811 research outputs found

    Equational Reasonings in Wireless Network Gossip Protocols

    Get PDF
    Gossip protocols have been proposed as a robust and efficient method for disseminating information throughout large-scale networks. In this paper, we propose a compositional analysis technique to study formal probabilistic models of gossip protocols expressed in a simple probabilistic timed process calculus for wireless sensor networks. We equip the calculus with a simulation theory to compare probabilistic protocols that have similar behaviour up to a certain tolerance. The theory is used to prove a number of algebraic laws which revealed to be very effective to estimate the performances of gossip networks, with and without communication collisions, and randomised gossip networks. Our simulation theory is an asymmetric variant of the weak bisimulation metric that maintains most of the properties of the original definition. However, our asymmetric version is particularly suitable to reason on protocols in which the systems under consideration are not approximately equivalent, as in the case of gossip protocols

    Graph-Based methodology for Multi-Scale generation of energy analysis models from IFC

    Get PDF
    Process digitalisation and automation is unstoppable in all industries, including construction. However, its widespread adoption, even for non-experts, demands easy-to-use tools that reduce technical requirements. BIM to BEM (Building Energy Models) workflows are a clear example, where ad-hoc prepared models are needed. This paper describes a methodology, based on graph techniques, to automate it by highly reducing the input BIM requirements found in similar approaches, being applicable to almost any IFC. This is especially relevant in retrofitting, where reality capture tools (e.g., 3D laser scanning, object recognition in drawings) are prone to create geometry clashes and other inconsistencies, posing higher challenges for automation. Another innovation presented is its multi-scale nature, efficiently addressing the surroundings impact in the energy model. The application to selected test cases has been successful and further tests are ongoing, considering a higher variety of BIM models in relation to tools and techniques used and model sizes.The authors would like to express the gratitude to the European Commission by funding the research projects BIM4REN, EPCRECAST and ENSNARE (Grant Agreement No. 820773, 893118 and 958445, respectively), under the Horizon 2020 programme, where the presented work was conducted. This manuscript reflects only the authors’ views, and the Commission is not responsible for any use that may be made of the information it contains

    A survey on 3D CAD model quality assurance and testing

    Get PDF
    [EN] A new taxonomy of issues related to CAD model quality is presented, which distinguishes between explicit and procedural models. For each type of model, morphologic, syntactic, and semantic errors are characterized. The taxonomy was validated successfully when used to classify quality testing tools, which are aimed at detecting and repairing data errors that may affect the simplification, interoperability, and reusability of CAD models. The study shows that low semantic level errors that hamper simplification are reasonably covered in explicit representations, although many CAD quality testers are still unaffordable for Small and Medium Enterprises, both in terms of cost and training time. Interoperability has been reasonably solved by standards like STEP AP 203 and AP214, but model reusability is not feasible in explicit representations. Procedural representations are promising, as interactive modeling editors automatically prevent most morphologic errors derived from unsuitable modeling strategies. Interoperability problems between procedural representations are expected to decrease dramatically with STEP AP242. Higher semantic aspects of quality such as assurance of design intent, however, are hardly supported by current CAD quality testers. (C) 2016 Elsevier Ltd. All rights reserved.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).González-Lluch, C.; Company, P.; Contero, M.; Camba, J.; Plumed, R. (2017). A survey on 3D CAD model quality assurance and testing. Computer-Aided Design. 83:64-79. https://doi.org/10.1016/j.cad.2016.10.003S64798

    Overview of database projects

    Get PDF
    The use of entity and object oriented data modeling techniques for managing Computer Aided Design (CAD) is explored

    Towards an engineering theory of evolution

    Get PDF
    Effective biological engineering requires the acknowledgement of evolution and its consideration during the design process. In this perspective, the authors present the concept of the evotype to reason about and shape the evolutionary potential of natural and engineered biosystems

    Designing and manufacturing assemblies

    Get PDF

    Algorithms for Geometric Optimization and Enrichment in Industrialized Building Construction

    Get PDF
    The burgeoning use of industrialized building construction, coupled with advances in digital technologies, is unlocking new opportunities to improve the status quo of construction projects being over-budget, delayed and having undesirable quality. Yet there are still several objective barriers that need to be overcome in order to fully realize the full potential of these innovations. Analysis of literature and examples from industry reveal the following notable barriers: (1) geometric optimization methods need to be developed for the stricter dimensional requirements in industrialized construction, (2) methods are needed to preserve model semantics during the process of generating an updated as-built model, (3) semantic enrichment methods are required for the end-of-life stage of industrialized buildings, and (4) there is a need to develop pragmatic approaches for algorithms to ensure they achieve required computational efficiency. The common thread across these examples is the need for developing algorithms to optimize and enrich geometric models. To date, a comprehensive approach paired with pragmatic solutions remains elusive. This research fills this gap by presenting a new approach for algorithm development along with pragmatic implementations for the industrialized building construction sector. Computational algorithms are effective for driving the design, analysis, and optimization of geometric models. As such, this thesis develops new computational algorithms for design, fabrication and assembly, onsite construction, and end-of-life stages of industrialized buildings. A common theme throughout this work is the development and comparison of varied algorithmic approaches (i.e., exact vs. approximate solutions) to see which is optimal for a given process. This is implemented in the following ways. First, a probabilistic method is used to simulate the accumulation of dimensional tolerances in order to optimize geometric models during design. Second, a series of exact and approximate algorithms are used to optimize the topology of 2D panelized assemblies to minimize material use during fabrication and assembly. Third, a new approach to automatically update geometric models is developed whereby initial model semantics are preserved during the process of generating an as-built model. Finally, a series of algorithms are developed to semantically enrich geometric models to enable industrialized buildings to be disassembled and reused. The developments made in this research form a rational and pragmatic approach to addressing the existing challenges faced in industrialized building construction. Such developments are shown not only to be effective in improving the status quo in the industry (i.e., improving cost, reducing project duration, and improving quality), but also for facilitating continuous innovation in construction. By way of assessing the potential impact of this work, the proposed algorithms can reduce rework risk during fabrication and assembly (65% rework reduction in the case study for the new tolerance simulation algorithm), reduce waste during manufacturing (11% waste reduction in the case study for the new panel unfolding and nesting algorithms), improve accuracy and automation of as-built model generation (model error reduction from 50.4 mm to 5.7 mm in the case study for the new parametric BIM updating algorithms), reduce lifecycle cost for adapting industrialized buildings (15% reduction in capital costs in the computational building configurator) and reducing lifecycle impacts for reusing structural systems from industrialized buildings (between 54% to 95% reduction in average lifecycle impacts for the approach illustrated in Appendix B). From a computational standpoint, the novelty of the algorithms developed in this research can be described as follows. Complex geometric processes can be codified solely on the innate properties of geometry – that is, by parameterizing geometry and using methods such as combinatorial optimization, topology can be optimized and semantics can be automatically enriched for building assemblies. Employing the use of functional discretization (whereby continuous variable domains are converted into discrete variable domains) is shown to be highly effective for complex geometric optimization approaches. Finally, the algorithms encapsulate and balance the benefits posed by both parametric and non-parametric schemas, resulting in the ability to achieve both high representational accuracy and semantically rich information (which has previously not been achieved or demonstrated). In summary, this thesis makes several key improvements to industrialized building construction. One of the key findings is that rather than pre-emptively determining the best suited algorithm for a given process or problem, it is often more pragmatic to derive both an exact and approximate solution and then decide which is optimal to use for a given process. Generally, most tasks related to optimizing or enriching geometric models is best solved using approximate methods. To this end, this research presents a series of key techniques that can be followed to improve the temporal performance of algorithms. The new approach for developing computational algorithms and the pragmatic demonstrations for geometric optimization and enrichment are expected to bring the industry forward and solve many of the current barriers it faces
    corecore