6,285 research outputs found

    Imaging : making the invisible visible : proceedings of the symposium, 18 May 2000, Technische Universiteit Eindhoven

    Get PDF

    Open electronics for medical devices: State-of-art and unique advantages

    Get PDF
    A wide range of medical devices have significant electronic components. Compared to open-source medical software, open (and open-source) electronic hardware has been less published in peer-reviewed literature. In this review, we explore the developments, significance, and advantages of using open platform electronic hardware for medical devices. Open hardware electronics platforms offer not just shorter development times, reduced costs, and customization; they also offer a key potential advantage which current commercial medical devices lack—seamless data sharing for machine learning and artificial intelligence. We explore how various electronic platforms such as microcontrollers, single board computers, field programmable gate arrays, development boards, and integrated circuits have been used by researchers to design medical devices. Researchers interested in designing low cost, customizable, and innovative medical devices can find references to various easily available electronic components as well as design methodologies to integrate those components for a successful design

    Development and Validation of a Three-Dimensional Optical Imaging System for Chest Wall Deformity Measurement

    Get PDF
    Congenital chest wall deformities (CWD) are malformations of the thoracic cage that become more pronounced during early adolescence. Pectus excavatum (PE) is the most common CWD, characterized by an inward depression of the sternum and adjacent costal cartilage. A cross-sectional computed tomography (CT) image is mainly used to calculate the chest thoracic indices. Physicians use the indices to quantify PE deformity, prescribe surgical or non-surgical therapies, and evaluate treatment outcomes. However, the use of CT is increasingly causing physicians to be concerned about the radiation doses administered to young patients. Furthermore, radiographic indices are an unsafe and expensive method of evaluating non-surgical treatments involving gradual chest wall changes. Flexible tape or a dowel-shaped ruler can be used to measure changes on the anterior side of the thorax; however, these methods are subjective, prone to human error, and cannot accurately measure small changes. This study aims to fill this gap by exploring three-dimensional optical imaging techniques to capture patients’ chest surfaces. The dissertation describes the development and validation of a cost-effective and safe method for objectively evaluating treatment progress in children with chest deformities. First, a study was conducted to evaluate the performance of low-cost 3D scanning technologies in measuring the severity of CWD. Second, a multitemporal surface mesh registration pipeline was developed for aligning 3D torso scans taken at different clinical appointments. Surface deviations were assessed between closely aligned scans. Optical indices were calculated without exposing patients to ionizing radiation, and changes in chest shape were visualized on a color-coded heat map. Additionally, a statistical model of chest shape built from healthy subjects was proposed to assess progress toward normal chest and aesthetic outcomes. The system was validated with 3D and CT datasets from a multi-institutional cohort. The findings indicate that optical scans can detect differences on a millimeter scale, and optical indices can be applied to approximate radiographic indices. In addition to improving patient awareness, visual representations of changes during nonsurgical treatment can enhance patient compliance

    Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods

    Get PDF
    Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews

    Development of a silicon photomultiplier based innovative and low cost positron emission tomography scanner.

    Get PDF
    The Silicon Photomultiplier (SiPM) is a state-of-the-art semiconductor photodetector consisting of a high density matrix (up to 104) of independent pixels of micro-metric dimension (from 10 μm to 100 μm) which form a macroscopic unit of 1 to 6 mm2 area. Each pixel is a single-photon avalanche diode operated with a bias voltage of a few volts above the breakdown voltage. When a charge carrier is generated in a pixel by an incoming photon or a thermal effect, a Geiger discharge confined to that pixel is initiated and an intrinsic gain of about 106 is obtained. The output signal of a pixel is the same regardless of the number of interacting photons and provide only a binary information. Since the pixels are arranged on a common Silicon substrate and are connected in parallel to the same readout line, the SiPM combined output response corresponds to the sum of all fired pixel currents. As a result, the SiPM as a whole is an analogue detector, which can measure the incoming light intensity. Nowadays a great number of companies are investing increasing efforts in SiPM detector performances and high quality mass production. SiPMs are in rapid evolution and benefit from the tremendous development of the Silicon technology in terms of cost production, design flexibility and performances. They have reached a high single photon detection sensitivity and photon detection efficiency, an excellent time resolution, an extended dynamic range. They require a low bias voltage and have a low power consumption, they are very compact, robust, flexible and cheap. Considering also their intrinsic insensitivity to magnetic field they result to have an extremely high potential in fundamental and applied science (particle and nuclear physics, astrophysics, biology, environmental science and nuclear medicine) and industry. The SiPM performances are influenced by some effects, as saturation, afterpulsing and crosstalk, which lead to an inherent non-proportional response with respect to the number of incident photons. Consequently, it is not trivial to relate the measured electronic signal to the corresponding light intensity. Since for most applications it is desirable to qualify the SiPM response (i.e in order to properly design a detector for a given application, perform corrections on measurements or on energy spectra, calibrate a SiPM for low light measurements, predict detector performance) the implementation of characterization procedures plays a key role. The SiPM field of application that has been considered in this thesis is the Positron Emission Tomography (PET). PET represents the most advanced in-vivo nuclear imaging modality: it provides functional information of the physiological and molecular processes of organs and tissues. Thanks to its diagnostic power, PET has a recognized superiority over all other imaging modalities in oncology, neurology and cardiology. SiPMs are usually successfully employed for the PET scanners because they allow the measurement of the Time Of Flight of the two coincidence photons to improve the signal to noise ratio of the reconstructed images. They also permit to perfectly combine the functional information with the anatomical one by inserting the PET scanner inside the Magnetic Resonance Imaging device. Recently, PET technology has also been applied to preclinical imaging to allow non invasive studies on small animals. The increasing demand for preclinical PET scanner is driven by the fact that small animals host a large number of human diseases. In-vivo imaging has the advantage to enable the measurement of the radiopharmaceutical distribution in the same animal for an extended period of time. As a result, PET represents a powerful research tool as it offers the possibility to study the abnormalities at the origin of a disease, understand its dynamics, evaluate the therapeutic response and develop new drugs and treatments. However, the cost and the complexity of the preclinical scanners are limiting factors for the spread of PET technology: 70-80% of small-animal PET is concentrated in academic or government research laboratories. The EasyPET concept proposed in this Thesis, protected under a patent filed by Aveiro University, aims to achieve a simple and affordable preclinical PET scanner. The innovative concept is based on a single pair of detector kept collinear during the whole data acquisition and a moving mechanism with two degrees of freedom to reproduce the functionalities of an entire PET ring. The main advantages are in terms of the reduction of the complexity and cost of the PET system. In addition the concept is bound to be robust against acollinear photoemission, scatter radiation and parallax error. The sensitivity is expected to represent a fragility due to the reduced geometrical acceptance. This drawback can be partially recovered by the possibility to accept Compton scattering events without introducing image degradation effects, thanks to the sensor alignment. A 2D imaging demonstrator has been realized in order to assess the EasyPET concept and its performance has been analyzed in this Thesis to verify the net balance between competing advantages and drawbacks. The demonstrator had a leading role in the outreach activity to promote the EasyPET concept and a significant outcome is represented by the new partners that recently joined the collaboration. The EasyPET has been licensed to Caen S.p.a. and, thanks to the participation of Nuclear Instruments to the electronic board re-designed, a new prototype has been realized with additional improvements concerning the mechanics and the control software. In this Thesis the prototype functionalities and performances are reported as a result of a commissioning procedure. The EasyPET will be commercialized by Caen S.p.a. as a product for the educational market and it will be addressed to high level didactic laboratories to show the operating principles and technology behind the PET imaging. The topics mentioned above will be examined in depth in the following Chapters according to the subsequent order. In Chapter 1 the Silicon Photomultiplier will be described in detail, from their operating principle to their main application fields passing through the advantages and the drawback effects connected with this type of sensor. Chapter 2 is dedicated to a SiPM standard characterization method based on the staircase and resolving power measurement. A more refined analysis involves the Multi-Photon spectrum, obtained by integrating the SiPM response to a light pulse. It exploits the SiPM single photon sensitivity and its photon number resolving capability to measure some of its properties of general interest for a multitude of potential applications, disentangling the features related to the statistics of the incident light. Chapter 3 reports another SiPM characterization method which implements a post-processing of the digitized SiPM waveforms with the aim of extracting a full picture of the sensor characteristics from a unique data-set. The procedure is very robust, effective and semi-automatic and suitable for sensors of various dimensions and produced by different vendors. Chapter 4 introduces the Positron Emission Tomography imaging: its principle, applications, related issues and state of the art of PET scanner will be explained. Chapter 5 deals with the preclinical PET, reporting the benefits and the technological challenges involved, the performance of the commercially available small animal PET scanners, the main applications and the frontier research in this field. In Chapter 6 the EasyPET concept is introduced. In particular, the basic idea behind the operating principle, the design layout and the image reconstruction will be illustrated and then assessed through the description and the performance analysis of the EasyPET proof of concept and demonstrator. The effect of the use of different sensor to improve the light collection and the coincidence detection efficiency, together with the analysis of the importance of the sensor and the crystal alignment will be reported in Chapter 7. The design, the functionalities and the commissioning of the EasyPET prototype addressed to the educational market will be defined in Chapter 8. Finally, Chapter 9 contains a summary of the conclusions and an outlook of the future research studies

    Microtesla MRI of the human brain combined with MEG

    Full text link
    One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method - SQUID-based microtesla MRI - can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microtesla measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment - low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging - are practical.Comment: 8 pages, 5 figures - accepted by JM
    • …
    corecore