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Abstract

There are numerous solutions to simple object n@tiog problems when
the machine is operating under strict environmetaaditions (such as lighting).
Object recognition in real-world environments pogesater difficulty however.
Ideally mobile robots will function in real-worlchgironments without the aid of
fiduciary identifiers. More robust methods are #fere needed to perform object
recognition reliably. A combined approach of mu#ipechniques improves
recognition results.

Active vision and peripheral-foveal vision—systetat are designed to
improve the information gathered for the purpodesbgect recognition—are
examined. In addition to active vision and perigitéoveal vision, five object
recognition methods that either make use of somre & active vision or could
leverage active vision and/or peripheral-fovealorissystems are also
investigated: affine-invariant image patches, petie& organization, 3D
morphable models (3DMMs), active viewpoint, and@tl@ color segmentation.

The current state-of-the-art in these areas obwisesearch and
observations on areas of future research are pgezsdfxamples of state-of-the-
art methods employed in other vision applicatidreg have not been used for
object recognition are also mentioned. Lastly,fthiare direction of the research
field is hypothesized.

Keywords: computer vision, object recognition, mobile rabst active vision,
peripheral-foveal vision.
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1: Introduction

Object recognition, especially for mobile robotissa challenging area of computer
vision. In the case of machine vision and indubktohotics [1] there are numerous solutions to
simple object recognition problems when the machsraperating under strict conditions of
lighting, orientation, occlusion and distractorecBuse mobile robots are typically expected to
operate in the real-world and not a sterilized snent, they seldom have such luxuries and
thus more robust solutions are needed. A combipptbach of multiple techniques can be
employed to improve results [2]-[5] [7] [9].

1.1: Overview of Principle Methods of Discussion

This paper is primarily concerned with active erssystems and peripheral-foveal vision
systems. Briefly, these two types of vision systamesdesigned to improve the information
gathered for the purposes of object recognitiof$2]In addition to active vision and
peripheral-foveal vision, five object recognitiorethods that either make use of some form of
active vision or could leverage active vision amgleripheral-foveal vision systems are also
investigated: affine-invariant image patches [@;geptual organization [7], 3D morphable
models (3DMMSs) [8], active viewpoint [9], and ada&ptcolor segmentation [10].

1.2: Organization of this Paper

The rest of this paper is organized as followstie@ discusses each method in detail,
Section 3 reports the experimental results of tmsthods, Section 4 discusses the key points—
i.e. advantages and disadvantages—of the presesgedrch, Section 5 presents areas of
inspiration and future work in these areas of negeand lastly Section 6 is concluding remarks.
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2: Methods

Section 2 describes the principal methods of disicun, the current state-of-the-art in
those areas and specific algorithms. Each of therssubsections describes one method, though
due to the nature of the research in this fieldetli® a degree of overlap and intermingling
between those methods.

2.1: Active Vision

An active vision (aka active computer vision) systinvestigates its environment by
moving the camera system in order to gain moremé&ion, in this case with a robot-mounted
camera. For example, when viewing a point from ipldtangles, features in the background
tend to move or change more drastically than featur the foreground do. Rather than only
passively examining images of a scene in an attéomeicognize objects, active vision can be
employed in addition to other object recognitiontimeels. Doing so enables the system to more
readily separate objects in the foreground fronectsjin the background [2], and circumvent
occlusion [2] [3].

Kootstra, Ypma, and de Boer [2] have implemented@ive vision system using Lowe’s
Scale-Invariant Feature Transform (SIFT) keypoartd an optimization approach to next
viewpoint selection. To reduce the computationahplexity of SIFT they have used an
alternative tracking system based on the MarslampBo-Nehmzow Growing When Required
(GWR) neural network. The computational compleistyeduced thanks to the GWR network’s
fewer necessary keypoints for successful recognifitie tradeoff is reduced effectiveness as the
network grows—an unavoidable fact as the netwotlsked with recognizing multiple objects.

Farshidi, Sirouspour, and Kirubarajan [3] have expented with an active-vision
system with the intent of maximizing the objectaguition success rate while keeping the
necessary number of images collected to a minimsingua Bayesian probabilistic approach.
The probabilistic framework models camera noise|usions, and errors in the camera and
object positioning systems. The available informmis used to determine the next position of
the cameras so that the most information aboubiifect can be obtained. Operating under the
assumption that the appearance of objects to lognered will have a high degree of similarity
from different viewpoints, Farshidi, Sirouspour afdubarajan implemented an appearance-
based parametric eigenspace method. Training imegesonverted to vectors in a matrix; a
small number of eigen-images corresponding to itjedst eigenvalues are saved.

One of they key areas of study with active visi®ithie maximization of information
gathered with the minimum number of images. No#t ith Kootstra, Ypma, and de Boer’s
implementation above [2], 36 images are capturethi®initial information step, and then new
viewpoints are selected to gather additional infation. Farshidi, Sirouspour, and Kirubarajan
[3] have published preliminary results showing tlagitive vision system has a high object
recognition and pose estimation success rate (bftgrer than 95%) using no more than seven
pairs of images.
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A number of other researchers included later énglper have made use of active vision
to some extent in conjunction with their principasearch. For example, in their experiments
with perceptual organization, Shang, Ma and Dagjviploy an active vision step in their
algorithm to center the target object in the carsdrame of view. Forssén et al. [5] employ an
active vision step for the purposes of viewpoirthgang in order to gain novel views of objects.
For more information refer to the following sectsorelated to peripheral-foveal vision (section
2.2, pp. 6-8) and perceptual organization (se@idnpg. 10).

2.1.1: Kootstra-Ypma-de Boer Algorithm

Below is Kootstra, Ypma, and de Boer’s [2] actwsion and keypoint clustering
algorithm. The algorithm is designed to simplifgognition tasks by: separating the object from
its background using what they call a, “what-motagether-belongs-together” approach;
detecting stable keypoints; and novel viewpointemtion.

1. Active vision
a. Search for stable keypoints:
i. Circle the object capturing images 10° apart
ii. Match the keypoint to its nearest neighbor in tji@eent image:
iii. For each keypoint in the first image:
For each keypoint in the second image:
Compare the appearances of the keypoints to miagch t
iv. For each keypoint pair:
If the Euclidian distance between the paired keypi@ature vectors is large, the
keypoints are unstable
b. Segment background keypoints from foreground keysoi
For each keypoint pair:
If the horizontal keypoint disparity | %| is less than the horizontal threshold
and the vertical keypoint disparity Jy Y| is less than the vertical threshold the
keypoints are part of the foreground
c. Determine confidence of object recognition:
For all 36 poses (images):
For every stable foreground keypoint in the image:
For every known object:
If the visual description of the keypoint is assted with the object, increase
the confidence of the keypoint/object/pose group
2. Next viewpoint selection
Determine the pose (angle) that maximizes the égdemnfidence:
Optimize the expected confidence function overkiinygoint/object/pose group
3. Keypoint clustering
(Modified Marsland-Shapiro-Nehmzow GWR neural netyo
Cluster similar keypoints:
For each keypoint:
a. Input the keypoint/object/pose group to the network
b. Select the best matching (winning) node
c. Calculate the activity of the winning node
d. Calculate the firing counter of the winning node
e. If the keypoint is sufficiently different from theinning node and the firing counter
is below a threshold, add a new node to the network
If the keypoint is sufficiently similar to the wiimg node, cluster it with that node

B
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2.1.2: Farshidi-Sirouspour-Kirubarajan Algorithm

Below is Farshidi, Sirouspour, and Kirubarajan’sd8tive multi-camera algorithm. The
algorithm is designed to minimize the number ofgesmcaptured while maximizing the
information about the object. Images are convedeglgenspaces, and then the eigenvectors that
correspond to the largest eigenvalues are collentddused to represent the object. The key
contributions of this algorithm are the formulatioha multi-camera active recognition system
and the modeling of the occlusion level in the Bage network.

1. Model each state in the Bayesian network

Estimate pdf of unknown state n based on knownrghtens and sensor parameters and the

estimated pdf of state n — 1.

For each object class:
For each pose:
For each occlusion level in camera 1:
For each occlusion level in camera 2:
Accumulate probability density of state n

2. Select next sensor location

Set the position of the next state to be the argaimiethe maximum mutual information (the

state that minimizes information uncertainty andgyuity)

2.2: Peripheral-Foveal Vision

The human retina can be divided into two compaghe periphery which consists
mainly of light-sensitive photoreceptor cells (akds), and the fovea which consists mainly of
color-sensitive photoreceptor cells (aka conesg déntral fovea is primarily responsible for
detailed vision, while the surrounding peripherytttd retina is primarily responsible for
detecting motion and observing the non-centratifa#lview [4]. The concept of peripheral-
foveal vision is to emulate these aspects of hunsan: a low-resolution wide-angle image is
first used to detect points of interest in the s¢c@md then those points are further investigated
using conventional vision techniques using a hggslution image. This technique can be
implemented using either a low-resolution wide angmera paired with a high-resolution pan-
tilt-zoom camera [4] [5] or using multiple resolutis of the same image captured by a single
high-resolution wide angle camera [4].

Gould et al.’s [4] system uses what is called &stMl Attention Model”. In short, the low
resolution wide-angle camera is used to selectifeatand generate an “attentive interest map”.
Based on the interest map the high resolution camesentered on an area to either search for
unidentified objects in the scene or to confirm plsitions of objects in the scene that have been
tracked over time. The interest map is calculatethbeling each pixel with a level of interest,
the level of interest being a combination of thelability that the pixel belongs to an object that
the system is trained to recognize and that thgicoks unknown. Each pixel is modeled over
time using a Dynamic Bayesian Network (DBN). Deteing the exact probability for each
pixel in the DBN is intractable, so the probabilyinstead approximated using Assumed
Density Filtering (aka the Boyen-Koller algorithnStereo calibration is used to transfer objects
of interest in the foveal camera’s coordinate spgadbe peripheral camera’s coordinate space so
that they may be tracked over time. Objects akéaa over time by the low-resolution camera
using a Kalman filter.
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Forssén et al. [5] attempts to solve the lost{muohd problem, i.e. locate an object or set
of objects out of a larger set of objects. To ds,tthey have implemented a peripheral-foveal
system: the low-resolution peripheral cameras sitamrea for regions of interest that may
correspond to objects in the world; those intengstegions are then examined with the high-
resolution foveal camera. The difference betweengyistem and previous work, including the
paper on peripheral-foveal vision by Gould et 4].dbove, is that those systems track previously
recognized objects, and depend on reliable redognin the peripheral images. The robot maps
its environment using a fast simultaneous locabmeand mapping (SLAM) algorithm,
examining objects as it does so and noting theilmts of those objects so that they may be re-
examined from alternate angles later (i.e. thermtad visual search). The behavior of the robot
can be summarized as three stages: 1) exploratiapding unknown areas with a range sensor),
2) coverage (examining the mapped environment thighperipheral cameras), and 3) viewpoint
selection (acquiring additional images of interggtbjects from varying angles with the foveal
camera).

It should be noted that Forssén et al.’s approafht[lizes elements of active vision,
specifically the multiple viewpoint collection s&gf gaze planning. For more information, refer
to the previous section (active vision, section B 4-6) and the overview of Forssén et al.’s
algorithm below (section 2.2.2, pg. 8).

2.2.1: Gould et al.’s Algorithm

Below is Gould et al.’s [4] peripheral-foveal visialgorithm. The algorithm is designed
to effectively detect areas of interest in streagmiideo (i.e. the peripheral view), identify
objects in the foveal view, and detected objects eime in the peripheral view robustly without
dropped frames.

1. Visual attention
Periodically decide which action to perform:
a. Obiject position confirmation:
Fixate the fovea on a predicted location of an @l confirm its presence and
update its position estimate
b. Object search:
Fixate the fovea on a new area and run the obiassitier
2. Object tracking
For each image frame:
For each tracked object:
a. Compute object velocity
(Lucas-Kanade sparse optical flow algorithm)
b. Kalman filter motion update using position and witipestimates
c. Kalman filter observation update
3. Generate interest model
Estimate probability that unknown regions contaiknown, identifiable (interesting) objects:
For each pixel in the peripheral:
Determine probability pixel belongs to an intenegtobject:
a. Model the pixel features (used by the object cfas¥in a Dynamic Bayesian
Network (DBN)
b. Estimate probability that pixel is interestinmknown and identifiable)
(Boyen-Koller Assumed Density Filtering algorithm)
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2.2.2: Forssén et al.’s Algorithm

Below is Forssén et al.’s [5] informed visual séaatgorithm. The algorithm is designed
to solve the lost-and-found problem (finding acfebbjects that are known to be present in the
environment). The system combines active vision@argpheral-foveal vision techniques to
more effectively identify objects using a bag-o#&tigres approach. The peripheral-foveal system
detects and identifies objects while the activeonisystem plans paths to collect novel
information about as many detected objects in tivir@enment as possible rather than exploring
each object in turn.

1. Initial Exploration
Produce geometric map of nearby traversable regions
(Yamauchi-Schultz-Adams Frontier Map-building ar@talization algorithm)
2. Visual Attention
Select potential objects:
(Hou-Zhang Spectral Risidual Saliency Detector)
a. Compute saliency on intensity, red-green, and yebtue channels
b. Combine saliency maps
c. Segment regions in the combined map
(Maximally Stable Extremal Region Detector)
3. Gaze Planning
a. Multiple Viewpoint Collection
Select a goal location which will provide new infation for the most objects:
For each object:
i. Selectthe best location for viewing the object
ii. If the location is reachable by the robot and tbgepto be collected will be new
Vote for that location
b. Center a potential object in the foveal camera
(Forssén Saccadic Gaze Control Algorithm)
4. Continuous Geometric Mapping and Navigation
(Montemerlo et al. FastSLAM 2.0 algorithm)
(Borenstein et al. Vector Field Histogram algori)hm
5. Object Recognition
a. Bag-of-features method
i. For each feature in the observed image
For each feature in the training images
Match features using nearest neighbor approach
ii. For all matched features:
» Compute ratio of distances to foreground and baozkupt
» If the ratio is high, discard the feature
* Compute bag-of-features score
b. Geometric matching
i. For all matched features in the observed image
For all matched features in the training image
Compute similarity transform
ii. Compute goodness-of-fit of the similarity transform
iii. If the fit is good, the observed image containsevin object

Page 8 of 20



2.3: Affine-Invariant Image Patches

Affine invariants (i.e. a viewpoint that does rbainge regardless of the orientation of an
object) are, generally speaking, only effectivedanhtifying planar objects and simple shapes and
are not effective at recognizing 3D objects [6]tHRa than using invariants to describe an entire
3D object, Rothganger et al. [6] propose usingilaves to describe small planar patches on the
surface of 3D objects. These invariant image patcae then be used to index objects for the
purpose of recognition. The object is representethe appearance of the patches, the invariants
of the patches, and the spatial relationship optitehes.

2.3.1: Rothganger et al.’s algorithm:

Below is Rothganger et al.’s [6] affine-invariamtage patch indexing algorithm. The
algorithm is designed to represent 3D objects set af small, affine-invariant patches and the
spatial relationship of those patches.

1. Create indexing patches:
For each view (image) of the object:
a. Determine points of interest (POI):
(Mikolajczyk-Schmid affine-invariant region detecto
For each image patch:
i. Normalize the shape of the patch
ii. Determine the characteristic scale of the patchightness pattern
iii. Determine the patch’s location
iv. Eliminate rotational ambiguity
b. Match points of interest from the current imagehvgbints from other images:
For each resultant POI (normalized patch and afferesformation matrix):
For each adjacent image:
I. Select the N most similar POIs based on appea@mteaffine transform
ii. Find groups of consistent matches:
For each match:
1. Find the match that minimizes the inconsistencthefgroup
2. If the minimized match passes a threshold testjtaddhe group
iii. Discard all groups that are too small
2. Construct the model:
a. Split the data into overlapping blocks of multipleages
b. For all patches in all images of the same block
i. Use the matching strategy from 1b
c. For all points common to overlapping blocks
i. Register the reconstructions
ii. Initialize variable estimates
d. Refine variable estimates
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2.4: Perceptual Organization

According to Shang, Ma, and Dai, [7] perceptuglamization—the description of objects
based upon Gestalt principles such as symmetrgiamthrity—is a powerful tool for object
recognition. Shang, Ma, and Dai have developedeepéual organization recognition system
based on Bayesian networks. The system describasr@&ural objects, like doors and
windows and other objects that are common in oficeironments, in terms of lines and their
spatial relationship to each other. A door for eghatan be modeled in a Bayesian network as
two vertical line segments connected by a horiddima segment at the top. Other networks can
model windows, cubicles, etc. The extracted featare handed off to each Bayesian network
and each network is executed in parallel. To test imethods, Shang, Ma, and Dai implemented
a cubicle-recognition network and a door-recognitietwork.

2.4.1: Shang-Ma-Dai Algorithm:

Below is Shang, Ma, and Dai’s [7] perceptual orgation algorithm. The algorithm
recognizes objects by modeling in a Bayesian nétwach object to be recognized by line
segments and the spatial relationship of thoseskggnents. An active vision step is employed to
center the object of interest in the camera’s fadlgiew.

1. Low-level feature extraction:
a. Search for straight lines
b. Remove gaps in lines:
i. Search for breaks in lines
ii. If aline parallel to the gap exists and the lerigtless than a threshold value, connect
the broken line
2. Parallel Bayesian network execution:
a. Robot movement step:
I. Determine distance to observed object using raegscss
ii. If distance from observed object to robot is ndtaen min. and max., move the
robot
iii. If features are extracted that approach the imagedbs, adjust the camera
viewing angle
iv. If the camera viewing angle has been adjustedetartiiximum, move the robot
forward or back
b. For each network:
i. For each evidence node in the network:
Determine if the evidence node is true or falseetas the extracted low-
level features
ii. Based on the known evidence, compute the conditpmoaability that the
extracted features describe the polyhedron desthipehe network
ii. If the probability is greater than a threshold, ploéyhedron described by the
network has been detected

Page 10 of 20



2.5: 3D Morphable Models

According to Romdhani and Vetter [8], 3D morphatniedels (3DMM) are considered to
be the state of the art in object recognition,ipaldrly face recognition. 3DMMs are highly
tolerant to combined variations in pose and illuation in the image and require only a few
feature points for recognition. Unfortunately, wittost implementations, these feature points
need to be selected by hand with each image thatis analyzed and there is no known 3DMM
implementation that is fully automated. Romdhard ¥etter have developed an automated
system for the selection of feature points for@gaition system based upon 3D Morphable
Face Models (3BDMFMs).

Romdhani and Vetter’s [8] feature point modelisapoint invariant and shares some
similarities to Rothganger et al.’s viewpoint inngaat image patch method above. The key
difference between the two methods is that RomdaadiVetter have constructed a generic
model specifically for faces and a single imagesied to fit an object to the model as best as
possible—the parameters used to fit the specifagieno the generic model are used for
recognition purposes, whereas Rothganger et aéthod [6] captures multiple views of an
object and constructs a model for identifying thatticular object.

2.5.1: Romdhani-Vetter Algorithm:

Below is Romdhani and Vetter’s [8] feature poielestion algorithm. The algorithm is
designed to automatically detect key feature pdorts 3D object model based on 3DMFMs.

1. SIFT point detection:
(Lowe’s SIFT Detector)
a. Gather a set of key point locations along with their scale eadtation from the image
b. For each key point:
Construct a normalized image patch around the key point
2. Appearance model rejection:
For each key point:
For each feature point set
a. Calculate the appearance likelihood ratio
b. If the ratio is not small, add the key point to the featwiatset
c. Keep only the top N key points
3. Projection constraint rejection:
a. For each reference point:
For each feature point set:
i. Construct the hypothetical 3D to 2D projection matrix
ii. If the matrix does not conform to the geometric constraiajsct it
b. For each valid matrix:
Extract the projection parameters
4. Maximum likelihood estimate:
a. Minimize the log likelihood ratio:
For each reference point:
For each (remaining) feature point set:
Compute the likelihood ratio
b. If the likelihood ratio is large, no face is detected in thegen
5. Parameter refinement:
If a face was detected:
Maximize the maximum likelihood ratio:
(Gauss-Newton Algorithm similar to Fischer-Bolles RANSAC
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2.6: Active Viewpoint

Yabuta, Mizumoto, and Arii [9] propose a novel eggzh to efficient shape recognition
using a combination of a stereo camera pair aralraoplasers that they dub “active viewpoint”.
When the cameras fix on an object the lasers ieteet the point of focus. This point of
intersection is used by the system to center banthecas’ viewpoints on the same target,
eliminating the need the need for stereo matchamgprtation so that triangulation and depth
estimation can be computed directly. The systeswit®d for target objects that have a few
distinct feature points along the projected lineafrespondence (such as polyhedrons), so the
authors have proved their system by applying retmgnizing cubes in various poses.

To recognize cubes, edge data is extracted frormthge and used for Hough
transformations. Regions surrounded by four sttdighs are isolated to compute quadrangles
(rhombus, rectangle, square, etc.) and the asakas 0f those quadrangles. These quadrangles
and their aspect ratios in both the left and rigidges captured by the stereo pair are used to
compute the spatial coordinates of the object.

2.6.1: Yabuta-Mizumoto-Arii Algorithm:

Below is Yabuta, Mizumoto, and Arii’s [9] activeéewpoint algorithm. The algorithm is
designed to reduce the computational complexist@feo correspondence for the purposes of
object recognition. Using a pair of lasers in cogjiion with the cameras, lines of
correspondence are projected and searched aldrey than searching the entire image. The
system is demonstrated by estimating the poseiaaatcubes.

1. Determine camera viewpoint:
a. The point targeted by the lasers is the fixatiomipo
b. Center the projected point in both the left antitrighages
2. Calculate distance from stereo camera pair toiéirgtoint:
a. Determine the correspondence from candidate featlomg the right epipolar line
b. Eliminate false features using the active viewpoint
c. Extract the feature point from the left image
d. Triangulate
3. Extract object surfaces:
(Color-segment the image)
4. Detect edges
5. Detect straight lines:
(Hough transform)
Identify quadrangles
Construct right-left image correspondence
Calculate object’s spatial coordinates

© N
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2.7: Adaptive Color Segmentaiton

Color-based object recognition is a popular metloodast object recognition in several
applications of mobile robotics, particularly rotsmiccer [10]. Objects of interest are uniquely
color-coded and the color-coding scheme is mad&vikrto the robot. This type of object
recognition is highly susceptible to variationdighting, particularly when outdoors however.
Browning and Veloso [10] have developed a novaltsmh to the variable lighting problem that
leverages the fact that colors change in a contiswgay under variable lighting conditions. In
other words, the color red will always appear talshade of red regardless of the lighting
conditions. By using an adaptive threshold, Browrand Veloso are able to associate many
shades of a color to one class of object(s).

2.7.1: Browning-Veloso Algorithm:

Below is Browning and Veloso’s [8] adaptive cobkmgmentation algorithm. The
algorithm is designed to robustly segment the intageolor regardless of lighting and shading
conditions. This is accomplished by using an adagtireshold technique where the color class
threshold that fully encompasses the color clas®@iam is used for segmentation.

1. Segment the image:
For each pixel in the image:
For each object color class:
Assign pixel to the color class it is most liketylielong to
2. Build histograms:
(Fu-Gonzales-Lee Color Histogram Algorithm)
3. Adapt thresholds:
For each object color class:
a. Convolve the histogram with a zero-mean Gaussiameke
b. Calculate the stationary points of the convolvedddgram
c. Label each stationary point as inflection, peakraugh
d. Set the target threshold to the argument of themmam trough (the trough that most
fully captures the peak and its sides)
e. If the target threshold is greater than a fixediminm value (determined priori), move
the actual threshold partway towards the targetstiold
4. Find objects:
a. Extract regions of similarly labeled pixels usirgmponent analysis:
(CMVision Length Encoding and Conglomeration Alglonn)
b. Object Recognition:
(Lenser-Bruce-Veloso Object Recognition Algorithm)
For each region:

I.  Eliminate unrecognizable regions based on functnarea, bounding box
dimensions, bounding box density, and expectedasidearea based its location
in the image or relation to neighboring regions

ii. Model each region with a Gaussian uncertainty m@aebn and variance
determinedh priori)

iii. Determine likelihood that region is one of possiblterest
iv. Eliminate regions of low likelihood
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3: Experimental Results
Sections 3.1 and 3.2 below briefly summarize tteamental results of the methods

outlined in this paper. Results in each table agamized by principal method of discussion, then

by author.

3.1: Summary of Experimental Results

Table 1 below summarizes the recognition rate lraca precision (when available) of
the methods outlined in this paper. Table 1 isimeinded as basis for comparison between
algorithms or methods; it is merely a summary gdegimental results. Every paper uses

different data sets for testing and presents tiesults in different ways. Even when results are
presented using the same metrics the fact thardiif test data and hardware was used between

experiments makes direct comparison difficult.

Table 1: Summary of Experimental Results

Veloso

Method Authors Recognition Rate Recall Precision
Kootstra et al. 90% Not specified Not specified
Active Vision —
Farsh|d|: Swouspour, 96% Not specified Not specified
and Kirubarajan
) Gould et al. Not specified 62% 83%
Peripheral-Foveal
Vision N N
Forssén et al. 75% Not specified Not specified
Affine-Invariant Rothganger et al Not specified Not specified Necsfied
Image Patches gang ' P P
Perceptual e . .
Organization Shang, Ma, and Da| Not specified Not specified dfecified
3DMMs Romdhani and 92% Not specified Not specified
Vetter
Active Viewpoint Yabu;[;, dMA'filiJmOto’ Not specified Not specified Not specified
Color Segmentatior Browning and Not specified Not specified Not specified
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3.2: Comparison of Methods
Table 2 below summarizes the key features of xpermental results for each of the

methods outlined in this paper. The informationvoded is meant to give insight into the

relevance of the data provided in Table 1 and kperhms outlined in Section 2 above.

Table 2: Comparison of Key Features

Method

Authors

Key Features of the Experimental Reglts

Active Vision

Kootstra et al.

Performance diminishes as the obigmbase increases.

Farshidi, Sirouspour,
and Kirubarajan

Experiments are conducted with “perfect knowledgej. perfect
camera zoom levels are known a priori for every@anposition.

Peripheral-Foveal
Vision

Gould et al.

Training sets consist of 200-500 positive examples 10,000
negative examples.

Forssén et al.

System tested using 4 uniformly-spaced trainingg@seof each
object to be recognized.

Affine-Invariant
Image Patches

Rothganger et al.

Reprojection error is consistently small (i.e. rguiaing the model
that corresponds to the object of interest andimpdathe model in
the correct location and pose), even with largghiesolution
images.

Perceptual
Organization

Shang, Ma, and Da|

Recognition results are consistently reliable relgems of robot
position, object size/shape, occlusion and distraatommonly
found in an office environment.

3DMMs

Romdhani and
Vetter

Training set consisted of 871 front and side imdgms the
FERET image database. Experiments were conducted as
subset of the CMU-PIE image database consistirof
individuals.

Active Viewpoint

Yabuta, Mizumoto,
and Arii

Experiments were conducted on cubes. Each visige 6f the
cube had a unique color (white/yellow/red) to aidhe quadrangle
detection step.

Color Segmentatior

Browning and
Veloso

Image segmentation is reliable under varying lightaind shade
conditions in the image, provided that the colakiap tables are
calibrated correctly. E.g. results on a cloudy degy/similar to the

results on a sunny day.
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4: Discussion

As a follow-up to section 3 above, Table 3 belalines the key advantages and
disadvantages of the presented research. In particietails that might not be apparent from
sections 2-3 above or that are also noteworthydeug not included in those sections are

outlined.

Table 3: Summary of Key Advantages and Disadvastage

Method Authors Advantages Disadvantages
Effectively segments the
foreground object from Performs worse than standard
background distractors. SIFT approaches when using

Kootstra et al. Performs better than standard more keypoints. The GWR

SIFT approaches when using network has scalability issues,

Active Vision fewer keypoints.
Farshidi MlnlmleZ Zggﬁgdog?ages ® Has not been tested in the “real
Sirouspour, and recognition/pose estimation. V\:Ztgje:[(l.-rerﬁi?z:ja:)net?izlSclj';\Cr:eE:Z
Kirubarajan Functions effectively when P b
zoom must be relaxed.

occlusion is present.

Recognition is not possible
when objects are either too
small to be tracked by the

Attention system yields
precision and recall on par wit

=

Gould et al. linear scan techniques and is | .0 o0 o 100 large
. fast enough for real-time video peripher i 9¢
Peripheral-Foveal . to be viewed entirely by the
. without dropped frames.
Vision foveal camera.

Does not fully exploit active

vision potential, e.g. vertical
view planning like with

Farshidi et al.’s [3] system.
Does not extend to the

i . Capable of generating a . .

Affine-Invariant : S 4 perspective case (i.e. when the
Rothganger et al. | viewpoint-invariant model for ; )

camera-object distance changes

Image Patches . )
virtually any 3D object. more than slightly).

Combines a peripheral-fovea
Forssén et al. vision system with an active
vision system.

Perceptual Robust to changes in scale,| A Bayesian network must be
o >ptu Shang, Ma, and Da| color, lighting conditions, designed by hand for each
rganization : . ) .
distractors and occlusion. object to be recognized.

: . . 4 Algorithm is specific to shape
Romdhani and Has a high recognition succegs models such as 3DMMs and

3DMMs is Vi int-i i
Vetter rate and is viewpoint-invariant, 3DMFMes.

D

Efficient and effective when th
Active Viewpoint Yabuta, Miz_l_Jmoto, target object has a fe\_/v distin_ct Has not been proven on

and Arii features along the projected line  complicated 3D objects.
of correspondence

. Browning and Fast. (Mean < 9ms, standard  Objects of interest must be
Color Segmentatior o .
Veloso deviation < 1ms.) uniquely color-coded.
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5: Inspiration and Direction of Future Research

The success of an active vision algorithm liedsrability to initially identify an object of
interest so that the object of interest can bearpl Likewise, the success of a peripheral-foveal
algorithm is in its ability to effectively identifgreas of interest for detailed study. It is clisat
these two vision systems complement each othexr @gdent by their joint usage in systems
such as [4] and [5]. Typically a single low-resadat wide-angle camera is employed for the
peripheral view [4] [5], thougRorssén et a[5] experimented with a stereo camera pair as the
peripheral vision system. These researchers haveeaotrated on vision using conventional
camera systems and recognition using conventideatification techniques.

5.1: Areas of Exploration

Sections 5.1.1—5.1.4 below describe areas of relsé¢laat either have not yet been
explored with respect to active vision and/or peenal-foveal vision, or need to be explored in
greater depth.

5.1.1: Increase the Field-of-View

For the purposes of object detection and traclkantgrrow-angle camera can be
detrimental; hence wide-angle cameras are pref@bietiowever, a conventional wide-angle
camera does not leverage the full potential of suglsion system. An omni-directional
peripheral camera system would enable a roboatk nd/or detect objects of interest
regardless of their relative position. This coudddzcomplished by using several cameras
positioned around the robot with panoramic stitghon by using a catadioptric camera system.

Catadioptric camera systems using vertically-alkighgperboloidal mirrors are able to
generate panoramic or stereo panoramic imagesaeddeen employed with success for single-
camera simultaneous localization and mapping [12].[The omnidirectional vision system was
superior to conventional cameras for feature detecteature tracking and outlier rejection in
cases where moving objects (i.e. people) part@dbtuded the scene and where areas of the
environment were featureless, but it does not nugkeof active vision or peripheral-foveal [13].
To date we know of no application of such a systemctive vision or peripheral-foveal vision
techniques.

5.1.2: Increase the Number of Perspectives

As was mentioned previously, Forssén et al. erpanted with a peripheral-foveal
system that used a binocular peripheral view. dtitegen long been established that the benefits
outweigh the costs of trinocular systems over theiocular counterparts, namely reduced
disparity errors compared to increased computdtiexy@ense [14]. A trinocular system could
likewise be employed for the peripheral view, dri@ocular system could be employed for the
foveal view of a peripheral-foveal system. The ofa binocular or trinocular foveal camera
system is particularly intriguing as depth-basesbgaition techniques could be combined with
the peripheral-foveal system. This approach coelfubther generalized to polynocular (n-
camera) peripheral-foveal systems.

5.1.3: Alternative Interest Detection Techniques

Current interest detection techniques attemptabatilistically segment areas of the
image pixel-by-pixel [4]. This process could po$gsite both simplified and enhanced by

Page 17 of 20



utilizing other image segmenting techniques. Fa@negle, Song and Fang [11] have developed a
genetic programming (GP) algorithm that detectsingwbjects in video streams. Segmenting
an image by motion would be useful for any mohdleat operating in real-world environments.
By segmenting the image in such a way an interegt ofl positive and negative interests could
be generated; since most recognition systems a@owed with inanimate objects, e.qg. [2]-[5],
areas of movement would have a negative interese wtill areas would have a positive interest.
Similar schemes could likewise be implemented inaslyic environments where objects of
interest could be in motion or at rest.

5.1.4: Alternative Identification Techniques

Each of the five methods in sections 2.3 through(@p. 9-13) were selected because of
their potential integration with active vision, areral-foveal vision or both. For example, by
modeling an object by the appearance, spatialioakttip and invariants of image patches taken
from a sequence of training images, Rothgangel’sf@] affine-invariant image patch
modeling method seems to lend itself to activeovigystems that are driven to seek out novel
viewpoints of target objects. At first the limitai that Rothganger et al.’s method does not
generalize to the perspective case would seemit@dgibid for a mobile robot platform, making it
unsuitable for a mobile robotic application. Howevke authors suggest that this limitation
could be remedied by using structure from motidaMpor other pose/motion techniques. Each
of the above methods could likewise be applied Withuse of imagination and a combination of
computer vision approaches.

5.2: The Future

Often times, active vision and peripheral-fowaalon go hand-in-hand (e.g. [5]). In the
future these methods will likely become furthenened, resulting in highly-integrated and
sophisticated vision systems. The hardware (ix@eca systems) will likely remain varied and
(at times) domain-specific, but we can expect ®reere novel and unconventional camera
systems (e.g. catadioptrics) employed in the future

The fact that recognition systems strive for ttb6le picture”™—negotiating around
occlusion and selecting appropriate zoom leventmompass the object of interest in the
camera’s field of view—we can also likely expecjeab exploration algorithms in the future to
explore their environments in even greater defaitive camera behavior similar to systems by
Farshidi, Sirouspour, and Kirubarajan [3] and Yabiizumoto, and Arii [9] will become more
sophisticated in their ability to select the optimuiewpoint by scrutinizing the scene.
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6: Concluding Remarks

Object recognition in real-world environments ishallenging research field. In the case
of mobile robotics, the robot’s mobility is a vahla tool to be leveraged. Rather than passively
examining images to perform perceptual tasks (#gect detection, tracking, identification,
pose estimation, etc.), the robot’s ability to la@sed on current knowledge can not only simplify
the task but improve the quality of informationlecoted for use in that task.

Active vision and peripheral-foveal vision have haeccessfully used to improve object
recognition, though the demonstrated robustnesseugnition rate is still far from optimum.
The use of scale invariant feature points, pamidylSIFT, is commonly used in these systems
but research into viewpoint invariant feature pgistitow promise for future implementations.
Image segmentation to isolate areas of interass, thkducing computational complexity and
feature mismatching, is commonly employed. New iensggmentation (Browning and Veloso’s
adaptive threshold, and Song and Fang’s deteatdrjesature correspondence techniques
(Yabuta, Mizumoto, and Arii's active vision methamuld be combined with current research
for improved segmentation, reduced computationadptexity and/or reduced feature matching
errors.

New areas of research have been proposed, namely@idirectional camera system for
object detection and tracking used in conjunctidth &ctive vision and/or peripheral-foveal
vision systems; the use of polynocular periphepakl camera systems; and the integration of
approaches surveyed in this paper.

Finally, speculations as to the future trends is #nea of research were presented. The
trend of combining different approaches to gainatieantages of each approach and also
compensate for the disadvantages of those appreadhdikely continue. Algorithms designed
to explore the scene and maximize information éaognition are expected to become more
inquisitive as computation speeds increase and reateehnology improves.

The contributions of this paper are: an overviewhef state-of-the-art in active vision
and peripheral-foveal vision research, five stdtédie-art object recognition techniques and their
potential contributions to object recognition omabile robotic platform, four areas of
exploration and future research, and observationt® current and future trends of the research.
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