
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-4-2006

A Framework for Dynamic Terrain with
Application in Off-road Ground Vehicle
Simulations
Anthony Scott Aquilio

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Aquilio, Anthony Scott, "A Framework for Dynamic Terrain with Application in Off-road Ground Vehicle Simulations." Dissertation,
Georgia State University, 2006.
https://scholarworks.gsu.edu/cs_diss/11

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

A FRAMEWORK FOR DYNAMIC TERRAIN WITH APPLICATION IN OFF-ROAD

GROUND VEHICLE SIMULATIONS

by

ANTHONY S. AQUILIO

Under the Direction of Ying Zhu and G. Scott Owen

ABSTRACT

The dissertation develops a framework for the visualization of dynamic terrains for use in

interactive real-time 3D systems. Terrain visualization techniques may be classified as

either static or dynamic. Static terrain solutions simulate rigid surface types exclusively;

whereas dynamic solutions can also represent non-rigid surfaces. Systems that employ a

static terrain approach lack realism due to their rigid nature. Disregarding the accurate

representation of terrain surface interaction is rationalized because of the inherent

difficulties associated with providing runtime dynamism. Nonetheless, dynamic terrain

systems are a more correct solution because they allow the terrain database to be

modified at run-time for the purpose of deforming the surface. Many established

techniques in terrain visualization rely on invalid assumptions and weak computational

models that hinder the use of dynamic terrain. Moreover, many existing techniques do

not exploit the capabilities offered by current computer hardware.

In this research, we present a component framework for terrain visualization that

is useful in research, entertainment, and simulation systems. In addition, we present a

novel method for deforming the terrain that can be used in real-time, interactive systems.

The development of a component framework unifies disparate works under a single

architecture. The high-level nature of the framework makes it flexible and adaptable for

developing a variety of systems, independent of the static or dynamic nature of the

solution. Currently, there are only a handful of documented deformation techniques and,

in particular, none make explicit use of graphics hardware. The approach developed by

this research offloads extra work to the graphics processing unit; in an effort to alleviate

the overhead associated with deforming the terrain.

Off-road ground vehicle simulation is used as an application domain to

demonstrate the practical nature of the framework and the deformation technique. In

order to realistically simulate terrain surface interactivity with the vehicle, the solution

balances visual fidelity and speed. Accurately depicting terrain surface interactivity in

off-road ground vehicle simulations improves visual realism; thereby, increasing the

significance and worth of the application. Systems in academia, government, and

commercial institutes can make use of the research findings to achieve the real-time

display of interactive terrain surfaces.

INDEX WORDS: Terrain visualization, Dynamic terrain, Vehicle visualization, Off-road

simulation

A FRAMEWORK FOR DYNAMIC TERRAIN WITH APPLICATION IN OFF-ROAD

GROUND VEHICLE SIMULATIONS

by

ANTHONY S. AQUILIO

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2006

Copyright by

Anthony Scott Aquilio

2006

A FRAMEWORK FOR DYNAMIC TERRAIN WITH APPLICATION IN OFF-ROAD

GROUND VEHICLE SIMULATIONS

by

ANTHONY S. AQUILIO

 Major Professor: Ying Zhu

 Major Professor: G. Scott Owen

 Committee: Yi Pan

 Yichuan Zhao

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2006

iv

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

1. INTRODUCTION... 1

1.1 SIGNIFICANCE... 1

1.2 MOTIVATION .. 1

1.3 RESEARCH OBJECTIVE .. 6

1.4 CHALLENGES .. 7

1.5 METHODOLOGY: VISUALIZING DYNAMIC TERRAIN IN OFF-ROAD CONDITIONS................................. 10

1.6 CONTRIBUTION & RESULTS .. 14

1.7 THESIS OVERVIEW.. 16

2. A COMPONENT FRAMEWORK FOR TERRAIN VISUALIZATION 19

2.1 INTRODUCTION ... 19

2.2 MODELING.. 22

2.3 MODEL SERVICES ... 36

2.4 RENDERING .. 40

2.5 ANIMATION .. 46

2.6 APPLICATION LOGIC AND APPLICATION-SPECIFIC FEATURES .. 51

2.7 DATA FLOW THROUGH COMPONENTS... 52

2.8 REVIEW .. 56

3. SURVEY OF TERRAIN VISUALIZATION TECHNIQUES............................... 58

3.1 INTRODUCTION ... 58

3.2 SPATIAL PARTITIONING .. 58

3.3 TEXTURING... 64

3.4 LEVEL OF DETAIL.. 72

3.5 DYNAMIC TERRAIN... 106

3.6 CLOSING ... 118

4. TECHNIQUES FOR DYNAMIC TERRAIN .. 119

4.1 DYNAMIC EXTENSION TO RESOLUTION .. 120

4.2 DYNAMICALLY DIVISIBLE REGIONS ... 121

v

4.3 TERRAIN DYNAMISM .. 136

4.4 TERRAIN DYNAMISM ON THE GPU... 142

4.5 LARGE TERRAINS AND DYNAMISM... 154

4.6 CLOSING ... 157

5. DYNAMIC TERRAIN SYSTEM.. 159

5.1 INTRODUCTION ... 159

5.2 GOALS .. 159

5.3 SYSTEM DESIGN ... 160

5.4 COMPONENT DESIGN .. 162

5.5 TECHNICAL DETAILS .. 172

5.6 TEST RESULTS .. 176

6. CONCLUSION AND FUTURE WORK .. 178

6.1 CONCLUSION .. 178

6.2 CONTRIBUTIONS ... 179

6.3 FUTURE RESEARCH DIRECTIONS .. 184

6.4 FINAL WORDS .. 186

REFERENCES.. 188

vi

LIST OF TABLES

Table 1. Test Machine Specifications ... 176

Table 2. Experimental Test Results. ... 177

vii

LIST OF FIGURES

Figure 1 Component Framework Diagram for Terrain Visualization Systems................ 21

Figure 2 The rectilinear organization of data for a Regular Grid Network. 27

Figure 3 Cracking at a T-Junction. ... 34

Figure 4 The Component Framework Data Flow. .. 54

Figure 5 The first three levels of a Quad Tree. ... 62

Figure 6 The first three levels of a Triangle Bin-Tree. ... 63

Figure 7 An example of Framebuffer Composition.. 67

Figure 8 Midpoint displacement results in popping artifacts.. 79

Figure 9 A polygonal merge operation. .. 82

Figure 10 A polygonal split operation. ... 84

Figure 11 Recursive downsampling a heightfield into Geomipmap instances................. 94

Figure 12 Stitching different resolution tiles. ... 97

Figure 13 Skirts are used to hide cracking.. 98

Figure 14 Geoclipmap regions.. 102

Figure 15 Maintaining the correct clipmap region. .. 103

Figure 16 The input mesh. .. 134

Figure 17 The dynamically divided mesh... 135

Figure 18 Camera state for deforming the terrain on the GPU....................................... 145

Figure 19 Mapping elevation data into the render target. ... 146

Figure 20 Recording displacement values into the Offset Map...................................... 147

Figure 21 Data is combined in the vertex processor... 154

Figure 22 Deforming a terrain using fixed regions... 157

viii

Figure 23 Deforming a terrain using a dynamic region.. 157

Figure 24 Class diagram for the terrain system. ... 163

Figure 25 Orthographic view of the spatially-partitioned terrain mesh.......................... 165

Figure 26 Orthographic view of the terrain with level of detail active........................... 168

Figure 27 The vehicle deforms the terrain. ... 175

Figure 28 The integrated level of detail solution. ... 176

1

1. Introduction

1.1 Significance

Terrain is a commonplace presence in everyday life that is easily perceived,

assessed, and understood. The commonality of terrain makes it an essential component in

virtual worlds that seek to imitate reality. In order to be recognized and accepted by an

observer, terrain visualization must meet conscious and subconscious expectations. The

explicit needs may include nothing more than the visual presence of a surface element.

However, for a truly immersive experience, it is necessary to provide an interactive

terrain presence that conveys additional information to the user including composition

and make up. Terrain visualization is an area in Computer Graphics that seeks to depict

terrain in the visual display similarly to viewing its real-world counterpart.

While, the visual display of the terrain may be perceived as mere backdrop in

some systems, its absence would immediately dissuade the user from viewing the scene

realistically. As such, the terrain is a critical part of many simulation and visualization

systems and it cannot be excluded. In addition, terrains may also be considered a

universal component due to its commonality. The critical and universal nature of

visualizing the terrain makes it an ideal pursuance in research.

1.2 Motivation

Currently, there exists a catalogue of algorithms with varying strengths and

weaknesses in terms of algorithmic complexity and visual quality for terrain

visualization. Of these algorithms, the majority of research addresses static terrains only.

Methods for dynamic terrains extend upon static terrain, but also present additional, non-

2

trivial challenges. While the additional challenges complicate the matter, dynamic terrain

solutions are more complete. Visualization and simulation systems provide more accurate

results when using a dynamic terrain method; however, most systems do not employ a

dynamic solution because of the challenges. With recent improvements in computer

hardware, it is possible to develop practical dynamic terrain techniques that do not

overtax the system and impede performance.

Since the inception of the wheel and cart, generation after generation of man has

sought to improve the performance, handling, and style of ground-vehicles. In recent

history, the computer has become an indispensable tool in the study of the automobile.

Not only can the computer be used to design and manufacture vehicles, but it also serves

as a means to study and prototype through simulation. In driving simulators and games,

the user operates a virtual vehicle in a simulated world. In order to provide a good user

experience, the simulation should portray driving accurately and realistically. For real

world driving, the relationship that exists between the vehicle and the terrain surface

defines the mobility and motion of the vehicle. In accordance, the virtual version should

also take into account the relationship between the contact points and the terrain. In

systems that only consider on-road driving conditions, this relationship can be assigned a

fixed set of values, because on-road driving can assume the surface is rigid. Rigid

roadways are characteristic of ideal driving conditions. In the real world, vehicles

negotiating off-road environments may carve into the surface leaving traces remnants of

tire-soil convergence. In worse-case scenarios, the soil makeup is so loose that the

vehicle may become stuck and unable to escape. Driving simulators need to account for

3

the interactivity of the tire and soil if they are to realistically and accurately portray off-

road driving.

Simulations of ground-vehicles in off-road conditions stand to benefit from

inclusion of dynamic terrain solutions because it increases realism of the scene and

accuracy of the experience. In an effort to improve terrain visualization systems, such as

is used in ground-vehicle simulation systems, there needs to be a framework that defines

the components necessary for displaying the terrain and their interrelations. In addition,

workload associated with terrain visualization needs to be well-distributed; making good

use of the available hardware. Integration of the framework into the system improves the

application because it creates a better system through an improved user experience.

1.2.1 Motivation in Terrain Visualization

Research in terrain visualization can be justified by its universal presence and

advances in the area serve to benefit a large community. While the community that

makes use of terrain visualization techniques is diversified, the needs are similar. Many

of these systems strive to produce highly accurate simulations and realistic visual systems

that operate in real-time, further complicating the task by imposing hard deadlines to

achieve interactive frame rates. Advances in terrain visualization are invaluable to all

systems that endeavor to produce highly-realistic virtual worlds.

Entertainment Media, Training & Simulation, and Automotive Industries are just

a few of the application domains that make common use of terrain visualization

techniques. Entertainment media require terrain visualization in applications, such as

video games, as a rudimentary component. Massively Multiplayer Online Role-Playing

Games are one gaming genre that makes extensive use of terrain visualization techniques

4

in order to allow the player to explore vast, seamless landscapes. Geographical

Information Systems (GIS) applications allow users to view varying levels of detail for a

given area of the earth’s surface. In some GIS applications, the user is able to track

entities and survey the topology from varying angles, distances, and locations. Training

& Simulation systems endeavor to display realistic, interactive terrains. Flight simulators,

used to train military pilots, incorporate large landscapes that are displayed in real-time to

the pilot during training. Outside of commercial ventures, academia has a vested interest

in terrain visualization. A number of research efforts depict terrains in their simulation

systems with a variety of objectives and needs. For many of these systems, the terrain

must be well-represented, both visually and computationally. Research in terrain

visualization can revolutionize the way consumers, trainees, and researchers interact with

the virtual world.

The majority of terrain visualization techniques operate under the premise that the

terrain is rigid. Algorithms designed for static terrains assume that the terrain’s

topological description is fixed, which limits interactivity and prevents surface reactivity.

In contrast, dynamic terrains allow for the surface to be deformed at runtime. With the

added capability to change the surface at runtime, environments can be more accurately

portrayed. Terrain dynamics for soft surfaces like sand, snow, and mud can record object

movement by deforming the terrain. Systems that use static terrain internally represent all

earthen compositions with a maximum hardness factor, which is unrealistic. As a general

solution, dynamic terrain is a more accurate approach for terrain visualization; however,

it also presents a unique set of challenges.

5

1.2.2 Motivation in Ground Vehicle Visualization and Simulation

Ground-vehicle simulation in off-road environments is one simulation type that

can benefit from the inclusion of a dynamic terrain solution. Manmade roadways are rigid

and unaffected by the vehicles that make use of it, but off-road conditions do not offer a

fixed standardized pliability. The terrain description, the vehicle, and the tire contribute

to the overall trafficability. The trafficability directly influences trace remnants that can

uniquely identify the vehicle and its travel path. For instance, a large truck driving across

a snowy field will maneuver differently than a motorcycle traversing a sandy beach, and

both will leave behind distinct markings. Unfortunately, most modern day systems ignore

the relationship of the vehicle and the terrain, at the expense of visual correctness. In

these situations, a dynamic terrain strategy can improve realism.

Visually-enhanced driving simulators seek to accurately simulate vehicle

movement and display an image to the viewer that is faithful to what would be seen in

real-life. Lack of a deformation strategy reflective of the underlying simulation model

hinders visual realism, which leads to limited usability and applicability. Obviously,

when the computational model in the simulation accounts for the tire-soil relation, the

terrain deformation should be present in the visual system. For real-time systems, care

must be taken to build the computational model in such a way that it is complex enough

to provide accuracy, but simplified enough to execute quickly. Including a deformation

solution to achieve terrain dynamics compliments the simulation model by offering visual

confirmation of the computed results.

Terrain visualization is used in a number of applications; therefore, improvements

in the field benefit a wide and varied audience. The ideal terrain handling system would

6

include the interface and functionality to interact with the surface in a realistic and

meaningful manner. In an effort to reach this goal, it is necessary to focus efforts on

dynamic terrain solutions. Assumed computational overhead associated with dynamic

terrain is compensated by improving realism and a more faithful visual system.

Simulations of off-road driving conditions are one application domain that can benefit

from the inclusion of a dynamic terrain technique. With the aid of the underlying

computational model, the visuals are drastically improved and the results more

significant. Dynamic terrain has widespread applicability and usefulness; as such,

improving the field of terrain visualization is in the best interest of many.

1.3 Research Objective

Ideally, terrain visualization would replicate terrestrial characteristics absolutely

and completely; however, computers are currently incapable of simulating to that level of

detail. As a middle ground, these systems must make simplifications in the strategies

applied to the problem domain that limit variability at the cost of system precision. The

objective of the research is to improve upon the current trends in terrain visualization by

devising a terrain visualization framework that includes the option to offer terrains

dynamics. Inclusion of a dynamic terrain system can produce a more convincing and

accurate visual display at the cost of additional processing workload. Secondly, the

research shall present a novel approach for deforming the terrain. In an effort to limit the

impact on processing resources, the deformation strategy is well-distributed in such as

manner that it makes good use of the capabilities of current hardware. A software module

for simulating ground vehicles in off-road conditions is used as a practical demonstration,

with the intent of demonstrating the research in a practical setting. Systems that

7

incorporate the framework and employ the deformation solution can achieve a more

realistic and precise depiction of the terrain, than those without.

1.4 Challenges

Terrain visualization is a challenging topic in real-time computer graphics. At the

root of the many difficulties is the immense size of the data in connection to the user's

expectations of the visual display. The ideal terrain renderer is capable of displaying

sprawling landscapes at an infinite resolution [1]. It renders a perfect visual presentation

of the land from all vantage points and distances, just as if viewed in the physical world.

For instance, a viewer would be able to examine a single blade of grass up close and to

see the fine detail. Yet, at a distance the same blade should be completely indiscernible as

it blends in with the rest of the surface matter. At this point in time, computer systems are

unable to achieve this level of fidelity through brute force rendering of the scene. View

dependent methods for terrain visualization are necessary to achieve this type of natural

phenomena without overtaxing system resources. The difficulties faced in view-

dependent methods are exacerbated when, in whole or in part, the terrain dataset can be

modified at runtime.

In the modern world, our daily lives are subject to the use of ground vehicles as a

means for transportation. The physics governing the interaction between a vehicle and the

ground surface is very complex. This complexity is compounded by the fact that terrains

are not composed of uniformly distributed soil composition or ground coverage.

Topological changes are determined by the correlation of surface conditions with the

attributes of the contact points, which normally consists of the tire description. Surface

changes, like tread marks, can convey meaningful information about the vehicle and

8

surface properties to an observer. While the vehicle may not be visible anymore, many

characteristics about it can be inferred through a visual examination and evaluation of

observable trace remnants. Terrain deformation in a simulation system must ensure that

the applied displacement faithfully expresses these relationships to the observer.

Whether for research or entertainment purposes, simulations are used to simulate

something of interest to an observer. To meet the expectations of the observer, a

simulator must be able follow alternate paths of execution. The course of execution may

be affected by altering the state of the system, modifying parameterized values for

simulated entities, or directly interfering with the simulation at runtime. At the same time

as being reactive, many simulation systems are expected to run in real-time. A real-time

system includes meeting schedules with time driven deadlines, in addition to maintaining

computational correctness. While meeting the prescribed deadlines, many real-time

simulation and visualization systems must be dynamic, reactive, and responsive to

external stimuli. The visual systems considered in this research are for real-time

rendering, so both the simulation system and the graphics system must meet hard

deadlines.

Terrain visualization is a broad field comprised of numerous conundrums that

must be addressed. The components that form a complete terrain visualization technique

address data management, processing, and display. Terrain visualization requires

coordination and cooperation between many components to maximize visual fidelity and

optimize throughput. A number of popular, conventional methods in terrain visualization

have recently become antiquated, while newer techniques do not explicitly address the

features of a dynamic terrain solution.

9

1.4.1 Terrain Challenges

Terrain visualization encompasses many components that contribute to the

display of the terrain in a scene. Each of these components brings its own set of

challenges and difficulties that require attention. Strategies within modeling, rendering,

and animation may require specialization in order to perform their duties in a dynamic

system. In those cases where augmentation or specialization is required, it is necessary to

overcome the hardships that would otherwise prevent the use of a dynamic terrain

solution.

1.4.2 Simulation Challenges

Simulation systems attempt to model restricted views of the world that can be

observed, studied, and investigated. Many ground-vehicle simulation systems over-

simplify the relationship that exists between the terrain and the vehicle, which negatively

impacts the usefulness of the system. Unlike the real-world, most simulations assume a

single, optimal ground composition and the tire-soil interaction are commonly ignored.

Eliminating these fallacies can promote a stronger simulation and visual depiction.

1.4.3 Paradigms for Hardware

Computers are complex, powerful machines that include specialized hardware

with advanced capabilities. Hardware for the consumer market improves yearly and while

some changes, like faster memory and increased bandwidth, are transparent to developers

others require direct human intervention. For instance, current Graphics Processing Units

have replaced the fixed functionality pipeline of previous generations with a fully

programmable graphics pipeline. Using the programmable pipeline requires specialized

code that is uploaded and executed on the hardware unit. To maximize the effectiveness

10

of these types of hardware, new programming paradigms must be learned, adopted, and

mastered. New and innovative techniques must be devised that explicitly exploit the

capabilities afforded by the non-transparent revolutions in consumer-market hardware.

1.4.4 Framework

Often methods cannot be adopted for use because they are poorly engineered.

Unrealistic assumptions, inflexible designs, and rigid specifications affect the practicality

and usefulness of a proposed solution. A general approach for dynamic terrain can be

used in a number of applications like simulations, video games, and animations. For an

authentic driving simulation, it is necessary to consider the tire-soil interactivity in the

computational model and terrain deformation in the visualization module. A loose

coupling between the dynamic terrain and computational model allows different

components to adapt to meet the needs of the system. A component-based design allows

future work to make use of only those pieces identified as necessary and appropriate. For

example, research that seeks to study the visualization of bipedal movement across a

terrain surface could adapt a high-level terrain visualization framework to address its

specific needs. In an effort to encourage using these pieces together, the unified interface

of a framework must first be established. The framework facilitates future studies that

seek to validate, refine, or extend the results of this research initiative.

1.5 Methodology: Visualizing Dynamic Terrain in Off-Road Conditions

1.5.1 Criteria & Goals

First and foremost, the research seeks to improve the field of terrain visualization

with innovations that promote dynamic terrain research and development. The first goal

of the research is to develop a component framework that inherently supports dynamic

11

terrain. Secondly, it shall devise a novel method for deforming the terrain that can be

used as a dynamic terrain solution in terrain visualization systems. In support of the

research objectives, we shall develop an application for the visualization of off-road

ground-vehicles that uses the framework and incorporates the technique to create

meaningful surface deformations. To this end, the deformation strategy must support:

1. The generation of visually meaningful surface deformations based on the

imposing object.

2. The offloading of added computational overhead incurred to the GPU.

3. Scalability through seamless integration with terrain visualization systems that

support level of detail.

The research originates an innovative approach for dynamic terrain visualization

suitable for interactive real-time systems, with applications in off-road terrain

visualization and ground-vehicle simulation. The techniques facilitate the conveyance of

meaningful information to the observer. The computational model in the simulation is

simplified, yet practical, to achieve realistic results with acceptable performance. The

visualization of the terrain is accomplished with a dynamic solution, in order to produce

content that has meaning in the visual system. The work will be validated by a custom

implementation.

1.5.2 Terrain Visualization

Terrain visualization requires specialized methods to achieve convincing visual

displays that do not hinder runtime performance. Dynamic terrain solutions require that

the terrain surface can be modified at runtime.

Tread marks, footprints, and other residual information can remain in soft terrain

surfaces after the causal source has left the affected area. Surface deformation in ground-

12

vehicle simulation is necessary in the virtualization of tire-soil interaction and for

providing traceability information. Whether the trace information is pronounced or

subtle, it can prove invaluable in the communication of information. For example, a

snowy field with tire impressions imparts vehicle presence and pathing information;

whereas, a snow field with footprints relays a completely different record of activity and

surface composition. Inclusion of surface deformations resulting from object-terrain

interaction is necessary for the high-fidelity terrain visualization.

1.5.3 Vehicle Simulations

Driving simulators that do not account for tire-soil interaction are incomplete

because they use a model that produces crude, overly-simplified visual interpretations of

physical reality. Manmade roadways have specific properties considered ideal for

driving; however, off-road terrain is composed by nature and suffers a non-uniform

distribution that can range from ideal to worst-case driving conditions. Many systems

assume that ideal driving conditions always exist and opt to ignore terrain composition

variability.

To improve upon the features found in ground-vehicle simulations, the interaction

between the vehicle and the ground surface must be faithfully represented by the visual

display. Although the concept is not novel, the research initiative offers many distinctive

qualities that make it unique and important.

1.5.4 Terrain Deformation

Dynamic terrains are unique because the terrain database can be modified at

runtime. Soil Mechanics is a specialized field in the larger discipline of Physics that

strives to explain the mechanics of ground matter. Physics-based dynamic terrain will

13

simulate the motion of the ground, such as soil slippage, sinkage and compression, using

soil properties like saturation, permeability and granularity. In contrast, appearance-based

methods lack detailed computational precision, but can achieve visually acceptable

results using fabricated control parameters. In both cases, the resulting surface

deformation provides the desired visual cue.

1.5.5 Hardware Specialization

While some advances in hardware promote system improvements transparently,

others do not. For the most part, the ‘opaque’ methods require specialization in order to

benefit from new hardware features. For Computer Graphics, a recent and significant

change is the current transition from the fixed pipeline to a programmable one. With this

change it has become necessary to alter the working mindset to gain the improvements

afforded by the current GPU.

The recent evolution of the GPU affords us the opportunity to directly control

powerful graphics hardware. The use of the programmable pipeline expedites geometry

processing and can be utilized in order to reduce the computational workload placed on

the CPU. However, to make full use of the feature it is necessary to augment traditional

software development. The need to create, configure, and upload a specific shader

program necessitates additional programming during system development (i.e. the benefit

is not transparent). As time goes on, the programmable pipeline will become the de facto

standard, but for now the field is in a state of transition and old techniques must be

reformulated while new techniques should strive to use the GPU to its full potential.

14

1.5.6 Framework

Frameworks are used to assist in the validation, reproduction, and evolution of

research. Logically, the visualization and simulation components are independently

useful. However, they can be regarded as a single system with narrower scope, but

greater functionality. Interconnectivity between system components may be exemplified

in the form of a framework. The framework is both practical and useful for developing

systems that include the terrain visualization. The individual components presented by

the framework define a unified approach, interwoven into a high-level composition that

facilitates research in dynamic terrain visualization.

1.6 Contribution & Results

Terrain visualization is commonplace and used in a number of visual systems.

The ultimate goal for terrain visualization is to recreate terrain for virtual systems that is

both realistic and natural. Currently, it is not feasible to completely imitate the natural

terrain in a virtual world. However, as hardware improves terrain visualization should

move towards its ultimate goal.

To facilitate greater realism, the research offers a unified approach for terrain

visualization in a component framework solution. The framework promotes the use of

dynamic terrain, when appropriate; in order to better simulate the real world. Specifically,

the research presents a new method for performing fast and efficient terrain deformation.

Off-road ground vehicle simulation is used for an example domain that can benefit from

the use of the component framework and dynamic terrain methods. Many vehicle

scenarios, like fishtailing and ‘peel-outs’ are commonplace in modern driving simulation,

but terrain deformation and trafficability is not.

15

The research contributes to the subject area of terrain visualization within the field

of Computer Graphics. The primary focus is to improve terrain visualization, with a

demonstration in the area off-road ground vehicle simulation. The specialized

implementation results of the research are suitable for adaptation in systems that desire

the inclusion of a more realistic, more accurate simulation of off-road terrain conditions.

In the field of Computer Graphics, the solution improves terrain visualization

through its innovative approach for interactive, real-time applications that employ a

terrain visualization system. The component framework is a flexible, modular approach

for the research and development of terrain visualization. Its component makeup allows it

to adapt to the demands of the hosting system. In addition, the deformation strategy is a

self-contained unit, which integrates well within the framework, but can also be used

independently. As such, the standalone technique is suitable for use in any system as a

general purpose terrain deformation solution. Dynamic terrain systems enhance the

system and improve the user experience. Observers can derive information regarding soil

composition and surface trafficability using the added capability of deformable terrains.

Many ground-vehicle simulations lack the visual display of tire-soil interactivity.

For off-road driving simulations, the research presents a complete demonstration of

visualizing realistic tire-soil interactivity. Systems that employ the research strategies are

empowered to produce better driving simulations through improved runtime realism.

Visual realism is enhanced because the terrain depicts impacting forces using the

deformation technique. In general, this research is helpful for improving accuracy in

computations of the system and for expanding the quantitative display of information to

the observer.

16

Many features and capabilities available on system hardware require direct

attention in the design and architecture of a solution. Systems run better when the

available hardware is used effectively. Dissemination of workload is necessary to avoid

bottlenecks that can debilitate the usefulness of an algorithm, operation, or framework. In

an effort to balance the workload assumed, the research strives to use a ‘best of breeds’

approach that makes optimal use of the GPU. In particular, the solution offloads works to

the GPU to expedite scene rendering by displacing the extra work incurred from the

dynamic terrain. To our knowledge, no published research exists that attempts to levy the

power of the GPU with a goal of fostering dynamic terrain visualization.

1.7 Thesis Overview

The remainder of the thesis is organized as follows:

Chapter 2 introduces the reader to the field of terrain visualization and explains it

in the context of the component framework. The field of Computer Graphics is comprised

of tasks in modeling, rendering, and animation. The framework further refines these

categorical identifiers with information and techniques pertinent to terrain visualization.

Subtopics include: data format, spatial partitioning, level of detail, paging, geometry

maintenance, texturing, shading, atmospheric effects, collision detection, and motion

control. The relationships and dependencies between the pieces are specified to construct

a high-level architecture that can be used in the design, development, and analysis of

terrain visualization systems.

Chapter 3 further examines background literature in the areas of terrain

visualization that have received the most attention. Specifically, algorithms in spatial

partitioning, level of detail, texturing, and terrain dynamics are examined at length.

17

Spatial partitioning and level of detail attempt to offer improved performance by limiting

the amount of data processed without impairing the visual quality of the scene. In

particular, level of detail allows for large, expansive terrain meshes to be used and is the

focus of the majority of research in the field. Texturing for terrains can be unique due to

the potentially large mesh, which has resulted in specialized algorithms that attempt to

eliminate visual artifacts. Lastly, we present a review of terrain deformation strategies,

which are an underlying requirement in developing a dynamic terrain solution. The

detailed survey of these topics is used to establish a greater understanding of the field and

its difficulties.

Chapter 4 discusses issues of concern in dynamic terrain and presents novel

approaches for their handling. First, the issue of insufficient resolution is examined. A

high-level specification and detailed technical solutions are provided in the context of a

newly identified construct: Dynamically Divisible Regions. In addition, we designate the

process for terrain deformation and then propose a detailed technique that abides by the

process. Notably, the technique makes use of the GPU to minimize the impact to

performance and is adaptable for use in a number of systems.

Chapter 5 reviews the development of an application system that uses the research

in a fully functioning terrain solution. The component framework was used to design and

develop a dynamic terrain solution that incorporates Dynamically Divisible Regions and

the GPU-based deformation technique in a complete solution. The system was integrated

into an application for the simulation and visualization of off-road ground vehicles. The

practical nature of the research findings is exemplified in the application, which achieves

greater realism by using a high-performance dynamic terrain solution.

18

Chapter 6 concludes the thesis with a review and discussion of future research

directions. The conclusion provides a brief overview and restates the major key points

covered. The section on future work documents potential avenues that should be pursued

in the future for extending and improving the work.

19

2. A Component Framework for Terrain Visualization

In this chapter, we review general background for terrain visualization. The

information is presented within the context of a component framework for terrain

visualization. The architectural layout is comprised of the following top-level

components:

• Modeling

• Model Services

• Rendering

• Animation

• Application Logic

Each component is decomposable into algorithmic groups and each group

addresses specific needs within the system through the execution of particular tasks.

Explicit and implicit relations between decomposable units interconnect the algorithms.

The connections form bonds between components, which gives forth a unique framework

configuration. The complexity of a specific framework instantiation is dependent on the

internally used techniques, which makes it adaptable in terms of complexity. The

framework formalizes the definition of a complete solution for systems in need of terrain

visualization.

2.1 Introduction

Terrain visualization solutions are complex systems that employ a variety of

techniques to create a convincing visual representation of a terrestrial surface. The

selections made regarding data storage, maintenance, and processing influences the visual

quality and the technical capabilities of the solution. Although they appear to act in

isolation, many techniques in a terrain visualization system must be coordinated to work

20

together. A number of system attributes are shared that can be used to identify algorithms

that support seamless integration between components. Shared attributes and cross

component relationships give rise to the architecture of the component framework for

terrain visualization.

Issues in terrain visualization have generated a wealth of research over the years;

however, the findings seem fragmented and disjoint. The disparate nature is a result of

the failure to examine the coordination of new techniques in the context of a complete

terrain visualization system. The component framework presented in this chapter offers a

unifying architecture that facilitates research with a new tool for design, development,

and comparative analysis of systems. In particular, the framework defines relationships

between components that aid in determining appropriateness and viability of use.

The first level of decomposition for the framework consists of the following units:

Modeling, Model Services, Rendering, Animation, and Application Logic (Figure 1).

Modeling, Rendering, and Animation are common action classifiers in the field of

Computer Graphics, while Model Services and Application Logic are specialized

concentrations whose purposes are to provide runtime operations and handle application

domain logic, respectively.

The first-class units are further refined into algorithmic groups that unitize

methods in order to achieve a goal. In some cases, multiple, distinct algorithms must be

coordinated to achieve the task, which forms a composite algorithm. Whether singular or

composite, a new algorithm that performs the duties is added to the pool of candidate

strategies available for use in systems. Selection of the correct algorithm from the

candidate pool is unique, depending on the system’s needs and design. The discovery of

21

new algorithms leads to a larger candidate pool. For selection from the candidate pool, it

is often preferred to choose a solution that runs efficiently and integrates well with other

algorithms.

Figure 1 Component Framework Diagram for Terrain Visualization Systems.

The relationships that exist between the components and their internal algorithmic

groups are fundamental to the design and implementation of a terrain solution. Lack of

foresight and puzzlement over interrelations often results in problematic systems due to

conflicts arising from ill-matched strategies. Constructing the system such that

interrelated tasks are complimentary serves to optimize runtime performance, as well as,

ease development.

22

2.2 Modeling

The practice of modeling is fundamental to the field of Computer Graphics.

Technically, modeling involves constructing a representation of an object suitable for

rendering imagery that is illustrative of the object’s visual presentation. Some of the

solutions used in modeling are static polygonal meshes, procedural methods, and bicubic

patches. Each approach has its strengths and weakness. Choosing the correct approach is

largely dependant on the intended use of the model and the requirements of the system.

Usually, a terrain mesh is represented as a polygon mesh because it is simple and

versatile. A polygon mesh is composed of a well-defined set of vertices that describe the

visible ‘shell’ of an object. A polygon mesh is decomposable into vertices and edges that

describe polygonal primitives. The polygonal primitives form the virtual object’s model,

which is drawn to the screen that is watched by an observer. A terrain mesh is a large

model and, for complex or large meshes, the decisions regarding data organization,

management, and maintenance become vital to ensuring consistent frame rates.

2.2.1 Data Organization

A polygon mesh that represents a terrain surface is a simplified approximation of

a topographical surface that can come from many different sources. If the model is

intended to imitate an actual geographic location, then it is preferable to survey the

physical terrain. Gathering sample elevation data can be used to generate an accurate

geometric model. Systematically sampled elevation data provides enough vertex and

edge connectivity information to create a shell approximation (i.e. the polygon mesh). In

cases where the terrain is not restricted to a real world topological dataset, the method is

less stringent. The first option for generating realistic, yet fictitious, terrains is with a

23

procedural generator, such as fractal and noise functions [2]. In systems that require more

human intervention, content creators may carve the landscape in a content creation

package. Regardless of the source, the end result of all production methods is a polygon

mesh for use as a terrain surface in the virtual world.

Terrain meshes are notoriously large, which is the root source of many difficulties

in terrain visualization. Terrains must be both expansive and detailed, creating the need to

store and process vast amounts of data. Terrains sprawl to the horizon; exposing an

immense amount of visible surface area. Up close, surface elements of the terrain should

display high fidelity surface features to the observer. For real-time systems, there exists a

definitive upper limit to the amount of information than can be processed per frame. In

the context of terrain systems, the upper bound constrains the total amount of terrain data

that can be processed each frame. It is necessary to limit the amount of geometry

processed each frame in order to meet the deadlines of a real-time system’s time

constraints. However, reducing the amount of geometry creates a conflict with the need

to display far-reaching, yet highly-detailed surface imagery. By seeking balance between

the expansiveness of surface coverage and the intricacy of surface detail, terrain systems

can maximize visual quality while minimizing resource consumption.

Data organization is of great importance to modeling in terrain visualization

because data layout influences the rest of the solution. One topic of concern is the data as

it relates to the underlying hardware architecture. Hardware architectures are designed to

work optimally when data is organized in a specific manner. For example, operating on

data and instructions with good spatial coherence and temporal locality can result in more

cache hits, resulting in faster execution on modern processor architectures. For graphics

24

processing, data organization and the method by which the model data is submitted to the

hardware will have a significant impact on performance. The second consideration when

selecting a data format are its characteristic attributes and how they hinder or benefit

algorithmic options. The two dominant approaches to data format and organization in

polygon mesh terrain modeling are Triangulated Irregular Networks and Regular Grid

Networks.

2.2.1.1 Triangulated Irregular Network

A Triangulated Irregular Network (TIN) is a tessellation of non-overlapping

triangles that share edges between no more than two faces. Each vertex of the dataset

represents a unique point on the surface. Edge connectivity of the vertices forms a set of

triangles. The set of triangles creates a continuous surface representative of the entire

terrain. TIN meshes have two predominant qualities. The characteristic of a TIN is that it

is capable of representing a surface with a minimal number of vertices. Secondly, a TIN

structure can represent any possible topography; including convex, concave, and planar

surfaces.

As the name states, a TIN mesh is composed as a non-uniform network of vertices

that interconnect to form a continuous surface of adjacent, unique triangles. A TIN uses

the minimal amount of data necessary to represent the conceived surface offering a fixed

amount of detail. A polygon mesh will not perfectly model a surface because it is only an

approximation, but a TIN model allows for dominant surface features to be represented at

optimal positions. For example, let’s consider a range of irregularly spaced mountain

peaks. The vertex data for each peak and valley would be defined at the exact position the

minimum and maximum extents occur. Using the minimum amount of graph information

25

needed to represent the terrain surface consumes the minimum amount of memory and

limits the total processing overhead. TIN meshes are lightweight in terms of memory and

processing consumptiveness.

A TIN mesh can represent any continuous surface. TIN meshes are unbounded

and are free to define vertices at any location in the local coordinate space, even multiple

heights above a single coordinate pair of the ground plane. The freedom to place vertices

anywhere allows the system to model geographical constructs, such as surface folds and

hollowed out volumes. This freedom makes it possible to replicate terrain features such

as cliffs, overhangs, caves, and caverns. The ability to uniformly incorporate convex and

concave geometry as a part of a single, unified polygon mesh is advantageous because

the entire terrain can be treated similarly.

While TIN methods are optimal in respect to memory consumption and

representational flexibility, they do suffer from drawbacks. The loose coupling of

neighboring triangles is a failing for TIN organization. The unstructured vertex collection

of a TIN mesh ensures that there is a lack of information regarding adjacent triangles

because vertices are kept in a hodgepodge collection. The vertices are the endpoints of

edges that define the triangulated system of polygons. Without a structured relationship

between neighboring polygons, other operations on the terrain are impacted. For

example, a collision detection algorithm such as an intersection test will have to test each

polygon individually to determine if and where an intersection occurs. Consequently,

every polygon of a mesh will be examined in the case when there is no collision. Another

side effect of the polygonal disjointedness is that it can break spatial and temporal

cohesiveness in current memory of system hardware. The data describing neighboring

26

polygons may be in separate areas of physical memory, leading to cache misses. In the

worst case, poor memory use may significantly degrade performance. The intrinsic

disjointedness of the polygons is a detriment to the practicality of TIN data organization

for terrain models.

2.2.1.2 Regular Grid Network

A Regular Grid Network (RGN) is a triangulated tessellation of a continuous

surface that is formed using samples of elevation data taken at regularly spaced intervals.

In the literature, the terms heightfield and height map are often used interchangeably with

RGN. An RGN mesh is a two dimensional grid of elevation samples, characterized by its

organization and storage of data in a matrix. A popular source of heightfield data is the

United States Geological Survey (http://www.usgs.gov/), which offers Digital Elevation

Model (DEM) data. DEM data is a heightfield created by surveying and sampling

elevations across areas of the United States of America at a fixed, regular interval. While

the use of an underlying RGN is the preference in the majority of current literature, it is

not without drawbacks.

The underlying organization of data in an RGN is ideal for many reasons. An

RGN mesh has a simple underlying structure. Instead of complicated graphs or sparse

matrix representations, RGN data can be easily stored and manipulated as a two

dimensional matrix. The simplistic data layout is easy to work with and offers technical

benefits. Given the native support of block allocation of memory in many programming

languages, the implementation of an RGN is simple, if not trivial. Also, runtime

performance is optimal when the data exhibits good spatial and temporal locality, which

can result from the allocation and use of physical memory in large blocks. Performance is

27

improved because the grid layout promotes excellent block transfers of data during

runtime, which achieves good cache coherence. Correctly structuring the data for good

cache use increases the number of cache hits and the system will exhibit better overall

performance.

The underlying matrix structure also guarantees a regularity that can be exploited

in the design and development of algorithms that operate on the data. Most notably, RGN

layout guarantees that triangulation results in right triangles, which can behoove the

algorithmic design (Figure 2). Right triangles offer a variety of special properties that can

greatly benefit processing a massive triangulated surface, like a terrain mesh. Another

advantage stems from the indexed vertex configuration, which prescribes inherent

relationships between adjacent vertices and defines the neighboring information

explicitly. The cardinality of every vertex in the data grid is easily assessed by its indices.

The regularity and structured nature of an RGN mesh is favorable to the execution of

services and operations in terrain visualization.

Vertex Type Degree Vertex Set

Corner vertex with

indices XXXX =],,[.

2 A, I

Corner vertex with

indices YXYX ≠],,[.

3 C, G

Edge Vertex 4 B, D, F, H

Interior vertex 6 E

Figure 2 The rectilinear organization of data for a Regular Grid Network.

Although an RGN, and its underlying matrix format, is exceptional in many

circumstances, there are constraints that can limit its applicability. The primary drawback

is that not all surface features may be represented by an RGN mesh. A single RGN mesh

28

cannot represent multiple elevation heights across an area, whereas a TIN mesh can. As a

result, features such as surface folds and hollowed-out volumes, may not be model using

an RGN mesh. Consequently, this intrinsic property prevents RGN models from

characterizing caves and overhangs.

Another drawback of an RGN mesh is that it tends to be inefficient with regard to

memory consumption. In most cases, RGN meshes consume more memory than

necessary. Every element in the matrix stores height data generated from the regular

sampling of elevation information. Therefore, a block of memory large enough to store

the entire range of data must is necessary regardless of the variance of the topology

across the range. Unnecessary elevation data may be present where the elevation does not

change noticeably. The opportunistic regularity of the sample set is also the source of

wasted memory and higher primitive counts.

The last contention point with RGN meshes is the sample interval, because a

poorly chosen sample interval negatively affects the final result. If the sampling occurs

too infrequently, then the visual fidelity is undervalued; resulting in poor image quality.

On the other hand, if sampling occurs too frequently, then the surface is over-sampled;

thereby, increasing the size of the dataset and negatively affecting runtime performance.

The problem faced from over-sampling is especially important for large terrains, where

the dataset is already excessive. In general, the sample size can be controlled in order to

establish a balance between visual fidelity and resource consumption.

The appeal of using an RGN mesh comes from the underlying matrix organization

and the resulting rectangular/triangular geometric properties. These features are easily

29

exploited in algorithms to improve runtime capabilities. Unfortunately, the underlying

matrix format also imposes rigidity, which can be burdensome.

The two predominant data organizations for terrain modeling are the Triangulated

Irregular Network and the Regular Grid Network. Both approaches are useful and

appropriate when used in an application that can exploit the good qualities and downplay

the faults. The characteristics of data organization greatly impacts the strategies and

algorithms devised and employed by the rest of the system.

2.2.2 Spatial Partitioning

In interactive, real-time 3D computer graphics applications, the workload must be

completed each frame while maintaining a consistent framerate above 30 fps (frames per

second). If the dataset is too large, then the time required to process it will surpass the

time slice allotted to a frame, causing the system to miss deadlines and failing to run in

real time. In the case of large terrain models, spatial partitioning is a strategy commonly

employed to reduce the amount of geometry that gets processed in a frame. By lessening

the workload, time critical deadlines are reached and the real-time criteria of the system

is met.

Spatial partitioning is a technique that can be used to improve performance. With

spatial partitioning, terrains systems employ a divide-and-conquer tactic when processing

the geometry. Conceptually, spatial partitioning is the decomposition of a volumetric

space into subspaces that corresponds to the world coordinate space. Once divided, the

objects located within the bounds of the world space are sorted into the smallest subspace

unit that is considered within the solution. In this way, subspace units organize the virtual

objects in the scene to forms a conglomerated construct useful for improving

30

performance. At runtime, the organization of models into their respective partitions aid in

occlusion, culling, and collision detection. Spatial portioning aids in organizing scene

data, which is useful for improving performance.

Spatial subdivision techniques are either uniform or irregular. Uniform methods

subdivide a space along regular subspace bounds, such that, each unit produced is of a

similar geometric shape. Both the grid (2D) and the box (3D) are examples of shapes

commonly used for uniform spatial subdivision. Irregular methods, on the other hand,

subdivide the spatial bounds into a set of subspaces, such that, at least two subspace are

dissimilar. Irregular spatial partitioning is common when defining a bounding volume for

a model. For the purpose of terrain visualization, uniform methods are used almost

exclusively. In many cases, the logical bounds of the world space coincide with the

terrain’s minimum and maximum extents. For a uniform method, the implicitly regular

shape of the world bounds are subdivided into regularly shaped subspaces. The terrain

geometry is subdivided into regularly shaped regions that fit into one or more subspace

partitions. When possible, the subregions are defined ideally in order to fit into a

partition. The end result is a disassembly of the singular terrain into pieces that can be

regarded internally as individual meshes. Data organization and application requirements

usually dictate the appropriateness of a given strategy. A further discussion of Spatial

Partitioning is given in Section 3.2.

2.2.3 Level of Detail

Current computer architectures offer finite processing capability and software

designs must compensate for the limitations imposed by a system’s hardware. Real-time

systems are even more overwhelming because the application must meet critical

31

deadlines to be considered a correct solution. Reducing the amount of data that is

processed in a frame will improve an application’s chances of meeting its time-critical

deadlines. Level of detail (LOD) is an area of research and class of techniques that seek

to reduce the computational workload by reducing the amount of data submitted for

processing.

Many forms of level of detail exist in Computer Graphics, but techniques in

geometric simplification algorithms are the most pertinent to the study of terrain

visualization systems [3]. The basic rules driving geometric level of detail are:

1. The perceived size of a surface is directly correlated to the total number of

pixels that the model surface contributes color data to.

2. The perceived size of a geometric surface is inversely proportional to its

distance from the eye point.

From rules one and two it can be concluded that as an object moves away from

the eye point, its visible surface will occupy fewer and fewer pixels. Without

specialization, the same amount of data is processed when the object is up close as when

the object is far away, even though the data is contributing less information to the image.

Geometric simplification algorithms attempt to refine the set of geometry used to

describe an object based on the amount of information contributed to the scene. The

rational is to process only the geometry that contributes to pixel colorization and remove

all excess geometry that does not.

A level of detail technique for terrain visualization is classifiable as: discrete or

continuous, view-independent or view-dependent, and top-down or bottom-up. In some

cases, researchers devise hybrid techniques that combine multiple algorithms in an effort

to derive net benefits, but at a cost of increased algorithmic complexity. In these cases,

32

hybrid solutions may be decomposed, and the parts may be classification and analyzed in

line with the pure approaches.

A discrete approach is typified by a two step process. The first step is to generate

a series of mesh instances that vary from the original, high-detail mesh to a simplified,

low-detail mesh. In most cases, the set of mesh instances is generated as a preprocessing

operation during application initialization. The second step is to choose the most

appropriate instance to process and display in a given frame during runtime. Discrete

methods are well received because they are simple and work well with current graphics

hardware. In addition, the ability to handle the bulk of computational overhead for

discrete methods during initialization makes the method minimally intrusive.

In contrast to the discrete approach, continuous level of detail methods perform

most, if not all, of the optimization to the model data during runtime. Typically, the

model is generated to encode the complete range of mesh detail in a single instance that

gets incrementally updated at runtime. The decimation and restoration of detail to the

mesh is handled by the specific level of detail algorithm. Continuous methods are noted

for being able to achieve optimal mesh granularity, where the object is described using

the best possible subset of polygons to describe the visible surface.

The next classifier for level of detail algorithms is view-dependent or view-

independent. In general, a level of detail technique that considers the viewing properties

when specifying the optimal mesh is view-dependent, whereas methods that prescribe the

optimal set of geometry irrespective of the view are view-independent. In practice, all

methods for terrain visualization may be considered view-dependent. However, for

33

discrete approaches, the discrete instances are generated in a view-independent manner,

but the runtime determination of which instances to display uses view-dependent criteria.

The generative simplification process for level of detail may be described as

either top-down or bottom-up. A top-down approach uses a coarse, simplified mesh as a

starting point and adds detail using rules prescribed by the algorithm. For hierarchical,

top-down generation, the tree is built from the root downwards. In contrast, a bottom-up

approach starts from the most detailed mesh and removes geometry. For hierarchical,

bottom-up generation, the leaves of the tree are simplified upwards to the root. In an

effort to maintain mesh likeness between successive levels of detail, both approaches

strive to guarantee changes in geometry do not diverge drastically from the original input.

Even though level of detail can greatly improve runtime performance by reducing

computational workload, it introduces its own set of problems that must be addressed.

One common problem in discrete methods is T-Junctions, which can result in unrealistic

visual artifacts. T-Junctions occur when neighboring mesh instances differ in level of

detail. The variation between neighboring meshes creates inconsistencies in shared edges

of adjacent polygons. T-Junctions may produce noticeable visual surface shading

discontinuity and cracks at the seams between mesh instances (Figure 3a). Cracking

occurs when the simplification process removes a vertex from one instance, which results

in the shared edge no longer being common to both neighbors. If neighboring instances

are being rendered at different levels of detail and one has removed the vertex, the

displacement of the vertex may be visually perceived (Figure 3b). The last issue that may

arise when using a level of detail algorithm is popping. Popping occurs when the

transition between levels of detail occurs instantaneously, and the displacement of

34

vertices is observable. As a general rule, the presence of any of the three artifacts must be

minimized, if not eradicated.

��������������	
���������

� �

��������������	
��������

�����

(a)

(b)

Figure 3 Cracking at a T-Junction.

T-Junction occurs because neighboring partitions are at different levels of detail. The

junction occurs where the vertex B is absent from the lower resolution partitioning, but

present in the higher resolution partition (a). The perspective view of the neighboring

partitions in (b) reveal cracking at the seam.

Techniques for level of detail in terrain are classifiable based on the strategy used

in performing the successive adaptation of geometry and the organization of data. There

are five classes of techniques for level of detail in terrain visualization [4].

• Irregular Meshes methods are characterized by their allowance of the mesh to be

maintained as a TIN. Consequently, they can achieve an optimal approximation of

the surface using a minimal set of data, as has already been discussed. Decimation

and reconstruction strategies are typically done on a per-polygon basis.

• Bin-Tree Hierarchies are characterized by the use of a tree structure to store,

maintain, and mutate the mesh data. These adaptive, continuous level of detail

techniques use an RGN dataset, which offers a number of optimization

opportunities.

• Bin-Tree Regions use a tree as a reference structure to assess groups of polygons

assigned to a region. Regions are not bound to a specific format, offering

algorithmic flexibility to promote the development of hybrid strategies.

• Tiled Blocks subdivide the terrain into regions, or tiles, and then generate discrete

instances of each tile at different resolutions. The complete set of non-overlapping

35

tiles form a mix-and-match set of possibilities to process one terrain at varying

resolutions.

• Concentric Regions define a view-centered, hierarchy of regions. The resolution

of the mesh is relative to its distance from the viewer, which creates the

concentricity.

Level of detail is the largest area of research in terrain visualization. A number of

algorithms exist for level of detail, because it embodies a universal need. A more detailed

survey of level of detail techniques for terrain visualization is presented in Section 3.4.

The modeling component of the terrain visualization framework establishes the

foundation for resource use and defines the geometric quality of the terrain mesh. Sources

for terrain data may come from real world site surveys, artist invention, or procedural

generation. The terrain mesh uses an underlying organization for data that serves to help

or hinder the employment of related strategies. Terrain meshes are notorious for being

large. Often, it is either impractical or impossible to process the entire terrain every

frame. Spatial partitioning and level of detail can help reduce the amount of data that is

processed without affecting image fidelity. Spatial subdivision decomposes the dataset

into smaller, manageable pieces to aid in culling and expedites collision detection. Level

of detail methods seek to reduce the workload by identifying and submitting a relative

subset for processing each frame. Many techniques for spatial partitioning and level of

detail are heavily reliant on the underlying data organization, and operate exclusively on

one format or the other. Selection of complimentary techniques promotes a well

integrated, standardized component for modeling tasks within a terrain visualization

system.

36

2.3 Model Services

Modeling techniques are imperfect, and may require Model Services to

compensate for the imperfections. Model Services are methods that aim to improve

Modeling algorithms that have unresolved issues. In cases where the amount of data

exceeds the capacity of system memory, spatial partitioning may be augmented with an

integrated paging service. Many techniques for level of detail are subject to popping and

cracking, which can be resolved using Geometry Maintenance services, such as

geomorphs and skirts. Model Services improve Modeling solutions by extending

capabilities and resolving problems.

2.3.1 Paging

For large terrains models, the amount of mesh data may exceed the amount of

available in-core memory; making it impossible to load the entire dataset all at once.

Paging attempts to resolve the conflict between data size and memory capacity by

managing the presence of data in memory. In systems where the terrain is so large that

the complete dataset cannot fit into memory, it is also unlikely that the entire terrain will

be visible all at once. In these situations, only a subset of the data contributes to the

fidelity of the image and, therefore, only that subset must be loaded into memory for

rendering purposes. With specialization, it is possible to use spatial partitioning to

generate the partitions that are then stored offline. Even though each partition is a unique

set of mesh geometry, the geometric union of them is equivalent to the complete terrain

mesh. At runtime, viewable partitions are paged into core memory and restored into the

data structure as a spatial subunit, creating a sparsely populated entity that uses less

memory without affecting the rendered scene. As the view changes, old partitions going

37

out of view are replaced by new partitions that come into view. In this manner, the

amount of system memory required is limited to a fixed capacity but the source dataset is

unbounded.

Paging is the specific technique for loading and unloading the visible partitions of

terrain data. Paging limits memory consumption without infringing on the correctness of

the visual presentation. At runtime, the partitions within the view are paged into memory

and stored in a terrain data cache. The retrieval may be explicitly performed within the

application or provided implicitly by the operating system [5]. As the view changes,

different partitions come into and go out of view. When terrain partitions are needed for

rendering, they are sought from the cache. When the visible partition data is in the cache,

it can be immediately processed and rendered. A page fault is when the required data is

not found in the cache. When a page fault occurs, the partition’s data must be read into

memory from an external data store. As the data is paged in, it is placed into cache

memory for faster access on subsequent frames. If the cache is full, the newly paged

terrain data will replace terrain data that is not needed for the scene. Effective use of

paging limits the memory requirements of the terrain system solution with a minimal

impact on performance.

Terrain paging can create the need to page more than just the geometry data.

Vertices often have additional information associated on a per-vertex basis that is useful

for generating good quality imagery. Normals, texture coordinates, vertex colors, and

other attributes will need to be paged along with positional values. Texture coordinates

are bound to one or more texture maps, which also implicates the necessary availability

of the texture resource. The consequence of this relationship is that paging may also have

38

to handle loading textures and other resources in addition to the vertex data. For terrain

models that use large textures, but the model does not require paging, a texture paging

solution may be used exclusively [6]. Paging evokes many possible avenues for

application in terrain visualization because the dataset can easily surpass the capacity of

system memory.

Three properties that will impact the correctness of a terrain paging solution are:

the cache size, the data access time, and the page replacement algorithm. The first

concern to be addressed is the cache size because it will directly affect the cache’s hit-to-

miss-ratio. Increasing the size allows for more data to be stored simultaneously,

improving the chances for a hit to occur, but the whole purpose of a paging system is to

limit the amount of memory being used. On the other hand, if the cache size is too small,

the overabundance of page faults will inhibit performance; thereby, rendering the whole

solution ineffective. The second consideration is the access time for reading the terrain

data from a local drive or network store. The penalty incurred will vary and is dependent

on system architecture and data locality. While the hardware is outside of the scope of the

algorithm, the access time can impact use of a paging algorithm. For instance, fault-

intolerant algorithms are not well-placed in systems that read data over an error-prone

network. The third concern is the page replacement algorithm, which determines what

data is overwritten when the cache is full and new data must be stored. Preferably, the

data that is overwritten is not needed again any time soon because it would have to be

reloaded into the cache. Page replacement algorithms that perform poorly result in an

increased number of page faults and costly accesses to external storage. For very large

39

terrains, paging is a necessary solution; however, it is a non-trivial task that requires

careful planning and consideration to be effective.

2.3.2 Geometry Maintenance

Available processing power is wastefully consumed by an excessive amount of

terrain geometry. Level of detail algorithms try to restrict the amount of geometry that

must be handled in a given frame, while maintaining image fidelity. For some level of

detail algorithms it is necessary to further augment the dataset to resolve issues, such as

cracking and popping.

Cracks are not universal problems because they are not produced in all level of

detail techniques. Specifically, discrete methods tend to display these problems while

continuous methods do not. In cases where they do occur, the resolution can be handled

by forcing edge vertices of partitions to match or by adding skirts. Matching edge

vertices is usually incorporated directly into the algorithm. However, for solutions that do

not match edge vertices natively, skirts are a general service that can be used to hide

cracks by using vertical polygons around the edge of the partition [1]. Although skirts are

imperfect solutions, the end result is often good enough to hide visual discrepancies in

the model.

Popping is a commonplace problem that occurs with level of detail algorithms

when one or more positional values are modified within a mesh between successive

frames. Geomorphing is a technique that eliminates the popping effect. The instantaneous

displacement of terrain vertices is hidden from the viewer by interpolating between

positional values with a blend equation [7, 8]. In recent years, it was shown that

Geomorphing can be performed on the GPU, which means that it is possible to minimize

40

computational overhead [9]. Geomorphing is very common and used in many techniques

to conceal the popping effect.

Model Services offer extensions to Modeling techniques that are imperfect.

Without the added features offered by the services, terrain visualization systems would

suffer from reduced capability and functionality. Paging and Geometry Maintenance are

two services that can improve Modeling techniques through the augmented features.

Paging solutions seeks to resolve memory limitations while Geometry Maintenance

techniques try to compensate for geometric changes and discontinuities. Without Model

Services some techniques would be unfit for use in a terrain visualization system.

2.4 Rendering

Terrain surfaces are highly complex and, as a result, are challenging to visually

replicate in Computer Graphics. In nature, terrains purvey a wealth of visual information

through surface detail and environmental features that can present richness, depth, and

meaning. In many cases, techniques beyond geometric representation in the model are

useful for improving terrain visualization by offering greater fidelity without increasing

the amount of geometry.

Whereas the terrain model defines the geometric identity of the topography,

supplementary techniques can contribute to a more natural, realistic surface appearance.

Rendering techniques for terrain include texturing and shading. In addition to surface

rendering, terrain systems may make use of extended atmospheric models to further

develop the naturalism of the terrain. Photorealistic terrain visualizations make effective

use of texturing, lighting, and atmospheric effects to achieve better visual fidelity.

41

2.4.1 Texturing

Real world terrains are made up of many different natural elements that coexist to

form the visible surface. It is unnecessary, if not impossible, to perfectly model the

detailed minutia found in the soil mass of a physical terrain. The amount of geometry

required to represent every element of the terrain would overload the processing pipeline,

which would prevent the system from operating at interactive frame rates. In addition,

many viewable surface features do not demand geometric representation.

A polygon mesh is only an approximation of the surface that defines the surface

structure in terms of vertex position and edge connectivity. Other values can be

associated with vertices in the polygon mesh including colors and normals. In the

conversion from a continuous surface to a discrete surface, one part of terrain information

that gets lost is the surface’s color definition across the entire terrain. It is unreasonable to

accurately reproduce a terrain surface’s coloring using only vertex coloring, because only

one color can be associated with each vertex of a polygon in the mesh.

Texturing is a technique for varying surface properties in an effort to imitate

surface detail that is not provided in the geometry of the model [2]. Catmull produced the

first images to include texture mapped models, revolutionizing the way surface detail is

applied to the geometry [10]. While specialized variants of texture mapping exist, the

original concept of texture mapping remains valid and underlies them all. The first step is

to create a texture map, which is an image that imitates the surface properties of the

model and is (usually) not present in the geometric representation. In the case of the

terrain surface, elements such as blades of grass or cracks in dried dirt are good

candidates for inclusion in the texture map. Next, each vertex in the face of a polygon is

42

assigned a texture coordinate),(vu that correlates with a point in the texture map. The set

of),(vu coordinates assigned to the vertices of one polygon defines an area of the texture

map. When the polygon is drawn to the backbuffer, an interpolated lookup supplies the

rendering system with color values to assign to each fragment. In effect, the area of the

texture map is applied, like a decal, to the face of the polygon. Assuming the texture

image faithfully imitates surface materials; texture mapping achieves transference of

surface details onto the polygon that would not be present otherwise. Texture mapping

provides variations in surface appearance and polygon face colorization that can

drastically improve the realism of the rendered scene.

Texture mapping is a common practice in terrain visualization for rendering

detailed surfaces. The numbers of different types of terrain surfaces and items that

contribute to their visual presentation are immense. In cases where texture map size is

overly large, it may be necessary to employ a specialized texture management system to

optimize resource use with the needs of the scene [6]. Trying to imitate the materials that

make up a terrain surface through geometric modeling is both impractical and inefficient.

With the polygon mesh approach for modeling, the terrain surface is only a surface

approximation. Texture mapping can compensate for lost surface information by

supplying surface materials that help to improve visual fidelity with minimal overhead.

2.4.2 Shading

Lighting is of great importance in the perception of a scene by the human eye.

Even when surface topography does not change, a varied presence of light will greatly

impact the viewed scene. Differences in the amount and type of light will influence how

the brain interprets the colorization of the landscape. A great deal of research in

43

Computer Graphics focuses solely on attempting to faithfully reproduce realistic lighting

in the virtual world. Currently, use of a complete, physically-accurate lighting function

based on the Bidirectional Reflectance Distribution Function (BRDF) is unsuitable for

use in real-time systems due to its complexity. However, simplified lighting equations

can be used at a reduced computational cost that offers reasonably convincing shading

effects.

The two shading models for calculating surface illumination are local and global.

Local models compute the shading of a surface using only light from a light source, while

global models also take into account light reflected between objects in the scene. Both

approaches require a parameterization of the surface materials and the environment

lighting. The parameterized values are used to calculate the color of each pixel in the

image. Local models are simple in comparison to global models, yet the imagery

produced is still very convincing. For truly realistic shading, global models such as

Radiosity [11] or Ray Tracing [12] are very realistic; however, at the time of this writing,

computer systems are unable to perform these methods fast enough for use in real-time

systems. The shading model prescribes the computational accuracy of surface shading,

which will attribute to visual fidelity.

In addition to the shading model, illumination of a scene can be either dynamic or

static. Dynamic lighting allows for the orientation of the light to change over time, while

static lighting assumes the light is fixed. Dynamic lighting is more difficult to handle, but

more applicable as a general solution for terrain visualization because the Sun is a

dynamic light source. Dynamic terrain lighting is difficult because the model’s size and

varying surface features makes it hard to compute effects, like shadows. Static lighting

44

uses a fixed light source that cannot move over time; therefore, shadowing may be

computed once at startup and used for the duration of the scene. Many simplified terrain

scenes do not offer dynamic lighting because the visual improvement does not justify the

excess in computational complexity.

The difficulty of shading a terrain has left it a widely unexplored area, with only a

handful of techniques being commonly used. One common approach for terrain shading

is the use of light maps. Light maps are capable of providing reasonable shading for

terrains with little computational cost and they can be dynamically updated to simulate

dynamic lighting in real-time to create the illusion of the lights moving across the sky

[13]. The light map can be blended with the texture map to visually imitate terrain self-

shading. Another approach is to compute the horizon points for each elevation sample to

produce soft shadows [14]. Unfortunately, horizon computation does not allow for

dynamic geometry, which precludes it for use in dynamic terrains. Other possible

avenues for shading include shadow maps [15] and shadow volumes [16], but as of this

writing these techniques are too computationally expensive for use in real-time terrain

visualization because the terrain model is too expansive [17]. The goal of a shading

technique is to create the illusion of realistic lighting, which contributes to the overall

convincement of the scene. An appropriate illumination technique will convey visual

information that encourages greater submersion in the virtual world.

2.4.3 Atmospheric Effects

Many terrain systems include the simulation of atmospheric effects as a

complement to the landscape. Every day, the atmosphere impacts our perception of the

physical world. Virtual worlds attempting to replicate the physical world will include

45

environmental rendering effects that influence the visual presentation. The atmospheric

component improves the scene and creates a more realistic system dynamic in the virtual

world.

Whereas shading only considers the impact of light as it relates to the surface,

atmospheric effects take into account the impact of particles of matter that may redirect

light as it travels to the surface. Sometimes the consideration of airborne particles may be

limited, or even disregarded, but for total realism the atmosphere plays a large role in the

perception of a terrain. For many terrain visualizations the Sun is the primary light

source. Atmospheric influences that can impact the contribution of light to the scene

include:

• Sky: The presence and density of clouds in the sky should be accurately reflected

within the scene. The intensity of incoming light is reduced when it passes

through cloud cover. In most cases clouds will only influence the amount of light

that reaches the terrain surface but, in some cases, the clouds may actually project

shadows onto the terrain. Also, the color of the sky can vary depending on the

time of day. It is possible to parameterize the atmosphere and use the information

to create red, yellow or blue skies that create a tone or hue to terrain surface [18,

19].

• Fog/Haze: Fog is a natural phenomenon of nature. When present, airborne

particles create a fogginess or haziness that reduces visibility; obscuring the

perception of the terrain as it spans out into the distance. Examples include

morning mist and the haze beneath the canopy of a rainforest. Both conditions

produce haze that reduces visibility. In the simulation of these types of

environments, the inclusion of fog and haze is needed for the correct visual

depiction of the terrain and its ecosystem. Over time, fog has become a staple of

mainstream computer graphics applications and hardware support is commonly

available.

The rendering component serves to improve realism by adding detail without

requiring additional geometry. In place of mesh geometry, techniques are performed that

contribute surface information to the polygonal faces of the mesh; thereby, creating a

more convincing scene. By associating texture data and surface materials with vertices, it

46

is possible to better imitate physical terrains. Shading is necessary to realistically

simulate sunlight and moonlight illumination of the terrain. Atmospheric effects are

complementary techniques that aid in further improving realism. The result from properly

employing rendering methods is a more realistic rendition of the virtual world.

2.5 Animation

In visualization, virtual system dynamics and real-time interactivity are greatly

valued and provide additional information to a scene, whereas immobility and rigidity are

restrictive and inhibitive. Animation, in the context of real-time 3D computer graphics

systems, is the area of concentration that studies the motion and interactivity of graphical

objects. The interactive relationships of objects in a scene offer implicit content that the

observer instinctively interprets and cognitively processes. The inclusion of motion and

object dynamics is necessary to correctly portray virtual worlds where objects interact;

hence, interactive applications must include object dynamics and motion.

Animation for interactive systems is unique and challenging. One source of

contention for interactive systems is that the definitive motions of the objects are

indeterminate at system start up. To further complicate the matter, the motions in a real-

time system requires fast calculations that achieve a qualitatively, if not quantitatively,

correct movement. In most graphics applications, motions are achieved by rotating,

scaling, and translating vertices that make up the geometry of an object. Using linear

algebra, the individual transformations can be compounded into a single transformation

matrix. For the transformation of rigid body objects, the compound transformation is used

for the entire object geometry. Deformable surfaces, on the other hand, require more fine-

grained control of individual vertices and may necessitate unique transformations per

47

vertex. Another difficulty in animation is the determining the interaction between objects.

The introduction of motion begets the need to detect object-object interpenetrations;

otherwise, objects can pass through one another creating a surreal version of the physical

world. When handled properly, the gains from animating an interactive scene will surpass

the challenges.

Terrain dynamics improves realism when it includes terrain interaction. Most

terrains systems are used for the purpose of allowing a virtual object, like a ground-

vehicle, to traverse the surface. There are two traits necessary in a fully interactive terrain

surface.

1. The terrain must provision for the detection of impact object forces.

2. The terrain must deform as a reactive motion to contact forces, in a natural and

realistic manner.

In order to facilitate the needs for a fully interactive terrain surface, terrain

systems will require collision detection and motion control.

2.5.1 Collision Detection

In the physical world, two objects that have unique, solid masses cannot occupy

the same space. The attempt of one object to assume a space already occupied by a

separate object will result in a collision. For virtual worlds, the introduction of motion

begets the need to detect object collisions because objects do not have a true mass.

Instead, it is up to the system to provide the means for knowing when an object is

obstructed from continuing along its current path. Many systems for collision detection

exist, ranging in capability, focus, and complexity. General collision detection systems

offer broader coverage, but specialized solutions can offer better performance.

48

Collision detection for terrain systems is unique and may be subject to

specialization. Depending on the data organization, the topological description may be

structured in a manner that allows for assumptions to speed up calculations. Collision

detection can be performed faster in systems that use spatial partitioning. The gain in

runtime execution is especially important for terrains because, unlike other object

collisions, intersections with the terrain are expected to occur frequently. For example,

consider terrain visualization in the context of an automotive racing game. While the

driver’s simulated car may or may not crash into another car during the course of the

race, the car will undoubtedly ‘collide’ with the race track. In addition, the point of

contact with the terrain must be determined every frame, justifying the need for an

extremely fast and accurate collision detection solution. In terrain visualization, collision

detection and the subsequent intersection tests it performs require expeditious execution

and quantitatively accurate results.

While collision detection for terrains may be subject to specialization, it is not

necessarily unique. Intersection tests from other areas of Computer Graphics, such as Ray

Tracing, can be adapted for use in terrain queries. In the general cases, intersection can be

performed by searching for the polygon that describe the surface for the intersection with

a ray. Fast and accurate geometric methods for detecting ray intersections are well

known. For RGN data, it is possible to perform a very fast intersection test to determine

the height because the orientation of the ray is known to be to the ground plane. The

speed up is derived from both the fixed orientation of the ray and the ability to quickly

access the possible triangles that the ray may intersect without the need to search through

49

the entire set. It is also possible to ascertain if and when a collision occurs with any

terrain, but meshes that use an RGN data format are much faster in doing so.

Collision detection is an vital construct in the animation and motion of objects in

a virtual world that seeks to imitate physical reality. Inclusion of a good solution for

detecting when and where objects interpenetrate the ground is imperative in a complete

terrain visualization solution.

2.5.2 Motion Control

There is a need in interactive visual systems for a Motion Control system to

ensure the object(s) move in natural and convincing ways. The job of the Motion Control

system is to define parameterizations, calculate results, and apply limitations that form

the algorithmic description of the object’s motion. In essence, the motion control

embodies the model that guides the movement and, when appropriate, revises the results

in an effort to produce a meaningful, convincing motion. In most literature, the motion in

an animation is presented in the context of a rigid body object moving through the world.

However, for terrain visualization, the Motion Control handles individual vertex

movements that provide surface deformations.

In order to obtain a realistic simulation, it is essential to convincingly resemble

nature. From Physics, Newton’s Third Law of Motion states: For every action there is

an equal and opposite reaction. It follows that Newton’s Third Law must be faithfully

reproduced to achieve a realistic simulation. As such, an interactive terrain that seeks to

simulate the physical world should react to applied forces. Without an external force

applying itself to a terrain the surface remains inanimate. Once an external force is

applied, the terrain topology should react regardless of whether or not the reaction is

50

visually obvious. In many cases, the resulting surface deformation would be visually

perceivable. In simulating the behavior, the terrain mesh displaces it vertices in a manner

that meaningfully simulates the interacted occurrence. For motion control purposes, the

types of vertex displacement are:

• Fixed: The surface’s vertices are static and the surface does not deform.

• Constrained: The surface’s vertices move through a limited range of motion(s)

and, consequently, the surface can only show a limited range of deformations.

• Free-form: The surface’s vertices can move through the full range of motions, in

any direction and magnitude; allowing the surface to deform into any

configuration. .

In terrain visualization, the majority of systems offer a fixed displacement through

an implicit motion control. Fixed displacements are common in the physical world when

the applied force does not overcome the reactive force. For instance, a man pushing on

the ground can not send the earth out of its orbit because the force applied by the man

does not overcome the gravitational forces holding the planet in orbit. While less

common, constrained and free-form displacements for terrain surfaces are more accurate

as a general solution to interactive terrain visualization. In the case where the man pushes

down on a pile of loose top soil, the force he applies will displace the soil into a different

configuration. The surface deformation can be represented properly in a system that

offers a constrained or free-form Motion Control, but not when it is fixed.

Animation systems enable graphical objects to move through the scene, creating a

stronger sense of realism in the virtual world. Terrain visualization that incorporates an

animated surface is a more realistic and natural presentation. When forces are applied to

the surface, reactive terrain deformations are created that can improve the visual quality

of the scene and accuracy of the simulation.

51

The motion of graphical objects is important, if not mandatory, in interactive

visual systems. The familiarity of motion establishes the precedent for simulated

movements. In the quest to accurately portray reality, objects of mass can not

interpenetrate. To prevent interpenetration, it is necessary to detect when and where two

objects collide using collision detection. As objects move they usually follow well-

structured rules that employ mechanical, biological, or structural constraints. For

animations, a Motion Control system dictates the range of motions allowed for one or

more vertices in the system. Successful development and integration of the components

for Animation improves the system by offering the observer a greater sense of immersion

in the virtual world.

2.6 Application Logic and Application-Specific Features

The majority of work in terrain visualization focuses on the computer graphics

methods without regard for the greater system goals. In practice, Application Logic

demands the acknowledgement of application-specific features. Software applications

offer a service and the service entails accomplishing a goal for the system user. In many

systems, visualizing and simulating the terrain is not the absolute objective. In many

systems the visualization of the terrain may contribute to the overall system objective as a

supportive element. Therefore, its usefulness and correctness is subject to evaluation in

the context of the application domain, where it serves as a subsystem in a larger, more

complex entity.

Specialized features are common in simulation, training, video game, and

research applications employing a terrain visualization system. For instance, Training &

Simulation applications used to prepare military personnel might expect the accurate

52

visualization of the terrain, but the objective of the software is to train the participants. To

assist the larger system in accomplishing its goal, the terrain system may be required to

offer specialized features that do not directly contribute to the terrain’s realism or runtime

performance. In the context of the component framework, the added feature is application

specific because it does not contribute to visualization of the terrain, yet it is still an

essential feature if it is to be considered complete in the application domain.

2.7 Data Flow through Components

Individually, the components of a terrain visualization system work to perform

specialized functions; however, they are related through an overarching processing

workflow. Components for terrain visualization require interoperability and cooperation

to achieve optimal throughput, while producing high quality imagery. The sequence of

information processing divulges the interdependencies and relationships of the different

components as data is processed by the system. The relationships suggest fundamental

congruencies in terrain visualization systems that define interconnections, which result in

either a cooperative, integrated solution or a flawed, dysfunctional one. Awareness of the

relationships is essential in the development of a terrain visualization system using the

component framework.

In terrain visualization, the processing of data requires an execution path that

encounters the various components of the framework. The sequential encounter with

components induces operational relationships that benefit from coordination. Terrain

mesh data is resident as a static, offline data source that can adhere to properties of a

mesh type to define cooperative constraints. While a TIN mesh has less rigid rules

regarding the structure of data and its geometric properties, an RGN mesh must enforce

53

the strict rectilinear, evenly-spaced data layout to remain valid. For each mesh type, there

are a number of well-suited methods for each component that may be employed;

however, there are also many algorithms that are simply not compatible. To further

complicate matters, a method that is compatible with a given mesh type may be

suboptimal. Lastly, the mesh type can lend itself to eased integration and interoperability.

For example, RGN methods often integrate seamlessly with methods that make use of

subdivisions along regular bounds, as is the case with Quad Trees and Triangle Bin-

Trees. In addition to defining integrative feasibility, the mesh type will greatly impact the

compatibility and optimality of techniques employed by components in the framework.

The cooperative nature of the component framework is derivative of the

information flow of terrain data (Figure 4). During each frame, the terrain data is

collected, refined, and processed to generate the scene’s imagery. In simple systems, the

processing phase may be the only one present; whereas, in advanced systems of increased

complexity all three phases are employed, with the potential for each component to

handle multiple subtasks. Although system complexity may differ, the process flow

through the various components may be examined in a generic manner. Runtime

behavior may vary depending on the presence of components and their sequence of

execution, which is system specific. In such cases, the information regarding the flow is

still applicable, but the technical concerns may require reevaluation.

54

���	�����

��	��������������

�	������	�����

��������������������

�	�	������	����

 	��	!����"	

���

#����	������"	

���

$	����������$�����	�
�

���
���"��%	
&

�������	!������'����&����'���(�����
�&	�	

��	���	������	!������'����&����'���(�����
�&	�	

�����(������
�����	�	"�������(��	������

������������#		()�"*

Figure 4 The Component Framework Data Flow.

Information passes through the components, defining implicit relations that can be

exploited to identify interoperability issues and to improve performance.

Data is processed in terrain visualization systems to produce high quality imagery,

while incurring the least computational cost. Initially, the entire terrain mesh is

55

assumedly going to be processed. For terrain systems supporting extremely large terrains,

a paging component is invoked to ensure that all necessary terrain data is loaded into

local memory from an external storage source. The source of external data may be a local

disk drive or a network drive. Paging incurs latency in excess of non-paged solutions, and

data may not be available immediately for processing. At this stage, it is feasible to

access the terrain data for the purpose of system-required operational tasks, such as

intersection tests and collision queries. Next, additional processing tasks required by

dynamic terrain solutions, including surface deformation and the back propagation of

these changes to remote sources, is handled. With all of the necessary data available,

terrain data is processed by the spatial partitioning component. In order to improve

performance, partitioning evaluates the visibility of terrain partitions and removes those

deemed unnecessary to the final image from the processing queue. Next, the level of

detail strategy is fed the remaining data. The multi-resolution strategy will decimate the

mesh data, as a means for alleviating the total processing burden. Level of detail methods

are most effective when they integrate tightly with the spatial partitioning component;

thereby, allowing the two components to be executed in tandem. At this stage, the

vertices are handed off to the vertex processor, which performs all of the per-vertex

operations, including preparatory setup for texture mapping, shading, and atmospheric

effects. Geomorphing and deformation may also be invocated during vertex processing, if

employed by the solution and supported by system hardware. After vertex data

processing, the fragment assembly performs the final tasks regarding texturing, shading,

and atmospheric effects on a per-pixel basis. For terrain visualization systems, the

finalization of fragment processing marks the end of the frame, at which point the terrain

56

system can prepare itself for the next frame through maintenance and reformation

routines.

Each component contributes to the generation of terrain imagery in an expedient

manner. Optimal flow of information through the processing pipeline mandates the use of

compatible strategies that work cohesively. By considering the structural and geometric

properties of the mesh, it is feasible to align component techniques in a complimentary,

cohesive system. Proper coordination of components can promote optimal throughput

without sacrificing image quality. The data flow is useful in coordinating the

components, because it presents an abstracted view of the data path. Boundaries and

overlays revealed in the data path may be used to identify integration points and

compatibility issues between techniques. For instance, the culling activity in spatial

partitioning and the decimation afforded in some level of detail methods can be

implemented as an interwoven hybrid-solution to reduce computational overhead without

affecting functionality. In contrast, these two components may be designed as disjoint

features that impede the runtime performance due to poor coordination. Careful

consideration of the sequence of component execution and the cooperative nature of

employed techniques impacts the effectiveness of a solution in its goal to offer good

performance and to generate high-quality imagery.

2.8 Review

Terrain visualization systems are a complex arrangement of seemingly unrelated

pieces that must work together to create realistic terrestrial scenery. Figure 1 presents the

component framework for terrain visualization systems. The system is decomposed into

the following: Modeling, Model Services, Rendering, Animation, and Application Logic.

57

These components are further refined into specialized tasks that interoperate to produce a

visually appealing, efficiently rendered landscape. Decomposing the system unveils more

focused techniques that seek to achieve a goal. The techniques identified interact to

produce a convincing visual interpretation of the terrain.

A well-formed, structured component framework is useful for terrain

visualization. The component architecture establishes interrelations between groups and

algorithms, thereby promoting a cohesive and unified approach. Designing within the

framework promotes the use of cooperative and complimentary strategies, which inhibits

poor design and prolonged development. The framework is one-of-a-kind in its attempt to

provide an all encompassing view of terrain visualization, whereas most research focuses

on a limited view of a specific technique. Also, the framework is unique in its allowance

for dynamic terrain, whereas the majority of terrain solutions disregard the deformation

of the terrain. Lastly, the framework makes it possible to evaluate different bodies of

research in terrain visualization. Research initiatives in the area of terrain visualization

are usually focused on limited subject matter. For instance, the majority of work

concentrates solely on level of detail for terrains. The componentized nature of the

framework can be used to classify, compare, and analyze specific techniques, algorithmic

groups, and complete solutions.

58

3. Survey of Terrain Visualization Techniques

3.1 Introduction

There is a wealth of information in the area of terrain visualization. While the

focal topics vary, they all seek to improve the field by presenting better, faster, and more

elegant solutions to difficult problems. Many algorithms are devised to work as a

composite or an extension of a well-known technique. In many cases, the technique used

as a foundation may become outdated, resulting in the automated antiquation of its

derivative works. Even though specific solutions become obsolete, the archive of theory

and practices is useful and background information is always relevant. The archive

provides us with a record of the various instantiations that were used over time; leading

up to the modern manifestations used in current generation systems.

The intent of this chapter is to provide the reader with a survey of techniques for

terrain visualization. The subject areas covered include: spatial partition, texturing, level

of detail, and terrain dynamics.

3.2 Spatial Partitioning

For interactive, real-time 3D applications, all of the application logic and

visualization tasks must be executed each frame at a regular, consistent rate. For

visualization tasks, it may be impossible to process the entire set of geometry every

frame, because the time necessary to do so will surpass the allotted time slice. One

method for lessening the time it takes to process the scene is to group objects into a

logical set that may be treated as a singular object. Grouped objects offer the opportunity

to perform a single, preemptive operation on multiple objects in an effort to identify

59

which objects require further processing. For instance, grouped objects can be evaluated

in an attempt to quickly cull out batches of geometry that are not visible in a given frame.

In terrain visualization systems, a handful of predominant techniques are used for

partitioning the terrain, and many integrated tightly with one or more level of detail

techniques.

Subdivision techniques for spatial partitioning are either uniform of irregular.

Uniform methods subdivide a space along regular subspace bounds, such that each unit

has a similar bounding shape and, possibly, an equivalent capacity. For example, the

longest edge bisection of a right isosceles triangle is an example of a uniform subdivision

process. Irregular methods subdivide a space into set of subspaces, such that, at least two

subspaces have unique dimensions. Although both uniform and irregular methods are

possible, uniform approaches are more common because they natively support recursive

and iterative methods. All of the methods covered herein are uniform; making them

appropriate for terrains represented by an RGN data source.

There are many variations and specializations of uniform subdivision for the

purpose of spatial partitioning. The geometry used to subdivide the space, the criteria

used in split and merge operations, and the functional relationships of subspaces are all

variables that allow techniques to distinguish themselves from one another. It is possible

to further decompose and categorize uniform methods as hierarchical and non-

hierarchical. Hierarchical methods impose an explicit relationship between subspaces in

the form of parent-child and sibling relationships. In contrast, non-hierarchal methods do

not offer the parent-child relations, relying solely on sibling relationships to accomplish

60

the tasks at hand. While hierarchal spatial subdivision schemes make exclusive use of a

tree, non-hierarchical methods are not bound to any one particular data structure.

3.2.1 Non-hierarchical Methods

Non-hierarchical partitioning methods perform a single level of subdivision to

generate a finite, definitive set of subspace units. The spatial partitions form a set of non-

overlapping, interlocking subspaces whose geometric union is equivalent to the

volumetric capacity of the world space. The most common geometric types used for the

purpose of spatial partitioning are the grid in 2D and the cube in 3D; although any shape

that can be tessellated into a self-similar shape is a viable alternative.

The most common non-hierarchical partitioning technique is the Uniform Grid.

The Uniform Grid starts with the superspace defined by the extents of the heightfield and

partitions it into regions along axially-aligned, regular bounds. The subspace regions

created from the subdivision are stored in a data structure, and used for referential

purposes during execution of the application. The attribute values associated with a

region offer the necessary parameterization(s) for performing operations that lead to

faster execution.

An object in the virtual world is associated with a region in the grid. The object is

assigned to the region that it shares spatial occupancy with in the world space. For objects

that are not animated, one regional assignment suffices throughout the course of

execution. In contrast, animated objects require reevaluation and updated assignment to

regions because they can cross boundary lines, which changes spatial occupancy.

Therefore, static terrain meshes can retain the same occupancy assignment from

application startup until the application stops, while dynamic terrains may require

61

reassignment. In many cases, dynamic terrain motion is constrained in order to ensure

that deformations do not enact boundary edge transgressions. Under these circumstances,

dynamic terrain meshes will not require runtime reassignment.

The Uniform Grid is a simple and straightforward technique, but is not an optimal

solution. Although the Uniform Grid may meet the needs of small projects, it is not

scalable and can be inefficient. The problems come from its use of the fixed size for

regional subdivision. The rigid capacity forces the assignment of large objects to multiple

regions, which can lead to inadvertently processing the same object multiple times.

Increasing the capacity results in the assignment of more small objects to a single region;

counteracting the very intention of using the technique in the first place. For projects that

must support large terrains or complex virtual worlds, the lack of scalability and rigidity

of the Uniform Grid may not suffice to meet the needs of the application.

3.2.2 Hierarchical Methods

Hierarchical, uniform methods perform multiple levels of subdivision to create a

tree-based structure of subspaces with parent-child and sibling relations. Parent nodes

correspond to the superspace for all child node subspaces. The input superspace is

represented by the root and the smallest subspaces are housed by the leaf nodes. The

inclusion of a structural relationship between superspaces and subspaces benefit the

technique with good managerial and functional capabilities. The improved functionality

comes at the cost of algorithmic complexity and memory consumption.

Hierarchical methods use the operative strategy of trees. Starting with a

rectangular region, as defined by a heightfield, these methods are subdivided into self-

similar spatial regions. The capacity of the space for siblings is the same for each level of

62

the tree. The spatial union of children in a fully-balanced branch is an improper spatial

subset of the parent. Subdivision occurs until a stop condition is met. The most common

stop conditions are when a minimal capacity is reached and when a maximum number of

world objects are associated to the node. For systems that choose to use capacity, it is

possible to guarantee that a fully-balanced tree is created; otherwise, there is potential for

skewed spatial subdivision. For use with a terrain mesh, the capacity limit is more

common because it correlates to a prefixed dimensional specification. For static terrains,

the mesh is unchanging and assignment to a node remains unchanged during program

execution. Many techniques will align the subdivision bounds with the interval of grid

spacing to ensure that subregions of the terrain are assigned to only one node. Using this

strategy, it is possible to construct the entire tree such that each leaf node has exactly one

mesh subpart associated to it. A one-to-one relationship between the spatial nodes and the

mesh geometry conjoins the algorithmic efficiency of the data structure with terrain

operations.

Generally, hierarchical methods are similar in use and theory, but the different

instantiations have different subdivision strategies that influence the rest of the solution.

The Quad Tree is a spatial partitioning technique commonly used in terrain visualization

[20]. The Quad Tree subdivides a rectangular region into four equal quadrants that can be

subdivided, again, into four more quadrants ad infinitum, as shown in Figure 5.

Figure 5 The first three levels of a Quad Tree.

63

In contrast, the Triangle Bin-Tree subdivides a right isosceles triangle using a

longest edge bisection to beget two more right isosceles triangles that can be further

subdivided (Figure 6). Subdivision is not limited to two dimensions. For instance, the

Octree is an extrapolation of Quad Trees to three dimensions. For an Octree, the

volumetric space is subdivided into cubic sub-volumes along three perpendicular planes.

The added dimensionality of an Octree induces added complexity that may surpass the

performance gains for scenes with simple terrain topology. Another distinguishable trait

of a subdivision process is the maximum number of children for a parent node. A node in

a Quad Tree can have up to four children, a Triangle Bin-Tree node can have up to two

children, and an Octree node can have up to eight children. The number of children

directly impacts the speed at which traversals will occur; thereby, relegating efficiency of

the solution. Also, the underlying geometric shape used by the subdivision strategy tends

to influence the rest of the solution. The shape for a Quad Tree is a rectangle, a Triangle

Bin-Tree is a triangle, and an Octree is a rectangular volume. The specific subdivision

process used differentiates spatial subdivision techniques; thereby, making each one

unique.

Figure 6 The first three levels of a Triangle Bin-Tree.

While hierarchical methods offer improvements over non-hierarchical methods,

the underlying tree-based structure can be a performance burden. The failing for

hierarchical methods is attributable to tree traversals, which are more expensive than

structures that support linear indexing and direct access. As a further detriment, trees that

64

become skewed or have great depth(s) can exacerbate the slowdown of tree traversals. A

technique for circumventing the overhead of tree traversals have been identified for the

Quad Tree, but comes at the cost of maintaining specific properties, including a fully

balanced tree structured with a pre-defined maximum depth [21]. Another side effect of

using a tree is that the locality and coherence in system memory becomes fragmented,

effecting cache use and reducing performance. Hierarchical methods offer improved

logic for managing and manipulating the terrain, but the tree structure imposes additional

complexity and the potential for bottlenecks.

Spatial partitioning techniques are a common occurrence in terrain visualization.

Partitioning techniques subdivide the world space into a structured conglomeration of

subspace, container units. Objects in the world are grouped together and bound to one or

more containers. Groups of objects can be operated on as a pseudo-object, which offers

the option to improve performance by reducing the total number of operations that are

performed. Operations that can benefit from spatial partitioning include collision

detection, culling, and geometry decimation/restoration.

3.3 Texturing

Terrain visualization makes extensive use of texture maps for presenting highly

detailed surface features without the overhead of increasingly high polygon counts.

Texturing is a method for varying a surface’s properties from point to point, giving the

appearance of surface detail that is not actually present in the surface’s geometry. In lieu

of creating overly complex models, one or more image maps are used as decals. The

textures are superimposed onto the faces of polygons that form the mesh structure.

Texture mapping interpolates the image data in determination of surface detail

65

colorization. The use of texturing makes it possible to present detail that would not be

feasible otherwise.

Terrain visualization makes use of texturing for the purpose of showing terrain

details. Terrains are composed of a number of earthen materials and natural products.

Textures are useful in the display of components in nature that are too complex or

computationally costly to etch into the geometric model. Earthen materials such as grass,

dirt, and rock are excellent candidates for representation as textures because the

equivalent geometry would be too costly to process; however, not all land features need

to be abstracted from the mesh and into a texture. For instance, larger land features such

as craters, boulders, and trees can be modeled as actual geometry, while grass, leaves and

stones may be texture maps.

Many general practices for texture mapping are applicable to terrain visualization.

However, there are only a handful of techniques that are frequently used in a many terrain

visualization systems. The techniques most common for texturing the terrain mesh are:

Simple Texturing, Framebuffer Compositing, Splatting, and Detail Texturing.

3.3.1 Simple Texturing

The simplest approach for terrain texturing is to use a straightforward, no-frills

texturing solution that refers to one or more texture maps. In this approach a texture is

applied to the terrain surface, which superimposes surface detail onto the mesh. Irregular

meshes require manual texture coordinate assignment, but coordinates can be computed

algorithmically for a heightfield. Given a)(nn × heightfield and a)(ts × texture map, the

texture coordinates ()vu, for each vertex at indices ()ji, is computed as:

Equation 1 () �
�

�
�
�

�
⋅⋅=
n

t
j

n

s
ivu ji ,, ,

66

For effective texturing, the texture map should offer enough content to justify its

use. For small terrains, a single texture may be able to provide enough texel coverage.

Large terrains will require a larger texture. Increasing the texture size can offer either

higher resolution detail for a restricted area or comparable detail across a greater area;

however, there is an upper bound to texture size due to physical hardware limitations on

system resource allocation.

For very large terrains that prefer to use a single texture across the entire terrain, it

is possible to subdivide one large texture into multiple small textures. Smaller textures

can be brought into and released from memory during runtime in way that enforces rules

to improve memory consumption and use. A texture management system can limit the

performance impact incurred from using multiple small textures [6].

Another possibility to overcome using a memory-intensive, single texture is a

tiled textured. Tiled textures can be used to create a landscape texture that covers a huge

terrain with a fixed size texture. Tiled textures must be seamless in order to conceal any

visual artifacts that would make the tiles distinctively identifiable along edge-aligned

bounds. The primary drawback of tiled textures is that repetitiveness may be perceived by

a scrutinizing viewer when patterns become noticeable. The perceivable pattern can

become obvious as the moiré effect becomes pronounced in the distance. In these

situations, the terrain nearest the horizon will display the effect and it can be visually

distracting.

In some cases, multi-texturing can offer improved surface detail. Multi-texturing

uses two or more textures to create a virtual composite texture at runtime that can be

applied to the terrain surface. In multi-texturing for terrains, multiple textures for the

67

terrain are used in a layered fashion. At runtime, a set of blending weights are used at

each vertex to blend the layers into a single, cohesive texture that is applied to the terrain

surface. The practice of multi-texturing is very common and can even be done on the

GPU, which makes its use even more attractive. Multi-texturing is still, at its heart,

simple texturing and suffers from the same drawbacks as other methods based on simple

texturing. In addition to the shared problems, using more than one texture implies the

consumption of additional memory, which may deter from its use in some systems.

3.3.2 Framebuffer Composition

Framebuffer Composition is a very popular technique in terrain rendering. A

number of specialized implementations exist for Framebuffer Composition, but they are

all derived from the same underlying theory [22-24]. Framebuffer Composition requires

separate textures to represent different earthen materials, such as grass, dirt and rock

(Figure 7a). In a preprocessing step, a composite, blended texture is generated and stored

in video memory. The generated image appears as a banded texture with smooth cross-

fades between neighboring textures. Using the sequence grass, dirt and rock; the grass

texture would cross-fade into dirt texture which, in turn, would cross-fade into the rock

texture (Figure 7b).

+��

 ���� $�"*

�	�((�����
������

,��	

�	�((�����
������

,��	

(a) (b)

Figure 7 An example of Framebuffer Composition.

Three individual textures that represent a unique earthen material in (a) are dynamically

blended to create a single texture of different earthen materials with seamless transitions

between types in (b).

68

At runtime, each vertex in the terrain is evaluated and its texture coordinates are

queried. Systems using Framebuffer Composition often perform dynamic assignment of

texture coordinates to the vertices using a combination of vertex and polygon attributes.

The most common attribute used is the slope of the polygonal face in conjunction with

the height of the vertex. Building on the example, vertices corresponding to higher

elevation and steeper face inclines would index into the texture towards the rock band

while lower elevations and faces that are more parallel to the ground plane would index

the texture within the grassy region of the texture. The end result is that higher, steep

ground (e.g. mountain tops) displays the rock texture while lower, flat ground (e.g. knolls

and fields) are textured with the grass texture.

Framebuffer composition, although a common solution, is not a perfect solution.

The main problem with the technique is that it can result in visual artifacts that detract

from the realism of the visualization. For instance, when using the vertex height for

determining where to index into the texture, a banding effect will result from all vertices

at a given height indexing into the same region of the texture. The banding effect can be

diminished by adding noise, but it does not eliminate the issue. Additional problems

include greater complexity and an increase in memory consumption due to the use of

multiple textures. Lastly, it does not support variable levels of detail over the surface. The

practical benefit with Framebuffer Composition is that it automatically produces seamless

transitions between textures; however, it is not an absolute solution for terrain texturing.

3.3.3 Splatting

Splatting is another advanced technique for terrain visualization [25]. Splatting is

an approach for texturing a terrain by using high-resolution, localized tiling textures

69

which transition nonlinearly. The original technique for Splatting uses textures that

represent different earthen materials across the terrain with an irregular distribution. For

instance, the rock, dirt, and grass texture can be irregularly referenced and indexed to

apply variable amounts of influence to each vertex of the surface; thereby creating a

unique texture through texel blending.

Splatting is similar to Framebuffer Composition, but is more robust. Splatting

offers the option to additively blend various textures in an irregular distribution across the

terrain surface, whereas normal Framebuffer Composition is subject to a regulated

distribution. Blending between neighboring tiles is automatic, which offers the seamless

transition between different textures. In this situation, tiling does not imply any sort of

regularly laid out regiment for texture tiles. Instead, tiling here simply implies that one

texture may be applied to more than one area of the terrain. Transition regions occur

where neighboring vertices share the same set of splat textures. Weights are associated

with each vertex to serve as a blending factor when computing the transition regions. The

weights can be generated dynamically using an algorithmic process or assigned by a

content creator to allow for more direct control. A greater sense of realism is achievable

with manually assigned weights because human intervention can define distributions that

closely imitate actual terrain surfaces. The ability to fine tune the surface is a strength that

allows Splatting to surpass other methods in the level of realism that can be attained.

Splatting is more complex and time-consuming than other methods. With respect

to Framebuffer Composition, Splatting is more complex because it requires the

incorporation of a runtime system that performs a catalogue of unique operations.

Additional operations include gathering polygons that share a splat texture and querying

70

neighbor vertices for vertex attributes. The overhead of the excess functionality inhibits

the use of Splatting, because it is invasive and can impede runtime performance. In

addition to complexity, the real strength of Splatting over other techniques requires

human intervention, which can be time-consuming and tedious. Since changes are not

automatic, manual fine-tuning of the texture weights are often required as changes are

made to any one of the mesh, textures, or algorithms.

3.3.4 Detail Textures

In systems that support multi-texturing, it is common to use Detail Texturing to

improve the appearance of the terrain in close vicinity of the viewer. Detail Texturing is

not a self-sufficient texturing solution, but it is a complimentary approach for use in

conjunction with any of the aforementioned texturing strategies. Most systems will use

Simple Texturing, Framebuffer Composition, or Splatting to achieve general surface

coverage. The textures used in these methods cover the breadth of the surface, but may

not offer up-close details satisfactorily. If the viewer looks closely at the terrain in the

immediate vicinity, pixelation can occur due to an insufficient texel to screen-pixel ratio.

Detail Texturing seeks to remedy the situation, by creating highly detailed surfaces

within the surrounding area of the viewer.

Detail textures are tileable textures of high-fidelity surface details. Imagery like

blades of grass and cracks in dried mud are commonly used as detail textures. At runtime,

the primary technique is used to supply the majority of obvious surface detail. For terrain

near the viewer, the detail texture is applied as an additional layer to create the illusion of

high-detail surface features on the terrain. For instance, the primary solution may apply a

green texture to represent a grassy terrain, and the detail texture used is a high resolution

71

texture of grass blades. The detail texture is blended with the green texture to create the

appearance of highly detailed grass texturing around the viewer.

Detail Texturing is effective for creating the illusion of highly detailed surfaces,

without consuming exorbitant amounts of memory. To improve runtime performance, the

detail texture is only blended within a localized view. Returning to the example, it is

unlikely that the blades of grass would be discernible towards the horizon. As such, it is

only necessary to blend with the high resolution texture in the immediate vicinity of the

viewer, which is possible using view-dependent assessment of the geometry as it is

processed.

As a complimentary texturing solution, detail textures are good, but are not

flawless. A problem arises when the primary texturing method does not represent a

surface of uniform natural composition. Typically, the detail texture represents a single,

detailed earthen material, such as the blades of grass. A problem can arise in terrain areas

where the primary texturing method imbues surface detail of different type. For instance,

in an area of the terrain that is textured to impersonate dirt, a detail texture representing

grass blades is inappropriate. The problem occurs because the detail texture applied is

done in a nondiscriminatory manner. As such, the high quality detail texture of grass is

inappropriately blended into the grass, dirt, rock, and transitional regions. The net result

is an unconvincing, unrealistic terrain representation, because details are incorrectly

correlated to the primary surface type. To combat this issue requires a smart texturing

system that knows when and what detail texture to use for each element of the terrain, but

this increases complexity and adds to the computational workload.

72

Texturing is a useful strategy for effectively visualizing terrains. While the terrain

geometry is used to convey the volume and shape of the terrain, texturing provides more

meticulous, meaningful visual details of the terrain composition. A number of approaches

to texturing are available for terrain visualization and each one has its own strengths and

weaknesses. Unfortunately, there is no best solution when evaluating the catalogue of

texturing solutions because the needs, limitations, and goals vary from application to

application. As with spatial partitioning, terrain texturing is greatly influenced by the

level of detail technique, because of the strong relational bonds between the geometry

rendered and the textures applied.

3.4 Level of detail

The largest area for research in terrain visualization has been conducted in level

of detail. Interest in terrain visualization dates back to the 1970’s when flight simulator

research strived to improve the visual aspect of the training environment for pilots. Flight

simulators display the terrain in far off distances due to the aerial view and require high

fidelity imagery up close for when the aircraft is approaching the ground. In order to offer

both high quality detail and expansive coverage, level of detail algorithms were,

necessarily, developed for terrain visualization. The desire to meet this need has

generated an abundance of information and resulted in many multi-resolution techniques

for terrain rendering.

3.4.1 Background

3.4.1.1 First Generation (before 1996)

Through the mid 1990s, algorithms for level of detail in terrain rendering were

primarily derivative of general approaches that could be applied to any type of mesh. The

73

idea behind the first generation of algorithms was to construct the surface optimally and

then render the ideally triangulated terrain mesh. Methods for both continuous and

discrete level of detail were proposed. First generation methods worked under the

premise of limiting the throughput of triangles in order to reduce the load of graphics

processing; thereby, limiting the total amount of data passing through the graphics

pipeline. Reducing the workload of the graphics component improved performance

because the graphics pipeline was the bottleneck. At the time, graphics acceleration

hardware was not available in consumer systems and many systems used CPU-bound

software rendering engines to create the visual display. Terrain rendering techniques

during this period offered decent visual fidelity while performing the minimal graphics

processing necessary.

3.4.1.2 Second Generation (1996 – 2001)

In 1996, a new era of algorithms for level of detail in terrain visualization begin to

surface. These algorithms would drive the display with view-dependent continuous level

of detail strategies that drastically improved throughput and visual fidelity. At the time,

there were three solutions that dominated the field: Progressive Meshes [26], Block-based

Quad Tree simplification [27], and Triangle Bin-Tree simplification[28]. In particular,

Real-time Optimally Adapting Meshes (ROAM) gained acceptance and widespread

popularity in terrain visualization. ROAM Using Surface Triangle Clusters (RUSTiC) is

an extension to the original ROAM technique that sought to further improve performance

[29]. Dynamic Extension to Resolution (DEXTER) is a general strategy that can be used

with a hierarchical multi-resolution strategy, like ROAM, to offer dynamic terrain [30].

Regardless of the specifics, these solutions still sought to reduce the polygon throughput,

74

because consumer-level graphics acceleration hardware was very limited in its processing

power and was still the bottleneck for the system.

3.4.1.3 Third Generation (2001 – Present)

From 2001 to the present, graphics acceleration hardware has improved

immensely. The improvements in hardware have induced a shift in paradigms for

developing graphic algorithms. Currently, the GPU can process huge amounts of data in

parallel. As a result, the trend has shifted such that it is preferred to move work from the

CPU to the GPU and, with this shift, the majority of existing multi-resolution algorithms

for terrain visualization became deprecated. Even though the solutions themselves were

outdated, the theory, insight, and knowledge gained serves as a solid foundation from

which to build a new set of solutions. Some researchers have augmented old algorithms

and devised hybrid solutions suitable for modern GPU architectures, while others started

anew. One popular strategy is to subdivide the terrain into manageable regions,

dynamically generate discrete instances for each region, and manage these instances at

runtime. Other researchers would borrow ideas from texture mapping and devise

geometric counterparts that could help avoid the CPU bottleneck. Some of the latest

research excels even further and moves the majority of work from the CPU to the GPU.

A fundamental characteristic to all of these strategies is that they do not try to build an

optimal set of data, instead striving to build a ‘good enough’ data set quickly. The change

in attitude and working direction has produced a number of algorithms that suitably

exploit the modern GPU.

Over the years, a number of solutions for terrain visualization have been

developed. Early instantiations used general purpose geometric level of detail techniques

75

that would be extended for use in terrain visualization systems. A number of surveys on

these early algorithms are available, including [31-33]. By specifically examining the

unique traits of terrain meshes, the second influx of research offered great improvements.

Algorithms developed during this era have been surveyed by [34] and [35]. Second

generation algorithms tended to address the generation of an optimal mesh using a

variable error metric to drive the decision process. Finally, the latest incarnation of

solutions for level of detail in terrains systems deserves special attention, because it is the

current paradigm and most appropriate for current work in the field. The divergence from

the past for these techniques is primarily derivative of the advances in hardware that has

resulted in the shift of the processing bottleneck from the GPU to the CPU. As the

capabilities of hardware have changed, the underlying principles behind the algorithms

have also changed. Most importantly, the recent advances in graphics hardware have

spurned newer techniques to opt for offloading work to the GPU.

3.4.2 Algorithmic Classes

Multi-resolution algorithms for terrain visualization seek to produce an optimal

display that retains the visual fidelity of the original mesh with a lower processing cost. A

number of algorithms have been proposed over the years. Although the methods work

towards the same goal, they are unique in their characteristics and underlying mechanics.

However, using generalized properties, it is possible to categorize methods according to

an algorithmic type. Existing level of detail algorithms for terrain visualization can be

classified as one of the following: Irregular Mesh, Bin-Tree Hierarchies, Bin-Tree

Regions, Tiled Blocks, or Concentric Regions.

76

These algorithmic types serve to help unify the disparate methods under an

overarching specification. While many methods exist under each category, there are one

or more archetypes that act as exemplary examples of the characteristics for that family.

3.4.3 Irregular Meshes

Early algorithms in terrain visualization made use of irregular meshes to represent

the terrain. The TIN layout provides an optimal surface representation, which was most

suitable for systems when the graphics pipeline processing component was slow.

Techniques for irregular meshes would either allow for arbitrary connectivity, such as in

[32] and [36] or apply restrictions to the construction and representation of the mesh,

including Delaunay triangulations as in [37] and [38]. The most commonly cited irregular

mesh strategy for terrain visualization is the View Dependent Progressive Mesh [26].

3.4.3.1 Progressive Mesh

In 1997, Hoppe evolved his earlier work on Progressive Meshes (PM) [8] into

View Dependent Progressive Meshes (VDPM) [26]. A Progressive Mesh is a multi-

resolution technique for rendering an irregular mesh. The method uses highly detailed

mesh as its input and, through a series of edge collapse operations, refines the mesh into

one of lesser geometry that accurately portrays the original input mesh. During the

simplification process, a record of decimations is kept that allows the mesh to be

faithfully restored to its original state by performing the edge collapse’s inverse

operation, the vertex split. The ability to remove and restore geometry from the mesh is

the fundamental level of detail feature of a Progressive Mesh. The original Progressive

Mesh algorithm was used across the entire mesh, which accomplished view-independent

refinement exclusively. View Dependent Progressive Meshes sought to remedy this

77

caveat of the original algorithm by using viewing parameters to guide the edge

collapse/vertex split decisions. The original View Dependent Progressive Mesh was

subject to temporal incoherence, which was resolved with the introduction of

Geomorphing [39]. Geomorphing eliminates the popping effect by smoothly interpolating

between successive refinements. Terrain visualization was specifically used as a

demonstrative area for View Dependent Progressive Meshes, and was considered a good

solution at the time.

Irregular mesh algorithms all share concepts with the Progressive Mesh in that

they attempt to produce an optimal mesh that can be displayed at runtime by generating

an optimal configuration of the terrain geometry. While Progressive Meshes dynamically

update the mesh at runtime, some methods form the optimal polygonal decomposition of

the surface offline and treat the generated instances in a discrete manner. One problem

that arises from the use of an irregular mesh is that the executions of runtime operations

may be slow. The irregular interrelation of primitives obligates all operations that require

knowledge of an individual element to search and execute on the entire set of primitives.

For example, finding the height y of the terrain at a given),(zx coordinate requires the

execution of intersection tests with each primitive in the mesh until it finds the one it

intersects with. For high density, large terrains the search can be very expensive and lead

to poor performance. Another problem with irregular mesh routines is that the entire set

of operations for determining the optimal mesh is performed on the CPU. The current

archetype for graphics programming is to offload as much work onto the GPU as is

possible. In fact, recent research has shown that methods that rely on RGN data sources

78

can outperform TIN solutions because TIN methods are CPU-limited [40, 41]. As such,

the appropriateness and applicability of irregular mesh methods has diminished.

Irregular Mesh solutions can represent a terrain surface using the least number of

triangles, but do so at the cost of complexity. In order to represent the surface faithfully,

vertices can be positioned and oriented in any fashion without regard for ordering or

regularity. The benefit of providing an optimal primitive count is largely negated because

the GPU is well-prepared to process high polygon counts quickly. Taking into

consideration that the optimized mesh is constructed using per-polygon operations on the

CPU further diminishes the appeal of Irregular Mesh methods. In general, the

maintenance of the irregular mesh and the performance loss incurred when executing

featured operations, such as collision detection, has lead to the decline in popularity of

Irregular Mesh methods in current terrain visualization literature and research. However,

in systems that have strict memory limitations or require folded surfaces, irregular

meshes may still prove applicable.

3.4.3.2 Geomorphing

Early work by Ferguson [7] specified the use of Geomorphs in terrain

visualization as a means for eliminating popping. Hoppe later applied the same theory to

View Dependent Progressive Meshes and established it as a generic solution to popping

in terrain visualization [39]. In the context of the visualization framework, Geomorphing

is classified as a Model Service, because of its universal application domain and,

therefore, it can be classified as a generic runtime service for use with many level of

detail solutions in different generations and classifiers. Geomorphing integrates with a

number of algorithms because it only relies on the transitional vertex distance

79

information to create visually seamless transitions as vertices are removed from the

geometry. In order to perform Geomorphing, the distance between where the position of

a vertex and the position that it implicitly move towards is needed. Fortunately, these

distances are either directly available or easily calculated (Figure 8).

�

�%

Figure 8 Midpoint displacement results in popping artifacts.

Removal of vertex B from ∆ABC, implicitly moves it to the midpoint M of line segment

AC.

The instantaneous switch between levels of detail results in a popping effect.

Iteratively blending the vertex position from its origin to the midpoint of its two

neighbors over the span of distance that exists between the two spatial locations can

reduce, if not eradicate, the popping. A lookup table of distances that specify when one or

more vertices are to be removed can be used when blending between levels of detail. The

table stores values used in the computation of a blended elevation position. Consider the

following:

Let currentD be the current distance from a node to a triangle T. Also, let maxD

equal the maximum distance that T may be rendered at without impacting visual fidelity.

As such, the blending factor for the elevation value is computed

as maxDDBF current ÷= and the blended height is computed using Equation 2.

Equation 2 int**)1(midpoheightmapcurrent ElevationBFElevationBFElevation +−=

By applying Equation 2, the movement of the camera can be used to displace

vertices slowly to and from the midpoint of an edge in the parent’s geometry. The

80

incremental movement places the vertex at the destination position before it is removed

from the geometry. In this manner, the edge collapse is masked; making it non-obvious to

the viewer. For modern hardware, it is even possible to perform blending entirely on the

GPU; thereby offloading the additional computation required from the CPU [9].

Geomorphing is a Model Service that is commonly employed to eliminate

popping. The simplicity of the algorithm and its general nature makes it appropriate for

use with a number of multi-resolution solutions. The service provided disguises errant

features that arise due to the decimation and restoration of terrain mesh geometry.

3.4.4 Bin-Tree Hierarchies

Bin-Tree Hierarchies are hierarchical methods that rely on an underlying RGN

data source to define a fast and efficient multi-resolution strategy for terrain visualization.

Methods in this class make use of a tree data structure to encode the surface’s primitives;

using either a Triangle Bin-Tree or Quad Tree. Bin-Tree Hierarchies offer improved

performance because they can identify an optimal mesh each frame using the viewing

parameters; thereby, reducing the overall amount of data processed, while still achieving

good image quality.

3.4.4.1 Block-based Quad Tree

The paper by Lindstrom et al. [27] presents a technique for generating high

fidelity terrain driven by a screen-space error metric through continuous level of detail

refinement. The algorithm uses an RGN data source that is distributed and processed in a

Quad Tree. The technique is described using a bottom-up refinement of surface

geometry, but in practice it is a two-step process that performs both a top-down

assessment and then a bottom-up refinement. The first step executes a block-based

81

simplification, while the second step refines the geometry within selected blocks on a

per-vertex basis.

A block is describable as a set of elevation points assigned to the block’s coverage

area. The elevation points form a rectilinear grid of dimensions 0,1212 ≥+×+ nnn

where edge vertices between neighboring blocks are shared. The root node of the Quad

Tree covers the entire area and, therefore, covers the entire area of the terrain. A set of

four ‘sibling’ blocks can be combined to create a block of lower resolution by removing

every other vertex to create a new ‘parent’ block of the same dimension. When a vertex is

removed, a new edge between two of its neighbors is formed. The midpoint of the edge

corresponds to the vertex removed, and the length of the displacement from the original

vertex to the new edge’s midpoint is the geometric error. The geometric error is directly

related to the screen-space error that is used when determining the appropriateness of

further reducing the geometric complexity. The geometric error is also used to determine

the mesh complexity and, upon decision of an appropriate block, the triangles within that

block are iteratively examined. Vertices shared by neighboring triangles are candidates

for removal. Removing a single vertex will merge two triangles into one. The error

introduced by the removal of the single vertex is assessed and, if deemed appropriate, the

triangles are merged (Figure 9). Newly formed triangles become candidates for further

merging. The two step approach is performed each frame to build a continuous level of

detail representation of the terrain surface.

82

�

�

�

 %
�

�

Figure 9 A polygonal merge operation.

The removal of shared vertex D merges ∆ABD and ∆BCD, to produce a lower resolution

primitive ∆ABC.

The algorithm proposed suffers from complexity and visual artifacts. The block-

based approach can result in T-Junctions and cracking between neighboring blocks. In

addition, dependencies on vertices shared by neighboring blocks must be enforced, which

complicates the algorithm. Resolving the problems with the technique requires

specialization that adds non-trivial functionality and increases overall algorithmic

complexity of the solution. In addition, the specialization required can not be adapted to

work in systems that require paging of streamed terrain data.

3.4.4.2 ROAMing Terrain

Duchaineau et al. published the paper ROAMing terrain: Real-time Optimally

Adapting Meshes, which proposes a novel algorithm for continuous level of detail in

terrain visualization [28]. In ROAM, a Triangle Bin-Tree is used to ensure that an

optimal set of geometry is rendered during each frame by using the viewing properties.

Unlike other approaches, ROAM does not suffer many of the problems associated with

other multi-resolution methods, like T-Junctions and cracking. The technique is

exclusively top-down and requires an RGN data source in order to produce the optimal

mesh using the minimum number of triangles

The Triangle Bin-Tree is the fundamental data structure that gives the ROAM

algorithm its capability. In a Triangle Bin-Tree, the root node of the tree represents a

83

single right triangle and, for ROAM in particular, all triangles are assumed right isosceles

triangles. In order to correctly represent a regularly-spaced RGN data, two Triangle Bin-

Trees are needed: one for each side of the diagonal. By performing a bisection of the

longest edge from the vertex on the right angle, the triangle is recursively subdivided. An

edge is created along the shortest path of the bisection to create two new similar child

triangles (Figure 10). The subdivision is repeatedly performed until a stop condition is

met, at which point the triangle geometry of the current node is queued for rendering. On

successive passes over the data structure, the triangles are reassessed to determine

whether triangles must be subdivided further, or if neighbors sharing an edge can be

merged. When merging, the edge produced by a split operation is removed, reestablishing

the parent node’s triangle as the current level of detail. Newly merged triangles are

queued and the resulting triangles are evaluated for further merging. In the original

algorithm, the split and merge operations use dual queues, but other implementations

have been proposed that reduce the algorithmic complexity and improve runtime

performance by working as a ‘split only’ instantiation [42]. With a split only approach,

the mesh is built each frame starting from the parent node(s). Consequently, the mesh is

regenerated each frame; making the algorithm strictly generative instead of incrementally

refined. The split and merge operations of the Triangle Bin-Tree are the fundamental

routines that give the ROAM algorithm its power.

Unconditionally performing split and merge operations in the evaluation of the

Triangle Bin-Tree does not prevent the problem of T-Junctions. T-Junctions are

prevented by ensuring that immediate neighboring nodes do not differ by more than one

level in the tree. In the situation where a triangle is to be subdivided, the neighbors are

84

queried to ensure the difference in level of detail will not exceed one. If the split will

cause neighbors to diverge, then a forced split of the neighbor is also executed. Forced

splits can result in a chain reaction that causes multiple forced splits of many neighbors

that share an edge with the remaining two sides of the triangle. For the merging process,

merges are prevented when the merge will cause the neighbors to diverge. Managing the

triangles in this way is necessary to prevent cracking and to create a seamless surface.

Figure 10 A polygonal split operation.

The longest edge bisection of a right isosceles triangle produces two similar right

isosceles triangles. ()BCDABDABC
tionbi ∆∆ →∆ ,sec

The decision to split and merge triangles is controlled by two conditions. The first

consideration is the terrain roughness for a given node and the second is the desired

framerate. For the roughness calculation, the removal of vertices in a node is used to

precompute the geometric error resulting from the deviation in height. The actual

elevation value from the input data source and the elevation of the midpoint of the line

that connects two neighbors, as in Geomorphing, is the deviation metric called the

roughness. As with other techniques, the length of the displacement is used to determine

the distance at which the child node’s geometry can be used to achieve the desired visual

fidelity. In addition to error-driven level of detail, ROAM offers the option to throttle

performance in order to meet a predetermined framerate at the cost of visual fidelity.

When processing the tree, the technique can be controlled by submitting triangles higher

in the hierarchy, which increases runtime performance but reduces visual fidelity. The

85

option to trade quality for speed is useful in systems when the framerate lags behind the

target framerate by a sizeable margin. Surface deviation and framerate are the two factors

that drive the split and merge decisions.

ROAM determines the optimal mesh at runtime by resolving the minimum

number of triangles needed to achieve a given fidelity. The optimal minimization of

triangle throughput was once considered the primary goal for many algorithms in

Computer Graphics; however, it has become more of an antiquated notion in the context

of current generation graphics hardware. Initially observed problems with the technique

were integrating a texturing scheme and the per-triangle split/merge decision. These early

objections were addressed in an unfinished, unpublished revision of the original

technique, termed ROAM 2.0 [43]. Regardless of the version of ROAM, they all suffer

inherent slowness due to the expensive tree traversal and CPU-bound nature of the

algorithm. In addition, most instantiations require excess computational workload to

perform per-polygon operations. The per-polygon nature of the original technique

precludes it from being suitable for the modern graphics processor. Perhaps, when

massively parallel CPU’s become prevalent, ROAM will see a rebirth but, of this writing,

its original popularity and appeal is diminished.

3.4.4.3 An Improved Block-based Quad Tree

In 1998, Röttger et al. published their work for the Real-Time Generation of

Continuous Level of Detail for Height Fields [44]. Like the earlier work of Lindstrom et

al, the algorithm generates a continuous multi-resolution mesh using a Quad Tree, but

differentiates itself by using a top-down approach. Most noteworthy of the technique is

86

its native support for Geomorphing. Also, the top-down method helps facilitate simplified

means for preventing T-Junctions, which had been a problem of the original algorithm.

As with Lindstrom’s approach, Röttger makes use of a heightfield whose data is

distributed throughout the nodes of a Quad Tree. The root node represents the four outer

corners of the heightfield. Subsequent levels additively restore vertices to each quadrant

of a parent node, which recursively adds detail back into the mesh by subdividing the

geometry with axially-aligned bisections. Each node of the tree is rendered as a single

quad, with leaf nodes representing the smallest distribution of vertices possible in the

input data source. At runtime, the tree is traversed from the root down towards the leaves.

The mesh is rendered using the fewest quads necessary for producing a visually accurate

presentation of the terrain to the viewer.

In determining the error metric, the roughness factor for a self-contained

subregion of elevation data is precomputed and stored for referential evaluation at

runtime. Specifically, the value computed is used at runtime in a comparative operation

that specifies if the geometry housed by a node offers enough detail. Given a threshold,

the roughness is compared against the split metric. The decision results in the subdivision

of the current node and subsequent evaluation of its children or the submission of the

current node’s geometry to the renderer. A lookup table that identifies the resolution used

for each region is maintained. The table is a referential data source that is used to track

dependency relations between neighboring nodes. Using the lookup table ensures T-

Junctions can be avoided with negligible impact on performance. Many of the principles

used in the split decision are derivative of ROAM.

87

The approach addresses many problems found in the original Block-based Quad

Tree method of Lindstrom’s et al, but it shares many flaws with ROAM. The tree

traversals and random access nature of the technique are suboptimal for system

architectures. In addition, it is CPU-bound, which limits its potential for optimality with

the GPU and, unfortunately, the problem is inherent in the design.

3.4.4.4 Interleaved Quad Tree

Recognizing weaknesses of previous iterations, Lindstrom would later revisit the

level of detail for terrain to propose another solution [5]. The new technique presented a

divergence from previous works. It uses a top-down strategy and relies on a specialized,

interleaved Quad Tree to address the problems of previous methods. T-Junctions are

explicitly handled by the technique and Geomorphing can be included to eliminate

popping. The novel trait of the solution is its use of a single data source and the

interleaved Quad Tree, which can natively facilitate out-of-core paging using the features

offered by the operating system. The method was later evolved into a framework for

large terrain visualization [45]. Unfortunately, the overly complex nature of the solution

and its reliance on operating system specific system calls make it less attractive as a

general approach for terrain level of detail.

At the time Bin-Tree Hierarchies were developed, hardware limitations were such

that excess graphics processing would drastically impact overall performance. These

methods offered improved performance by submitting a mesh consisting of a reduced

number of primitives in order to limit data throughput. They strive to minimize the

number of polygons rendered without sacrificing the visual fidelity. To achieve the goal,

these techniques construct a tree structure, in which each node corresponds to a level of

88

detail. The mesh is built by traversing the tree. As each node is visited, the geometry

associated to the node is evaluated. Comparative analysis determines which geometry is

ready for submission to the renderer and which must be handled further. By rendering a

smaller set of geometry, the algorithms achieve improved performance. However, with

the recent advances in graphics hardware, Bin-Tree Hierarchies no longer fit the

preferred programming paradigm, which puts them at a serious disadvantage. Yet, Bin-

Tree Hierarchies are still some of the most widely used and often cited techniques in

terrain visualization.

3.4.5 Hierarchical Regions

The third class of multi-resolution techniques for terrain visualization is

Hierarchical Regions. With the advent of improved graphics hardware, researchers

sought new algorithms that make better use of new hardware features. Hierarchical

Regions seek to make better use of the graphics hardware by submitting batches of

polygonal data. These algorithms build off of the theory used for Hierarchical Bin-Tree

methods, but are augmented to be more appropriate for the hardware. Hierarchical

Regions seek to establish a continuous level of detail structure at runtime using a tree

based reference structure, like the Triangle Bin-Tree. Central to these techniques is the

use of precached geometry that reduces the CPU workload. Precached geometry

eliminates costly data transfers at runtime, and allows fast switching between resolution

instances.

Although Hierarchical Region techniques share a similar underlying approach,

specific algorithms differ in their specifics. Initially, the input terrain mesh is divided into

regions. Partitioning into regions may occur on regular or irregular bounds depending on

89

the underlying data format (e.g. TIN or RGN). Regions are sorted into a tree structure,

such as a Triangle Bin-Tree or a Quad Tree. Each region correlates to a single leaf node

in the referential tree structure, while the root corresponds to the instanced mesh with the

lowest level of detail. Intermediate meshes, from highest to lowest, are assigned to the

transitional nodes along the path between the root and the leaf nodes. The process for

generating the meshes of different resolution varies from automated methods using an

algorithmic simplification process, such as the View Dependent Progressive Mesh edge

removal technique, to manual asset creation by an artist. In a given frame, the viewing

attributes are parameterized and guide the traversal. As each node is visited, the

corresponding instance is assessed to determine whether the geometry of the given node

offers enough detail. If the geometry does not offer enough detail, then the children nodes

are assessed in a recursive manner. When a subregion meets the criteria for selection, the

geometry associated with the node is rendered. Rendering executes without further

intervention of the CPU because the geometry data is already pre-cached in video

memory. The process is repeated every frame to establish a mesh representation that uses

a reduced set of data.

An error metric is computed for each node. The error metric is used for

determining when an instance supplies enough visual fidelity. The geometry is uploaded

and cached in video memory for quick runtime access. During runtime, the regions are

treated as a single object that can be evaluated as a unit. For each region, the error metric

serves as the maximum error value for the set. The error allotment is based on the

divergence of visual accuracy from the mesh at the next highest level of detail. The

region can safely be selected by assessing the relationship of the viewing properties and

90

the error metric, because the displacement of a single vertex will not exceed the

maximum displacement. This guarantees that the rendering stays within a user-defined

threshold, which is usually defined in terms of pixels.

In addition to precached geometry, Hierarchical Regions reduce the impact of

using a tree. After initialization, each node in the tree is associated to a batch of polygons

that form a composite subregion of the terrain at different levels of detail. Representing a

batch of polygons with each node reduces the depth of the tree, which contrasts with

techniques that correlate a single polygon to a node. The reduced tree depth will speed up

traversals and other operations. Algorithms like RUSTiC [29], CABBT [46], BDAM

[47], and PBDAM [48] are examples of Hierarchical Regions that demonstrate the use of

batched geometry to varying degrees of complexity and success.

In general, Hierarchal Regions can be viewed as hybrid approaches that attempt to

achieve better performance by proposing a solution derivative of one or more previously

known solutions. Methods of the genre offer improved performance over the Hierarchical

Bin-Trees because they do not make excessive transfers of runtime data, which is a result

of the pre-cached geometry. In addition, they do not identify the terrain geometry on a

per-polygon basis, which reduces the CPU workload. However, these methods are

problematic because they can draw in the problems of the methods that they borrow

from. The techniques derivative of ROAM suffer from the need to perform a tree

traversal, which is CPU limited. Methods that use Irregular Meshes to represent the static

geometry set the stage for slowed peripheral operations, such as collision detection. In

addition to the problems found in the individual components, hybrid methods are subject

to additional problems. T-Junctions and cracking can occur at the edge of discrete regions

91

and eliminating them can prove non-trivial. Also, precaching the geometry can hinder the

incorporation of a Geomorphing solution because it depends on the underlying data

representation and the corresponding access patterns. Lastly, these solutions necessarily

assume added complexity over their individual counterparts. For Hierarchical Regions,

the side effect is that the speedup gained from the inclusion of precached geometry may

be offset by the operational and maintenance cost associated with the individual

technique.

Hierarchical Regions attempt to resolve problems of Hierarchical Bin-Tree

methods by operating on batches of geometry data instead of handling individual

polygons. By pre-caching the geometry, these techniques can reduce bandwidth usage

and improve computational speed, but they also present a new set of drawbacks. By

reformulating Hierarchical Bin-Tree solutions, such as ROAM, these derivative

manifestations offer improvements. However, the overheads associated with Hierarchical

Regions can subjugate the benefits.

3.4.6 Tiled Blocks

The fourth class of algorithms, Tiled Blocks, is a simple approach that offers

excellent performance when executed on current graphics hardware. The modern GPU is

a highly parallelized, multi-pipeline processor that can operate on hundreds of millions of

triangles per second. Consequently, submitting an excess of polygons to the GPU for

processing is a better alternative to burdening the CPU with identifying a minimal,

optimal set of triangles. Tiled Block solutions submit geometry in batches that can be

quickly rendered instead of trying to assemble an absolutely, perfect set of primitives. A

92

reasonable excess of geometry is permissible because the processing power of the GPU

can handle it, while freeing the CPU to handle other tasks.

Tiled Blocks approaches share much of their philosophy and theory with

Hierarchical Regions, in that they both seek to batch polygon data as a means to improve

performance. However, even though the motivating factors may be the same, they are

two major distinctions that separate them. The first difference is that Tiled Blocks only

work with an RGN data source, whereas, Hierarchical Regions allow for TIN data for the

regional mesh, as is the case of BDAM [47]. Secondly, whereas Hierarchical Regions

make use of a tree for referential decision making, Tiled Blocks do not specify any

particular relational structure. Instead of the tree, Tiled Blocks rely on the imposed

rectilinear layout of the RGN data source, and partition the world into rectangular blocks.

Tiled Block solutions take advantage of the data source’s regularity and superimpose the

geometric principles that govern the rectilinear distribution of each partition to achieve

specializations that are not possible otherwise.

3.4.6.1 Geomipmaps

In 2000, Willem H. de Boer published an online article describing a novel multi-

resolution strategy for terrain visualization, called Geomipmapping[49]. At a time when

few researchers would diverge from the Hierarchical Bin-Tree methods, de Boer opted to

forge a different path, one that reduces CPU overhead by exchanging expensive per-

polygon optimizations for grouped polygon processing. Geomipmapping applies simple

rules for creating multiple levels of detail for a subregion of the terrain. The resulting

instances may use a higher triangle count than could be achieved with other methods, but

building and maintaining them requires minimal CPU processing.

93

The regularity of RGN data offers opportunities for expeditious rendering and

data processing during application execution. Elevation data for a heightfield is often

stored in a 2D texture map because each texture element (texel) can store the elevation

data. The Cartesian coordinate pair used for accessing into a texel are the coordinates on

the ground plane, making it possible to perform direct indexing. One important

observation of this storage strategy is data compression. In this strategy, it takes one-third

of the memory required to store the same number of vertices that it would for an irregular

mesh. The more important thing to understand is the implicit correlation of the RGN

layout and textures. De Boer observed this relationship, decided to build upon the notion,

and devised the technique Geomipmapping. In texture mapping, mipmapping is an

algorithm for limiting the cost incurred from texturing a surface at different scales [50]. It

limits the computational workload of interpolating a texture’s colors when texturing a

polygon by using a multiple texture instances. Each instance has dimensions correlative

to the polygon’s screen occupancy. Mipmapping uses multiple textures of progressively

smaller dimensions and quality that are generated by filtering the original, high-detail

texture. The filter downsamples the texture, to create the sequence of reduced quality

images. At runtime, the hardware is designed to access the most appropriate mipmap in

the sequence given the screen-space occupancy of the polygon being textured. In addition

to reducing computational workload, mipmaps can be filtered using a digital imaging

filter to help reduce runtime visual artifacts like aliasing.

Geomipmapping borrows from the abstract concepts and generation algorithm of

texture mipmapping on a terrain mesh described by an RGN data source. In a

preprocessing step, a 0,1212 >+×+ nnn heightfield is downsampled to create a

94

sequence of)1(−n geomipmaps. A heightfield at level l is the input needed to generate

the heightfield data for level)1(+l . Using the input dataset level l , every other elevation

value is sampled to produce a 0,1212 11 >+×+ −− nnn heightfield. In a recursive manner,

the newly generated dataset becomes the input dataset for the next, lower level of detail

instance. The process is repeated until all geomipmaps are produced (Figure 11). After

the geomipmaps are generated they can be uploaded and cached in video memory, to

allow for faster rendering of the geometry. At runtime, only one level needs to be

processed, since they all offer coverage over the same area; however, the one to choose is

driven by the runtime decision making process.

(a)

(b)

(c)

Figure 11 Recursive downsampling a heightfield into Geomipmap instances.

The 99× heightfield of elevation data in (a) is downsampled to a 55× heightfield and the

55× heightfield is used to generate the 33× heightfield in (c).

Each instance in the set of geomipmaps provides coverage for a subarea of the

terrain. Successive levels cover the same area using half the number of vertices as its

immediate predecessor, but with less accuracy. Removing vertices in the preprocessing

stage creates divergences between the original topological description of the input mesh

and the lesser detailed geomipmaps. The divergence is not noticeable assuming the

distance from the observation point and the geometry rendered exceeds a threshold. The

threshold is computable based on the displacement that occurs between a vertex present

95

in a parent geomipmap and the corresponding position it assumes when it is removed. As

with other techniques, the relative vertex position is the midpoint between the

neighboring vertices of the removed vertex. Using the Pythagorean Theorem, it is

possible to compute the length of the vector from the point removed to the midpoint of its

neighbors. The computed length is the value necessary for computing the maximum

distance at which the vertex can be removed without impacting visual quality, as

specified by the parameterized pixel error thresholdτ (Equation 3). During the

initialization and generation of the geomipmaps, it is necessary to compute the maximum

height deviation for all vertices removed from a given geomipmap. Using the maximum

height deviation ensures that the distance at which the geomipmap is selected will display

a screen-space error that is no greater than the value ofτ . During runtime, the current

distance to the tile is compared with the value stored in a table of distances. The

geomipmap that uses the least geometry and is within the threshold is rendered. The

whole process results in the fast display of high fidelity imagery. The reduction in

geometry processed is achieved with minimal CPU overhead, making it ideal for use with

current hardware architectures.

Equation 3

heighttop

n

viewport

ThresholdpixelError
T

anenearClipPl

anenearClipPl
A

T

A
CCD

⋅
==

�
�

�
�
�

�
=⋅=

2
 and

such that, where,δ

Geomipmapping is a good solution for achieving multi-resolution display of the

terrain. Building off of the theory of texture mipmapping, Geomipmapping extends the

idea to geometry. The algorithm is simple and efficient. As with other Tiled Block

solutions, Geomipmapping offers improved performance by preprocessing chunks of data

96

and caching the results in video memory or fast access. However, Geomipmapping can

produce visual artifacts in the form of popping and surface discontinuity. In fact, most

Tiled Block solutions share in these misbegotten traits, but generalized approaches

transgress specific algorithms to solve these problems.

The shortcomings of Tiled Blocks solutions make them an imperfect solution.

Tiled Blocks are notoriously susceptible to popping. Although popping is resolvable

through Geomorphing, it imbues added complexity and computational workload to the

overall solution. Another ill-fated attribute of Tiled Blocks is that they are memory

intensive solutions. As a generality, Tiled Block solutions preprocess and store the

sequence of tiles simultaneously, which can consume huge amounts of system memory.

To further complicate the matter, terrains that exceed available system memory may need

to employ a paging solution, which can create direct conflicts with the need to preprocess

the terrain tiles.

Another problem with Tiled Block solutions is their propensity to produce

discontinuity between neighboring tiles. When such a situation occurs, it is necessary to

manage the seams between neighboring tiles. Rendering a block at level l and its

neighbor at level k , where kl ≠ produces T-Junctions at the shared borders. The T-

Junctions often produce visible cracks that detract from the scene, too. It is necessary to

address the discontinuity in order to create seamless tiles, which adds further complexity

to Tiled Block algorithms.

3.4.6.2 Stitching and Skirts

There are two well known alternatives that serve the purpose for creating visually

seamless tiles for Tiled Block solutions: stitching and skirts [1]. Stitching is used to

97

create absolutely seamless tiles, while skirts are a faster, less accurate resolution.

Stitching is often described as an integrated step in many Tiled Block solutions, while

skirts can be viewed as an additional step. As such, skirts are defined as Model Services,

while stitching is considered an internal step in some level of detail algorithms.

For stitching, neighboring tiles are examined to see if they will be processed at the

same level of detail. If they are not, a strip of ‘stitching’ geometry is generated and

processed. In the case of Geomipmapping, it is possible to skip the vertices on the shared

edge of the higher level of detail geometry to create a seamless border (Figure 12). The

process is repeated for all four sides of the tile that shares an edge with a neighbor and

modifications to the geometry set are applied where necessary. The runtime cost for

stitching can be high, which is why some systems choose to use skirts.

Figure 12 Stitching different resolution tiles.

Cracking is prevented by stitching the higher resolution tile to the edge vertices of its

neighboring (lower) resolution tile.

A skirt is a strip of geometry perpendicular to the ground plane and parallel to the

tile’s edge (Figure 13). Instead of perfectly matching the seams between tiles, a skirt is

extended from edge vertices downwards to a position below the lowest point on the entire

terrain. The skirt follows the edge around the tile and can mask any discontinuities in the

geometry that may be revealed as cracks. Skirts can even be precomputed along with the

tile’s level of detail at startup, which eliminates any infringement on runtime

98

performance. As previously stated though, skirts are imperfect. While skirts can mask

cracks in the surface, they do not address shading artifacts that can occur at T-Junctions.

Figure 13 Skirts are used to hide cracking.

The skirt placed around the higher-resolution tile hides the crack that occurs at the edge

shared with the low- resolution tile.

Tiled Block solutions are simple algorithms that offer fast and efficient online

assembly and rendering of multi-resolution terrain meshes. Solutions, such as [51], have

seen a resurgence in interest from researchers because of their suitability for use with

modern graphics hardware. The rectilinear layout of each tiled region is easily

deconstructed into triangles, triangle fans, or triangle strips for fast processing on the

GPU. Batching the geometry allows the GPU to make optimal use of its parallelized

architecture, providing excellent throughput to achieve better frame rates and an

improved user experience. The simplicity of Tiled Block solutions, coupled with the

intrinsic suitability for current hardware architecture, make it a current favorite for use in

a number of interactive applications [52]. The primary drawback with Tiled Blocks is the

need to manage seams between discrete tiles and necessary integration of Geomorphing,

which impose added complexity and impact runtime performance.

3.4.7 Concentric Regions

Concentric Regions are the fifth and final class of algorithms for multi-resolution

terrain visualization. As of this writing, the Geoclipmap, in two distinct instantiations, is

the only published algorithm that demonstrates concentricity as used for level of detail in

99

terrain visualization. As with Tiled Blocks, Concentric Regions offer performance

improvement achieved by relying on an underlying RGN data source. Concentric regions

achieve a speedup by grouping polygons into batches that can be processed in unison,

instead of treating each polygon individually. Whereas Tiled Block solutions partition the

terrain into discrete, non-overlapping units; Concentric Region techniques work on a

focal area using a windowed view of the terrain. The windowed region is centered about

the viewer and is composed of multiple levels that overlap. The geometry within the

window’s boundaries is incrementally updated and processed each frame to define a

multi-resolution mesh. The incremental approach eliminates the heavyweight

preprocessing task to offer greater flexibility and adaptability to the needs of the system.

3.4.7.1 Geoclipmaps

Losasso et al published the paper Geometry Clipmaps: Terrain using Nested

Regular Grids as an innovative multi-resolution technique for terrains [4]. As with

Geomipmaps, Geoclipmaps operate on batches of polygons to achieve faster throughput

and improved runtime performance. Unlike Geomipmaps, they do not subdivide the

terrain into a set of 2D linear tiles, but instead regard the terrain as a single region. The

key to the approach is that it operates on a user-centric, windowed region of the terrain

when processing the geometry. The user centricity offers a highly detailed mesh about the

viewer that recedes in fidelity outwards towards the horizon. The Geoclipmap is a fast,

efficient, and hardware-friendly multi-resolution strategy for terrain visualization.

Geoclipmaps take advantage of the fact that a heightfield can be stored as a

texture map in a 2D image space. The theory behind Geoclipmaps extrapolates the theory

of texture clipmaps into the realm of 3D geometry. A texture clipmap is a technique that

100

allows a large texture to be used in a scene without requiring that the entire texture be in

memory. It accomplishes this by offering a windowed view of texel data that is

incrementally updated according to the visible area of the texture. For instance, when

only a limited subarea of the texture contributes meaningful detail to the scene, the

clipmap algorithm ensures that the visible subimage within the texture is available for

use. However, the rest of the image may or may not be in memory at that time. As the

view changes and the visible subimage changes, the texture data is updated accordingly.

The algorithm updates the memory-resident data to guarantee that necessary texels are

presently in memory. The concept of the original texture clipmap algorithm serves as the

basis upon which Geoclipmaps are derived with the following key differences:

1. Texture clipmaps require specialized hardware, while Geoclipmaps do not.

2. Geoclipmaps use the distance of the geometry to the viewer to establish the

displayed level of detail, whereas texture clipmaps compute per-pixel level of

detail using the screen-space projected geometry.

Geoclipmaps attempt to produce a screen-uniform tessellation of the terrain such

that every triangle is pixel-sized. The process is generic and ignorant of the surface

topology. Techniques for Irregular Meshes and Hierarchical Bin-Trees perform fine-

grained, computationally-heavy operations evaluating the mesh geometry to provide per-

polygon level of detail adaptation. In an effort to reduce computational cost, methods for

Hierarchical Regions and Tiled Blocks can perform less granular operations and, in some

cases, are able to offload excess work to the GPU. Concentric Region solutions, on the

other hand, use a uniform tessellation of the geometry across the entire terrain to build the

surface using each level of detail as a similar, concentric subset of rings. In doing so, the

101

need for runtime computation of geometry is minimized. It is even possible to abstract

the logic even further and offload nearly the entire algorithm to the GPU [53].

The Geoclipmap algorithm is simple and powerful. Performing the technique

requires the execution of two distinct phases: initialization and runtime. During

initialization, the heightfield is assumed to be a 1212 +×+ nn grid of elevation data stored

in a texture map. The multi-resolution instances of the heightfield are generated using a

standard mipmap generation technique, exclusive of any filtering [50]. The generated

mipmaps are the complete set of the terrain’s level of detail instances, and are used

during runtime to maintain the active geometry. If desired, it is possible to compress the

mipmaps in order to consume less memory. Instead of operating on the entire set of data

for each instance, Geoclipmapping operates on a windowed, subset of data each frame.

The clipmap region is an mm × area within a given level of detail instance that is

centered about the viewer and meaningful to the scene (Figure 14). At runtime, the view

is used to assemble the clipmap region. Startup is the only time that the clipmap region

must be completely built, because successive changes will alter an L-shaped subregion of

the clipmap as the view changes. During execution, the clipmap regions are stored in a

2D array and uses toroidal indexing to access the elevation data. Toroidal access is

necessary to perform 2D queuing operations that allow for incremental updating of the

visible elevation data within the clipmap region.

102

(a) (b) (c)

Figure 14 Geoclipmap regions.

The three overlapping, discrete regions in (a) are projected in (b) and then cropped in (c)

to define the multi-resolution concentricity according to the Geoclipmap algorithm.

At runtime, the following steps are performed each frame:

1. Determine active regions: Active regions of the clipmap region are determined using

the current viewing properties. Each)1(_ +lregionclip is a coarser surface

representation than its predecessor)(_ lregionclip . Therefore, the same number of data

samples of)1(_ +lregionclip offers greater area coverage than)(_ lregionclip because

the grid spacing is wider. To determine the active regions, a ll ngng × sample set is

derived from each)(_ lregionclip , where n is the clipmap region size and l

lg
−= 2 . The

uniform sizing makes it simple and effective to construct the active regions.

2. Update clipmap regions: During runtime, it is not necessary to completely rebuild the

active region, because the clipmap regions are incrementally updated. As the viewer

moves, it is only necessary to update the clip region in the L-shaped area that has

changed (Figure 15). The update comes from the data source, which may be a memory-

resident data stored, streamed data store, or procedural synthesis data generator.

3. Crop active regions: Active regions may be clipped to speed up processing by

choosing the coarsest active regions that offers the desired visual fidelity. Clipping of

active regions is performed in coarse-to-fine order, and can be controlled to achieve

graceful degradation and throttling. One possible cause for clipping is when the viewer is

moving too fast, and the incremental update begins to lag behind. In this case, throttling

can be applied to force clipping of detailed geometry, which results in faster processing

time. The general case for clipping occurs when the tessellation of geometry is too high

and continuing to process it will result in the rendering of overly-detailed geometry. In

103

either case, the geometry of a coarser level of detail supplants the area under scrutiny to

provide the missing surface coverage.

4. Render Scene: Rendering the regions is a straightforward process. For each

)(_ lregionactive the render process submits)(_ lregionrender to the rendering system,

where)1(_)(_)(_ +−= lregionactivelregionactivelregionrender . Each

)(_ lregionrender is a concentric area of the terrain surface and produces the whole

surface as a set of interlocking concentric surfaces.

(a) (b) (c)

Figure 15 Maintaining the correct clipmap region.

As the view changes from (a) to (c), only the L-shaped region of difference in (b) needs

to be updated, which is possible using toroidal array indexing.

Each frame the four step process is repeated to achieve high fidelity terrain

visualization in real-time. As presented, Geoclipmaps will produce discontinuous

surfaces. The discontinuity occurs where the inner edge of a)(_ lregionrender meets the

outer edge of)1(_ +lregionrender . To solve the irregularity at the seam, it is necessary

to use stitching or skirts.

Two additional capabilities afforded by the use of Geoclipmaps are compression

and synthesis. Compression is possible through the incorporation of a runtime texture

decompression scheme. At runtime, the clip regions will need to be updated with new

data as the viewer moves across the surface. Texel data is decompressed and extracted

from the heightfield being stored as a compressed texture, in order to retrieve necessary

elevation values. Through compression, it is possible to retain extremely large terrains in

memory. Synthesis allows additional detail to be adaptively added to the terrain at

runtime through procedural methods. With synthesis, it is possible to create infinitesimal

104

detail across an immeasurable area of coverage, without the need to represent the

geometry as polygonal mesh data. Synthesis can rely on procedural or functional methods

to generate added detail that improve surface fidelity and realism. The added capabilities,

compression and synthesis, are two more reasons why Geoclipmaps are viewed as an

excellent multi-resolution strategy for terrains visualization.

Geoclipmaps suffers from limitations that make it an imperfect solution. The first

limitation is that Geoclipmaps are susceptible to rendering the visible surface at a higher

complexity than in other schemes. In the worst case scenario, where uniform tessellation

across the entire heightfield occurs, the surface does not benefit from local adaptivity. As

such, the overhead of using the solution produces that same output as not using any level

of detail technique. The second problem with the algorithm occurs in terrain surfaces

with highly irregular surface features, such as tall thin upshots. These features will morph

into view late and, depending on the implementation details, the late arrival may create a

visible artifact that detracts from the visualization. Lastly, the complexity of the

Geoclipmap solution suggests that it may be less appropriate than other solutions for

systems that only need to visualize smaller terrains. In particular, Tiled Block solutions

may be more appropriate for systems where the terrain dataset and all of the levels of

detail can fit into memory. Using Geomipmaps requires an understanding of the caveats

in its appropriateness for use.

3.4.7.2 Geoclipmaps (GPU)

The original paper alluded to the fact that the technique could be executed on the

GPU [4]. The justification for not doing so in the first place was lack of hardware support

for Shader Model 3.0 and, specifically, vertex texture lookups. In 2005, Asirvatham et al.

105

achieved the task of porting Geoclipmaps to the GPU; thereby, affirming the original

authors proclamation [53]. The algorithm itself did not change but, obviously, the

implementation was refactored to make more elaborate use of the programmable graphics

pipeline. In doing so, the overhead of the algorithm is completely offloaded, completely

freeing the CPU. The GPU-based solution epitomizes the ideal, state-of-the-art Computer

Graphics algorithm.

Concentric Region solutions are the newest addition to the classes of multi-

resolution strategies for terrain visualization. Instead of performing per-polygon

operations or partitioning the terrain into polygon sets, Concentric Region techniques use

a focal area that reduces in quality as it moves away from the user. The uniform

tessellation of geometry along regular grid bounds is used to create downsampled terrain

instances. The windowed view is constructed using the distance of the viewer to the

region in a radial fashion, which is used to determine when to switch from one level of

detail to the next. Using this strategy, the geometry in the immediate vicinity of the

viewer is more compact and has higher definition. Areas further away from the center use

less geometry, which reduces the amount of processing required to render the terrain

Although Concentric Region methods are not without flaw, they are a good alternative

for systems that strive to make the best use of current graphics hardware.

Level of detail is the most prevalent area of research in terrain visualization. The

need and desire to visualize terrains surfaces that are expansive and detailed justifies the

use of a multi-resolution strategy. Level of detail improves runtime performance by

reducing the total amount of geometry processed, while maintaining quality that

compares to processing the entire mesh. Early techniques sought to optimize the number

106

of triangles using techniques for Irregular Mesh refinement. Hierarchical Bin-Tree

methods perform recursive management of the geometry to build an optimal triangulation

using a view-dependent selection mechanism. More recently, graphics hardware has

improved, which has lead to the preference for pushing more data through the graphics

pipeline and limiting use of the CPU. In response, techniques started shifting focus from

optimizing the triangle count to batch processing, such as with methods for Hierarchical

Regions, Tiled Blocks, and Concentric Regions. Each algorithm has its own set of

strengths and weakness, which are derivative of the intended goals and era under which it

was created. Regardless of the specific techniques, level of detail for terrain visualization

has generated a wealth of practical knowledge and a variety of useful techniques for use

in research and commercial systems.

3.5 Dynamic Terrain

Terrain visualization is used in a number of systems to display topological land

features for a variety of purposes. To date, the majority of research in terrain visualization

focuses on static terrain and, consequently, many systems rely solely on static terrain

solutions. Static terrain accurately simulates rigid terrestrial surface types; leaving the

majority of terrain types insufficiently accounted for in virtual systems. Dynamic terrain

offers features for terrain representation that make it suitable for simulating non-rigid

surfaces. Currently, techniques for dynamic terrain are limited because of the complexity

and added overhead. However, as hardware improves and various industries demand

more realistic virtual worlds, the inclusion of dynamic terrain will become more and

more important.

107

Unlike static terrain solutions that suffice only to imitate rigid terrain surfaces,

dynamic terrain solutions can emulate both rigid and non-rigid surfaces. As such, static

terrain is a dynamic terrain subtype. Many strategies used for the visualization of static

terrains make use of optimizations and tricks that rely on the rigid nature of the static

terrain. For instance, some level of detail techniques are inflexible because they depend

on an underlying rigid surface to decimate and restore mesh geometry. When techniques

do not translate directly for use in dynamic terrain solutions, new algorithms must be

devised to accommodate the needs of a dynamic surface and to supply features lost from

the nontransferable technique.

As with many fields of research in Computer Graphics, dynamic terrain research

efforts first divergence can occur in the decision of whether to devise a solution that is

intended for offline or online rendering. Offline rendering can produce high-quality,

realistic terrain dynamics because there are no time critical restrictions placed on the

algorithms. The goal in offline rendering algorithms is to achieve the most realistic

visualization; however, online rendering is not afforded the same luxury. Online

rendering of dynamic terrain requires that the terrain dynamics manifest realistic imagery

and operate under real-time constraints. For online methods, the level of realism attained

should be reasonably convincing, but does not require absolute accuracy. The realism of

the terrain dynamics may be physics-based or appearance-based. Physically accurate

models are more realistic, but run slower. On the other hand, appearance-based models

trade realism and general use for speed.

Online dynamic terrain solutions are capable of altering the surface to purvey

terrestrial information to the observer. Vertex displacement is a primary functional

108

provision of dynamic meshes and the operational construct that directs that motion is

often considered the principle goal of researchers. Many researchers incorporate a Motion

Control model that enforces a specific simulation model alongside the dynamic terrain

solution. Tightly coupling the motion control to the geometry management scheme is

common, but can create intricate dependencies that do not adapt well to other domains.

Deformations that result from the displacement of vertices reflect the interaction of the

terrain with an object. The realism of the deformation is bound to how well the Motion

Control model adheres to the operational constraints and rules imposed by simulation

model.

3.5.1 Physics-based Approaches

Physics-based modeling is one approach that can be used to perform terrain

dynamics. These methods derive a representation appropriate for use in a visual system

by using a knowledge-base that originates from the Natural and Physical Sciences. For

highly realistic visualizations, physically accurate models offer unprecedented visuals at

the cost of computational complexity and, potentially, runtime performance.

One of the first published works on dynamic terrain attempted to use soil

mechanics in order to achieve realistic terrain deformation [54]. The work presents a

simplified computational model of soil dynamics and applies it for use in animation and

real-time interactive simulations. Specifically, the soil model creates an accurate

portrayal of soil manipulation by computing the soil slippage and soil mass displacement.

The process simulates erosion of soil as it moves along a failure plane until reaching a

state of stability. It is suitable for the simulation and display of terrestrial deformations

109

that result from actions like pushing, piling, and excavating soil. The physics-based

model is suitable for the accurate display of soil displacement.

The algorithm is insufficient and incomplete as a general solution for dynamic

terrain visualization. The solution offers soil excavation as the only type of soil

manipulation. It does not address soil compression nor does it account for soil

composition or moisture content, which would noticeably impact the deformations

produced and influence trafficking. The technique’s unsupported elements prevent it

from being generalized for use in many systems.

Chanclou et. al published a physically-based solution for terrain dynamics that

improved upon other works [55]. In the solution, the terrain surface is as an elastic sheet

as represented by a particle-mass. The bonds between neighboring particles dictate the

possible configurations for the surface. Spatial displacements are driven by interactive

forces from external objects. The objects may be either rigid-bodied or soft-bodied. The

solution addresses both compaction and erosion using a two step approach. The first step

simulates large-scale phenomena, facilitating the simulation and display of soil mass

compaction and the displacement. The second step performed is a small-scale refinement

that erodes the surface; thereby, facilitating local avalanches and general surface

smoothing.

The imagery produced with the method is realistic and, more importantly, the

simulation is physically accurate. However, the extensive realism carries a high

computational cost that precludes it from being used in real-time interactive systems. In

addition, their model does not discuss how to model real-world ground materials, which

is necessary if it to be considered a general solution.

110

3.5.2 Appearance-based Approaches

Appearance-based solutions strive to create a visually plausible rendition of

terrain dynamics without the conditional constraint of using a physically accurate model.

Instead of rigorous mathematics and complicated mappings, appearance-based solutions

use simplifications and fabrications to produce visually convincing phenomena.

Appearance-based solutions are not as precise as physically-based models, but in many

cases the performance gain justifies the loss accuracy.

In order to convey supplementary information to the observer in animations,

Sumner et al. propose an appearance-based solution for the display of dynamic terrains

[56]. The solution executes quickly because the computational complexity associated

with a physics-based animation is bypassed. It uses a four step execution cycle to create a

visually-convincing depiction of terrain surface interactivity. The four steps are:

1. Collision Detection: Penetration is detected by casting a ray upwards, from the

base position of a column. A collision is detected when the ray intersects an

object before reaching the column's maximum height. When a collision occurs,

the height at which the collision occurs becomes the new height of the column.

2. Displacement: The difference in material is computed using the previous column

height and the new height as is determined in the collision phase. The difference

mass is either compacted into the local column or is distributed to neighboring

columns. The amount compressed is controlled with a user-supplied parameter,

the compression ratio)(α .

3. Erosion: In order to compensate for the displacement step, columns with excess

accumulation are eroded to reduce the steep incline. The slope)(θ from a column

to its neighbor(s) is computed and, when it exceeds an upper bound, the material

is distributed to the lower-contour neighbor. The amount distributed is the average

height of the neighboring multiplied by a user-supplied roughness factor)(σ .

4. Particle Generation: Optionally, a particle generation process fosters the aerial

dispersion of surface matter. Matter may adhere to the rigid-body object. The

accumulation of matter is dispensed over time into the air as particle masses.

When a particle comes to rest on the surface again, the volumetric amount

associated with the particle is consumed by the contact region.

111

Each frame, the four steps are executed and the final surface configuration is

rendered to the screen. Continual, incremental updating causes the surface changes to

accumulate over time, which gives a tractable history of events and makes the animation

more realistic

The algorithm is built with practical application in mind. The authors define five

control parameters that will affect the terrain. The surface deformation parameters are

intended to ease use of the system by non-engineers. The user-supplied parameters are:

1. Inside slope (inθ) and outside slope(outθ): Controls the shape of mounded terrain

material.

o Small values result in more erosion and a gradual slope.

o Large values result in less erosion and steeper slopes.

2. Roughness (σ): Controls the smoothness of the surface; contributing to and

resulting from ground deformation.

3. Liquidity (stopθ): Controls the amount of erosion per time step; perceived as the

wateriness of the terrain material.

4. Compression (α): Controls the amount of material that can be displaced

outwards versus downward.

o displaced. is material All :1=α

o displaced. is material som ,compressed is material Some :10 << α

o compressed is material All :0=α

Although the technique generates convincing results, the approach is not without

fault. One shortcoming of the approach is that it can only produce smooth surfaces and

particles; it does not support the generation of surface cracks or clumps. Therefore, it is

not suitable for clayey terrains that would be subject to such features. A second problem

is that there is no mechanism for feedback about the terrain composition, which prevents

the integration of any terrain trafficking. In addition, velocity is not taken into

consideration during displacement. For certain soil compositions, the piling of soil mass

112

should be greater in the direction of travel. The last problem is the need to manually

adjust rendering parameters to produce a visually-convincing image. The need for manual

adjustments suggests that this technique may not be suited for use in an interactive

system.

An improved algorithm for the control of terrain deformation was published that

uses a specialized data structure, the Height Span Map, to provide dynamic manipulation

of terrestrial and granular solid surfaces [57, 58]. The work improves upon previous

efforts in the area of dynamic terrain. Specifically, the algorithm provisions for the ability

to visualize the displacement of terrain using concave polyhedron and to display

displaced granular material on top of an object. The ability to achieve piling on top of

objects adds to the realism of the visualization. A simplified form of the algorithm is

described by the author(s) in the following three steps:

1. Detect the collision of the object with the surface.

2. Displace the disturbed (granular) surface material.

3. Erode the (granular) surface materials at steep slopes.

The simplified form is a formal declaration of the steps necessary to conduct

terrain dynamics. Further refinement of the approach is elucidated as follows:

1. Perform rough collision detection using the bounding geometry of the objects and

the terrain surface.

2. Update the Height Span Map for the object.

3. Detect the collision between the object and each column of the Height Span Map.

4. Displace granular material from the columns of the Height Span Map as impacted

by external force(s).

5. Erode steep slopes by distributing granular material to neighboring columns.

113

The algorithm relies heavily on the Height Span Map. The Height Span Map is a

2D matrix of values the represent the minimum and maximum heights of an object. In

other words, the objects have a 2D heightfield representation of its extents. The Height

Span Map is necessary for the computation of vertex displacements, which is the crux of

terrain dynamics.

While the results are realistic, the solution is not without fault. Natively, the

technique does not address the issue of scalability. For terrains of large size, the solution

will impose a large memory footprint and computational overhead. To combat the

problem, the authors suggest the possibility of integrating the solution with a multi-

resolution strategy as future work, but they have not done so as of this writing. Also, the

surface is assumed to be fairly regular; otherwise, the technique does not perform as well.

Another problem with the solution is that it is performed entirely in software. Using the

CPU to maintain the Height Span Map and perform all of the collision detection is not

good, considering current programming preferences. Finally, the technique may not be

practical for use in some systems because the authors only achieve 7-14 frames per

second, which is well below the ideal 30 target framerate in interactive real-time systems.

The aforementioned methods for dynamic terrain address the problems faced in

trying to accurately simulate the displacement and settlement of earthen materials across

a terrain surface. All of the methods have a similar strategy: displace a volumetric

amount of the terrain and then erode steep inclines to smooth out the surface, in an effort

to remove unrealistic jagged upshots. Some methods are physically accurate, while other

use made up parameter sets to control the deformation. The capability of each method is

unique, the end results vary, and not one of them is an absolute solution.

114

3.5.3 Multi-resolution and Dynamism

Of noteworthy concern in the preceding techniques is the lack of focus on

integrating dynamics with a multi-resolution method. Most dynamic terrain research

efforts focus solely on the development of the simulation model, which controls the

deformation. However, they do not address incorporating the deformation strategy into a

system that employs a level of detail strategy. In order to successfully use a dynamic

terrain solution in large-scale terrain visualizations, the multi-resolution strategy and

dynamic terrain solution must be able to co-exist.

3.5.3.1 DEXTER

In contrast to dynamic terrain research seeking to define a simulation model of

terrain dynamics, Yefei He’s research focused on a specifying a mechanism for

dynamically altering the maximal resolution of the terrain mesh within the framework of

the system’s multi-resolution strategy [30]. Dynamic Extension of Resolution (DEXTER)

is a used to add resolution to a mesh in a manner that seamlessly integrates with the level

of detail method. Increasing the resolution of the mesh is necessary in cases where the

mesh density is too sparse for effectively reflecting terrain deformations; for instance,

when an object can exist within the boundary of a single polygon of the terrain mesh.

Although the concept behind DEXTER is a general, He’s research focused on

implementations specifically for Hierarchical Bin-Tree methods. The research was

applied to techniques for the purpose of altering the original mesh by incrementally

adding more geometry. DEXTER implementations augment multi-resolution techniques,

such as ROAM, allowing them to better support mesh deformations. Dynamic Extension

115

to ROAM is a DEXTER implementation that was integrated into an automotive

simulation for improving the visualization aspect of the system [59].

DEXTER allows geometry to be added to an in-memory mesh representation of a

heightfield at runtime by forgoing the resolution and density specifications of the original

mesh. Hierarchical Bin-Tree methods enforce a rule that prevents splitting the geometry

beyond the original limits of the source mesh. The Dynamic Extension to ROAM

bypasses this restriction in order to provide dynamic refinement of geometric details.

Subdividing geometry is used to add detail to the mesh by performing local updates in the

same manner that the Hierarchical Bin-Tree methods execute local tests to identify the

geometry to use for mesh in a single frame. In this manner, the approach is used by

dynamic terrain systems to add geometry of greater resolution at identified leaf nodes by

recursively splitting the polygon(s). The split produces a new set of children nodes in the

tree, which uses more polygons to represent the same area. The new, high-detail

geometry can be manipulated to create high fidelity terrain deformations. At the same

time, the Dynamic Extension to ROAM uses the update process in order to maintain

other vertex values, like texture coordinates and material properties. Without DEXTER, a

heightfield expands into a full and balanced tree; however, it use can result in a tree that

is skewed and asymmetric. Asymmetry occurs because subdivisions can be executed

down a single branch of recursively created geometry. A stop condition, such as a

maximum depth, is usually employed to avoid the production of overly complex

geometry. The Dynamic Extension to ROAM runs at interactive frame rates, which

serves as testament to its practicality and usefulness.

116

While the Dynamic Extension to ROAM is useful, it does not achieve optimal

results. For modern graphics hardware, Hierarchical Bin-Tree algorithms are not the

preferred approach for terrain mesh representation. Hierarchical Bin-Tree methods suffer

from the need to perform local updates and promote per-polygon operations. In addition,

the solution is CPU-bound, which further limits its potential for use in modern systems.

Another problem with this approach is that the solution presented is only suitable for

small, local updates on the terrain, such as tire impressions. Derivative work determined

that this strategy can produce larger deformation by using coarse geometry, but even then

the deformation is restricted and can only reflect simple structural changes [60, 61]. The

Dynamic Extension to ROAM was also extended to offer preservation of vertex

properties and relationships with the use of a Direct Acyclic Graph (DAG), which was

used to prevent errant changes in the visual presentation of the modified terrain [62].

Large terrain changes would distress runtime performance, possibly preventing the

application from running at interactive frame rates. As a concept, DEXTER is a novel

finding and useful piece of information that has its place in dynamic terrain visualization;

however, the Dynamic Extension to ROAM suffers from shortcomings that make it

suboptimal.

3.5.4 General Methods for Mesh Deformation

Although surface deformation and mesh dynamics are not exclusive to terrains,

generic methods are not necessarily transferable for use with terrain visualization. For

instance, T-DAG is a technique that provides adaptive multi-resolution representation for

dynamic meshes with arbitrary deformations [63]. At first glance, T-DAG appears to be a

good candidate for use in real-time dynamic terrains on the surface, because it supports

117

surface deformation and level of detail. However, even though it performs reasonably as

a general solution, it is not a good option for terrain visualization because it runs much

slower than specialized techniques. In the case of the T-DAG, performance loss can be

attributed to the use of a TIN-data layout and slow graph operations, since it has already

been pointed out that a TIN data source translates to a slower solution. Another general

algorithm for deformable meshes offers multi-resolution potential using a Progressive

Mesh strategy [64]; however, its underlying TIN data structure puts it in disfavor for

dynamic terrain. While a number of strategies and solutions for dynamic meshes are

known, they can not compete with techniques that specifically address dynamic terrains.

Dynamic terrain solutions are necessary to realistically visualize interactive

terrain surfaces. They can be used to effectively communicate supplemental information

to the observer regarding the terrain composition; thereby, creating a richer and more

convincing visual experience. The two approaches for performing terrain dynamics are

physics-based and appearance-based. Physically accurate solutions strive to imitate

reality by using computational models derived from the Natural and Physical Sciences.

Appearance-based models attempt to imitate the visual display in a convincing manner

using simple models that are not (necessarily) based on reality. A variety of solutions that

address the terrain deformation process share a similar strategy. In general, methods for

terrain dynamics perform an initial deformation of the surface and then refine the results

to compensate for upshots and peaks that would erode in nature. For a dynamics solution

to be truly useful, it must be easily integrated with a multi-resolution strategy for true

scalability. Successfully using a dynamic terrain method is a non-trivial feat that will

contribute greatly to the realism in a scene.

118

3.6 Closing

The preceding information presented a comprehensive review of techniques in

terrain visualization. The subject matter included a review of topics in spatial

partitioning, texturing, level of detail, and dynamics for terrains. Each subject area was

further decomposed and specific techniques were examined. It was shown that for each

problem, a number of techniques are available that attempt to address the issues. The two

goals commonly sought are to improve realism and to improve performance. While both

goals are valid for improving the user’s experience, the means by which they are

accomplished often conflict and compromises must be made. Coordination between

solutions to the different problems presents another set of challenges that can further

complicate matters. However, when the components are coordinated, the system can reap

the benefits by displaying realistic terrain imagery at interactive frame rates.

119

4. Techniques for Dynamic Terrain

Dynamic terrain is a distinguished approach for terrain visualization that can

achieve an unparalleled degree of realism. Many terrain visualization systems are static

terrain solutions, which are functionally limited. In contrast, a dynamic solution improves

the user experience through increased realism and an interactive environment that more

closely mimics the physical world.

Dynamic terrain systems are often more complex than static terrain solutions

because they allow for the modification of the surface at runtime. While the inclusion of a

deformation strategy alone will suffice as a dynamic terrain solution in many systems,

others may require the inclusion of a means to dynamically add geometry for selectively

increasing mesh resolution. The approaches for deformation and mesh refinement are the

sources of computational overhead associated with dynamic terrain.

In this chapter, we present our contributions to the field of terrain visualization in

the areas of runtime mesh refinement and dynamic terrain deformation. The first topic

discussed is improving a mesh’s resolution for the purpose of dynamism. The idea we

evolve is an extrapolation and an elaboration on He’s work in dynamic extension to

resolution (DEXTER) [30], termed Dynamically Divisible Regions. In addition to

presenting some intuitive approaches for polygonal subdivision, we propose our original

technical solution for dynamically altering the resolution of a rectilinear grid of elevation

points using the GPU. The second half of the chapter is focused on issues regarding

terrain deformation and presents our contributions. Our first contribution is an

algorithmic specification and formalization of the process for terrain deformation that is

120

independent of the simulation model. Secondly, we propose an original deformation

technique that uses render-to-texture and the programmable graphics pipeline to deform

the terrain in real-time. Since the technique adheres to the process specification we

identified, it can be implemented to simulate either a Physics-based or an Appearance-

based model. The solutions we propose contribute to improving the design and

development of a dynamic terrain system that can achieve greater realism in a real-time,

interactive visual system.

4.1 Dynamic Extension to Resolution

Terrain meshes are comprised of a finite set of interconnected data points that

create a discrete representation of a continuous surface. As with any digital sampling, the

analog to digital conversion suffers from lossiness. The problem for terrain elevation

sampling is the possibility for excluding local maxima and minima that occur between

elevation samples. For RGN meshes, the loss is proportional to the distance between grid

points in the network. In order to reduce lossiness, the elevation data sampling must

occur more frequently, which increases the dataset size. As the size increases, the need to

process and render the dataset impacts runtime performance. Obviously, the conflict of

interest between limiting the dataset size and faithfully representing the terrain surface

must be overcome.

A fundamental goal when modeling the mesh is to use a sampling interval that

limits lossiness, but does not overcompensate and generate an excessively large data set.

For static terrain solutions, the generated mesh should be an optimal representation of the

terrain with an ideal resolution. Unlike static terrains, the optimal resolution of the mesh

may not be absolute for dynamic terrain systems. At runtime, a dynamic terrain is

121

expected to react to imposing forces by meaningfully displacing vertices; however, a

problem occurs if the object imposing the force does not intersect with one or more

vertices of the terrain mesh. Under these circumstances, no vertex displacement can

occur, indirectly making the deformation strategy inoperative and ineffective.

Systems susceptible to the failure of the deformation strategy may employ a

Dynamic Extension to Resolution method to compensate for the shortcoming. Dynamic

Extension to Resolution (DEXTER) is a generic term for increasing the resolution of a

mesh beyond its original, maximum resolution [30]. The original work on DEXTER only

presented implementation details specifically designated for Hierarchical Bin-Trees, like

ROAM. Hierarchical Bin-Trees guarantee that the lowest common polygonal shape is the

right triangle and emphasize its recursive subdivision nature. These facts were exploited

in the Dynamic Extension to ROAM [65], which went against standard protocol by

enabling the runtime to recursively subdivide triangles beyond the prefixed resolution of

the original input mesh. The technique allows the mesh resolution to be dynamically

increased in areas that require greater mesh density, while other areas remain unaffected.

The irregular density of the mesh limits additional memory consumption at runtime in an

intelligent manner. However, the specific technique is an extension to ROAM, which is a

suboptimal continuous level of detail algorithm as pointed out in Section 3.4.4. In

general, Hierarchical Bin-Trees are an antiquated approach and, therefore, the Dynamic

Extension to ROAM is a misdirected supplement.

4.2 Dynamically Divisible Regions

Rather than focus on a single solution, such as ROAM, Dynamic Divisible

Regions (DDR) are a generalized construct for Dynamic Extension to ROAM that can be

122

specialized to work with a variety of multi-resolution strategies. Specifically, a Dynamic

Divisible Region is a subdivision surface specification for terrain visualization.

Functionally, a DDR is used to increase the resolution of a region within the terrain mesh

and, as a result, it must interweave seamlessly with the chosen level of detail strategy. For

RGN meshes, a region is defined along either a right triangle or quadrilateral boundary

that contains one or more polygons in its interior. In the case of ROAM and other

Hierarchical Bin-Tree methods, a region is analogous to the smallest geometric unit, a

single right triangle. For other algorithms, a region may be defined by a group of

polygons. In the case of a Tiled Block solution, a region is a single tile represented by a

set of)1()1(+×+ nn rectilinear vertices that form a rectangular area composed of

nn × quadrilateral polygons. In both cases, the Dynamically Divisible Region is a limited

area of the terrain, and its regular polygonal shape can be algorithmically subdivided to

offer higher resolution.

Dynamically Divisible Regions are formed from sets of polygons that use a

subdivision scheme to provide the extension to resolution as specified in DEXTER. The

benefit of using Dynamically Divisible Regions is in their potential for parallelizing the

subdivision process in two distinct ways. The first parallelization is achievable by

subdividing two distinct regions at the same time, as long as there are no intersections

between regions. The second possibility is to parallelize the geometry of a region by

subdividing the polygons within a single region in parallel, which is well-suited for

machine architectures that include multiple CPUs, multi-core CPUs, or a GPU. These

two parallelization methods are not exclusive and can be coordinated to create extremely

parallel software architectures.

123

The use of Dynamically Divisible Regions is not without consequence. The issue

faced when extending mesh resolution is the potential for excess memory consumption.

For Dynamically Divisible Regions, increasing the resolution of a region is done

uniformly. In the worst case, where the entire set polygons describing the terrain surface

is defined by a single region, the subdivision process will execute across the entire

surface and unnecessarily generate an excess of geometry. In the case of extending

regions defined by a single polygon, subdividing an individual polygon limits extensional

geometry to regions that explicitly request increased resolution. Simultaneously, the

performance will be impacted because the process is invoked more frequently and

parallelization is minimized. The goal becomes finding an acceptable balance that limits

memory consumption and offers a reasonable opportunity for parallelization. However,

the acceptable levels for each are largely dependent on application requirements and

available system hardware.

4.2.1 Description

Dynamically Divisible Regions are characterized by their ability to be refined

from a coarser, lower-resolution mesh into a higher density one. Increasing the resolution

of the mesh is useful for two reasons. The first reason to increase mesh resolution is to

provide a higher quality visual presentation of the region to the user. It is possible to

augment the subdivision scheme with a synthesis strategy that adds fine grain details to

improve the visual fidelity of the region. The second reason for refining a region is for

the purpose of terrain deformation. The quality of the surface deformation is closely

related to the resolution of the mesh being deformed; particularly, in cases where the

deformation is intended to simulate visual interaction between two objects. Visually

124

simulating the influence of an object on a soft terrain surface is exemplary of this

situation. As mesh density increases, the deformation can more accurately represent the

form of current and residual displacements occurring from interpenetration. As

previously mentioned, increasing the mesh resolution leads to more memory

consumption and use of processing resources, which can negatively impact performance.

Dynamically Divisible Regions are a generalized construct for offering improved

resolution at runtime. In terrain visualization, a terrain mesh is defined by a set of

polygons. Initially, the input mesh data describing the surface presents a fixed maximum

resolution. Dynamically Divisible Regions allow the runtime system to increase the

resolution beyond its initial offering. Resolution is increased by subdividing the regional

interior at runtime. Subdividing the region generates a higher resolution mesh that affords

greater detail to the viewer and the ability to provide better reflectance of object-surface

interaction.

The dimension and polygon count of a region is specified by the system and is

closely related to integrated techniques for spatial partitioning and level of detail. In some

systems, a region may be the entire terrain, while in others a terrain will be composed of

multiple regions. In the case of a terrain decomposed into multiple regions, it may be

necessary to incorporate compensatory actions in the level of detail method to prevent

cracks between neighboring regions. A region is decomposable into one or more

polygons. For each region, the subdivision process is enacted upon all of its polygons.

For regions with one polygon, like ROAM, only one subdivision occurs per region, and

cracking is natively prevented by the ROAM algorithm. For regions composed of many

125

polygons, like Geomipmapping, the subdivision process executes many times in a single

region and cracking between neighbor regions will necessitate ancillary actions.

A terrain mesh is described by a set of data points that form a continuous surface.

The data points are interconnected to create a representational polygon mesh. A region is

a subarea of the terrain; therefore, a region is a subset of data points and connectivity

information that defines one or more polygons. Since any polygon can be triangulated, a

region can be decomposed into the set of triangles that define its surface. In addition, a

triangle can be further refined by subdividing it into a set of lesser triangles.

Consequently, the resolution of a region can be increased by subdividing its triangulation

using a common technique.

Different mesh types encourage the use of specific subdivision strategies, which is

practical knowledge when defining the subdivision process for extending mesh

resolution. Terrain meshes are modeled as either a Triangulated Irregular Network or a

Regular Grid Network. An RGN mesh guarantees the triangles are right triangles,

whereas a TIN does not. While in some systems, the primitive polygonal type associated

with a region is a triangle, others may prefer to use a rectangle. Both primitive types are

valid because they can be subdivided algorithmically to produce self-similar polygons.

4.2.2 Irregular Triangles

A TIN mesh is composed of irregular, or unregulated, triangles that define the

surface of the terrain. In order to extend the surface resolution of a region, it is necessary

to triangulate the encompassed area. The triangulation of the area is not guaranteed to

produce triangles that adhere to any set of rules defining similarity or likeness; therefore,

the extension subdivision scheme must handle the most general case. Hence, all triangles

126

must be treated individually and care must be taken to prevent the introduction of errant

discontinuities at neighboring edges. Technique 1 provides one possible subdivision

scheme for triangles of a TIN that prevents edge discontinuity and cracks between

neighboring triangles. The technique is based on the rudimentary mathematical approach

for finding the centroid of a triangle, which achieves the desired results.

Input: Triangle ABC∆

1. Compute centroid G of ABC∆ :

3

xxx

x

CBA
G

++
= ,

3

yyy

y

CBA
G

++
= ,

3

zzz

z

CBA
G

++
=

2. Add new ABG∆ to triangle list.

3. Add new BCG∆ to triangle list.

4. Add new ACG∆ to triangle list.

�

�

�

�

Technique 1: Subdivision technique for an irregular triangle.

4.2.3 Polygonal Subdivision of a Regular Grid Network

Regular Grid Networks impose greater demands on the subdivision strategy

employed for Dynamically Divisible Regions. Subdividing an RGN mesh must produce

geometry that maintains the rectilinear structure of the data. The requirement ensures that

other methods, such as a multi-resolution strategy, are valid for use with the newly

acquired geometry. Fortunately, the data layout is ideally suited for meeting the

requirement when subdividing the triangulated mesh, because a rectilinear grid can be

decomposed into right triangles or rectangles. Right triangles offer the greatest control

over the amount of newly generated geometry, but generate polygons at a ratio of 2:1 .

On the other hand, rectangles split at a ratio of 4:1 , which can make them

computationally faster, but also offers less control. Lastly, in this discussion a tile is the

term used to represent a collection of polygons that can be subdivided at a ratio

127

of 4,:1 >xx . Tiles achieve improved performance at the cost of excess memory

consumption as ∞→x .

4.2.3.1 Right Triangles

RGN meshes use a rectilinear grid of elevation data that guarantees the entire

mesh can be triangulated into right triangles. Right triangles are subject to a number of

special optimizations that can be exploited in the subdivision scheme. One common

method for subdividing a right triangle in terrain visualization is the longest edge

bisection, which generates two new right triangles for each triangle subdivided

(Technique 2). This approach is the fundamental operation of the Binary Triangle Tree

used in ROAM [28]. Bisecting a right triangle along the longest-edge produces two self-

similar right triangles that are subject to further subdivision using the same procedure.

Most often the process is driven recursively and the stop condition is met by reaching a

predetermined granularity or depth. A region composed of many right triangles will

conduct the procedure multiple times, once for each triangle within its bounds. Longest-

edge bisection is the fundamental operation of the ROAM algorithm’s Binary Triangle

Tree data structure and, consequently, it is used by the Dynamic Extension to ROAM.

Input: Right Triangle ABC∆

1. Compute the midpoint M of the hypotenuse BC .

2

xx

x

CB
M

+
= ,

2

yy

y

CB
M

+
= ,

2

zz

z

CB
M

+
=

2. Add new ABM∆ to triangle list.

3. Add new AMC∆ to triangle list

�

�

�

�

Technique 2: Subdivision technique for a right triangle.

128

4.2.3.2 Rectangles

In some systems, it is preferred to regard two right triangles in unison as a single

rectangular polygon, such as in the Block-based Quad Tree used in [27, 44]. As a result,

the subdivision scheme for polygonal interior can be defined in terms of a rectangle.

There are a multitude of subdivision algorithms for rectangular polygons that will suffice

for the purpose of extension to resolution. One approach would be to subdivide the

rectangle into two right triangles that are subsequently subdivided using one of the

previously mentioned approaches. Alternatively, a rectangle can be subdivided into a set

of self-similar rectangular quadrants (Technique 3). Subdivision of the rectangle using

this approach allows for batch processing and polygon generation, which can reduce

overall workload by reusing shared computations. The rectangular subdivision approach

was used in a Dynamic Extension to the Block-based Quad Tree [30].

Input: Rectangle ABCD

1. Compute the midpoint W of AB .

2. Compute the midpoint X of CA .

3. Compute the midpoint Y of CD .

4. Compute the midpoint Z of AD .

5. Compute the centroid M of ABCD .

6. Add new rectangle AWMZ to polygon list.

7. Add new rectangle BXMW to polygon list.

8. Add new rectangle CYMX to polygon list.

9. Add new rectangle DZMY to polygon list.

Technique 3: Subdivision technique for a rectangular polygon.

4.2.3.3 Tiles (Rectilinear Grids)

Many terrain systems operate on batches of polygons in their multi-resolution

strategy. For the purpose of this discussion, a tile is regarded as a subset of a rectilinear

grid data that describes a subregion of the terrain surface. Tiles are defined by a nm ×

129

rectilinear grid of elevation points, where 2,2 ≥≥ nm . The elevation set maps to a

nm ′×′ set of adjacent rectangles, where)1(),1(−=′−=′ nnmm . Each of these rectangles

can be subdivided to produce a new tessellation for its interior area. Subdividing all of the

rectangles within a tile generates a higher resolution for tile as a whole. In fact, the

subdivision process may be defined as a derivative process that executes the rectangular

subdivision scheme multiple times in parallel.

Unlike geometry that can be split independently, tiles are composed of a group of

polygons that share edge vertices. As a result, the subdivision process must ensure

continuity is preserved. In addition, the tile must be subdivided in a manner that

maintains the characteristics of its internal rectilinear structure so that the data is

consistent and compatible with the system’s concurrently employed algorithms relying on

the rectilinear nature of the data. Maintaining the structure and continuity allows the

process to be applied recursively without concern for special cases.

Recursive refinement of a tile offers improved performance because a region can

be subdivided using fewer operations than independently subdividing the region on a per-

polygon basis. In Technique 4, vertices)}3,4(),4,3(),2,3(),3,2{(are shared between

adjacent tiles and need to be computed and stored once. In this manner, subdividing a tile

offers greater performance by optimizing parallelized execution as the dimensions of the

tile are increased. However, the trade-off is the potential for producing geometry in

excess of what is required. Unnecessary geometry results from the uniform subdivision

across a tile’s internal area. As either m or n increase, the potential for generating

excess geometry increases because the amount of geometry produced is directly

proportional to the dimensions of the tile. There is an obvious conflict of interest and,

130

therefore, it is necessary to find a suitable dimension definition that maximizes

performance while limiting the total geometry produced.

�

-

.

� - .

�

-

.

� - .

�

.

/

� - . 0 /

-

0

Input: Tile (A rectilinear grid of elevation points).

For each set of 4 adjacent vertices in the input tile:

1. Compute the midpoint between horizontally adjacent vertices.

2. Compute the midpoint between vertically adjacent vertices.

3. Compute the centroid of the rectangular region.

4. Add the four newly generated rectangles to the polygon list.

Technique 4: Subdivision technique for a tile.

4.2.4 Hardware Considerations

Technically, for many Dynamically Divisible Regions the subdivision technique

can be engineered to execute on the CPU or the GPU. Unlike other runtime terrain

system features, such as collision detection, it is understood that the subdivision process

is executed with discretion and will execute a limited number of times. Subdivision is

performed until a maximum resolution is attained that is suitable for deformation under

the impact of all relevant objects in the scene. In fact, the number of subdivisions tends to

be relatively low in a single region and is unlikely to occur every frame. Therefore, the

subdivision process only has the potential to impede performance on occasion. Deciding

which hardware component should handle the subdivision task is a non-negligible task,

but the justification for one over the other is not always straightforward.

131

A terrain mesh is decomposable into a set of geometric primitives that can be

subdivided recursively. Dynamically Divisible Regions can exploit this property to

extend the resolution of the terrain mesh. For simple geometric primitives, like triangles

and rectangles, the computational cost for subdividing a single polygon is low.

Comparatively, the computational cost of subdividing a region composed of many

polygons is high. In all cases, it possible to devise subdivision algorithms that execute on

the CPU or the GPU. All of the algorithms for subdividing geometric entities presented

thus far are portable to the GPU; however, not all of them are appropriate. In the case of

general triangles and right triangles, the runtime cost in data setup, transfer, and read

back is not compensated by porting the single polygon subdivision process to the GPU.

On the other hand, subdividing a region composed of multiple polygons, like tiles, may

benefit from porting. The decision of which hardware facility to use is dependent on the

regional composition, the subdivision technique, and the hardware resource availability.

The generation of geometry resulting from a dynamic extension to resolution

method can contribute to improved visual quality when deforming the surface of a

dynamic terrain. In many cases, algorithms for dynamically subdividing a DDR that can

be executed on the CPU can be finagled to run on the GPU. For simple regions composed

of a simple, singular polygon, the CPU is suitable. However, in the case of regions

consisting of multiple polygons, like tiles, porting to the GPU offers the advantage of

executing on a parallel architecture when generating the new elevation data. In such

situations, executing the solution on the GPU may prove to be more expeditious and

efficient. Unfortunately, the gains taken from porting subdivision from the CPU to the

GPU are limited due to the nature of the problem. Since the dynamic process is not called

132

consistently and, in practice, is executed a limited number of times, the impact of these

techniques to affect performance is restricted. Even still, porting to the GPU will

contribute towards reducing CPU workload when the subdivision process is called, which

promotes greater consistency and stability for the runtime.

4.2.5 Subdividing Tiles on the GPU

Tiles are well-suited for subdivision using the GPU. A tile is a subset of

rectilinear elevation data that represents a subarea of the total terrain mesh. The locally

maintained geometry is subject to subdivision in situations that require a dynamic

extension to resolution. The subdivision process must produce a tessellation of higher

resolution that maintains the rectilinear structure. The single CPU version of the

algorithm described by Technique 4 accomplishes regional subdivision through a

multiphase approach that computes the midpoints for the horizontal neighbors, calculates

midpoints for the vertical neighbors, and determines the centroid for each interior

rectangle. The sequential execution of a single processing pipeline impedes performance,

because these computations could be executed in parallel. The parallel processing

architecture of the modern GPU can be used to exploit this option, which can benefit

runtime performance.

Specialization of the subdivision process for tiles is necessary, in order to take

advantage of the GPU. The following algorithm describes how the GPU can be used to

execute the subdivision process for converting a nm × tile to a higher resolution

nm ′×′ tile.

1. Encode the nm × tile of elevation values as a nm × texture. Elevation data stored

in a regular grid can be mapped from 3D space to 2D image space through

straightforward encoding. Assuming y is the elevation sample, each

vertex),,(zyx in 3D space, can be encoded by normalizing the y value, if

133

needed, and storing it in the pixel located at),(zx in the image plane. The end

result is a nm × texture suitable for use by the GPU.

2. Load the texture into video memory. With the elevation data in a suitable format,

the nm × texture must be physically transferred to the video memory of graphics

hardware.

3. Render the texture to a screen- spaced quadrilateral, with a nm ′×′ viewport.

Prior to rendering, the viewport and rendering properties must be configured

appropriately. In order to change the resolution from nm × to nm ′×′ , the

viewport is defined to be nm ′×′ and the perspective set up as orthographic. Once

the configuration is set, a screen-spaced quad that reaches to the extents of the

viewport is drawn using the encoded elevation data as its texture map. When the

quad is drawn the fragment processor computes the interpolated values for

missing texture coordinates using a linear image filter or through a fragment

program. Upon completion, the render target stores the sample set that represents

the region at a nm ′×′ resolution, albeit encoded.

4. Read the nm ′×′ render target back into main memory. With the newly computed

elevation values ready, the encoded nm ′×′ texture is read back into system

memory by accessing the render target.

5. Decode the nm ′×′ texture into a nm ′×′ tile of elevation values. Through an

inverse transformation, the nm ′×′ texture is decoded into a nm ′×′ set of

elevation data. In the case where y is the pixel value, each pixel in image space

located at),(zx can be decoded by rescaling the y value and storing it as a unique

),,(zyx value in the vertex data set.

The process presented performs the same duties and offers the same functionality

as the algorithm described in Technique 4; however, the entire process is executed using

the GPU. Figure16 shows an aerial view of an input mesh at a fixed resolution. Figure 17

shows the same mesh after it has been retessellated to a higher resolution using

Technique 4 on the GPU. Unlike the CPU approach, the GPU method can be used to

resample the elevation data for the purpose of increasing or decreasing resolution,

without further specialization. The key in sampling via the GPU is the transformation of

data from 3D space to 2D image space. In image space, the problem is equivalent to

stretching a texture, which the hardware is readily capable to do without intervention.

134

The inverse transformation restores the encoded 2D image data back into its 3D

counterpart, except the region’s resolution is changed. The primary bottleneck in the

process is the transference of data from system memory to video memory and back. If the

latency of transfer time is outweighed by the performance gain from porting, the method

is optimal. The gain in performance is proportional to the number of polygons contained

by a region, because of the potential for exploiting the parallelism of the GPU. In

addition, the latency times should decrease as graphics hardware improves, which makes

the GPU port a stronger candidate in the long term.

Figure 16 The input mesh.

The original input mm 3333 × terrain with m0.1 posts.

135

Figure 17 The dynamically divided mesh.

The mm 3333 × terrain after the dynamic subdivision process with m25.0 posts.

Dynamically Divisible Regions are a specialization of subdivision surfaces for

terrain meshes that offer runtime extension to mesh resolution. Terrain meshes can be

decomposed into subregions defined by one or more polygons that form a continuous

surface. Each region that is a Dynamically Divisible Region can be extended to provide

an increase to the resolution for its area of coverage. A Dynamically Divisible Region is a

practical solution for terrain systems that require runtime compensatory actions for

improving the mesh resolution. Regionally-contained polygons are subdivided in

accordance with an algorithm that generates additional data points to achieve higher

136

detail. Since all polygonal meshes can be triangulated, the challenge becomes selecting

the best subdivision technique to use and which hardware should undertake the task.

4.3 Terrain Dynamism

Dynamic terrain is most notably characterized by an interactive, deformable

surface. In order to modify the surface, it is necessary to incorporate a runtime

deformation strategy within the terrain visualization solution. For many topics in

Computer Graphics surface deformation can be defined in terms of a mathematical

function; however, in the case of terrain visualization, surface deformation is a reactive

response to the simulated force imposed by other objects in the scene. The majority of

research on deformation strategies in dynamic terrain visualization focuses on the

underlying simulation model that computes the redistribution of displacements occurring

after initial vertex movement. Physics-based approaches, like [54] and [55], direct the

movement by applying physically-inspired rules to create a convincing virtualization of

surface interactivity. Appearance-based methods, such as [56] and [58], use invented

parameterization sets that simplify calculations at the cost of computational accuracy, but

produce a reasonably convincing simulation. However, for our purposes, the rules for

distributing the vertices based on a simulation model do not qualify as a complete

deformation strategy.

4.3.1 Deformation and Rendering

Ideally, terrain deformation would be defined according to the laws of Soil

Mechanics, allowing both the simulation and visualization systems to imitate the real

world perfectly. Unfortunately, current computational power prevents the ideal from

becoming a reality. Therefore, partial simulations models or fabricated algorithms are

137

adopted to provide reasonably convincing imitations. Different simulation systems are

tolerant to different levels of complexity and exactness in the visualization of terrain

changes. Although they both work towards a similar goal, physics-based methods are

more computationally correct but slower, while appearance-based methods can achieve

visually-acceptable, inaccurate results at a much lower computational cost. Both

approaches share the same goal, but with different emphases. In response, this research

originates a loosely-specified algorithmic approach that supports either driving factor:

computational correctness or performance. The technique is flexible enough to allow for

various instantiations to be specified and to be developed independently, but also offers

enough commonality that comparative analysis is possible. The technique can be

described by the following four stages:

1. Determine the initial displacements for terrain vertices, as moved by the imposing

object during the current frame.

2. Redistribute the displacement offsets in accordance with the soil simulation

model.

3. Update the periphery vertex attribute data affected by the deformation.

4. Process and render the (deformed) terrain mesh.

The first stage attempts to compute the incrementally displaced vertex position as

it is changed by forces currently imposed. The second stage is the analogous to steps in

physics-based and appearance-based methods, which attempt to define a compensatory

process that imitates the visual, if not physical, characteristics of Soil Mechanics. The

third stage is an intermediate step of the deformation process that is used to ensure

peripheral data associated with vertices remain consistent with the recently altered

138

topography. Lastly, the terrain mesh is processed and rendered to screen, which presents

the deformed terrain to the observer.

4.3.2 Overview

The four phase approach for dynamic terrain is a complete solution for the

specification and development of deformation techniques in dynamic terrain. Although

specified in general terms, each phase explicitly identifies the necessary tasks for

deforming the terrain surface.

In essence, the first two steps of the technique are the simulation system that is

used to deform the terrain. Computing the initial vertex offsets and the subsequent

redistribution is functionally descriptive enough for identify deformation routines of

varying complexity, but is done without instilling constraints or restrictions about the

technique. For instance, both the physics-based method found in [55] and the

appearance-based method presented by [56] employ a multi-step process that accounts

for displacement and redistribution. It is conceivable that any deformation model can be

defined in terms of these two actions. As such, it becomes possible to identify

compatibilities and differences between methods through the generalization.

Generalizing the deformation process distinguishes it from the implementation.

Deformation techniques that are overly complex or offer poor performance will

discourage the use of a dynamic terrain solution. The computational cost incurred is

determined by the algorithmic design and implementation of the deformation strategy. In

addition, there are a wide variety of possible solutions under this specification; ranging

from highly-complex physics simulation to quick-and-dirty approximations. Unlike a

specific technique, the general strategy affords flexibility that can be exercised when

139

evaluating what’s acceptable in terms of speed and computational accuracy.

Consequently, it is possible to defer the decision regarding precision to meet the needs of

the system without inadvertently discouraging its inclusion.

4.3.3 Displacement Computation

Terrain modeling produces a terrain mesh composed of an initial configuration of

vertices, edge-connectivity data, and vertex attributes. The position of the vertex is the

most noticeable component of the terrain’s surface description. When deforming the

surface, the vertex position is altered to make known interaction between the terrain and

any objects imposing force on the surface at contact points. In order to simulate

interaction between a terrain and an object, it is necessary to offset vertices contacted by

the object. Specifically, offsets for each affected vertex must be computed to eliminate

any visual anomalies where an object interpenetrates the terrain when a deformation

should occur. Offset values are assigned in accordance with the Motion Control model to

prevent errant vertex displacement. For instance, heightfield-based systems will employ a

constrained motion control agent that limits the displacement to the elevation only.

Limiting changes to vertical offsets prevents movement of vertices in the direction of the

ground plane, which serves to preserve the rectilinear structure of the data source.

Intentionally, the initial offset of the vertex simulates the compression of the terrain. For

many soft surfaces, compression is the most prevalent alteration resulting from

interactivity.

4.3.4 Displacement Redistribution

Although simulating the compression exclusively is an option, redistributing the

displacement values is preferable for simulating many soil compositions that are subject

140

to local avalanches. Local avalanches occur when the shears stress from a steep incline

overcomes the shear strength and the soil travels down the failure plane until it settles in a

stable state. Clayey soils have a high cohesion factor that can overcome the inclination of

the soil to crumble in on its self; however, many other soil types can not. After

compression, the ridgeline of loose, granular soil types around the impact area will

experience localized avalanches that remain active until stabilization between the shear

strength and shear stress is reached. At the same time, on the interior of the impact area,

some soil compositions may partially decompress once the compaction force is removed.

In order to simulate surface dynamics in addition to compression, it is necessary to enact

a second simulation step that processes the surface using a soil simulation model. The

secondary activity affords the simulation an opportunity to refine the topographical

distribution of displacement values for the purpose of accurately reflecting the simulated

soil composition. For a number of systems, the redistribution process is the main

contributor to the visual system for implicitly conveying the soil composition and

makeup.

4.3.5 Vertex Attribute Maintenance

Once the topography for a frame is established, it may be necessary to perform

maintenance on vertex attributes and periphery data. Often, vertex data has locally

associated information that contributes to the final surface appearance in the rendered

image. There is potential for the pronouncement of visual artifacts when these attributes

are not properly updated against the current surface configuration. Vertices are fixed in

static terrain systems and, therefore, the data associated to a vertex does not necessitate

dynamic runtime maintenance. Deforming a surface allows vertices to change during

141

program execution and may, therefore, require additional processing to coordinate the

data associated to a vertex as it changes. Consequently, additional processing resources

must be allocated to ensure that periphery data coincides with the surface as it changes

during program execution.

Examples of relevant vertex attributes include normals, texture coordinates, and

colors. Deforming the surface may result in the need to recompute vertex normals, for the

purpose of lighting calculations. Texture coordinates may need to be modified to mitigate

the appearance of visual artifacts on revised polygons. Vertex colors can be modified in

creative ways that offer visual cues or compensations to an observer. Logically, any data

associated to displaced vertices may require maintenance routines to coordinate the local

changes with the overarching surface deformation.

4.3.6 Final Processing and Render

As a final step, it is necessary to process the terrain data and render the image to

the output device. During this phase, the runtime implementations for Modeling,

Rendering, and Animation techniques, as required by the application, are subject to

invocation. Spatial partitioning will limit the total set of geometry submitted for

processing. Level of detail will further refine the geometry, while Geomorphing

compensates for popping. The application of textures, shading, and atmosphere are used

to improve the detail of the terrain. Out of this process, the final image of the interactive,

deformable terrain is generated and sent to the output device.

The aforementioned process provides the high level overview of what is executed

during the simulation and visualization of a dynamic terrain solution. Each frame, the

four-stage process is executed by following the same sequence: compute the compression

142

displacements, redistribute the displacements, update the vertex attributes, and process-

and-render the terrain dataset. In this manner, the terrain is managed each frame and

terrain dynamism is achieved in real-time.

4.4 Terrain Dynamism on the GPU

In an effort to improve the field, it is necessary to evolve dynamic terrain by

developing better algorithms that limit the overhead associated with dynamism. The

primary source of overhead stems from computing the initial offsets and redistributing

the displacements. These tasks are central to dynamic terrain visualization, but the

computational complexity incurred in the implementation deters the overall attractiveness

of such solutions. Reducing the assumed overhead by offloading additional work onto the

GPU is a good recourse that alleviates the burden and improves the appeal of a dynamic

terrain solution.

When an object imposes force onto the surface of a terrain, the terrain exerts a

force of its own in the opposite direction. If the force exerted by the terrain succumbs to

the force exerted on the terrain, the topology will change. It is the job of the Application

Logic in the main application system to implement the simulation models for objects in

the scene. As such, the Application Logic component bares the burden of calculating the

orientation of its associated objects with respect to the terrain. In this manner, the

simulation model of an object can be coupled to the object, independent of the terrain

system. After the simulation model has determined the orientation and position of the

objects in the scene, one or more objects may interpenetrate the terrain surface. Even

though the simulation model is running correctly, the visual model will suffer from

lessened realism because it does not accurately reflect surface interactivity. In order to

143

remedy this situation, it is necessary to deform the terrain in a convincing manner where

the visual presentation accurately imitates real world terrain interaction.

Surface deformation occurs when an object in the scene imposes a force on the

terrain that necessitates the simulation of terrestrial responsiveness. The overview for

dynamic runtime deformation provides a high level guideline in the development of a

terrain deformation technique. A number of techniques for terrain deformation are

possible; however, not all are ideally suited for the task. Many proposed solutions are

incomplete because they concentrate solely on the redistribution process. In addition, the

known solutions do not attempt to make explicit use of graphics hardware. The following

presents a novel technique for realistic terrain deformation that makes excellent use of the

GPU as the means for reducing computational overhead incurred from using the

technique.

4.4.1 Displacement Computation

The first task in deforming a terrain surface is the computation of the initial

offsets occurring from soil compression. In this solution, compression occurs as a

reactive measure wherever an object penetrates the surface. The computed offset is a

value associated to a vertex that, when applied, displaces the vertex position to a location

that eliminates the object-terrain surface interpenetration. In most cases, the presence of

an object will invoke displacements for multiple vertices each frame. Calculating the

offset is a per-vertex operation that has the potential to greatly impact performance.

Nonetheless, through the application of compression to each vertex, the surface appears

to conform under the simulated force of the object.

144

In order to alleviate the CPU from an excessive workload, the computation of

compression offsets can be offloaded to the GPU. In order to use the GPU, the elevation

data must be in a format useable by the GPU. The rectilinear layout of elevation data of

an RGN mesh is suitable for use by the GPU, but to be accessible the application must

prepare the render state and uploading the data to video memory.

The first step for uploading the data is to configure the rendering state. The

configuration of the scene is as follows:

1. Configure the render target as a depth-buffer render target.

2. Configure the rendering system to use an orthographic projection.

3. Configure the viewport to a nm × area of the render target.

4. Translate the viewing position to the center of the nm × region where the object

causing interpenetration is located.

5. Lower the eye point below the lowest elevation point of the region.

6. Rotate the viewing direction to be perpendicular to the ground plane.

Although the preparation of the render state is used by a number of subsequent

steps, the perspective view and application’s camera state must be preserved for the final

processing phase. Specifying the render state and configuring the camera in this manner

encapsulates the region of interest in the viewing volume of an orthographic projection

(Figure 18). This setup allows the object and the terrain to be rendered from underneath

the terrain, looking upwards, while the depth buffer specification is used for computing

the compression displacement values. The result of preparation is a windowed view of

the terrain centered about the area of interest that makes data transformation and

operation on the GPU possible.

145

Figure 18 Camera state for deforming the terrain on the GPU.

After configuring the camera, the elevation data must be transformed from the

system memory format to one that the GPU can use. A transformation process can be

used to encode the elevation data of a rectilinear region into a nm × texture called a

Dynamically Displaced Height Map (DDHM). The transformation process is used to

encode the data and transmits it from system memory to texture memory. If the range of

elevation data in the mesh region is not][1,0 , then the values will need to be normalized.

Inversely, a scaling factor can be applied to a normalized data set in the vertex processor

to decode the true elevation value of the vertices. The vertex),,(zyx in 3D space is

encoded into a 2D image space by mapping the elevation value into the),(zx ′′ pixel

location, where),(
n

z
z

m

x
x =′=′ (Figure 19). Once encoded, the elevation data is

uploaded from system memory into texture memory, where it is accessible by the

graphics processor. The transformation process only needs to be executed when the

encoded texture for a region is not resident in texture memory. All subsequent processes

that access the elevation data can be specified read-only, which will preserve validity for

future iterations of the algorithm. Upon completion of the transference, the region’s

146

geometric description is appropriate for use by the GPU, both in terms of format and

physical storage medium.

����������	�

�
��

��

����

Figure 19 Mapping elevation data into the render target.

After the render state is configured appropriately and the geometry for region-of-

interest is available in texture memory, it is possible to compute the initial offsets induced

by surface compression using the GPU. The first step in computing the compression

offsets requires the terrain data be decoded from the texture and stored in the render

target that is replicating functionality of the depth buffer. By rendering the elevation data

decoded from the texture, the render target retains the region’s elevation data from the

perspective of below the surface. Next the object or objects that are within the bounds of

the region are processed and the depth buffer functionality afforded by the render target is

used to determine surface visibility. In this manner, the object geometry that is closer to

the camera than the terrain elevation will be handled by the fragment processor (Figure

20). With the camera below the lowest elevation point of the terrain, only the vertices

correlated to object geometry that is penetrating the terrain surface are processed. In

addition, each fragment processed in the render target corresponds to exactly one vertex

in the nm × region. The depth buffer is used to compute the compression offset for each

vertex that is being compressed by an object. As each fragment in the render target is

147

processed, the actual compression offset is computed by the fragment program. The

displacement value is stored into a second nm × render target called the Offset Map.

Each pixel in the Offset Map has a one-to-one mapping to the vertices in the nm ×

DDHM, which also corresponds to the nm × dimensions of the input region. The

generation of the Offset Map uses the parallelized fragment processor to quickly and

efficiently calculate the compression offset of each vertex. The parallel computation of

vertex offsets contrasts the slower CPU-based method that relies on sequential vertex

processing. With this approach, the offsets are expeditiously calculated on the GPU,

leaving the CPU free to handle other processing tasks.

���
�������������

����

����

����������	�

Figure 20 Recording displacement values into the Offset Map.

Darkened arrow heads correspond to visible object surfaces that are recorded into the

Offset Map. Hollowed arrow heads are discarded since the terrain mesh occludes the

object and no penetration or compression is present.

4.4.2 Displacement Redistribution

Upon completion of the first task, the Offset Map stores normalized compression

offset values for vertices displaced under the compaction of an object. The Offset Map is

a persistent record of object penetration imposed on the regional surface over time. The

deformation recorded in the first step is a mirrored-impression of the object, which is

148

ideal for highly cohesive soil compositions that retain form, like clay and mud. For other

soil types, including granular soils, it is necessary to perform a compensatory

redistributive process because the stability of the soil would not retain the compacted

impression.

As with computing the offsets, it is possible to offload the redistribution process

onto the GPU; once again, alleviating the CPU from assuming the additional

computational workload. In order to make use of the GPU, the redistribution process

requires that the Offset Map be located in texture memory. In the preceding step, the

Offset Map for a nm × region was generated by operating on a nm × render target. If the

preceding steps use a render-to-texture, then the Offset Map is already present in texture

memory. In addition, the same camera configuration, render state, and the vertex list are

reusable for the purpose of the redistribution step. As a result, redistribution carries

minimal overhead and integrates seamlessly with the first stage as presented.

Redistributing the offset values on the GPU is a straightforward task because the

preparatory work for the process is already done. The strategy is to render the Offset Map

into a second nm × render target and, while rendering, the fragment processor is used to

resample the offsets. Initially, the Offset Map is maintained as a 2D image in texture

memory. Using the render state and mesh vertices for the region being deformed, the

Offset Map is drawn to a nm × render target. In some cases, it may be preferable to

render the object and not the region in order to limit the amount of processing

undertaken. In both cases, each fragment in the render target maps to exactly one vertex

in the DDHM and the Offset Map. The initial displacement value for each vertex is read

from the Offset Map, which shares a common),(vu coordinate with the DDHM. In

149

addition, samples can be read from neighboring values to compute a less rigid formation

through the application of inventive filters. The sequence of lookups and blending is

particular to the implementation and can range from highly complex to obviously simple.

Physics-based soil simulations can use the fragment processor to compute the shear

strengths and shear stresses in order to determine the physically-correct distribution of

soil across the area. Appearance-based solutions can use simple weighted averages or

other image filters to blend the surface, thereby lessening the rigidity produced by the

compression calculation. In either case, the nm × render target output from the filtering

process supersedes the input Offset Map and becomes the current Offset Map for the

region.

The redistribution of compression offsets allows the surface to react in a dynamic

manner that affords greater visual realism. In addition to the clay-like soils that can be

simulated otherwise, filtering makes it possible to simulate granular soils compositions.

The redistributive process described makes use of the GPU in a simple and

straightforward manner. The technique presented is analogous to the practice of image

filtering using the GPU. Rather than focus on a specific process, the proposed strategy is

presented in a generic manner. The intent is to dissuade the reader from thinking in terms

of physics-based and appearance-based simulation solutions, because these are

implementation dependent issues. With this technique, it is possible to devise customized

implementations that meet the needs of the system, without imposing restrictions that

would otherwise limit it from supporting the full spectrum of soil compositions and

simulative complexities.

150

4.4.3 Vertex Attribute Maintenance

The geometric surface of a mesh is insufficient for realistic terrain imaging. In

addition to positional data, vertices will carry associated attributes that contribute to the

realism of the final image. For most terrain meshes, attribute data is defined during the

offline modeling phase or it can be computed using the mesh for referential purposes

during initialization. For static terrain solutions, once the information is known, it

remains fixed and can be cached for reuse during execution. Unlike static terrains,

dynamic terrains are not stagnant, which necessitates proactive maintenance and

coordination of the vertex attributes as the surface is deformed.

Dynamic terrain is characterized by a deformable, interactive mesh. As the

topography of the terrain is deformed, vertex positions are changed and the data

associated with the vertices may require runtime services, as well. For example, the

displacement of a set of vertices may invalidate the associated normals, texture

coordinates, and colors. The use of cached values would negatively impact the rendered

image, because the associated information is no longer valid given the current surface

formation. Incorrect normals can result in the display of unrealistic shading artifacts,

because shadows and lighting are erroneously computed. Invalid texture coordinates can

produce exaggerations in texture stretching in areas where vertex displacements have

expanded the shared polygonal surface area beyond an implicit threshold. Inappropriate

vertex color assignments may result in visual discrepancies that conflict with the intended

display of qualitative information. The displacement of vertices impacts the potential of

peripheral data because the very intent of this data is to compliment the polygonal mesh.

Obviously, as the polygonal mesh is modified, the relevant data may require modification

151

too; therefore, specialized maintenance routines that coordinate the vertex attributes with

the geometry may be necessary to preserve image quality at runtime.

Many of the common vertex attributes can be computed during initialization and

these methods can be adapted to work during runtime, as well. Both normals and texture

coordinates can be mathematically computed in a variety of ways. Computing the

normals of rectilinear grid of vertices is rudimentary, if not obvious. The designation of

texture coordinates for the various texturing strategies is also straightforward. Vertex

colors can be manipulated through lookup tables or functional processes according to

system-specific needs. During runtime, these methods can be executed using the newly

displaced vertices to determine the currently correct values. However, computation

should be limited to the areas that have undergone deformation during the frame.

Limiting the area reduces the overall workload, which contributes to an optimal

performance.

Vertex attributes include the entire set of satellite data associated with a vertex

that are used to improve the visual realism of the rendered mesh. Although normals,

texture coordinates, and vertex colors are the most common, each application is free to

designate and use unique attributes for specialized purposes. Since the vertex attributes

employed in a system are application-specific, it is neither reasonable nor in the scope of

this research initiative to present specifics algorithms and techniques for addressing such

concerns. In lieu of proposing a specific technique for updating vertex attributes, this

research simply acknowledges that the potential exists.

For each vertex attribute in the system, it is important to evaluate the impact

resulting from surface deformation and to execute the proper course of action in the case

152

where visual discrepancies arise. Although runtime maintenance of vertex attribute data

imposes additional workload, its absence can result in visual anomalies that affect the

system’s ability to produce realistic imagery.

4.4.4 Data Process and Image Render

Processing the dataset and rendering the scene is the final stage of the solution

that gathers all the information and displays the final image. The task at hand is to

assemble the various datasets into set of collective information that is useable by the

graphics pipeline. Data must be organized and submitted to the renderer, which processes

the conjoined information to generate the imagery. The output image portrays the

deformed terrain mesh that appears to have interacted with the object; thereby, simulating

the reactivity and dynamism of physical terrain.

At this stage, the system must restore the rendering state, gather the relevant data,

submit the data to processing pipeline, and execute the processing pipeline. Unlike the

previous phases that operate on focused areas of the terrain where objects interact with

the terrain, the final stage must process all of the terrain within the application view’s

frustum and render it to the output device. Therefore, the camera configuration is restored

to use the values of the application’s camera. In addition, the projection is reverted to a

perspective projection, which restores the viewing properties and three-dimensional

aspect to the scene. In the simplest system, the entire terrain mesh is submitted to the

renderer; however, this is suboptimal and can unnecessarily overburden the processing

pipeline. For advanced systems, the terrain solution will employ a spatial partitioning

algorithm to cull large batches of geometry and a level of detail algorithm to further

153

reduce the total polygon count. In all systems the geometry is collected according to the

internal rules of the application and submitted to the graphics processing pipeline.

The graphics processing pipeline is designed for the exploitative use of the GPU.

Many tasks that were executed on the CPU with a fixed-function pipeline can be

offloaded to the GPU and the programmable pipeline. The elevation data is encoded in

the DDHM and displacements offsets are stored in the dynamically updated Offset Maps

for visible regions. Both the DDHM and the Offset Map are encoded as textures and

stored in texture memory that is readily accessible by the graphics processor. The

availability of the vertex data in texture memory is important because Shader Model 3.0

supports vertex texture lookups, which lets the vertex processor access the information.

Using the vertex textures lookup functionality, the DDHM and the Offset Map are used

as displacement maps. Each vertex uses a common texture coordinate to access both the

elevation height and its displacement offset from the textures. First the elevation data is

decoded from the DDHM (Figure 21a). Next the offset corresponding to the elevation is

retrieved from the Offset Map (Figure 21b). Finally, the two values are blended to

establish the final position of the vertex (Figure 21c). The computed difference is the

height at which each vertex is located according to the persisted deformation history. The

process is performed on each vertex to create a faithfully-deformed, interactive surface.

In addition to the amalgamation of displacement maps, supportive operations and

algorithms may be executed in the vertex and fragment processors to contribute to the

final image. Within the vertex processor, Geomorphing can be employed in an effort to

minimize popping that can result from the use of level of detail. Texture mapping,

154

shading, and atmospheric effect techniques can be incorporated into the fragment

processor to alter the presentation of the terrain, making the scene more realistic.
�
��

��

�����
���
�

�
��

��

����

������
������
�������
���
��

�
��

��

����

(a) (b) (c)

Figure 21 Data is combined in the vertex processor.

The rendering process uses the encoded elevation data in (a) and offsets in (b) as

displacement maps to generate the final, deform terrain surface (c).

Rendering is the final set of processing handled each frame to generate the

imagery on the output device. The resulting image is a dynamically altered surface that

displays object interactivity with deformation persistence. In addition to the final

assemblage of the rendered topography, a number of supplementary tasks are handled at

this time. Although not necessarily a part of the render process itself, spatial partitioning

and level of detail techniques may be executed in the determinacy of the geometry to be

processed. The polygons submitted are the items that will undergo further graphics

processing to define the final image produced by the graphics pipeline. For deformation

purposes, the DDHM and the Offset Map are blended within the vertex processor and the

computed value is used to displace the vertex. During vertex and fragment processing

methods for Geomorphing, texturing, shading, and atmospheric effects are also realized.

4.5 Large Terrains and Dynamism

Many research initiatives in terrain visualization are focused on resolving issues

in handling large-scale terrains. The most common problems associated with large

155

terrains are memory consumption and processing workload; both of which can be

exorbitant. Level of detail is the most common solution in terrain visualization, used for

the purpose of handling large-scale terrains. The need to coordinate the dynamism routine

with the multi-resolution strategy may be complex, but not impossible.

The proposed technique for terrain deformation is compatible with systems that

support large terrains through the integration with level of detail. The only stipulation

regarding compatibility is that the level of detail technique must operate on a terrain

along rectilinear bounds (i.e. a Regular Grid Network mesh). The rectilinear alignment of

the data is necessary for mapping the data from system memory into texture, via the

DDHM encoding. In addition, the regular alignment can be used to partition the terrain

into distinct regions where each region is a discrete subpart of the larger terrain. The

concept is not new to very-large scale terrain solutions that can incorporate a paging

technique. Notably, each region of the terrain can maintain a DDHM and Offset Map for

its interior area, which is necessary for deforming each region individually. By iteratively

applying the dynamic terrain technique to each region, it is possible to deform the large

terrain as a whole using this divide-and-conquer approach.

The definition of the regions used for deforming a large terrain may be fixed or

dynamic, which can make for two unique approaches in handling the terrain deformation

process. The boundaries defining a fixed region are specified once and remain valid for

the duration of application execution, while dynamic regions allow for the re-

specification of boundaries during program execution. Although both approaches are

equally valid, the use of one over the other may be more intuitive given the level of detail

technique used by the terrain system. For instance, a Tiled Block algorithm would be best

156

integrated with a fixed region approach, while a Concentric Region approach would more

easily integrate with a dynamic approach.

The differences between a fixed approach and a dynamic approach for the

purpose of deformation are simple. A system using fixed regions for deformation may

require multiple passes in a single frame, while dynamic deformation region will require

runtime maintenance. In a fixed system it is likely that an object will intermittently cross

regional boundaries (Figure 22). When this occurs, the deformation strategy will need to

be executed once for reach region the object occupies. In the case of a scene with a single

object whose bounding area is less than a single region, the algorithm will have to

execute, at most, four times in a single frame. On the other hand, a dynamic region uses

the object as a referential construct and dynamically redefines the region boundaries to be

centered about the object (Figure 23). In this manner, the region always encapsulates the

object, which eliminates the need to execute multiple passes of the strategy for one

object. With both approaches, as more objects are added to the scene, the offset

computation, redistribution, attribute maintenance, and rendering tasks will be executed

more times per frame; however, this is an unavoidable consequence. The benefit of using

a regional approach is that it constrains the computational workload assumed by limiting

the maximum area processed for deformation in a given frame. Large terrains introduce a

number of unique challenges to terrain visualization. Many of the hardships incurred are

remedied through the inclusion of level of detail. In order to provide dynamism with

large terrains, the deformation routine can be incorporated to work using regional terrain

partitions, instead of on the entire terrain. The two possible regional approaches are fixed

and dynamic. For both approaches, the details of an implementation are dependent on the

157

algorithms that the deformation is to be integrated with. Yet, independent of the details,

both succeed at providing the facilities for dynamic terrain functionality in large terrain

systems.

(a) (b)

Figure 22 Deforming a terrain using fixed regions.

A spherical object is entirely housed within a single fixed region (a). After moving, the

object occupies four distinct regions (b). The deformation routine is performed once for

each region that the object holds occupancy in during a frame of execution.

(a) (b)

Figure 23 Deforming a terrain using a dynamic region.

A spherical object is housed within a dynamic region (a). After moving, the object

remains within the bounds of the dynamic region. A runtime maintenance routine updates

the boundary definition of the region as the object moves.

4.6 Closing

Dynamic terrain systems are an improved terrain visualization solution because it

can actively portray an interactive surface. The commonplace presence of static terrain

systems has established a number of basic features that are expected of the average

terrain visualization solution. In addition to these features, dynamic terrains solutions

must provide functionality to demonstrate its interactive nature. While the inclusion of a

dynamic extension to resolution procedure is optional, the presence of a deformation

technique is mandatory. Dynamic extension to resolution methods can dynamically

158

increase mesh density to offer higher quality deformation. Dynamically Divisible

Regions are a generalized specification that can be used to work within the constraints of

most systems. It has also been shown that it is possible to implement at least one DDR

instantiation using the GPU. Whereas extension to resolution is optional, the deformation

process provides the means for interactively altering the surface, which is the defining

characteristic of a dynamic terrain. While the deformation process can be specified in

terms of a compression displacement and redistribution of vertex positions, additional

processing is also employed to coordinate periphery data and render the final terrain.

Section 4.2.2 presents an algorithm that makes explicit use of the GPU to deform terrain.

The output imagery visually simulates interactivity and dynamism that improves realism.

The two components, dynamic extension to resolution and the dynamism strategy, create

the distinction between a static and dynamic solution. When employed correctly, the

result is an enhanced visual experience and, possibly, a more precise simulation.

159

5. Dynamic Terrain System

5.1 Introduction

The thesis presents a number of novel ideas and technical solutions for application

in terrain visualization. To support the work, we have developed a terrain subsystem

implementation that uses these ideas to create a dynamic terrain solution for an off-road

ground vehicle simulation system. The terrain solution is combined with an automotive

simulation system in development by members of the Hypermedia & Visualization Lab

(HVL) within the Department of Computer Science at Georgia State University. The

application demonstrates the utilitarian nature of a dynamic terrain solution as it pertains

to visually-enhancing ground vehicle simulations. It is shown that the integration of an

interactive deformable terrain improves the observable realism, which contributes to an

increase in the visual credibility of the system.

5.2 Goals

The purpose of a terrain visualization system is to provide the user with a realistic

presentation of the landscape that includes information to the scene while conveying

form, texture, and presence. In order to provide a truly realistic presentation, the terrain

must supply the observer with a convincing presentation of the surface. For many

systems, the surface is assumed to achieve a reasonable level of realism through the use

of texture mapping, surface shading, and atmospheric effects. Although the rendering

components can improve visual realism, they are insufficient for visualizing dynamism

and interactivity. The omission of dynamic deformation limits the degree of realism that

can be achieved in terrain systems that are intended to characterize soft, loose soil

160

compositions. The best remedy for the misaligned use of a static terrain system is to

replace it with a dynamic solution.

For the purpose of ground-vehicle simulation in off-road conditions, the terrain is

most suitably represented with a dynamic terrain system. Unlike roadways, off-road

driving conditions are considered suboptimal. For ground-vehicles, the suboptimal nature

of off-road conditions implies the presence of non-rigid surfaces. The lack of rigidity

means that the vehicle will cut and carve into the terrain as it traverses the surface.

Consequently, the terrain should provide the capability to display the remnants artifacts

left behind from vehicular contact through the presence of tread marks. Taking into

account the possibilities for faithfully visualizing off-road driving, a dynamic terrain

visualization system is the best approach.

In addition to dynamism, the solution must incorporate a number of techniques

commonly used by solutions for terrain visualization. Among the features to be included

are texture mapping, shading, and level of detail. These features contribute to the overall

visual appeal of the terrain and ensure that performance is maintained. The application

acts as a testament to the practicality of augmenting a terrain solution to include

dynamism. The final product seamlessly integrates hybridized algorithms that work

cohesively to form a complete solution for the simulation and visualization of ground-

vehicles in off-road conditions.

5.3 System Design

The application is comprised of different pieces that have been constructed across

two separate, but related, research initiatives. The first part is the vehicle simulation

component and the second is the terrain system. The two pieces were integrated to

161

produce an application suitable for the simulation and visualization of ground vehicles

that can interact and influence a dynamic terrain surface. While both pieces contribute

equally to the final product, the two systems were developed independent of one another.

Consequently, the terrain system was created as an autonomous unit to be consumed and

used by the simulation system. Therefore, we limit the discussion of design and

implementation issues to the terrain system and do not attempt to describe the vehicle

simulation whatsoever.

The terrain system was developed using the design architecture of the component

framework as a guide. A number of simple, yet effective, techniques are implemented for

each component to achieve improved visual quality and to increase performance. Figure

24 is a (simplified) class diagram that describes the terrain design. The class diagram

divulges the interface of the terrain and reveals a number of methods of the system that

contribute to the final solution. Class attributes are unique to each object. Included in the

solution are attributes such as vertex position, texture coordinates, and normals that are

necessary for any terrain system, regardless of it being TIN or RGN, single or multi-

resolution, and static or dynamic. In addition, it supports dynamism in conjunction with

level of detail, which makes it truly unique.

The terrain solution can be characterized according to its qualities. First, the

terrain only supports the regularly spaced set of elevation data offered by an RGN data

source for its mesh representation. An RGN mesh was decided upon because the

regularity and rectilinear structure of the geometry makes it suitable for specific

algorithmic simplifications that serve to improve performance and enhance the visual

display. Also, according to [41], RGN mesh processing can be faster than TIN mesh

162

processing on current graphics hardware. The solution also uses a custom level of detail

method derived from [49] and [1], distinguishing it as a Tiled Block solution. While both

Tiled Block and Concentric Region approaches are equally appropriate for use with

modern graphics hardware, Tiled Block solutions require less complex runtime

maintenance and, for our purposes, is the more appropriate solution. Lastly, it is as a

dynamic terrain solution because it incorporates the GPU-based method for terrain

deformation. Integrating the deformation technique exhibits the functional use of terrain

dynamism while incurring only a nominal performance penalty. The terrain solution

incorporates a number of features common to terrain visualization systems in conjunction

with the deformation technique, making it suitable for exhibiting the functional and

practical nature of a dynamic terrain on current computer hardware.

5.4 Component Design

The solution was developed using the component framework for terrain

visualization. For each component, one or more techniques were specified and

implemented into the solution to fulfill the requirements and meet the needs of the

system. The framework is well-suited for discussing algorithmic decisions at a high-level,

because it affords others the opportunity to analyze and compare the design decisions in

relation to their own. Comparatively analyzing systems in the context of the component-

based architecture is more meaningful because it provides a formalized common

infrastructure, as opposed to a comparison based on randomly chosen system features.

163

�	�����

 	��	!��
�����

1�����

�	!���	����(����	

���	����
�����

222

��������3	

������	1�����

������	�	!���	����(

4�(��	�	�	�5��	����

+	�6	��&�

$	�(�

222

���	

��(!��
�

�	�	�5��	����

222

��������3	

$	�(�

222

�*���

��(!��
�

222

��������3	

$	�(�

222

6	��&����

7�	����������

���	�
���

222

���(#���#��	

��"�	�
	$	
�������

222

�	!���	

�	!���	����

���	�
���

222

���(#���#��	

222

����

����

���

�

� �

Figure 24 Class diagram for the terrain system.

5.4.1 Modeling Components

The terrain mesh is derived from a set of elevation data stored in an offline height

map. The elevation values define the geometric structure of the terrain displayed to the

user and interacted with by virtual objects. The elevation set is stored as a nn ×

heightfield in 8-bit raw image format that is, subsequently, loaded by the application

during startup. The raw image is transformed into a set of three dimensional vertices

164

using the transformation function),,(),(zyxyzxf →= . Transforming the entire dataset

produces the three-dimensional rectilinear mesh in memory. After the mesh is assembled,

vertex attributes, including normals and texture coordinates, are dynamically computed

by the terrain object. In addition to loading the elevation data, the initialization process

will upload all relevant textures from offline storage and move the image data into texture

memory.

During initialization, the resolution of the mesh is updated using the tiled

subdivision technique for Dynamically Divisible Regions presented in Section 4.1.

Resolution is improved to ensure that the vehicle(s) in the system are capable of spatially

influencing the topology during program execution. In the system, the entire terrain is

treated as a single region, because the vehicles are free to travel anywhere. In the case of

this system, runtime tessellation was not a requirement and pursuing that path would have

added unnecessary complexity. As a consequence, the DDR is uniformly subdivided

across its entire surface once at startup. Specifically, for this system, the scene is well-

defined because both the required maximum resolution and terrain extents are known at

startup. Therefore, it is possible to conduct the subdivision process once during

initialization. In this case, the potential for excess in total polygon count is acceptable in

comparison to the complexity and workload associated with performing the subdivision

process at runtime.

5.4.1.1 Spatial Partitioning

The mesh is composed of a rectilinear grid of elevation points, which makes it

well-suited for spatial partitioning using tiles. Therefore, the mesh is partitioned into

rectangular regions using its native rectilinear arrangement and neighboring tiles share

165

vertices along their common edge (Figure 25). Although each tile is self-contained, it is

important that changes to edge vertices are shared between the neighboring partitions.

Figure 25 Orthographic view of the spatially-partitioned terrain mesh.

The 256256× terrain is partitioned into related, but independent, 3232× tiles.

Terrain partitioning makes it possible to limit the total amount of processing

power consumed when perform certain tasks. The most obvious use of partitioning is for

frustum culling, which removes large chunks of geometry from the processing pipeline.

The geometry can be removed because it is not within the view frustum and, therefore,

does not contribute any viewable content to the rendered image. In a perspective

projection, the view frustum is a volumetric space that is defined by the near and far

166

planes, as well as the viewing angles. Any mesh geometry contained within the bounds of

the frustum will contribute content to the final rendered image. Initially, the terrain is a

single, large mesh. In fact, the terrain mesh is often too large to fit within the view. By

partitioning the terrain, it is possible to quickly eliminate large chunks of data from the

processing pipeline. In our system, partitions are defined by a rectangular volume, which

can be used to test whether the partition is entirely inside of, partially inside of, or totally

outside of the view frustum. In the case where the partition is entirely outside of the view,

the partition is neither processed nor rendered. Used in this manner, partitioning improves

the execution speed without any negative impacts.

5.4.1.2 Level of detail

In order to support reasonably large terrains, the system employs a custom level

of detail technique that integrates seamlessly with the deformation strategy. The

technique is used to reduce the total number of polygons processed by the graphics

processing pipeline, while preserving the visual fidelity of the scene. Given the current

view, the technique will selectively render different resolution instances of each tile,

thereby improving performance. It is a hybrid approach that combines a number of

different practices derived from known solutions to define a custom method. In

particular, the technique combines elements from [1, 4, 49, 53]. Elements from each are

integrated into a single algorithm that is simple, yet powerful.

The technique uses the partitions defined by the spatial partitioning strategy as

unique terrain tiles. Most of the computational burden for the technique is assumed

during initialization, when static vertex and index buffers for data are constructed and

167

stored. These buffers are used throughout program execution, which greatly reduce the

impact to runtime since minimal further computation is required.

During initialization, each tile of the partitioned terrain is prepared for runtime

use. For each tile, a set of lower resolution instances are generated by sampling every

other vertex from its immediate higher-resolution, parent mesh. The approach for

sampling is the same as in Geomipmapping. However, unlike Geomipmapping, this

approach uses skirts instead of stitching to prevent cracking at the edges where neighbors

are currently being rendered at different resolutions. Also, a set of blending values are

computed for Geomorphing. Geomorphing is used to eliminate popping artifacts that can

be perceived as tiles change from one resolution to the next. At runtime, the blending

values are used in conjunction with the currently active tile instance and the viewing

location to compute a displacement for each vertex. The displacement replaces the

instantaneous movement of vertices with a gradual one that is less noticeable. The goal in

devising the solution as we have, was to place the majority of the workload in the

preprocess step, which minimizes the overhead assumed at runtime.

During runtime, each partition in the terrain is evaluated and rendered

independent of each other. In order to further reduce complexity, the solution borrows its

approach for selecting the correct mesh instance from Geoclipmapping. The camera

position is used to define the center of the region. A lookup table of radii is used to

specify the correct resolution instance of each tile by evaluating the distance from the

camera to the tile. Once the correct instance is decided on, the instance data for the tile is

submitted for processing (Figure 26). The data submitted includes vertex positions,

normals, texture coordinates, texture data, blending values, and skirts. It is even possible

168

to store all of the mesh data statically on the GPU, instead of physically transferring it

from system memory to video memory each frame. As a result, the solution can produce

high quality terrain imaging with a reduced total performance cost achieved through the

hybridization of various methods to produce a fast and efficient multi-resolution strategy.

Figure 26 Orthographic view of the terrain with level of detail active.

The level of detail technique is used to identify and submit the correct resolution instance

for processing using the location of the camera (the upper-left corner in this case).

5.4.2 Rendering Components

The focus of the system was to demonstrate the use of the component framework

and to display the deformation strategy in action. Consequently, the components

169

incorporated for rendering were kept simple. Although elementary techniques were used,

more elaborate approaches could be substituted to achieve more complex effects.

The Rendering component is comprised of solutions for texturing, shading, and

atmospheric effects. For texturing, the system uses a tiled texture to represent a grassy

ground-cover. Tiled texturing is simple, yet effective for our demonstrative purposes. For

shading, the texture is blended according to the surface normals to create a simple

surface-illumination effect. Since real-time shading of terrains is a complex field that can

easily overtax the runtime, simple shading was used to limit its impact on the application.

For atmospheric effects, the solution is only capable of rendering fog. Fog is commonly

supported as a hardware feature, which makes it an obvious choice for inclusion because

of our focus on exploiting GPU features. Once again, other types of atmospheric effects

were excluded to limit total impact on runtime performance. The decision to use simple

methods to suffice for rendering is not indicative of system limitations. Instead, these

methods were selected because they compliment the system design by accomplishing

their goals without infringing on the greater goals of the system.

5.4.3 Animation Components

Animation is concerned with the motion of objects and their subparts in the

virtual world. In terrain visualization, the Animation component addresses needs of both

the terrain and the virtual objects. The terrain system is an interactive entity in the virtual

world; therefore, it must provide the facilities necessary for interfacing with external

objects. The Animation tasks address the most fundamental activities and functional

features required for dynamism and interaction. Collision detection ensures that external

objects can query the terrain in order to determine proper location and to prevent

170

erroneous interpenetrations. Motion control is used to direct the dynamism of the terrain

as its surface is deformed according to the rules of engagement for the solution.

Both collision detection and motion control features are included in the solution.

Collision detection for the terrain is achieved through the provision of a query method.

The function is used to compute the height y of the terrain at any given),(zx location,

which is useable by external objects. Objects may query the height to detect collisions

and to determine where surface contact occurs between the object and the terrain. With

respect to dynamic terrain, the computed height value is the starting point from which the

object may sink itself into the ground for simulation and visualization purposes. The

depth of penetration is recompensed by the deformation strategy which displaces vertices

beneath the object to remove visible surface penetrations. The concept is that object-

terrain penetrations (i.e. collisions) are intentionally created and then compensated in

subsequent steps by deforming the terrain.

Vertex displacement for the terrain executes under the guidance of the motion

control model of the solution. Out of necessity, the motion control in this solution

enforces a constrained model where the terrain’s positional vertices can only move

perpendicularly to the ground plane. The constrained model is necessary to preserve the

evenly-spaced, rectilinear layout of the elevation data. As objects impose forces on the

terrain, the vertices compact and rebound to deform its surface. The constrained model is

implicitly enforced by the deformation technique strategy previously presented.

Specifically, the implementation of the technique in our system uses a multi-pass render-

to-texture on the GPU to compute the displacement offsets. Using the depth buffer to

compute the penetration depth of the object into the terrain provides the vertical

171

displacement that, in turn, preserves the regularity of the data according to the motion

control model.

Together, the Animation tasks provide the functionality necessary to create an

interactive, dynamic terrain solution. Collision detection provides the starting point for

referentially placing objects on the terrain surface. After the simulation system adjusts the

placement of the object, the motion control model that is inherent to the deformation

technique guides the displacement of vertices to create the illusion of object-surface

interactivity. Together, the Animation tasks provide the means for independent entities in

the scene to detect and interact with the terrain.

5.4.4 Application Logic/Application-Specific Features

In general, terrain visualization systems are designed and developed for use as a

subsystem within an application that has a greater purpose. In our solution, the terrain

system was designed for use in off-road ground vehicle simulation and visualization. The

terrain system makes uses application-specific features that are implemented for use by

the ground-vehicle solution. In particular, the solution provides facilities for the physics-

based simulation model of the vehicle to interact and affect the terrain directly. For

instance, the option to associate additional per-vertex information is included so that

elemental soil properties can be loaded, and subsequently read, from localized areas of

the terrain. The feature could be used by the simulation system to compute simulation-

relevant values such as tire-soil cohesiveness. Obviously, the cohesion of a tire on the

terrain is not of any concern to the terrain solution; however, the system might not be

considered complete without it presence. Considering the potential for future research,

the terrain system could be extended in the future to make use of this capability. It is also

172

assumed that as the project evolves more application-specific features will be added to

improve the terrain system’s functional capabilities.

Development of a complete terrain visualization solution is not a trivial

undertaking, but the component framework eases the design through its high-level

abstraction of potential system features and functionality. Our research used the

component framework in the specification of the terrain system for use in an off-road

ground vehicle visualization and simulation. The framework offers direction and

guidance in the creation of a terrain solution to establish parallels and differences

between our solution and others. In addition, the framework eases the design by

specifying those pieces necessary for accomplishing specific goals that would be unclear

otherwise. As more researchers specify terrain visualization techniques and systems in

the context of the component framework, comparative and collaborative work will

conspire to improve the field.

5.5 Technical Details

The terrain system was built for inclusion as a subsystem in the simulation and

visualization system for off-road ground vehicles. In particular, the solution was intended

to compliment a physics-based vehicle simulation, by offering more visual cues regarding

the activities and motion of the vehicle under non-ideal driving conditions. In order to

cooperate with the rest of the system, the solution was built under certain technical

constraints and specifications. The solution was developed in a Microsoft Windows

environment using C++ and the OpenGL 2.0 API. In OpenGL 2.0, the GL Shading

Language is available through extensions, which was used to access the programmable

pipeline on the GPU. In addition, the render-to-texture features used for deformation

173

routine were achieved through the use of the framebuffer object extensions. Together,

these features provided all of the facilities necessary for the terrain system.

A major differentiator from the solution we developed and other systems is the

inclusion of the deformation technique using the programmable pipeline to exploit the

graphics hardware. For clarity, the following documents some of the technical details of

the deformation technique, to assist others in reproducing our work.

As previously noted, the deformation technique uses the OpenGL framebuffer

object (FBO) extension for render-to-texture functionality. For our system, a single FBO

is used to store the entire terrain in video memory because we imposed artificial limits on

the total terrain size. However, one FBO per tile could be used by applications requiring

larger terrains. Each frame, the initial offsets are computed in the areas where the

vehicle(s) are located by configuring the FBO to use the depth buffer capability of the

GPU. The algorithm for computing the initial offsets is as follows:

1. Query the height(s) of the contact points for the vehicle on the terrain and position

the vehicle accordingly.

2. Execute the application-specific simulation model to sink the vehicle contact

points into the terrain.

3. Configure the view properties to the view as explained in Section 4.2.2.

4. Compute the offsets by rendering to the FBO/render-target.

a. Render the terrain tiles encapsulating the vehicle.

b. Render the vehicle.

i. In the fragment shader, compute the depth difference between the

vehicle and the terrain.

ii. Store values where the vehicle is penetrating the terrain in an offset

map.

5. Restore the previous camera view.

174

Once the initial offsets are computed, we enact a simple and effective

redistribution process to the offset map. Since the offset map is stored as a texture, our

solution applies a box-filter derivative to smooth away jagged edges. The filter is

encoded in the fragment shader used to generate the offset map, which allows full control

of pixel processing. Although the process we use for redistribution here is not physics-

based, it is conceivable to use a more elaborate fragment shader to simulate soil

mechanics.

After all of the offsets are computed, the terrain is ready to be processed and

rendered. Once again, the programmable pipeline is exploited to draw the terrain. In the

vertex shader, the terrain elevation data is translated, rotated and scaled appropriately.

Using the),(zx coordinates of the vertex, texture coordinates are derived and used to

lookup the redistributed offset value in the offset map. The vertex texture lookup is a

feature of Shader Model 3.0 that makes displacement mapping on the GPU possible. The

original height, the redistributed offset, and the relevant Geomorphing values are used to

compute the position of the vertex for the current frame. Next, vertex colors and texture

coordinates are adjusted based on the associated offset of the vertex, to create an illusion

of shading where tire tracks have carved into the surface. The results are passed onto the

fragment shader, which renders the geometry in a straightforward manner by applying

textures, fog, and colors on a per-pixel basis.

The final rendered image displays a tire track carved into the terrain surface

where the vehicle has traversed (Figures 27 and 28). The remnants of the vehicle’s

driving path enrich the scene with visual cues and detail that improve the visual quality of

175

the image. Without the tire markings, the terrain would appear unrealistically rigid.

Furthermore, visually recounting the movement of the vehicle is impossible.

(a)

(b)

Figure 27 The vehicle deforms the terrain.

The vehicle deforms the terrain dynamically as it moves (a) and carves tire tracks (b).

176

Figure 28 The integrated level of detail solution.

The level of detail system is coordinated to work with the deformation technique.

5.6 Test Results

The off-road ground-vehicle system was tested to assess the performance impact

of the deformation technique with respect to the rest of the system. The specifications of

the computer used in the test can be found in Table 1. Two different terrain sizes were

tested and the results are documented in Table 2.

Processor Intel Xeon 3.00GHz (Dual Processor)

RAM 2 GB

Video Card NVIDIA GeForce 7800 GT, 256MB GDDR3 RAM, PCI-Express

Operating System Windows XP SP2

Table 1. Test Machine Specifications

177

65m x 65m 129m x 129m

1m posts .25m posts .125m posts 1m posts .25m posts .125m posts

480 fps 230 fps 75 fps 470 fps 220 fps 68 fps

Table 2. Experimental Test Results.

The results are very promising as frame rates for the solution were maintained

well above the target 60 frames per second required of real-time graphics applications. As

expected, performance drops as the resolution of the mesh is increased by the DDR

subdivision of the terrain. However, an excess amount of terrain data would suggest the

need for a more elaborate level of detail technique, the inclusion of a paging strategy, or

in-memory data compression. As previously noted, the integration of dynamism with

such techniques is beyond the scope of this initiative, and left as an open question for

future research. Regardless, the data suggests that the deformation technique itself has a

limited impact on the overall solution, which supports our assertion that current hardware

is well-suited for and capable of supporting dynamic terrain.

178

6. Conclusion and Future Work

6.1 Conclusion

Currently, most research in the field of Computer Graphics is heavily geared

towards producing photorealistic imagery, which can be computationally expensive. At

the same time real-time computer graphics systems must maintain a minimal framerate,

while achieving high-quality imagery. The conflict of interest between realism and

performance is the primary point of contention in terrain visualization, which strives to

visualize high-fidelity terrains with a nominal impact to performance. Recent advances in

hardware afford the option to improve terrain visualization systems by improving realism

without hindering performance.

Static and dynamic terrains are the two approaches in terrain visualization and

there are benefits and drawbacks with each. Static terrain uses a fixed, rigid terrain mesh

to model the landscape, whereas dynamic terrain supports runtime surface deformation of

the terrain model. Consequently, static terrains may only simulate hard surfaces, while

dynamic terrains can represent any surface type.

Currently, static terrain solutions dominate the field. The dominance arose from

the development and widespread acceptance of techniques for static terrain that were

developed based on concerns regarding hardware in the past. The rigid nature of a static

terrain allows for many algorithmic optimizations that make it possible to render large

terrain meshes in real-time. The concerns regarding performance that drove these earlier

techniques indirectly served to entrench rigid terrain as the foremost solution. While

179

static terrain is often an acceptable solution, it is far from a complete solution, due to its

inability to represent non-rigid terrain.

Dynamic terrain systems can achieve a truly realistic terrain simulation and

visualization. Unlike static terrain, dynamic terrain has the potential to support the full

range of surface hardness, allowing external forces to mold its shape. The drawback of

dynamic terrain is the added workload associated with extra processing and rendering

tasks necessary for terrain dynamism. While a static terrain approach was the best option

in previous years, computer hardware has improved greatly. These improvements afford

researchers the opportunity to pursue new and innovative approaches in terrain

visualization, including techniques for real-time dynamism.

6.2 Contributions

With regard to terrain visualization, a number of innovations are presented

throughout the thesis that serves to improve the field. These innovations bolster the

prospect of improving terrain visualization through guiding research focus and promoting

the use of dynamism in modern terrain visualization systems.

6.2.1 Component Framework for Terrain Visualization

The first major innovation of this research is the Component Framework for

Terrain Visualization, which defines a unifying architecture for terrain solutions. In

addition, systems using the common architecture and componentized structure share a

singular baseline that makes it possible to perform comparative analysis on otherwise

disparate works. The framework is structured according to common tasks in Computer

Graphics applications to provide a sensible construct that is both flexible and complete

for designing a terrain system. The high-level tasks are further decomposed into more

180

focused components that address the various challenges faced in terrain visualization.

The distinction between components guides research directions, keeping focus on those

topics within the problem domain of a specific component. By breaking down the system

into its set of components, the development of these highly complex systems is eased. At

the same time, the framework identifies relationships between the unique components,

binding them into a collective whole. The relationships aid in diagnosing compatibility

issues between algorithms employed for unique, yet related, tasks. Lastly, the framework

supports adaptation and extensibility for the future, which is necessary as the field

evolves. The framework is designed to evolve with the field, allowing new components

to be introduced and old ones exorcised as requirements change. To demonstrate the

practical nature of the framework, it was used in the design and development of the

terrain system presented in Chapter 5. The component framework for terrain visualization

improves the field through its structured, consistent approach for describing terrain

systems, making it suitable for practical use and research purposes.

6.2.2 Dynamic Terrain

The second major focus of the thesis is in championing the use of dynamism in

terrain visualization. Specific innovation in dynamic terrain include: developing the

Dynamically Divisible Regions, specifying the tasks necessary for processing dynamic

terrain, and originating a new technique for terrain deformation using the GPU.

6.2.2.1 Dynamically Divisible Regions

The first issue in dynamic terrain discussed is the potential for a terrain mesh to

offer an inadequate mesh resolution with respect to the object(s) in the scene that impose

the deformation. The concern is addressed through the presentation of the Dynamically

181

Divisible Region (DDR), which is a subdivision surface specification useful in the

visualization of dynamic terrain surfaces. The DDR is derivative of Dynamic Extension

to Resolution (DEXTER) [30]; however, a DDR defers implementation and offers

adaptability that makes it suitable for use with multi-resolution techniques other than

Hierarchical Bin-Tree methods. As a demonstrative means, Section 4.1 presents a

specialized DDR technique that makes explicit use of the GPU to increase the mesh

resolution as needed by the deformation solution. This solution was also implemented in

by the system presented in Chapter 5 to generate a higher resolution mesh.

6.2.2.2 Terrain Deformation Technique

The second topic in dynamic terrain addressed herein was the identification and

specification of four high-level tasks required to deform, process, and render a dynamic

terrain. Previous works in the area focus on developing a specific algorithm that displaces

local vertices according to a physics-based or appearance-based control scheme.

Although it is important, the issue of vertex displacement is not sufficient as a complete

dynamic terrain solution. In contrast, the thesis covers the entire process through a four

step method that constitutes the definition of a complete solution. The process description

for terrain dynamism identifies distinct tasks that contribute to a successful solution

without introducing limiting compulsory requirements. As such, the procedure is a

generic approach for dynamic terrains that can be specialized to support a multitude of

simulation types, which translates to just as many possibilities for visualization purposes.

Extrapolated from the development of our solution for dynamic terrain, we

present a novel approach to terrain deformation using the GPU. Notably, the algorithmic

steps to deform the terrain and display the results span across four high-level tasks. The

182

technique relies on the ability to transform the Regular Grid Network of elevation data

from system memory to texture memory and, subsequently, processing that data within a

programmable pipeline that supports Shader Model 3.0. The first step, displacement, is

achieved by using the depth buffer functionality of the GPU to record interpenetrations of

the surface by non-terrestrial objects, which begets the initial Offset Map. The Offset

Map represents the displacement of vertices over time as imposed by the object. The

second step, redistribution, is executed on offsets values through the application of a

custom filter that achieves a visual imitation of granular soil displacement. Redistribution

adjusts a vertex’ displacement value according to the soil simulation model, as it is

implemented in the filter. Optionally, periphery data like normals, textures, and vertex-

colors are updated to coincide with the newly deformed terrain. Lastly, the data is

submitted for processing and rendering, using the programmable pipeline to displace,

deform, color, shade, and texture the terrain geometry, which outputs the final image to

the screen. By incorporating the technique in a terrain system, it is possible to visualize

interactive terrain dynamics while minimizing the impact on the runtime by offloading

the majority of the work to the GPU.

Dynamic terrain visualization is a better solution than static terrain visualization,

and we present a foundation for developing terrain systems that support dynamism. The

component framework is a universal tool for terrain visualization researchers and

developers that defines and unifies various concerns and focuses within the domain of

terrain visualization. In an effort to promote the use of dynamic terrain, the research

presents a formalization of terrain dynamism through the specification and description of

four high level tasks. To further encourage the use of terrain dynamics in practice, a

183

novel technique for GPU-based deformation and soil simulation is proposed. Together,

these innovations serve to advance terrain visualization into a new era of visual realism

that enhances the system and improves the user experience.

A variety of people, corporations, and industries stands to benefit from the

advancement in functionality and realism of systems for terrain visualization.

Entertainment media, including video games and movies, generate billions of dollars in

revenue every year. Savvy consumers have increasingly higher expectations of the media

which they will pay for. Improving the environmental realism within the virtual world

through interactive, reactive terrain is a monumental step of progression that can impress

consumers and keep them coming back for more. Training and Simulation (T&S) is

another lucrative application domain that makes extensive use of terrain visualization, but

it is also one that saves lives. Military forces use Training and Simulation systems to train

personnel in vehicular operations, tactical deployment, and reconnaissance missions that

translate directly into real world activities. The goal is to provide a realistic, immersive

experience that prepares trainees for intense situations without risking damage to

expensive equipment or endangering human life. In fact, the desire for realistic flight

simulators to train pilots is a major contributor to the popularity in research for terrain

visualization. As third example, Geographic Information Systems (GIS) are focused on

the sampling, analysis, and display of terrain data for the purpose of environmental

research and commercial ventures, amongst others. The field is gaining notoriety as

Global Positioning Systems (GPS) become more and more popular in various

communities for tracking mobile entities like people and vehicles. Obviously, there is a

184

vested interested in improving the visualization of the terrain for all of these systems,

because it directly impacts the effectiveness of the system.

6.3 Future Research Directions

The work completed within the thesis makes great strides in advancing terrain

visualization; however, the solutions presented can be extended and improved upon with

further research and development.

6.3.1 Paging Dynamic Terrain

In our system, we were not concerned with the issue of reading terrain data from

an external storage device at runtime because we impose a superficial maximum terrain

size. Paging solutions serve as the primary approach for handling the terrain data in

systems requiring the display of very-large terrains. The primary challenge of terrain

paging is overcoming the slow transfer times of data from external storage to faster main

memory. In static terrain, a page can be assumed to work under a read-only,

unidirectional flow because the data remains unchanged once it is in memory. In contrast,

dynamic terrain is modifiable at runtime, which makes it a read/write model and, thereby,

requires bidirectional, load-and-save data management. Since deforming the terrain

modifies the elevation dataset, data modifications must be preserved as pages are released

from main memory to ensure that reloading the data at a later time restores the altered

surface. Preserving surface deformation requires the storage of the altered dataset back to

the storage medium when the page of terrain is to be replaced. The need to perform write-

backs complicates paging; however, preserving surface modifications to paged data is

necessary for dynamism in very-large terrain visualization.

185

6.3.2 Methods for Vertex Attribute Maintenance

In the discussion of the tasks required for processing and rendering dynamic

terrain, we point out the potential need to maintain vertex attributes. For the terrain

system used in the off-road ground vehicle simulation, only vertex colors needed to be

proactively updated. It is assumed as dynamic solutions become more common, more

attributes will be identified that require maintenance. As these values are discovered,

there will be a need to develop advanced methods for maintenance that make optimal use

of available hardware. Pursuance of these methods will improve both runtime

performance and visual fidelity. Some ideas we have considered include:

• The generation and maintenance of normal maps for regions using the

GPU, especially as the region undergoes runtime deformation.

• The creation of dynamic procedural texture maps that can be reconfigured

as deformation occurs to visually support surface changes, such as

‘dirtying’ the impact area of a soft terrain.

• The preservation of per-vertex soil properties that change as the vertex is

displaced by external forces. Potential properties include cohesion, weight,

and compressibility that could be used by the soil simulation model when

displacing vertices.

6.3.3 Physics-based Simulation

Lastly, there are a many possibilities for improving the dynamism element in

terrain visualization with the advent of more elaborate and meaningful simulation

models. Primarily, we are concerned with evolving physics-based simulations for the soil

and objects interacting with the soil. Physics-based simulations make use of the physical

laws to guide the motion of objects and surfaces in the scene, resulting in a more realistic

and accurate representation.

186

6.3.3.1 Improved Granular Soil Models

Dynamic terrains that use an underlying physics-based simulation offer a more

realistic depiction of surface interaction. In the future, we intend to develop a simulation

model derived from Soil Mechanics that executes as part of the deformation technique

using the GPU. Specifically, the redistribution process will be specialized to make use of

a physics-based model akin to [54] and [55]. For systems that are more concerned with

performance than simulation accuracy, it is possible to develop more elaborate and

meaningful appearance-based methods, like [56] and [58], for redistribution than the box-

filter smoothing we used here.

6.3.3.2 Extend for use with Terramechanics

As a practical application using dynamic terrain system, future work will

incorporate terrain dynamism with physics-based vehicular modeling that runs in real-

time. The innovation of this work is the inclusion of a Terramechanical model to produce

a very realistic and accurate ground-vehicle simulation. Terramechanics is the study of

tire-soil interaction, focusing on the physical laws and principles that govern land

locomotion and mobility. Terramechanical simulation requires a physics-based

simulation of the interactive terrain surface model and the vehicular modeling. Thus, the

work in dynamic terrain is a necessary component to develop a complete visual system

that includes Terramechanics.

6.4 Final Words

As time progresses, it is expected that hardware advancements will provide more

processing power to be used in the software domain. It is wise to take advantage of

available processing power by incorporating new features that serve to improve the

187

system. Terrain visualization systems are an important subsystem in a many software

applications across a variety of problems domains. Those systems that employ a terrain

solution are improved through the advancement of simulated and visual realism afforded

by the terrain visualization solution. The underlying theme behind our research is to

improve terrain visualization by encouraging a more robust and accurate representation

of terrain in the visual system through the use of dynamic terrain. The current initiative

has promoted dynamism through its proposals of the component framework, the

deformation specification, and the GPU-based deformation technique. Combined with

improvements to hardware, these contributions improve terrain visualization realism and

enhance the user-experience.

188

REFERENCES

[1] T. Ulrich, "Rendering Massive Terrains using Chunked Level of Detail Control,"

in Course presented at the 29th annual conference on Computer graphics and

interactive techniques. San Antonio, Texas, 2002.

[2] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, S. Worley, W. Mark, and J.

Hart, Texturing & Modeling: A Procedural Approach, Third Edition ed: Morgan

Kaufmann Publishers, An Imprint of Elsevier Science, 2002.

[3] J. H. Clark, "Hierarchical geometric models for visible surface algorithms,"

Communications of the ACM, vol. 19, pp. 547-554, 1976.

[4] F. Losasso and H. Hoppe, "Geometry clipmaps: terrain rendering using nested

regular grids," ACM Transactions on Graphics, vol. 23, pp. 769-776, 2004.

[5] P. Lindstrom and V. Pascucci, "Visualization of large terrains made easy," in

Proceedings of the 12th conference on Visualization. San Diego, California: IEEE

Computer Society, 2001.

[6] J. Blow, "Implementing a Texture Caching System," in Game Developer

Magazine, 1998, pp. 46-56.

[7] R. L. Ferguson, R. Economy, W. A. Kelly, and P. P. Ramos, "Continuous level of

detail for visual simulation," in Proceedings of the 1990 IMAGE V Conference.

Tempe, Arizona, 1990, pp. 144-151.

[8] H. Hoppe, "Progressive meshes," in Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques: ACM Press, 1996.

[9] D. Wagner, "Terrain Geomorphing in the Vertex Shader," in ShaderX2 - Shader

Tips & Tricks, W. F. Engel, Ed.: Wordware Publishing, Inc., 2003.

[10] E. E. Catmull, "A Subdivision Algorithm for Computer Display of Curved

Surfaces.," in Ph.D. Thesis, Dept. Computer Science: University of Utah, 1974.

[11] C. M. Goral, K. E. Torrance, G. D. P., and B. Battaile, "Modeling the interaction

of light between diffuse surfaces," in Proceedings of the 11th annual conference

on Computer graphics and interactive techniques: ACM Press, 1984.

189

[12] T. Whitted, "An Improved Illumination Model for Shaded Display,"

Communications of the ACM, vol. 23, pp. 343-349, 1980.

[13] N. Hoffman and K. Mitchell, "Real-Time Photorealistic Terrain Lighting," in

Proceedings of the 2001 Game Developers Conference, 2001.

[14] A. J. Stewart, "Fast Horizon Computation at All Points of a Terrain With

Visibility and Shading Applications," IEEE Transactions on Visualization and

Computer Graphics, vol. 4, pp. 82-93, 1998.

[15] L. Williams, "Casting curved shadows on curved surfaces," in Proceedings of the

5th annual conference on Computer graphics and interactive techniques: ACM

Press, 1978.

[16] F. C. Crow, "Shadow algorithms for computer graphics," in Proceedings of the

4th annual conference on Computer graphics and interactive techniques. San

Jose, California: ACM Press, 1977.

[17] M. McGuire and P. Sibley, "A Heightfield on an Isometric Grid," in Sketch

presented at the 31st annual conference on Computer graphics and interactive

techniques, 2004.

[18] R. S. Nielsen, "Real Time Rendering of Atmospheric Scattering Effects for Flight

Simulators," in Master's Thesis, Informatics and Mathematical Modelling:

Technical University of Denmark, 2003.

[19] A. J. Preetham, P. Shirley, and B. Smits, "A Practical Analytic Model for

Daylight," in Proceedings of the 26th annual conference on Computer graphics

and interactive techniques: ACM Press, 1999.

[20] R. A. Finkel and J. L. Bentley, "Quad Trees, a Data Structure for Retrieval on

Composite Keys.," Acta Informatica, vol. 4, pp. 1-9, 1974.

[21] M. Pritchard, "Direct Access Quadtree Lookup," in Game Programming Gems 2,

M. Deloura, Ed. Hingham, Massachusetts: Charles River Media, 2001, pp. 394-

401.

[22] T. Nuydens, "Terrain texturing,"

http://www.delphi3d.net/articles/viewarticle.php?article=terraintex.htm, 2002.

[23] T. Polack, Focus On 3D Terrain Programming, 1st Ed. ed: Course Technology

PTR, 2002.

[24] G. Snook, Real-Time 3D Terrain Engines Using C++ and DirectX 9, 1st Ed. ed:

Charles River Media, 2003.

190

[25] C. Bloom, "Terrain Texture Compositing by Blending in the Frame-Buffer."

http://www.cbloom.com/3d/techdocs/splatting.txt, 2000.

[26] H. Hoppe, "View-dependent refinement of progressive meshes," in Proceedings

of the 24th annual conference on Computer graphics and interactive techniques:

ACM Press/Addison-Wesley Publishing Co., 1997.

[27] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. urner,

"Real-time, continuous level of detail rendering of height fields," in Proceedings

of the 23rd annual conference on Computer graphics and interactive techniques:

ACM Press, 1996.

[28] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B.

Mineev-Weinstein, "ROAMing terrain: real-time optimally adapting meshes," in

Proceedings of the 8th conference on Visualization. Phoenix, Arizona, United

States: IEEE Computer Society Press, 1997.

[29] A. A. Pomeranz, "ROAM using Surface Traingle Clusters (RUSTiC)," in M.S.

Thesis, Department of Computer Science: University of California (Davis), 1998,

pp. 42.

[30] Y. He, "Real-time visualization of dynamic terrain for ground vehicle

simulation," in Ph.D. Thesis, Department of Computer Science. Iowa City:

University of Iowa, 2000, pp. 165.

[31] M. Garland and P. S. Heckbert, "Fast Polygonal Approximation of Terrains and

Height Fields," Technical Report, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA 15213 CMU-CS-95-181, September 19, 1995 1995.

[32] L. D. Floriani, P. Magillo, and E. Puppo, "Multiresolution Models for

Topographic Surface Description," The Visual Computer, vol. 12, pp. 317-345,

1996.

[33] D. Luebke and C. Erikson, "View-dependent simplification of arbitrary polygonal

environments," in Proceedings of the 24th annual conference on Computer

graphics and interactive techniques: ACM Press/Addison-Wesley Publishing Co.,

1997.

[34] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner,

Level of Detail for 3D Computer Graphics: Morgan Kaufmann, 2003.

[35] Y. He, "Multiple Resolution Surface Representations and Their Extension for

Dynamic Terrain: A Survey," Survey Paper, Department of Computer Science,

The University of Iowa, 1999.

191

[36] J. El-Sana and A. Varshney, "Generalized View-Dependent Simplification,"

presented at Proceedings of Eurographics, 1999.

[37] D. Cohen-Or and Y. Levanoni, "Temporal Continuity of Levels of Detail in

Delaunay Triangulated Terrain," Proceedings of the 7th conference on

Visualization, pp. 37-42, 1996.

[38] P. Cignoni, E. Puppo, and R. Scopigno, "Representation and Visualization of

Terrain Surfaces at Variable Resolution," The Visual Computer, vol. 13, pp. 199-

217, 1997.

[39] H. Hoppe, "Smooth view-dependent level-of-detail control and its application to

terrain rendering," in Proceedings of the 9th conference on Visualization.

Research Triangle Park, North Carolina, United States: IEEE Computer Society

Press, 1998.

[40] M. P. Kumler, "An intensive comparison of triangulated irregular networks

(TINs) and digital elevation models (DEMs)," Cartographica, vol. 31, pp. 1-48,

1994.

[41] A. Ogren, "Continuous Level of Detail in Real-time Terrain Rendering," in M.S.

Thesis, Computing Science. Umea, Sweden: University of Umea, 2000.

[42] B. Turner, "Real-Time Dynamic Level of Detail Terrain Rendering with ROAM."

Gamasutra: http://www.gamasutra.com/features/20000403/turner_01.htm, 2000.

[43] M. Duchaineau, "ROAM Algorithm Version 2.0,"

http://www.cognigraph.com/ROAM_homepage/ROAM2/, 2003.

[44] S. Röttger, W. Heidrich, P. Slussallek, and H. P. Seidel, "Real-Time Generation

of Continuous Levels of Detail for Height Fields," in Proceedings of 1998

International Conference in Central Europe on Computer Graphics and

Visualization, 1998.

[45] P. Lindstrom and V. Pascucci, "Terrain Simplification Simplified: A General

Framework for View-Dependent Out-of-Core Visualization," IEEE Transactions

on Visualization and Computer Graphics, vol. 8, pp. 239-254, 2002.

[46] J. Levenberg, "Fast View-Dependent Level-of-Detail Rendering Using Cached

Geometry," in Proceedings of the 13th conference on Visualization: IEEE

Computer Society Press, 2002.

[47] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno,

"BDAM - Batched Dynamic Adaptive Meshes for High Performance Terrain

Visualization," Computer Graphics Forum, vol. 22, pp. 505-514, 2003.

192

[48] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno,

"Planet-sized Batched Dynamic Adaptive Meshes (P-BDAM)," Proceedings of

the 14th conference on Visualization, pp. 147-155, 2003.

[49] W. H. de Boer, "Fast Terrain Rendering Using Geometrical MipMapping,"

http://www.flipcode.com/articles/article_geomipmaps.shtml, 2000.

[50] L. Williams, "Pyramidal Parametrics," in Proceedings of the 10th annual

conference on Computer graphics and interactive techniques. Detroit, Michigan,

United States: ACM Press, 1983.

[51] L. E. Hitchner and M. W. McGreevy, "Methods for user-based reduction of model

complexity for Virtual Planetary Exploration," presented at IS&T/SPIE's

Symposium on Electronic Imaging, Proceedings of SPIE, San Jose, 1993.

[52] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shanz, "Designing a PC

Game Engine," IEEE Computer Graphics and Applications, vol. 18, pp. 46-53,

1998.

[53] A. Asirvatham and H. Hoppe, "Terrain Rendering using GPU-based Geometry

Clipmaps," in GPU Gems 2, M. Pharr and R. Fernando, Eds.: Addision-Wesley,

2005.

[54] X. Li and J. M. Moshell, "Modeling soil: realtime dynamic models for soil

slippage and manipulation," in Proceedings of the 20th annual conference on

Computer graphics and interactive techniques: ACM Press, 1993.

[55] B. Chanclou, A. Luciani, and A. Habibi, "Physical Models of Loose Soils

Dynamically Marked by a Moving Object.," Computer Animation, pp. 27-35,

1996.

[56] R. W. Sumner, J. F. O'Brien, and J. K. Hodgins, "Animating Sand, Mud, and

Snow," Computer Graphics Forum, vol. 18, 1999.

[57] K. Onoue and T. Nishita, "Virtual Sandbox," in 11th Pacific Graphics Conference

on Computer Graphics, 2003.

[58] K. Onoue and T. Nishita, "An Interactive Deformation System for Granular

Material," Computer Graphics Forum, vol. 24, pp. 51-60, 2005.

[59] W. Pan, Y. E. Papelis, and Y. He, "A Vehicle-Terrain System Modeling and

Simulation Approach to Mobility Analysis of Vehicles on Soft Terrain," in

Proceedings of the International Society for Optical Engineering, vol. 5422, G. R.

Gerhart, C. M. Shoemaker, and D. W. Gage, Eds. Bellingham, Washington USA,

2004.

193

[60] X. Cai, F. Li, and S. Zhan, "Research of Dynamic Terrain Based on Regular

Triangles in Complex Battlefield Environments," Journal of System Simulation,

vol. 17, 2005.

[61] X. Cai, F. Li, H. Sun, and S. Zhan, "Research of Dynamic Terrain in Complex

Battlefield Environments," in Edutainment 2006, Lecture Notes in Computer

Science 3942: Springer-Verlag, 2006.

[62] G. Chen and J. Zhang, "Dynamic Terrain LOD with Region Preservation in 3D

Game Engine," in Edutainment 2006, Lecture Notes in Computer Science 3942:

Springer-Verlag, 2006.

[63] A. Shamir, V. Pascucci, and C. L. Bajaj, "Multi-Resolution Dynamic Meshes with

Arbitrary Deformations," in Proceedings of the 11th conference on Visualization:

IEEE Computer Science Press, 2000.

[64] S. Kircher and M. Garland, "Progressive multiresolution meshes for deforming

surfaces," in Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium

on Computer animation. Los Angeles, California: ACM Press, 2005.

[65] Y. He, J. Cremer, and Y. Papelis, "Real-time Extendible-resolution Display of

On-line Dynamic Terrain," in Proceedings of the 2002 Conference on Graphics

Interface. Calgary, Alberta, Canada, 2002.

	Georgia State University
	ScholarWorks @ Georgia State University
	12-4-2006

	A Framework for Dynamic Terrain with Application in Off-road Ground Vehicle Simulations
	Anthony Scott Aquilio
	Recommended Citation

	Microsoft Word - diss_1.18.doc

