM and hybrid TM. VisOTMA supports the expe-
rienced as well as the untrained programmer of TM applications when designing, rating
and optimizing a TM application. We discussed the question of a profitable transaction
length for STM in detail. In order to guide the programmer, we presented a reference
application and an optimization algorithm. Further, we employ techniques to capture TM
events and dynamic memory requests. The resulting log files enable a comprehensive
post-processing and visualization process even for unmanaged languages e.g., C or C++.
Thus, our approach improves the existing solutions through providing a correlation of a
TM event with the line in the source code and a mapping of addresses in transactional loads
and stores to data structures of the application and combining transactional events with
the readings of hardware performance counters. Especially, combining the visualization
(Paraver) with the comprehensive transactional statistics inside the VisOTMA framework
is useful to uncover bottlenecks of TM applications. We demonstrate the ability of the
VisOTMA framework to identify the sources of conflicts in two well-known pathological
TM cases (StarvingElder and FriendlyFire). We show how an inexperienced programmer
may optimize the TM application even in the absence of performance-critical patterns. This
is achieved by tuning the transaction size according to a metric provided by the VisOTMA
framework. Through simply enlarging the transactions in the absence of contention, an
inexperienced programmer can tune a C++ application simulating a fluid flow and yield a
speedup up to 1.43 over the intuitive transactional version.

STM and the Method of Conjugate Gradients

We implemented the numerical method of Conjugate Gradients without preconditioning
in two variants: a normal and a pipelined version. Both use OpenMP critical, OpenMP

204



10.1. Summary and Conclusion 205

atomic, the OpenMP standard reduction and STM to implement the reductions in the
algorithm. Our first finding is that the right way of organizing the reductions is the key to
performance. A reduction implemented with direct updates of the shared variable will not
yield a speedup over execution with one thread regardless of the synchronization primitive.
Instead thread-local variables that hold intermediate results are a requirement to achieve
speedups. Moreover, the pipelined CG with larger transactions (three times the size) is a
strong competitor for normal CG because the number of aborts is modest up to 16 threads.
As a downside, pipelined CG required one more iteration to achieve convergence compared
with normal CG for our example case. For both CG variants, the wait time at the barriers
dominates the time for synchronization in the reduction operations. This also undermines
the gains of the execution as well as those due to the optimization of TM. The regular
problem structure of CG demands that barriers synchronize all threads after a step in the
loop. Thus, a thread that executes a transaction and forces another thread to abort and
execute again, simply waits longer at the next barrier for the remaining threads. This
basic scenario still holds for longer transactions with pipelined CG. As a result, the CG
algorithm is not suited to demonstrate a performance gain with STM. On the other hand,
the competitive execution time of pipelined CG with larger transactions and still moderate
contention confirms the basic idea of optimizing the TM behavior through employing
larger transactions. Moreover, the large difference in execution time for transactions and
barriers suggests that future research should target more efficient barrier synchronization
or techniques to elide barriers. Common to both CG variants, we found through the use of
the hardware performance counters that higher thread counts lead to more L2 cache misses
that hinder the scalability and that loads and stores contribute the largest amount to all
kinds of instructions retired.

Phase Detection in TM Applications

Embedded in the VisOTMA framework, we presented a systematic approach to detect
phase behavior in transactional memory applications. The Transactional Memory Phase
Detector (TMPD) is introduced together with two phase detection algorithms adjusted
for TM: Signal Analysis and Wavelet Transform. The results show that we succeed to
identify phase behavior in an artificial show case as well as in the STAMP transactional
memory benchmarks with both algorithms. We studied the influence of the parameters on
the detected phase changes and found that small threshold values and short windows yield
the highest detection rate. This is not surprising but also shows that the phases are not very
long and differences between the phases are low. These findings indicate that exploiting
these phase changes to achieve performance gains, e.g., through changing the parameter
setting of the STM, will be a challenging task for STMs.

EigenOpt

To overcome the deficiencies of the current optimization cycle with TM applications that
requires an inexperienced programmer to follow a trial-and-error process, we presented
EigenOpt. EigenOpt uses the parameterizable EigenBench microbenchmark to simulate
the change in application behavior through changes in the parameter set. We extend the
tracing machinery and focus the use of performance counters to retrieve the required
EigenBench parameters of an arbitrary TM application. These parameters are then used for
simulating the outcome of potential optimizations with EigenOpt. This approach has the
potential to identify and avoid optimizations with diminishing returns so that it alleviates
the optimization process for the inexperienced programmer. However, our findings also

205



206 10. Conclusion and Future Work

show that the intrusiveness of the tracing approach is high due to the frequent readings of
the hardware performance counters and negatively influences the quality of the obtained
parameters. This prohibits the application of EigenOpt to a TM application. Future
work should investigate the sampling of the hardware performance counters to reduce the
intrusiveness and increase the quality of the parameters.

10.1.3 Hybrid TM
We integrated a hybrid TM system, the extended TMbox architecture, in the VisOTMA
framework. Visualizing the event traces from executing a network intrusion detection
benchmark on TMbox uncovers that this benchmark exhibits multiple pathological execu-
tion patterns e.g., Starving Elder, killer transaction and repeated aborts, that are embedded
in two application phases. A subsequent optimization of the STM-only execution of the
intruder benchmark reveals that a hybrid version with 16 entries in the TM cache can be
slower than STM. With 64 entries in the TM cache the execution time is faster than with
STM-only. Thread 2 suffers from long, aborted transactions running in software that goes
along with a high amount of wasted work. The commit time locking strategy of the STM
detects conflicts late so that switching to encounter time locking reduces the amount of
wasted work. The execution time decreases from the STM-only version to the hybrid
version with encounter time locking by 24.1 %. This performance gain demonstrates that
the visualization and the statistics of the run time behavior of a hybrid TM application are
suited to tune the execution of a hybrid TM system.

10.1.4 Compilation and Static Information

TM support for GCC

We presented an initial transactional memory extension of the GNU Compiler Collection,
and stressed its language-independent and STM-oriented design (yet compatible with
hybrid hardware/software implementations). This integration also provides the foundation
to integrate TM in an enhanced automatic parallelization strategy, where much of its
design and implementation can be reused for the parallelization of sparse, generalized
reductions. For these we demonstrate possible performance gains with a manual version.
We also highlighted key optimization challenges and opportunities; together with Yoo et
al. [214] and the more pessimistic study of Cascaval et al. [27], we stress the importance
of compiler and joint language-compiler studies for the future adoption of TM in real
world applications. To assess the quality of the ongoing work on the transactional memory
branch (that originates from the presented GTM design) by Red Hat Inc., we study the
evolution of the compiler optimizations and their impact on the performance of the TM
application. We conclude that GCC’s compiler and the libITM run time system already
made very good progress in tackling the overheads associated with STM.

Conclusion and Outlook for MAPT

In order to exploit the static information available in the compiler to select suited STM
parameters, we presented a novel approach for detection and analysis of memory access
patterns in transactions. The MAPT approach enhances the LLVM compiler framework
and proposes an STM conflict detection granularity to the programmer. These mechanisms
are evaluate with test cases and benchmarks from the STAMP benchmark suite. The
application run time yields a speedup, yielding a relative improvement in execution time of

206



10.1. Summary and Conclusion 207

14.7 % for a transactional K-means clustering algorithm and 16.9 % for learning a Bayesian
network implemented with transactions. The results are promising and validate that an
improved throughput can be achieved for the test cases as well as a reduced execution time
is possible for the two benchmarks.

10.1.5 HTM of BG/Q from an Application’s Perspective

As a HTM system, we evaluated BG/Q’s TM hardware from the perspective of an applica-
tion developer. We introduced CLOMP-TM, a benchmark designed to represent scientific
applications, and used it to contrast HTM against traditional synchronization primitives,
such as omp atomic and omp critical. We then extended CLOMP-TM with MPI to mimic
hybrid MPI/OpenMP parallelization. Additionally, we studied the impact of environment
variables on the performance. Finally, we condensed the findings into a set of best practices
and applied them to a Monte Carlo Benchmark. An optimized TM version of MCB with 64
threads achieved a speedup of 27.45 over the baseline. Further, an optimized TM version of
the Smoothed Particle Hydrodynamics method from the PARSEC suite achieved a speedup
of 14.5 with 64 threads and significantly outperformed a simple TM version (speedup of
4.4) as well as a coarse grain lock (speedup below 1) and verified the usefulness of the
best practices. Moreover, our results also show that an expert-level use of lightweight
efficient fine-grained locks is hard to beat with TM. For MCB, a synchronization pat-
tern that combines omp atomic and omp critical achieved a slightly larger speedup of
27.57 over baseline. These findings illustrate that performance with HTM does not come
for free and, even when following the guidelines developed and presented in Chapter 8,
performance with TM may not quite measure up to the expert-level use of locks for the
scientific applications considered. However, TM comes with the advantage of improving
the programmability and productivity because the user does not have to explicitly manage
locks (which is known to be error-prone). Thus, the use of TM or locks depends on the
expected gain when comparing development effort with performance improvements.

10.1.6 Tool Support for TM on BG/Q

Further, we introduced three TM-centric tools that enable the user to gain in-depth insights
into the parallel execution at the thread-level on BG/Q. A profiling tool, a tracing tool and
a tool designed for determining the overheads of TM execution provide the application
developer with complementary information. The three tools access BG/Q performance
counters directly through the BGPM interface and complement these readings with statistics
from the TM run time. We demonstrate that the overhead tool is capable of breaking
down the cycles associated with the different execution phases of a transaction. With the
profiling tool, we understand the side effects of performing computation before or inside of
transactions with respect to the TM execution mode and the utilization of the prefetching
unit. We investigate the influence of changing the scrub rate on a variety of BGPM events
and explain how to interpret the readings. After identifying key BGPM performance
counter events that enable to identify performance issues with TM quickly, we use the
profiling tool to uncover the performance issue of TM in the LULESH hydrodynamics
proxy application. Further, the tracing tool enables us to visualize the CLOMP-TM
benchmark in a time line view and highlight the subtle interaction of the threads. Overall,
we see that tool support for TM on BG/Q helps identifying the reasons for degraded
performance and supports tuning the right parameters (e.g., scrub rate).

207



208 10. Conclusion and Future Work

10.2 Outlook and Future Work
Comparing the techniques for retrieving information from the TM run time system, the
methods applicable to hybrid TM/STM and HTM differ. While hybrid TM and STM
support the tracing of transactional events, the tools designed for the HTM system of
BG/Q either trace snapshots or profile the TM application. The coarser granularity of
information with HTM does not allow to e.g., track conflicting memory accesses. Since
tracking conflicts simplifies to identify a heavily contented data structure, ways to identify
conflicts with a proprietary HTM system should be researched in the future. Together
with the conflicts, the corresponding data structures should be identified in order to map
the conflict back into the space of the application. Then the application developer may
rearrange the data structure to minimize contention.

Future work should also concentrate on the research of algorithms that avoid synchroniza-
tion e.g., through using additional memory or performing extra computations. The first
findings with these algorithms, e.g., luleshOMP Memory, show promising results and
may change the way programs are tuned for performance. The performance tuning of
hybrid TM and HTM has similarities: While hybrid TM requires to set parameters such
as the number of entries in the TM cache to a suited value, HTM requires to set the right
environment variables e.g., scrub rate. In both cases the TM application defines whether
this optimization yields performance gains but the application is not changed itself. Future
studies should also focus on understanding the implications of structural changes of the
TM application and parameter settings on the performance.

Moreover, the phase detection techniques that have been applied to STM so far should
be transferred to hybrid TM. Hybrid TM qualifies for phase detection because it has
more parameters to adjust (e.g., entries in the TM cache that could be reconfigured at
run time) and a measurable performance difference. Phase detection algorithms could be
implemented in hardware so that they run in parallel with the application and the high
performance gains seem better suited for exploiting this phase behavior.

For the TM-enabled GCC, we identified two directions for the future. First, much of
the GTM design and implementation should be reused for the enhanced automatic par-
allelization strategy, that targets the parallelization of sparse generalized reductions. For
these, we demonstrated possible performance gains with a manual version. Moreover, the
TM-specific compiler optimizations should be complemented with TM-specific link-time
optimizations that may infer whether a symbol has been exported and with this knowledge
enable or disable the eliding of TM barriers connected with the symbol.

As more microprocessors with HTM support become available, the techniques presented,
in this thesis, should be refined and extended towards these architectures. A potential
target is Intel®’s next processor generation, called Haswell, that features Transactional
Synchronization Extensions. Due to differences in the implementation, comparing the
performance of the HTM subsystem of IBM’s Blue Gene/Q and Intel®’s TSX could yield
new insights into the design of hardware support for TM and its integration into existing
microprocessors in the future.

208



Bibliography

[1] Adams, M.D., Kossentini, F.: JasPer: a Software-based JPEG-2000 Codec Imple-
mentation. In: International Conference on Image Processing, Volume 2, September
2000, Pages 53–56, ISSN 1522-4880.

[2] Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,
Tallent, N.R.: HPCTOOLKIT: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience, Volume
22, Number 6, April 2010, John Wiley and Sons Ltd., Pages 685–701 http:
//hpctoolkit.org, ISSN 1532-0626.

[3] Adl-Tabatabai, A.R., Kozyrakis, C., Saha, B.: Unlocking Concurrency. Queue,
Volume 4, Number 10, 2007, ACM Press, Pages 24–33, ISSN 1542-7730.

[4] Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman,
T.: Compiler and Runtime Support for Efficient Software Transactional Memory.
In: Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’06, New York, NY, USA, ACM, 2006, Pages
26–37, ISBN 1-59593-320-4.

[5] Adl-Tabatabai, A.R., Shpeisman, T., Gottschlich, J.: Draft Specification of Trans-
actional Language Constructs for C++. Online last accessed February 2013, pub-
lished February 2012 , Version 1.1, Transactional Memory Specification Drafting
Group, https://sites.google.com/site/tmforcplusplus/C%2B%
2BTransactionalConstructs-1.1.pdf?attredirects=0.

[6] Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
Transactional Memory. In: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture. HPCA ’05, Washington, DC, USA, IEEE
Computer Society, 2005, Pages 316–327, ISBN 0-7695-2275-0.

[7] Ansari, M., Jarvis, K., Kotselidis, C., Luján, M., Kirkham, C., Watson, I.: Profiling
Transactional Memory Applications. In: Proceedings of the 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based Processing.
PDP ’09, Washington, DC, USA, IEEE Computer Society, 2009, Pages 11–20, ISBN
978-0-7695-3544-9.

209

http://hpctoolkit.org
http://hpctoolkit.org
https://sites.google.com/site/tmforcplusplus/C%2B%2BTransactionalConstructs-1.1.pdf?attredirects=0
https://sites.google.com/site/tmforcplusplus/C%2B%2BTransactionalConstructs-1.1.pdf?attredirects=0


210 Bibliography

[8] Bacon, D., Bloch, J., Bogda, J., Click, C., Haahr, P., Lea, D., May,
T., Maessen, J.W., Manson, J., Mitchell, J.D., Nilsen, K., Pugh, B.,
Sirer, E.G.: The “Double-Checked Locking is Broken” Declaration – On-
line last accessed July 2012 http://www.cs.umd.edu/~pugh/java/
memoryModel/DoubleCheckedLocking.html.

[9] Baek, W., Minh, C.C., Trautmann, M., Kozyrakis, C., Olukotun, K.: The OpenTM
Transactional Application Programming Interface. In: Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques.
PACT ’07, Washington, DC, USA, IEEE Computer Society, 2007, Pages 376–387,
ISBN 0-7695-2944-5.

[10] Bai, T., Shen, X., Zhang, C., Scherer, W., Ding, C., Scott, M.: A Key-based
Adaptive Transactional Memory Executor. In: IEEE International Parallel and
Distributed Processing Symposium. IPDPS ’07, IEEE March 2007, Pages 1–8, ISBN
1-4244-0910-1.

[11] Balasubramonian, R., Albonesi, D., Buyuktosunoglu, A., Dwarkadas, S.: Memory
Hierarchy Reconfiguration for Energy and Performance in General-Purpose Pro-
cessor Architectures. In: MICRO 33: Proceedings of the 33rd Annual ACM/IEEE
International Symposium on Microarchitecture, New York, NY, USA, ACM, 2000,
Pages 245–257, ISBN 1-58113-196-8.

[12] Balasubramonian, R., Dwarkadas, S., Albonesi, D.H.: Dynamically Managing
the Communication-Parallelism Trade-off in Future Clustered Processors. In: Pro-
ceedings of the 30th Annual International Symposium on Computer Architecture.
ISCA ’03, New York, NY, USA, ACM, 2003, Pages 275–287, ISBN 0-7695-1945-8.

[13] Ball, T., Larus, J.R.: Optimally Profiling and Tracing Programs. ACM Transactions
on Programming Languages and Systems, Volume 16, Issue 4, July 1994, ACM,
Pages 1319–1360, ISSN 0164-0925.

[14] Barna L. Bihari: Applicability of Transactional Memory to Modern Codes. In: Inter-
national Conference on Numerical Analysis and Applied Mathematics. ICNAAM 10,
Rodos, Greece, APS, 2010, Pages 1764–1767, ISBN 978-0-7354-0834-0.

[15] Bihari, B., Wong, M., Wang, A., de Supinski, B., Chen, W.: A Case for Including
Transactions in OpenMP II: Hardware Transactional Memory. In Chapman, B.,
Massaioli, F., Müller, M., Rorro, M., eds.: OpenMP in a Heterogeneous World,
Volume 7312 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg
2012, Pages 44–58, ISBN 978-3-642-30960-1.

[16] Blundell, C., Lewis, E.C., Martin, M.M.K.: Deconstructing Transactions: The Sub-
tleties of Atomicity. In: Fourth Annual Workshop on Duplicating, Deconstructing,
and Debunking, June 2005 – Online last accessed February 2013 http://www.
cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf.

[17] Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D., Swift, M.M., Wood, D.A.:
Performance Pathologies in Hardware Transactional Memory. ACM SIGARCH
Computer Architecture News, Volume 35, Issue 2, June 2007, ACM, Pages 81–91,
ISSN 0163-5964.

[18] Boehm, H., Gottschlich, J., Luchangco, V., Michael, M., Nelson, C., Riegel, T.,
Shpeisman, T., Wong, M.: Transactional Language Constructs for C++. Technical
Report N3341=12-0031 January 2012.

210

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf
http://www.cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf


211

[19] Börschig, M.: Performance Counter als Hilfsmittel für umfassende Opti-
mierungsstrategien für TM-Anwendungen. Studienarbeit (Study Thesis), Karlsruhe
Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, December 2012.

[20] Bradel, B.J., Abdelrahman, T.S.: The Use of Hardware Transactional Memory for
the Trace-Based Parallelization of Recursive Java Programs. In: Proceedings of the
7th International Conference on Principles and Practice of Programming in Java.
PPPJ ’09, New York, NY, USA, ACM, 2009, Pages 101–110, ISBN 978-1-60558-
598-7.

[21] Bronevetsky, G., Gyllenhaal, J., De Supinski, B.R.: CLOMP: Accurately Character-
izing OpenMP Application Overheads. In: Proceedings of the 4th International Con-
ference on OpenMP in a New Era of Parallelism. IWOMP ’08, Berlin, Heidelberg,
Springer-Verlag, 2008, Pages 13–25, ISBN 3-540-79560-X, 978-3-540-79560-5.

[22] Bruening, D., Garnett, T., Amarasinghe, S.: An Infrastructure for Adaptive Dynamic
Optimization. In: Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization. CGO ’03,
Washington, DC, USA, IEEE Computer Society, 2003, Pages 265–275, ISBN
0-7695-1913-X.

[23] Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic Instrumentation of
Production Systems. In: Proceedings of the annual conference on USENIX Annual
Technical Conference. ATEC ’04, Berkeley, CA, USA, USENIX Association, 2004,
Pages 2–2.

[24] Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transac-
tional Applications for Multi-Processing. In: Proceedings of the IEEE International
Symposium on Workload Characterization. IISWC ’08, IEEE September 2008.

[25] Carey, M.J., DeWitt, D.J., Naughton, J.F.: The OO7 Benchmark. In: Proceedings
of the 1993 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’93, New York, NY, USA, ACM, 1993, Pages 12–21, ISBN 0-89791-592-
5.

[26] Casas, M., Badia, R.M., Labarta, J.: Automatic Phase Detection of MPI Applica-
tions. In: Parallel Computing: Architectures, Algorithms and Applications. NIC
Series Volume 38, September 2007 ISBN: 978-3-9810843-4-4.

[27] Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S., Chatterjee,
S.: Software Transactional Memory: Why is it Only a Research Toy? Queue,
Volume 6, Number 5, 2008, ACM, Pages 46–58, ISSN 1542-7730.

[28] Casper, J., Oguntebi, T., Hong, S., Bronson, N.G., Kozyrakis, C., Olukotun, K.:
Hardware Acceleration of Transactional Memory on Commodity Systems. ACM
SIGARCH Computer Architecture News, Volume 39, Number 1, March 2011, ACM,
Pages 27–38, ISSN 0163-5964.

[29] Castro, M., Georgiev, K., Marangozova-Martin, V., Mehaut, J.F., Fernandes, L.G.,
Santana, M.: Analysis and Tracing of Applications Based on Software Transactional
Memory on Multicore Architectures. In: Proceedings of the 19th International
Euromicro Conference on Parallel, Distributed and Network-Based Processing. PDP
’11, Washington, DC, USA, IEEE Computer Society, 2011, Pages 199–206, ISBN
978-0-7695-4328-4.

211



212 Bibliography

[30] Caubet, J., Gimenez, J., Labarta, J., Rose, L.D., Vetter, J.S.: A Dynamic Tracing
Mechanism for Performance Analysis of OpenMP Applications. In: Proceedings of
the International Workshop on OpenMP Applications and Tools: OpenMP Shared
Memory Parallel Programming. WOMPAT ’01, London, UK, Springer-Verlag, 2001,
Pages 53–67, ISBN 3-540-42346-X.

[31] Chafi, H., Minh, C.C., McDonald, A., Carlstrom, B.D., Chung, J., Hammond,
L., Kozyrakis, C., Olukotun, K.: TAPE: A Transactional Application Profiling
Environment. In: Proceedings of the 19th Annual International Conference on
Supercomputing. ICS ’05, New York, NY, USA, ACM, 2005, Pages 199–208, ISBN
1-59593-167-8.

[32] Chakrabarti, D.R., Banerjee, P., Boehm, H.J., Joisha, P.G., Schreiber, R.S.: The
Runtime Abort Graph and its Application to Software Transactional Memory Op-
timization. In: Proceedings of the 2011 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. CGO ’11, Washington, DC,
USA, IEEE Computer Society, 2011, Pages 42–53, ISBN 978-1-61284-356-8.

[33] Chaudhry, S., Cypher, R., Ekman, M., Karlsson, M., Landin, A., Yip, S., Zeffer, H.,
Tremblay, M.: Rock: A High-Performance Sparc CMT Processor. IEEE Micro,
Volume 29, Number 2, 2009, Pages 6–16.

[34] Choi, J.D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape Analysis for
Java. In: Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA ’99, New York,
NY, USA, ACM, 1999, Pages 1–19, ISBN 1-58113-238-7.

[35] Christian Bienia: Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[36] Christie, D., Chung, J.W., Diestelhorst, S., Hohmuth, M., Pohlack, M., Fetzer, C.,
Nowack, M., Riegel, T., Felber, P., Marlier, P., Rivière, E.: Evaluation of AMD’s
Advanced Synchronization Facility Within a Complete Transactional Memory Stack.
In: Proceedings of the 5th European Conference on Computer Systems. EuroSys ’10,
New York, NY, USA, ACM, 2010, Pages 27–40, ISBN 978-1-60558-577-2.

[37] Christmann, C., Hebisch, E., Weisbecker, A.: Oversubscription of Computational
Resources on Multicore Desktop Systems. In Pankratius, V., Philippsen, M., eds.:
MSEPT ’12: International Conference on Multicore Software Engineering, Perfor-
mance, and Tools, Volume 7303 of Lecture Notes in Computer Science, Springer
May 31 - June 1 2012, Pages 18–29, ISBN 978-3-642-31201-4.

[38] Chuck Thacker: Hardware Transactional Memory for Beehive. In:
http://research.microsoft.com/en-us/um/people/birrell/beehive/hardware transac-
tional memory for beehive3.pdf, MSR Silicon Valley 2010.

[39] Chung, E.S., Nurvitadhi, E., Hoe, J.C., Falsafi, B., Mai, K.: A Complexity-
Effective Architecture for Accelerating Full-System Multiprocessor Simulations
Using FPGAs. In: Proceedings of the 16th International ACM/SIGDA Symposium
on Field Programmable Gate Arrays. FPGA ’08, New York, NY, USA, ACM, 2008,
Pages 77–86, ISBN 978-1-59593-934-0.

[40] Chung, E.S., Papamichael, M.K., Nurvitadhi, E., Hoe, J.C., Mai, K., Falsafi, B.:
ProtoFlex: Towards Scalable, Full-System Multiprocessor Simulations Using FP-

212



213

GAs. ACM Transactions on Reconfigurable Technology and Systems, Volume 2,
Number 2, 2009, Pages 1–32.

[41] Chung, J., Chafi, H., Minh, C., McDonald, A., Carlstrom, B., Kozyrakis, C., Oluko-
tun, K.: The Common Case Transactional Behavior of Multithreaded Programs. In:
The 12th International Symposium on High-Performance Computer Architecture.
HPCA ’06, IEEE February 2006, Pages 266–277, ISSN 1530-0897.

[42] Click, C.: Azul’s Experiences with Hardware Transactional Memory January 2009
In HP Labs - Bay Area Workshop on Transactional Memory.

[43] Concus, P., Golub, G., O’Leary, D.: A Generalized Conjugate Gradient Method for
the Numerical Solution of Elliptic Partial Differential Equations. Reports Stanford
University, Computer Science Department, Stanford University, 1976.

[44] Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science and Engineering, Volume 05, Number
1, 1998, IEEE Computer Society, Pages 46–55, ISSN 1070-9924.

[45] Dalessandro, L., Marathe, V.J., Spear, M.F., Scott, M.L.: Capabilities and Limita-
tions of Library-Based Software Transactional Memory in C++. In: ACM SIGPLAN
Workshop on Transactional Computing. TRANSACT ’07, 2007.

[46] Dalessandro, L., Scott, M.L.: Strong Isolation is a Weak Idea. In: Proceedings of
the Fourth ACM SIGPLAN Workshop on Transactional Computing. TRANSACT,
January 2009.

[47] Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid
Transactional Memory. SIGARCH Computer Architecture News, Volume 34, Issue
5, October 2006, ACM, Pages 336–346, ISSN 0163-5964.

[48] Dave, N., Pellauer, M., Emer, J.: Implementing a Functional/Timing Partitioned
Microprocessor Simulator with an FPGA. In: 2nd Workshop on Architecture
Research using FPGA Platforms. WARFP ’06, 2006.

[49] Davis, J., Hammond, L., Olukotun, K.: A Flexible Architecture for Simulation and
Testing (FAST) Multiprocessor Systems. In: 1st Workshop on Architecture Research
using FPGA Platforms. WARFP ’05, 2005.

[50] de Oliveira Stein, B., de Kergommeaux, J.C.: Pajé Trace File Format. Technical
report, Universidade Federal de Santa Maria, RS, Brazil and Laboratoire Logiciel
Systèmes et Réseaux, France March 2003.

[51] Dean, J., Hicks, J.E., Waldspurger, C.A., Weihl, W.E., Chrysos, G.: ProfileMe:
Hardware Support for Instruction-Level Profiling on Out-Of-Order Processors. In:
Proceedings of the 30th Annual ACM/IEEE International Symposium on Microarchi-
tecture. MICRO 30, Washington, DC, USA, IEEE Computer Society, 1997, Pages
292–302, ISBN 0-8186-7977-8.

[52] Demsky, B., Dash, A.: Using Discrete Event Simulation to Analyze Contention
Managers. International Journal of Parallel Programming, Volume 39, Number 6,
December 2011, Springer Netherlands, Pages 783–808, ISSN 0885-7458.

[53] Dice, D., Lev, Y., Moir, M., Nussbaum, D.: Early Experience with a Commercial
Hardware Transactional Memory Implementation. SIGPLAN Not., Volume 44, Issue
3, March 2009, ACM, Pages 157–168, ISSN 0362-1340.

213



214 Bibliography

[54] Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Proceedings of
the 20th International Conference on Distributed Computing. DISC ’06, Berlin,
Heidelberg, Springer-Verlag, 2006, Pages 194–208, ISBN 3-540-44624-9, 978-3-
540-44624-8.

[55] Ding, C., Dwarkadas, S., Huang, M.C., Shen, K., Carter, J.B.: Program Phase
Detection and Exploitation. In: Proceedings of the 20th International Conference
on Parallel and Distributed Processing. IPDPS ’06, Washington, DC, USA, IEEE
Computer Society, 2006, Pages 279–279, ISBN 1-4244-0054-6.

[56] Dragojevic, A., Ni, Y., Adl-Tabatabai, A.R.: Optimizing Transactions for Captured
Memory. In: Proceedings of the twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures. SPAA ’09, New York, NY, USA, ACM, 2009, Pages
214–222, ISBN 978-1-60558-606-9.

[57] Duesterwald, E., Cascaval, C., Dwarkadas, S.: Characterizing and Predicting
Program Behavior and its Variability. In: International Conference on Parallel
Architectures and Compilation Techniques, Volume 0 of PACT ’03, Los Alamitos,
CA, USA, IEEE Computer Society, 2003, Pages 220–231, ISSN 1089-795X., ISBN
0-7695-2021-9.

[58] Ennals, R.: Software Transactional Memory Should Not Be Obstruction-Free.
Technical Report IRC-TR-06-052, Intel Research Cambridge Technical Report
January 2006.

[59] Esselson, A.: Algorithmen und Metriken zur anwendungsorientierten Auswahl von
STM-Parametern. Diplomarbeit (Master’s Thesis), Karlsruhe Institute of Technol-
ogy, Kaiserstr. 12, 76131 Karlsruhe, July 2010.

[60] Faure, E., Benabdenbi, M., Pecheux, F.: Distributed Online Software Monitoring
of Manycore Architectures. In: Proceedings of the 2010 IEEE 16th International
On-Line Testing Symposium. IOLTS ’10, Washington, DC, USA, IEEE Computer
Society, 2010, Pages 56–61, ISBN 978-1-4244-7724-1.

[61] Felber, P., Fetzer, C., Müller, U., Riegel, T., Süßkraut, M., Sturzrehm, H.: Trans-
actifying Applications using an Open Compiler Framework. In: Workshop on
Transactional Computing. TRANSACT ’07, August 2007.

[62] Felber, P., Fetzer, C., Riegel, T.: Dynamic Performance Tuning of Word-Based
Software Transactional Memory. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPoPP ’08, New
York, NY, USA, ACM, 2008, Pages 237–246, ISBN 978-1-59593-795-7.

[63] Ferri, C., Moreshet, T., Bahar, R.I., Benini, L., Herlihy, M.: A Hardware/Software
Framework for supporting Transactional Memory in a MPSoC Environment. ACM
SIGARCH Computer Architecture News, Volume 35, Number 1, March 2007, ACM,
Pages 47–54, ISSN 0163-5964.

[64] Ferri, C., Wood, S., Moreshet, T., Iris Bahar, R., Herlihy, M.: Embedded-TM:
Energy and complexity-effective hardware transactional memory for embedded
multicore systems. Journal of Parallel and Distributed Computing, Volume 70,
Number 10, October 2010, Academic Press, Inc., Pages 1042–1052, ISSN 0743-
7315.

214



215

[65] Fidge, C. J.: Timestamps in Message-Passing Systems That Preserve the Partial
Ordering. Proceedings of the 11th Australian Computer Science Conference, Volume
10, Number 1, 1988, Pages 56–66.

[66] Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and Mixins. In: Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’98, New York, NY, USA, ACM, 1998, Pages 171–183, ISBN
0-89791-979-3.

[67] Fraser, K., Harris, T.: Concurrent Programming Without Locks. ACM Transactions
on Computer Systems (TOCS), Volume 25, Number 5, Issue 2, May 2007, ACM,
ISSN 0734-2071.

[68] Froyd, N., Mellor-Crummey, J., Fowler, R.: Low-Overhead Call Path Profiling of
Unmodified, Optimized Code. In: Proceedings of the 19th Annual International
Conference on Supercomputing. ICS ’05, New York, NY, USA, ACM, 2005, Pages
81–90, ISBN 1-59593-167-8.

[69] Gajinov, V., Zyulkyarov, F., Unsal, O.S., Cristal, A., Ayguade, E., Harris, T., Valero,
M.: QuakeTM: Parallelizing a complex sequential application using transactional
memory. In: Proceedings of the 23rd International Conference on Supercomputing.
ICS ’09, New York, NY, USA, ACM, 2009, Pages 126–135, ISBN 978-1-60558-
498-0.

[70] Gamblin, T., de Supinski, B.R., Schulz, M., Fowler, R., Reed, D.A.: Scalable Load-
Balance Measurement for SPMD Codes. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing. SC ’08, Piscataway, NJ, USA, IEEE Press, 2008,
Pages 1–12, ISBN 978-1-4244-2835-9.

[71] Gaudet, M., Amaral, J.N.: Transactional Event Profiling in a Best-Effort Hardware
Transactional Memory System. In: Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques. PACT ’12, New York, NY,
USA, ACM, 2012, Pages 475–476, ISBN 978-1-4503-1182-3.

[72] Gauss, A.: Algorithmen zur Detektion von Programmphasen in TM-Anwendungen.
Diplomarbeit (Master’s Thesis), Karlsruhe Institute of Technology, Kaiserstr. 12,
76131 Karlsruhe, March 2010.

[73] Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
SCALASCA performance toolset architecture, Volume 22, Number 6, April 2010,
John Wiley and Sons Ltd., Pages 702–719, ISSN 1532-0626.

[74] Gerndt, M., Ott, M.: Automatic Performance Analysis with Periscope. Concurrency
and Computation: Practice and Experience, Volume 22, Number 6, April 2010,
John Wiley and Sons Ltd., Pages 736–748, ISSN 1532-0626.

[75] Goetz, B.: Optimistic Thread Concurrency – Breaking the Scale
Barrier January 2006 Whitepaper from Azul Systems Inc., Online
http://www.pointsource.com/staff/docArchive/WP00081-
OptimisticConcurrency-LckngTech-Azul-WP.pdf last accessed 4th
February 2013.

[76] Gottschlich, J.E., Herlihy, M.P., Pokam, G.A., Siek, J.G.: Visualizing Transactional
Memory. In: Proceedings of the 21st International Conference on Parallel Architec-
tures and Compilation Techniques. PACT ’12, New York, NY, USA, ACM, 2012,
Pages 159–170, ISBN 978-1-4503-1182-3.

215

http://www.pointsource.com/staff/docArchive/WP00081-OptimisticConcurrency-LckngTech-Azul-WP.pdf
http://www.pointsource.com/staff/docArchive/WP00081-OptimisticConcurrency-LckngTech-Azul-WP.pdf


216 Bibliography

[77] Gottschlich, J.E., Vachharajani, M., Siek, J.G.: An Efficient Software Trans-
actional Memory Using Commit-Time Invalidation. In: Proceedings of the 8th
Annual IEEE/ACM International Symposium on Code Generation and Optimization.
CGO ’10, New York, NY, USA, ACM, 2010, Pages 101–110, ISBN 978-1-60558-
635-9.

[78] Grinberg, S., Weiss, S.: Investigation of Transactional Memory Using FPGAs. In:
Proceedings of the 2nd Workshop on Architecture Research using FPGA Platforms.
WARFP ’06, 2006.

[79] Grossman, D., Manson, J., Pugh, W.: What Do High-Level Memory Models
Mean for Transactions? In: Proceedings of the 2006 Workshop on Memory System
Performance and Correctness. MSPC ’06, New York, NY, USA, ACM, 2006, Pages
62–69, ISBN 1-59593-578-9.

[80] Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,
Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional Memory
Coherence and Consistency. SIGARCH Computer Architure News, Volume 32, Issue
2, March 2004, ACM, Pages 102–113, ISSN 0163-5964.

[81] Haring, R.: The Blue Gene/Q Compute Chip. In: Hot Chips 23, August 2011 On-
line last accessed 26th of February 2013 http://www.hotchips.org/wp-
content/uploads/hc_archives/hc23/HC23.18.1-manycore/
HC23.18.121.BlueGene-IBM_BQC_HC23_20110818.pdf.

[82] Haring, R., Ohmacht, M., Fox, T., Gschwind, M., Satterfield, D., Sugavanam, K.,
Coteus, P., Heidelberger, P., Blumrich, M., Wisniewski, R., Gara, A., Chiu, G.,
Boyle, P., Christ, N., Kim, C.: The IBM Blue Gene/Q Compute Chip. IEEE Micro,
Volume 32, Number 2, March 2012, IEEE Computer Society Press, Pages 48–60,
ISSN 0272-1732.

[83] Harris, T., Larus, J., Rajwar, R.: Transactional Memory, Volume 5, Morgan &
Claypool Publishers, June 2010, 2nd edition, Synthesis Lectures on Computer
Architecture, ISBN 978-1608452354.

[84] Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable Memory Trans-
actions. In: Proceedings of the 10th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. PPoPP ’05, New York, NY, USA, ACM, 2005,
Pages 48–60, ISBN 1-59593-080-9.

[85] Heindl, A., Pokam, G.: An Analytic Framework for Performance Modeling of
Software Transactional Memory. Computer Networks: The International Journal
of Computer and Telecommunications Networking, Volume 53, Number 8, 2009,
Elsevier North-Holland, Inc., Pages 1202–1214, ISSN 1389-1286.

[86] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach.
5th edition, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA October
2011, ISBN 9780123838728.

[87] Herlihy, M., Lev, Y.: tm_db: A Generic Debugging Library for Transactional
Programs. In: Proceedings of the 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, Washington, DC, USA, IEEE Computer
Society, 2009, Pages 136–145, ISBN 978-0-7695-3771-9.

216

http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.1-manycore/HC23.18.121.BlueGene-IBM_BQC_HC23_20110818.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.1-manycore/HC23.18.121.BlueGene-IBM_BQC_HC23_20110818.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.1-manycore/HC23.18.121.BlueGene-IBM_BQC_HC23_20110818.pdf


217

[88] Herlihy, M., Luchangco, V., Moir, M.: Obstruction-Free Synchronization: Double-
Ended Queues as an Example. In: Proceedings of the 23rd International Conference
on Distributed Computing Systems. ICDCS ’03, Washington, DC, USA, IEEE
Computer Society, 2003, Pages 522–, ISBN 0-7695-1920-2.

[89] Herlihy, M., Luchangco, V., Moir, M.: A Flexible Framework for Implementing
Software Transactional Memory. In: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions. OOPSLA ’06, New York, NY, USA, ACM, 2006, Pages 253–262, ISBN
1-59593-348-4.

[90] Herlihy, M., Luchangco, V., Moir, M., Scherer, III, W.N.: Software Transactional
Memory for Dynamic-Sized Data Structures. In: Proceedings of the 22nd Annual
Symposium on Principles of Distributed Computing. PODC ’03, New York, NY,
USA, ACM, 2003, Pages 92–101, ISBN 1-58113-708-7.

[91] Herlihy, M., Moss, J.E.B.: Transactional Memory: Architectural Support for Lock-
Free Data Structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture. ISCA ’93, New York, NY, USA, ACM, 1993, Pages
289–300, ISBN 0-8186-3810-9.

[92] Heuveline, V., Janko, S., Karl, W., Rocker, B., Schindewolf, M.: Software Transac-
tional Memory, OpenMP and Pthread Implementations of the Conjugate Gradients
Method – A Preliminary Evaluation. In Daydé, M., Marques, O., Nakajima, K.,
eds.: High Performance Computing for Computational Science - VECPAR 2012,
Volume 7851 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg
July 2013, Pages 300–313, ISBN 978-3-642-38717-3.

[93] Hill, M.D., Hower, D., Moore, K.E., Swift, M.M., Volos, H., Wood, D.A.: A
Case for Deconstructing Hardware Transactional Memory Systems. In Cohen, A.,
Garzarán, M.J., Lengauer, C., Midkiff, S.P., eds.: Programming Models for Ubiqui-
tous Parallelism, Volume 07361 of Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany 2007.

[94] Hong, S., Oguntebi, T., Casper, J., Bronson, N., Kozyrakis, C., Olukotun, K.:
EigenBench: A Simple Exploration Tool for Orthogonal TM Characteristics. In:
Proceedings of the IEEE International Symposium on Workload Characterization.
IISWC ’10, Washington, DC, USA, IEEE Computer Society, 2010, Pages 1–11,
ISBN 978-1-4244-9297-8.

[95] Huang, M., Renau, J., Torrellas, J.: Profile Based Energy Reduction for High-
Performance Processors. In: 4th ACM Workshop on Feedback-Directed and Dy-
namic Optimization, December 2001.

[96] Huang, M.C., Renau, J., Torrellas, J.: Positional Adaptation of Processors: Ap-
plication to Energy Reduction. In: Proceedings of the 30th Annual International
Symposium on Computer Architecture. ISCA ’03, New York, NY, USA, ACM, 2003,
Pages 157–168, ISBN 0-7695-1945-8.

[97] Hudson, R.L., Saha, B., Adl-Tabatabai, A.R., Hertzberg, B.C.: McRT-Malloc: A
Scalable Transactional Memory Allocator. In: Proceedings of the 5th International
Symposium on Memory Management. ISMM ’06, New York, NY, USA, ACM, 2006,
Pages 74–83, ISBN 1-59593-221-6.

217



218 Bibliography

[98] Huffmire, T., Sherwood, T.: Wavelet-Based Phase Classification. In: Proceedings
of the 15th International Conference on Parallel Architectures and Compilation
Techniques. PACT ’06, New York, NY, USA, ACM, 2006, Pages 95–104, ISBN
1-59593-264-X.

[99] Hughes, C., Li, T.: Optimizing Throughput/Power Trade-offs in Hardware Trans-
actional Memory Using DVFS and Intelligent Scheduling. In: Proceedings of the
International Conference on Supercomputing. ICS ’11, New York, NY, USA, ACM,
2011, Pages 141–150, ISBN 978-1-4503-0102-2.

[100] Hughes, C., Poe, J., Qouneh, A., Li, T.: On the (Dis)similarity of Transactional
Memory Workloads. In: Proceedings of the 2009 IEEE International Symposium
on Workload Characterization. IISWC ’09, Washington, DC, USA, IEEE Computer
Society, October 2009, Pages 108–117, ISBN 978-1-4244-5156-2.

[101] IBM: IBM XL C/C++ for Transactional Memory for AIX. http://www.
alphaworks.ibm.com/tech/xlcstm May 2008.

[102] Intel® Corporation: Technologies for Measuring Software Performance: VTune
Analyzers. 2003 White paper.

[103] Intel® Corporation: Intel® Architecture Instruction Set Extensions Programming
Reference. February 2012 319433-012A.

[104] İpek, E., Martínez, J.F., de Supinski, B.R., McKee, S.A., Schulz, M.: Dynamic
Program Phase Detection in Distributed Shared-Memory Multiprocessors. In:
Proceedings of the 20th International Conference on Parallel and Distributed Pro-
cessing. IPDPS ’06, Washington, DC, USA, IEEE Computer Society, 2006, Pages
280–280, ISBN 1-4244-0054-6.

[105] Janko, S.: Multi-threaded Implementations of the Conjugate Gradients Method
based on Transactional Memory with OpenMP and Pthreads. Studienarbeit (Study
Thesis), Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, February
2012.

[106] Janko, S., Rocker, B., Schindewolf, M., Heuveline, V., Karl, W.: Software
Transactional Memory, OpenMP and Pthread implementations of the Conjugate
Gradients Method - a Preliminary Evaluation. Number 01, EMCL Preprint Se-
ries 2012 http://www.emcl.kit.edu/preprints/emcl-preprint-
2012-01.pdf, ISSN 2191–0693.

[107] Jost, G., Jin, H., Labarta, J., Gimenez, J.: Interfacing computer aided Parallelization
and performance analysis. In: Proceedings of the 2003 International Conference on
Computational science. ICCS’03, Berlin, Heidelberg, Springer-Verlag, 2003, Pages
181–190, ISBN 3-540-40197-0.

[108] Kachris, C., Kulkarni, C.: Configurable Transactional Memory. In: FCCM ’07:
Proceedings of the 15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, Washington, DC, USA, IEEE Computer Society, 2007, Pages
65–72, ISBN 0-7695-2940-2.

[109] Kang, S., Bader, D.A.: An Efficient Transactional Memory Algorithm for Com-
puting Minimum Spanning Forest of Sparse Graphs. SIGPLAN Not., Volume 44,
Number 4, February 2009, ACM, Pages 15–24, ISSN 0362-1340.

218

http://www.alphaworks.ibm.com/tech/xlcstm
http://www.alphaworks.ibm.com/tech/xlcstm
http://www.emcl.kit.edu/preprints/emcl-preprint-2012-01.pdf
http://www.emcl.kit.edu/preprints/emcl-preprint-2012-01.pdf


219

[110] Karrels, E., Lusk, E.: Performance Analysis of MPI Programs. In Dongarra,
J., Tourancheau, B., eds.: Proceedings of the Second Workshop on Environments
and Tools for Parallel Scientific Computing. Proceedings in Applied Mathematics
Series, Society for Industrial & Applied Publications 1994, Pages 195–200, ISBN
9780898713435.

[111] Kirchhofer, P.: Enhancing an HTM System with HW Monitoring Capabilities.
Studienarbeit (Study Thesis), Karlsruhe Institute of Technology, Kaiserstr. 12, 76131
Karlsruhe, December 2011.

[112] Kirchhofer, P., Schindewolf, M., Sonmez, N., Arcas, O., Unsal, O.S., Cristal,
A., Karl, W.: Enhancing an HTM System with Monitoring, Visualization and
Analysis Capabilities. In: Euro-TM Workshop on Transactional Memory (WTM
2012), April 2012 Abstract available at http://www.eurotm.org/action-
meetings/wtm2012/program/abstracts#Kirchhofer.

[113] Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.: Introducing the Open
Trace Format (OTF). In Alexandrov, V., van Albada, G., Sloot, P., Dongarra, J., eds.:
Computational Science ICCS 2006, Volume 3992 of Lecture Notes in Computer
Science. Springer Berlin/Heidelberg 2006, Pages 526–533.

[114] Knüpfer, A., Rössel, C., an Mey, D., Biersdorf, S., Diethelm, K., Eschweiler, D.,
Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik, Y., Saviankou, P.,
Schmidl, D., Shende, S., Tschüter, R., Wagner, M., Wesarg, B., Wolf, F.: Score-P:
A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca,
TAU, and Vampir. In Brunst, H., Müller, M.S., Nagel, W.E., Resch, M.M., eds.:
Tools for High Performance Computing 2011, Springer Berlin Heidelberg 2011,
Pages 79–91, ISBN 978-3-642-31475-9.

[115] Labrecque, M., Jeffrey, M.C., Steffan, J.G.: Application-Specific Signatures for
Transactional Memory in Soft Processors. ACM Transactions on Reconfigurable
Technology and Systems, Volume 4, Number 3, Number 21, August 2011, ACM,
Pages 21:1–21:14, ISSN 1936-7406.

[116] Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, Volume 28, Number 9,
September 1979, IEEE Computer Society, Pages 690–691, ISSN 0018-9340.

[117] Larus, J., Kozyrakis, C.: Transactional Memory. Communications of the ACM,
Volume 51, Number 7, July 2008, ACM, Pages 80–88, ISSN 0001-0782.

[118] Lattner, C.: Macroscopic Data Structure Analysis and Optimization. PhD thesis,
Computer Science Department, University of Illinois at Urbana-Champaign, 2002.

[119] Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimization.
CGO ’04, Washington, DC, USA, IEEE Computer Society, 2004, Pages 75–, ISBN
0-7695-2102-9.

[120] Lawrence Livermore National Laboratory: Hydrodynamics Challenge Problem.
Technical Report LLNL-TR-490254.

[121] Lehman, P.L., Yao, S.B.: Efficient Locking for Concurrent Operations on B-Trees.
ACM Transactions on Database Systems, Volume 6, Number 4, December 1981,
ACM, Pages 650–670, ISSN 0362-5915.

219

http://www.eurotm.org/action-meetings/wtm2012/program/abstracts#Kirchhofer
http://www.eurotm.org/action-meetings/wtm2012/program/abstracts#Kirchhofer


220 Bibliography

[122] Lev, Y., Moir, M., Nussbaum, D.: PhTM: Phased Transactional Memory. In: 2nd
Workshop on Transactional Computing. TRANSACT ’07, August 2007 – Online
last accessed 4th February 2013 http://research.sun.com/projects/
scalable/pubs/TRANSACT2007-PhTM.pdf.

[123] Lev, Y.: Debugging and Profiling of Transactional Programs. PhD thesis, De-
partment of Computer Science, Brown University, Providence, Rhode Island May
2010.

[124] Lev, Y., Luchangco, V., Marathe, V., Moir, M., Nussbaum, D., Olszewski, M.:
Anatomy of a Scalable Software Transactional Memory. In: Workshop on Transac-
tional Computing. TRANSACT ’09, February 2009.

[125] Lim, M.Y., Freeh, V.W., Lowenthal, D.K.: Adaptive, Transparent Frequency and
Voltage Scaling of Communication Phases in MPI Programs. In: Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing. SC ’06, New York, NY, USA,
ACM, 2006, Pages 107–121, ISBN 0-7695-2700-0.

[126] Lomet, D.B.: Process Structuring, Synchronization, and Recovery using Atomic
Actions. In: Proceedings of an ACM Conference on Language Design for Reliable
Software, New York, NY, USA, ACM, 1977, Pages 128–137.

[127] Lourenço, J., Dias, R., Luís, J., Rebelo, M., Pessanha, V.: Understanding the Behav-
ior of Transactional Memory Applications. In: Proceedings of the 7th Workshop on
Parallel and Distributed Systems: Testing, Analysis, and Debugging. PADTAD ’09,
New York, NY, USA, ACM, 2009, Pages 3:1–3:9, ISBN 978-1-60558-655-7.

[128] Luchangco, V.: Against Lock-Based Semantics for Transactional Memory. In:
Proceedings of the 20th Annual Symposium on Parallelism in Algorithms and
Architectures. SPAA ’08, New York, NY, USA, ACM, 2008, Pages 98–100, ISBN
978-1-59593-973-9.

[129] Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. ACM SIGPLAN Notices, Volume 40, Issue 6, June
2005, ACM, Pages 190–200, ISSN 0362-1340.

[130] Magklis, G., Scott, M.L., Semeraro, G., Albonesi, D.H., Dropsho, S.: Profile-based
Dynamic Voltage and Frequency Scaling for a Multiple Clock Domain Micropro-
cessor. In: ISCA ’03: Proceedings of the 30th Annual International Symposium
on Computer Architecture, New York, NY, USA, ACM, 2003, Pages 14–27, ISBN
0-7695-1945-8.

[131] Marathe, V.J., Scherer, W.N., Scott, M.L.: Adaptive Software Transactional Memory.
In: Proceedings of the 19th international conference on Distributed Computing.
DISC’05, Berlin, Heidelberg, Springer-Verlag, 2005, Pages 354–368, ISBN 3-540-
29163-6, 978-3-540-29163-3.

[132] Marathe, V.J., Scherer III, W.N., Scott, M.L.: Design Tradeoffs in Modern Software
Transactional Memory Systems. In: Proceedings of the 7th Workshop on Languages,
Compilers, and Run-time Support for Scalable Systems. LCR ’04, New York, NY,
USA, ACM, Oct 2004, Pages 1–7.

[133] Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R.L., Saha,
B., Welc, A.: Practical Weak-Atomicity Semantics for Java STM. In: Proceedings of

220

http://research.sun.com/projects/scalable/pubs/TRANSACT2007-PhTM.pdf
http://research.sun.com/projects/scalable/pubs/TRANSACT2007-PhTM.pdf


221

the 20th Annual Symposium on Parallelism in Algorithms and Architectures. SPAA
’08, New York, NY, USA, ACM, 2008, Pages 314–325, ISBN 978-1-59593-973-9.

[134] Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R.L., Saha,
B., Welc, A.: Single Global Lock Semantics in a Weakly Atomic STM. ACM
SIGPLAN Notices, Volume 43, Number 5, May 2008, ACM, Pages 15–26, ISSN
0362-1340.

[135] Meurant, G.: Multitasking the Conjugate Gradient Method on the CRAY X-MP/48.
Parallel Computing, Volume 5, Number 3, 1987, Pages 267–280.

[136] Milovanović, M., Ferrer, R., Gajinov, V., Unsal, O.S., Cristal, A., Ayguadé, E.,
Valero, M.: Multithreaded Software Transactional Memory and OpenMP. In:
Proceedings of the Workshop on Memory Performance. MEDEA ’07, New York,
NY, USA, ACM, 2007, Pages 81–88, ISBN 978-1-9593-807-7.

[137] Moore, K.F., Grossman, D.: High-Level Small-Step Operational Semantics for
Transactions. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL ’08, New York, NY, USA,
ACM, 2008, Pages 51–62, ISBN 978-1-59593-689-9.

[138] Moore, K., Bobba, J., Moravan, M., Hill, M., Wood, D.: LogTM: Log-based
Transactional Memory. In: The 12th International Symposium on High-Performance
Computer Architecture. HPCA ’06, February 2006, Pages 254–265, ISSN 1530-
0897.

[139] Moore, S., Terpstra, D., London, K., Mucci, P., Teller, P., Salayandia, L., Bayona,
A., Nieto, M.: PAPI Deployment, Evaluation, and Extensions. In: Proceedings of
the 2003 DoD User Group Conference. DOD_UGC ’03, Washington, DC, USA,
IEEE Computer Society, 2003, Pages 349–, ISBN 0-7695-1953-9.

[140] Moreshet, T., Bahar, R.I., Herlihy, M.: Energy Reduction in Multiprocessor Systems
Using Transactional Memory. In: Proceedings of the 2005 International Symposium
on Low Power Electronics and Design. ISLPED ’05, New York, NY, USA, ACM,
2005, Pages 331–334, ISBN 1-59593-137-6.

[141] Moreshet, T., Bahar, R.I., Herlihy, M.: Energy-Aware Microprocessor Synchro-
nization: Transactional Memory vs. Locks. In: Workshop on Memory Performance
Issues, February 2006, Pages 1–7 held in conjunction with the International Sympo-
sium on High-Performance Computer Architecture.

[142] Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive
Applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Sym-
posium on Computer animation. SCA ’03, Aire-la-Ville, Switzerland, Switzerland,
Eurographics Association, 2003, Pages 154–159, ISBN 1-58113-659-5.

[143] Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel, W.E.:
Developing Scalable Applications with Vampir, VampirServer and VampirTrace. In
Bischof, C., Bücker, M., Gibbon, P., Joubert, G., Lippert, T., Mohr, B., Peters, F.,
eds.: Parallel Computing: Architectures, Algorithms and Applications, Volume 15
of Advances in Parallel Computing, IOS Press 2007, Pages 637–644 ISBN 978-1-
58603-796-3.

221



222 Bibliography

[144] Nandy, S., Gao, X., Ferrante, J.: TFP: Time-Sensitive, Flow-Specific Profiling
at Runtime. In Rauchwerger, Lawrence, ed.: Languages and Compilers for Par-
allel Computing, Volume 2958 of Lecture Notes in Computer Science. Springer
Berlin/Heidelberg 2004, Pages 32–47, ISBN 978-3-540-21199-0.

[145] Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation. In: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’07, New York, NY,
USA, ACM, 2007, Pages 89–100, ISBN 978-1-59593-633-2.

[146] Nielsen, O.M., Hegland, M.: Parallel Performance of Fast Wavelet Transforms.
International Journal of High Speed Computing, Volume 11, Number 1, 2000, Pages
55–74, ISSN 0129-0533.

[147] Njoroge, N., Casper, J., Wee, S., Teslyar, Y., Ge, D., Kozyrakis, C., Olukotun,
K.: ATLAS: A Chip-Multiprocessor with Transactional Memory Support. In:
Proceedings of the Conference on Design, Automation and Test in Europe. DATE
’07, San Jose, CA, USA, EDA Consortium, 2007, Pages 3–8, ISBN 978-3-9810801-
2-4.

[148] Oechslein, B.: Statische WCET-Analyse von LLVM-Bytecode. Master’s thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg, August 2008.

[149] Pankratius, V., Adl-Tabatabai, A.R.: A Study of Transactional Memory vs. Locks in
Practice. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms
and Architectures. SPAA ’11, New York, NY, USA, ACM, 2011, Pages 43–52,
ISBN 978-1-4503-0743-7.

[150] Pankratius, V., Adl-Tabatabai, A.R., Otto, F.: Does Transactional Memory Keep Its
Promises? Results from an Empirical Study. Technical Report 2009-12, Institute for
Programme Structures and Data Organisation, University of Karlsruhe, Germany
September 2009.

[151] Pant, S.M., Byrd, G.T.: Limited Early Value Communication to Improve Per-
formance of Transactional Memory. In: Proceedings of the 23rd International
Conference on Supercomputing. ICS ’09, New York, NY, USA, ACM, 2009, Pages
421–429, ISBN 978-1-60558-498-0.

[152] Payer, M., Gross, T.R.: Performance Evaluation of Adaptivity in Software Trans-
actional Memory. In: Proceedings of the IEEE International Symposium on Per-
formance Analysis of Systems and Software. ISPASS ’11, Washington, DC, USA,
IEEE Computer Society, 2011, Pages 165–174, ISBN 978-1-61284-367-4.

[153] Perelman, E., Polito, M., Bouguet, J.Y., Sampson, J., Calder, B., Dulong, C.:
Detecting Phases in Parallel Applications on Shared Memory Architectures. In:
Proceedings of the 20th International Conference on Parallel and Distributed Pro-
cessing. IPDPS ’06, Washington, DC, USA, IEEE Computer Society, 2006, Pages
88–88, ISBN 1-4244-0054-6.

[154] Poe, J., Hughes, C., Li, T.: TransPlant: A Parameterized Methodology For Gen-
erating Transactional Memory Workloads. In: IEEE International Symposium
on Modeling, Analysis Simulation of Computer and Telecommunication Systems.
MASCOTS ’09, September 2009, Pages 1 –10, ISSN 1526-7539.

222



223

[155] Poe, J., Cho, C.B., Li, T.: Using Analytical Models to Efficiently Explore Hardware
Transactional Memory and Multi-core Co-design. In: Proceedings of the 2008
20th International Symposium on Computer Architecture and High Performance
Computing. SBAC-PAD ’08, Washington, DC, USA, IEEE Computer Society, 2008,
Pages 159–166, ISBN 978-0-7695-3423-7.

[156] Porter, D.E., Witchel, E.: Understanding Transactional Memory Performance.
In: International Symposium on Performance Analysis of Systems and Software.
ISPASS ’10, IEEE March 2010, Pages 97–108, ISBN 978-1-4244-6023-6.

[157] Pusceddu, M., Ceccolini, S., Palermo, G., Sciuto, D., Tumeo, A.: A Compact Trans-
actional Memory Multiprocessor System on FPGA. In: International Conference
on Field Programmable Logic and Applications. FPL ’10, 31 2010-sept. 2 2010,
Pages 578–581, ISSN 1946-1488.

[158] Rajwar, R., Herlihy, M., Lai, K.: Virtualizing Transactional Memory. In: Proceed-
ings of the 32nd Annual International Symposium on Computer Architecture. ISCA
’05, Washington, DC, USA, IEEE Computer Society, 2005, Pages 494–505, ISBN
0-7695-2270-X.

[159] Ramadan, H.E., Rossbach, C.J., Witchel, E.: Dependence-Aware Transactional
Memory for Increased Concurrency. In: Proceedings of the 41st annual IEEE/ACM
International Symposium on Microarchitecture. MICRO 41, Washington, DC, USA,
IEEE Computer Society, 2008, Pages 246–257, ISBN 978-1-4244-2836-6.

[160] Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing Conflicting Trans-
actions in an STM. In: Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. PPoPP ’09, New York, NY, USA,
ACM, 2009, Pages 163–172, ISBN 978-1-60558-397-6.

[161] Riegel, T., Becker de Brum, D.: Making Object-Based STM Practical in Unmanaged
Environments. In: Workshop on Transactional Computing. TRANSACT ’08, 2008.

[162] Riegel, T., Felber, P., Fetzer, C.: A Lazy Snapshot Algorithm with Eager Validation.
In: Proceedings of the 20th International Conference on Distributed Computing.
DISC ’06, Berlin, Heidelberg, Springer-Verlag, 2006, Pages 284–298, ISBN 3-540-
44624-9, 978-3-540-44624-8.

[163] Rossbach, C.J., Hofmann, O.S., Porter, D.E., Ramadan, H.E., Aditya, B., Witchel,
E.: TxLinux: Using and Managing Hardware Transactional Memory in an Operating
System. SIGOPS Operating Systems Review, Volume 41, Number 6, October 2007,
ACM, Pages 87–102, ISSN 0163-5980.

[164] Rossbach, C.J., Hofmann, O.S., Witchel, E.: Is Transactional Programming Actually
Easier? ACM SIGPLAN Notices, Volume 45, Issue 5, January 2010, ACM, Pages
47–56, ISSN 0362-1340.

[165] Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, Volume 14, Number 2,
April 2009, Kluwer Academic Publishers, Pages 131–164, ISSN 1382-3256.

[166] Ruth A. Aydt: The Pablo Self-Defining Data Format. Technical report, Urbana,
Illinois 61801, USA 1994.

[167] Saad, Y.: Iterative Methods for Sparse Linear Systems. 2nd edition, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA 2003, ISBN 0898715342.

223



224 Bibliography

[168] Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-
STM: A High Performance Software Transactional Memory System for a Multi-Core
Runtime. In: Proceedings of the 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. PPoPP ’06, New York, NY, USA, ACM, 2006,
Pages 187–197, ISBN 1-59593-189-9.

[169] Saha, B., Adl-Tabatabai, A.R., Jacobson, Q.: Architectural Support for Software
Transactional Memory. In: Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. MICRO ’06, Washington, DC, USA, IEEE
Computer Society, 2006, Pages 185–196, ISBN 0-7695-2732-9.

[170] Scherer, III, W.N., Scott, M.L.: Advanced Contention Management for Dynamic
Software Transactional Memory. In: Proceedings of the 24th Annual ACM Sym-
posium on Principles of Distributed Computing. PODC ’05, New York, NY, USA,
ACM, 2005, Pages 240–248, ISBN 1-58113-994-2.

[171] Schindewolf, M., Bihari, B., Gyllenhaal, J., Schulz, M., Wang, A., Karl, W.: What
Scientific Applications Can Benefit from Hardware Transactional Memory? In:
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. SC ’12, Los Alamitos, CA, USA, IEEE Computer
Society Press, 2012, Pages 90:1–90:11, ISBN 978-1-4673-0804-5.

[172] Schindewolf, M., Cohen, A., Karl, W., Marongiu, A., Benini, L.: Towards Trans-
actional Memory Support for GCC. In: First International Workshop on GCC
Research Opportunities. GROW ’09, January 2009 Held in conjunction with: the
fourth International Conference on High-Performance Embedded Architectures and
Compilers (HiPEAC).

[173] Schindewolf, M., Esselson, A., Karl, W.: Compiler-Assisted Selection of a Software
Transactional Memory System. In Berekovic, M., Fornaciari, W., Brinkschulte, U.,
Silvano, C., eds.: Architecture of Computing Systems - ARCS 2011, Volume 6566
of Lecture Notes in Computer Science, Springer Berlin / Heidelberg 2011, Pages
147–157.

[174] Schindewolf, M., Karl, W.: Investigating Compiler Support for Software Trans-
actional Memory. In: Proceedings of ACACES 2009 Poster Abstracts: Advanced
Computer Architecture and Compilation for Embedded Systems, Terrassa, Spain,
Academia Press, Ghent, July 2009, Pages 89–92.

[175] Schindewolf, M., Karl, W.: Capturing Transactional Memory Application’s Behav-
ior – The Prerequisite for Performance Analysis. In: International Conference on
Multicore Software Engineering, Performance and Tools (MSEPT 2012), Volume
7303 of Lecture Notes in Computer Science, Springer Verlag May 31–June 1, 2012,
Pages 30–41, ISBN 978-3-642-31201-4.

[176] Schindewolf, M., Rocker, B., Karl, W., Heuveline, V.: Evaluation of two Formula-
tions of the Conjugate Gradients Method with Transactional Memory. In Wolf, F.,
Mohr, B., an Mey, D., eds.: 19th International European Conference on Parallel and
Distributed Computing Euro-Par 2013, Volume 8097 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg 2013 Accepted for publication.

[177] Schindewolf, M., Schulz, M., Bihari, B., Gyllenhaal, J., Wang, A., Karl, W.: Per-
formance Analysis of and Tool Support for Transactional Memory on BG/Q. In:

224



225

Euro-TM Workshop on Transactional Memory (WTM 2012), April 2012 Abstract
available at http://www.eurotm.org/action-meetings/wtm2012/
program/abstracts#Schindewolf.

[178] Schindewolf, M., Tao, J., Karl, W., Cintra, M.: A Generic Tool Supporting Cache
Designs and Optimisation on Shared Memory Systems. In: Proceedings of the
9th Workshop on Parallel Systems and Algorithms (PASA ’08), Volume 124 of
Lecture Notes in Informatics (LNI), GI e.V. February 2008, Pages 69–79, ISBN
978-3-88579-218-5.

[179] Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., Cranford, S.:
Open|SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis.
Scientific Programming, Volume 16, Number 2-3, 2008, IOS Press, Pages 105–121,
ISSN 1058-9244.

[180] Shavit, N., Touitou, D.: Software Transactional Memory. In: Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing. PODC ’95,
New York, NY, USA, ACM, 1995, Pages 204–213, ISBN 0-89791-710-3.

[181] Shen, X., Zhong, Y., Ding, C.: Locality Phase Prediction. In: Proceedings of the 11th
International Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS-XI, New York, NY, USA, ACM, 2004, Pages
165–176, ISBN 1-58113-804-0.

[182] Shende, S., Malony, A., Morris, A., Wolf, F.: Performance Profiling Overhead
Compensation for MPI Programs. In Di Martino, B., Kranzlmüller, D., Dongarra, J.,
eds.: Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Volume 3666 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg
2005, Pages 359–367, ISBN 978-3-540-29009-4.

[183] Shende, S.S., Malony, A.D.: The TAU Parallel Performance System. International
Journal of High Performance Computing Applications, Volume 20, Number 2, May
2006, Sage Publications, Inc., Pages 287–311, ISSN 1094-3420.

[184] Sherwood, T., Sair, S., Calder, B.: Phase Tracking and Prediction. ACM SIGARCH
Computer Architecture News, Volume 31, Number 2, May 2003, ACM, Pages
336–349, ISSN 0163-5964.

[185] Shpeisman, T., Menon, V., Adl-Tabatabai, A.R., Balensiefer, S., Grossman, D.,
Hudson, R.L., Moore, K.F., Saha, B.: Enforcing Isolation and Ordering in STM.
ACM SIGPLAN Notices, Volume 42, Number 6, June 2007, ACM, Pages 78–88,
ISSN 0362-1340.

[186] Shriraman, A., Dwarkadas, S.: Refereeing Conflicts in Hardware Transactional
Memory. In: Proceedings of the 23rd International Conference on Supercomputing.
ICS ’09, New York, NY, USA, ACM, 2009, Pages 136–146, ISBN 978-1-60558-
498-0.

[187] Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG 2000 Still Image Compres-
sion Standard. Signal Processing Magazine, IEEE, Volume 18, Number 5, sep 2001,
Pages 36 –58, ISSN 1053-5888.

[188] Smaragdakis, Y., Kay, A., Behrends, R., Young, M.: Transactions with Isolation
and Cooperation. ACM SIGPLAN Notices, Volume 42, Number 10, October 2007,
ACM, Pages 191–210, ISSN 0362-1340.

225

http://www.eurotm.org/action-meetings/wtm2012/program/abstracts#Schindewolf
http://www.eurotm.org/action-meetings/wtm2012/program/abstracts#Schindewolf


226 Bibliography

[189] Sonmez, N., Arcas, O., Kirchhofer, P., Schindewolf, M., Unsal, O.S., Cristal, A.,
Karl, W.: A low-overhead Profiling and Visualization Framework for Hybrid
Transactional Memory. In: FCCM 2012: The 20th Annual IEEE International
Symposium on Field-Programmable Custom Computing Machines, 2012, Pages 1–8
http://fccm12.cse.sc.edu/4699a001.pdf.

[190] Sonmez, N., Arcas, O., Pflucker, O., Unsal, O.S., Cristal, A., Hur, I., Singh, S.,
Valero, M.: TMbox: A Flexible and Reconfigurable 16-Core Hybrid Transactional
Memory System. In: Proceedings of the 2011 IEEE 19th Annual International
Symposium on Field-Programmable Custom Computing Machines. FCCM ’11,
Washington, DC, USA, IEEE Computer Society, 2011, Pages 146–153, ISBN
978-0-7695-4301-7.

[191] Sonmez, N., Cristal, A., Unsal, O., Harris, T., Valero, M.: Profiling Transac-
tional Memory Applications on an atomic block basis: A Haskell case study. In:
MULTIPROG 2009, January 2009.

[192] Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A Comprehensive Strategy
for Contention Management in Software Transactional Memory. ACM SIGPLAN
Notices, Volume 44, Number 4, February 2009, ACM, Pages 141–150, ISSN 0362-
1340.

[193] Spear, M.F., Marathe, V.J., Dalessandro, L., Scott, M.L.: Privatization Techniques
for Software Transactional Memory. In: Proceedings of the 26th Annual ACM
Symposium on Principles of Distributed Computing. PODC ’07, New York, NY,
USA, ACM, 2007, Pages 338–339, ISBN 978-1-59593-616-5.

[194] Spear, M.F., Marathe, V.J., Scherer, W.N., Scott, M.L.: Conflict Detection and
Validation Strategies for Software Transactional Memory. In: Proceedings of
the 20th International Conference on Distributed Computing. DISC’06, Berlin,
Heidelberg, Springer-Verlag, 2006, Pages 179–193, ISBN 3-540-44624-9, 978-3-
540-44624-8.

[195] Spear, M.F., Silverman, M., Dalessandro, L., Michael, M.M., Scott, M.L.: Imple-
menting and Exploiting Inevitability in Software Transactional Memory. Interna-
tional Conference on Parallel Processing, Volume 0, 2008, IEEE Computer Society,
Pages 59–66, ISSN 0190-3918.

[196] Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for Computer Graphics: A
Primer, Part 1. IEEE Computer Graphics and Applications, Volume 15, 1995, IEEE
Computer Society, Pages 76–84, ISSN 0272-1716.

[197] Strzodka, R., Göddeke, D.: Pipelined Mixed Precision Algorithms on FPGAs for
Fast and Accurate PDE Solvers from Low Precision Components. In: IEEE Pro-
ceedings on Field-Programmable Custom Computing Machines. FCCM ’06, IEEE
Computer Society Press May 2006, Pages 259–268 doi: 10.1109/FCCM.2006.57.

[198] Tallent, N.R., Mellor-Crummey, J., Franco, M., Landrum, R., Adhianto, L.: Scalable
Fine-grained Call Path Tracing. In: Proceedings of the International Conference on
Supercomputing. ICS ’11, New York, NY, USA, ACM, 2011, Pages 63–74, ISBN
978-1-4503-0102-2.

[199] Tao, J., Gaugler, T., Karl, W.: A Profiling Tool for Detecting Cache-Critical Data
Structures. In Kermarrec, A.M., Bougé, L., Priol, T., eds.: Euro-Par 2007 Parallel

226

http://fccm12.cse.sc.edu/4699a001.pdf


227

Processing, Volume 4641 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg 2007, Pages 52–61, ISBN 978-3-540-74465-8.

[200] Wagner, R.S., Baraniuk, R.G., Du, S., Johnson, D.B., Cohen, A.: An Architecture for
Distributed Wavelet Analysis and Processing in Sensor Networks. In: Proceedings
of the 5th International Conference on Information Processing in Sensor Networks.
IPSN ’06, New York, NY, USA, ACM, 2006, Pages 243–250, ISBN 1-59593-334-4.

[201] Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera,
R., Michael, M.: Evaluation of Blue Gene/Q Hardware Support for Transactional
Memories. In: Proceedings of the 21st International Conference on Parallel Archi-
tectures and Compilation Techniques. PACT ’12, New York, NY, USA, ACM, 2012,
Pages 127–136, ISBN 978-1-4503-1182-3.

[202] Wang, C., Chen, W.Y., Wu, Y., Saha, B., Adl-Tabatabai, A.R.: Code Generation and
Optimization for Transactional Memory Constructs in an Unmanaged Language. In:
Proceedings of the International Symposium on Code Generation and Optimization.
CGO ’07, Washington, DC, USA, IEEE Computer Society, 2007, Pages 34–48,
ISBN 0-7695-2764-7.

[203] Watson, I., Kirkham, C., Lujan, M.: A Study of a Transactional Parallel Routing
Algorithm. In: Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques. PACT ’07, Washington, DC, USA, IEEE
Computer Society, 2007, Pages 388–398, ISBN 0-7695-2944-5.

[204] Wee, S., Casper, J., Njoroge, N., Tesylar, Y., Ge, D., Kozyrakis, C., Olukotun, K.:
A practical FPGA-based Framework for Novel CMP Research. In: Proceedings
of the 2007 ACM/SIGDA 15th International Symposium on Field Programmable
Gate Arrays. FPGA ’07, New York, NY, USA, ACM, 2007, Pages 116–125, ISBN
978-1-59593-600-4.

[205] Welc, A., Hosking, A.L., Jagannathan, S.: Transparently Reconciling Transactions
with Locking for Java Synchronization. In: Proceedings of the 20th European
Conference on Object-Oriented Programming. ECOOP’06, Berlin, Heidelberg,
Springer-Verlag, 2006, Pages 148–173, ISBN 3-540-35726-2, 978-3-540-35726-1.

[206] Welc, A., Saha, B., Adl-Tabatabai, A.R.: Irrevocable Transactions and their Applica-
tions. In: Proceedings of the 20th Annual Symposium on Parallelism in Algorithms
and Architectures. SPAA ’08, New York, NY, USA, ACM, 2008, Pages 285–296,
ISBN 978-1-59593-973-9.

[207] Wolf, F., Mohr, B.: EPILOG Binary Trace-Data Format. Technical report,
Forschungszentrum Jülich, University of Tennessee May 2004 FZJ-ZAM-IB-2004-
06.

[208] Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen,
W.: A Case for Including Transactions in OpenMP. In: IWOMP 2010 Conference
Proceedings, Tsukuba, Japan, LNCS 6132, June 2010, Pages 149–160.

[209] Wong, M., Bihari, B., de Supinski, B., Wu, P., Michael, M., Liu, Y., Chen, W.: A
Case for Including Transactions in OpenMP. In Sato, M., Hanawa, T., Müller, M.,
Chapman, B., de Supinski, B., eds.: Beyond Loop Level Parallelism in OpenMP:
Accelerators, Tasking and More, Volume 6132 of Lecture Notes in Computer Science.
Springer Berlin/Heidelberg 2010, Pages 149–160, ISBN 978-3-642-13216-2.

227



228 Bibliography

[210] Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs:
Characterization and Methodological Considerations. In: Proceedings of the 22nd
Annual International Symposium on Computer Architecture. ISCA ’95, New York,
NY, USA, ACM Press, 1995, Pages 24–36, ISBN 0-89791-698-0.

[211] Wu, P., Michael, M.M., von Praun, C., Nakaike, T., Bordawekar, R., Cain, H.W.,
Cascaval, C., Chatterjee, S., Chiras, S., Hou, R., Mergen, M., Shen, X., Spear,
M.F., Wang, H.Y., Wang, K.: Compiler and Runtime Techniques for Software
Transactional Memory Optimization. Concurrency and Computation: Practice &
Experience, Volume 21, Number 1, January 2009, John Wiley and Sons Ltd., Pages
7–23, ISSN 1532-0626.

[212] Yen, L., Bobba, J., Marty, M.R., Moore, K.E., Volos, H., Hill, M.D., Swift, M.M.,
Wood, D.A.: LogTM-SE: Decoupling Hardware Transactional Memory from
Caches. In: Proceedings of the IEEE 13th International Symposium on High
Performance Computer Architecture. HPCA ’07, Washington, DC, USA, IEEE
Computer Society, 2007, Pages 261–272, ISBN 1-4244-0804-0.

[213] Yin, R.: Case Study Research: Design and Methods. 3rd edition Applied Social
Research Methods Series, Sage Publications, 2002, ISBN 9780761925521.

[214] Yoo, R.M., Ni, Y., Welc, A., Saha, B., Adl-Tabatabai, A.R., Lee, H.H.S.: Kicking
the Tires of Software Transactional Memory: Why the Going Gets Tough. In:
Proceedings of the 20th Annual Symposium on Parallelism in Algorithms and
Architectures. SPAA ’08, New York, NY, USA, ACM, 2008, Pages 265–274, ISBN
978-1-59593-973-9.

[215] Zannier, C., Melnik, G., Maurer, F.: On the Success of Empirical Studies in the
International Conference on Software Engineering. In: Proceedings of the 28th
International Conference on Software Engineering. ICSE ’06, New York, NY, USA,
ACM, 2006, Pages 341–350, ISBN 1-59593-375-1.

[216] Zhang, X., Wang, Z., Gloy, N., Chen, J.B., Smith, M.D.: System Support for
Automatic Profiling and Optimization. In: Proceedings of the 16th ACM Symposium
on Operating Systems Principles. SOSP ’97, New York, NY, USA, ACM, 1997,
Pages 15–26, ISBN 0-89791-916-5.

[217] Zilles, C.B., Sohi, G.S.: A Programmable Co-processor for Profiling. In: Proceed-
ings of the 7th International Symposium on High-Performance Computer Architec-
ture. HPCA ’01, Washington, DC, USA, IEEE Computer Society, 2001, Pages 241–,
ISBN 0-7695-1019-1.

[218] Zyulkyarov, F., Cristal, A., Cvijic, S., Ayguade, E., Valero, M., Unsal, O., Harris,
T.: WormBench: A Configurable Workload for Evaluating Transactional Memory
Systems. In: Proceedings of the 9th Workshop on Memory Performance: Dealing
with Applications, Systems and Architecture. MEDEA ’08, New York, NY, USA,
ACM, 2008, Pages 61–68, ISBN 978-1-60558-243-6.

[219] Zyulkyarov, F., Gajinov, V., Unsal, O.S., Cristal, A., Ayguadé, E., Harris, T., Valero,
M.: Atomic Quake: Using Transactional Memory in an Interactive Multiplayer
Game Server. ACM SIGPLAN Notices, Volume 44, Number 4, February 2009,
ACM, Pages 25–34, ISSN 0362-1340.

228



229

[220] Zyulkyarov, F., Stipic, S., Harris, T., Unsal, O.S., Cristal, A., Hur, I., Valero,
M.: Discovering and Understanding Performance Bottlenecks in Transactional
Applications. In: Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques. PACT ’10, New York, NY, USA, ACM,
2010, Pages 285–294, ISBN 978-1-4503-0178-7.

229





Curriculum Vitae

Personal Information

Date of Birth: 01. April 1981
Place of Birth: Eschwege, Germany
Citizenship: German

Education
Since 04/2008 Research assistant with Chair for Computer Architecture and

Parallel Processing of Prof. Wolfgang Karl and pursuing a
PhD at the Karlsruhe Institute of Technology (KIT)

10/2001 to 02/2008 Study of informatics at University of Karlsruhe
10/2003 Pre-degree, grade 2.0
02/2008 Diploma with grade 1.2 (equivalent to Master in Computer

Science with a six months thesis)
Electives: Cryptography

Embedded Systems Design and Computer Architecture
Seminar: Supercomputers
Study Thesis: Analysis of Cache Misses Using SIMICS
Diploma Thesis: Development of a Compiler-based Validation Infrastructure

Supporting Incremental Performance Model Analysis
Supervisor: Prof. Wolfgang Karl, University of Karlsruhe
09/1997 to 06/2000 Oberstufengymnasium Eschwege

German “Abitur” qualifying for university studies, grade 1.8

231



232 Curriculum Vitae

Studies and Research Abroad
09/2012 to 11/2012 Internship at the Lawrence Livermore National Laboratory

(LLNL), Livermore, CA, US
Joint work with Dr. Martin Schulz on tools for Transactional
Memory

08/2011 to 12/2011 Internship at the Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, US
Working with Dr. Martin Schulz on performance of
Transactional Memory on the BG/Q architecture

06/2008 Institut National de Recherche en Informatique et en Auto-
matique, INRIA Saclay - Île de France, Orsay cedex, France
Joint work with Albert Cohen on Transactional Memory
Support for GCC.
Project funded by HiPEAC Network of Excellence

06/2007 to 08/2007 Institute for Computing Systems Architecture,
University of Edinburgh, UK
Diploma Thesis: Development of a Compiler-based Valida-
tion Infrastructure Supporting Incremental Performance
Model Analysis

03/2006 to 04/2006 Institute for Computing Systems Architecture,
University of Edinburgh, UK
Study Thesis: Analysis of Cache Misses Using SIMICS

Practical Experience
10/2003 to 09/2006 Institute of Analysis, University of Karlsruhe

Administration of Computer Systems and Networks
08/2000 to 06/2001 “Zentrum für soziale Psychiatrie Werra-Meißner”,

Hessisch Lichtenau, Germany
Alternative Civilian Service (in a hospital instead of Military
Service)

232


	Contents
	1 Motivation for Tools targeting Transactional Memory 
	1.1 Transactional Memory for Parallel Programming
	1.2 The Missing Performance with TM
	1.3 Tool Support for Simplifying the Optimization of TM Programs
	1.4 Organization of this Thesis

	2 Fundamentals
	2.1 Transactional Memory Concept and Properties
	2.2 Realization of Transactional Memory
	2.2.1 Software Transactional Memory
	2.2.2 Hardware Transactional Memory
	2.2.3 Hybrid Transactional Memory

	2.3 Memory Model for Transactional Memory

	3 Related Work
	3.1 Compiler Support for TM
	3.2 Information Retrieval in TM Systems
	3.3 Tools for the Optimization of TM Applications
	3.4 FPGAs and Hybrid TM
	3.5 Programming with TM
	3.6 Performance, Energy, and Modeling of TM
	3.7 Adaptive STMs
	3.8 Phase Detection and Prediction
	3.9 Open Questions with the State-of-the-Art

	4 Concept and Overview
	4.1 Concept for the Optimization of TM Applications
	4.2 Components that Implement the Concept
	4.3 Experimental Setup

	5 TM-specific Trace Generation for STM and Hybrid TM Systems
	5.1 Augmenting TinySTM with Trace Generation Facilities
	5.1.1 Minimizing Application Disturbances
	5.1.2 Implication of Lightweight Trace Generation on Offline Analysis
	5.1.3 The Influence of Tracing on the Runtime
	5.1.4 Online Trace Compression
	5.1.5 Impact of Trace Generation on STAMP Benchmarks

	5.2 Event Logging in a Hybrid TM System (TMbox)
	5.2.1 Design of the Event Logging Extensions
	5.2.2 Implementation Details

	5.3 Comparison of SW- and HW-based Monitoring of TM Events
	5.4 Summarizing the Trace Generation

	6 Visualization and Tool Support for TM Applications in Unmanaged Languages
	6.1 A Toolchain for the Optimization Cycle of TM Applications
	6.1.1 Studying the Influence of Transaction Size on the Performance
	6.1.2 Retrieving TM Events and Memory Requests
	6.1.3 Visualization with Paraver

	6.2 Revealing Optimization Potential
	6.2.1 Transaction Size
	6.2.2 Visualization of Pathological TM Cases
	6.2.3 Evaluation of a Transactified PARSEC Benchmark
	6.2.4 Optimization of Hybrid TM with TMbox

	6.3 Conjugate Gradients Solver
	6.3.1 Pipelined Conjugate Gradients Solver
	6.3.2 Comparison of CG and Pipelined CG
	6.3.3 Findings with Normal and Pipelined CG

	6.4 Phase Detection in TM Applications
	6.4.1 Comparison with Related Work
	6.4.2 Design of the TM Phase Detector
	6.4.3 Applying Phase Detection Algorithms to the STAMP Suite
	6.4.4 Discussion of Phase Detection for TM

	6.5 EigenOpt
	6.5.1 Parameters of Eigenbench
	6.5.2 Changes to the TracingTinySTM
	6.5.3 Adjustments to Post-Processing Tools
	6.5.4 Intrusiveness with EigenOpt
	6.5.5 Results with EigenOpt
	6.5.6 Outlook for EigenOpt

	6.6 Conclusions

	7 Compiler Support for TM and Guidance Through Static Information
	7.1 Towards TM for GCC
	7.1.1 Design
	7.1.2 Expansion
	7.1.3 Checkpointing
	7.1.4 Optimizations and Extensions
	7.1.5 Parallelization of Irregular Reductions
	7.1.6 Overinstrumentation with GCC
	7.1.7 Improvements with GCC-4.7
	7.1.8 Concluding Remarks for TM in GCC

	7.2 Selection of the Conflict Detection Granularity in an STM
	7.2.1 Detection of Memory Access Patterns in Transactions
	7.2.2 Evaluation
	7.2.3 Conclusion and Outlook for MAPT


	8 First Experience with BG/Q Performance
	8.1 Demands on Transactional Memory in HPC
	8.2 Comparison with Related Work
	8.3 Experimental Setup with BG/Q
	8.3.1 Overview of BG/Q's TM Hardware
	8.3.2 Application Perspective in BG/Q's TM Software Stack
	8.3.3 The CLOMP-TM Benchmark

	8.4 Characterizing TM Performance using CLOMP-TM
	8.4.1 Synchronization Overhead
	8.4.2 Conflict Probability
	8.4.3 Tuning the BG/Q TM Runtime Environment
	8.4.4 CLOMP-TM with Mixed Scatter Modes
	8.4.5 Using TM in the Context of MPI Applications
	8.4.6 Finding a Competitive Task to Thread Ratio

	8.5 Lessons Learned
	8.6 Application Case Studies
	8.6.1 MCB: A Proxy Application for Monte Carlo Simulations
	8.6.2 Fluidanimate from the PARSEC Suite

	8.7 Summarizing the First Experience with BG/Q

	9 Tool Support for TM on BG/Q
	9.1 Introduction and Motivation for Tools on BG/Q
	9.2 Design of a TM Tool for IBM's Run Time Stack
	9.2.1 A Profiling Tool for TM
	9.2.2 A Tracing Tool for TM
	9.2.3 A Tool for Measuring TM Overheads
	9.2.4 Common Implementation Details for the Tools

	9.3 TM Tools: Experimental Setup and Measurements
	9.3.1 Experimental Setup: BG/Q
	9.3.2 Tool Overhead of the Overhead Tool
	9.3.3 Break Down of TM Overheads
	9.3.4 Influence of Scrub Rate on Application's Behavior
	9.3.5 Implications of the TM Mode on the Microarchitecture
	9.3.6 Long Transactions at Any Cost?

	9.4 Profiling LULESH
	9.5 A Case Study with Vampir Visualizing TM Performance Data
	9.6 State of the Art
	9.7 Conclusion

	10 Conclusion and Future Work
	10.1 Summary and Conclusion
	10.1.1 Information Retrieval for Hybrid TM and STM
	10.1.2 Optimization of TM Applications
	10.1.3 Hybrid TM
	10.1.4 Compilation and Static Information
	10.1.5 HTM of BG/Q from an Application's Perspective
	10.1.6 Tool Support for TM on BG/Q

	10.2 Outlook and Future Work

	Bibliography
	Appendix Curriculum Vitae

