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Abstract: Radiomics converts medical images into mineable data via a high-throughput extraction
of quantitative features used for clinical decision support. However, these radiomic features are
susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various
investigations have assessed the reproducibility and validation of radiomic features across these
discrepancies. In this narrative review, we combine systematic keyword searches with prior do-
main knowledge to discuss various harmonization solutions to make the radiomic features more
reproducible across various scanners and protocol settings. Different harmonization solutions are dis-
cussed and divided into two main categories: image domain and feature domain. The image domain
category comprises methods such as the standardization of image acquisition, post-processing of
raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain
category consists of methods such as the identification of reproducible features and normalization
techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and
normalization using deep learning. We also reflect upon the importance of deep learning solutions for
addressing variability across multi-centric radiomic studies especially using generative adversarial
networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a
broader range of methods especially GANs and NST methods in more detail than previous reviews.

Keywords: radiomics; harmonization; feature reproducibility; deep learning; medical imaging

1. Introduction

Medical imaging is routinely used in clinical practice to assist the decision-making
process for diagnostic and treatment purposes [1,2]. Radiomics is an emerging field within
medical image analysis that goes beyond qualitative assessment by extracting a large
number of quantitative image features [3,4]. The radiomic hypothesis postulates that the
quantitative study of medical image data can provide complementary knowledge in a
quick and reproducible manner to support clinicians in their decision-making process,
assisted by automated or semi-automated software [5,6]. The information acquired can help
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advance the clinical decision support systems to connect the link between radiomic features
and clinical endpoints by building diagnostic, prognostic, and predictive analysis models.
Radiomics is the consequence of many decades of computerized diagnosis, prognosis,
and treatment research [7,8]. A powerful radiomics approach involves the extraction
of various quantitative features from medical images, storing this data in a federated
form of a database [9] where several individual databases function as an entity, and the
successive mining of data to acquire relevant clinical outcomes [10]. Large quantities of
data are required to develop robust predictive models and this amount of data is usually
obtained from multiple hospitals and/or institutions. Furthermore, due to the continuous
improvement in scanner and protocol settings, this type of data is a moving target. To
compensate for the effects scanner/protocol variability might have on the predictive
models, large quantities of data are needed to make systems generalize. In these cases,
federated (or distributed) learning could be adapted to allow sharing of data between
hospitals/institutes to develop robust predictive models [10]. Major management problems
still exist even though there are databases that are collecting and cross-referencing massive
amounts of radiomics information in addition to other related patient data from millions of
case studies [11–14].

Radiomic feature extraction can be categorized into two main approaches: hand-
crafted (derived from traditional statistical and computer vision methods) and deep learn-
ing (DL). Hand-crafted radiomics characteristics (such as texture, shape, intensity) provide
information on the particular area of the medical imaging scan, often referred to as the
region or volume of interest (ROI or VOI), which could be a tumor, a tissue, or an organ
as a whole [15]. DL is also a data-driven method that is inspired by the biological neural
networks in the human brain. The difference between hand-crafted and DL approaches
mostly lies in the way visual representations are learned. For example, some DL algorithms
learn complex visual features and perform ROI segmentation using cascading layers with
non-linearities by using ‘sliding’ kernels in convolutional neural networks (CNN), while
hand-crafted features represent the spatial appearances (texture and shape) by mathemati-
cally extracting spatial distribution on inter-pixel relationships, signal intensities, gray-scale
patterns, and spectral properties [16]. DL has the benefit of not necessarily requiring prior
segmentation masks of the medical imaging scan. However, DL is a ’black box’ approach,
i.e., the lack of interpretability of the models and the deep features generated are seen as a
key limitation in clinical applications [17]. DL also requires a larger amount of data and/or
pre-trained models often trained on diverse domains (e.g., photographic images), in order
to perform efficiently and effectively. The vast majority of published radiomic models
lack consistent evaluation of performance, sufficient large-scale annotated datasets for
radiomic studies, reproducibility, clinical efficacy, and large-scale validation on sufficiently
large cohorts, despite these being prerequisites for clinical translation [18,19]. Furthermore,
there is a lack of reproducibility of radiomic features while translating results into clinical
practice [20]. Ideally, the features extracted using radiomics represent imaging biomarkers
and should be independent of image acquisition parameters or protocols [21]. For example,
if a patient is scanned in different hospitals, the quantitative features extracted from all
these scans should either have similar values or the correct transformation should be
known. Scanner protocols and hardware are constantly changing over time and differ
across hospitals. The same scanner can also be configured differently. Frequent software
updates might have an influence on images produced. A major consequence of these
scanner and protocol variations is a domain shift [22], i.e., a shift in data distribution
across various centers/time/machines/software. Please see Figure 1 showing inter-center
variation in data distribution obtained from PET/CT scans from HEad and neCK TumOR
(HECKTOR) challenge [23].

Studies have shown the effects of image acquisition parameters on the reproducibility
of radiomic features [21,24–27]. Many studies [1,28–31] have also explored the discrimina-
tive power of radiomic features. However, the reproducibility of a radiomic feature does
not guarantee its discriminative power [32,33], and thus the two aspects of reproducibility
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and discriminative power cannot be treated in isolation. For instance, a feature may have
excellent reproducibility across scanner and protocol variations but have no discriminative
power for the problem of interest. The scanner and/or protocol variability could ham-
per the stability as well as the discriminative power of the features. Feature variability
is also caused due to varying contours or ROIs. For example, Yang et al. [34] observed
that gray-level neighborhood difference matrices (GLNDM) based radiomic features were
most robust against the manual contouring variability in PET scans of lung cancer. Vari-
ation in inter-observer delineation has an impact on radiomic analysis and is examined
in [34–38]. These variations can have repercussions on image texture and consequently
on the radiomic features. Different feature extraction algorithms and image processing
techniques also influence the feature variation and have been addressed by the image
biomarker standardization initiative [39]. However, in this work, we only focus on studies
that investigate radiomic feature reproducibility across scanner and protocol variations.
Various methods have been proposed in the literature to improve the reproducibility of
radiomic features across scanner and protocol variations and a few of these harmonization
methods have been reviewed in [40,41]. In addition to feature robustness, investigations
should be carried out to ascertain model accuracy/performance as well. For instance, the
model should have sufficient data to achieve predictive performance at least equal to the
current clinical standard; the model should be externally and/or internally validated across
different centers; several performance metrics such as the area under curve (AUC) of the
receiver operating characteristic (ROC) curve and precision recall (PR) curves can be used
to evaluate the model performance.
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Figure 1. PET and CT slices obtained from two different centers (Center 1 = Centre Hospitalier Universitaire de Sherbrooke,
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The organization of the paper is as follows. We primarily categorize the methods un-
der the image domain or the feature domain. The harmonization methods discussed under
the image domain (Section 3) are performed on the whole image (raw or reconstructed)
before feature extraction and thus aim to harmonize images acquired across different
centers/scanners/protocols. In this section, we briefly review methods in such a way that
they can be applied at every stage of medical image processing from image acquisition
to image analysis (Figure 2). This section starts with a discussion on various standards
for image acquisition/reconstruction parameters. Moving forward, post-processing meth-
ods for raw sensor-level image data followed by brief reviews of existing image analysis
techniques (e.g., data augmentation techniques using generative adversarial networks
(GANs) and style transfer) are discussed. The methods categorized under the feature
domain (Section 4) are performed after (or within) feature extraction and aim to harmo-
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nize extracted radiomic features. In this section, the methods are listed in order of their
complexity. Under the feature domain, we briefly review two approaches: identification
of reproducible features (a convenient approach) and normalization techniques (statisti-
cal approaches). The normalization techniques are further divided into basic statistical
normalization (rescaling/standardization); intensity harmonization techniques; ComBat
method and its derivatives; normalization using DL. The overall objective of this review
is to address the advantages, disadvantages, and challenges posed by these harmoniza-
tion methods. Figure 2 shows an overview of different harmonization methods that are
applicable at different stages of medical imaging.
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Search strategy: Our search strategy for this review was based on a set of research questions:

1. Have scanner and protocol variations affected the reproducibility of radiomic fea-
tures/images? If yes, the how significant was the change?

2. Various harmonization methods were identified in previous work. Can they be
categorized into domains (image and feature)? Furthermore, can the methods be
applied at different stages of medical imaging (Figure 2)?

3. What are the latest developments in the field of radiomics to make radiomics
more reproducible?

4. Are there non-medical studies performed to harmonize images/features? What are
the different types of methods?

5. What are the advantages, disadvantages and challenges of various harmonization methods?

Keeping in mind the above research questions, we searched for literature using
PubMed and Google Scholar by typing in the following keywords: “radiomics”, “harmo-
nization methods”, “feature reproducibility”, “robustness”, “scanner variation”, “protocol
variation”, “deep learning”, “multicentric studies”, “medical imaging”. Articles were
selected based on their novelty, relevance, and being in English.
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2. Image Domain Harmonization
2.1. Standardization of Image Acquisition and Reconstruction Parameters across Various Centers
Related to Clinical Trials

For multicentric prospective studies, the ideal way to standardize radiomic features
is to define and follow imaging protocols that define scanner types in conjunction with
acquisition and reconstruction parameters (see Table 1 for summary). For example, the
European Society for Therapeutic Radiology and Oncology (ESTRO) panel provides guide-
lines for procedures and methods for image-guided radiation therapy (IGRT) in prostate
cancer [42,43]. This panel consulted a large base of the radiation oncology community from
the European Union and developed guidelines for delineating localized prostate cancer in
CT and magnetic resonance images (MRI). ESTRO also has a working group focusing on
cervical carcinoma for developing and validating methods and imaging parameters from
various institutions [44]. For standardization of PET imaging, the European Association
of Nuclear Medicine (EANM) [45] launched the EARL (EANM Research Ltd.) program
covering areas such as scan acquisition, processing of images, and image interpretation.
Pfaehler et al. [46] conducted a study to investigate the effects of harmonizing image
reconstructions on feature reproducibility and concluded that EARL compliant image
reconstruction harmonized a wide selection of radiomic features. A similar initiative by the
American Society for Radiation Oncology (ASTRO) [47] was created to develop a ‘practice
parameter’, for IGRT and to provide quality assurance standards, personnel qualifications,
indications, and guided documentation [48] for imaging. In MRI, however, such guidelines
do not exist [49] and most of the MRI modalities are not even quantitative [50]. Efforts have
been taken in the past, concerning MRI imaging, for example by UCHealth [51] to reduce
the number of MRI protocols from 168 to 66 across scanners and centers by selecting an
appropriate clinics-driven protocol and standardization process. Another set of guidelines
is provided by the FDA (Food and Drug Administration) [52] to focus on image acquisition
in clinical trials conducted to support the authorization of drugs and biological products.
Ever since this draft by FDA was released in 2015, it has become a reference standard for
most promoters and industries of clinical trials.

Table 1. Summary table of standardization guidelines/regulations set for image acquisition and reconstruction parameters
across various centers.

Standardization of Image Acquisition and Reconstruction Parameters across Various Centers Related to Clinical Trials

Reference Data Variation Across Summary

Mottet et al. [42]
Cornford et al. [43]

(ESTRO)

CT and MRI images
(prostate cancer) NA

Provided guidelines procedures and
methods for image-guided radiation

therapy (IGRT) in prostate cancer

Boellaard et al. [45]
(EARL) PET imaging

Scan acquisition, image
processing, image

interpretation

Provides guideline/regulations
for oncology

Luh et al. [48]
(ASTRO) NA NA

Developed a ‘practice parameter’ for
IGRT, and provided quality assurance

standards, personnel qualifications,
indications and guided documentation

for imaging

Sachs et al. [51] CT and MRI images CT and MRI protocols

Reduced the number of MRI protocols
from 168 to 66 and CT protocols from 248

to 97 across scanners and centers by
selecting an appropriate clinical-driven
protocol and standardization process

Center for Drug
Evaluation and Research

(FDA) [52]
NA Image acquisition

parameters

Provided guidelines to focus on image
acquisition in clinical trials conducted to

support authorization of drugs and
biological products
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Such efforts need to be extended to the radiomics field to help control the variability
present across different scanner machines, acquisition and reconstruction parameters.
However, these radiomics guidelines might not be able to account for the plethora of
existing scanners, protocols, and reconstruction parameters by different vendors across
multiple centers.

2.2. Post-Processing of Raw Sensor-Level Image Data

It would be worthwhile to work with raw sensor-level data, right before reconstructing
the image and apply harmonization methods on it to remove scanner and protocol variabil-
ity. Image reconstruction, necessary for human viewing and interpretation, combined with
the manual contouring variability, could lead to a loss of latent raw sensor-level image data
and lower precision in measurements. Most machine learning (ML) and DL algorithms
have been used on reconstructed images in the existing medical imaging workflow. Instead,
the abilities of ML and DL could be leveraged to process the underlying raw sensor-level
data to access its hidden nuances [53–55]. A study conducted by Lee et al. [56] investigated
the performance of a CNN for classifying raw CT data in the sinogram-space to identify the
body region and detect intracranial hemorrhage. The sinogram-specific CNN performed
slightly better than the conventional neural network (Inception-V3 [57]) in the image-space
by approximately 3% in terms of accuracy. In another study, Gallardo-Estrella et al. [58]
proposed a method to reduce variability due to different reconstruction kernels in CT
images by decomposing each CT scan into a set of frequency bands and the energy in
each frequency band is scaled to a reference value iteratively. This method was validated
for emphysema reconstruction. Although this method was applied to normalize fully
reconstructed images, the applicability of this method could be extended to harmonize
raw image data. Radiomics signature analysis can also be performed directly on the raw
image data without the need for reconstruction which adds bias and variability [56,59].
Furthermore, the reconstruction process itself can also be considered as a prediction prob-
lem utilizing raw CT data (sinograms) or k-space values of MRI inputs [60]. These studies
widen the scope to apply harmonization methods on raw image data and take advantage of
the hidden information in the raw image data rather than applying it in the reconstructed
image-space. Refer to Table 2 for a summary of this section.

Table 2. Summary table of post-processing methods of raw sensor-level image data.

Post-Processing of Raw Image Data

Reference Data Variation Across Summary

Lee et al. [56] Raw sinogram CT data
(head and whole-body)

Acquisition parameters in
terms of projections and
detector like sinograms

Investigated the performance of a
CNN for classifying raw CT data in

sinogram-space to identify body
region and detect intracranial

hemorrhage

Gallardo-Estrella et al. [58] Reconstructed CT images
(emphysema in lungs) Reconstruction kernels

Proposed a method to reduce
variability due to different

reconstruction kernels in CT images
by decomposing each CT scan into a
set of frequency bands and the energy
in each frequency band is scaled to a

reference value iteratively.

2.3. Data Augmentation Using GANs

ML-based techniques have emerged to provide effective solutions to translate images
across various domains by harmonizing images as opposed to radiomic features alone.
Examples include ML-based adaptive dictionary learning [61] and DL methods like using
GANs [62–70]. Methods using coefficients of spherical harmonics to harmonize diffusion
MRI have been explored [61,71–73]. The applicability of this method was limited to
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diffusion MRI since the analysis of diffusion MRI requires various processing steps to
correct for scanner acquisitions and protocol variation effects and was addressed by the
2018 CDMRI (computational diffusion MRI) Harmonization challenge [74].

Another widely used DL technique in medical image analysis are GANs [75] because
of their ability to model target data distributions to generate realistic images (summary in
Table 3 at the end of this section). GANs consist of two adversarial networks, a generator
that generates realistic data and a discriminator that distinguishes whether the data is real
or fake. The objective of a GAN is to keep the generator and discriminator in opposition to
each other. Despite the difficulty in handling multi-centric medical data, GANs have shown
promising results to overcome the multi-center variation. Zhong et al. [76] used a dual
GAN, with U-Net [77] as the backbone, to harmonize the diffusion tensor imaging (DTI)
derived metrics on neonatal brains and compared it with three other methods: voxel-wise
scaling, global-wise scaling, and ComBat. The results from this study showed that the
GAN based method performed better at harmonizing neonatal datasets in multi-centric
studies. Another study by Modanwal et al. [78] used a cycleGAN [64] to perform intensity
harmonization on MRI breast images obtained from two scanners (GE and Siemens). A
cycleGAN utilizes a cycle consistency loss to translate an image from one domain to
another without the requirement for paired data. Cycle consistency loss is an optimization
problem in the sense that if a zebra image is converted to a horse image and back to being
a zebra image, we should obtain the same input in return. This method was adapted by
modifying the discriminator that further helped in preserving the tissue characteristics and
shape. This method could operate on unpaired images; however, a downside is that this
algorithm worked only for 2D slices and could not retain volume information due to limited
computational resources. A comparative study was conducted by Cackowski et al. [79]
between ComBat and cycleGAN to harmonize multi-centric MRI images. The authors
found that both methods were complementary to each other and had similar effects on the
radiomic features. The grey-level run length matrix (GLRLM) features benefited more from
ComBat while the cycleGAN performed better on Gray Level Size Zone (GLSZM) features.
It would be of great interest to see the effects the combination of ComBat and GAN would
have on radiomic features.

Guha et al. [63] conducted a study that transforms low-resolution (LR) CT scans of
trabecular (Tb) bone microstructures into high-resolution (HR) CT scans, obtained from
two scanners (LR from Siemens FLASH and HR from Siemens FORCE; paired images),
using GAN-CIRCLE, of which the architecture is shown in Figure 3. This DL-based method
was inspired by You et al. [80] and is monitored by three losses: the identical, residual, and
cycle consistency loss. The cycle consistency establishes an end-to-end nonlinear mapping
from LR CT to HR CT scans with reference to the Wasserstein distance [81]. This type
of loss was first used in cycleGANs [64] and it helps a GAN to perform image-to-image
translation between unpaired images by enforcing a strong consistency across domains.
The residual network is built to preserve the high frequency anatomical details in the
image. The identity loss aids to regularize training by learning sufficient latent structural
information to enhance the image resolution. The results were compared to and evaluated
against the reference value obtained from the true HR CT scans. The predicted results
showed improvement in the structural similarity index with respect to true HR CT scans in
terms of Tb network area density, Tb thickness and Tb spacing. Other authors [82–86] have
also addressed image up-sampling using DL techniques.

A similar study to [63] was conducted by Wei et al. [87] who used a 3D GAN to
normalize CT images obtained from different slice thickness and dosage scenarios. This
method used a unique spectral-norm layer inspired by Miyato et al. [88] to perform global
regularization in the feature matrices. The GAN-based approach resulted in an improved
perceptual appearance and reduced the variability across radiomic features. This method
is unique, since it performs de-noising and super-resolution simultaneously. However, no
clinical study (e.g., diagnostic task) was performed using the normalized images to check
its feasibility. Figure 4 shows the normalization results obtained by the authors [87].
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Table 3. Summary table of data augmentation methods using GANs.

Data Augmentation Using GANs

Reference Data Variation Across Summary

Zhong et al. [76] MRI images
(neonatal brains)

Scanners, acquisition
protocols

Utilized a dual GAN, with U-Net as the backbone
to harmonize the diffusion tensor imaging (DTI)

derived metrics on neonatal brains

Modanwal et al. [78] MRI images (breast) Scanners
Utilized a cycleGAN to perform intensity

harmonization on MRI breast images obtained
from two different scanners

Cackowski et al. [79] MRI images (brain) Scanners, acquisition
protocols

Conducted a comparative study was conducted by
Cackowski et al. [79] between ComBat and

cycleGAN to harmonize multi-centric MRI images

Guha et al. [63]
CT images

(trabecular bone (Tb)
microstructures)

Scanners

Conducted a study that transforms low-resolution
(LR) CT scans of trabecular (Tb) bone

microstructures into high-resolution (HR) CT
scans, obtained from two scanners (LR from

Siemens FLASH and HR from Siemens FORCE;
paired images), using GAN-CIRCLE [80]

Wei et al. [87] CT images (chest) Dosage, slices thickness Utilized a 3D GAN to normalize CT images to
classify and detect pulmonary nodules

Despite their novel design, training GANs can be challenging due to disappearing
gradients. While back propagating the loss, the gradient flows backwards from the final
layer to the first layer. The gradient gets extremely small, slowing down the learning
process in the initial layers or even stopping completely. This halts the training of initial
layers because the gradient does not change the weights anymore. GANs are also prone
to generate images with similar appearance as an effect of mode collapse [89] which
occurs when the generator produces only a limited or a single type of output to fool the
discriminator. Due to this the discriminator does not learn to come out of this trap resulting
in a GAN failure. Apart from this, GAN-based models can also add unrealistic artefacts in
the images [87].
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2.4. Style Transfer

The advances in the field of style transfer may prove useful to overcome scanner
acquisition and reconstruction parameter variability at the image level. Style transfer is a
computer vision technique that requires two images, a content image and a reference style
image, and combines them so that the resulting output image preserves the key elements
of the content image but appears to be “painted” in the style of the reference style image.
When there is no radiomics model available for a new scanner or protocol, style transfer
could be applied such that the images coming from a new machine can be transformed
so that they look like they were acquired from an existing machine [90]. This section
discusses various style transfer methods (Table 4 at the end of this section), starting with
the non-CNN methods followed by neural style transfer (NST) methods. We categorize
and briefly explain the existing neural style transfer methods and discuss their strengths
and weaknesses.

Before the onset of neural style transfer, image stylization came under the category
of non-photorealistic rendering (NPR). Image-based artistic rendering (IB-AR) [91–94]
is the artistic stylization of two-dimensional images and can be further categorized into
four categories; stroke-based, region-based, example-based, and image processing and
filtering. [94]. Stroke-based rendering tries to render strokes (e.g., tiles, stipples or brush
strokes) on a content image to adapt to a particular style [95]. However, this method
is built to adapt to only one particular style and not arbitrary styles [94]. Region-based
rendering [96,97] renders stroke patterns in semantic regions of an image and even though
it permits local control over the degree of details, this method also cannot be adapted
for arbitrary styles [94]. Hertzmann et al. [98] proposed ‘image analogies’ to learn the
mapping between paired source and target images in a supervised fashion but paired
images are often not available in practical settings. Even though filtering and image pre-
processing [99,100] are efficient and straightforward techniques, they might not be entirely
applicable to a wide variety of styles [94]. The above-mentioned techniques do provide
dependable stylized results, but their limitations eventually gave rise to novel methods in
the field of NST.

The groundbreaking work of Gatys et al. [101] paved the way for a new field of NST.
Gatys et al. [101] first conducted a study that separates content from one image and style
from another image and combines it into a new image using a neural network (Figure 5).
The paper demonstrated that transferring style from one image to the other can be modelled
as an optimization problem that can further be solved by training a neural network, VGG-
19 [102] in this case. The style was extracted by looking at the spatial correlation between
filter responses and this was calculated as the Gram matrix [103] of a feature map. The
total loss was calculated as the weighted sum of both content loss (Lc) and style loss (Ls)
by weights α and β respectively. Thus, the style transfer task was reduced to creating a
new image through an optimization process by minimizing the total loss. However, the
high resolution of images affected the speed of the style transfer process and the algorithm
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failed to preserve the consistency of details and fine structures during style transfer because
the low-level information was not retained by the CNN. The Gram matrix is not the only
choice for representing style in images. There are also other interpretations of Gram matrix,
such as MMD mathematically proven by Li et al. [104]. Additionally, the definitions of
style and content remain unclear since no representation exists to factorize either style or
content of an image.
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Li et al. [104] questioned the usage of the Gram matrix from Gatys et al. [101] and
were not satisfied with the motivation behind its use. They treated neural style transfer as
a domain adaptation problem where the difference between the source distribution and the
target distribution would be measured and minimized. They provided mathematical proof
that matching Gram matrices of filter responses is equivalent to minimizing MMD [105]
with the second-order polynomial kernel. The VGG19 network was used here as well,
and they proved that the top layers had larger receptive fields and could reproduce more
global textures.

Xu et al. [106] proposed a method for arbitrary style transfer, which allows the styliza-
tion of images from an unseen content image and style image. They utilized the Behance
dataset [107] containing several artistic images and course category labels for style and
content. They combined the concepts of original neural style transfer with the concept of
adversarial training for arbitrary style transfer from multi-domain images. Xu et al. [106]
built a conditional generator to fool the discriminator and to assure that the style and
content representations are similar to the input images by combining content and style
using adaptive instance normalization (AdaIN) [108]. The method utilized Gram loss for
the style representation, perceptual loss [109] for content representation and adversarial
loss to capture beyond texture the style information from a distinct style label/category.
Their methods outperform previous work using AdaIN [108] and whitening and color
transform [110] quantitatively. However, qualitative results in this study show that styliza-
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tion does not occur beyond a point even after tuning the parameters due to the difficulty of
the optimization.

A medically relevant study led by Yang et al. [111] investigated the effects of different
kernels on CT images and proposed an unsupervised kernel conversion method by uti-
lizing a cycleGAN with AdaIN [108] that works on unpaired images. They modified the
base model of UNet [77] to use polyphase decomposition [112] which resulted in better
performance. They assumed that the unsupervised kernel conversion problem can be
posed as an unsupervised image style transfer problem that can be solved using optimal
transport [113,114]. The qualitative results showed that their methods performed better
however, in the quantitative evaluation (peak signal to noise ratio and structure similarity
index), supervised learning performed better than unsupervised learning. A similar study
by Liu et al. [115] was carried out to harmonize MRI images from multiple arbitrary sites
using a style transferable GAN. They treated harmonization as a style transfer problem
and proved that their model applied to unseen images provided there was enough data
available from multiple sites for training purposes. However, the model only worked
on two-dimensional images and not three-dimensional images. They also mention that
selecting an appropriate reference image would be challenging if the data pool was vast.

Studies by Armanious et al. [116] and Clancy and Milanko [117] have also utilized the
concept of style transfer to perform image-to-image translation between PET-CT images
(see Figure 6) and healthy-unhealthy chest X-rays respectively. The difference between both
the studies is that Armanious et al. [116] utilized style transfer losses [101] to match the
texture between the stylized image and the target image, while Clancy and Milanko [117]
just used the cycleGAN and adversarial losses to perform style transfer. Moreover, the
MedGAN created by Armanious et al. [116]) incorporates a novel generator CasNet, which
is a cascade of UNet blocks to obtain sharper translated images. MedGAN seemed to
outperform other existing image-to-image translation methods (e.g., pix2pix [118] and per-
ceptual adversarial network [119]) by providing quantitative and perceptual assessments.
Another study by Fetty et al. [120] investigated how the latent space can be manipulated to
obtain high-resolution scans by utilizing their StyleGAN architecture. Their StyleGAN ar-
chitecture incorporated AdaIN [108] method for transferring style. StyleGAN was trained
on MRI to CT images (with pelvic malignancies) and achieved a root mean squared error
of 0.34 for CT-MRI translation and a mean absolute error of 59 HU for MRI-CT translation.

Many more such studies [121–126] were conducted by applying style transfer methods
on medical images, and this approach has the potential to harmonize images, either by
image-to-image translations or domain transformations. Depending on the architectures
used to perform style transfer, paired or unpaired images might be needed, e.g., if harmo-
nization is to be performed using cycleGAN or StyleGAN as a baseline then paired images
are not a requirement. Losses can be modified in such a way that they may or may not
include style and content losses from Gatys et al.’s [101] method. In case GANs were to be
used for NST, the developer should be mindful of limitations that GANs pose, as discussed
in the previous section.

Table 4. Summary table of style transfer methods.

Style Transfer

Reference Data Variation Across Summary

Gatys et al. [101]
Non-medical images

(mostly artistic
images)

NA Utilized a CNN to perform neural style transfer
using Gram matrix

Li et al. [104]
Non-medical images

(mostly artistic
images)

NA

Treated neural style transfer as a domain
adaptation problem and proved that matching

Gram matrices of filter responses is equivalent to
minimizing MMD [105]
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Table 4. Cont.

Style Transfer

Reference Data Variation Across Summary

Xu et al. [106]
Non-medical images

(mostly artistic
images)

NA
Combined the concepts of original neural style

transfer with the concept of adversarial training for
arbitrary style transfer from multi-domain images

Yang et al. [111] CT images (head,
facial bone) Reconstruction kernels

Investigated the effects of different kernels on CT
images and proposed an unsupervised image style

transfer method by utilizing a cycleGAN with
AdaIN [108] that works on unpaired images

Liu et al. [115] MRI images (chest)
Multi-center datasets,

image acquisition
parameters

Harmonized MRI images from multiple arbitrary
sites using a style transferable GAN entailing cycle

consistency, style and adversarial losses.

Armanious et al. [116] PET, CT images
(brain) Multi-modal dataset

Developed MedGAN architecture which consists
of a cascade of UNet blocks to obtain sharper
translated images (CasNet) along with Gatys

et al.’s [101] style transfer losses.

Clancy and Milanko [117] X-rays (chest) Healthy and unhealthy
patients

Utilized the cycleGAN with adversarial losses to
perform style transfer.

Fetty et al. [120] MRI, CT images
(pelvic malignancies) Multi-model dataset

Used StyleGAN with baseline GAN architecture
and AdaIN method for transferring style

across images.
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3. Feature Domain Harmonization
3.1. Focusing on Reproducible Features (Identification of Reproducible Features)

These studies test the reproducibility, variability, and repeatability of features extracted
from various phantom and patient studies over different reconstruction and acquisition
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parameters in the case of multi-centric datasets and examine the reproducibility of radiomic
features. Refer to Table 5 for a summary.

In the context of PET images, a study by Shiri et al. [127] investigated the impact
of various image reconstruction settings on several PET/CT radiomic features obtained
from a phantom dataset (developed in-house National Electrical Manufacturers Associa-
tion [NEMA]) and a patient dataset from two different scanners. Radiomic features were
grouped into intensity-based, geometry-based and texture-based features and their repro-
ducibility and variability were evaluated using the coefficient of variation (COV). The re-
sults from both phantom and patient studies showed that 47% of all radiomic features were
reproducible. Almost half of intensity-based and texture-based and all the geometry-based
features were found to be reproducible respectively. The intensity and geometry-based
features were also found to be reproducible in another study by Vuong et al. [128], where
the authors investigate if the PET/CT radiomics models can be transferred to PET/MRI
models by checking the reproducibility of radiomic features against different test-retest and
attenuation correction variability. However, Shiri et al. [127] used a phantom body filled
with homogeneous activity rather than heterogeneous activity, which does not properly
imitate the human tissue. The respiratory motion [127,128], quantization [127,128] and
segmentation parameters [127] were also absent in the studies, which may have had a
considerable effect on the radiomic features. A similar study by Bailly et al. [129] analyzed
the reproducibility of texture features in PET scans across different acquisition and recon-
struction parameters in the context of multi-center trials. They found out that only a few
features were strongly reproducible and acceptable for multi-center trials. Nevertheless,
this study checked the reproducibility of texture features evaluated against reconstruction
parameters coming from just one manufacturer. Many such studies have been carried out
to check the reproducibility of radiomic features in PET scans [130–144] but most of them
only check the impact of variability in scanner and imaging parameters and do not provide
concrete image and/or feature harmonization methods to obtain reproducible features.

In the case of CT scans, Prayer et al. [145] conducted a trial to investigate the inter-and
intra-scanner repeatability and reproducibility of computed tomography (CT) radiomic
features (radiomic feature) of fibrosing interstitial lung disease (fILD). The dataset was
obtained from IRB-approved test-retest study with sixty fILD patients. The results showed
that intra and inter-scanner reproducibility were highly affected by the variation in slice
thicknesses than the variation in reconstruction kernels under study and were reconstruc-
tion parameter-specific respectively. The CT radiomic features showed excellent recon-
struction parameter-specific repeatability for the test-retest study. However, the sample
size of the data used was small, and to check the variability of features only two scanners
were used. Careful selection of radiomic features is critical to ensure plausible outcomes
in heterogeneous CT datasets. Similar studies have been conducted in the past where the
reproducibility of CT radiomic features was investigated using phantom data [25–27,146] as
well as patient data [20,147,148]. The phantom studies were carried forward to reduce the
exposure to patients however, they are not real substitutes of heterogeneous human tissues.

Considering MRI, a recent study using radiomics to investigate the reproducibility
of features across several MRI scanners and scanning protocol parameters was carried
out using both phantom data and patient (volunteer) data by Lee et al. [149]. This study
also investigated the repeatability by measuring the variability of radiomic features using
a test-retest strategy. The variability of radiomic features across different MRI scanners
and protocols was evaluated using the intra-class correlation coefficient (ICC) and the
repeatability was evaluated using the coefficient of variation (COV). The COV measure-
ments showed that there was very little difference in the variability between filtering
and normalizing effects which were used for pre-processing. The ICC measurements
showed higher repeatability for the phantom data than for the patient data. However, this
study was not able to prevent the effects of the volunteer’s movements on the radiomic
values despite simulating movements while scanning. A similar study, conducted by
Peerlings et al. [150], extracted stable parametric MRI radiomic features with a minimum
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concordance correlation coefficient of 0.85 between data derived from 61 patients’ test and
retest apparent diffusion coefficient (ADC) maps across various MRI-systems, tissues and
vendors. A review by Traverso et al. [151] mentions that there are not many phantom
studies conducted to investigate the reproducibility of MRI radiomic features. Most of
them cover various sites such as the brain [152,153], the gastro-intestinal tract [154–156]
and the prostate [157,158], although this limitation was addressed by Rai et al. [159] by
developing a novel 3D MRI radiomic phantom to assess the robustness and reproducibility
of MRI radiomic features across multiple centers.

Table 5. Summary table of literature which focused on identification of reproducible features.

Focusing on Reproducible Features (Identification of Reproducible Features)

Reference Data Variation Across Summary

Shiri et al. [127] PET/CT phantom Image reconstruction
settings, scanners

Reproducibility and variability of radiomic
features were evaluated using the coefficient of

variation (COV)

Bailly et al. [129]
PET scans

(gastro-entero-pancreatic
neuroendocrine tumors)

Multi-centric trials
(acquisition and
reconstruction

parameters)

Analyzed the reproducibility of textural
features in PET scans across different

acquisition and reconstruction parameters in
the context of multi-center trials

Prayer et al. [145]
CT scans (fibrosing

interstitial lung disease
(fILD))

Scanners, test-retest study

Investigated the inter-and intra-scanner
repeatability and reproducibility of computed
tomography (CT) radiomic features (radiomic

feature) of fILD

Lee et al. [149] MRI scans (phantom,
brain lesions)

Scanners, scanning
protocol

Investigated the reproducibility of MRI
radiomic features across different MRI

scanners and scanning protocol parameters

Peerlings et al. [150] MRI scans (ovarian cancer,
colorectal liver metastasis) Vendors, field strengths

Extracted stable parametric MRI radiomic
features with a minimum concordance

correlation coefficient of 0.85 between data
derived from 61 patients’ test and retest

apparent diffusion coefficient maps

3.2. Normalization Techniques

Many statistical normalization methods have been proposed in the past and have
calculated the benefits of applying normalization techniques for harmonizing radiomic
features affected by variability in scanner acquisition protocols and reconstruction settings.

3.2.1. Statistical Normalization

Chatterjee et al. [160] investigated the effect of applying rescaling and standardization
(zero mean, unit standard deviation) as normalization transformations in MRI images
obtained from two different institutes with outcome as lymphovascular space invasion
and cancer staging. These transformations were applied separately on balanced training
and testing sets rather than applying normalization for the entire dataset. This method
enhanced the predictive power of the radiomic models through external validation from
an external institute. The average prediction accuracy of radiomic features increased from
0.64 to 0.72, average Matthews correlation coefficient (MCC) increased from 0.34 to 0.44
and average F-score increased from 0.48 to 0.71. A similar study by Haga et al. [161] used
z-score normalization to standardize the radiomic features extracted from CT images of
NSCLC (non-small cell lung cancer) patients from The University of Tokyo Hospital and
TCIA (the Cancer Imaging Archive). Z-score normalization uses the formula:

z =
(x − x)

s
(1)
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where x is the feature, x is the mean and s is the standard deviation and this method gave
the best prediction radiomic model with 0.789 AUC (area under the receiver observed char-
acteristics curve) when compared to min-max normalization (0.725 AUC) and whitening
from the principle component analysis (0.785 AUC). Refer to Table 6 for a summary.

Table 6. Summary table of basic statistical approaches.

Statistical Normalization

Reference Data Variation Across Summary

Chatterjee et al. [160] MRI images
(endometrial cancer) Multi-center datasets

Investigated the effect of applying rescaling and
standardization as normalization transformations in
MRI images obtained from two different institutes.
These transformations were applied separately on

balanced training and testing sets rather than
applying normalization for the entire dataset

Haga et al. [161]
CT images (non-small

cell lung cancer
(NSCLC))

Multi-centric datasets

Used z-score normalization to standardize the
radiomic features extracted from CT images of
NSCLC patients from The University of Tokyo

Hospital and TCIA (the Cancer Imaging Archive)

3.2.2. Intensity Harmonization Techniques

Crombé et al. [162] performed intensity harmonization techniques (IHT) as a post-
processing method on T2-weighted MRI images of sarcoma patients to enhance the MFS
(metastatic-relapse-free survival) predictive models. They compared standard normal-
ization, z-score normalization, standardization per signal intensities of healthy tissue,
histogram matching and ComBat harmonization methods. A histogram is a statistical
representation of an image, which shows the distribution of intensity values. It does not
contain information about the location of the image pixels. Histogram matching is where
intensity histograms are aligned to a reference intensity histogram. In this study, intensity
histogram matching performed better with an AUC of 0.823 in an unsupervised analysis.
Related studies [163–165] have used histogram matching to normalize MRI intensity scales.
A few studies [166,167] have also applied histogram equalization (enhancing the contrast
by flattening the histogram) on images to normalize intensity scales to pre-process images
before applying a ComBat harmonization method on top of it. Refer to Table 7 for summary.

Table 7. Summary table of intensity harmonization methods.

Intensity Harmonization Techniques

Reference Data Variation Across Summary

Crombé et al. [162] MRI images
(sarcoma) Multi-centric datasets

Performed IHT (standard normalization, z-score
normalization, standardization per signal intensities of

healthy tissue, histogram matching and ComBat
harmonization) as a post-processing method on

T2-weighted MRI images of sarcoma patients to enhance
the MFS (metastatic-relapse-free survival)

predictive models

Masson et al. [166] Contrast enhanced
CT images Multicenteric dataset

Applied histogram equalization (enhancing the contrast
by flattening the histogram) on images to normalize

intensity scales to pre-process images prior to applying
ComBat harmonization method on top of it.

3.2.3. ComBat Method and Its Derivatives

ComBat harmonization is a statistical method that was developed originally to harmo-
nize gene expression arrays [168]. ComBat was designed to provide estimates of the effects
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of assigned batches -which have a single technical difference between each other, while
taking into account the effect of biological covariates on the variables or features being
harmonized. The estimations are calculated using Bayesian models, and a location/scale
shift is performed accordingly to adjust the values of different features. The application of
ComBat on radiomic features was first introduced by Fortin et al. [169]. The authors used
ComBat to harmonize cortical thickness measurements calculated on diffusion imaging ten-
sor data to remove variations in feature values attributed to differences in acquisition and
reconstruction parameters. The authors reported that ComBat removes interscanner vari-
ability for these measurements and can also preserve biological correlations. The authors
further developed an open software for ComBat that can be used for radiomics analysis.

Following that, several studies further investigated the potential of ComBat harmo-
nization in radiomics analyses. Orlhac et al. [170] investigated the potential of ComBat
to correct for the variations of CT radiomic features extracted from scans collected from
different centers. The authors reported that all radiomic features were significantly affected
by differences in acquisition and reconstruction parameters, and that almost all radiomic
features can be used following ComBat harmonization. The authors further reported an im-
provement in the performance metrics of the developed radiomic signatures after ComBat
harmonization. Figure 7 shows the result for this study [170] with three instances of feature
distributions realigned between different CT reconstruction algorithms, reconstruction
kernels and slice thicknesses. Another study by Orlhac et al. [171] investigated the potential
of ComBat to harmonize radiomic features extracted from PET scans acquired differently.
The authors reported similar results to that of the application of ComBat on CT scans.
A similar study investigated the performance of ComBat harmonization, in addition to
modified ComBat methods: M-ComBat, B-ComBat, and BM-ComBat [172]. The study
reported a significant improvement in the performance of radiomic signatures following
the application of all the investigated ComBat methods.

Of note, none of the above studies investigated the concordance (reproducibility)
of features after ComBat harmonization. Data with similar distributions could still have
different individual data points within. Furthermore, the aim of radiomics is to improve per-
sonalized medicine. Therefore, for clinical applications, the radiomic signature is expected
to be applied on a single patient each time, and not a group of patients simultaneously.
Henceforth, the focus of harmonization techniques must be the standardization of radiomic
feature values across different imaging settings and patient populations. This is statistically
translated into the assessment of concordance in features values following harmonization,
and not the performance of developed signatures following harmonization [173].

With regards to the application of ComBat on radiomic features, several points must
be taken into consideration: (i) In contrast to gene expression, radiomic features have
different complexity levels. Therefore, ComBat is not expected to perform uniformly on all
features; (ii) Biological covariates are embedded in the harmonization equation, and as the
aim of radiomic studies is to investigate such relationships, biological covariates cannot
be provided for the ComBat formula. Furthermore, as the reproducibility of a feature is
a cornerstone for it to be further analyzed, solely harmonizing the distribution without
paying attention to individual value and rank, is not expected to be beneficial for the gener-
alizability of radiomics signatures. Therefore, the concordance in feature values following
ComBat harmonization must be used as an initial feature selection step, to select features
that become concordant for further analysis. A framework that guides the use of ComBat
in radiomics analyses was published [174]. This framework consists of several steps. The
first step is to collect the imaging dataset(s), and to extract the imaging acquisition and
reconstruction parameters. Following this, an anthropomorphic phantom is scanned with
the different acquisition and reconstruction parameters used for acquiring the scans in
the patients’ imaging dataset. Radiomic features are then extracted from the phantom
scans, and the reproducibility of radiomic features is assessed on those scans using the
concordance correlation coefficient (CCC) [175], and the reproducible features (CCC > 0.9)
could be further used for further modeling. To assess the performance of ComBat, it is
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applied on the phantom scans, followed by the calculation of the CCC. Radiomic features
that obtain a CCC > 0.9 following ComBat application are to be considered “ComBatable”.
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One study applied the framework on thirteen scans of a phantom [176] acquired using
different imaging protocols and vendors. The study investigated the reproducibility of
radiomic features in a pairwise manner, resulting in a total of seventy-eight pairs. The
study reported that different numbers of reproducible radiomic features were identified
in each scenario. The results confirmed that radiomic features are affected differently
by the differences in imaging protocols and vendors used, with a wide range between
nine and seventy-eight reproducible features, substantiating the need for the application
of the framework for all radiomic studies [177]. The study also reported that ComBat
harmonization did not perform uniformly on radiomic features, and the number of fea-
tures that could be used following ComBat harmonization ranged between fourteen and
eighty radiomic features. Henceforth, the study recommended that the application of
ComBat harmonization should follow a similar impact analysis depending on the data
under analysis.

Another study utilized a similar framework to assess the performance of ComBat
on CT phantom scans that were acquired with the same acquisition and reconstruction
parameters except for the in-plane resolution [178,179], on two different scanner models.
The authors performed pairwise comparisons between the scans and reported that radiomic
features are affected differently by the degree of variation within a single reconstruction
parameter (in-plane resolution). A given radiomic feature can be reproducible up to a
certain degree of variation in pixel spacing but becomes unreproducible when the variation
is relatively large. Other features were found to be reproducible regardless of the variation
in pixel spacing, while a few features were found to vary significantly with the slightest
change in pixel spacing. These groups of features differed based on the scanner model
used to obtain the scans. The application of ComBat on those scans resulted in a different
number of reproducible features depending on the variation in the scan in-plane resolution,
which also varied according to the scanner model. As such, the study recommended
the assessment of the reproducibility and the harmonizability (using any harmonization
method) of radiomic features in the data under study before performing radiomics analyses.
Refer to Table 8 for summary of ComBat method and its derivatives.

Table 8. Summary table of ComBat methods and its derivatives.

ComBat Method and Its Derivatives

Reference Data Variation Across Summary

Fortin et al. [169] DTI data Acquisition and
reconstruction parameters

Used ComBat to harmonize cortical thickness
measurements calculated on DTI data to remove

variations in feature values attributed to differences in
acquisition and reconstruction parameters.

Orlhac et al. [170] CT scans(phantom
[180], lung cancer) Multi-centric dataset

Investigated the potential of ComBat to correct for the
variations of CT radiomic features extracted from scans

collected from different centers.

Orlhac et al. [171] PET scans Acquisition parameters
Investigated the potential of ComBat to harmonize

radiomic features extracted from PET scans
acquired differently

Ibrahim et al. [174] Phantom CT [176] Acquisition and
reconstruction parameters

Proposed a framework that guides the use of ComBat in
radiomics analyses to assess the performance of ComBat

Ibrahim et al. [177] Phantom CT [176] Imaging protocols, vendors
Investigated the reproducibility of radiomic features in a
pairwise manner and performed ComBat harmonization

on it.

Ibrahim et al. [178,179] Phantom CT In-plane resolution

Performed pairwise comparisons between the scans and
reported that radiomic features are affected differently by

the degree of variation within a single reconstruction
parameter (in-plane resolution).
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3.2.4. Normalization Using Deep Learning

Andrearczyk et al. [21] proposed a DL-based technique trained on phantom data
to normalize various types of features including hand-crafted and deep features. The
main idea is to use a simple neural network (two layers in [21]) to learn a non-linear
normalization transformation. This work is based on the assumption that training a deep
model on top of features to classify texture types while being adversarial to the scanner of
origin creates features that are stable to scanner variations. It therefore aims at reducing
intra-scan clustering that does not underline true physio-pathological tissue changes, while
maintaining highly informative and discriminative features. The generalization of the
proposed approach to unseen textures and unseen scanners is demonstrated by a set of
experiments using a publicly available CT texture phantom dataset scanned with various
imaging devices and parameters. It is assessed by training the model on a subset of classes
and scanners and evaluating the stability on the remaining ones. The stability of the
normalized features is demonstrated by the increased ICC, clustering based measures
showing the class separability, as well as reduced correlation with pixel spacings. The
phantom used for this method was developed in [27]. It contains 10 cartridges of different
textures and was scanned by 17 different scanners and acquisition settings. Refer to
Figure 8 for an overview of their proposed method. Using a phantom allows a controlled
analysis that isolates the variation due to scanner variation from other variations related
with patient acquisition. Phantoms can also be scanned by specific scanners with special
clinical settings to specifically improve the normalization of the features for clinical use.
The normalization could therefore be updated to follow the latest imaging advances and
standards. However, while this phantom was designed to mimic actual biomedical tissue
types (particularly non-small cell lung cancer), the method has yet to be validated on real
patient data.
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Studies by Rozantsev et al. [181] and Sun and Saenko [182] have adapted divergence-
based approaches for domain adaptation by using a two-stream CNN architecture (one
in the source domain with synthetic images and the other in the target domain with real
images) with unshared weights and the DeepCORAL [183] architecture, respectively. Their
methodologies provided a domain-invariant representation by trying to reduce the diver-
gence (reduce the gap/distance) between feature distributions of source and target data
distributions (both use non-medical images). Rozantsev et al. [181] used maximum mean
discrepancy (MMD) to determine if two samples have the same distribution and Sun and
Saenko [182] used correlation alignment that attempts to align the second-order statistics
of two distributions by applying a linear transformation. [181] obtains an average accuracy
of 0.908 while [182] got an average accuracy of 0.72, both using the Office dataset [184].
However, if these methods were to be applied to medical images, the assumption that
scanner information can be eliminated by a simple definable constraint could probably
work for linear systems like CT rather than for complex nonlinear systems such as MRI.
To make domain adaptation techniques widely applicable, domain adversarial neural net-
works (DANNs) [185,186] have been explored to increase the invariance of the transformed
features to the scanner of origin. DANNs use a label predictor and a domain classifier to
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optimize the features to make the learned features discriminative for the main task but
non-discriminative between the domains. Adapting the same framework as proposed
in [186], Dinsdale et al. [187] utilized an iterative update approach that aimed to generate
scanner-invariant (i.e., harmonized features) representations of MRI neuroimages while
evaluating the main task (segmentation), thus decreasing the influence of scanner variation
on the predictions. Refer to Table 9 for a summary of normalization methods using DL
techniques.

Table 9. Summary table of normalization methods using deep learning techniques.

Normalization Using Deep Learning

Reference Data Variation Across Summary

Andrearczyk et al. [21] Phantom CT [27] Acquisition and
reconstruction parameters

Proposed a DL-based technique trained on
phantom data to normalize various types

of features including hand-crafted and
deep features using a simple neural

network to learn a non-linear
normalization transformation

Rozantsev et al. [181] Non-medical images Synthetic, real image
domains

Adapted divergence-based approaches for
domain adaptation by using a two-stream

CNN architecture (one in the source
domain with synthetic images and the

other in the target domain with real
images) with unshared weights

Sun and Saenko [182] Non-medical images Different image domain in
Office dataset [184]

Adapted divergence-based approaches for
domain adaptation by using DeepCORAL

[183] architecture

Dinsdale et al. [187] MRI images (neuro) Multi-centric dataset

Adapted the framework as in [186] and
utilized an iterative update approach that
aimed to generate scanner-invariant (i.e.,
harmonized features) representations of
MRI neuroimages while evaluating the

main task (segmentation).

4. Discussion

With the emergence of Radiomics within medical image analysis comes the challenges
associated with it which could hamper the growth of the field. Both methodologies,
traditional hand-crafted features and DL, are faced with standardization issues. The hand-
crafted features are most of the time not standardized when the data under analysis is
acquired with different scanner acquisition protocols and/or reconstruction settings and
there is also a lack of biological correlation of these features. To overcome these limitations,
various standardization/harmonization techniques have been introduced and utilized.

In the image domain, the methods mentioned above are applicable on images (raw or
reconstructed image). Certain regulations and guidelines can be implemented in imaging
protocols by providing quality assurance, indications and guided documentation such as
the one laid down by ESTRO and FDA. Such guidelines are not available extensively for
MRI [49] but efforts have been taken to reduce the number of MRI protocols [51]. However,
these guidelines might not be able to compensate for the number of existing scanners and
protocol combinations. Apart from setting guidelines, models can be developed using
ML and DL on raw image data or on human interpretable reconstructed images. These
methods (data augmentation using GANs/style transfer) have emerged to provide efficient
solutions to translate images across various domains to harmonize images rather than the
radiomic features. It would be worthwhile to harmonize raw image data with underlying
hidden information from the scanners rather than using human interpretable reconstructed
images. Studies have been conducted to show that performance of models on raw image
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data is at par with that of reconstructed images [56]. Furthermore, GANs have shown
promising results to overcome the multi-centric variation. However, GANs are arduous to
train due to vanishing gradient challenges that can completely stop the learning process.
They are data hungry and suffer from mode collapse causing them to generate similar
looking images. On the other extreme, they can also add unrealistic artefacts in the images.
Moving forward, advances in the field of style transfer may prove useful to harmonize
images without the need of scanner-specific radiomic models. Neural style transfer and its
derivatives could extract texture information [101] which could be very useful to obtain
reproducible radiomic features in multi-centric trials. Although these techniques have not
been specifically analyzed to improve radiomic feature reproducibility, it can be worthwhile
to extend their potential to radiomic features.

In the feature domain, various methods have been implemented directly on radiomic
features to evaluate its reproducibility and its generalizability across scanner protocol set-
tings. The most convenient and comparatively easy way is to identify reproducible features
and focus explicitly on them to evaluate the model’s performance. The selection of repro-
ducible features helps build robust models, yet one drawback is that several informative
and useful features might be excluded for analyses while extracting ‘reproducible features’.
Furthermore, there is no generalized threshold for all features above which the latter can
be labelled as ‘reproducible enough’, the condition to be met is that the signal is stronger
than the noise. These studies report that variation in scanner acquisition and reconstruc-
tion parameters have an impact on the radiomic features and their reproducibility hence
highlighting the importance of utilizing harmonization methods for stabilizing radiomic
features under analysis. Normalization techniques such as min-max normalization, z-score
normalization, histogram matching for intensities, and ComBat harmonization have been
explored for radiomic studies. Basic statistical approaches (rescaling/standardization)
might be too simplistic to apply considering the fact that some image modalities are com-
plex and non-linear (MRI). Histogram matching or equalization is an efficient method to
normalize the intensity scales of images, but it is often used as a pre-processing step to
‘clean’ the data before feeding it to the radiomics models. On the other hand, ComBat tries
to get rid of the ‘batch effects’ (or scanner/protocol variability) by shifting data distributions
while also preserving the biological variation in the data under analysis. However, ComBat
relies heavily on labelled data to perform efficient batch correction and estimation [40].
Another disadvantage is that if new data is to be harmonized then it must be added in the
existing pool of data for ComBat to perform correctly. Alternatively, normalizing ‘deep’
features [21] can also be an efficient way to improve the reproducibility of features since DL
has a wide scope with various architectures and techniques. Domain adaptation techniques
using DL and GANs have the ability to translate images from one domain to another and
can thus increase the overlap of feature distribution between two unharmonized images.
Data augmentation, adversarial training, and normalization techniques in combination
with neural networks could complement the benefits of neural network training.

Furthermore, to assess the effects that image acquisition parameters have on radiomic
features studies have been conducted on phantom images or on images acquired from
several different patients to reduce the dosage exposure given to individual patients. One
issue with images acquired from different patients is that it introduces high variability due
to differences in patient positioning and anatomy [146,188]. On the other hand, objects used
for phantom studies are easy to scan for multiple test-retest studies and can be conveniently
transported between various imaging sites. Additionally, instructions/guidelines could be
set for standardizing the image acquisition parameters to control its variability, tailored
to fit the clinical practice. Pre-processing raw sensor-level data is an interesting approach
to harmonize images if one wants to make use of the latent information within these raw
images. Since a lot of research has already been done using ComBat methods, it would
be worthwhile to apply deep learning solutions such as GANs, style transfer, or even
normalization using deep learning techniques. These deep learning solutions need further
research to show their true potential by applying them to more real medical datasets.
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Radiographic phantoms are not the true representatives for realistic patient tissues
and this is proved by Mackin et al. [27] who conducted a study showing that the radiomic
features extracted from NSCLC (non-small cell lung cancer) and the same features extracted
from a phantom (made up of 10 different materials) did not yield the same values for any
of the features [27]. Besides, acquisition and reconstruction parameters have also proved to
have effects on the radiomic features [20,127,135,189]. Different vendors may have different
reconstruction methods and reconstruction parameters that are tailored accordingly at each
site/institution.

5. Conclusions

Radiomics is an emerging field and standardization of radiomic features and/or im-
ages is crucial for its survival and impact in this domain when it comes to multicentric
studies. Various harmonization methods have been investigated to assess the reproducibil-
ity and validation of radiomics across different scanners and protocol settings. This review
has covered various topics ranging from methods in the image domain (GANs, style
transfer, and regulations guidelines) to methods in the feature domain (statistical nor-
malization, identification of reproducible features, ‘deep’ feature normalization). The
use of harmonization methods has the potential to be beneficial in multi-center studies
and the reproducible radiomic features can be practically useful in the decision- making
process. Style transfer techniques, with style/content loss or cycle-consistency loss (e.g.,
cycleGAN) or in combination, have the potential to harmonize data in the image domain,
despite the limitations of GANs. Style transfer needs just two images to work without
any prior details about scanners/protocols and hence could be applied on old images in
retrospective studies and on unpaired images. However, in context of harmonizing images,
a limited number of experiments have been conducted and even less for radiomic studies.
For harmonization of radiomic features, ComBat methods seem to be extensively used,
although normalizing features using deep learning techniques (e.g., domain adaptation
methods) can be the way to go ahead too. [21] Showed that normalization using DL can be
extended to images coming from unknown scanners and it would be worthwhile to apply
this method in combination with GANs in future directions. More work is still needed
on identifying limits of features extracted and normalization methods based on just how
different the produced images are. Differences linked to scanner model, slice thickness,
or reconstruction kernel will likely be in clusters where close clusters can be more easily
compared than clusters that are far away from each other. Large datasets of phantom and
test-retest data need to be collected for this purpose.
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