271 research outputs found

    Enabling European archaeological research: The ARIADNE E-infrastructure

    Get PDF
    Research e-infrastructures, digital archives and data services have become important pillars of scientific enterprise that in recent decades has become ever more collaborative, distributed and data-intensive. The archaeological research community has been an early adopter of digital tools for data acquisition, organisation, analysis and presentation of research results of individual projects. However, the provision of einfrastructure and services for data sharing, discovery, access and re-use has lagged behind. This situation is being addressed by ARIADNE: the Advanced Research Infrastructure for Archaeological Dataset Networking in Europe. This EUfunded network has developed an einfrastructure that enables data providers to register and provide access to their resources (datasets, collections) through the ARIADNE data portal, facilitating discovery, access and other services across the integrated resources. This article describes the current landscape of data repositories and services for archaeologists in Europe, and the issues that make interoperability between them difficult to realise. The results of the ARIADNE surveys on users' expectations and requirements are also presented. The main section of the article describes the architecture of the einfrastructure, core services (data registration, discovery and access) and various other extant or experimental services. The ongoing evaluation of the data integration and services is also discussed. Finally, the article summarises lessons learned, and outlines the prospects for the wider engagement of the archaeological research community in sharing data through ARIADNE

    ARIADNE: A Research Infrastructure for Archaeology

    Get PDF
    Research e-infrastructures, digital archives, and data services have become important pillars of scientific enterprise that in recent decades have become ever more collaborative, distributed, and data intensive. The archaeological research community has been an early adopter of digital tools for data acquisition, organization, analysis, and presentation of research results of individual projects. However, the provision of e-infrastructure and services for data sharing, discovery, access, and (re)use have lagged behind. This situation is being addressed by ARIADNE, the Advanced Research Infrastructure for Archaeological Dataset Networking in Europe. This EU-funded network has developed an e-infrastructure that enables data providers to register and provide access to their resources (datasets, collections) through the ARIADNE data portal, facilitating discovery, access, and other services across the integrated resources. This article describes the current landscape of data repositories and services for archaeologists in Europe, and the issues that make interoperability between them difficult to realize. The results of the ARIADNE surveys on users’ expectations and requirements are also presented. The main section of the article describes the architecture of the e-infrastructure, core services (data registration, discovery, and access), and various other extant or experimental services. The ongoing evaluation of the data integration and services is also discussed. Finally, the article summarizes lessons learned and outlines the prospects for the wider engagement of the archaeological research community in the sharing of data through ARIADNE

    A new WebGIS approach to support ground penetrating radar deployment

    Get PDF
    En raison de l’agglomĂ©ration complexe des infrastructures souterraines dans les grandes zones urbaines et des prĂ©occupations accrues des municipalitĂ©s ou des gouvernements qui dĂ©ploient des systĂšmes d’information fonciĂšre ou des industries qui souhaitent construire ou creuser, il devient de plus en plus impĂ©ratif de localiser et de cartographier avec prĂ©cision les pipelines, les cĂąbles d’énergie hydroĂ©lectrique, les rĂ©seaux de communication ou les conduites d’eau potable et d’égout. Le gĂ©oradar (Ground Penetrating Radar ou GPR) est un outil en gĂ©ophysique qui permet de produire des images en coupe du sous-sol desquelles de l’information utile sur les infrastructures souterraines peut ĂȘtre tirĂ©e. Des expĂ©riences antĂ©rieures et une analyse documentaire approfondie ont rĂ©vĂ©lĂ© que les logiciels disponibles pour rĂ©aliser des levĂ©s GPR qui sont utilisĂ©s directement sur le terrain et hors site ne reposent pas ou trĂšs peu sur des fonctionnalitĂ©s gĂ©ospatiales. En outre, l’intĂ©gration de donnĂ©es telles que la visualisation de donnĂ©es GPR dans des espaces gĂ©orĂ©fĂ©rencĂ©s avec des orthophotos, des cartes, des points d’intĂ©rĂȘt, des plans CAO, etc., est impossible. Lorsque disponible, l’ajout d’annotations ou l’interrogation d’objets gĂ©ospatiaux susceptibles d’amĂ©liorer ou d’accĂ©lĂ©rer les investigations ne proposent pas des interfaces conviviales. Dans ce projet de recherche, une nouvelle approche est proposĂ©e pour dĂ©ployer le GPR et elle est basĂ©e sur quatre fonctionnalitĂ©s issues du Web et des systĂšmes d’information gĂ©ographique (WebGIS) jugĂ©es essentielles pour faciliter la rĂ©alisation de levĂ©s GPR sur le terrain. Pour dĂ©montrer la faisabilitĂ© de cette nouvelle approche, une extension de la plate-forme logicielle existante GVX (conçue et vendue par Geovoxel) appelĂ©e GVX-GPR a Ă©tĂ© dĂ©veloppĂ©e. GVX-GPR propose aux utilisateurs d’instruments GPR quatre fonctionnalitĂ©s soit 1) intĂ©gration de cartes, 2) gĂ©o-annotations et points d’intĂ©rĂȘt, 3) gĂ©orĂ©fĂ©rencement et visualisation de radargrammes et 4) visualisation de sections GPR gĂ©orĂ©fĂ©rencĂ©es. Afin de tester l’approche WebGIS et GPXGPR, deux sites d’étude ont Ă©tĂ© relevĂ©s par deux professionnels diffĂ©rents, un expert et un non-expert en gĂ©ophysique, ont Ă©tĂ© sĂ©lectionnĂ©s. Une premiĂšre expĂ©rimentation rĂ©alisĂ©e sur le campus de l’UniversitĂ© Laval Ă  QuĂ©bec prĂ©voyait l’identification de trois objets enterrĂ©s soit un cĂąble Ă©lectrique, une fibre optique et un tunnel dont leur position XYZ Ă©tait connue. Le deuxiĂšme essai s’est passĂ© Ă  l’Universidade Federal do Rio de Janeiro (Rio de Janeiro, BrĂ©sil), avec un professionnel expert en gĂ©ophysique. Ce 2e site cherchait Ă  reproduire un environnent plus rĂ©aliste avec une quantitĂ© inconnue d’objets enterrĂ©s. Les quatre fonctionnalitĂ©s proposĂ©es par GVX-GPR ont donc Ă©tĂ© testĂ©es et leur intĂ©rĂȘt discutĂ© par les deux utilisateurs GPR. Les deux utilisateurs GPR se sont dits trĂšs intĂ©ressĂ©s par l’outil GVX-GPR et ses nouvelles fonctionnalitĂ©s et ils aimeraient pouvoir l’intĂ©grer Ă  leur travail quotidien car ils y voient des avantages. En particulier, l’approche et GVX-GPR les a aidĂ©s Ă  dĂ©couvrir de nouvelles cibles, Ă  dĂ©limiter le territoire Ă  couvrir, Ă  interprĂ©ter les donnĂ©es GPR brutes en permettant l’interaction entre les donnĂ©es gĂ©ospatiales (en ligne) et les profils de donnĂ©es GPR, et finalement pour la cartographie Ă  produire tout en respectant la norme CityGML (donc utile au partage Ă©ventuel des donnĂ©es). De mĂȘme, une fois le systĂšme maitrisĂ©, GVX-GPR a permis d’optimiser la durĂ©e du levĂ©. Ce projet de maitrise a donc permis d’élaborer une nouvelle approche pour effectuer des levĂ©s GPR et proposer un outil logiciel pour tester la faisabilitĂ© de celle-ci. Une premiĂšre Ă©tape de validation de la faisabilitĂ© et de l’utilitĂ© a Ă©tĂ© rĂ©alisĂ©e grĂące aux deux tests effectuĂ©s. Évidemment, ces deux tests sont des premiers pas dans une phase plus large de validation qui pourrait s’effectuer, et ils ont ouvert la porte Ă  des ajustements ou l’ajout d’autres fonctionnalitĂ©s, comme la manipulation des outils de visualisation 3D et l’ajout de filtres et traitement de signal. Nous estimons nĂ©anmoins ces premiers tests concluant pour ce projet de maĂźtrise, et surtout ils dĂ©montrent que les instruments GPR gagneraient Ă  davantage intĂ©grer les donnĂ©es et fonctionnalitĂ©s gĂ©ospatiales. Nous pensons Ă©galement que nos travaux vont permettre Ă  des communautĂ©s de non spĂ©cialistes en gĂ©ophysique de s’intĂ©resser aux instruments de type GPR pour les levĂ©s d’objets enfouis. Notre approche pourra les aider Ă  prĂ©parer les donnĂ©es gĂ©ospatiales utiles Ă  la planification, Ă  effectuer le levĂ© terrain et Ă  produire les cartes associĂ©esDue to the complex agglomeration of underground infrastructures in large urban areas and accordingly increased concerns by municipalities or government who deploy land information systems or industries who want to construct or excavate, it is imperative to accurately locate and suitability map existing underground utility networks (UUN) such as pipelines, hydroelectric power cables, communication networks, or drinking water and sewage conduits. One emerging category of instrument in geophysics for collecting and extracting data from the underground is the ground penetrating radar (GPR). Previous experiments and a thorough literature review revealed that GPR software used in and off the field do not take advantage of geospatial features and data integration such as visualization of GPR data in a georeferenced space with orthophotographies, map, point of interest, CAD plans, etc. Also missing is the capability to add annotation or querying geospatial objects that may improve or expedite the investigations. These functions are long-lived in the geospatial domain, such as in geographic information system (GIS). In this research project, a new approach is proposed to deploy GPR based on four core WebGIS-enabled features, used to support field investigations with GPR. This WebGIS is based on an existing platform called GVX, designed and sold by Geovoxel as a risk management tool for civil engineering projects. In this proposed approach, a generic guideline based on GVX-GPR was developed which users can follow when deploying GPR. This approach is based on four core features which are missing on most GPR software, (1) map integration, (2) geo-annotations and points of interest, (3) radargram georeferencing and visualization, and (4) georeferenced slice visualization. In order to test the designed WebGIS-based approach, two different professionals, an expert in geophysics and a person without any background in geophysics, used the proposed approach in their day-to-day professional practice. The first experiment was conducted at UniversitĂ© Laval (QuĂ©bec – Canada) when the subject undertook an area to a survey in order to identify 3 possible targets premapped. The second, with a Geophysics-specialist, took place in Rio de Janeiro, at Universidade Federal do Rio de Janeiro’s campus. This study covered an area counting on an unknown number of buried objects, aiming at reproducing a realistic survey scenario. Four new feature were added and discussed with GPR practitioners. Both GPR user declared to be very interested by the proposed by the tool GVX-GPR and its features, being willing to apply this software on their daily basis due to the added advantages. Particularly, this approach has aided these professionals to find new buried objects, delimit the survey area, interpret raw GPR data by allowing geospatial data interaction and GPR profiles, and, finally, to produce new maps compliant with standards such as CityGML. Also, once mastered, the technology allowed the optimization of survey time. This project enabled the development of a new approach to leverage GPR surveys and proposed a new tool in order to test the approach’s feasibility. A first step into the validation of this proposal has been taken towards a feasibility and utility evaluation with two tests accomplished. Unmistakably, these are the first steps of a likely larger validation process, opening up new possibilities for the continuity of the project such as the addition of signal processing techniques and 3D data handling. We nevertheless consider these conclusive for this master’s project, above all demonstrating the value add by geospatial data integration and functions to GPR instruments. This work is also intended to the community of newcomers, or interested in GPR, to further explore this technology, since this approach shall facilitate the preparation, execution, and post-processing phases of a GPR survey

    A Framework for Dynamic Terrain with Application in Off-road Ground Vehicle Simulations

    Get PDF
    The dissertation develops a framework for the visualization of dynamic terrains for use in interactive real-time 3D systems. Terrain visualization techniques may be classified as either static or dynamic. Static terrain solutions simulate rigid surface types exclusively; whereas dynamic solutions can also represent non-rigid surfaces. Systems that employ a static terrain approach lack realism due to their rigid nature. Disregarding the accurate representation of terrain surface interaction is rationalized because of the inherent difficulties associated with providing runtime dynamism. Nonetheless, dynamic terrain systems are a more correct solution because they allow the terrain database to be modified at run-time for the purpose of deforming the surface. Many established techniques in terrain visualization rely on invalid assumptions and weak computational models that hinder the use of dynamic terrain. Moreover, many existing techniques do not exploit the capabilities offered by current computer hardware. In this research, we present a component framework for terrain visualization that is useful in research, entertainment, and simulation systems. In addition, we present a novel method for deforming the terrain that can be used in real-time, interactive systems. The development of a component framework unifies disparate works under a single architecture. The high-level nature of the framework makes it flexible and adaptable for developing a variety of systems, independent of the static or dynamic nature of the solution. Currently, there are only a handful of documented deformation techniques and, in particular, none make explicit use of graphics hardware. The approach developed by this research offloads extra work to the graphics processing unit; in an effort to alleviate the overhead associated with deforming the terrain. Off-road ground vehicle simulation is used as an application domain to demonstrate the practical nature of the framework and the deformation technique. In order to realistically simulate terrain surface interactivity with the vehicle, the solution balances visual fidelity and speed. Accurately depicting terrain surface interactivity in off-road ground vehicle simulations improves visual realism; thereby, increasing the significance and worth of the application. Systems in academia, government, and commercial institutes can make use of the research findings to achieve the real-time display of interactive terrain surfaces

    AI-Generated Images as Data Source: The Dawn of Synthetic Era

    Full text link
    The advancement of visual intelligence is intrinsically tethered to the availability of large-scale data. In parallel, generative Artificial Intelligence (AI) has unlocked the potential to create synthetic images that closely resemble real-world photographs. This prompts a compelling inquiry: how much visual intelligence could benefit from the advance of generative AI? This paper explores the innovative concept of harnessing these AI-generated images as new data sources, reshaping traditional modeling paradigms in visual intelligence. In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability, the rapid generation of vast datasets, and the effortless simulation of edge cases. Built on the success of generative AI models, we examine the potential of their generated data in a range of applications, from training machine learning models to simulating scenarios for computational modeling, testing, and validation. We probe the technological foundations that support this groundbreaking use of generative AI, engaging in an in-depth discussion on the ethical, legal, and practical considerations that accompany this transformative paradigm shift. Through an exhaustive survey of current technologies and applications, this paper presents a comprehensive view of the synthetic era in visual intelligence. A project associated with this paper can be found at https://github.com/mwxely/AIGS .Comment: 20 pages, 11 figure

    [Research activities in applied mathematics, fluid mechanics, and computer science]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995

    Fifteenth Biennial Status Report: March 2019 - February 2021

    Get PDF
    • 

    corecore