1,049 research outputs found

    An Adaptable Foveating Vision Chip

    Get PDF
    Published versio

    MULTI-ZONE DISPLAY SYSTEM WITH FIXED FOVEAL VIEWING REGION

    Get PDF
    A display system includes a fixed foveated display region and a peripheral display region that is distributed. The fixed foveated region can include any suitable type of display having a relatively high resolution. The fixed foveated region display may, for example, utilize a high-resolution projector and display tile, such as a liquid crystal on silicon (LCOS) display with a diffraction grating, such as a volume Bragg grating (VBG) or surface relief grating (SRG). The fixed foveated display region is located in user’s foveal field-of-view (FOV) when mounted to their head and may additionally be large enough to encompass the foveal FOV within the user’s typical eye motion range (approximately ±20°) before head motion

    Biologically inspired composite image sensor for deep field target tracking

    Get PDF
    The use of nonuniform image sensors in mobile based computer vision applications can be an effective solution when computational burden is problematic. Nonuniform image sensors are still in their infancy and as such have not been fully investigated for their unique qualities nor have they been extensively applied in practice. In this dissertation a system has been developed that can perform vision tasks in both the far field and the near field. In order to accomplish this, a new and novel image sensor system has been developed. Inspired by the biological aspects of the visual systems found in both falcons and primates, a composite multi-camera sensor was constructed. The sensor provides for expandable visual range, excellent depth of field, and produces a single compact output image based on the log-polar retinal-cortical mapping that occurs in primates. This mapping provides for scale and rotational tolerant processing which, in turn, supports the mitigation of perspective distortion found in strict Cartesian based sensor systems. Furthermore, the scale-tolerant representation of objects moving on trajectories parallel to the sensor\u27s optical axis allows for fast acquisition and tracking of objects moving at high rates of speed. In order to investigate how effective this combination would be for object detection and tracking at both near and far field, the system was tuned for the application of vehicle detection and tracking from a moving platform. Finally, it was shown that the capturing of license plate information in an autonomous fashion could easily be accomplished from the extraction of information contained in the mapped log-polar representation space. The novel composite log-polar deep-field image sensor opens new horizons for computer vision. This current work demonstrates features that can benefit applications beyond the high-speed vehicle tracking for drivers assistance and license plate capture. Some of the future applications envisioned include obstacle detection for high-speed trains, computer assisted aircraft landing, and computer assisted spacecraft docking

    Synthetic Foveal Imaging Technology

    Get PDF
    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Adaptive foveated single-pixel imaging with dynamic super-sampling

    Get PDF
    As an alternative to conventional multi-pixel cameras, single-pixel cameras enable images to be recorded using a single detector that measures the correlations between the scene and a set of patterns. However, to fully sample a scene in this way requires at least the same number of correlation measurements as there are pixels in the reconstructed image. Therefore single-pixel imaging systems typically exhibit low frame-rates. To mitigate this, a range of compressive sensing techniques have been developed which rely on a priori knowledge of the scene to reconstruct images from an under-sampled set of measurements. In this work we take a different approach and adopt a strategy inspired by the foveated vision systems found in the animal kingdom - a framework that exploits the spatio-temporal redundancy present in many dynamic scenes. In our single-pixel imaging system a high-resolution foveal region follows motion within the scene, but unlike a simple zoom, every frame delivers new spatial information from across the entire field-of-view. Using this approach we demonstrate a four-fold reduction in the time taken to record the detail of rapidly evolving features, whilst simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This tiered super-sampling technique enables the reconstruction of video streams in which both the resolution and the effective exposure-time spatially vary and adapt dynamically in response to the evolution of the scene. The methods described here can complement existing compressive sensing approaches and may be applied to enhance a variety of computational imagers that rely on sequential correlation measurements.Comment: 13 pages, 5 figure

    Real-Time Anisotropic Diffusion using Space-Variant Vision

    Full text link
    Many computer and robot vision applications require multi-scale image analysis. Classically, this has been accomplished through the use of a linear scale-space, which is constructed by convolution of visual input with Gaussian kernels of varying size (scale). This has been shown to be equivalent to the solution of a linear diffusion equation on an infinite domain, as the Gaussian is the Green's function of such a system (Koenderink, 1984). Recently, much work has been focused on the use of a variable conductance function resulting in anisotropic diffusion described by a nonlinear partial differential equation (PDF). The use of anisotropic diffusion with a conductance coefficient which is a decreasing function of the gradient magnitude has been shown to enhance edges, while decreasing some types of noise (Perona and Malik, 1987). Unfortunately, the solution of the anisotropic diffusion equation requires the numerical integration of a nonlinear PDF which is a costly process when carried out on a fixed mesh such as a typical image. In this paper we show that the complex log transformation, variants of which are universally used in mammalian retino-cortical systems, allows the nonlinear diffusion equation to be integrated at exponentially enhanced rates due to the non-uniform mesh spacing inherent in the log domain. The enhanced integration rates, coupled with the intrinsic compression of the complex log transformation, yields a seed increase of between two and three orders of magnitude, providing a means of performing real-time image enhancement using anisotropic diffusion.Office of Naval Research (N00014-95-I-0409

    Combined object recognition approaches for mobile robotics

    Get PDF
    There are numerous solutions to simple object recognition problems when the machine is operating under strict environmental conditions (such as lighting). Object recognition in real-world environments poses greater difficulty however. Ideally mobile robots will function in real-world environments without the aid of fiduciary identifiers. More robust methods are therefore needed to perform object recognition reliably. A combined approach of multiple techniques improves recognition results. Active vision and peripheral-foveal vision—systems that are designed to improve the information gathered for the purposes of object recognition—are examined. In addition to active vision and peripheral-foveal vision, five object recognition methods that either make use of some form of active vision or could leverage active vision and/or peripheral-foveal vision systems are also investigated: affine-invariant image patches, perceptual organization, 3D morphable models (3DMMs), active viewpoint, and adaptive color segmentation. The current state-of-the-art in these areas of vision research and observations on areas of future research are presented. Examples of state-of-theart methods employed in other vision applications that have not been used for object recognition are also mentioned. Lastly, the future direction of the research field is hypothesized
    • 

    corecore