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Abstract

Recent advancements in computational power and data availability have led to a new surge of au-
tonomous Artificial Intelligence (AI) applications. Although the majority of these applications serve
honest purposes, a recent attack has applied a generative adversarial network to tamper with com-
puted tomography (CT) images within a hospital. The effectiveness of the attack demonstrated that
many security controls remain absent or misconfigured in hospitals, and that sole reliance on the pro-
ficiency of medical staff is not sufficient to detect this type of image tampering attack. This thesis
investigates a solution which is largely independent from the infrastructure of a hospital, yet promises
to be an effective tool to detect a variety of attacks which seek to tamper with medical images. The
solution harnesses distinct elements within CT scans which are inadvertently embedded during the
image acquisition process by their respective scanner. These elements may consequently act as device
fingerprints, which are sensitive to distortions. This thesis demonstrates that these device fingerprints
facilitate accurate CT scanner classification, and furthermore enable the detection of CT images tam-
pered by generative adversarial networks.
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Chapter 1

Introduction

The concept of Artificial Intelligence (AI) has existed for decades. Simple applications, such as a
program for playing checkers, have been introduced as early as 1959 [84]. However, recent advance-
ment in computational power, as well as the rise of practical implementations of AI algorithms, have
led to a surge of novel and "smart" applications. Notably, advancements in deep learning have paved
the way for an abundance of applications which aim to improve businesses processes, or simply re-
lief humans in their daily lives. As an example within the healthcare sector, deep learning has been
embraced to support medical staff in making diagnoses [56] and by predicting future complications
of patients [16]. The growth in popularity and applicability of deep learning has also found its way
into the domain of information security. Although deep learning and AI have opened up a new path
to improve existing security tasks, the technology has also raised new concerns and challenges within
information security itself. One recent example is a malicious application, capable of injecting and
removing malign nodules from computed tomography (CT) scans by abusing a novel deep learning
approach to alter the images autonomously [63]. This autonomy combined with the high quality of
the modifications have made this attack challenging to detect.

This thesis surveys the applicability and impact of deep learning within the information security do-
main, and discusses the recent attack on CT images in more detail. This attack will furthermore serve
as the main research topic of this thesis. In an effort to mitigate the threat of this attack, a potential
solution is proposed which aims to negate this version of the attack as well as potential future varia-
tions. Finally, multiple experiments have been conducted to motivate and evaluate the performance of
the proposed solution, as well as its limitations.

The remainder of this chapter is structured as follows. Section 1 first introduces the CT-GAN attack
that is capable of real-time tampering of CT images. This section furthermore details the significance
of the attack and motivates why further research into potential mitigations is meaningful. Section 2 is
the final section of this chapter and describes the remaining structure of the thesis.

1.1 Tampered Images in the Medical Domain

Recently, researchers managed to enter a hospital and covertly deploy a microcontroller containing a
malicious deep learning application [63]. This application, dubbed CT-GAN, intercepted CT images
on the network of the hospital, and applied impactful modifications to these images. Namely, the

1



2 CHAPTER 1. INTRODUCTION

application selectively removed and injected malign cancer nodules from passing CT images. An ex-
ample is presented in Figure 1.1, where the red rectangle highlights the injection of a malign nodule.
Modifications such as the one presented in the figure went largely unnoticed and resulted in misdiag-
noses by the medical staff, who assess these images to detect potential illness in patients. However,
perhaps most notable is the manner in which the attack was executed. Specifically, CT-GAN em-
ployed a generative adversarial network (see section 2.1.3) to tamper with the CT images completely
autonomously and in real-time. Paired with the high quality and success rate of the modifications it
has made this attack particularly challenging to detect once it has been successfully deployed.

Figure 1.1: A successful attack by the CT-GAN. Left: the original CT image. Right: the tampered
version with an injected nodule.

1.1.1 Significance and the Motivation for Countermeasures

The CT-GAN attack also highlighted several major security flaws that are often present in the ICT
infrastructure of hospitals. Network communication shows to be often unencrypted, and medical
images are rarely digitally signed to facilitate the painless exchange of imagery. Indeed, it is this lack
of implemented security controls which enabled the attackers to deploy state-of-the-art technology on
the hospital network, and tamper with the images.

Although tampering with (digital) imagery is by no means a novel concept by itself, it is, however,
a threat that remains largely unrecognized in the medical domain. The apparent inability to ensure
image integrity does not stem from a lack of solutions. Most if not all systems in hospitals have been
offering cryptographic tools such as digital signatures for years, yet remain largely unused due to the
complexity and risks involved during the implementation. Specifically, the implementation of these
security controls remains challenging as the systems are vast, and prolonged downtime of certain
critical systems may even risk the loss of human life.

However, security violations may also have significant consequences themselves. Next to the potential
reputation damage [68], attacks such as the CT-GAN attack may also themselves affect the patients’
well-being. Specifically, the deception may lead to a series of incorrect diagnoses and consequently
delay crucial treatment or cause entirely misguided treatment. Medical staff is also likely to be less
vigilant when assessing potentially tampered medical images as opposed to images in domains such
as social media or internet forums where fabricated content is commonplace. Nevertheless, the small
amount of incidents related to medical image tampering does not reduce the potential impact of a
successful attack. Finally, given the autonomous manner in which the CT-GAN attack operates, the
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attack may continue to go unnoticed for a prolonged amount of time. The current lack of awareness,
combined with the potential impact of the CT-GAN attack makes it valuable to further investigate the
threat and explore existing, as well as innovative, countermeasures.

1.2 Contributions

The previous section highlighted the current lack of implemented security controls within hospitals.
Although highly effective countermeasures against image tampering (integrity) attacks exist, they are
rarely put into practice due to their complex implementation. This thesis proposes a solution which
harnesses distinct features, already embedded in all legitimate CT images, to detect image tampering
performed by generative adversarial networks. By solely utilizing information already present within
CT images, the dependency on existing infrastructure is largely eliminated, which consequently facil-
itates a painless implementation. Figure 1.2 illustrates the potential deployment of the solution within
a hospital. As can be seen, the solution is activated during the diagnosis of a patient by a medical
professional, and solely requires the CT images as its input. The solution subsequently extracts dis-
tinct features, the device fingerprint, from the images to discover potential tampering attempts. As the
solution may be deployed locally on the workstation of the medical professional, an attacker will also
unlikely be able to bypass or interfere with the detection.

However, the solution is largely dependent on the presence of distinct features embedded within legit-
imate CT images. As such, this thesis sets out to:

• Explore the existence of potential device fingerprints within CT images, embedded by the CT
scanner which produced the image.

• Investigate the ability to distinguish CT scanner devices, based on CT images and the embedded
fingerprint.

• Investigate if these device fingerprints may be harnessed to detect image tampering attacks.

This exploratory study was accomplished by performing and evaluating multiple experiments which
lead to novel insights and contributions. This is, to the best of our knowledge, the first work to:

• Use a deep learning classifier to perform CT scanner classification based on CT images. (Chap-
ter 6)

• Investigate the potential benefit of extracting a device fingerprint from CT images to perform
classification of CT scanner devices. (Chapter 6)

• Propose and evaluate a solution to detect CT images tampered by a generative adversarial net-
work. (Chapter 3 and 7)

• Investigate the potential benefit of harnessing device fingerprints to reliably detect tampered CT
scans. (Chapter 7)
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Figure 1.2: The proposed solution to support the detection of tampered images.

1.3 Remaining Structure of this Thesis

The remainder of this thesis is structured as follows. Chapter 2 first surveys the fields of security
and deep learning, and provides several examples where these two domains interact with each other.
The subsequent chapters then focus on the CT-GAN attack, and detail the research and experiments
that have been conducted during this project. Correspondingly, chapter 3 formalizes the problem
statement relevant to the CT-GAN attack and proposes a novel solution. The chapter furthermore
discusses the related work relevant to the solution, and discusses a potential attacker model. Chapter
4 then introduces several research questions that will help to build and evaluate the proposed solution.
Chapter 5 describes the experimental setup and considerations that apply throughout all experiments
conducted during the project. Chapter 6 and 7 subsequently detail the experiments, their results,
and provide answers to the research questions. Finally, chapter 8 discusses the overall results and
concludes the thesis.



Chapter 2

Security and Deep Learning Survey

In recent years, deep learning has garnered a large amount of positive attention from researchers
across various fields of expertise. However, in the domain of information security, deep learning has
also raised unprecedented concerns. Although deep learning in this domain has also primarily been
applied to improve existing tasks, deep learning models themselves have also been found vulnerable
to abuse. This chapter surveys the fields of deep learning and security, and covers both the positive
contributions as well as current vulnerabilities. Section 2.1 provides a brief and high-level introduction
to deep learning, and covers topics that remain relevant throughout the remainder of the thesis. Section
2.2 then highlights several contributions of deep learning within the security domain. Finally, section
2.3 covers the most prominent vulnerabilities and abuse cases of deep learning models.

2.1 Deep Learning

This section will cover some of the very fundamentals of deep learning, on a high level. For a signif-
icantly more thorough read, which also provides vital information on learning rate, optimization and
regularization, the reader is encouraged to read the work of Ian Goodfellow [30]. Furthermore, Jürgen
Schmidhuber provides a primarily historic overview of all notable advancements within deep learning
[85].

Deep learning is an approach which is part of the greater paradigm of machine learning. The machine
learning methods perform a certain task, which based on given input x, produce some desired output
y. One such task is classification, in which input, such as an image, is assigned a single label. For such
a classification task, the model is trained on labelled samples, to then predict the label of unlabelled
samples. This approach, in which the model is trained on labelled data, is called supervised learning.
Conversely, clustering is a task on unlabelled data in which a machine learning model maps input
samples which share certain features, closer together on a predetermined output space. Training on
unlabelled data is an example of unsupervised learning.

The namesake of deep learning models is related to the learning approach, which consequently con-
tributes to the often improved performance over traditional machine learning methods. Specifically,
deep learning models do not compute the final output based on the immediate input, but instead pos-
sess additional, intermediate, hidden layers. These hidden layers, which collectively determine the
depth of the complete model, extract increasingly abstract information before the model computes
its final output. Most commonly, the output of a hidden layer serves as the input of its immediate

5
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successive layer. This setup creates a chain of connected layers which may collectively form a fully
connected, feed-forward network (Figure 2.1).

Each layer within such a feed-forward network consists of individual units, called neurons, which
take the collective output of a previous layer and process it as its input. A non-linear activation
function, such as the sigmoid or tanh function, is then subsequently applied on the processed input
to determine the output value of the neuron. As such, the successive layers of neurons gradually
increase the abstraction of the original input, and consequently cause the model to create its own
feature representation from the original input data. This abstraction partially eliminates the necessity
of manual feature-engineering that traditional machine learning models require.

x

Input layer Hidden layer Output layer

y

Figure 2.1: A Feed-forward neural network with a single hidden layer.

2.1.1 Training a Neural Network

In order for the neural network to adequately perform on a given task, the network requires a function
which reflects the overall performance of the model. This loss function computes a certain error term
for the model, and minimization of this term should lead to desirable performance of the model. Bi-
nary cross-entropy and categorical cross-entropy are popular loss functions for binary and multiclass
classification tasks, respectively.

In order to minimize the loss, the model adjusts the weight of each neuron during a procedure called
back-propagation [82], in which the value of the loss is propagated backwards from the final layer
of the network, to the first. Most commonly, the values of the weights themselves are then adjusted
by algorithms based on the Stochastic Gradient Descent. This procedure is then repeated at certain
intervals until the loss of the model ideally converges to a local or global minimum.

2.1.2 Convolutional Neural Networks

In addition to the traditional feed-forward network which consists of dense layers of fully connected
neurons, alternative types of networks also exist. One such network is the Convolutional Neural Net-
work (CNN) [51] which often incorporates fully connected layers, alongside additional convolutional
and pooling layers. These networks perform well on data which is loosely spatially correlated, such
as images. Specifically, the convolutional layers contain a rectangular kernel which is slid over each
feature of the input. In the case of images, the kernel slides over each pixel of the image, and ana-
lyzes the pixel as well as its local neighbours to determine the activation value of the central pixel in
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the kernel. After all features have been processed, the convolutional layer outputs an activation map
which contains the activation value for each pixel. Pooling layers, such as max pooling, take small,
local subsets of their input, such as the activation map of a convolutional layer, and pool this subset
to a single value. The use of pooling layers subsequently reduces the dimensionality of its input. In a
complete network, a common approach is to apply multiple convolutional layers, followed by a single
pooling layer. This sequence of layers is then stacked multiple times, and finally supplemented with a
fully connected layer to complete the network.

2.1.3 Generative Adversarial Networks

Although deep neural networks are perhaps predominantly known for making predictions on exist-
ing data, Goodfellow et al. [32] proposed an innovative network architecture capable of generating
its owns data samples which show a striking similarity with samples from the original dataset. This
Generative Adversarial Network (GAN) is composed of two models, a generator and discriminator,
pitted against each other as illustrated in Figure 2.2. The generator transforms a (random) feature
vector z and sends the modified sample to the discriminator. The discriminator trains on batches of
samples which contain data from an original dataset, and samples produced by the generator. The
discriminator is tasked to distinguish between the original, real samples, and the generated, fake sam-
ples produced by the generator. The result of the classification is propagated back to both networks to
improve the discrimination, as well as the generative task.

A common analogy is to consider the generator as a counterfeiter whose desire is to produce fake
currency undetected, while the discriminator acts as the police whose goal is to distinguish between
real and fake currency. Both networks are adversaries of each other and trained simultaneously. Dur-
ing training, the generator will gradually improve the quality of its samples, while the discriminator
gradually becomes more adept in distinguishing generated samples from samples belonging to the
original dataset. Ideally, after the training process is completed, the generated samples will share
great similarity with the original training data.

dataset

D

G
z

xg[1]

xr[0]

y ∈ {0,1}

Backpropagation

Figure 2.2: The setup of a Generative Adversarial Network.

Since the initial success of GANs, the field of generative models has developed substantially and
numerous variations have been proposed. One notable example is the Conditional Generative Adver-
sarial Net (CGAN) [64] in which additional auxiliary input is fed to the network. This auxiliary input
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is used to condition the network in order to steer the generated output. This approach has been applied
with great success for Image-to-Image translation tasks [105], including inpainting [39]. In the case
of an inpainting task, the auxiliary input is an incomplete version of an image, and the network is
tasked to fill in the missing section.

Generative models are most commonly deployed to augment training data in domains where data
samples are often scarce, such as the medical domain. The augmentation with realistic samples leads
to more training data and consequently improves the performance of existing task such as liver lesion
classification [27] or lung nodule segmentation [41]. However, the rapidly improving quality of the
generated samples have also raised concerns about the potential abuse of these generative models. For
example, in the security domain, generative models have been employed to adapt malware in order
to slip past Intrusion Prevention and Detection Systems [35, 77]. Furthermore, in the imaging and
computer vision domain, Karras et al. [44] have managed to generate images of impressive realism,
even garnering media attention [58, 96]. In addition to images, synthetic videos, often referred to as
Deepfakes [69], have also garnered the attention of researchers and media alike. These videos often
feature important political figures placed in disingenuous situations, or giving deceptive speeches [88,
2].

2.1.4 Deep Learning in Healthcare

The application of deep learning has also found widespread adoption within the medical domain,
perhaps most commonly employed to offer support in various decision making. For instance, infor-
mation from electronic health records may be fed into a stack of denoising autoencoders in order to
learn representations which may then be used to predict future illness or diseases in patients [61]. Fur-
thermore, numerous tasks for various medical imagery, which often utilize convolutional networks,
have also been highly successful. For example, Esteva et al. [24] fine-tuned a pre-trained Google In-
ception V3 model [89] to classify various types of skin lesions in order to support the early detection
of skin cancer. Besides these classification tasks, Ronneberger et al. [80] introduced a U-net architec-
ture for convolutional networks to localize and segment neuronal structures in Electron Microscope
(EM) images. Segmentation and localization tasks differ from classification tasks as the latter may
merely conclude if a certain object is present (e.g. malign cancer nodules), while localization and
segmentation tasks aim to highlight specific objects within a larger image.

Despite its overall success, the performance of a deep learning model is largely dependent on the
amount and quality of its training data. Traditionally, small datasets are augmented by performing
certain transformations such as rotation, mirroring and disposition on each samples in order to capture
a larger variation of samples, but also increase the volume of the training set. However, the amount of
effective transformations until the augmented samples are a near-duplicate of the original, is limited.
Fortunately, the recent advancements in Generated Adversarial Networks [32] have introduced a new
avenue to augment datasets. Generative networks have been applied to generate synthetic samples of
medical images to boost the performance of e.g. a liver lesion classification task [27] or lung nodule
segmentation [41].

The aforementioned examples provide merely a small glimpse into the vast application of deep learn-
ing within the medical domain. The reader is encouraged to look into the work of Thaler and
Menkovski [91], and Miotto et al. [62] for more extensive surveys on the adoption of deep learn-
ing within healthcare.
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2.2 Applying Deep Learning to Solve Security Tasks

The accomplishments achieved by machine- and deep learning models have, unsurprisingly, also
gained notable attention within the domain of information security. In this domain, tasks commonly
involve distinguishing malicious from acceptable, innocent behaviour. Separating phishing e-mails
from legitimate ones, or identifying malware among ordinary binaries may all be viewed as (binary)
classification tasks. Since the traditional decision-making within the information security domain is
already predominantly based on digital data, employing deep learning to perhaps improve the existing
tasks is a logical step. Although deep learning has indeed been applied with great success, the com-
plexity of neural networks often makes it a challenge to rationalize the decision of the neural network.
This lack of interpretability has even lead to a research field of its own [60], and is one of the reasons
that some systems still favour knowledge-based solutions over a deep learning approach.

This section will consider a relatively small subset of applicable areas within information security.
For a more extensive overview, the reader is encouraged to read the survey by Thaler et al. [92] which
also approaches the applicable areas from a data-driven perspective.

2.2.1 Network Intrusion and Anomaly Detection

To determine whether a network has been compromised by an attacker, a common task is to analyze
the traffic of the network, and identify any malicious data flows. The complexity of this task has
greatly increased over the past years, as the diversity and sheer amount of network traffic has grown
substantially. As a consequence, ensuring effective decision-making when identifying malicious activ-
ity often demands a vast amount of domain knowledge. The task primarily involves learning ordinary
situations and behaviour, to later capture any divergence. This may include unexpected login times,
or unusual data access by particular users. Although traditional machine learning has shown effec-
tiveness, obtaining suitable features is not trivial. Deep learning improves this situation as it is able to
learn suitable representations of the input data by itself, largely eliminating the necessity of manual
feature engineering by domain experts.

Yin et al. [99] propose a Recurrent Neural Network (RNN) to identify various attacks such as DoS
(Denial of Service) and Probing attacks. The complete dataset consists of a total of 5 classes of
which the data samples contain 41 features. Their proposed classifier reaches an accuracy of up to
83.28%, outperforming traditional machine learning classifiers. Kang and Kang [43] proposed an IDS
to improve the security of intra-vehicular networks, which often employ the CAN bus architecture to
communicate messages across different components within a vehicle. The authors dissect a CAN
packet into features to train a deep neural network to detect malicious activity on the network. The
resulting classifier achieves an accuracy of up to 97.8% with false positive and false negative rates of
1.6% and 2.8%, respectively.

2.2.2 Content Classification

Next to the classification of (active) network traffic, neural networks have also been applied to classify
content such as phishing e-mails or malware. To detect phishing e-mails, Basnet et al. [6] evaluate
several machine learning approaches on a dataset containing 4,000 e-mails, 973 of which are labelled
as phishing e-mails. Among other sources, the authors combine information from the domain of the
sender, and the HTML source of the e-mail to extract a total of 16 features. Both their proposed neural
network and SVM achieved an accuracy of 97.99%,
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To identify malicious Android apps available on the Google Play Store, Yuan et al. [102] combined a
set of 250 apps known to be malicious, with the top 250 apps from the Google Play Store, assumed
to be innocent, to acquire a total dataset containing 500 apps . Their proposed deep learning classifier
achieves 96.5% accuracy and outperforms their second-best classifier, a SVM, by nearly 15%. In
2015, Microsoft also announced a Kaggle malware classification challenge, providing a dataset with
over 20,000 malware samples which still serves as a common benchmark [79].

2.2.3 Digital Forensics

In the field of media forensics, deep learning has been embraced for tasks related to steganalysis,
watermarking and forgery localization. Qian et al. [75] were among the first to experiment how well
a customized CNN is able to capture features that are caused by steganography traces. In their at-
tempt, the authors were able to achieve comparable performance of state-of-the-art solutions which
still applied extensive feature engineering. Bappy et al. [5] apply a recurrent neural network (RNN)
to detect local image manipulation such as the copy-clone manipulation. Differently than local ma-
nipulation, Bayar and Stamm [7] proposed a CNN architecture to detect global manipulations such as
JPEG compression or Guassian Blur. Their model manages to outperform traditional state-of-the-art,
with an overall accuracy of 99.66%.

As the field of digital forensics continues to rapidly expand its application of deep learning techniques,
the interested reader is encouraged to read the survey by Meng et al. [57], containing numerous exam-
ples of deep learning solutions for tasks related to digital watermarking and other information hiding
techniques [104]. An extensive survey by Zheng et al. furthermore describes numerous manipulation
techniques, detection techniques and datasets used in the realm of forensics.

2.3 Attacks Against Deep Learning Models

Despite their positive contribution in solving security tasks, deep learning models may also serve as an
attack vector themselves. Training a neural network often demands considerable resources; research
time, computational power, and even access to exclusive training data are only few among many cost
factors. Certain models are therefore considered Intellectual Property (IP), often forming a vital part
in certain business models such as Machine Learning as a Service (MLaaS). Consequently, it is often
in a business’ best interest to keep the inner workings of their models confidential, ensure correct
behavior and integrity of the model, while also exposing it to a broader audience to benefit from its
predictions (availability).

Besides protecting a model itself in the traditional sense of information security (Confidentiality,
Integrity and Availability), it is often equally vital that a model does not leak critical information
related to its training data and potentially jeopardize the privacy of its data subjects. Finally, deep
learning may also be employed by malicious actors themselves, posing a powerful threat to honest
parties.

This section explores the most common avenues in which deep learning models are attacked, or abused
by attackers to aid in malicious activity. Even though most of these attacks apply to both deep learn-
ing and traditional machine learning, certain attacks are more effective, or practical, against a partic-
ular type of learning algorithm. For the sake of completeness, this survey will also consider attacks
that predominantly threaten traditional machine learning models and have only found limited success
against deep learning.
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2.3.1 Attacker Models

When considering attacks against deep learning (or machine learning) models, an attacker’s capabili-
ties or knowledge of the model under attack, are often expressed in terms of white-box and black-box
capability. In a strict black-box setting, an attacker may feed a model with their own data, but is
merely able to observe the output of the model. Besides the accepted input of the model, its output,
and an optional confidence value for prediction tasks, no information regarding the model itself is pro-
vided to the attacker. However, some researchers consider an attacker’s knowledge of the underlying
learning method of the model, e.g. neural net, random forest [8], or logistic regression, also part of
the black-box attacker model.

White-box or gray-box models are subject to significantly more variance and are mostly dependent
on the attacker’s objective. Some attackers assume knowledge of a model’s exact architecture, while
other attackers also assume knowledge of hyperparameters or even the values of a neural network’s
entire set of weights. Differently, some attacks are primarily based on knowledge of the training
procedure such as the dataset used during training, or the amount of data on which a model has been
trained. Nevertheless, a white-box attacker model has always more knowledge and capability than the
less powerful black-box attacker. However, an effective attack in a black-box setting poses a greater
threat than an equally effective attack in a gray-box or white-box setting.

2.3.2 Model Extraction

In a model extraction attack (Figure 2.3), an attacker repeatedly queries a victim’s machine learning
model and exploits the model’s output to produce a near-copy of the victim’s model. The attack,
sometimes referred to as ’model stealing’, was first introduced by Tramèr et al. [95] in which the
authors attack Machine Learning as a Service (MLaaS) services to mimic a high-performing model
for their own gain, requiring less resources than training an entirely new model on their own. Once
a model is successfully copied, the attacker is able to query her own model instead unrestrictedly,
avoiding potential query costs or exploit the copy to craft further attacks such as an adversarial attack
(section 2.3.4).

The initial attack by Tramèr et al. primarily executed the attack using equation-solving, which exploits
models such as logistic regression that directly compute class probabilities based on the given input.
When the underlying learning algorithm is known and the class probabilities are given as output
after each query, the attack becomes almost trivial to execute. Since the attack relies on additional
information, namely knowledge of the underlying algorithm and the class probabilities for the queried
samples, it may not be considered a strict black-box attack. Nevertheless, as the required pieces of
information are often provided by the query service, the attack still has practical application.

In the same study, the authors explore further application of model extraction techniques, devising
attacks against decision tree models and even multilayer perceptrons. Although the attack was suc-
cessful against neural networks, it required considerably more queries; for a near-copy of a small,
multilayer perceptron (2,225 unknown parameters) it took around 11,000 queries to extract, while
the extraction of a logistic regression model for the same dataset was completed within 1,500 queries.
As the attack primarily relies on confidence values of the prediction, omitting this information from a
model’s output would significantly reduce the attack’s effectiveness.

In a similar attack, Papernot et al. [72] aimed to train a substitute model with similar behaviour as
their victim’s model by adjusting the substitute model based on the victim’s classifications of pur-
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posefully crafted synthetic training samples. Although the main objective of the attack was to create
highly effective adversarial examples, the proposed training process could be completed in as few as
2.000 queries to achieve similar behaviour than the victim’s model. Although the substitute showed
transferable behaviour regarding adversarial examples, its accuracy on ordinary samples remained
significantly worse than its victim’s accuracy.

More recently, Juuti et al. [42] presented an attack that is considerably more practical in comparison
to the original model stealing attack [95]. In their proposed attack, taking inspiration from the attack
by Papernot et al. [72], the authors were able to extract a deep neural network containing almost
500,000 parameters, in just over 100,000 queries, with a test-agreement of nearly 98%. However,
the attack described by Juuti et al. requires significantly more knowledge of the victim’s underlying
model, specifically the entire architecture of the model.

Juuti et al. further propose a defensive mechanism to detect model extraction based on the distribution
of the samples used in queries during the extraction process. Their detector was able to discover all
previously discussed model extraction techniques [95, 72, 42] with little false-positive-rates (up to
0.6%). Finally, another mechanism to potentially mitigate the impact of a model extraction attack
is to embed specific information or behaviour into the neural network, serving as a watermark. Pro-
posed solutions include the modification of layer functions within the neural network [81] or training
the network on carefully crafted samples [103]. To verify ownership of a potentially stolen model,
both proposals involve querying the model in question on specific input and observing the model’s re-
sponses and verify whether they match the unique responses given by the legitimate, original model.
However, both proposals require at least black-box access to the investigated model, which may di-
minish the practicality of the solutions as an attacker may still use the model in secret without any
hindrance.

In conclusion, the attack model extraction attack may certainly be abused in practice. However, in its
current state, it may be predominantly abused as a stepping stone for a more advanced attack [72].
Specifically, extracting a near copy of a complex neural network still requires considerable knowledge
of the target network. Nevertheless, traditional machine learning algorithms remain vulnerable to
model extraction.

MLaaS
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Figure 2.3: A simple example of a model extraction attack.
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2.3.3 Model Inversion

Another threat to ML models is the leakage of information related to the training data used by the
model. These attacks are often referred to as model inversion attacks, or membership inference attacks
if the objective is to test whether a certain data sample was part of a model’s training data [86, 26].
These attacks are especially threatening in situations where training data should remain confidential
or contains sensitive information. In one attack, the authors were able to extract sensitive features
from training data and could reasonably reconstruct faces from a facial recognition classifier [25].

Rounding, or completely omitting additional values such as confidence values from a model’s output
often are among the most common countermeasures to reduce the effectiveness of an attack. Differen-
tial privacy [23], an approach which adds a certain amount of noise to a data source, is also considered
a strong candidate in thwarting these specific attacks. In an effort to apply differential privacy to the
training data of deep neural networks, Abadi et al. [1] propose a modified, differential private version
of the stochastic gradient descent algorithm (SGD). Additionally, they introduce an algorithm which
is able to compute and track the privacy loss during training. Although the the addition of differential
privacy comes at the cost of accuracy, their model trained on MNIST drops as little as 1.3% accuracy
when differential privacy is applied.

2.3.4 Adversarial Examples

Adversarial attacks are perhaps the most well-studied form of attack and aim to undermine the in-
tegrity of deep learning models. The most common application of the attack is to target deep learning
models which are tasked to classify given input samples. In the attack, the attacker picks an input
sample from an arbitrary class A, which is correctly classified by the model to indeed stem from class
A. The attacker then and adds small perturbations to the sample such that the model now classifies,
often with high confidence, the sample as class B. This carefully added perturbation, leading to a
so-called adversarial example, is often imperceptible by humans, adding to the curiosity of the attack.
Figure 2.4 demonstrates how the imperceptible perturbation leads to drastic misclassification.

Figure 2.4: A popular example of an adversarial attack. Source: OpenAI [31]
.

Adversarial examples first gained notable attention after Szegedy et al. [90] found that deep neural
networks contain certain blind spots that may induce misclassification, though the authors could not
fully explain it at the time. Following the original discovery, Goodfellow et al. [29] attributed the
vulnerability to an apparent linearity present even in non-linear models, such as neural networks.
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More recent work by Ilyas et al. [38] suggests that the vulnerability to adversarial examples may be
attributed to the existence of non-robust features within images.

Moreover, [29] introduced the "fast gradient sign method" to consistently and efficiently craft adver-
sarial examples. Although the fast gradient sign method is considered to be one of least computa-
tionally expensive algorithms to craft adversarial examples, Papernot et al. [73] proposed a method
exploiting a Jacobian Matrix, which requires more computations, yet adds fewer perturbations to the
original sample. The fewer amount of perturbation make this enhanced attack more difficult to detect.
More recently, Su et al. [87] proposed an algorithm in which merely a single pixel is modified to
trigger a misclassification by an underlying model.

Besides the popular exploitation in computer vision, the presence of adversarial examples is not lim-
ited to image classification tasks, and in fact affects any domain employing deep learning models.
Carlini et al. [11] managed to trigger specific commands by the voice assistant of Google ("OK
Google") while the voice signal remained unrecognizable by humans. Kurakin et al. [50] further-
more showed that photographs of perturbed images also lead to misclassification, demonstrating the
robustness of adversarial examples even when transferred to a different medium.

In addition to the inherit vulnerability to adversarial examples which all deep learning models posses,
certain adversarial examples also transfer across entirely different models [94, 66]. I.e. examples
crafted to fool model A, may also have similar effect on a different model B. In the seminal work of
Papernot et al. [72], the authors demonstrate the effectiveness of adversarial attacks when merely a
weak, black-box attacker model is considered. The authors first commence with a model extraction
technique (section 2.3.2) to obtain a substitute for the victim’s model. After obtaining a substitute
which sufficiently mimics the original model of the victim, adversarial examples are crafted for the
substitute model. The adversarial examples which are proven to be effective on the substitute are then
consequently used on the original model. The attack proved to be highly effective, with misclassifica-
tion rates of over 97% by the victim’s original model.

Countermeasures

Given that the existence of adversarial examples is directly related to the core behaviour of neural
networks, finding an effective countermeasure remains an open research problem. Initially proposed
countermeasures such as improved gradient masking [93] or defensive distillation [74] have been
surpassed by stronger adversarial attacks such as [12]. Thus far, the most consistent countermeasure to
adversarial examples remains to engage in adversarial training in which samples from several attacks
are used to train the network on these perturbations [29]. To facilitate the adversarial training, Papernot
et al. [71] have created the library cleverhans1 to train models on the most common attacks.

However, the field of adversarial attacks proceeds to evolve, with new attacks and possible mitigations
being proposed regularly. In an effort to improve the quality of new defense proposals, Carlini et al.
[10] have published a paper which may serve as a guideline to evaluate potential defensive techniques.
Finally, given the substantial amount of literature available on this particular topic, the interested
reader is encouraged to take a look at surveys which exclusively focus on the threat and current state-
of-the-art of adversarial examples and potential countermeasures [3, 101].

1https://www.cleverhans.io/

https://www.cleverhans.io/
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2.3.5 Malicious Application of Generative Adversarial Networks

With a similarly deceptive goal as adversarial examples, generative adversarial networks (GAN) have
also been applied to support in malicious activity. In order to bypass a malware detector, Hu and Tan
[36] set up a GAN architecture and fit their discriminator to the detector under attack, starting out
with an existing dataset of both benign and malware samples. Once the discriminator has become a
suitable substitute for the detector under attack, the authors pit the generator and discriminator against
each other to create undetectable malware samples. After sufficient training, the samples provided by
the generator are then directly fed into the victim’s detector. Their highly effective attack reduced the
true-positive rate of the detector to nearly 0%, i.e. no malicious sample could be identified as such.
Similarly, Rigaki and Garcia [78] have shown to dynamically modify network traffic to avoid detection
by an Intrusion Prevention System (IPS). Although both applications consider a black-box attacker
model, it is important to note that these applications still require direct feedback from the victim’s
detector as to whether or not they have been detected, which may be an unrealistic assumption in
practice.

Within the setting of collaborative learning, a GAN has been employed to target a specific user and
generate samples which greatly resemble the victim’s private dataset [34]. Here the attackers abuse the
shared, public model as its discriminator, while their constructed generator aims to produce samples
resembling the victim’s class A. The synthetic samples are then injected into the training process of
the shared model, but under a false label B, causing the shared model to misclassify samples of class
A as class B. As a consequence, when the victim attempts to improve the accuracy of the shared
model, she unwittingly improves the acting discriminator of the attackers. This cycle repeats until the
attacker’s generator is able to produce samples which closely mimic the training data of the victim,
potentially leaking sensitive information.

Recently, within the healthcare sector, Mirsky et al. [63] have constructed a CGAN capable of in-
jecting and removing cancer nodules from Computed Tomography (CT) images. In their attack, the
researchers managed to infiltrate a hospital and autonomously intercept and tamper with the contents
of valid CT imagery. In the large majority of the cases, the malicious modifications achieved by the
CGAN even managed to fool the medical staff of the hospital.

As the capability and significance of the attack was both demonstrated in practice, and thoroughly
detailed in its publication, the attack provides an interesting topic of research. In addition, the CT-
GAN attack has emerged only recently, and as chapter 3 will highlight, no realistic countermeasures
have been proposed thus far. This is consequently the main motivation this specific attack has been
chosen as the research topic for this thesis. As such, this attack will be discussed in great detail in the
upcoming chapter 3 and furthermore forms the basis for the remainder of this thesis.
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Chapter 3

Problem Exploration

This chapter elaborates further on the significance of the CT-GAN attack [63] and formulates the
problem statement along with a potential solution. In addition, this chapter highlights the related
work, current state-of-the-art and open challenges from the forensic and medical fields. This chapter
is structured as follows. Section 3.1 reintroduces the CT-GAN attack and formulates the problem
statement. Section 3.2 then focuses on the related work and highlights the relationship between the
different fields of research. Section 3.3 subsequently applies the foundation of the related work to pro-
pose a novel solution to the problem. Finally, section 3.4 discusses the attacker model and elaborates
on the potential deployment of the solution within the environment of a hospital.

3.1 Problem Statement

Section 2.1.3 of the previous chapter introduced the concept of Generative Adversarial Networks
(GANs). Namely, a GAN consist of two individual networks that compete against each other. One
network, the generator, produces samples resembling the data from an existing training set while the
second network, the discriminator, aims to distinguish the generated data from the original samples.
After training, the discriminator is often discarded while the generator is kept in order to benefit from
its high quality image generation. The value of synthetic image generation has also been recognized
in the medical field where GANs are often leveraged in numerous solutions which aim to augment the
often scarce training data. The resulting, bigger dataset is then consequently applied to improve the
performance of existing tasks such as lung nodule segmentation [41].

Although these solutions are developed with honest intentions, a recently emerged application of
GANs seeks to tamper with existing medical images in order to mislead medical staff and deep learn-
ing classifiers alike. The attack pipeline introduced in [63] intercepts legitimate CT scans on the
network of a hospital, and alters the image by selectively adding or removing malign lung nodules
from the original images. These alterations were conducted completely autonomously and produced
sufficiently realistic results such that it did not raise suspicion of the professional medical staff exam-
ining the tampered imagery.

The current infrastructure of most hospitals is ill-equipped to detect and mitigate any attacks that
attempt to tamper with medical images during either transit or storage. Although numerous counter-
measures, such as digital signatures, have already been standardized for years, the absence of actual

17
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implementations indicates that the vulnerable state of hospitals is unlikely to change in the near fu-
ture. In addition to the current lack of defences implemented in hospitals, the continuous evolution
of GANs introduces an additional challenge. Any proposed countermeasures should remain effective
as new type of GANs emerge and existing networks continue to improve, as an obligation to contin-
uously update or replace existing countermeasures is infeasible within the fragile environment of a
hospital. One potential avenue for such a solution is to explore hidden, distinct elements which are
already present within all legitimate CT images. Since the primary purpose of a GAN is to produce
realistic samples, we assume that the GAN will be unable to accurately recreate such elements, and
inadvertently cause distortions during the tampering process. This assumption is furthermore moti-
vated in section 3.4.3. Since the exact manifestation of the distortions caused by the GAN would be
irrelevant for the detection, these hidden elements may not only exclusively serve as a warning system
for a particular attack, but may instead be applied to detect a variety of different tampering attacks.
The existence and potential of such hidden elements will be explored in section 3.2.2.

To summarize, an effective countermeasure against the CT-GAN attack should not be solely tailored
for this particular attack, but instead should exhibit a certain resilience against different variations as
well. Furthermore, the countermeasure should act independently from the existing hospital infrastruc-
ture. This thesis therefore aims to find reliable and isolated measures to detect any tampering attempts
in CT scans that are conducted by exploiting generative adversarial networks.

3.2 Background and Related Work

Although the healthcare sector remains slow to adapt to new threats and attacks, numerous measures
already exist to improve the ICT infrastructure security of hospitals. Nevertheless, detecting fabri-
cated images produced by a GAN is still an active field of research with several open challenges.
Only recently have studies related to image forensics begun to consider GANs as a real threat. This
section presents the current state-of-the-art to detect generated imagery, and explores specific tradi-
tional forensic techniques that have shown the potential to deal with generated samples as well.

3.2.1 Detection of Generated Samples

The rapid improvement of achieved realism by GANs urges the necessity of reliable detection tech-
niques in order to mitigate potential misuse. Although the field of image forensics contains substantial
work on traditional image modification such as compression and copy-move manipulation [5, 7], the
detection of GANs has only recently been gaining more attention. To detect the realistic images gen-
erated by [44], Mo et al. [65] proposed a highly accurate classifier aimed to distinguish real from
generated images. Similarly, Jain et al. [40] split images into individual patches and combine a CNN
with a SVM to evaluate the authenticity of individual patches in order to determine whether the entire
image is authentic or fabricated.

Although these approaches achieve high accuracies of up to 99%, generalizing the detection of GAN-
generated samples introduces additional challenges. Indeed, accurately detecting existing samples
produced by generator A does not imply high accuracy when encountering newer samples produced by
an improved version of A, or images produced by an entirely different generator B. The first challenge
herein lies in the continuous improvement of the quality of generated samples, as the fundamental
goal of the generator is to learn how to fool a discriminator. The second challenge emanates from
the large variety of GANs, where alternative methodologies and network architectures may produce
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similar realistic output, but leave behind different artefacts utilized to distinguish the samples. Thus,
classification that is exclusively achieved on known samples has a particularly narrow scope and is
generally not applicable in practice.

Li et al. [53] studied the effect of classifying samples from improved or completely unseen GANs
than what was seen during the training phase of a classifier. The researchers measured the effect when
a classifier is tested on samples from a single generator with varying training parameters. The results
demonstrate that accuracies drop when a classifier is faced with a generator from a different epoch
than the generator which produced the training data for the classifier. In addition, the researchers show
that the classification accuracy may drop from 98% to 61% if the classifier is faced with an entirely
different type of generator during test time (e.g. WGAN vs DCGAN). Furthermore, Xuan et al. [97]
also acknowledge this difficulty and report a drop in accuracy from 95% to 68% when a classifier is
suddenly faced with generated images from an unseen GAN architecture. These contributions further
indicate that the effective scope of a high performing classifier may be narrow, impeding its longevity.

In contrast, [19, 67] report promising results. In [67], co-occurence matrices based on the RGB
channels of images are used to preprocess data before it is classified by a CNN. The authors report an
accuracy of up to 99.49% when the classifier is trained on samples from a cycleGAN, but tested on
a dataset generated by StarGAN. The solution presented in [19] demonstrates that an initial train-test
mismatch between generated samples could be largely mitigated by retraining on just a few samples
from the unseen architecture. For instance, the presented solution is able to improve its accuracy from
50% to 70% by retraining on merely 2 samples. However, completely new and unseen samples remain
a challenge.

3.2.2 Noise Patterns for (Device) Fingerprints and Forgery Detection

To advance the field of forensics, Lukáš et al. [54] leveraged the Photo Response Non Uniformity
noise (PRNU) present in the Sensor Pattern Noise (SPN) of photo cameras, in order to attribute images
to specific camera models. To extract the noise component of an image, the approach uses a denoising
filter based on the work of [59]. When the filter is applied to several images from the same, known
camera model, the noise components can be averaged to obtain a reference pattern for a specific
camera, which then serves as the fingerprint of the device. In order to attribute future images from an
unknown source, the new images will be subject to the same denoising filter, and the resulting noise
component compared to the previously computed reference pattern. This comparison is drawn based
on the correlation between the two noise images, where a high correlation indicates the likelihood the
image stems from the same camera.

Artificial Fingerprints

The seminal work of Lukáš et al. has furthermore sparked a surge of new advancements; next to a
large-scale study to attribute a wide array of images to camera models, similar fingerprinting- and de-
noising techniques have been applied to detect forgeries within images [15, 20]. Notably, the original
technique proposed in [54] has recently been applied to attribute generated images to specific GANs
[55]. This recent study showed that even artificial images, not originating from a camera, leave behind
consistent traces of their respective generator, granting the ability to attribute images to different GAN
algorithms. In a similar manner, [100] employed an autoencoder to extract the noise pattern of images
and found that even a divergence in the architecture of a GAN, or its training set, lead to distinctive
fingerprints.
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Device Fingerprints in the Medical Domain

The notion of device fingerprinting has also been applied in medical fields that employ the DICOM
data format to store medical imagery. In an effort to minimize the reliance on the metadata of DICOM
files, device fingerprints offer an alternative form of device identification in cases where the metadata
is unavailable or may have been tampered with. Kharboutly et al. [46] applied the identification
process from [54] to CT images and were able to reach an accuracy of up to 97% when tasked to
identify three CT scanner models. In subsequent work, the researchers advanced the preprocessing
steps, resulting in a perfect score when identification is based on just certain axes (X, Y, Z) of an
image volume [47, 45]. In more recent work, Duan et al. [22] proposed new techniques for device
identification based on Original Sensor Pattern Noise (OSPN) and the image reconstruction algorithm
of a scanner. Their experiments aim to identify 15 distinct scanner models, originating from 4 different
manufacturers. Their combined approach manages to achieve an accuracy of 96.65%.

3.2.3 Assessing Image Integrity

As highlighted in section 3.2.2, device fingerprints have also been applied to verify the integrity of
images themselves as both local and global image modifications may leave behind visible traces in
a fingerprint extracted from an image. However, In the medical domain, image forensics are less
explored; Huang et al. [37] apply histogram statistics (HRBD and HRBT) along with a SVM [9]
to identify global modifications (e.g. compression) within images and achieve an accuracy of up to
85% when analyzing CT images. Ghoneim et al. [28] have achieved an accuracy of 84.3% when
classifying the PRNU pattern of mammograms to detect images tampered by copy-move operations.
As of yet, no countermeasure considers medical images tampered by a GAN.

3.3 Proposed Solution

The successful attack on CT images [63] calls for reliable countermeasures which should aim to thwart
the current attack, yet also stop potential future variations of the attack.

As presented in section 3.2, identifying generated (fake) samples from a known GAN has been done
with great success [65]. However, detecting similar looking samples originating from an unknown
network remains an ongoing challenge [53, 97]. Furthermore, the topic of image integrity within the
medical domain is only explored to a limited extent [37]; generated fakes are not considered at all.

However, the SPN-extraction approach for camera identication demonstrated in [54] has also shown
to be capable to detect forgeries within images [28]. Moreover, in the medical domain, the same
extraction approach has been successfully applied to identify CT scanner devices as well [46, 22].
Finally, existing studies related to GAN attribution, i.e. determining the model behind generated
samples, have also found that each model leaves behind distinct traces [55, 100]. These studies have
yet again applied the same denoising technique that was initially applied to identify camera models
based on PRNU. Yet, their study demonstrates that the same technique also seems effective for images
which are completely synthetic and thus do not posses the physical association with a PRNU pattern.

As such, the large applicability of device fingerprints leads to the following hypothesises for a potential
solution.

1. If CT scanner devices leave behind distinct fingerprints in the image generated by them, then a
suitable classifier may also be able to distinguish different devices based on CT images.
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2. If the device fingerprint of a CT scanner is indeed highly distinct, it may then act as a whitelist
for legitimate scans. This would enable a classifier to develop strict boundaries for the finger-
print, and consequently detect any distortions. In addition, as the classifier does not pursue any
specific distortions, it may be capable to detect various forgeries without any additional training.

3. GANs have also shown to embed distinct fingerprints, which are affected by the training data,
in their generated samples. As such, if the GAN of an attacker is not exclusively trained on
images from a single, particular scanner, the generated samples may contain a distorted finger-
print compared to the fingerprint in an image taken by a legitimate CT scanner. Moreover, it
is unlikely that an attacker has sufficient data available to train a high-performing generative
network to attack a single, arbitrary CT scanner, as this would require a sizeable amount of
specific data. This hypothesis is further discussed and motivated in section 3.4.3.

Therefore, we propose a classifier that is deployed for a specific scanner device, and will be exclusively
trained on device fingerprints of legitimate CT scans. Specifically, the classifier would be trained
on CT slices from its associated device, and legitimate CT images from any other scanner device.
As such, the classifier will learn a strict representation of the fingerprint of its device, while still
being unaware of any potential attacks which aim to tamper with the images. Nevertheless, if a
tampering attack indeed occurs after deployment, the classifier will be able to detect the distortion in
the fingerprint and subsequently warn the medical professional (Figure 1.2).

3.4 The Role of the Solution Within a Hospital

The usability of the proposed classifier is not solely determined by its ability to detect a range of
tampering attempts, but should also fit within the complex environment of a hospital. This section
further elaborates on some of the ongoing challenges within hospitals, and discusses the objective of
the solution from the perspective of this greater context. Finally, this section discusses a potential
attacker’s capability against the deployed solution.

3.4.1 The Ongoing Challenge of Implementing Security Controls in Hospitals

The CT-GAN attack, despite its novelty, was primarily successful due to the exploitation of known se-
curity flaws within hospitals. During the attack, the responsible researchers gained access to restricted
areas, intercepted unencrypted network traffic and consequently exploited the picture archiving and
communication system (PACS). Finally, the CT scans themselves did not possess any integrity con-
trols, which enabled the final step of undetected image tampering.

If security controls would have been successfully implemented at any of theses stages, the attack
would have been largely impeded or perhaps completely neutralized. However, the very existence of
the attack exposes the absence of these controls. The current lack of successfully implemented secu-
rity controls may be primarily attributed to the complexity and fragility of the ICT infrastructure of a
hospital. Although countermeasures, such as digital signatures, have been standardized for years and
are also supported by e.g. the DICOM file format1, they remain largely unimplemented, as concrete
integration into the complex environment of a hospital is far from trivial. In addition, any complica-
tions during the implementation may risk the malfunction of critical systems, which may then even

1https://www.leadtools.com/help/leadtools/v20/dh/to/working-with-dicom-digital-signatures.
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endanger the patients’ lives. Therefore, hospitals will commonly accept the risks of a vulnerable sys-
tem over the potential consequences which a failed implementation of a security control may carry.
This dilemma consequently calls for alternative controls which mitigate certain attacks, yet remain
sensible and provide a pragmatic implementation.

Besides the hospitals themselves, third parties such as device manufacturers, which provide medical
devices and AI solutions to hospitals, also have a particular interest in ensuring that their technology
does not get abused. For example, the malicious device which hosted the CT-GAN malware was
disguised as a microcontroller from a legitimate manufacturer. Moreover, the realism of the injected
nodules also mislead the AI solution that usually supports the medical staff in their diagnoses. As such,
third parties were also directly affected by the security breach, which consequently has an effect on the
reputation of the brand. Even though third parties such as the manufacturers of medical devices have
certain influence on the practices and standardization within hospitals, the reach of actual governance
is limited. Nevertheless, the third parties still carry the responsibility for their deployed services, and
are committed to the security of their products. Finally, despite their limited reach, contributing an
additional security control to ensure defence in depth may already be sufficient to largely mitigate
attacks such as CT-GAN. Figure 3.1 illustrates the defence in depth paradigm and exemplifies how an
attack may be prevented if multiple parties contribute to the overall security within an organization.

Figure 3.1: Defence in depth provided by multiple parties.

3.4.2 Deployment in Practice

The previous section elaborated on a few key factors which also shape the potential deployment of the
proposed classifier. Specifically, the solution must not be disruptive and should only contain a realistic
scope. As such, the classifier may be deployed in close association with the devices that are provided
by their respective manufacturers. This ensures a large degree of independence from the hospital
infrastructure, while also providing third parties with governance over their own security control.
Furthermore, the classifier would operate as an additional layer in the defence in depth paradigm,
specialized to identify tampered images. The classifier should therefore be unobtrusive and never
obstruct any of the existing business processes of a hospital.

In practice, the classifier may be deployed within a workstation and activate whenever a medical
professional chooses to analyze a medical image for potential diseases. The classifier would raise a
warning whenever a CT scan contains evidence of tampering, encouraging the medical professional
to assess the image more carefully. This procedure is illustrated in Figure 1.2. A high or consecutive
amount of warnings by the classifier could indicate a persistent attack, which is likely to prompt
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further investigation and lead to an early detection of the underlying security breach.

3.4.3 Attacker Model

In order to evaluate the proposed solution as a whole, it is important to define an attacker model.
Since the CT-GAN attack already showed its efficacy in practice, it is sensible to assume a similar
attacker model. As such, it is assumed that the attacker has control over the hospital network and
has furthermore infiltrated the picture archiving and communication system (PACS), which enables
the attacker to intercept and modify CT scans either during transit or while stored in a database. The
attacker furthermore has access to a GAN and is able to tamper with the image data (i.e. pixels) as
well as the DICOM metadata attached to the image. However, the attacker will be unable to further
train the GAN once it is deployed. Furthermore, the workstation of the medical professional that
analyzes the images is not compromised. As such, during the assessment, the image as well as the
workstation are out of reach for the attacker. Although the workstation is not accessible, the attacker
is aware that the image will be scrutinized for any modifications. Finally, the attacker knows that the
corresponding CT device is taken into account when the authenticity of the image is assessed.

Data Disparity

As the attacker exploits a deep learning network, i.e. a GAN, to tamper with the medical images, it
is also important to consider the data driven aspect of this instrument. Namely, the amount of data
available to both the defender and the adversary is an important factor in determining which party will
be successful. When the attacker does not have sufficient training data available, the malicious GAN
may produce fabricated samples of poor quality which consequently leads to an easy detection. Like-
wise, when the defender does not possess the required data to establish adequate decision boundaries
to identify authentic images, the defender may raise a large amount of false alarms or inadvertently
lets valid attacks slip by.

In practice, it is highly likely that an attacker has merely access to a limited amount of publicized
datasets, while defenders such as device manufacturers have an abundance of additional data avail-
able. In addition, if an attacker would instead primarily attempt to trick the defending classifier and
disregard the realism of the modifications, the attack may slip by the defending party, yet still raise the
suspicion of the medical staff that assesses the images as the image may now depict anomalies that
do not match the human anatomy. Moreover, the device fingerprint used in this thesis, which will be
further discussed in section 5.4, is by no means optimized for CT scanner devices. As such, a more
advanced and fragile fingerprinting technique would also add to the attacker’s difficulty in executing a
successful attack. Finally, since this thesis is primarily intended as exploratory work, the experiments
in this thesis consider the scenario in which the attacker and defender have access to the same dataset.
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Chapter 4

Research Questions

The proposed solution introduced in section 3.3 aims to detect tampered CT images based on the
device fingerprints that are left behind by CT scanner devices. The hypothesis behind the solution
is that the tampering process distorts the underlying fingerprint and therefore inadvertently facilitates
the detection of the attack. In this chapter of the thesis, a set of research questions is formulated which
aim to validate the hypothesis and advance the current state-of-the art. These research questions will
be adequately answered by evaluating multiple experiments which have also been conducted as part of
this thesis. The detailed experiments, evaluation and answer to each research question are described
in their respective chapters (chapters 6 and 7).

4.1 Research Questions

In order to gain understanding and sensibly evaluate the possible mitigations against tampered medical
images, this explorative study sets out to answer the following research questions.

R1: Can a deep learning approach distinguish between various CT scanner devices based on
CT images? Previous works which aim to determine the device origin of CT images rely on ei-
ther traditional metrics, such as correlation [45, 46, 47], or apply various preprocessing and feature
engineering steps before letting a SVM [9] make the final classification [22, 52]. Deep learning ap-
proaches, such as convolutional neural networks (CNN) [51], have not yet been applied for this task.
However, these methods have shown exceptional performance on other image classification tasks. As
such, it is valuable to investigate how a neural network fares when classifying unprocessed CT im-
ages. This question therefore aims to establish a baseline for future classification tasks on CT images.
This question will be further motivated and answered in chapter 6.

R2: How do extracted device fingerprints influence CT scanner classification performed by deep
learning? The device fingerprinting concept introduced in [54] has led to improved results for de-
vice identification, and a variation of this technique has been used as a preprocessing step for an SVM
in the medical domain [22]. However, deep learning approaches have the added benefit of shaping
their own feature representation, often eliminating the necessity of preprocessing the input data. As
such, this question seeks to investigate the performance of a neural network when classifying the
extracted device fingerprint of an image, compared to the classification on the original, unprocessed
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images itself. As the device fingerprint will ideally play a key role in detecting generated samples, an-
swering this research question will indicate any potential conflict between the preprocessing step and
the own learnability of the neural network. This question will also be further motivated and answered
in chapter 6.

R3: Can device fingerprints be leveraged to support the detection of artificially generated CT
imagery? Previous work has shown that artificially generated images leave behind distinct traces
which enable fine-grained attribution to identify the source generator of the generated samples [55,
100]. However, the goal in this thesis is to determine whether medical images, inpainted by a GAN,
leave sufficiently large traces in the tampered images such that they cause distinguishable distortions.
This research question aims to determine whether, and to what extent, the distortion created by a GAN
affects the device fingerprint. Will the fingerprint further highlight the distortion, or counterproduc-
tively conceal the distortion? This question will be answered in chapter 7.

R4: Is the detection affected when a wider range of generative adversarial networks are evalu-
ated? The work from [55] has shown that GANs have distinct fingerprints; even a divergence in the
architecture affects the fingerprint [100]. This research question therefore aims to investigate how the
performance of the solution is affected when multiple GANs are evaluated. Will the classifier detect
all fingerprints equally well, or are some harder to detect than others? This question will be answered
in chapter 7.



Chapter 5

Experimental Setup

To adequately answer the research questions, multiple experiments were conducted. This chapter
details the considerations that persist throughout all of the experiments. These considerations are
related to the processing of the dataset as well as assumptions on the data itself. Section 5.1 first
describes the content, format and size of the dataset used in the experiments. Section 5.2 subsequently
details the necessary steps to incorporate the data into the experimental environment. Section 5.3 then
highlights the potential relationships that exist between the data samples. Section 5.4 details the
specific algorithm that is used to extract the noise patterns which make up the device fingerprints
introduced in section 3.2.2 and 3.3. Finally, section 5.5 describes the experimental environment as
well as the metrics used to evaluate the experiments.

5.1 Dataset

In order to effectively conduct the experiments in this study, a collection of existing CT scans is
required. CT scans are generally stored in the ’Digital Imaging and Communications in Medicine’
(DICOM) file format1 which, besides the image data, contains useful metadata related to the image
scanning process itself. The DICOM metadata also provides information about the scanner. Specifi-
cally, the manufacturer, the specific scanner model and even the software version are given, although
the latter is only supplied sparingly. Within a single CT session (or study) of a patient, a large amount
(often over a hundred) of 2D images is taken. Each individual 2D image is called a slice, and the
accumulation of these slices from a single session form a volume.

An anonymized and publicly accessible collection of CT imagery is provided by the ’Lung Image
Database Consortium image collection’ (LIDC-IDRI) [4] which contains a total of 1018 CT image
series, amounting to a total of 244527 2D image slices. Each individual slice has a size of 512×512
pixels. As the experiments within this thesis are largely based on the presence of device fingerprints
of CT scanners, it is valuable to also explore the diversity and distribution of the device types present
within this dataset. Table A.1 highlights the 4 CT scanner manufacturers which together account for
a total of 17 scanner models represented in the LIDC-IDRI dataset. Although the dataset principally
contains a sufficient amount of samples, the table also illustrates the high imbalance of the classes.
Especially devices from General Electric are overrepresented. However, due to the sensitive (medical)

1https://www.dicomlibrary.com/dicom/
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content of the data, not many other datasets are publicly available. The LIDC-IDRI is, to our knowl-
edge, the largest publicly available dataset. Furthermore, this is the same dataset which was used for
training by the (existing) GANs described in chapter 7. As such, the LIDC-IDRI is still considered a
viable dataset, despite its shortcomings related to the class imbalance.

5.2 Data Processing

The original LIDC-IDRI dataset is structured in a hierarchy of directories and is supplemented with
an additional .csv file containing metainfo related to each of the studies. This metainfo file is a digest
of the full DICOM metadata that is embedded in each file.

In order to structure the data in a manner that is more suitable for the experiments at hand, i.e. data
organized by CT device manufacturer and model, all images were processed and collectively stored
into a .hdf52 file. This particular format provides the benefit of solely storing the original image data
along with a small subset of the largely redundant DICOM metadata. In addition to the relatively
lightweight storage of this format, consulting metadata (’attributes’ in hdf5 terms) does not load the
largely-sized images into memory. Instead, the hdf5 format provides the ability to further filter and
organize the data up until the point where the actual image is needed, which makes additional filtering
substantially faster.

5.3 Assumptions on the Data

The DICOM format, in which each CT slice is originally stored, contains an abundance of metadata
related to the scan. In addition to the device information briefly discussed in the previous sections,
the metadata furthermore contains data such as the beam strength during the scan, and additional
patient information (anonymized in LIDC-IDRI). The metadata also provides coordinates (within a
XY Z-plane) that indicate the relative position of a slice within the complete volume. However, these
properties may also introduce unforeseen relationships among different CT slices.

As the majority of the experiments involve splitting the data into separate and independent training
and test sets, it is crucial to consider potential relationships among individual slices to ensure a fair
and unbiased split in the data. These considerations lead to the following assumptions.

1. Slices are affected by CT Scanner model and manufacturer. This assumption may even be
considered the basis of the experiments. It is assumed that scanner devices leave behind con-
sistent fingerprint in their images, and by extracting a distinct noise component from a specific
slice it is possible to attribute each slice to a specific device.

2. Slices carry relationships with other slices from the same volume. Besides originating from
the same scanner device model, all slices stemming from the same volume are bound to have
additional properties in common. Namely, every slice is likely influenced by the specific con-
ditions and settings of the scanning device during a particular session. Most importantly, all
slices within the same volume depict an image from the same patient at a particular point in
time, potentially connecting slices by unique features present in the image.

3. Slices which have x,y,z coordinates in common may have greater similarity compared with
those who do not. It is assumed that certain slices taken at a particular angle, share attributes

2https://www.hdfgroup.org/

https://www.hdfgroup.org/
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with slices taken from the same angle. This effect may be amplified when the type of image
content is the same. For example, a slice which depicts the top of a skull may show greater
similarity with other slices showing the top than with slices depicting the side of the skull.

4. Slices are affected by the image content of the scan. Finally, the type of content shown in
the image also affects the relationship between two slices. A volume presenting a chest scan
is likely more related to another volume of a chest scan than to a volume which presents a CT
scan of a skull.

Due to the limited amount of data available, it is infeasible to account for all of these assumptions
and split the data in such a way that training and test data are completely independent and unrelated.
However, some of these relations may be diminished by the noise extraction (section 5.4) performed
throughout the experiments. As the experiments are primarily conducted on the extracted noise of
a slice, it is assumed that little information from the original image leaks into the noise image. As
a result, the similarities mentioned in point 3) in the above list may, at least, no longer rely on the
depicted image (e.g "side of a skull"). However, the specific angle may still be observable in the final
noise image. The last point (4)), regarding the type of image content, may only minimally affect the
experiments as the dataset only consists of chest CT scans. As such, all images depict similar content.

As the experiments actively aim to study the presence and capability of device fingerprints in CT
scans as noted in point 1), the only relationship likely to be still in tact even after the noise extraction
will be point 2). In an effort to eliminate this factor as well, the data split for training and test data
is predominantly done on a volume-based level. Moreover, this ensures that a classifier exclusively
faces unseen volumes during its test phase, which also mimics the setting for a real-world deployment
of the classifier. Figures 5.1 and 5.2 illustrate the manner in which the data may be split. As presented
in Figure 5.1, the data spit based on individual slices cause a large number of neighbouring slices to
get separated among the training and test sets.

LIDC-IDRI Dataset Test setTraining set

V0

Vn

V1

si

Figure 5.1: A split based on individual CT slices. Neighbouring slices may end in either split.
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LIDC-IDRI DatasetTraining set Test set

V0

Vn

V1

si

Figure 5.2: A split based on CT Volumes. This type of split will keep several potential relationships
among slices within a single side of the split.

5.4 Acquiring Fingerprints of CT Scanners

Sections 3.2.2 and 3.3 introduced the related work which detailed the extraction of specific noise
patterns, and their potential to capture distinct device fingerprints. The key motivation behind a "CT
scanner fingerprint" is to extract a fragile, yet static set of features from a CT image. These extracted
features should be static and nearly identical for all images taken from a distinctive type of CT scanner
model, yet should be sufficiently fragile such that the same set of features are distinguishable from
other CT scanner models. This approach has first been applied with great success for regular camera
models [54], but has also found application in the medical domain [46, 22].

As this set of features should be nearly identical for each device of a specific CT scanner model,
even a small modification would be noticeable. This assumed property is the key motivation behind
the detection of generated samples by a GAN. It brings forth the hypothesis that a GAN, even on an
inpainting task, will produce samples that noticeably divert from the expected fingerprint, which in
turn leads to accurate detection of the generated samples. In addition, the type of GAN which produces
the samples should not have any influence on the detection as the detector will merely pay attention
to a broken fingerprint, not the realism of an image. Finally, as GANs remain an open challenge to
train, adding the complexity of the desired fingerprint to one of the training goals will surely affect
the image quality. The degraded quality would consequently deteriorate the primary objective of the
malicious GAN: producing realistic images capable of deceiving medical staff.

In the experiments of this thesis, the fingerprints of the CT scanner models are acquired by extracting
a specific noise component from each slice within the LIDC-IDRI dataset. The noise extraction algo-
rithm used throughout the experiments is based on the approach applied by Lukáš et al. [54] which
uses the filtering technique proposed in [59].

To denoise a slice s from a volume V , the denoising filter F is applied. The denoised image is
subtracted from the original slice to obtain the desired noise component w:

w = s−F(s), s ∈V

The denoising filter [59, 54] is constructed in the wavelet domain in two stages. First, the local image
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variance is estimated, then, a Wiener filter is applied to obtain the denoised image. These stages are
performed using the steps described below:

1. The fourth-level wavelet decomposition is calculated for the slice.

2. For each level, the three high frequency-bands are used for further processing. These are the
vertical, horizontal and diagonal sub-bands.

3. For each wavelet coefficient in the sub-bands, the local variance σ̂2(i, j) is estimated within a
W ×W -square neighborhood, for W ∈ {3,5,7,9}. The minimum of these 4 variances is chosen
as the final estimate for the image variance:

σ̂
2
W (i, j) = max

(
0,

1
W 2 ∑

(i, j)∈N
h2(i, j)− σ̂

2
0

)
,(i, j) ∈ J
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3 (i, j), σ̂
2
5 (i, j), σ̂

2
7 (i, j), σ̂

2
9 (i, j)), (i, j) ∈ J

J denotes the decomposition level. σ̂0 is a manually set parameter, and has been set to σ̂0 = 5
to follow the original work [54].

4. After the variance estimation, the Wiener filter is applied to obtain the denoised wavelet coeffi-
cients:

Xden(i, j) = X(i, j)
σ̂2(i, j)

σ̂2(i, j)+ σ̂2
0

5. The above steps 2−4 are repeated for each wavelet sub-band, on each level of the decomposi-
tion.

6. The finally denoised image F(s) is then obtained by applying the inverse wavelet transform.

An exact implementation of this algorithm, written in Matlab, has been kindly published by the origi-
nal authors3. To minimize potential mistakes and, facilitate reproducibility, this is also the implemen-
tation used throughout the experiments conducted in this thesis.

5.5 (Model) Training and Classification

5.5.1 Environment

With the exception of the noise extraction algorithm, all experiments and data processing steps have
been implemented in Python 3.7. For the noise extraction, the Matlab implementation by [15] was
used. Due to the discrepancy in environments and to accelerate the preprocessing, the noise extraction
was done on the entire dataset before any experiment and stored as a separate dataset.

The noise extraction was exclusively conducted on a HP Zbook studio G3 with an Intel Core i7-
6700HQ, 8GB of RAM, and a Nvidia Quadro M1000M. Deep learning models were primarily trained
and evaluated on a separate cluster kindly provided by the Eindhoven university data mining group.
The machine used throughout most experiments had an Intel Xeon Broadwell-EP 2683v4, 1024Gb of
RAM, and a Geforce GTX 1080 Ti. Training the GAN has been accomplished on a machine with an
Intel Xeon E5-2698v4, 256GB of RAM, and a Nvidia Tesla V100.

3http://dde.binghamton.edu/download/camera_fingerprint/
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5.5.2 Metrics

All experiments conducted in this thesis involved classification tasks; given a data sample X , having
a single label ytrue, a model seeks to predict the correct label ypred . The classification is a success if
ypred = ytrue. The performance, or success rate of a model during the experiments is measured using
accuracy and precision. Accuracy measures the overall performance of the model by calculating:

Accuracy =
true positives + true negatives

total number of predictions

In addition, particularly for the detection of the forged samples, it is important to inspect the number
of times that the model (mis)classified authentic samples as being fake. Considering a real world
example where the deployed model will give a warning whenever it detects a tampered sample, a
large number of false positives may cause the warnings to be consistently ignored by the responsible
staff, even in cases where the warning may be justified. The rate of justified warnings is indicated by
precision:

Precision =
true positives

true positives + false positives

GAN Evaluation

The quality of samples produced by generative adversarial networks are often assessed using the
Inception Score [83]. This score uses the popular inception model, such as [89], to indicate whether
the generated samples are classified correctly and furthermore measures the diversity of the samples.

The original CT-GAN model [63] has not been tested in such a way, instead, it was deployed in
practice and evaluated by the rate in which it managed to mislead professional medical staff. As the
experiments in this thesis predominantly focus on the underlying noise pattern of images, the achieved
realism of the generated samples of the GAN is merely a secondary concern, and as such has not been
rigorously evaluated.



Chapter 6

CT Scanner Classification Based on CT
Images

This chapter sets out to answer research questions R1 and R2 introduced in section 4.1. Specifically,
the experiments conducted in this chapter aim to determine to what extent a deep learning approach
is able to classify CT scanner devices, based on the images which they produce. In addition, a pre-
processing step is evaluated which aims to extract persistent device fingerprints to further improve the
classification performance. The primary purpose of these experiments is to investigate the effect of
the fingerprint extraction technique on the classification performance. Although the fingerprints are
likely to extract helpful features, it may conflict with the ability of a neural network to select its own
range of features from the unprocessed image.

The chapter is structured as follows. Section 6.1 introduces and discusses the related work. Section
6.2 reproduces the experiments from the related work and is meant to verify the experimental setup.
As the experiments from the related work still have a fairly limited scope, section 6.3 extends the
objective, and introduces a new set of extended experiments which feature the approach of the related
work, as well as the use of a neural network to perform the experiments. Section 6.4 subsequently
presents the results of the experiments. Finally, section 6.5 and 6.6 conclude the chapter with a
discussion and conclusion.

6.1 Related Work

Classifying the device origin of CT images is a topic which is only scarcely explored [52, 22, 46,
45, 47]. Previous works which aim to identify the devices rely on image correlation, sometimes
supplemented with an SVM classifier to make the final classification [22]. Furthermore, related works
often leverage a variation of the sensor pattern noise (SPN) extraction, popularized by Lukáš et al.
[54]. This process, illustrated in Figure 6.1, extracts the distinct noise from a chosen number of
images and subsequently averages the resulting noise patterns to create a reference pattern, which will
then serve as the common device fingerprint. The commonly used 80− 256 number of images to
create the reference pattern are all previously known to stem from a certain device.

The subsequent classification process itself is illustrated by Figure 6.2; an unknown image is compared
to all of the previously computed reference patterns (Figure 6.1). The resulting correlation with a

33



34 CHAPTER 6. CT SCANNER CLASSIFICATION BASED ON CT IMAGES

Figure 6.1: Creation of reference patterns for a certain amount of devices, given a set of slices from
known devices.

reference pattern indicates the likelihood that the image originates from the same device. This may be
accomplished by either establishing a certain threshold for the correlation value, or let the decision be
based on the pattern that exhibits the highest correlation.

Figure 6.2: The process to determine the class of unknown slices, given a precomputed set of reference
pattern.

Kharboutly et al. [46] applied this approach on CT images to distinguish three CT scanner models
and achieved a classification accuracy of 97%. As CT scanners capture images differently compared
to ordinary cameras, Duan et al. [22] did not directly apply the denoising technique on the CT images,
but instead applied additional preprocessing on the images to extract the Original Sensor Pattern Noise
(OSPN) of the scanners as well as the image reconstruction algorithm. Their best approach achieved
an accuracy of 96.65% when classifying 15 different CT scanner models. Differently, Lee at al. [52]
did not apply any preprocessing, and instead perform a quantitative analysis based on the density
distribution of Hounsfield Unit (HU) values within CT images. The authors fit a SVM on the density
distributions from three CT scanner models, and obtain an accuracy of 91.1% when classifying the
three models.
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6.1.1 Potential Shortcomings for Generalizability

Although the related work demonstrates promising results, it is important to address several choices in
the experiments and chosen datasets which may limit the applicability of the related work in practice.
The experiments by Kharboutly et al. [46] classify a total of three specific CT scanners of undisclosed
models. In addition, in the original work, the slices which are used to compute the reference patterns
make up for 45% of the entire dataset, and no volume is excluded during the computation of the
reference patterns. Although subsequent work by the authors has used a larger set of images [45, 47],
none of the volumes are expressly excluded from the computation of the reference patterns. This may
lead to favourable results as the test is likely affected by the undesired relationships between slices
previously discussed in section 5.3. Especially considerations 2 and 4 are not taken into account,
which detail the potential relationship of neighbouring slices within a volume, and the content depicted
by the image volume itself.

Similarly, the experiments by Duan et al. seem to consider only a single volume per device, with
varying anatomical objects for different volumes. Although their experiments consider 15 devices as
opposed to three, the use of a single volume per device is likely to keep several relationships in tact
(again, point 2 and 4 of section 5.3).

6.2 Reproduction of Related Work

Although the denoising approach (section 5.4) used in this thesis is similar to the related work, the
dataset as well as the exact implementation of the algorithms differ. As such, it is important to first
reproduce several experiments from the related work and compare the results. Major discrepancy in
the results may indicate misconceptions which may be detrimental in subsequent experiments.

To perform this first set of experiments, the setup detailed in sections 5.1, 5.2, 5.4 and 5.5.1 of the
previous chapter has been applied. Specifically, the procedures illustrated in Figures 6.1 and 6.2
have been implemented using Python 3.7. For the extraction of the noise patterns, an existing Matlab
implementation has been used (section 5.4). All data samples come from the publicly available LIDC-
IDRI dataset [4] which is further detailed in section 5.1.

6.2.1 Simple Scanner Device Classification

The experiments by Kharboutly et al. [46] consider a total of three devices, manufactured by either
Siemens or General Electric. Their original dataset contained a total of 8 volumes with 100 slices
contained in each volume. The Siemens devices were each represented by 3 volumes, while the
remaining 2 volumes contained images from the GE device. For each device, 120 slices were used
to compute the reference pattern as demonstrated by Figure 6.1, while the remaining 80−180 slices
from each device served as the test set.

Since the LIDC-IDRI dataset used in our experiments did not have volumes with exactly 100 slices,
volumes of similar size were prioritized instead. As the exact device models used in the original
experiment are unknown, we opted to select the devices at random for the reproduction. The result
is presented in Figure 6.3. As can be seen, the reproduction led to an overall accuracy of 99.7%,
while the original work reported an accuracy of 95.8%. This small discrepancy may be due to the
random selection of devices as well as the potentially modified denoising technique (section 5.4).
Nevertheless, the great similarity in the results affirm that the implementation of the experiments
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match closely.

Figure 6.3: Result from reproducing Kharboutly et al. [46] with 3.9% improved accuracy.

6.2.2 CT Scanner Model Classification

The second related work which applied the extraction of noise patterns, conducted by Duan et al.
[22], applied a more advanced approach in order to classify a total of 15 CT scanner models produced
by 4 different manufacturers. Their denoising approach, based on OSPN (Original Sensor Pattern
Noise), is considerably more complex and requires additional domain knowledge. However, since
this thesis serves an exploratory purpose, their approach has not been replicated for this thesis. As
such, the reproduction of their experiments is not entirely accurate. In addition, their experiment
features a slightly different set of models, and furthermore combines CT volumes from a variety of
unknown sources which further hampers an exact replication of the experimental setup. Nevertheless,
the researchers present an interesting task and it is valuable to investigate the relationships among
specific scanner models as well as determine how fine-grained the device fingerprint can distinguish
a wider range of classes.

To simulate the original experiment as closely as possible, a single volume per scanner model was
selected at random. Then, for each volume, 30 slices are picked at random to create the reference
patterns, while 100 slices from the same volume are selected for the test phase.

The confusion matrix in figure B.1 within appendix B shows that, with the exception of General Elec-
tric devices, scanner models are classified perfectly. Furthermore, the misclassified General Electric
devices get predominantly classified as the Lightspeed Ultra device. A potential cause for this phe-
nomenon may be that this device lends exclusive components to the other devices within the General
Electric family. However, one could expect that the component sharing would lead to a wider misclas-
sification distribution within General Electric, which is clearly not the case. As this isolated incident
is not alarming for the experiment, it is not further investigated. Finally, as was in line with expecta-
tions, the overall classification accuracy is lower than in the original experiment, most likely due to
the discrepancy in the preprocessing step (OSPN vs SPN).
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6.3 Expanding the Experiments for Greater Applicability

The original experiments from the related work either consider a limited set of devices, or feature
only as a small amount of CT volumes per device. In addition, neither of the existing works based
on noise patterns consider volumes that are intentionally left out of the reference pattern. As a result,
the reference pattern is never tested against slices from completely new volumes, which would be the
prevalent case in practice. The current setup of the experiments may therefore considerably favour
the classification performance, and provides only limited insight into the feasibility of device identifi-
cation in practice. This section therefore introduces a new set of experiments which consider stricter,
yet more pragmatic conditions.

6.3.1 Objectives

Although the current pieces of related work all aim to classify or identify CT scanner devices, the
experimental setups are not directly comparable. Kharboutly et al. [46] consider 3 specific devices
from 2 manufacturers, Duan et al. [22] classify 15 scanner models from 4 manufacturers, and Lee et
al. [52] classify a total of 3 scanner models from 3 manufacturers. The expanded set of experiments
in this chapter define two clear objectives. The first objective is the classification of manufacturers of
CT scanner devices, while the second objective is to classify specific scanner models. Each objective
considers classification based on the respective image data of CT scans. The totality of the classes is
presented by Table 6.1 which features the 4 manufacturers and 15 scanner models used throughout
the expanded set of experiments.

1. Objective 1: Classification of 4 CT scanner manufacturers.

2. Objective 2: Classification of 15 CT scanner models.

6.3.2 Approach and Experimental Setup

In addition to the definition of two clear objectives, the experiments in this thesis uses a reproducible
experimental setup which uses the publicly available LIDC-IDRI dataset. This section further details
the experimental setup, and describes the approaches which have been applied to perform the new set
of experiments.

Baselines for CT Scanner Classification.

The related works which consider additional preprocessing steps do not establish a baseline for their
results [22, 45, 46, 47]. Specifically, these works rely on noise patterns for the classification, but
exclusively perform the experiments on the processed images, without considering the performance
on original CT images. As such, it is not possible to validate whether the extraction of noise patterns,
i.e. device fingerprints, is a beneficial preprocessing step. To remedy this situation, the approaches
mentioned in this section also conduct each experiment on the original, unprocessed CT slices.

Reference Pattern and Correlation

The first approach is similar to the related work of Kharboutly et al. [46] which computes a reference
pattern per device and consequently applies correlation to obtain the classification. To evaluate this
approach on the new objectives (section 6.3.1) and the larger LIDC-IDRI dataset, the approach has
been left unchanged. Aside from a potentially different implementation for the denoising technique
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Manufacturer Model
Philips

Brilliance 16
Brilliance 16P
Brilliance 40
Brilliance 64

GE Medical Systems
Lightspeed plus
Lightspeed power
Lightspeed Pro 16
Lightspeed QX/i
Lightspeed Ultra
Lightspeed VCT
Lightspeed 16

Siemens
Emotion 6
Sensation 16
Sensation 64

Toshiba
Aquilon

Table 6.1: The classes for the CT scanner classification experiments.

(section 5.4), the approach as illustrated in Figures 6.1 and 6.2 remains the same. Specifically, in
the first phase, a reference pattern for each class is established by selecting slices from each class at
random. Then, the noise from each of the selected slices is extracted, and subsequently averaged. This
averaged noise component then serves as the device fingerprint for a particular class. The experiments
which establish the baseline described in the previous section 6.3.2, skip the noise extraction step and
instead will average the unprocessed images.

During classification, each slice that is to be classified will be compared to each of the reference
patterns by correlation. The highest correlation value determines the class, which slightly differs from
the related work of Kharboutly et al. [46] which applied a threshold instead. Nevertheless, similar to
the work of [46], the computed reference patterns for both the manufacturer classification and model
classification objective are computed using the average of 120 slices per class. However, the slices
from volumes embedded in the reference pattern are entirely separated from the volumes that are
classified during the test phase. This simulates the use case of classifying new, unseen volumes.

Classification with Deep Learning

The related works which did not apply direct correlation, have only applied traditional machine learn-
ing, specifically SVMs, to aid in the CT scanner classification tasks [22, 52]. However, deep convolu-
tional neural networks may also be suitable classifiers for this task as they have consistently demon-
strated excellent results on image classification. As such, this section details an approach which uses
a CNN to perform the classification tasks.

1Note that the features within the patterns are subtle and may become indistinguishable on print-out versions of this
thesis.
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Work Input Preprocessing Classifier

Kharboutly et al. [46, 45, 47] CT slices Noise pattern [59]
Reference Pattern + Correlation

SVM

Duan et al. [22] CT slices OSPN
Reference Pattern + Correlation

SVM
Lee et al. [52] Density function — SVM

This work CT slices
Original image

Noise Pattern[15]
Reference Pattern + Correlation

CNN

Table 6.2: Classifier setup of experiments.

Work Volumes Classes Data split
Kharboutly et al. [45, 46, 47] 8−40 3 Slice

Duan et al. [22] 15 15 Slice
Lee et al. [52] 326 3 Volume

This work 1200 4,15 Slice and volume

Table 6.3: Comparison of objectives and datasets for CT scanner classification.

Approach and Setup. The neural networks are tasked with the same set of experiments as in the
previous section. The first experiment aims to label CT slices by their respective manufacturer, while
the second aims for a more fine-grained classification by distinguishing scanner device models. The
LIDC-IDRI dataset is used for training and testing, and is split 80% and 20% for the training and
test set, respectively. In addition, the data is split as illustrated by Figure 5.2. Specifically, the split
is performed on a volume level, which prevents the separation of neighbouring slices into different
sides of the train/test split. However, to evaluate the assumptions detailed in sections 6.1.1 and 5.3,
the neural networks are also evaluated once on the alternative setup illustrated in Figure 5.1. For
this splitting technique, each individual slice is put in either the training set or the test set at random,
without any further consideration. Although this setup may trigger favourable classification results, it
is important to verify and highlight the importance of a sensible data split.

Finally, to also establish a baseline for the classification by neural networks, the performance between
the noise patterns and unprocessed CT slices as input samples is compared (section 6.3.2).

Neural Network Architecture. As the purpose of the experiments is to first and foremost explore
the potential of device fingerprints, an existing architecture is chosen over the alternative of designing
and building a new architecture for this specific task. A common approach in this regard is to employ
transfer learning, in which a successful model from one domain is fine-tuned to perform a similar task
in a different domain [70]. This approach has also been applied successfully in the medical domain
[56].

Initially, transfer learning had also been attempted for the experiments in this thesis. For the base ar-
chitectures, the pre-trained networks from Inception V3 [89] and ResNet50 [33] models were selected.
The networks were then fine-tuned for the CT device experiments using the LIDC-IDRI dataset. How-
ever, both of these network quickly overfitted on the training data and performed unsatisfactory on the
validation set. One potential cause may have been the relatively small number of samples within the
LIDC-IDRI dataset. Another contributing factor to the underperformance may have been the content
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Figure 6.4: Examples of computed reference patterns for the different CT scanner manufacturers.1

of the data itself. Specifically, the original networks are trained on the ImageNet [21] dataset which
contains multi-channel (RGB) images of ordinary content, while the LIDC-IDRI dataset contains
single-channel CT images.

Consequently, a new architecture was chosen which only contained the first few layers of the Inception
V3 model. This architecture contained the first three convolutional layers, but with a reduced number
of filters and an additional dropout layer to avoid overfitting. Furthermore, the new network was not
pre-trained, and instead directly trained on the LIDC-IDRI dataset. Finally, to reduce the training
speed, complexity and to stand by the original IV3 architecture, the image dimensions have been
reduced to 299× 299. Although in earlier iterations of the experiments, the original dimensions
(512×512) have also been applied, no significant impact on the performance was observed.

An overview of the architecture is presented in Figure 6.5. This new architecture performed well on
all tasks, and has been applied for all deep learning experiments conducted in the remainder of this
chapter. As such, it is important to reiterate the mainly exploratory purpose of this thesis. Although
the chosen architecture performed well on all of the given tasks and provides valuable insights, an
architecture optimized for each individual task would undoubtedly be able to outclass the current
network, and is left as future work.

Although the general architecture has been constant throughout the experiments, the training parame-
ters were adapted for each task. For the manufacturer classification task, the networks were trained for
10 epochs. For the larger scanner model classification task, the models were trained for 15 epochs. In
addition, the top layer of the network has been adapted throughout the experiments to accommodate
for the different number for classes (4 and 15).

Furthermore, all networks were trained on batches of size 128. Although different setups have been
evaluated to accommodate for the different types of (un)processed input images, both types of input
demonstrated the best performance with the architecture detailed in Figure 6.5. As such, the architec-
ture and setup for classification on noise patterns and unprocessed slices is identical.
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Figure 6.5: The CNN architecture used for the classification of CT scanners.

6.4 Results

This section presents the results of all experiments described in the previous sections. The experi-
ments had a total of two objectives, with 4 and 15 classes respectively. Two approaches have been
considered, based on correlation with a reference pattern, and the training of a neural network. In ad-
dition, each instance of the experiment considered two types of input images, being the unprocessed
CT slices and the extracted noise patterns. Finally, the neural networks have also been evaluated on
alternative data splits (Figure 5.2 and 5.1).

6.4.1 CT Scanner Device Manufacturer Classification

Reference Pattern and Correlation

As presented in Figure 6.6b, the extended objective and dataset have caused the accuracy to drop
significantly compared to the initial reproduction related work illustrated in Figure 6.3. The new result,
based on noise patterns, achieves an accuracy of 66.4%. The figure shows that slices from Toshiba and
General Electric are classified perfectly, while CT slices from both Siemens and Philips are classified
significantly worse. It is also peculiar that Philips and Siemens are most often misclassified amongst
each other, which may indicate that these devices share certain software or hardware components
which consequently affect the device fingerprint. In addition, similarities in the acquisition process
may also cause a higher correlation between the images of these devices. However, we do not possess
sufficient reference information or domain knowledge to further investigate this hypothesis.

For the classification on the original, unprocessed slices, the result presented in Figure 6.6a shows
that, although the overall accuracy of 66.8% is similar to the previous result of 66.4% displayed
in Figure 6.6b, predictions are significantly more distributed. Specifically, predictions for General
Electric and Toshiba devices have become split amongst each other and are classified significantly
worse. However, Philips and Siemens devices are predicted more accurately on the original images.
Moreover, prediction mistakes for a certain class often fall into just one single, other class. This
occurrence once more highlights the connection which seemingly exists between Philips and Siemens
devices.

Nevertheless, the relatively low accuracy for either approach, being the classification on device fin-
gerprints or original images, indicates that classification based on image correlation with a reference
pattern is insufficient to make accurate predictions.
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(a) Classification on unprocessed images. (b) Classification on noise patterns.

Figure 6.6: Manufacturer classification by correlation.

Classification with Deep Learning

The reproduction of the related work in section 6.2 already alluded to the importance of a sensible
train-test split of the data. Figure 6.7 shows that this hypothesis holds true for deep learning classifi-
cation as well. When slices are naively divided into a training and test set (Figure 5.1), the classifier
reaches an accuracy of 99.8% for the manufacturer classification task. This result even outperforms
the much smaller setting presented in [46].

Figure 6.7: Manufacturer classification when volumes are disregarded during the data split.

Nevertheless, the neural network largely retains its performance even when the data is indeed split in
a sensible manner. The confusion matrices presented in Figure 6.8 show that the classifier achieves up
to 93.5% accuracy when all slices within a volume are exclusively selected for either the training or
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test set. This is a significant improvement over the correlation-based experiments presented in Figure
6.6 which achieved a maximum accuracy of 66.8%. Furthermore, the deep learning classifier also
performed slightly better when classifying noise patterns as opposed to the original CT images. This
result suggests that the extraction of device fingerprints does not interfere with the capability of the
neural network to learn its own features. Although an optimized neural network with suitable depth
and layers should learn the device fingerprint using its own representations, the provided noise patterns
nevertheless provide a positive contribution to the performance of the current model. Interestingly,
the misclassifications shown in Figure 6.8a also continue to support the apparent similarity between
Siemens and Philips devices already highlighted in section 6.2.

(a) Classification on original images. (b) Classification on noise patterns.

Figure 6.8: Manufacturer classification using a neural network.

6.4.2 CT Scanner Model Classification

Reference Pattern and Correlation

Similarly as section 6.4.1, the result presented in Figure B.2 shows that accuracies drop to as low as
34% when volumes are strictly separated and the dataset greatly expanded. The unusual behaviour
of the General Electric devices already seen in figure B.1 also seems to persist in the larger dataset.
However, in this experiment the majority of General Electric devices get classified as the Lightspeed
QX model, while in the previous experiment the Lightspeed Ultra model was predominantly predicted.
Moreover, the result further highlights the peculiar relationship between Philips and Siemens devices
which was already noticeable in the manufacturer classification experiment of section 6.4.1, visualized
in Figure 6.6.

To conclude the experiments based on reference pattern and correlation, the extended setup from the
previous sections is again used to classify CT slices based on the original imagery, i.e. without ex-
tracting the device fingerprint. In addition to the low accuracy of merely 27.8%, the result presented in
Figure B.3 shows the greater spread of misclassification that also appeared in the comparable experi-
ment for manufacturer classification presented in Figure 6.6a. Moreover, both results indicate similar
relationships between the devices as Philips and Siemens devices remain most commonly misclassi-
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Objective Classes Input Classifier Accuracy
Manufacturer 4

Noise pattern
CNN 93.6%

Reference pattern + correlation 66.4%
Original slice

CNN 92.5%
Reference pattern + correlation 66.8%

Model 15
Noise pattern

CNN 59.4%
Reference pattern + correlation 34%

Original slice
CNN 47.3%

Reference pattern + correlation 27.8%

Table 6.4: Complete list of results from experiment which consider a volume-based split.

fied among each other, while General Electric devices predominantly get predicted as devices from
the same manufacturer.

Classification with Deep Learning

The results presented in Figure B.4 and B.5 in appendix B show that this task is significantly more
challenging than mere manufacturer classification. Still, the neural network reaches substantially
higher accuracy than the results obtained by usage of a reference pattern and correlation calculation
presented in Figure B.2 and B.3. With a maximum accuracy of 59.4%, the neural network outperforms
the usage of the reference pattern by 25.4%.

Furthermore, the classification on noise patterns outperforms the classification on original images by
12.1%, which further supports the hypothesis that CT scanner devices have certain device fingerprints.
Interestingly, the type of misclassifications largely persist throughout the experiments, regardless of
the underlying classifier. As can be seen by the coloured overlayed rectangles in Figures B.4 and B.5,
misclassified samples predominantly get labelled as classes of the same manufacturer. In addition,
certain Siemens device share similarities with Philips devices, a recurrent characteristic which is also
notable in Figures B.2, B.3 and 6.8a.

6.5 Discussion

The results presented in the previous sections revealed some interesting points which warrant further
discussion. Firstly, it is important to discuss the presence of device fingerprints for CT scanners.
Moreover, the impact of a sensible data split, and the large gap in accuracy between device manufac-
turer and device model classification also warrants further discussion. Finally, it is valuable to briefly
discuss the current limitations and further potential of the employed deep learning classifiers.

Potential of device fingerprints of CT scanners. The results obtained from the experiments indi-
cate that the extraction of SPN-based device fingerprints has merit. Although the experiments which
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use the reference pattern technique do not show a direct improvement in accuracy, predictions on fin-
gerprints are less spread among devices, and maintain consistent prediction patterns. In contrast to
the traditional classification technique, the deep learning classifiers yielded consistently higher per-
formance when trained and tested on the noise patterns of devices. Nevertheless, the deep learning
classifiers also seem capable of learning their own representations, as the accuracy between original
images and noise patterns does not always yield significant improvements in performance (Figure
6.8).

Importance of a sensible data split. The experiments consistently show that the hypothesis in-
troduced in point 2 of section 5.3 largely holds true: slices contained within the same volume hold
persistent relationships with each other, resulting in optimistic classification when these related slices
are unrestrictedly distributed among the training and test set. Although the computation of a reference
pattern applied in the correlation experiments (section 6.2) is a relatively simple procedure to fit the
data, it nevertheless influences the subsequent test phase. A clear separation in volumes selected to
compute the reference pattern, and volumes used for later testing show significant effect on accuracies,
as can be seen in the large gap of accuracy between e.g. Figure B.1 and B.2.

In the deep learning experiments of section 6.3.2, the separation of volumes becomes even more cru-
cial. Given the common ratio of a train/test split, e.g 80/20, it is likely that neighbouring slices of
a slice selected for testing, end up in the training set. This consequently causes two nearly identical
slices to be used for both training and testing. Therefore, it is unsurprising that tolerating these sepa-
rations, positively affects the accuracy. This is also highlighted by the near-perfect accuracy presented
in Figure 6.7. As a consequence, the reported results from the related work which did not account for
these separations, may be inaccurate and not directly apply in practice.

Model versus manufacturer classification. The third point of discussion is the substantially worse
performance of device model classification in comparison to the classification of device manufactur-
ers. There are several explanations which likely contribute to this discrepancy. As the difficulty of
the task increases from 4 to 15 classes, so is the same amount of data distributed across more classes.
As a result, there is less training data available per class which hinders the generalizability of the
classifiers. Another factor which may contribute to the performance gap is the design of the devices
itself paired with the corresponding device fingerprint. Devices are likely to share software as well
as hardware components with models from the same manufacturer. As such, a different model may
not necessarily have a unique device fingerprint, or the fingerprint may be too similar to be accurately
captured by the current noise extraction technique. Although this hypothesis is supported by B.4 and
B.5 which clearly shows that misclassified devices are most commonly labelled as a model from the
same manufacturer, this does not fully explain the worse performing classification on the original,
unprocessed images. As such, the general underperformance is likely brought about by the lack of
data, and insufficient optimization of the neural network. As the LIDC-IDRI dataset is not entirely
balanced for this type of task, certain classes only have three distinct volumes at their disposal during
the training phase, which is likely insufficient to obtain accurate device fingerprints for specific device
models.

Further potential of deep learning classifiers. As the final point of discussion, it is important to
address the performance of the deep learning classifiers. Although the results show major progress
compared to the correlation-based approach, further improvements are undoubtedly possible. The
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current network architectures are based on existing networks for general-purpose image classifica-
tion such as MNIST2 and ImageNet [21]. Sensible optimization and fine-tuning of the networks is
a promising step to achieve even higher performance. Likewise, augmenting the current, publicly
available dataset with new data will likely lead to drastic improvement of the device model classifiers.

6.6 Conclusion

The previous sections discussed an array of experiments aimed to reproduce the related work, and ex-
pand the work under stricter, yet more pragmatic conditions. In addition, experiments were conducted
on original, unprocessed CT slices in order to provide a direct comparison with the SPN-based device
fingerprint. Table 6.3 shows a comparison between the related works and the extended experiments
from this chapter. The table signifies the larger dataset used in this work, as well as the different
manner in which the data may be split (section 5.3).

This chapter reproduced the experiments of the related work and highlighted the effect of a naive
train/test split. Namely, CT slices that originate from the same volume share great similarities with
each other, resulting in misguided accuracy when these related slices do not end up on the same side of
the train/test split. As a consequence, the original experiments performed in the related work (section
6.1) indicated the potential of (O)SPN-based device fingerprints, yet do not form a sensible baseline
for future results. To address this shortcoming, the experiments have been reproduced under stricter
conditions and on a larger dataset. With maximum accuracies of up to 66.8% for device manufacturer
classification and a mere 34% for device model classification, the new set of experiments showed that
classification solely based on correlation is insufficient for any practical deployment.

Sections 6.4.1 and 6.4.2 also evaluated the performance of convolutional neural networks on the afore-
mentioned experiments. As illustrated by Table 6.4, accuracies increased to 93.6% for device manu-
facturer classification and 59.4% for device model classification, with architectures that are primarily
suited for general-purpose image recognition. The lack of a custom network further highlights the
potential capability of a deep learning approach for this task. The still relatively low performance on
device model classification has furthermore been discussed in previous section 6.5, and may be at-
tributed to the design of the devices as well as the potentially limitation of the SPN-based fingerprint.

Nevertheless, throughout the experiments using the deep learning models, the preprocessing step of
the SPN-based fingerprint consistently outperformed the classification on the original, unprocessed
slices. This furthermore cements the assumption that CT scanner devices do indeed possess a consis-
tent fingerprint even though the image acquisition process is entirely different from ordinary cameras.
In addition, the generally improved performance highlights that the device fingerprints provide a pos-
itive contribution to the neural networks used in the current experiments.

6.6.1 Answer to Research Questions

Finally, This chapter set out to answer the first two research questions introduced in section 4.1. With
the thorough experiments that have been conducted, these can now be confidently answered.

R1: Can a deep learning approach distinguish between various CT scanner devices based on
CT images? The results presented in section 6.3.2 showed that a deep learning network can at least

2http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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achieve 92.5% accuracy for device manufacturer classification and 47.3% when classifying specific
models based on original, unprocessed CT slices. This is an improvement of 19.5%− 25.7% com-
pared to the correlation-based approach initially investigated in the related work. Furthermore, these
results should primarily be interpreted as a lower bound for the actual capability of a deep learning
classifier as the employed network architectures have not been extensively optimized for the given
tasks. Moreover, merely a single, publicly available dataset has been used during the experiments.
As such, one could expect significantly higher accuracies for more optimized architectures, trained
on larger datasets. In conclusion, the reported results support the hypothesis that convolutional neural
network are well-suited to distinguish CT scanner devices based on their produced images, with high
accuracy.

R2: How do extracted device fingerprints influence CT scanner classification performed by
deep learning? Both experiments from section 6.3.2 have shown that device classification based
on the SPN-based fingerprint consistently outperforms classification on original CT slices. During
the manufacturer classification experiment, the network trained and tested on noise patterns slightly
outperformed the original slices by 1.1%. This gap grows to 12.1% for the device model classification
task. Nevertheless, a fully optimized network with sufficient data at its disposal should be capable to
learn its own approximation of the device fingerprint, without the provision of the noise patterns as
input. However, the results of the experiments show that the currently extracted fingerprint certainly
captures useful features. Therefore, it can be concluded that the extraction of SPN-based device
fingerprints provide a positive contribution to device classification by deep neural networks.
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Chapter 7

Detection of Tampered CT Scans

The previous chapter highlighted the potential benefit of extracting specific noise patterns from CT
images in order to determine the corresponding manufacturer and model of a CT scanner. The ex-
cellent results of the experiments furthermore confirmed the existence of implicit device fingerprints.
This chapter will define the final set of experiments to discuss and answer the final set of research
questions R3 and R4 from chapter 4. Specifically, this chapter will evaluate whether the device finger-
prints are an effective instrument to detect image tampering performed by a GAN. Furthermore, the
chapter will evaluate how the detection rate is affected when multiple types of GANs are evaluated.

The remainder of this chapter is structured as follows. Section 7.1 discusses the related work con-
cerned with the detection of images tampered or produced by GANs. Section 7.2 will detail the
experiment setup of the final set of experiments. This section will discuss the setup, as well as the
generative networks and classifiers used for the experiments. Section 7.3 presents the results of the
experiments. Finally, section 7.4 and 7.5 will discuss the results and conclude the chapter.

7.1 Related work

The detection of samples generated by GANs is an extensively explored topic. However, although
GANs are applicable to a large amount of domains, the studies that aim to reliably detect fabricated
content are primarily focused on a small subset of these domains. The domain of Deep fakes is
perhaps the most well-studied domain related to the detection of AI-generated content. These fakes,
most commonly featured in video format, encompass media that has been altered with high quality,
and often depict celebrities in deceiving context [88]. To distinguish these videos, existing detection
techniques primarily focus on specific properties, such as head-movement [98] or specific high-profile
individuals [2]. Potential general-purpose detection techniques are still actively being studied.

Moreover, studies which focus on generated images, primarily consider colour images. These studies
often involve datasets containing the realistic celebrity images generated by [44], or images from
StarGAN [17], which delivers high quality face manipulations. Mo et al. [65] proposed a highly
accurate classifier aimed to distinguish real from generated faces. On a similar dataset, Jain et al. [40]
split images into individual patches and combine a CNN with an SVM to evaluate the authenticity of
individual patches in order to determine whether the entire image is authentic or fabricated. However,
these solutions do not evaluate their networks on samples from unknown or updated GANs. Instead,
their solutions are exclusively trained and evaluated on samples taken during a single, static training

49
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state of a (known) GAN. Indeed, finding a general solution which detects samples from GANs that are
not contained in the training set, has proven difficult even in the specific domain of fabricated facial
images [48, 97, 53]. Although several studies have also found success on such a generalized setup
[19, 67], these works still solely consider coloured, three-channel, RGB images.

Furthermore, existing work on tamper detection and localization techniques which are based on PRNU
or other noise patterns, have not yet been evaluated on GANs [49, 20]. Similarly, Ghoneim et al. [28]
have found success by utilizing noise patterns within medical images to detect forgeries. However,
the authors have exclusively evaluated copy-move and image-splice forgeries. As such, this thesis is
the first work that aims to detect GAN manipulations within medical images, while also evaluating
the solution on multiple types of GANs.

7.2 Experimental setup

The experiments of this chapter feature two binary classification networks which are trained and
evaluated on specific portions of the noise patterns extracted from CT slices. The networks classify
their respective input as either legitimate or fake. The classifier of the first experiment will process
the entire, uncropped noise pattern of a slice as input, while the classifier of the second experiment
will scrutinize the extracted noise patterns of individual patches which previously depicted nodules.
Figure 7.1 provides an example of the noise patches which are fed as input to the second classifier.

Figure 7.1: Examples of the extracted noise component of a nodule from the original LIDC-IDRI
dataset (1), the CT-GAN (2) and VK-GAN (3).

The goal of the experiments is twofold. Firstly, the noise patterns, which are highly correlated to
the device fingerprints, are evaluated on their capability to facilitate the detection of tampered im-
ages. Secondly, since the proposed solution should be GAN-agnostic, multiple GANs are evaluated
to determine whether the detection is affected by the type of GAN.

Both experiments will again use the LIDC-IDRI dataset [4], which will be used by the classifiers to
acquire a strict representation of legitimate data. Since the proposed solution (section 3.3) will make
decisions based on the fingerprint of a single related CT scanner device, only slices from a specific
manufacturer are considered legitimate. For the upcoming experiments, slices from Philips will be
considered legitimate, while all other slices must be rejected. By labelling all non-Philips slices
as illegitimate, the underlying detector should learn a stricter representation of the desired Philips
fingerprint, without training on any samples from the GANs. Figure 7.2 presents the experimental
setup for the detector. As can be seen, all samples, except LIDC-IDRI samples from Philips devices,
are assigned label ’1’ which denotes these samples as illegitimate. After training, both detectors
are evaluated on samples from two independently developed GANs. These networks, CT-GAN and
VK-GAN, will be detailed in section 7.2.1 below.
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Synthetic/injected Data (Class: 1)

Authentic data from LIDC-IDRI

Philips

Class: 0

Siemens
General Electric

Toshiba

Class: 1

Detector

Trained on

Tested on

VK-GANCT-GAN

Figure 7.2: Training setup for the detector; only images from the original LIDC-IDRI dataset may be
used for training.

Since the experiments in this thesis also aim to simulate the data discrepancy between attack and de-
fender, previously discussed in section 3.4.3, the attacker (GANs) and defender (detector) are trained
on different subsets of the data. As the defender aims to acquire a device fingerprint from Philips CT
scanner devices, the attacker networks will only have relatively limited access to these samples. This
disadvantage for the attacker should indicate if the defender’s knowledge of the fingerprint indeed
benefits the detection. Since the CT-GAN modifies existing slices, the setup will be as follows. Dur-
ing the training phase, the CT-GAN does not train on slices from Philips devices, while the injections
themselves will still be exclusively performed on slices from Philips. Consequently, the tampered slice
will primarily carry the Philips fingerprint, while the injected portion does not. Figure 7.3 illustrates
this setup.

7.2.1 Generative Adversarial Networks

The experiments involve two independently developed GANs: a retrained version of the CT-GAN
which was used in the original attack by Mirsky et al. [63], and a Conditional GAN (CGAN) that
was initially developed for dataset augmentation to aid in nodule segmentation tasks. Although both
GANs have been independently developed and trained for different purposes, both networks have
been trained on the LIDC-IDRI dataset, and thus directly applicable to our experiments.

CT-GAN

The first GAN used within the experiments is a retrained CT-GAN which closely resembles the model
from the original attack [63]. As the authors kindly provided their code on Github1, it was possible to
replicate the exact network architecture as well as the training procedure. However, as the experiments
in this thesis also aim to simulate the data discrepancy between attacker and defender (discussed in
section 3.4.3), the training data and attack pipeline have been modified. Specifically, the GAN is
not trained on any samples from Philips devices. This approach should amplify the distortion of

1https://github.com/ymirsky/CT-GAN

https://github.com/ymirsky/CT-GAN
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the fingerprint as the trained GAN is tasked to inject nodules into slices of which the fingerprint is
unknown (Figure 7.3).

Authentic data from LIDC-IDRI

Philips
Siemens

General Electric
Toshiba

Trained on

CT-GAN

Tampers

Figure 7.3: The CT-GAN is not trained on Philips slices to simulate the attacker’s limitation in the
device fingerprint. However, the tampered slices are indeed from Philips devices.

The original attack featured the ability to choose between nodule injection or removal. However, the
experiments in this thesis exclusively make use of the injector model. This has been done because of
the added complexity to acquire training samples for the remover model. Specifically, the authors em-
ployed a nodule detection algorithm to extract benign micro nodules from healthy CT scans. However,
this approach was deemed too complex for the exploratory purposes of this thesis. Furthermore, as
the proposed solution of this thesis should serve as a general countermeasure against GAN tampering,
the type of modification is of less importance. As such, this thesis will only feature the injector model
of the original attack. However, several other modifications to the original implementation have been
made, which may affect the produced samples.

1. Selection of training samples. To train the model for this thesis, nodule coordinates from the
LIDC-IDRI annotations [76] have been extracted and used to acquire the training samples. To
simulate the data discrepancy between attacker and defender as described in section 3.4.3, the
GAN is not trained on samples which originate from Philips devices. Although the extracted
nodules had the same dimensions as the nodule sizes specified in the original attack (10mm <
x < 16mm), the total amount of potential nodules differs (272 vs 169). This may be due to the
use of a different set of annotations, or the use of additional filtering before the selection of
training samples. As such, the training set is slightly different from the original attack. Despite
the discrepancy in the training data, Figure 7.4 illustrates that the network was still able to train
effectively.

2. Training parameters. For the training phase, the original authors extracted cubes with a di-
mension of 32× 32× 32. The inner part of the cube is masked, and it is the objective of the
GAN to inpaint the masked portion of the cube. The original work considered masks with a
dimension of 16× 16× 162, positioned in the middle of the extracted cube. However, during
the experiments of this thesis, these parameters caused a substantial amount of failed injections
on the test samples. As such, the parameters have been adapted to use a substantially larger

2The provided source code of the authors specified a different set of dimensions. Specifically, 20×20×20.
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Figure 7.4: Samples taken during the training phase of CT-GAN. The first row depicts the input to the
generator, while the second presents the generated results. The last row shows the unmasked image
of the original sample.

mask of 28× 28× 28 (Figure 7.5). Despite this more difficult objective, the second image of
Figure 7.6 highlights the model’s ability to perform noticeable injections.

32
32

32

32
32

32

28

28

2816
16 16

Original model Retrained model

Figure 7.5: The modified mask that is used during the training phase of the GAN.

3. Injection procedure. During the injection of nodules, i.e. after the training phase, the cubes
undergo an additional processing step to touch up the samples and make the produced nodules
even more realistic. However, the calculations used during the touch up step consistently pro-
duced malformed values which negated the injection by altering all values within the tampered
cube to 0. As a consequence, the injected, black cube essentially removed part of the image. As
the samples used during this experiment come directly from the unprocessed DICOM images,
it may the case that the authors performed additional preprocessing that is not mentioned in the
original paper. To remedy the situation, a constant in the calculation has been adapted to match
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the values of the original LIDC-IDRI images.

In addition, the original work injected the entire cube into a CT volume. However, as all the
experiments in this thesis process individual slices, only the middle slice within the cube is used
for the injection. Nevertheless, the GAN is still trained in its original 3D setting.

Despite these modifications to the original implementation, the model still produced samples which
closely resemble the original CT-GAN attack. The second image in Figure 7.6 presents an example
nodule generated by the retrained CT-GAN model.

Figure 7.6: A real nodule from the original LIDC-IDRI dataset (1), and generated nodules by CT-GAN
(2) and VK-GAN (3).

VK-GAN

The GAN provided by van Kampen3 is also a CGAN, based on the architecture of Isola et al. [39]
and Costa et al. [18]. The network was initially trained to assist in lung nodule segmentation tasks.
Specifically, the GAN produces whole images of chest CT slices. This includes the nodules, which
are placed at predetermined, realistic locations. Although the network performs inconsistently with
respect to the generation of anatomically-correct lungs, the nodules are generally produced with suf-
ficient quality. Figure 7.7 depicts examples of the entire images produced by VK-GAN. Although the
slices possess a large amount of irregularities, the nodules remain distinguishable.

Figure 7.7: Slices generated by the VK-GAN. The green marker highlights the nodule. Images taken
from the original work.

The network was exclusively trained on samples from the LIDC-IDRI dataset, including samples
from Philips. Although this certainly affects the assumption on the data discrepancy of the attacker

3The pretrained model was graciously provided by the author, and is currently pending publication.
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and defender, it is highly likely that the initial objective, as well as the large mix of data, prevented the
model to learn an accurate and complete fingerprint of Philips devices. As such, the defender still has
considerably more knowledge of a specific Philips device fingerprint than the attacker. Although the
difficult objective of the VK-GAN leads to inconsistent quality of the produced samples, this contrast
between the CT-GAN and VK-GAN provides an additional point of interest. Specifically, the gap
in quality should cause the proposed solution to be more successful in detecting fabricated samples
from the VK-GAN than the CT-GAN. The third image of Figure 7.6 depicts a nodule produced by the
VK-GAN. Although the quality is notably worse, the nodule is still clearly recognizable.

7.2.2 Detector Networks

The independent detector networks used during the experiments are also neural networks, trained in a
supervised binary classification setting. Since the detectors each process different input samples, their
respective architectures also differ from each other.

Detection on Individual CT slices

The classifier of the first experiment will process the entire, uncropped noise pattern of a slice as
input. The input of this classifier is identical to the input of the successful classifier used in section
6.3.2 of the previous chapter. As such, the same architecture has been applied for this experiment
as well. However, to account for the binary classification task, the top layer of the architecture has
been changed to a single neuron with the sigmoid function in the final activation layer. The original
network architecture, with 4 neurons as the top layer, is described in section 6.3.2 and illustrated in
Figure 7.8.

in
p
u
t

C
on

v 
(3

x3
)

M
ax

 p
oo

l 
(2

x2
)

B
at

ch
N

om

R
eL

U

C
on

v 
(3

x3
)

M
ax

 p
oo

l 
(2

x2
)

B
at

ch
N

om

R
eL

U

C
on

v 
(3

x3
)

D
ro

p
o
u
t 

(5
0
%

)

B
at

ch
N

om

R
eL

U

S
ig

m
oi

d

FC

299x299x1 74x74x8 35x35x16 34,848x1

Figure 7.8: The CNN architecture used for the detection of tampered CT slices.

Detection of Injected Nodules

The classifier of the second experiment is exclusively trained on noise patterns of patches which orig-
inally depicted nodules. This approach is motivated by the smaller scope of the problem; the relative
size of a potential distortion is much larger in individual patches than for an entire CT slice. By purely
training the classifier on the underlying noise pattern of patches which contain nodules, the classifier
is more likely to detect distortions caused by the fabricated nodules of the GANs. For example, the
CT-GAN, given its training setup (Figure 7.3), is likely to either mimic noise patterns from the non-
Philips devices, or even embeds its own fingerprint. As such, the synthetic nodules are more likely
to be rejected. The patches depicted in Figure 7.1 provide an example of noise patterns from the
different sources used during the experiments. Given the desired practicality and independence of the
proposed solution (section 3.3), it is important to note that the current setup is still a realistic setting



56 CHAPTER 7. DETECTION OF TAMPERED CT SCANS

in practice. A nodule segmentation network could first extract all nodules present in the scan, while a
second network extracts the noise pattern and determines the authenticity.

For this experiment, the data samples for the nodules are obtained from the LIDC-IDRI Nodule Size
Report [76], which contains annotations of the nodules present in the LIDC-IDRI dataset, including
the diameter and location of each nodule. However, as only a small subset of the slices contain a
nodule, there is substantially less training data available for the detector. The total dataset shrinks
to a little over 1200 samples; with only 200 nodules captured from Philips devices. Although the
classifier in this experiment focuses on a smaller problem, the experimental setup presented in Figure
7.2 remains the same. Specifically, the legitimate samples, coming from Philips devices are labelled
’0’, while all other samples are assigned label ’1’.

Neural Network Architecture

As the dimensionality, as well as the amount of data itself is significantly decreased, a new architecture
is picked. First iterations of the experiment considered the use of a simple architecture proposed for
the MNIST dataset since the image dimensions are relatively similar (50× 50× 1 vs. 32× 32× 1).
However, given the small amount of data available, this architecture was also deemed to large. The
final architecture for this task possesses the same structure, but has less convolutional layers. Figure
7.9 illustrates the shallower architecture, along with its input images.
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Figure 7.9: The CNN architecture used for the classification of injected nodules.

7.3 Results

Although the aforementioned networks are trained and evaluated on separate types of data samples,
the experimental setup as visualized in Figure 7.2 persists for both experiments. Specifically, during
the evaluation, slices, or nodules, captured by Philips devices are considered legitimate (labelled ’0’),
while the samples from the evaluated GANs are labelled ’1’. This section details the result of the
evaluation phase.

7.3.1 Detection on Individual CT slices

The results are presented in Table 7.1 and Figure 7.10. As can be seen, the samples of VK-GAN
are all detected perfectly, while the injections by the CT-GAN are not detected at all. Despite the
significant gap, these results are not entirely surprising. The VK-GAN will, if at all, possess a fin-
gerprint that contains artefacts from all possible manufacturers contained in the LIDC-IDRI dataset
(Philips, Siemens, General Electric, Toshiba). As such, the Philips fingerprint will only have a rela-
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GAN Accuracy Precision
CT-GAN 49.15% 0%
VK-GAN 99.15% 98.33%
Average 74.15% 49.16%

Table 7.1: Detection results on full-sized CT slices.

tively minor presence, prompting the detector to correctly classify the samples from the VK-GAN as
’Non-Philips’.

The same is likely to hold true for the injections from the CT-GAN. The majority (> 99%) of the slice
will carry the Philips fingerprint, while only a small portion is distorted. Since the main goal of the
detector classifier is to generalize over the data, this distortion is evidently not sufficient to reject the
tampered slices, and consequently flip the label from ’0’ (Philips) to ’1’ (non-Philips).

Figure 7.10: The AUROC for the detection on full CT slices.

7.3.2 Detection of Injected Nodules

The results presented in Table 7.2 and Figure 7.11 show that with a smaller scope, samples from
both GANs are now detected with a high accuracy. However, the obtained results may not be an
accurate reflection of the performance within a practical setting. Specifically, the classifier exhibited
unexpected behaviour during the training phase. As presented in Figures C.1 and C.2 of appendix C,
the classifier was able to quickly fit on the training data, yet failed to make accurate predictions on
the validation data (60%). As such, the results presented in Table 7.2 significantly diverge from the
expected testing performance, and should be taken with skepticism.

A likely explanation may be that the classifier, although having a relatively simple setup, is still too
large or simply not suitable for the current task. This may be due to the type and dimensions of
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GAN Accuracy Precision
CT-GAN 84.09% 89.47%
VK-GAN 95.45% 91.66%
Average 89.77% 90.57%

Table 7.2: Detection results on individual patches which contain a nodule.

the images, but may also be caused by the small amount of available data. Another, albeit unlikely,
explanation may be that there is only subtle difference between the nodules created by the various real
devices, and the decision boundaries may be much closer together now. As such, it may be the case
that, even though real nodules from the LIDC-IDRI dataset are nearly indistinguishable, the generated
nodules from the GANs are confidently predicted as non-Philips by the classifier.

Figure 7.11: The AUROC for the detection of tampered nodules.

7.4 Discussion

The experiments in this chapter have shown that detecting manipulations performed by GANs remains
a challenging task. Specifically, a simple binary classifier, which examines the entirety of a CT slice,
is not suitable to detect the manipulations injected by the CT-GAN. However, the perfect detection
rate on slices from the VK-GAN indicates that larger distortions may not go unnoticed. As such, if the
CT-GAN would need to distort multiple patches within an image, the attack may be easier to detect.
It would be interesting for future research to investigate how the amount and size of the manipulations
affect the overall detection rate. Nevertheless, for a detector that obtains full slices as input, a sliding
window [40] or localization technique [20] will likely yield better performance.

Analogously, the detection of tampered nodules shows more promising results. By reducing the in-
put dimensions and scope of the problem, the relative size of the potential distortion is significantly
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higher. As such, the classifier is more likely to detect any tampered samples. However, section 7.3.2
highlighted that the chosen architecture of the classifier is likely suboptimal. Although the classifier
accurately detects the manipulations of either GAN with an average accuracy of 89.77%, the unsatis-
factory performance on unaltered LIDC-IDRI samples make the overall results less reliable. As such,
further research, with an optimized network, and a larger dataset, would be required to verify the true
potential of the classifier.

Finally, unsupervised learning may be an alternative approach to detect the tampered images. This
approach would treat the problem as an anomaly detection [14], or one-class classification [13] prob-
lem, as opposed to binary-classification. The goal of the network then becomes to learn an accurate
representation of the fingerprint by exclusively training on Philips data. Samples from GANs or the
remaining classes of the LIDC-IDRI dataset are likely to diverge from this representation which con-
sequently facilitates the final detection.

7.5 Conclusion

This chapter detailed the experiments which evaluated the potential benefit of device fingerprints to
facilitate the detection of tampered CT images. The two experiments treated the problem as a binary-
classification objective; a sample is either authentic, or tampered. The first experiment evaluated
a classifier which receives noise patterns of entire CT slices as input, while the second experiment
featured a classifier which exclusively examined the noise pattern of patches which contain nodules.
The experiments featured two independently developed GANs, CT-GAN and VK-GAN, which were
used to produce the tampered images and synthetic nodules. In both experiments, the detector was
solely trained on samples from the LIDC-IDRI dataset. During the subsequent evaluation phase,
samples from both GANs were added to the test set to evaluate the performance of the classifiers.

Section 7.3 presented the results of the classifiers. The classifier of the first experiment, which made
decisions based on entire CT slices, was not able to detect any samples tampered by CT-GAN, yet
managed to correctly classify all the samples produced by the VK-GAN. Previous section 7.4 argued
that the manipulations performed by the CT-GAN are likely not large enough to be picked up by such
a classifier.

With an average accuracy of 89.77% and 90.57% precision, the results of the second experiment
demonstrated that a narrower scope of the problem yields more promising results. Indeed, the clas-
sifier which exclusively focused on patches containing nodules reached substantially higher perfor-
mance than the classifier based on uncropped CT slices. However, as already discussed in sections
7.3.2 and 7.4, the result should be taken with some skepticism, and a more extensive study is required
to validate the results.

Although the second experiment highlighted that a binary classifier has the potential to detect tam-
pered samples, an alternative approach may also be suitable for the task. Specifically, the use of an
unsupervised learning algorithm will prompt a neural network to exclusively learn an accurate repre-
sentation of legitimate samples. Other samples, such as the tampered images, will only fit the learned
representation to a limited extent, making the tampered samples stand out from the legitimate ones.

7.5.1 Answer to Research Questions

Finally, This chapter will answer the final research questions introduced in section 4.1.
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R3: Can device fingerprints be leveraged to support the detection of artificially generated CT
imagery? The experiments certainly highlighted the potential of device fingerprints in supporting
the detection of tampered CT images. The results of the first experiment furthermore indicate that
larger distortions may lead to a higher detection rate. However, only two extreme cases were featured:
a single distorted patch and an entirely distorted image. As such, further experiments are required
to verify this hypothesis. Nevertheless, the second experiment showed that a binary classifier may
indeed detect tampered images, even if the classifier is not trained on tampered samples.

R4: Is the detection affected when a wider range of generative adversarial networks are eval-
uated? The second experiment showed that there is indeed a significant difference in the detection
rate of samples from different GANs. However, further research is required to investigate which el-
ements contribute to this gap. Potential factors may be the quality of the produced samples, or the
training data of the GAN which may affect the fingerprints embedded in the samples.



Chapter 8

Discussion and Conclusion

This thesis was motivated by the significance of the recently published CT-GAN attack [63]. This
attack demonstrated how malicious GANs may be deployed in practice to tamper with medical im-
ages by selectively injecting or removing malign nodules within CT scans. The attack furthermore
highlighted that hospitals, due to their criticality and complexity, remain vulnerable to various security
breaches. This thesis identified that a pragmatic countermeasure, which does not rely on defence in
depth, does not yet exist, and consequently proposed a solution which identifies GAN-tampered im-
ages solely based on image data. Specifically, the solution implicitly learns definitive noise patterns
from CT scanners, i.e. device fingerprints, which are inadvertently embedded within all authentic CT
images by the devices themselves. Distortions to this device fingerprint may then indicate a tamper-
ing attack. Several experiments have been performed in this thesis which aimed to determine if such
device fingerprints do indeed exist for CT scanners, and whether these fingerprints may be leveraged
to detect tampered images.

This final chapter of the thesis will briefly revisit the experiments, their results, and discuss the answers
to the research questions that were defined in chapter 4. This chapter will furthermore evaluate the
significance of these results for the proposed solution. In addition, several potential directions for
future work are proposed which should further improve the results presented in this thesis. Finally,
the chapter is concluded with a few personal words on some recurring elements that influenced this
project and the resulting thesis.

8.1 Discussion

Chapters 6 and 7 have performed multiple experiments to answer the research questions defined in
chapter 4 and help evaluate the proposed solution from chapter 3; a classifier which detects tampered
images based on distortions in device fingerprints, which are naturally embedded by CT scanners. As
only little related work exists on the presence of CT scanner fingerprints, this thesis introduced new
experiments which aimed to verify this claim.

The presented results from the scanner classification tasks (chapter 6) showed that, with an accuracy
of 92.5%, scanners from a variety of manufacturers are indeed accurately distinguishable from one
another, and that the usage of noise patterns further boosts the performance to 93.6%. These exper-
iments positively answered research questions R1 and R2, and confirmed that CT scanners indeed
carry a certain notion of a device fingerprint.

61
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The subsequent experiments from 7 then set out to answer research questions R3 and R4. Specifically,
R3 posed the initial question if device fingerprints are reliable instruments to detect CT image tamper-
ing by GANs. The subsequent question R4 motivated the investigation into tampered images from an
additional GAN to evaluate whether the detection by device fingerprints is suited as a general-purpose
countermeasure.

The results presented in section 7.3 have shown that a classifier which processes full-sized CT scans
as input is likely unsuited to detect the small sections distorted by the CT-GAN. However, given the
stellar performance on the detection of images by the VK-GAN, the effectiveness of the classifier may
improve when the number and size of te distortions within an image grow. Similarly, the results of
section 7.3.2 indicate that by narrowing the scope of the classifier, and applying the detection solely
on patches which contain nodules, the overall detection performance rises significantly to an average
accuracy of 89.77%, with a precision of 90.57%. The individual results in Table 7.2 furthermore
show that, although the type of GAN does indeed affect the overall detection rate, the classifier can
still reliably detect either distortion. However, given the irregularity of the results, further experiments
are required to confirm the presented performance.

To conclude, the proposed solution certainly has the potential for deployment. The extraction of
definitive noise patterns have consistently shown to be a beneficial set of features to identify groups
of CT scanner devices, and may also be utilized to facilitate the detection of image tampering attacks.
However, given the poor detection rate on full-sized CT images, the solution may be modified as
a sliding-window detector, which scrutinizes individual patches of a CT image before making an
assessment on the entire scan. Alternatively, the solution may be jointly deployed with a nodule
segmentation network which extracts the relevant portions from a scan. However, this latter approach
would be unable to detect nodule removal attacks, which have not been considered in this thesis.

8.2 Conclusion

The recently published CT-GAN attack demonstrated a malicious application of a GAN, capable of
autonomous tampering of CT scans. Although existing techniques, such as digital signatures, are
excellent measures to ensure image integrity, they are generally not deployed in hospitals due to
the complexity of a successful implementation. This thesis proposed a novel solution, specifically
tailored to verify the integrity of CT scans, and detect tampering attacks by GANs. The solution
acts independently of existing infrastructure, and solely requires image data from the CT scans to
make its assessment. This independence facilitates the painless deployment within hospitals which
may otherwise choose not to implement any security controls which verify the integrity of medical
images. The solution harnesses definitive noise patterns present in CT images which are produced by
all authentic CT scanners. Significant distortions in these fingerprints would indicate an attack.

This thesis furthermore introduced several research question which were aimed to evaluate the effec-
tiveness of the solution. Specifically, the questions, and consequent experiments, investigated if the
extraction of a definitive noise pattern is indeed analogous to the device fingerprint of a CT scanner.
The experiments showed that CT scanner manufacturers may be classified with 92.5% accuracy based
on their produced images. The accuracy further increased to 93.6% by using the noise patterns as in-
put instead. These results have shown that CT scanners indeed posses a certain notion of a device
fingerprint.

The final set of experiments, performed in chapter 7, then evaluated if the fingerprints may facilitate
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the detection of image tampering by GANs. The presented results indicate that the fingerprints are
indeed a promising tool to detect image tampering within CT scans. Although a classifier cannot ac-
curately detect small distortions within a complete CT slice, the detector may nevertheless distinguish
injected, generated nodules from legitimate ones. With an average accuracy of 89.77%,and 90.57%
precision, the solution certainly has the potential to be deployed in the future.

8.3 Future Work

Although the proposed solution has certainly demonstrated potential, this thesis and its experiments
are first and foremost exploratory work. As such, there are still several avenues to investigate that are
likely to improve the results.

Network optimization. All of the neural networks applied in the experiments are based on existing
architectures and setups, with slight modifications to suit the dimensions and the amount of data. As
such, there is still ample opportunity to improve the existing classifiers. Specifically the classifier
used in the experiments of chapter 7.3.2 showed irregular performance, which indicates a potential
design flaw in the architecture of the network. Moreover, even the successful networks used for the
experiments in chapter 6 may certainly show improved performance when additional domain expertise
is applied to enhance the neural networks.

Optimization of the device fingerprint. In addition to the network optimization, the extracted noise
pattern may also be substantially optimized. The current noise pattern to establish the fingerprint was
originally intended for ordinary photo cameras, yet has also shown applicability for CT scanners.
However, Duan et al. [22] have already shown improvements with a more complex device fingerprint,
which is based on the reconstruction algorithm of CT scanners. Applying a similarly advanced tech-
nique for establishing the device fingerprint will likely improve CT scanner classification as well as
image tampering detection.

Alternative approach to detect tampered images. As already briefly discussed in section 7.4, the
experiments in this thesis approach the detection of image tampering as a binary classification prob-
lem. However, given the role of the device fingerprint to aid in the detection, an alternative approach
may be to apply anomaly detection, or one-class classification to detect distortions within fingerprints
[13, 14]. Figure 8.1 presents a first step towards anomaly detection with a simple, fully-connected
autoencoder (2 hidden layers, and a 2D layer for the code). Although there is still significant overlap
in the reconstruction losses, the legitimate Philips samples nevertheless have the smallest variance.
As such, a more sophisticated approach may be a promising next step. Alternatively, related works
from the field of image forensics, primarily focus on localization, rather than binary classification. For
example, Cozzolino and Verdoliva [20] propose an effective detection tool, also based on fingerprints,
which highlights abnormalities within images. Although this approach was deemed to complex for
this thesis, it is highly interesting for future work.

Deployment of the proposed solution. Since the experiments have shown that the detection based
on full images is likely ineffective, the solution may be adapted to achieve higher performance. For
example, a classifier similar to [40] would first assess individual, non-overlapping patches, while a
subsequent classifier accumulates the individual classifications to make the final decision. A similar
approach may be used to learn the local fingerprint of individual patches, and then applying a classifier
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Figure 8.1: Reconstruction losses of an autoencoder trained on nodules from Philips images.

on each patch. The same approach could also be adapted to an anomaly detection problem for each
patch. It is important to note that neither approach would interfere with the independence of the
solution, as the cumulative input (the CT slice) remains the same.

8.4 Retrospective of the Thesis

Finally, as the last section of this thesis, I would like to share a few aspects that influenced the overall
progress and final results of the thesis.

Ensuring continuity of the project. I noticed it is awfully tempting to get stuck on improving in-
termediate steps, even when the main goal has not been reached yet. Although the thesis started with
a wide scope, the goal of the thesis became quite clear in the early stages of the process: we wanted
to detect tampered images by harnessing the device fingerprints of CT scanners. However, in order
to make the entire thesis meaningful, numerous intermediate steps had to be performed first: finding
a potential solution, data acquisition, extraction of possible fingerprints, verifying if these fingerprint
are indeed beneficial, subsequent CT scanner experiments, and finally using the fingerprints for de-
tection. In hindsight, I lost valuable time by continuously improving and evaluating the experiments
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of chapter 6, while neglecting the final goal of detecting tampering attacks. Without the guidance of
my supervisors, I would have been stuck a lot longer.

Finding the right timing for decisions and trade-offs. This aspect is perhaps related to the pre-
vious point regarding project continuity. Although the amount of literature, and number of potential
solutions for a specific problem is often vast, a decision has to be made at some point. Waiting too
long consumes valuable time of the project, while impulsive decision-making may lead to wrong de-
cisions. As an example, I was highly concerned with the integrity of the experiments. I poured a lot of
time into finding the correct networks and suitable experimental setups, backed up by literature or do-
main experts (again, mostly for 6). Although these considerations lead to exceptionally good results,
they also consumed a lot of time. This lack of time then solely gave us the opportunity to evaluate the
tampering detection as a binary classification problem. Although it is still a valid approach, I would
have loved to have more time to treat the issue as an anomaly detection problem as well.

Data acquisition. The experiments within this thesis required a sizeable amount of suitable data,
i.e. CT scans. However, with the introduction of the General Data Protection Regulation (GDPR)1

within the EU, acquiring and processing medical data has become challenging, especially within a
large organization such as Philips. Even the usage of an publicized and anonymized dataset, such as
LIDC-IDRI, is only approved under strict conditions. Although it was possible to use the dataset in
the end, the experiments consumed more time than initially anticipated.

Data processing. Besides the data acquisition, the processing of the data was not painless either.
The entirety of the LIDC-IDRI dataset contained a little over 120GB of data; loading the entire dataset
into memory is not at all possible, and individual processing of slices may take up to 12 hours. As
such, I have implemented an abundance of functions, often implementing multicore processing, to
optimally load and process the data. Furthermore, using the data for deep learning was not a small
feat either. As existing functions also expect the data to be entirely loaded into memory (or streamed),
splitting data, batch generation, and even model evaluation all had to be manually implemented with
great care.

1https://eur-lex.europa.eu/eli/reg/2016/679/oj

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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Appendix A

LIDC-IDRI Dataset

Manufacturer Model # Volumes Volume avg. # Slices
Philips 56 299 16 739

Brilliance 16 4 255 1020
Brilliance 16P 42 282 11849
Brilliance 40 6 403 2420
Brilliance 64 4 363 1450

GE Medical Systems 608 233 141 843
Lightspeed plus 54 135 7265
Lightspeed power 10 382 3819
Lightspeed Pro 16 69 429 29586
Lightspeed QX/i 88 132 11578
Lightspeed Ultra 135 266 35928
Lightspeed VCT 61 203 12379
Lightspeed 16 191 216 41288

Siemens 180 269 48 352
Definition 3 276 827
Emotion 6 24 135 3239
Emotion Duo 1 278 278
Sensation 16 104 288 29917
Sensation 64 48 294 14091

Toshiba 58 117 6 786
Aquilon 58 117 6786

Table A.1: The distribution of scanner devices present in the LIDC-IDRI dataset.
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Appendix B

Additional Experiment Results

Figure B.1: Result from reproducing Duan et al. [22] with a different preprocessing step.
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Figure B.2: Result from extending the experiment of Duan et al. [22] by using a larger dataset and
applying additional restrictions.
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Figure B.3: Scanner model classification on original images based on the extended experimental
setup.



80 APPENDIX B. ADDITIONAL EXPERIMENT RESULTS

Figure B.4: Scanner model classification on original images using a neural network. The overlayed
rectangles indicate models which share the same manufacturer.
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Figure B.5: Scanner model classification on noise patterns using a neural network. The overlayed
rectangles indicate models which share the same manufacturer.



82 APPENDIX B. ADDITIONAL EXPERIMENT RESULTS



Appendix C

Training Graphs of Nodule Detector

Figure C.1: Accuracy during the training phase of the nodule detector.

Figure C.2: Loss during the training phase of the nodule detector.
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