747 research outputs found

    Evaluating Outer Segment Length as A Surrogate Measure of Peak Foveal Cone Density

    Get PDF
    Adaptive optics (AO) imaging tools enable direct visualization of the cone photoreceptor mosaic, which facilitates quantitative measurements such as cone density. However, in many individuals, low image quality or excessive eye movements precludes making such measures. As foveal cone specialization is associated with both increased density and outer segment (OS) elongation, we sought to examine whether OS length could be used as a surrogate measure of foveal cone density. The retinas of 43 subjects (23 normal and 20 albinism; aged 6–67 years) were examined. Peak foveal cone density was measured using confocal adaptive optics scanning light ophthalmoscopy (AOSLO), and OS length was measured using optical coherence tomography (OCT) and longitudinal reflectivity profile-based approach. Peak cone density ranged from 29,200 to 214,000 cones/mm2(111,700 ± 46,300 cones/mm2); OS length ranged from 26.3 to 54.5 ÎŒm (40.5 ± 7.7 ÎŒm). Density was significantly correlated with OS length in albinism (p \u3c 0.0001), but not normals (p = 0.99). A cubic model of density as a function of OS length was created based on histology and optimized to fit the albinism data. The model includes triangular cone packing, a cylindrical OS with a fixed volume of 136.6 ÎŒm3, and a ratio of OS to inner segment width that increased linearly with increasing OS length (R2 = 0.72). Normal subjects showed no apparent relationship between cone density and OS length. In the absence of adequate AOSLO imagery, OS length may be used to estimate cone density in patients with albinism. Whether this relationship exists in other patient populations with foveal hypoplasia (e.g., premature birth, aniridia, isolated foveal hypoplasia) remains to be seen

    Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging

    Get PDF
    Functional magnetic resonance imaging (fMRI) is one of the principal neuroimaging techniques for studying human audition, but it generates an intense background sound which hinders listening performance and confounds measures of the auditory response. This paper reports the perceptual effects of an active noise control (ANC) system that operates in the electromagnetically hostile and physically compact neuroimaging environment to provide significant noise reduction, without interfering with image quality. Cancellation was first evaluated at 600 Hz, corresponding to the dominant peak in the power spectrum of the background sound and at which cancellation is maximally effective. Microphone measurements at the ear demonstrated 35 dB of acoustic attenuation [from 93 to 58 dB sound pressure level (SPL)], while masked detection thresholds improved by 20 dB (from 74 to 54 dB SPL). Considerable perceptual benefits were also obtained across other frequencies, including those corresponding to dips in the spectrum of the background sound. Cancellation also improved the statistical detection of sound-related cortical activation, especially for sounds presented at low intensities. These results confirm that ANC offers substantial benefits for fMRI research

    A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation

    Full text link
    Stochastic approximation techniques play an important role in solving many problems encountered in machine learning or adaptive signal processing. In these contexts, the statistics of the data are often unknown a priori or their direct computation is too intensive, and they have thus to be estimated online from the observed signals. For batch optimization of an objective function being the sum of a data fidelity term and a penalization (e.g. a sparsity promoting function), Majorize-Minimize (MM) methods have recently attracted much interest since they are fast, highly flexible, and effective in ensuring convergence. The goal of this paper is to show how these methods can be successfully extended to the case when the data fidelity term corresponds to a least squares criterion and the cost function is replaced by a sequence of stochastic approximations of it. In this context, we propose an online version of an MM subspace algorithm and we study its convergence by using suitable probabilistic tools. Simulation results illustrate the good practical performance of the proposed algorithm associated with a memory gradient subspace, when applied to both non-adaptive and adaptive filter identification problems

    Conditioning electrical impedance mammography system

    Get PDF
    A multi-frequency Electrical Impedance Mammography (EIM) system has been developed to evaluate the conductivity and permittivity spectrums of breast tissues, which aims to improve early detection of breast cancer as a non-invasive, relatively low cost and label-free screening (or pre-screening) method. Multi-frequency EIM systems typically employ current excitations and measure differential potentials from the subject under test. Both the output impedance and system performance (SNR and accuracy) depend on the total output resistance, stray and output capacitances, capacitance at the electrode level, crosstalk at the chip and PCB levels. This makes the system design highly complex due to the impact of the unwanted capacitive effects, which substantially reduce the output impedance of stable current sources and bandwidth of the data that can be acquired. To overcome these difficulties, we present new methods to design a high performance, wide bandwidth EIM system using novel second generation current conveyor operational amplifiers based on a gyrator (OCCII-GIC) combination with different current excitation systems to cancel unwanted capacitive effects from the whole system. We reconstructed tomography images using a planar E-phantom consisting of an RSC circuit model, which represents the resistance of extra-cellular (R), intra-cellular (S) and membrane capacitance (C) of the breast tissues to validate the performance of the system. The experimental results demonstrated that an EIM system with the new design achieved a high output impedance of 10MΩ at 1MHz to at least 3MΩ at 3MHz frequency, with an average SNR and modelling accuracy of over 80dB and 99%, respectively

    Layer-oriented multigrid wavefront reconstruction algorithms for multiconjugate adaptive optics

    Get PDF
    Multi-conjugate adaptive optics (MCAO) systems with 10^4-10^5 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence

    First Measurements of Surface Nuclear Magnetic Resonance Signals in a Grounded Bipole

    Get PDF
    Surface nuclear magnetic resonance (surface NMR) soundings are geophysical techniques that offer direct detection of groundwater. Ordinary surface NMR soundings are achieved with a wire loop that acts as both transmitter and receiver. We extend the capability of the technique by using a grounded electrical bipole as the measurement sensor. We provide the first successful measurements of surface NMR signals taken with a grounded electrode pair on a beach outside Perth, Western Australia. Simple changes to existing equations are sufficient to provide forward models for the changes in measurement technique, and the resulting groundwater models are consistent with coincident loop soundings. Our result opens the field for novel sounding techniques of surface NMR signals that could have broad impact on near-surface groundwater investigations
    • 

    corecore