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A FRAMEWORK FOR DYNAMIC TERRAIN WITH APPLICATION IN OFF-ROAD 

GROUND VEHICLE SIMULATIONS 

by 

ANTHONY S. AQUILIO 

Under the Direction of Ying Zhu and G. Scott Owen 

ABSTRACT 

 

The dissertation develops a framework for the visualization of dynamic terrains for use in 

interactive real-time 3D systems. Terrain visualization techniques may be classified as 

either static or dynamic. Static terrain solutions simulate rigid surface types exclusively; 

whereas dynamic solutions can also represent non-rigid surfaces. Systems that employ a 

static terrain approach lack realism due to their rigid nature. Disregarding the accurate 

representation of terrain surface interaction is rationalized because of the inherent 

difficulties associated with providing runtime dynamism. Nonetheless, dynamic terrain 

systems are a more correct solution because they allow the terrain database to be 

modified at run-time for the purpose of deforming the surface. Many established 

techniques in terrain visualization rely on invalid assumptions and weak computational 

models that hinder the use of dynamic terrain. Moreover, many existing techniques do 

not exploit the capabilities offered by current computer hardware.  

In this research, we present a component framework for terrain visualization that 

is useful in research, entertainment, and simulation systems. In addition, we present a 

novel method for deforming the terrain that can be used in real-time, interactive systems. 

The development of a component framework unifies disparate works under a single 

architecture. The high-level nature of the framework makes it flexible and adaptable for 

developing a variety of systems, independent of the static or dynamic nature of the 

solution. Currently, there are only a handful of documented deformation techniques and, 

in particular, none make explicit use of graphics hardware. The approach developed by 



this research offloads extra work to the graphics processing unit; in an effort to alleviate 

the overhead associated with deforming the terrain. 

Off-road ground vehicle simulation is used as an application domain to 

demonstrate the practical nature of the framework and the deformation technique. In 

order to realistically simulate terrain surface interactivity with the vehicle, the solution 

balances visual fidelity and speed.  Accurately depicting terrain surface interactivity in 

off-road ground vehicle simulations improves visual realism; thereby, increasing the 

significance and worth of the application. Systems in academia, government, and 

commercial institutes can make use of the research findings to achieve the real-time 

display of interactive terrain surfaces. 

 

INDEX WORDS: Terrain visualization, Dynamic terrain, Vehicle visualization, Off-road 

simulation
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1. Introduction 

1.1 Significance 

Terrain is a commonplace presence in everyday life that is easily perceived, 

assessed, and understood. The commonality of terrain makes it an essential component in 

virtual worlds that seek to imitate reality. In order to be recognized and accepted by an 

observer, terrain visualization must meet conscious and subconscious expectations. The 

explicit needs may include nothing more than the visual presence of a surface element. 

However, for a truly immersive experience, it is necessary to provide an interactive 

terrain presence that conveys additional information to the user including composition 

and make up. Terrain visualization is an area in Computer Graphics that seeks to depict 

terrain in the visual display similarly to viewing its real-world counterpart.  

While, the visual display of the terrain may be perceived as mere backdrop in 

some systems, its absence would immediately dissuade the user from viewing the scene 

realistically. As such, the terrain is a critical part of many simulation and visualization 

systems and it cannot be excluded. In addition, terrains may also be considered a 

universal component due to its commonality. The critical and universal nature of 

visualizing the terrain makes it an ideal pursuance in research. 

1.2 Motivation 

Currently, there exists a catalogue of algorithms with varying strengths and 

weaknesses in terms of algorithmic complexity and visual quality for terrain 

visualization. Of these algorithms, the majority of research addresses static terrains only. 

Methods for dynamic terrains extend upon static terrain, but also present additional, non-
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trivial challenges. While the additional challenges complicate the matter, dynamic terrain 

solutions are more complete. Visualization and simulation systems provide more accurate 

results when using a dynamic terrain method; however, most systems do not employ a 

dynamic solution because of the challenges. With recent improvements in computer 

hardware, it is possible to develop practical dynamic terrain techniques that do not 

overtax the system and impede performance.  

Since the inception of the wheel and cart, generation after generation of man has 

sought to improve the performance, handling, and style of ground-vehicles. In recent 

history, the computer has become an indispensable tool in the study of the automobile. 

Not only can the computer be used to design and manufacture vehicles, but it also serves 

as a means to study and prototype through simulation. In driving simulators and games, 

the user operates a virtual vehicle in a simulated world. In order to provide a good user 

experience, the simulation should portray driving accurately and realistically.  For real 

world driving, the relationship that exists between the vehicle and the terrain surface 

defines the mobility and motion of the vehicle. In accordance, the virtual version should 

also take into account the relationship between the contact points and the terrain. In 

systems that only consider on-road driving conditions, this relationship can be assigned a 

fixed set of values, because on-road driving can assume the surface is rigid. Rigid 

roadways are characteristic of ideal driving conditions. In the real world, vehicles 

negotiating off-road environments may carve into the surface leaving traces remnants of 

tire-soil convergence. In worse-case scenarios, the soil makeup is so loose that the 

vehicle may become stuck and unable to escape. Driving simulators need to account for 
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the interactivity of the tire and soil if they are to realistically and accurately portray off-

road driving. 

Simulations of ground-vehicles in off-road conditions stand to benefit from 

inclusion of dynamic terrain solutions because it increases realism of the scene and 

accuracy of the experience. In an effort to improve terrain visualization systems, such as 

is used in ground-vehicle simulation systems, there needs to be a framework that defines 

the components necessary for displaying the terrain and their interrelations. In addition, 

workload associated with terrain visualization needs to be well-distributed; making good 

use of the available hardware. Integration of the framework into the system improves the 

application because it creates a better system through an improved user experience. 

1.2.1 Motivation in Terrain Visualization 

Research in terrain visualization can be justified by its universal presence and 

advances in the area serve to benefit a large community. While the community that 

makes use of terrain visualization techniques is diversified, the needs are similar. Many 

of these systems strive to produce highly accurate simulations and realistic visual systems 

that operate in real-time, further complicating the task by imposing hard deadlines to 

achieve interactive frame rates. Advances in terrain visualization are invaluable to all 

systems that endeavor to produce highly-realistic virtual worlds. 

Entertainment Media, Training & Simulation, and Automotive Industries are just 

a few of the application domains that make common use of terrain visualization 

techniques. Entertainment media require terrain visualization in applications, such as 

video games, as a rudimentary component. Massively Multiplayer Online Role-Playing 

Games are one gaming genre that makes extensive use of terrain visualization techniques 
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in order to allow the player to explore vast, seamless landscapes. Geographical 

Information Systems (GIS) applications allow users to view varying levels of detail for a 

given area of the earth’s surface. In some GIS applications, the user is able to track 

entities and survey the topology from varying angles, distances, and locations. Training 

& Simulation systems endeavor to display realistic, interactive terrains. Flight simulators, 

used to train military pilots, incorporate large landscapes that are displayed in real-time to 

the pilot during training. Outside of commercial ventures, academia has a vested interest 

in terrain visualization. A number of research efforts depict terrains in their simulation 

systems with a variety of objectives and needs. For many of these systems, the terrain 

must be well-represented, both visually and computationally. Research in terrain 

visualization can revolutionize the way consumers, trainees, and researchers interact with 

the virtual world.  

The majority of terrain visualization techniques operate under the premise that the 

terrain is rigid. Algorithms designed for static terrains assume that the terrain’s 

topological description is fixed, which limits interactivity and prevents surface reactivity. 

In contrast, dynamic terrains allow for the surface to be deformed at runtime. With the 

added capability to change the surface at runtime, environments can be more accurately 

portrayed. Terrain dynamics for soft surfaces like sand, snow, and mud can record object 

movement by deforming the terrain. Systems that use static terrain internally represent all 

earthen compositions with a maximum hardness factor, which is unrealistic. As a general 

solution, dynamic terrain is a more accurate approach for terrain visualization; however, 

it also presents a unique set of challenges. 
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1.2.2 Motivation in Ground Vehicle Visualization and Simulation 

Ground-vehicle simulation in off-road environments is one simulation type that 

can benefit from the inclusion of a dynamic terrain solution. Manmade roadways are rigid 

and unaffected by the vehicles that make use of it, but off-road conditions do not offer a 

fixed standardized pliability. The terrain description, the vehicle, and the tire contribute 

to the overall trafficability. The trafficability directly influences trace remnants that can 

uniquely identify the vehicle and its travel path. For instance, a large truck driving across 

a snowy field will maneuver differently than a motorcycle traversing a sandy beach, and 

both will leave behind distinct markings. Unfortunately, most modern day systems ignore 

the relationship of the vehicle and the terrain, at the expense of visual correctness. In 

these situations, a dynamic terrain strategy can improve realism.   

Visually-enhanced driving simulators seek to accurately simulate vehicle 

movement and display an image to the viewer that is faithful to what would be seen in 

real-life. Lack of a deformation strategy reflective of the underlying simulation model 

hinders visual realism, which leads to limited usability and applicability. Obviously, 

when the computational model in the simulation accounts for the tire-soil relation, the 

terrain deformation should be present in the visual system. For real-time systems, care 

must be taken to build the computational model in such a way that it is complex enough 

to provide accuracy, but simplified enough to execute quickly. Including a deformation 

solution to achieve terrain dynamics compliments the simulation model by offering visual 

confirmation of the computed results. 

Terrain visualization is used in a number of applications; therefore, improvements 

in the field benefit a wide and varied audience. The ideal terrain handling system would 



6 

 

include the interface and functionality to interact with the surface in a realistic and 

meaningful manner. In an effort to reach this goal, it is necessary to focus efforts on 

dynamic terrain solutions. Assumed computational overhead associated with dynamic 

terrain is compensated by improving realism and a more faithful visual system. 

Simulations of off-road driving conditions are one application domain that can benefit 

from the inclusion of a dynamic terrain technique. With the aid of the underlying 

computational model, the visuals are drastically improved and the results more 

significant. Dynamic terrain has widespread applicability and usefulness; as such, 

improving the field of terrain visualization is in the best interest of many.  

1.3 Research Objective 

Ideally, terrain visualization would replicate terrestrial characteristics absolutely 

and completely; however, computers are currently incapable of simulating to that level of 

detail. As a middle ground, these systems must make simplifications in the strategies 

applied to the problem domain that limit variability at the cost of system precision. The 

objective of the research is to improve upon the current trends in terrain visualization by 

devising a terrain visualization framework that includes the option to offer terrains 

dynamics. Inclusion of a dynamic terrain system can produce a more convincing and 

accurate visual display at the cost of additional processing workload. Secondly, the 

research shall present a novel approach for deforming the terrain. In an effort to limit the 

impact on processing resources, the deformation strategy is well-distributed in such as 

manner that it makes good use of the capabilities of current hardware. A software module 

for simulating ground vehicles in off-road conditions is used as a practical demonstration, 

with the intent of demonstrating the research in a practical setting. Systems that 
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incorporate the framework and employ the deformation solution can achieve a more 

realistic and precise depiction of the terrain, than those without.  

1.4 Challenges 

Terrain visualization is a challenging topic in real-time computer graphics. At the 

root of the many difficulties is the immense size of the data in connection to the user's 

expectations of the visual display. The ideal terrain renderer is capable of displaying 

sprawling landscapes at an infinite resolution [1]. It renders a perfect visual presentation 

of the land from all vantage points and distances, just as if viewed in the physical world. 

For instance, a viewer would be able to examine a single blade of grass up close and to 

see the fine detail. Yet, at a distance the same blade should be completely indiscernible as 

it blends in with the rest of the surface matter. At this point in time, computer systems are 

unable to achieve this level of fidelity through brute force rendering of the scene. View 

dependent methods for terrain visualization are necessary to achieve this type of natural 

phenomena without overtaxing system resources. The difficulties faced in view-

dependent methods are exacerbated when, in whole or in part, the terrain dataset can be 

modified at runtime. 

In the modern world, our daily lives are subject to the use of ground vehicles as a 

means for transportation. The physics governing the interaction between a vehicle and the 

ground surface is very complex. This complexity is compounded by the fact that terrains 

are not composed of uniformly distributed soil composition or ground coverage. 

Topological changes are determined by the correlation of surface conditions with the 

attributes of the contact points, which normally consists of the tire description. Surface 

changes, like tread marks, can convey meaningful information about the vehicle and 
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surface properties to an observer. While the vehicle may not be visible anymore, many 

characteristics about it can be inferred through a visual examination and evaluation of 

observable trace remnants. Terrain deformation in a simulation system must ensure that 

the applied displacement faithfully expresses these relationships to the observer. 

Whether for research or entertainment purposes, simulations are used to simulate 

something of interest to an observer. To meet the expectations of the observer, a 

simulator must be able follow alternate paths of execution. The course of execution may 

be affected by altering the state of the system, modifying parameterized values for 

simulated entities, or directly interfering with the simulation at runtime. At the same time 

as being reactive, many simulation systems are expected to run in real-time. A real-time 

system includes meeting schedules with time driven deadlines, in addition to maintaining 

computational correctness. While meeting the prescribed deadlines, many real-time 

simulation and visualization systems must be dynamic, reactive, and responsive to 

external stimuli. The visual systems considered in this research are for real-time 

rendering, so both the simulation system and the graphics system must meet hard 

deadlines. 

Terrain visualization is a broad field comprised of numerous conundrums that 

must be addressed. The components that form a complete terrain visualization technique 

address data management, processing, and display. Terrain visualization requires 

coordination and cooperation between many components to maximize visual fidelity and 

optimize throughput. A number of popular, conventional methods in terrain visualization 

have recently become antiquated, while newer techniques do not explicitly address the 

features of a dynamic terrain solution.  
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1.4.1 Terrain Challenges 

Terrain visualization encompasses many components that contribute to the 

display of the terrain in a scene. Each of these components brings its own set of 

challenges and difficulties that require attention. Strategies within modeling, rendering, 

and animation may require specialization in order to perform their duties in a dynamic 

system. In those cases where augmentation or specialization is required, it is necessary to 

overcome the hardships that would otherwise prevent the use of a dynamic terrain 

solution. 

1.4.2 Simulation Challenges 

Simulation systems attempt to model restricted views of the world that can be 

observed, studied, and investigated. Many ground-vehicle simulation systems over-

simplify the relationship that exists between the terrain and the vehicle, which negatively 

impacts the usefulness of the system. Unlike the real-world, most simulations assume a 

single, optimal ground composition and the tire-soil interaction are commonly ignored. 

Eliminating these fallacies can promote a stronger simulation and visual depiction. 

1.4.3 Paradigms for Hardware 

Computers are complex, powerful machines that include specialized hardware 

with advanced capabilities. Hardware for the consumer market improves yearly and while 

some changes, like faster memory and increased bandwidth, are transparent to developers 

others require direct human intervention. For instance, current Graphics Processing Units 

have replaced the fixed functionality pipeline of previous generations with a fully 

programmable graphics pipeline. Using the programmable pipeline requires specialized 

code that is uploaded and executed on the hardware unit. To maximize the effectiveness 
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of these types of hardware, new programming paradigms must be learned, adopted, and 

mastered. New and innovative techniques must be devised that explicitly exploit the 

capabilities afforded by the non-transparent revolutions in consumer-market hardware. 

1.4.4 Framework 

Often methods cannot be adopted for use because they are poorly engineered. 

Unrealistic assumptions, inflexible designs, and rigid specifications affect the practicality 

and usefulness of a proposed solution. A general approach for dynamic terrain can be 

used in a number of applications like simulations, video games, and animations. For an 

authentic driving simulation, it is necessary to consider the tire-soil interactivity in the 

computational model and terrain deformation in the visualization module. A loose 

coupling between the dynamic terrain and computational model allows different 

components to adapt to meet the needs of the system. A component-based design allows 

future work to make use of only those pieces identified as necessary and appropriate. For 

example, research that seeks to study the visualization of bipedal movement across a 

terrain surface could adapt a high-level terrain visualization framework to address its 

specific needs. In an effort to encourage using these pieces together, the unified interface 

of a framework must first be established. The framework facilitates future studies that 

seek to validate, refine, or extend the results of this research initiative. 

1.5 Methodology: Visualizing Dynamic Terrain in Off-Road Conditions 

1.5.1 Criteria & Goals 

First and foremost, the research seeks to improve the field of terrain visualization 

with innovations that promote dynamic terrain research and development. The first goal 

of the research is to develop a component framework that inherently supports dynamic 
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terrain. Secondly, it shall devise a novel method for deforming the terrain that can be 

used as a dynamic terrain solution in terrain visualization systems. In support of the 

research objectives, we shall develop an application for the visualization of off-road 

ground-vehicles that uses the framework and incorporates the technique to create 

meaningful surface deformations. To this end, the deformation strategy must support: 

1. The generation of visually meaningful surface deformations based on the 

imposing object. 

 

2. The offloading of added computational overhead incurred to the GPU. 

 

3. Scalability through seamless integration with terrain visualization systems that 

support level of detail. 

 

The research originates an innovative approach for dynamic terrain visualization 

suitable for interactive real-time systems, with applications in off-road terrain 

visualization and ground-vehicle simulation. The techniques facilitate the conveyance of 

meaningful information to the observer. The computational model in the simulation is 

simplified, yet practical, to achieve realistic results with acceptable performance. The 

visualization of the terrain is accomplished with a dynamic solution, in order to produce 

content that has meaning in the visual system. The work will be validated by a custom 

implementation. 

1.5.2 Terrain Visualization 

Terrain visualization requires specialized methods to achieve convincing visual 

displays that do not hinder runtime performance. Dynamic terrain solutions require that 

the terrain surface can be modified at runtime. 

Tread marks, footprints, and other residual information can remain in soft terrain 

surfaces after the causal source has left the affected area. Surface deformation in ground-
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vehicle simulation is necessary in the virtualization of tire-soil interaction and for 

providing traceability information. Whether the trace information is pronounced or 

subtle, it can prove invaluable in the communication of information. For example, a 

snowy field with tire impressions imparts vehicle presence and pathing information; 

whereas, a snow field with footprints relays a completely different record of activity and 

surface composition. Inclusion of surface deformations resulting from object-terrain 

interaction is necessary for the high-fidelity terrain visualization.  

1.5.3 Vehicle Simulations 

Driving simulators that do not account for tire-soil interaction are incomplete 

because they use a model that produces crude, overly-simplified visual interpretations of 

physical reality. Manmade roadways have specific properties considered ideal for 

driving; however, off-road terrain is composed by nature and suffers a non-uniform 

distribution that can range from ideal to worst-case driving conditions. Many systems 

assume that ideal driving conditions always exist and opt to ignore terrain composition 

variability.  

To improve upon the features found in ground-vehicle simulations, the interaction 

between the vehicle and the ground surface must be faithfully represented by the visual 

display. Although the concept is not novel, the research initiative offers many distinctive 

qualities that make it unique and important.  

1.5.4 Terrain Deformation 

Dynamic terrains are unique because the terrain database can be modified at 

runtime. Soil Mechanics is a specialized field in the larger discipline of Physics that 

strives to explain the mechanics of ground matter. Physics-based dynamic terrain will 
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simulate the motion of the ground, such as soil slippage, sinkage and compression, using 

soil properties like saturation, permeability and granularity. In contrast, appearance-based 

methods lack detailed computational precision, but can achieve visually acceptable 

results using fabricated control parameters. In both cases, the resulting surface 

deformation provides the desired visual cue. 

1.5.5 Hardware Specialization 

While some advances in hardware promote system improvements transparently, 

others do not. For the most part, the ‘opaque’ methods require specialization in order to 

benefit from new hardware features. For Computer Graphics, a recent and significant 

change is the current transition from the fixed pipeline to a programmable one. With this 

change it has become necessary to alter the working mindset to gain the improvements 

afforded by the current GPU.   

The recent evolution of the GPU affords us the opportunity to directly control 

powerful graphics hardware. The use of the programmable pipeline expedites geometry 

processing and can be utilized in order to reduce the computational workload placed on 

the CPU. However, to make full use of the feature it is necessary to augment traditional 

software development. The need to create, configure, and upload a specific shader 

program necessitates additional programming during system development (i.e. the benefit 

is not transparent). As time goes on, the programmable pipeline will become the de facto 

standard, but for now the field is in a state of transition and old techniques must be 

reformulated while new techniques should strive to use the GPU to its full potential. 
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1.5.6 Framework 

Frameworks are used to assist in the validation, reproduction, and evolution of 

research. Logically, the visualization and simulation components are independently 

useful. However, they can be regarded as a single system with narrower scope, but 

greater functionality. Interconnectivity between system components may be exemplified 

in the form of a framework. The framework is both practical and useful for developing 

systems that include the terrain visualization. The individual components presented by 

the framework define a unified approach, interwoven into a high-level composition that 

facilitates research in dynamic terrain visualization.  

1.6 Contribution & Results 

Terrain visualization is commonplace and used in a number of visual systems. 

The ultimate goal for terrain visualization is to recreate terrain for virtual systems that is 

both realistic and natural. Currently, it is not feasible to completely imitate the natural 

terrain in a virtual world. However, as hardware improves terrain visualization should 

move towards its ultimate goal.  

To facilitate greater realism, the research offers a unified approach for terrain 

visualization in a component framework solution. The framework promotes the use of 

dynamic terrain, when appropriate; in order to better simulate the real world. Specifically, 

the research presents a new method for performing fast and efficient terrain deformation. 

Off-road ground vehicle simulation is used for an example domain that can benefit from 

the use of the component framework and dynamic terrain methods. Many vehicle 

scenarios, like fishtailing and ‘peel-outs’ are commonplace in modern driving simulation, 

but terrain deformation and trafficability is not.  
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The research contributes to the subject area of terrain visualization within the field 

of Computer Graphics. The primary focus is to improve terrain visualization, with a 

demonstration in the area off-road ground vehicle simulation. The specialized 

implementation results of the research are suitable for adaptation in systems that desire 

the inclusion of a more realistic, more accurate simulation of off-road terrain conditions.  

In the field of Computer Graphics, the solution improves terrain visualization 

through its innovative approach for interactive, real-time applications that employ a 

terrain visualization system. The component framework is a flexible, modular approach 

for the research and development of terrain visualization. Its component makeup allows it 

to adapt to the demands of the hosting system. In addition, the deformation strategy is a 

self-contained unit, which integrates well within the framework, but can also be used 

independently.  As such, the standalone technique is suitable for use in any system as a 

general purpose terrain deformation solution. Dynamic terrain systems enhance the 

system and improve the user experience. Observers can derive information regarding soil 

composition and surface trafficability using the added capability of deformable terrains. 

Many ground-vehicle simulations lack the visual display of tire-soil interactivity. 

For off-road driving simulations, the research presents a complete demonstration of 

visualizing realistic tire-soil interactivity. Systems that employ the research strategies are 

empowered to produce better driving simulations through improved runtime realism. 

Visual realism is enhanced because the terrain depicts impacting forces using the 

deformation technique. In general, this research is helpful for improving accuracy in 

computations of the system and for expanding the quantitative display of information to 

the observer.  
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Many features and capabilities available on system hardware require direct 

attention in the design and architecture of a solution. Systems run better when the 

available hardware is used effectively. Dissemination of workload is necessary to avoid 

bottlenecks that can debilitate the usefulness of an algorithm, operation, or framework. In 

an effort to balance the workload assumed, the research strives to use a ‘best of breeds’ 

approach that makes optimal use of the GPU. In particular, the solution offloads works to 

the GPU to expedite scene rendering by displacing the extra work incurred from the 

dynamic terrain. To our knowledge, no published research exists that attempts to levy the 

power of the GPU with a goal of fostering dynamic terrain visualization. 

1.7 Thesis Overview 

The remainder of the thesis is organized as follows: 

Chapter 2 introduces the reader to the field of terrain visualization and explains it 

in the context of the component framework. The field of Computer Graphics is comprised 

of tasks in modeling, rendering, and animation. The framework further refines these 

categorical identifiers with information and techniques pertinent to terrain visualization. 

Subtopics include: data format, spatial partitioning, level of detail, paging, geometry 

maintenance, texturing, shading, atmospheric effects, collision detection, and motion 

control. The relationships and dependencies between the pieces are specified to construct 

a high-level architecture that can be used in the design, development, and analysis of 

terrain visualization systems. 

Chapter 3 further examines background literature in the areas of terrain 

visualization that have received the most attention. Specifically, algorithms in spatial 

partitioning, level of detail, texturing, and terrain dynamics are examined at length. 
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Spatial partitioning and level of detail attempt to offer improved performance by limiting 

the amount of data processed without impairing the visual quality of the scene. In 

particular, level of detail allows for large, expansive terrain meshes to be used and is the 

focus of the majority of research in the field. Texturing for terrains can be unique due to 

the potentially large mesh, which has resulted in specialized algorithms that attempt to 

eliminate visual artifacts. Lastly, we present a review of terrain deformation strategies, 

which are an underlying requirement in developing a dynamic terrain solution. The 

detailed survey of these topics is used to establish a greater understanding of the field and 

its difficulties. 

Chapter 4 discusses issues of concern in dynamic terrain and presents novel 

approaches for their handling. First, the issue of insufficient resolution is examined. A 

high-level specification and detailed technical solutions are provided in the context of a 

newly identified construct: Dynamically Divisible Regions. In addition, we designate the 

process for terrain deformation and then propose a detailed technique that abides by the 

process. Notably, the technique makes use of the GPU to minimize the impact to 

performance and is adaptable for use in a number of systems.  

Chapter 5 reviews the development of an application system that uses the research 

in a fully functioning terrain solution. The component framework was used to design and 

develop a dynamic terrain solution that incorporates Dynamically Divisible Regions and 

the GPU-based deformation technique in a complete solution. The system was integrated 

into an application for the simulation and visualization of off-road ground vehicles. The 

practical nature of the research findings is exemplified in the application, which achieves 

greater realism by using a high-performance dynamic terrain solution. 
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Chapter 6 concludes the thesis with a review and discussion of future research 

directions. The conclusion provides a brief overview and restates the major key points 

covered. The section on future work documents potential avenues that should be pursued 

in the future for extending and improving the work. 
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2. A Component Framework for Terrain Visualization 

In this chapter, we review general background for terrain visualization. The 

information is presented within the context of a component framework for terrain 

visualization. The architectural layout is comprised of the following top-level 

components:  

• Modeling  

• Model Services 

• Rendering 

• Animation 

• Application Logic 

 

Each component is decomposable into algorithmic groups and each group 

addresses specific needs within the system through the execution of particular tasks. 

Explicit and implicit relations between decomposable units interconnect the algorithms. 

The connections form bonds between components, which gives forth a unique framework 

configuration. The complexity of a specific framework instantiation is dependent on the 

internally used techniques, which makes it adaptable in terms of complexity. The 

framework formalizes the definition of a complete solution for systems in need of terrain 

visualization.  

2.1 Introduction 

Terrain visualization solutions are complex systems that employ a variety of 

techniques to create a convincing visual representation of a terrestrial surface. The 

selections made regarding data storage, maintenance, and processing influences the visual 

quality and the technical capabilities of the solution. Although they appear to act in 

isolation, many techniques in a terrain visualization system must be coordinated to work 
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together. A number of system attributes are shared that can be used to identify algorithms 

that support seamless integration between components. Shared attributes and cross 

component relationships give rise to the architecture of the component framework for 

terrain visualization. 

Issues in terrain visualization have generated a wealth of research over the years; 

however, the findings seem fragmented and disjoint. The disparate nature is a result of 

the failure to examine the coordination of new techniques in the context of a complete 

terrain visualization system. The component framework presented in this chapter offers a 

unifying architecture that facilitates research with a new tool for design, development, 

and comparative analysis of systems. In particular, the framework defines relationships 

between components that aid in determining appropriateness and viability of use.  

The first level of decomposition for the framework consists of the following units: 

Modeling, Model Services, Rendering, Animation, and Application Logic (Figure 1). 

Modeling, Rendering, and Animation are common action classifiers in the field of 

Computer Graphics, while Model Services and Application Logic are specialized 

concentrations whose purposes are to provide runtime operations and handle application 

domain logic, respectively.  

The first-class units are further refined into algorithmic groups that unitize 

methods in order to achieve a goal. In some cases, multiple, distinct algorithms must be 

coordinated to achieve the task, which forms a composite algorithm. Whether singular or 

composite, a new algorithm that performs the duties is added to the pool of candidate 

strategies available for use in systems. Selection of the correct algorithm from the 

candidate pool is unique, depending on the system’s needs and design. The discovery of 
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new algorithms leads to a larger candidate pool. For selection from the candidate pool, it 

is often preferred to choose a solution that runs efficiently and integrates well with other 

algorithms.  

 

 
 

Figure 1 Component Framework Diagram for Terrain Visualization Systems. 

 

The relationships that exist between the components and their internal algorithmic 

groups are fundamental to the design and implementation of a terrain solution. Lack of 

foresight and puzzlement over interrelations often results in problematic systems due to 

conflicts arising from ill-matched strategies. Constructing the system such that 

interrelated tasks are complimentary serves to optimize runtime performance, as well as, 

ease development. 
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2.2 Modeling 

The practice of modeling is fundamental to the field of Computer Graphics. 

Technically, modeling involves constructing a representation of an object suitable for 

rendering imagery that is illustrative of the object’s visual presentation. Some of the 

solutions used in modeling are static polygonal meshes, procedural methods, and bicubic 

patches. Each approach has its strengths and weakness. Choosing the correct approach is 

largely dependant on the intended use of the model and the requirements of the system.  

Usually, a terrain mesh is represented as a polygon mesh because it is simple and 

versatile. A polygon mesh is composed of a well-defined set of vertices that describe the 

visible ‘shell’ of an object. A polygon mesh is decomposable into vertices and edges that 

describe polygonal primitives. The polygonal primitives form the virtual object’s model, 

which is drawn to the screen that is watched by an observer. A terrain mesh is a large 

model and, for complex or large meshes, the decisions regarding data organization, 

management, and maintenance become vital to ensuring consistent frame rates.  

2.2.1 Data Organization 

A polygon mesh that represents a terrain surface is a simplified approximation of 

a topographical surface that can come from many different sources. If the model is 

intended to imitate an actual geographic location, then it is preferable to survey the 

physical terrain. Gathering sample elevation data can be used to generate an accurate 

geometric model. Systematically sampled elevation data provides enough vertex and 

edge connectivity information to create a shell approximation (i.e. the polygon mesh). In 

cases where the terrain is not restricted to a real world topological dataset, the method is 

less stringent. The first option for generating realistic, yet fictitious, terrains is with a 
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procedural generator, such as fractal and noise functions [2]. In systems that require more 

human intervention, content creators may carve the landscape in a content creation 

package. Regardless of the source, the end result of all production methods is a polygon 

mesh for use as a terrain surface in the virtual world. 

Terrain meshes are notoriously large, which is the root source of many difficulties 

in terrain visualization. Terrains must be both expansive and detailed, creating the need to 

store and process vast amounts of data. Terrains sprawl to the horizon; exposing an 

immense amount of visible surface area. Up close, surface elements of the terrain should 

display high fidelity surface features to the observer. For real-time systems, there exists a 

definitive upper limit to the amount of information than can be processed per frame. In 

the context of terrain systems, the upper bound constrains the total amount of terrain data 

that can be processed each frame. It is necessary to limit the amount of geometry 

processed each frame in order to meet the deadlines of a real-time system’s time 

constraints. However, reducing the amount of geometry creates a conflict with the need 

to display far-reaching, yet highly-detailed surface imagery. By seeking balance between 

the expansiveness of surface coverage and the intricacy of surface detail, terrain systems 

can maximize visual quality while minimizing resource consumption. 

Data organization is of great importance to modeling in terrain visualization 

because data layout influences the rest of the solution. One topic of concern is the data as 

it relates to the underlying hardware architecture. Hardware architectures are designed to 

work optimally when data is organized in a specific manner. For example, operating on 

data and instructions with good spatial coherence and temporal locality can result in more 

cache hits, resulting in faster execution on modern processor architectures. For graphics 



24 

 

processing, data organization and the method by which the model data is submitted to the 

hardware will have a significant impact on performance. The second consideration when 

selecting a data format are its characteristic attributes and how they hinder or benefit 

algorithmic options. The two dominant approaches to data format and organization in 

polygon mesh terrain modeling are Triangulated Irregular Networks and Regular Grid 

Networks. 

2.2.1.1 Triangulated Irregular Network 

A Triangulated Irregular Network (TIN) is a tessellation of non-overlapping 

triangles that share edges between no more than two faces. Each vertex of the dataset 

represents a unique point on the surface. Edge connectivity of the vertices forms a set of 

triangles. The set of triangles creates a continuous surface representative of the entire 

terrain. TIN meshes have two predominant qualities. The characteristic of a TIN is that it 

is capable of representing a surface with a minimal number of vertices. Secondly, a TIN 

structure can represent any possible topography; including convex, concave, and planar 

surfaces. 

As the name states, a TIN mesh is composed as a non-uniform network of vertices 

that interconnect to form a continuous surface of adjacent, unique triangles. A TIN uses 

the minimal amount of data necessary to represent the conceived surface offering a fixed 

amount of detail. A polygon mesh will not perfectly model a surface because it is only an 

approximation, but a TIN model allows for dominant surface features to be represented at 

optimal positions. For example, let’s consider a range of irregularly spaced mountain 

peaks. The vertex data for each peak and valley would be defined at the exact position the 

minimum and maximum extents occur. Using the minimum amount of graph information 
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needed to represent the terrain surface consumes the minimum amount of memory and 

limits the total processing overhead. TIN meshes are lightweight in terms of memory and 

processing consumptiveness. 

A TIN mesh can represent any continuous surface. TIN meshes are unbounded 

and are free to define vertices at any location in the local coordinate space, even multiple 

heights above a single coordinate pair of the ground plane. The freedom to place vertices 

anywhere allows the system to model geographical constructs, such as surface folds and 

hollowed out volumes. This freedom makes it possible to replicate terrain features such 

as cliffs, overhangs, caves, and caverns. The ability to uniformly incorporate convex and 

concave geometry as a part of a single, unified polygon mesh is advantageous because 

the entire terrain can be treated similarly.  

While TIN methods are optimal in respect to memory consumption and 

representational flexibility, they do suffer from drawbacks. The loose coupling of 

neighboring triangles is a failing for TIN organization. The unstructured vertex collection 

of a TIN mesh ensures that there is a lack of information regarding adjacent triangles 

because vertices are kept in a hodgepodge collection. The vertices are the endpoints of 

edges that define the triangulated system of polygons. Without a structured relationship 

between neighboring polygons, other operations on the terrain are impacted. For 

example, a collision detection algorithm such as an intersection test will have to test each 

polygon individually to determine if and where an intersection occurs. Consequently, 

every polygon of a mesh will be examined in the case when there is no collision. Another 

side effect of the polygonal disjointedness is that it can break spatial and temporal 

cohesiveness in current memory of system hardware. The data describing neighboring 
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polygons may be in separate areas of physical memory, leading to cache misses. In the 

worst case, poor memory use may significantly degrade performance. The intrinsic 

disjointedness of the polygons is a detriment to the practicality of TIN data organization 

for terrain models. 

2.2.1.2 Regular Grid Network 

A Regular Grid Network (RGN) is a triangulated tessellation of a continuous 

surface that is formed using samples of elevation data taken at regularly spaced intervals. 

In the literature, the terms heightfield and height map are often used interchangeably with 

RGN.  An RGN mesh is a two dimensional grid of elevation samples, characterized by its 

organization and storage of data in a matrix. A popular source of heightfield data is the 

United States Geological Survey (http://www.usgs.gov/), which offers Digital Elevation 

Model (DEM) data. DEM data is a heightfield created by surveying and sampling 

elevations across areas of the United States of America at a fixed, regular interval. While 

the use of an underlying RGN is the preference in the majority of current literature, it is 

not without drawbacks. 

The underlying organization of data in an RGN is ideal for many reasons. An 

RGN mesh has a simple underlying structure. Instead of complicated graphs or sparse 

matrix representations, RGN data can be easily stored and manipulated as a two 

dimensional matrix. The simplistic data layout is easy to work with and offers technical 

benefits. Given the native support of block allocation of memory in many programming 

languages, the implementation of an RGN is simple, if not trivial. Also, runtime 

performance is optimal when the data exhibits good spatial and temporal locality, which 

can result from the allocation and use of physical memory in large blocks. Performance is 
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improved because the grid layout promotes excellent block transfers of data during 

runtime, which achieves good cache coherence. Correctly structuring the data for good 

cache use increases the number of cache hits and the system will exhibit better overall 

performance. 

The underlying matrix structure also guarantees a regularity that can be exploited 

in the design and development of algorithms that operate on the data. Most notably, RGN 

layout guarantees that triangulation results in right triangles, which can behoove the 

algorithmic design (Figure 2). Right triangles offer a variety of special properties that can 

greatly benefit processing a massive triangulated surface, like a terrain mesh. Another 

advantage stems from the indexed vertex configuration, which prescribes inherent 

relationships between adjacent vertices and defines the neighboring information 

explicitly. The cardinality of every vertex in the data grid is easily assessed by its indices. 

The regularity and structured nature of an RGN mesh is favorable to the execution of 

services and operations in terrain visualization. 

Vertex Type Degree Vertex Set 

Corner vertex with 

indices XXXX =],,[ . 

 

2 A, I 

Corner vertex with 

indices YXYX ≠],,[ . 

 

3 C, G 

Edge Vertex 4 B, D, F, H 

Interior vertex  6 E 
 

Figure 2 The rectilinear organization of data for a Regular Grid Network. 

 

Although an RGN, and its underlying matrix format, is exceptional in many 

circumstances, there are constraints that can limit its applicability. The primary drawback 

is that not all surface features may be represented by an RGN mesh. A single RGN mesh 
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cannot represent multiple elevation heights across an area, whereas a TIN mesh can. As a 

result, features such as surface folds and hollowed-out volumes, may not be model using 

an RGN mesh. Consequently, this intrinsic property prevents RGN models from 

characterizing caves and overhangs. 

Another drawback of an RGN mesh is that it tends to be inefficient with regard to 

memory consumption. In most cases, RGN meshes consume more memory than 

necessary. Every element in the matrix stores height data generated from the regular 

sampling of elevation information. Therefore, a block of memory large enough to store 

the entire range of data must is necessary regardless of the variance of the topology 

across the range. Unnecessary elevation data may be present where the elevation does not 

change noticeably. The opportunistic regularity of the sample set is also the source of 

wasted memory and higher primitive counts. 

The last contention point with RGN meshes is the sample interval, because a 

poorly chosen sample interval negatively affects the final result. If the sampling occurs 

too infrequently, then the visual fidelity is undervalued; resulting in poor image quality. 

On the other hand, if sampling occurs too frequently, then the surface is over-sampled; 

thereby, increasing the size of the dataset and negatively affecting runtime performance. 

The problem faced from over-sampling is especially important for large terrains, where 

the dataset is already excessive. In general, the sample size can be controlled in order to 

establish a balance between visual fidelity and resource consumption.  

The appeal of using an RGN mesh comes from the underlying matrix organization 

and the resulting rectangular/triangular geometric properties. These features are easily 
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exploited in algorithms to improve runtime capabilities. Unfortunately, the underlying 

matrix format also imposes rigidity, which can be burdensome.  

The two predominant data organizations for terrain modeling are the Triangulated 

Irregular Network and the Regular Grid Network. Both approaches are useful and 

appropriate when used in an application that can exploit the good qualities and downplay 

the faults. The characteristics of data organization greatly impacts the strategies and 

algorithms devised and employed by the rest of the system.  

2.2.2 Spatial Partitioning 

In interactive, real-time 3D computer graphics applications, the workload must be 

completed each frame while maintaining a consistent framerate above 30 fps (frames per 

second). If the dataset is too large, then the time required to process it will surpass the 

time slice allotted to a frame, causing the system to miss deadlines and failing to run in 

real time. In the case of large terrain models, spatial partitioning is a strategy commonly 

employed to reduce the amount of geometry that gets processed in a frame. By lessening 

the workload, time critical deadlines are reached and the real-time criteria of the system 

is met. 

Spatial partitioning is a technique that can be used to improve performance. With 

spatial partitioning, terrains systems employ a divide-and-conquer tactic when processing 

the geometry. Conceptually, spatial partitioning is the decomposition of a volumetric 

space into subspaces that corresponds to the world coordinate space. Once divided, the 

objects located within the bounds of the world space are sorted into the smallest subspace 

unit that is considered within the solution. In this way, subspace units organize the virtual 

objects in the scene to forms a conglomerated construct useful for improving 
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performance. At runtime, the organization of models into their respective partitions aid in 

occlusion, culling, and collision detection. Spatial portioning aids in organizing scene 

data, which is useful for improving performance. 

Spatial subdivision techniques are either uniform or irregular. Uniform methods 

subdivide a space along regular subspace bounds, such that, each unit produced is of a 

similar geometric shape. Both the grid (2D) and the box (3D) are examples of shapes 

commonly used for uniform spatial subdivision. Irregular methods, on the other hand, 

subdivide the spatial bounds into a set of subspaces, such that, at least two subspace are 

dissimilar. Irregular spatial partitioning is common when defining a bounding volume for 

a model. For the purpose of terrain visualization, uniform methods are used almost 

exclusively. In many cases, the logical bounds of the world space coincide with the 

terrain’s minimum and maximum extents. For a uniform method, the implicitly regular 

shape of the world bounds are subdivided into regularly shaped subspaces. The terrain 

geometry is subdivided into regularly shaped regions that fit into one or more subspace 

partitions. When possible, the subregions are defined ideally in order to fit into a 

partition. The end result is a disassembly of the singular terrain into pieces that can be 

regarded internally as individual meshes. Data organization and application requirements 

usually dictate the appropriateness of a given strategy. A further discussion of Spatial 

Partitioning is given in Section 3.2. 

2.2.3 Level of Detail 

Current computer architectures offer finite processing capability and software 

designs must compensate for the limitations imposed by a system’s hardware. Real-time 

systems are even more overwhelming because the application must meet critical 
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deadlines to be considered a correct solution. Reducing the amount of data that is 

processed in a frame will improve an application’s chances of meeting its time-critical 

deadlines. Level of detail (LOD) is an area of research and class of techniques that seek 

to reduce the computational workload by reducing the amount of data submitted for 

processing.  

Many forms of level of detail exist in Computer Graphics, but techniques in 

geometric simplification algorithms are the most pertinent to the study of terrain 

visualization systems [3]. The basic rules driving geometric level of detail are: 

1. The perceived size of a surface is directly correlated to the total number of 

pixels that the model surface contributes color data to. 

 

2. The perceived size of a geometric surface is inversely proportional to its 

distance from the eye point. 

 

From rules one and two it can be concluded that as an object moves away from 

the eye point, its visible surface will occupy fewer and fewer pixels. Without 

specialization, the same amount of data is processed when the object is up close as when 

the object is far away, even though the data is contributing less information to the image. 

Geometric simplification algorithms attempt to refine the set of geometry used to 

describe an object based on the amount of information contributed to the scene. The 

rational is to process only the geometry that contributes to pixel colorization and remove 

all excess geometry that does not.  

A level of detail technique for terrain visualization is classifiable as: discrete or 

continuous, view-independent or view-dependent, and top-down or bottom-up. In some 

cases, researchers devise hybrid techniques that combine multiple algorithms in an effort 

to derive net benefits, but at a cost of increased algorithmic complexity. In these cases, 
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hybrid solutions may be decomposed, and the parts may be classification and analyzed in 

line with the pure approaches. 

A discrete approach is typified by a two step process. The first step is to generate 

a series of mesh instances that vary from the original, high-detail mesh to a simplified, 

low-detail mesh. In most cases, the set of mesh instances is generated as a preprocessing 

operation during application initialization. The second step is to choose the most 

appropriate instance to process and display in a given frame during runtime. Discrete 

methods are well received because they are simple and work well with current graphics 

hardware. In addition, the ability to handle the bulk of computational overhead for 

discrete methods during initialization makes the method minimally intrusive.  

In contrast to the discrete approach, continuous level of detail methods perform 

most, if not all, of the optimization to the model data during runtime. Typically, the 

model is generated to encode the complete range of mesh detail in a single instance that 

gets incrementally updated at runtime. The decimation and restoration of detail to the 

mesh is handled by the specific level of detail algorithm. Continuous methods are noted 

for being able to achieve optimal mesh granularity, where the object is described using 

the best possible subset of polygons to describe the visible surface.  

The next classifier for level of detail algorithms is view-dependent or view-

independent. In general, a level of detail technique that considers the viewing properties 

when specifying the optimal mesh is view-dependent, whereas methods that prescribe the 

optimal set of geometry irrespective of the view are view-independent. In practice, all 

methods for terrain visualization may be considered view-dependent. However, for 
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discrete approaches, the discrete instances are generated in a view-independent manner, 

but the runtime determination of which instances to display uses view-dependent criteria.  

The generative simplification process for level of detail may be described as 

either top-down or bottom-up. A top-down approach uses a coarse, simplified mesh as a 

starting point and adds detail using rules prescribed by the algorithm. For hierarchical, 

top-down generation, the tree is built from the root downwards. In contrast, a bottom-up 

approach starts from the most detailed mesh and removes geometry. For hierarchical, 

bottom-up generation, the leaves of the tree are simplified upwards to the root. In an 

effort to maintain mesh likeness between successive levels of detail, both approaches 

strive to guarantee changes in geometry do not diverge drastically from the original input. 

Even though level of detail can greatly improve runtime performance by reducing 

computational workload, it introduces its own set of problems that must be addressed. 

One common problem in discrete methods is T-Junctions, which can result in unrealistic 

visual artifacts. T-Junctions occur when neighboring mesh instances differ in level of 

detail. The variation between neighboring meshes creates inconsistencies in shared edges 

of adjacent polygons. T-Junctions may produce noticeable visual surface shading 

discontinuity and cracks at the seams between mesh instances (Figure 3a). Cracking 

occurs when the simplification process removes a vertex from one instance, which results 

in the shared edge no longer being common to both neighbors. If neighboring instances 

are being rendered at different levels of detail and one has removed the vertex, the 

displacement of the vertex may be visually perceived (Figure 3b). The last issue that may 

arise when using a level of detail algorithm is popping. Popping occurs when the 

transition between levels of detail occurs instantaneously, and the displacement of 
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vertices is observable. As a general rule, the presence of any of the three artifacts must be 

minimized, if not eradicated. 
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(b) 

Figure 3 Cracking at a T-Junction. 

T-Junction occurs because neighboring partitions are at different levels of detail. The 

junction occurs where the vertex B is absent from the lower resolution partitioning, but 

present in the higher resolution partition (a). The perspective view of the neighboring 

partitions in (b) reveal cracking at the seam.  

 

Techniques for level of detail in terrain are classifiable based on the strategy used 

in performing the successive adaptation of geometry and the organization of data. There 

are five classes of techniques for level of detail in terrain visualization [4].  

• Irregular Meshes methods are characterized by their allowance of the mesh to be 

maintained as a TIN. Consequently, they can achieve an optimal approximation of 

the surface using a minimal set of data, as has already been discussed. Decimation 

and reconstruction strategies are typically done on a per-polygon basis. 

 

• Bin-Tree Hierarchies are characterized by the use of a tree structure to store, 

maintain, and mutate the mesh data.  These adaptive, continuous level of detail 

techniques use an RGN dataset, which offers a number of optimization 

opportunities. 

 

• Bin-Tree Regions use a tree as a reference structure to assess groups of polygons 

assigned to a region. Regions are not bound to a specific format, offering 

algorithmic flexibility to promote the development of hybrid strategies. 

 

• Tiled Blocks subdivide the terrain into regions, or tiles, and then generate discrete 

instances of each tile at different resolutions. The complete set of non-overlapping 
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tiles form a mix-and-match set of possibilities to process one terrain at varying 

resolutions.  

 

• Concentric Regions define a view-centered, hierarchy of regions. The resolution 

of the mesh is relative to its distance from the viewer, which creates the 

concentricity.  

 

Level of detail is the largest area of research in terrain visualization. A number of 

algorithms exist for level of detail, because it embodies a universal need. A more detailed 

survey of level of detail techniques for terrain visualization is presented in Section 3.4. 

The modeling component of the terrain visualization framework establishes the 

foundation for resource use and defines the geometric quality of the terrain mesh. Sources 

for terrain data may come from real world site surveys, artist invention, or procedural 

generation. The terrain mesh uses an underlying organization for data that serves to help 

or hinder the employment of related strategies. Terrain meshes are notorious for being 

large. Often, it is either impractical or impossible to process the entire terrain every 

frame. Spatial partitioning and level of detail can help reduce the amount of data that is 

processed without affecting image fidelity. Spatial subdivision decomposes the dataset 

into smaller, manageable pieces to aid in culling and expedites collision detection. Level 

of detail methods seek to reduce the workload by identifying and submitting a relative 

subset for processing each frame. Many techniques for spatial partitioning and level of 

detail are heavily reliant on the underlying data organization, and operate exclusively on 

one format or the other. Selection of complimentary techniques promotes a well 

integrated, standardized component for modeling tasks within a terrain visualization 

system.  
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2.3 Model Services 

Modeling techniques are imperfect, and may require Model Services to 

compensate for the imperfections. Model Services are methods that aim to improve 

Modeling algorithms that have unresolved issues. In cases where the amount of data 

exceeds the capacity of system memory, spatial partitioning may be augmented with an 

integrated paging service. Many techniques for level of detail are subject to popping and 

cracking, which can be resolved using Geometry Maintenance services, such as 

geomorphs and skirts. Model Services improve Modeling solutions by extending 

capabilities and resolving problems. 

2.3.1 Paging 

For large terrains models, the amount of mesh data may exceed the amount of 

available in-core memory; making it impossible to load the entire dataset all at once. 

Paging attempts to resolve the conflict between data size and memory capacity by 

managing the presence of data in memory. In systems where the terrain is so large that 

the complete dataset cannot fit into memory, it is also unlikely that the entire terrain will 

be visible all at once. In these situations, only a subset of the data contributes to the 

fidelity of the image and, therefore, only that subset must be loaded into memory for 

rendering purposes. With specialization, it is possible to use spatial partitioning to 

generate the partitions that are then stored offline. Even though each partition is a unique 

set of mesh geometry, the geometric union of them is equivalent to the complete terrain 

mesh. At runtime, viewable partitions are paged into core memory and restored into the 

data structure as a spatial subunit, creating a sparsely populated entity that uses less 

memory without affecting the rendered scene. As the view changes, old partitions going 
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out of view are replaced by new partitions that come into view. In this manner, the 

amount of system memory required is limited to a fixed capacity but the source dataset is 

unbounded. 

Paging is the specific technique for loading and unloading the visible partitions of 

terrain data. Paging limits memory consumption without infringing on the correctness of 

the visual presentation. At runtime, the partitions within the view are paged into memory 

and stored in a terrain data cache. The retrieval may be explicitly performed within the 

application or provided implicitly by the operating system [5]. As the view changes, 

different partitions come into and go out of view. When terrain partitions are needed for 

rendering, they are sought from the cache. When the visible partition data is in the cache, 

it can be immediately processed and rendered. A page fault is when the required data is 

not found in the cache. When a page fault occurs, the partition’s data must be read into 

memory from an external data store. As the data is paged in, it is placed into cache 

memory for faster access on subsequent frames. If the cache is full, the newly paged 

terrain data will replace terrain data that is not needed for the scene. Effective use of 

paging limits the memory requirements of the terrain system solution with a minimal 

impact on performance.  

Terrain paging can create the need to page more than just the geometry data. 

Vertices often have additional information associated on a per-vertex basis that is useful 

for generating good quality imagery. Normals, texture coordinates, vertex colors, and 

other attributes will need to be paged along with positional values. Texture coordinates 

are bound to one or more texture maps, which also implicates the necessary availability 

of the texture resource. The consequence of this relationship is that paging may also have 



38 

 

to handle loading textures and other resources in addition to the vertex data. For terrain 

models that use large textures, but the model does not require paging, a texture paging 

solution may be used exclusively [6]. Paging evokes many possible avenues for 

application in terrain visualization because the dataset can easily surpass the capacity of 

system memory. 

Three properties that will impact the correctness of a terrain paging solution are: 

the cache size, the data access time, and the page replacement algorithm. The first 

concern to be addressed is the cache size because it will directly affect the cache’s hit-to-

miss-ratio. Increasing the size allows for more data to be stored simultaneously, 

improving the chances for a hit to occur, but the whole purpose of a paging system is to 

limit the amount of memory being used. On the other hand, if the cache size is too small, 

the overabundance of page faults will inhibit performance; thereby, rendering the whole 

solution ineffective. The second consideration is the access time for reading the terrain 

data from a local drive or network store. The penalty incurred will vary and is dependent 

on system architecture and data locality. While the hardware is outside of the scope of the 

algorithm, the access time can impact use of a paging algorithm. For instance, fault-

intolerant algorithms are not well-placed in systems that read data over an error-prone 

network. The third concern is the page replacement algorithm, which determines what 

data is overwritten when the cache is full and new data must be stored. Preferably, the 

data that is overwritten is not needed again any time soon because it would have to be 

reloaded into the cache. Page replacement algorithms that perform poorly result in an 

increased number of page faults and costly accesses to external storage. For very large 
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terrains, paging is a necessary solution; however, it is a non-trivial task that requires 

careful planning and consideration to be effective.  

2.3.2 Geometry Maintenance 

Available processing power is wastefully consumed by an excessive amount of 

terrain geometry. Level of detail algorithms try to restrict the amount of geometry that 

must be handled in a given frame, while maintaining image fidelity. For some level of 

detail algorithms it is necessary to further augment the dataset to resolve issues, such as 

cracking and popping. 

Cracks are not universal problems because they are not produced in all level of 

detail techniques. Specifically, discrete methods tend to display these problems while 

continuous methods do not. In cases where they do occur, the resolution can be handled 

by forcing edge vertices of partitions to match or by adding skirts. Matching edge 

vertices is usually incorporated directly into the algorithm. However, for solutions that do 

not match edge vertices natively, skirts are a general service that can be used to hide 

cracks by using vertical polygons around the edge of the partition [1]. Although skirts are 

imperfect solutions, the end result is often good enough to hide visual discrepancies in 

the model. 

Popping is a commonplace problem that occurs with level of detail algorithms 

when one or more positional values are modified within a mesh between successive 

frames. Geomorphing is a technique that eliminates the popping effect. The instantaneous 

displacement of terrain vertices is hidden from the viewer by interpolating between 

positional values with a blend equation [7, 8]. In recent years, it was shown that 

Geomorphing can be performed on the GPU, which means that it is possible to minimize 
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computational overhead [9]. Geomorphing is very common and used in many techniques 

to conceal the popping effect. 

Model Services offer extensions to Modeling techniques that are imperfect. 

Without the added features offered by the services, terrain visualization systems would 

suffer from reduced capability and functionality. Paging and Geometry Maintenance are 

two services that can improve Modeling techniques through the augmented features. 

Paging solutions seeks to resolve memory limitations while Geometry Maintenance 

techniques try to compensate for geometric changes and discontinuities. Without Model 

Services some techniques would be unfit for use in a terrain visualization system. 

2.4 Rendering 

Terrain surfaces are highly complex and, as a result, are challenging to visually 

replicate in Computer Graphics. In nature, terrains purvey a wealth of visual information 

through surface detail and environmental features that can present richness, depth, and 

meaning. In many cases, techniques beyond geometric representation in the model are 

useful for improving terrain visualization by offering greater fidelity without increasing 

the amount of geometry. 

Whereas the terrain model defines the geometric identity of the topography, 

supplementary techniques can contribute to a more natural, realistic surface appearance. 

Rendering techniques for terrain include texturing and shading. In addition to surface 

rendering, terrain systems may make use of extended atmospheric models to further 

develop the naturalism of the terrain. Photorealistic terrain visualizations make effective 

use of texturing, lighting, and atmospheric effects to achieve better visual fidelity.  
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2.4.1 Texturing 

Real world terrains are made up of many different natural elements that coexist to 

form the visible surface. It is unnecessary, if not impossible, to perfectly model the 

detailed minutia found in the soil mass of a physical terrain. The amount of geometry 

required to represent every element of the terrain would overload the processing pipeline, 

which would prevent the system from operating at interactive frame rates. In addition, 

many viewable surface features do not demand geometric representation.  

A polygon mesh is only an approximation of the surface that defines the surface 

structure in terms of vertex position and edge connectivity. Other values can be 

associated with vertices in the polygon mesh including colors and normals. In the 

conversion from a continuous surface to a discrete surface, one part of terrain information 

that gets lost is the surface’s color definition across the entire terrain. It is unreasonable to 

accurately reproduce a terrain surface’s coloring using only vertex coloring, because only 

one color can be associated with each vertex of a polygon in the mesh.  

Texturing is a technique for varying surface properties in an effort to imitate 

surface detail that is not provided in the geometry of the model [2]. Catmull produced the 

first images to include texture mapped models, revolutionizing the way surface detail is 

applied to the geometry [10]. While specialized variants of texture mapping exist, the 

original concept of texture mapping remains valid and underlies them all. The first step is 

to create a texture map, which is an image that imitates the surface properties of the 

model and is (usually) not present in the geometric representation. In the case of the 

terrain surface, elements such as blades of grass or cracks in dried dirt are good 

candidates for inclusion in the texture map. Next, each vertex in the face of a polygon is 
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assigned a texture coordinate ),( vu that correlates with a point in the texture map. The set 

of ),( vu coordinates assigned to the vertices of one polygon defines an area of the texture 

map. When the polygon is drawn to the backbuffer, an interpolated lookup supplies the 

rendering system with color values to assign to each fragment. In effect, the area of the 

texture map is applied, like a decal, to the face of the polygon. Assuming the texture 

image faithfully imitates surface materials; texture mapping achieves transference of 

surface details onto the polygon that would not be present otherwise. Texture mapping 

provides variations in surface appearance and polygon face colorization that can 

drastically improve the realism of the rendered scene. 

Texture mapping is a common practice in terrain visualization for rendering 

detailed surfaces. The numbers of different types of terrain surfaces and items that 

contribute to their visual presentation are immense. In cases where texture map size is 

overly large, it may be necessary to employ a specialized texture management system to 

optimize resource use with the needs of the scene [6]. Trying to imitate the materials that 

make up a terrain surface through geometric modeling is both impractical and inefficient. 

With the polygon mesh approach for modeling, the terrain surface is only a surface 

approximation. Texture mapping can compensate for lost surface information by 

supplying surface materials that help to improve visual fidelity with minimal overhead.  

2.4.2 Shading 

Lighting is of great importance in the perception of a scene by the human eye. 

Even when surface topography does not change, a varied presence of light will greatly 

impact the viewed scene. Differences in the amount and type of light will influence how 

the brain interprets the colorization of the landscape. A great deal of research in 
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Computer Graphics focuses solely on attempting to faithfully reproduce realistic lighting 

in the virtual world. Currently, use of a complete, physically-accurate lighting function 

based on the Bidirectional Reflectance Distribution Function (BRDF) is unsuitable for 

use in real-time systems due to its complexity. However, simplified lighting equations 

can be used at a reduced computational cost that offers reasonably convincing shading 

effects. 

The two shading models for calculating surface illumination are local and global. 

Local models compute the shading of a surface using only light from a light source, while 

global models also take into account light reflected between objects in the scene. Both 

approaches require a parameterization of the surface materials and the environment 

lighting. The parameterized values are used to calculate the color of each pixel in the 

image. Local models are simple in comparison to global models, yet the imagery 

produced is still very convincing. For truly realistic shading, global models such as 

Radiosity [11] or Ray Tracing [12] are very realistic; however, at the time of this writing, 

computer systems are unable to perform these methods fast enough for use in real-time 

systems. The shading model prescribes the computational accuracy of surface shading, 

which will attribute to visual fidelity. 

In addition to the shading model, illumination of a scene can be either dynamic or 

static. Dynamic lighting allows for the orientation of the light to change over time, while 

static lighting assumes the light is fixed. Dynamic lighting is more difficult to handle, but 

more applicable as a general solution for terrain visualization because the Sun is a 

dynamic light source. Dynamic terrain lighting is difficult because the model’s size and 

varying surface features makes it hard to compute effects, like shadows. Static lighting 
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uses a fixed light source that cannot move over time; therefore, shadowing may be 

computed once at startup and used for the duration of the scene. Many simplified terrain 

scenes do not offer dynamic lighting because the visual improvement does not justify the 

excess in computational complexity. 

The difficulty of shading a terrain has left it a widely unexplored area, with only a 

handful of techniques being commonly used. One common approach for terrain shading 

is the use of light maps. Light maps are capable of providing reasonable shading for 

terrains with little computational cost and they can be dynamically updated to simulate 

dynamic lighting in real-time to create the illusion of the lights moving across the sky 

[13]. The light map can be blended with the texture map to visually imitate terrain self-

shading. Another approach is to compute the horizon points for each elevation sample to 

produce soft shadows [14]. Unfortunately, horizon computation does not allow for 

dynamic geometry, which precludes it for use in dynamic terrains. Other possible 

avenues for shading include shadow maps [15] and shadow volumes [16], but as of this 

writing these techniques are too computationally expensive for use in real-time terrain 

visualization because the terrain model is too expansive [17]. The goal of a shading 

technique is to create the illusion of realistic lighting, which contributes to the overall 

convincement of the scene. An appropriate illumination technique will convey visual 

information that encourages greater submersion in the virtual world.  

2.4.3 Atmospheric Effects 

Many terrain systems include the simulation of atmospheric effects as a 

complement to the landscape. Every day, the atmosphere impacts our perception of the 

physical world. Virtual worlds attempting to replicate the physical world will include 
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environmental rendering effects that influence the visual presentation. The atmospheric 

component improves the scene and creates a more realistic system dynamic in the virtual 

world. 

Whereas shading only considers the impact of light as it relates to the surface, 

atmospheric effects take into account the impact of particles of matter that may redirect 

light as it travels to the surface. Sometimes the consideration of airborne particles may be 

limited, or even disregarded, but for total realism the atmosphere plays a large role in the 

perception of a terrain. For many terrain visualizations the Sun is the primary light 

source. Atmospheric influences that can impact the contribution of light to the scene 

include:  

• Sky: The presence and density of clouds in the sky should be accurately reflected 

within the scene. The intensity of incoming light is reduced when it passes 

through cloud cover. In most cases clouds will only influence the amount of light 

that reaches the terrain surface but, in some cases, the clouds may actually project 

shadows onto the terrain. Also, the color of the sky can vary depending on the 

time of day. It is possible to parameterize the atmosphere and use the information 

to create red, yellow or blue skies that create a tone or hue to terrain surface [18, 

19]. 

 

• Fog/Haze: Fog is a natural phenomenon of nature. When present, airborne 

particles create a fogginess or haziness that reduces visibility; obscuring the 

perception of the terrain as it spans out into the distance. Examples include 

morning mist and the haze beneath the canopy of a rainforest. Both conditions 

produce haze that reduces visibility. In the simulation of these types of 

environments, the inclusion of fog and haze is needed for the correct visual 

depiction of the terrain and its ecosystem. Over time, fog has become a staple of 

mainstream computer graphics applications and hardware support is commonly 

available. 

 

The rendering component serves to improve realism by adding detail without 

requiring additional geometry. In place of mesh geometry, techniques are performed that 

contribute surface information to the polygonal faces of the mesh; thereby, creating a 

more convincing scene. By associating texture data and surface materials with vertices, it 
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is possible to better imitate physical terrains. Shading is necessary to realistically 

simulate sunlight and moonlight illumination of the terrain. Atmospheric effects are 

complementary techniques that aid in further improving realism. The result from properly 

employing rendering methods is a more realistic rendition of the virtual world. 

2.5 Animation 

In visualization, virtual system dynamics and real-time interactivity are greatly 

valued and provide additional information to a scene, whereas immobility and rigidity are 

restrictive and inhibitive. Animation, in the context of real-time 3D computer graphics 

systems, is the area of concentration that studies the motion and interactivity of graphical 

objects. The interactive relationships of objects in a scene offer implicit content that the 

observer instinctively interprets and cognitively processes. The inclusion of motion and 

object dynamics is necessary to correctly portray virtual worlds where objects interact; 

hence, interactive applications must include object dynamics and motion. 

Animation for interactive systems is unique and challenging. One source of 

contention for interactive systems is that the definitive motions of the objects are 

indeterminate at system start up. To further complicate the matter, the motions in a real-

time system requires fast calculations that achieve a qualitatively, if not quantitatively, 

correct movement. In most graphics applications, motions are achieved by rotating, 

scaling, and translating vertices that make up the geometry of an object. Using linear 

algebra, the individual transformations can be compounded into a single transformation 

matrix. For the transformation of rigid body objects, the compound transformation is used 

for the entire object geometry. Deformable surfaces, on the other hand, require more fine-

grained control of individual vertices and may necessitate unique transformations per 
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vertex. Another difficulty in animation is the determining the interaction between objects. 

The introduction of motion begets the need to detect object-object interpenetrations; 

otherwise, objects can pass through one another creating a surreal version of the physical 

world. When handled properly, the gains from animating an interactive scene will surpass 

the challenges. 

Terrain dynamics improves realism when it includes terrain interaction. Most 

terrains systems are used for the purpose of allowing a virtual object, like a ground-

vehicle, to traverse the surface. There are two traits necessary in a fully interactive terrain 

surface. 

1. The terrain must provision for the detection of impact object forces. 

 

2. The terrain must deform as a reactive motion to contact forces, in a natural and 

realistic manner. 

 

In order to facilitate the needs for a fully interactive terrain surface, terrain 

systems will require collision detection and motion control.  

2.5.1 Collision Detection 

In the physical world, two objects that have unique, solid masses cannot occupy 

the same space. The attempt of one object to assume a space already occupied by a 

separate object will result in a collision. For virtual worlds, the introduction of motion 

begets the need to detect object collisions because objects do not have a true mass. 

Instead, it is up to the system to provide the means for knowing when an object is 

obstructed from continuing along its current path. Many systems for collision detection 

exist, ranging in capability, focus, and complexity. General collision detection systems 

offer broader coverage, but specialized solutions can offer better performance. 
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Collision detection for terrain systems is unique and may be subject to 

specialization. Depending on the data organization, the topological description may be 

structured in a manner that allows for assumptions to speed up calculations. Collision 

detection can be performed faster in systems that use spatial partitioning. The gain in 

runtime execution is especially important for terrains because, unlike other object 

collisions, intersections with the terrain are expected to occur frequently. For example, 

consider terrain visualization in the context of an automotive racing game. While the 

driver’s simulated car may or may not crash into another car during the course of the 

race, the car will undoubtedly ‘collide’ with the race track. In addition, the point of 

contact with the terrain must be determined every frame, justifying the need for an 

extremely fast and accurate collision detection solution. In terrain visualization, collision 

detection and the subsequent intersection tests it performs require expeditious execution 

and quantitatively accurate results.  

While collision detection for terrains may be subject to specialization, it is not 

necessarily unique. Intersection tests from other areas of Computer Graphics, such as Ray 

Tracing, can be adapted for use in terrain queries. In the general cases, intersection can be 

performed by searching for the polygon that describe the surface for the intersection with 

a ray. Fast and accurate geometric methods for detecting ray intersections are well 

known. For RGN data, it is possible to perform a very fast intersection test to determine 

the height because the orientation of the ray is known to be to the ground plane. The 

speed up is derived from both the fixed orientation of the ray and the ability to quickly 

access the possible triangles that the ray may intersect without the need to search through 
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the entire set. It is also possible to ascertain if and when a collision occurs with any 

terrain, but meshes that use an RGN data format are much faster in doing so. 

Collision detection is an vital construct in the animation and motion of objects in 

a virtual world that seeks to imitate physical reality. Inclusion of a good solution for 

detecting when and where objects interpenetrate the ground is imperative in a complete 

terrain visualization solution. 

2.5.2 Motion Control 

There is a need in interactive visual systems for a Motion Control system to 

ensure the object(s) move in natural and convincing ways. The job of the Motion Control 

system is to define parameterizations, calculate results, and apply limitations that form 

the algorithmic description of the object’s motion. In essence, the motion control 

embodies the model that guides the movement and, when appropriate, revises the results 

in an effort to produce a meaningful, convincing motion. In most literature, the motion in 

an animation is presented in the context of a rigid body object moving through the world. 

However, for terrain visualization, the Motion Control handles individual vertex 

movements that provide surface deformations. 

In order to obtain a realistic simulation, it is essential to convincingly resemble 

nature.  From Physics, Newton’s Third Law of Motion states: For every action there is 

an equal and opposite reaction. It follows that Newton’s Third Law must be faithfully 

reproduced to achieve a realistic simulation. As such, an interactive terrain that seeks to 

simulate the physical world should react to applied forces. Without an external force 

applying itself to a terrain the surface remains inanimate. Once an external force is 

applied, the terrain topology should react regardless of whether or not the reaction is 



50 

 

visually obvious. In many cases, the resulting surface deformation would be visually 

perceivable. In simulating the behavior, the terrain mesh displaces it vertices in a manner 

that meaningfully simulates the interacted occurrence. For motion control purposes, the 

types of vertex displacement are:  

• Fixed: The surface’s vertices are static and the surface does not deform. 

 

• Constrained: The surface’s vertices move through a limited range of motion(s) 

and, consequently, the surface can only show a limited range of deformations.   

 

• Free-form: The surface’s vertices can move through the full range of motions, in 

any direction and magnitude; allowing the surface to deform into any 

configuration. .  

 

In terrain visualization, the majority of systems offer a fixed displacement through 

an implicit motion control. Fixed displacements are common in the physical world when 

the applied force does not overcome the reactive force. For instance, a man pushing on 

the ground can not send the earth out of its orbit because the force applied by the man 

does not overcome the gravitational forces holding the planet in orbit. While less 

common, constrained and free-form displacements for terrain surfaces are more accurate 

as a general solution to interactive terrain visualization. In the case where the man pushes 

down on a pile of loose top soil, the force he applies will displace the soil into a different 

configuration. The surface deformation can be represented properly in a system that 

offers a constrained or free-form Motion Control, but not when it is fixed. 

Animation systems enable graphical objects to move through the scene, creating a 

stronger sense of realism in the virtual world. Terrain visualization that incorporates an 

animated surface is a more realistic and natural presentation. When forces are applied to 

the surface, reactive terrain deformations are created that can improve the visual quality 

of the scene and accuracy of the simulation.  
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The motion of graphical objects is important, if not mandatory, in interactive 

visual systems. The familiarity of motion establishes the precedent for simulated 

movements. In the quest to accurately portray reality, objects of mass can not 

interpenetrate. To prevent interpenetration, it is necessary to detect when and where two 

objects collide using collision detection. As objects move they usually follow well-

structured rules that employ mechanical, biological, or structural constraints. For 

animations, a Motion Control system dictates the range of motions allowed for one or 

more vertices in the system. Successful development and integration of the components 

for Animation improves the system by offering the observer a greater sense of immersion 

in the virtual world. 

2.6 Application Logic and Application-Specific Features 

The majority of work in terrain visualization focuses on the computer graphics 

methods without regard for the greater system goals. In practice, Application Logic 

demands the acknowledgement of application-specific features. Software applications 

offer a service and the service entails accomplishing a goal for the system user. In many 

systems, visualizing and simulating the terrain is not the absolute objective. In many 

systems the visualization of the terrain may contribute to the overall system objective as a 

supportive element. Therefore, its usefulness and correctness is subject to evaluation in 

the context of the application domain, where it serves as a subsystem in a larger, more 

complex entity. 

Specialized features are common in simulation, training, video game, and 

research applications employing a terrain visualization system. For instance, Training & 

Simulation applications used to prepare military personnel might expect the accurate 
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visualization of the terrain, but the objective of the software is to train the participants. To 

assist the larger system in accomplishing its goal, the terrain system may be required to 

offer specialized features that do not directly contribute to the terrain’s realism or runtime 

performance. In the context of the component framework, the added feature is application 

specific because it does not contribute to visualization of the terrain, yet it is still an 

essential feature if it is to be considered complete in the application domain.  

2.7 Data Flow through Components 

Individually, the components of a terrain visualization system work to perform 

specialized functions; however, they are related through an overarching processing 

workflow. Components for terrain visualization require interoperability and cooperation 

to achieve optimal throughput, while producing high quality imagery. The sequence of 

information processing divulges the interdependencies and relationships of the different 

components as data is processed by the system. The relationships suggest fundamental 

congruencies in terrain visualization systems that define interconnections, which result in 

either a cooperative, integrated solution or a flawed, dysfunctional one. Awareness of the 

relationships is essential in the development of a terrain visualization system using the 

component framework. 

In terrain visualization, the processing of data requires an execution path that 

encounters the various components of the framework. The sequential encounter with 

components induces operational relationships that benefit from coordination. Terrain 

mesh data is resident as a static, offline data source that can adhere to properties of a 

mesh type to define cooperative constraints. While a TIN mesh has less rigid rules 

regarding the structure of data and its geometric properties, an RGN mesh must enforce 



53 

 

the strict rectilinear, evenly-spaced data layout to remain valid. For each mesh type, there 

are a number of well-suited methods for each component that may be employed; 

however, there are also many algorithms that are simply not compatible. To further 

complicate matters, a method that is compatible with a given mesh type may be 

suboptimal. Lastly, the mesh type can lend itself to eased integration and interoperability. 

For example, RGN methods often integrate seamlessly with methods that make use of 

subdivisions along regular bounds, as is the case with Quad Trees and Triangle Bin-

Trees. In addition to defining integrative feasibility, the mesh type will greatly impact the 

compatibility and optimality of techniques employed by components in the framework. 

The cooperative nature of the component framework is derivative of the 

information flow of terrain data (Figure 4). During each frame, the terrain data is 

collected, refined, and processed to generate the scene’s imagery. In simple systems, the 

processing phase may be the only one present; whereas, in advanced systems of increased 

complexity all three phases are employed, with the potential for each component to 

handle multiple subtasks. Although system complexity may differ, the process flow 

through the various components may be examined in a generic manner. Runtime 

behavior may vary depending on the presence of components and their sequence of 

execution, which is system specific. In such cases, the information regarding the flow is 

still applicable, but the technical concerns may require reevaluation.  
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Figure 4 The Component Framework Data Flow. 

Information passes through the components, defining implicit relations that can be 

exploited to identify interoperability issues and to improve performance. 

 

Data is processed in terrain visualization systems to produce high quality imagery, 

while incurring the least computational cost. Initially, the entire terrain mesh is 
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assumedly going to be processed. For terrain systems supporting extremely large terrains, 

a paging component is invoked to ensure that all necessary terrain data is loaded into 

local memory from an external storage source. The source of external data may be a local 

disk drive or a network drive. Paging incurs latency in excess of non-paged solutions, and 

data may not be available immediately for processing. At this stage, it is feasible to 

access the terrain data for the purpose of system-required operational tasks, such as 

intersection tests and collision queries. Next, additional processing tasks required by 

dynamic terrain solutions, including surface deformation and the back propagation of 

these changes to remote sources, is handled. With all of the necessary data available, 

terrain data is processed by the spatial partitioning component. In order to improve 

performance, partitioning evaluates the visibility of terrain partitions and removes those 

deemed unnecessary to the final image from the processing queue. Next, the level of 

detail strategy is fed the remaining data. The multi-resolution strategy will decimate the 

mesh data, as a means for alleviating the total processing burden. Level of detail methods 

are most effective when they integrate tightly with the spatial partitioning component; 

thereby, allowing the two components to be executed in tandem. At this stage, the 

vertices are handed off to the vertex processor, which performs all of the per-vertex 

operations, including preparatory setup for texture mapping, shading, and atmospheric 

effects. Geomorphing and deformation may also be invocated during vertex processing, if 

employed by the solution and supported by system hardware. After vertex data 

processing, the fragment assembly performs the final tasks regarding texturing, shading, 

and atmospheric effects on a per-pixel basis. For terrain visualization systems, the 

finalization of fragment processing marks the end of the frame, at which point the terrain 
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system can prepare itself for the next frame through maintenance and reformation 

routines. 

Each component contributes to the generation of terrain imagery in an expedient 

manner. Optimal flow of information through the processing pipeline mandates the use of 

compatible strategies that work cohesively. By considering the structural and geometric 

properties of the mesh, it is feasible to align component techniques in a complimentary, 

cohesive system. Proper coordination of components can promote optimal throughput 

without sacrificing image quality. The data flow is useful in coordinating the 

components, because it presents an abstracted view of the data path. Boundaries and 

overlays revealed in the data path may be used to identify integration points and 

compatibility issues between techniques. For instance, the culling activity in spatial 

partitioning and the decimation afforded in some level of detail methods can be 

implemented as an interwoven hybrid-solution to reduce computational overhead without 

affecting functionality. In contrast, these two components may be designed as disjoint 

features that impede the runtime performance due to poor coordination. Careful 

consideration of the sequence of component execution and the cooperative nature of 

employed techniques impacts the effectiveness of a solution in its goal to offer good 

performance and to generate high-quality imagery.  

2.8 Review 

Terrain visualization systems are a complex arrangement of seemingly unrelated 

pieces that must work together to create realistic terrestrial scenery. Figure 1 presents the 

component framework for terrain visualization systems. The system is decomposed into 

the following: Modeling, Model Services, Rendering, Animation, and Application Logic. 
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These components are further refined into specialized tasks that interoperate to produce a 

visually appealing, efficiently rendered landscape. Decomposing the system unveils more 

focused techniques that seek to achieve a goal. The techniques identified interact to 

produce a convincing visual interpretation of the terrain.  

A well-formed, structured component framework is useful for terrain 

visualization. The component architecture establishes interrelations between groups and 

algorithms, thereby promoting a cohesive and unified approach. Designing within the 

framework promotes the use of cooperative and complimentary strategies, which inhibits 

poor design and prolonged development. The framework is one-of-a-kind in its attempt to 

provide an all encompassing view of terrain visualization, whereas most research focuses 

on a limited view of a specific technique. Also, the framework is unique in its allowance 

for dynamic terrain, whereas the majority of terrain solutions disregard the deformation 

of the terrain. Lastly, the framework makes it possible to evaluate different bodies of 

research in terrain visualization. Research initiatives in the area of terrain visualization 

are usually focused on limited subject matter. For instance, the majority of work 

concentrates solely on level of detail for terrains. The componentized nature of the 

framework can be used to classify, compare, and analyze specific techniques, algorithmic 

groups, and complete solutions.  
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3. Survey of Terrain Visualization Techniques 

3.1 Introduction 

There is a wealth of information in the area of terrain visualization. While the 

focal topics vary, they all seek to improve the field by presenting better, faster, and more 

elegant solutions to difficult problems. Many algorithms are devised to work as a 

composite or an extension of a well-known technique. In many cases, the technique used 

as a foundation may become outdated, resulting in the automated antiquation of its 

derivative works. Even though specific solutions become obsolete, the archive of theory 

and practices is useful and background information is always relevant. The archive 

provides us with a record of the various instantiations that were used over time; leading 

up to the modern manifestations used in current generation systems.  

The intent of this chapter is to provide the reader with a survey of techniques for 

terrain visualization. The subject areas covered include: spatial partition, texturing, level 

of detail, and terrain dynamics. 

3.2 Spatial Partitioning 

For interactive, real-time 3D applications, all of the application logic and 

visualization tasks must be executed each frame at a regular, consistent rate. For 

visualization tasks, it may be impossible to process the entire set of geometry every 

frame, because the time necessary to do so will surpass the allotted time slice. One 

method for lessening the time it takes to process the scene is to group objects into a 

logical set that may be treated as a singular object. Grouped objects offer the opportunity 

to perform a single, preemptive operation on multiple objects in an effort to identify 



59 

 

which objects require further processing. For instance, grouped objects can be evaluated 

in an attempt to quickly cull out batches of geometry that are not visible in a given frame. 

In terrain visualization systems, a handful of predominant techniques are used for 

partitioning the terrain, and many integrated tightly with one or more level of detail 

techniques. 

Subdivision techniques for spatial partitioning are either uniform of irregular. 

Uniform methods subdivide a space along regular subspace bounds, such that each unit 

has a similar bounding shape and, possibly, an equivalent capacity. For example, the 

longest edge bisection of a right isosceles triangle is an example of a uniform subdivision 

process. Irregular methods subdivide a space into set of subspaces, such that, at least two 

subspaces have unique dimensions. Although both uniform and irregular methods are 

possible, uniform approaches are more common because they natively support recursive 

and iterative methods. All of the methods covered herein are uniform; making them 

appropriate for terrains represented by an RGN data source. 

There are many variations and specializations of uniform subdivision for the 

purpose of spatial partitioning. The geometry used to subdivide the space, the criteria 

used in split and merge operations, and the functional relationships of subspaces are all 

variables that allow techniques to distinguish themselves from one another. It is possible 

to further decompose and categorize uniform methods as hierarchical and non-

hierarchical. Hierarchical methods impose an explicit relationship between subspaces in 

the form of parent-child and sibling relationships. In contrast, non-hierarchal methods do 

not offer the parent-child relations, relying solely on sibling relationships to accomplish 
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the tasks at hand. While hierarchal spatial subdivision schemes make exclusive use of a 

tree, non-hierarchical methods are not bound to any one particular data structure. 

3.2.1 Non-hierarchical Methods 

Non-hierarchical partitioning methods perform a single level of subdivision to 

generate a finite, definitive set of subspace units. The spatial partitions form a set of non-

overlapping, interlocking subspaces whose geometric union is equivalent to the 

volumetric capacity of the world space. The most common geometric types used for the 

purpose of spatial partitioning are the grid in 2D and the cube in 3D; although any shape 

that can be tessellated into a self-similar shape is a viable alternative.  

The most common non-hierarchical partitioning technique is the Uniform Grid. 

The Uniform Grid starts with the superspace defined by the extents of the heightfield and 

partitions it into regions along axially-aligned, regular bounds. The subspace regions 

created from the subdivision are stored in a data structure, and used for referential 

purposes during execution of the application. The attribute values associated with a 

region offer the necessary parameterization(s) for performing operations that lead to 

faster execution. 

An object in the virtual world is associated with a region in the grid. The object is 

assigned to the region that it shares spatial occupancy with in the world space. For objects 

that are not animated, one regional assignment suffices throughout the course of 

execution. In contrast, animated objects require reevaluation and updated assignment to 

regions because they can cross boundary lines, which changes spatial occupancy. 

Therefore, static terrain meshes can retain the same occupancy assignment from 

application startup until the application stops, while dynamic terrains may require 
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reassignment. In many cases, dynamic terrain motion is constrained in order to ensure 

that deformations do not enact boundary edge transgressions. Under these circumstances, 

dynamic terrain meshes will not require runtime reassignment. 

The Uniform Grid is a simple and straightforward technique, but is not an optimal 

solution. Although the Uniform Grid may meet the needs of small projects, it is not 

scalable and can be inefficient. The problems come from its use of the fixed size for 

regional subdivision. The rigid capacity forces the assignment of large objects to multiple 

regions, which can lead to inadvertently processing the same object multiple times. 

Increasing the capacity results in the assignment of more small objects to a single region; 

counteracting the very intention of using the technique in the first place. For projects that 

must support large terrains or complex virtual worlds, the lack of scalability and rigidity 

of the Uniform Grid may not suffice to meet the needs of the application. 

3.2.2 Hierarchical Methods 

Hierarchical, uniform methods perform multiple levels of subdivision to create a 

tree-based structure of subspaces with parent-child and sibling relations. Parent nodes 

correspond to the superspace for all child node subspaces. The input superspace is 

represented by the root and the smallest subspaces are housed by the leaf nodes. The 

inclusion of a structural relationship between superspaces and subspaces benefit the 

technique with good managerial and functional capabilities. The improved functionality 

comes at the cost of algorithmic complexity and memory consumption. 

Hierarchical methods use the operative strategy of trees. Starting with a 

rectangular region, as defined by a heightfield, these methods are subdivided into self-

similar spatial regions. The capacity of the space for siblings is the same for each level of 
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the tree. The spatial union of children in a fully-balanced branch is an improper spatial 

subset of the parent. Subdivision occurs until a stop condition is met. The most common 

stop conditions are when a minimal capacity is reached and when a maximum number of 

world objects are associated to the node. For systems that choose to use capacity, it is 

possible to guarantee that a fully-balanced tree is created; otherwise, there is potential for 

skewed spatial subdivision. For use with a terrain mesh, the capacity limit is more 

common because it correlates to a prefixed dimensional specification. For static terrains, 

the mesh is unchanging and assignment to a node remains unchanged during program 

execution. Many techniques will align the subdivision bounds with the interval of grid 

spacing to ensure that subregions of the terrain are assigned to only one node. Using this 

strategy, it is possible to construct the entire tree such that each leaf node has exactly one 

mesh subpart associated to it. A one-to-one relationship between the spatial nodes and the 

mesh geometry conjoins the algorithmic efficiency of the data structure with terrain 

operations.   

Generally, hierarchical methods are similar in use and theory, but the different 

instantiations have different subdivision strategies that influence the rest of the solution. 

The Quad Tree is a spatial partitioning technique commonly used in terrain visualization 

[20]. The Quad Tree subdivides a rectangular region into four equal quadrants that can be 

subdivided, again, into four more quadrants ad infinitum, as shown in Figure 5.  

 
Figure 5 The first three levels of a Quad Tree. 
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In contrast, the Triangle Bin-Tree subdivides a right isosceles triangle using a 

longest edge bisection to beget two more right isosceles triangles that can be further 

subdivided (Figure 6). Subdivision is not limited to two dimensions. For instance, the 

Octree is an extrapolation of Quad Trees to three dimensions. For an Octree, the 

volumetric space is subdivided into cubic sub-volumes along three perpendicular planes. 

The added dimensionality of an Octree induces added complexity that may surpass the 

performance gains for scenes with simple terrain topology. Another distinguishable trait 

of a subdivision process is the maximum number of children for a parent node. A node in 

a Quad Tree can have up to four children, a Triangle Bin-Tree node can have up to two 

children, and an Octree node can have up to eight children. The number of children 

directly impacts the speed at which traversals will occur; thereby, relegating efficiency of 

the solution. Also, the underlying geometric shape used by the subdivision strategy tends 

to influence the rest of the solution. The shape for a Quad Tree is a rectangle, a Triangle 

Bin-Tree is a triangle, and an Octree is a rectangular volume. The specific subdivision 

process used differentiates spatial subdivision techniques; thereby, making each one 

unique. 

 
Figure 6 The first three levels of a Triangle Bin-Tree. 

 

While hierarchical methods offer improvements over non-hierarchical methods, 

the underlying tree-based structure can be a performance burden. The failing for 

hierarchical methods is attributable to tree traversals, which are more expensive than 

structures that support linear indexing and direct access. As a further detriment, trees that 
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become skewed or have great depth(s) can exacerbate the slowdown of tree traversals. A 

technique for circumventing the overhead of tree traversals have been identified for the 

Quad Tree, but comes at the cost of maintaining specific properties, including a fully 

balanced tree structured with a pre-defined maximum depth [21]. Another side effect of 

using a tree is that the locality and coherence in system memory becomes fragmented, 

effecting cache use and reducing performance. Hierarchical methods offer improved 

logic for managing and manipulating the terrain, but the tree structure imposes additional 

complexity and the potential for bottlenecks. 

Spatial partitioning techniques are a common occurrence in terrain visualization. 

Partitioning techniques subdivide the world space into a structured conglomeration of 

subspace, container units. Objects in the world are grouped together and bound to one or 

more containers. Groups of objects can be operated on as a pseudo-object, which offers 

the option to improve performance by reducing the total number of operations that are 

performed. Operations that can benefit from spatial partitioning include collision 

detection, culling, and geometry decimation/restoration. 

3.3 Texturing 

Terrain visualization makes extensive use of texture maps for presenting highly 

detailed surface features without the overhead of increasingly high polygon counts. 

Texturing is a method for varying a surface’s properties from point to point, giving the 

appearance of surface detail that is not actually present in the surface’s geometry. In lieu 

of creating overly complex models, one or more image maps are used as decals. The 

textures are superimposed onto the faces of polygons that form the mesh structure. 

Texture mapping interpolates the image data in determination of surface detail 
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colorization. The use of texturing makes it possible to present detail that would not be 

feasible otherwise.  

Terrain visualization makes use of texturing for the purpose of showing terrain 

details. Terrains are composed of a number of earthen materials and natural products. 

Textures are useful in the display of components in nature that are too complex or 

computationally costly to etch into the geometric model. Earthen materials such as grass, 

dirt, and rock are excellent candidates for representation as textures because the 

equivalent geometry would be too costly to process; however, not all land features need 

to be abstracted from the mesh and into a texture. For instance, larger land features such 

as craters, boulders, and trees can be modeled as actual geometry, while grass, leaves and 

stones may be texture maps.  

Many general practices for texture mapping are applicable to terrain visualization. 

However, there are only a handful of techniques that are frequently used in a many terrain 

visualization systems. The techniques most common for texturing the terrain mesh are: 

Simple Texturing, Framebuffer Compositing, Splatting, and Detail Texturing.  

3.3.1 Simple Texturing 

The simplest approach for terrain texturing is to use a straightforward, no-frills 

texturing solution that refers to one or more texture maps. In this approach a texture is 

applied to the terrain surface, which superimposes surface detail onto the mesh. Irregular 

meshes require manual texture coordinate assignment, but coordinates can be computed 

algorithmically for a heightfield. Given a )( nn × heightfield and a )( ts ×  texture map, the 

texture coordinates ( )vu,  for each vertex at indices ( )ji,  is computed as: 
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For effective texturing, the texture map should offer enough content to justify its 

use. For small terrains, a single texture may be able to provide enough texel coverage. 

Large terrains will require a larger texture. Increasing the texture size can offer either 

higher resolution detail for a restricted area or comparable detail across a greater area; 

however, there is an upper bound to texture size due to physical hardware limitations on 

system resource allocation.  

For very large terrains that prefer to use a single texture across the entire terrain, it 

is possible to subdivide one large texture into multiple small textures. Smaller textures 

can be brought into and released from memory during runtime in way that enforces rules 

to improve memory consumption and use. A texture management system can limit the 

performance impact incurred from using multiple small textures [6]. 

Another possibility to overcome using a memory-intensive, single texture is a 

tiled textured. Tiled textures can be used to create a landscape texture that covers a huge 

terrain with a fixed size texture. Tiled textures must be seamless in order to conceal any 

visual artifacts that would make the tiles distinctively identifiable along edge-aligned 

bounds. The primary drawback of tiled textures is that repetitiveness may be perceived by 

a scrutinizing viewer when patterns become noticeable. The perceivable pattern can 

become obvious as the moiré effect becomes pronounced in the distance. In these 

situations, the terrain nearest the horizon will display the effect and it can be visually 

distracting. 

In some cases, multi-texturing can offer improved surface detail. Multi-texturing 

uses two or more textures to create a virtual composite texture at runtime that can be 

applied to the terrain surface. In multi-texturing for terrains, multiple textures for the 
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terrain are used in a layered fashion. At runtime, a set of blending weights are used at 

each vertex to blend the layers into a single, cohesive texture that is applied to the terrain 

surface. The practice of multi-texturing is very common and can even be done on the 

GPU, which makes its use even more attractive. Multi-texturing is still, at its heart, 

simple texturing and suffers from the same drawbacks as other methods based on simple 

texturing. In addition to the shared problems, using more than one texture implies the 

consumption of additional memory, which may deter from its use in some systems. 

3.3.2 Framebuffer Composition 

Framebuffer Composition is a very popular technique in terrain rendering. A 

number of specialized implementations exist for Framebuffer Composition, but they are 

all derived from the same underlying theory [22-24]. Framebuffer Composition requires 

separate textures to represent different earthen materials, such as grass, dirt and rock 

(Figure 7a). In a preprocessing step, a composite, blended texture is generated and stored 

in video memory. The generated image appears as a banded texture with smooth cross-

fades between neighboring textures. Using the sequence grass, dirt and rock; the grass 

texture would cross-fade into dirt texture which, in turn, would cross-fade into the rock 

texture (Figure 7b). 
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(a) (b) 

Figure 7 An example of Framebuffer Composition. 

Three individual textures that represent a unique earthen material in (a) are dynamically 

blended to create a single texture of different earthen materials with seamless transitions 

between types in (b). 
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At runtime, each vertex in the terrain is evaluated and its texture coordinates are 

queried. Systems using Framebuffer Composition often perform dynamic assignment of 

texture coordinates to the vertices using a combination of vertex and polygon attributes. 

The most common attribute used is the slope of the polygonal face in conjunction with 

the height of the vertex. Building on the example, vertices corresponding to higher 

elevation and steeper face inclines would index into the texture towards the rock band 

while lower elevations and faces that are more parallel to the ground plane would index 

the texture within the grassy region of the texture. The end result is that higher, steep 

ground (e.g. mountain tops) displays the rock texture while lower, flat ground (e.g. knolls 

and fields) are textured with the grass texture.  

Framebuffer composition, although a common solution, is not a perfect solution. 

The main problem with the technique is that it can result in visual artifacts that detract 

from the realism of the visualization. For instance, when using the vertex height for 

determining where to index into the texture, a banding effect will result from all vertices 

at a given height indexing into the same region of the texture. The banding effect can be 

diminished by adding noise, but it does not eliminate the issue. Additional problems 

include greater complexity and an increase in memory consumption due to the use of 

multiple textures. Lastly, it does not support variable levels of detail over the surface. The 

practical benefit with Framebuffer Composition is that it automatically produces seamless 

transitions between textures; however, it is not an absolute solution for terrain texturing. 

3.3.3 Splatting 

Splatting is another advanced technique for terrain visualization [25]. Splatting is 

an approach for texturing a terrain by using high-resolution, localized tiling textures 
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which transition nonlinearly. The original technique for Splatting uses textures that 

represent different earthen materials across the terrain with an irregular distribution. For 

instance, the rock, dirt, and grass texture can be irregularly referenced and indexed to 

apply variable amounts of influence to each vertex of the surface; thereby creating a 

unique texture through texel blending. 

Splatting is similar to Framebuffer Composition, but is more robust. Splatting 

offers the option to additively blend various textures in an irregular distribution across the 

terrain surface, whereas normal Framebuffer Composition is subject to a regulated 

distribution. Blending between neighboring tiles is automatic, which offers the seamless 

transition between different textures. In this situation, tiling does not imply any sort of 

regularly laid out regiment for texture tiles. Instead, tiling here simply implies that one 

texture may be applied to more than one area of the terrain. Transition regions occur 

where neighboring vertices share the same set of splat textures. Weights are associated 

with each vertex to serve as a blending factor when computing the transition regions. The 

weights can be generated dynamically using an algorithmic process or assigned by a 

content creator to allow for more direct control. A greater sense of realism is achievable 

with manually assigned weights because human intervention can define distributions that 

closely imitate actual terrain surfaces. The ability to fine tune the surface is a strength that 

allows Splatting to surpass other methods in the level of realism that can be attained. 

Splatting is more complex and time-consuming than other methods. With respect 

to Framebuffer Composition, Splatting is more complex because it requires the 

incorporation of a runtime system that performs a catalogue of unique operations. 

Additional operations include gathering polygons that share a splat texture and querying 
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neighbor vertices for vertex attributes. The overhead of the excess functionality inhibits 

the use of Splatting, because it is invasive and can impede runtime performance.  In 

addition to complexity, the real strength of Splatting over other techniques requires 

human intervention, which can be time-consuming and tedious. Since changes are not 

automatic, manual fine-tuning of the texture weights are often required as changes are 

made to any one of the mesh, textures, or algorithms.  

3.3.4 Detail Textures 

In systems that support multi-texturing, it is common to use Detail Texturing to 

improve the appearance of the terrain in close vicinity of the viewer. Detail Texturing is 

not a self-sufficient texturing solution, but it is a complimentary approach for use in 

conjunction with any of the aforementioned texturing strategies. Most systems will use 

Simple Texturing, Framebuffer Composition, or Splatting to achieve general surface 

coverage. The textures used in these methods cover the breadth of the surface, but may 

not offer up-close details satisfactorily. If the viewer looks closely at the terrain in the 

immediate vicinity, pixelation can occur due to an insufficient texel to screen-pixel ratio. 

Detail Texturing seeks to remedy the situation, by creating highly detailed surfaces 

within the surrounding area of the viewer. 

Detail textures are tileable textures of high-fidelity surface details. Imagery like 

blades of grass and cracks in dried mud are commonly used as detail textures. At runtime, 

the primary technique is used to supply the majority of obvious surface detail. For terrain 

near the viewer, the detail texture is applied as an additional layer to create the illusion of 

high-detail surface features on the terrain. For instance, the primary solution may apply a 

green texture to represent a grassy terrain, and the detail texture used is a high resolution 
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texture of grass blades. The detail texture is blended with the green texture to create the 

appearance of highly detailed grass texturing around the viewer. 

Detail Texturing is effective for creating the illusion of highly detailed surfaces, 

without consuming exorbitant amounts of memory. To improve runtime performance, the 

detail texture is only blended within a localized view. Returning to the example, it is 

unlikely that the blades of grass would be discernible towards the horizon. As such, it is 

only necessary to blend with the high resolution texture in the immediate vicinity of the 

viewer, which is possible using view-dependent assessment of the geometry as it is 

processed.  

As a complimentary texturing solution, detail textures are good, but are not 

flawless. A problem arises when the primary texturing method does not represent a 

surface of uniform natural composition. Typically, the detail texture represents a single, 

detailed earthen material, such as the blades of grass. A problem can arise in terrain areas 

where the primary texturing method imbues surface detail of different type. For instance, 

in an area of the terrain that is textured to impersonate dirt, a detail texture representing 

grass blades is inappropriate. The problem occurs because the detail texture applied is 

done in a nondiscriminatory manner. As such, the high quality detail texture of grass is 

inappropriately blended into the grass, dirt, rock, and transitional regions. The net result 

is an unconvincing, unrealistic terrain representation, because details are incorrectly 

correlated to the primary surface type. To combat this issue requires a smart texturing 

system that knows when and what detail texture to use for each element of the terrain, but 

this increases complexity and adds to the computational workload. 
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Texturing is a useful strategy for effectively visualizing terrains. While the terrain 

geometry is used to convey the volume and shape of the terrain, texturing provides more 

meticulous, meaningful visual details of the terrain composition. A number of approaches 

to texturing are available for terrain visualization and each one has its own strengths and 

weaknesses. Unfortunately, there is no best solution when evaluating the catalogue of 

texturing solutions because the needs, limitations, and goals vary from application to 

application. As with spatial partitioning, terrain texturing is greatly influenced by the 

level of detail technique, because of the strong relational bonds between the geometry 

rendered and the textures applied.  

3.4 Level of detail 

The largest area for research in terrain visualization has been conducted in level 

of detail. Interest in terrain visualization dates back to the 1970’s when flight simulator 

research strived to improve the visual aspect of the training environment for pilots. Flight 

simulators display the terrain in far off distances due to the aerial view and require high 

fidelity imagery up close for when the aircraft is approaching the ground. In order to offer 

both high quality detail and expansive coverage, level of detail algorithms were, 

necessarily, developed for terrain visualization. The desire to meet this need has 

generated an abundance of information and resulted in many multi-resolution techniques 

for terrain rendering.  

3.4.1 Background 

3.4.1.1 First Generation (before 1996) 

Through the mid 1990s, algorithms for level of detail in terrain rendering were 

primarily derivative of general approaches that could be applied to any type of mesh. The 



73 

 

idea behind the first generation of algorithms was to construct the surface optimally and 

then render the ideally triangulated terrain mesh. Methods for both continuous and 

discrete level of detail were proposed. First generation methods worked under the 

premise of limiting the throughput of triangles in order to reduce the load of graphics 

processing; thereby, limiting the total amount of data passing through the graphics 

pipeline. Reducing the workload of the graphics component improved performance 

because the graphics pipeline was the bottleneck. At the time, graphics acceleration 

hardware was not available in consumer systems and many systems used CPU-bound 

software rendering engines to create the visual display. Terrain rendering techniques 

during this period offered decent visual fidelity while performing the minimal graphics 

processing necessary.   

3.4.1.2 Second Generation (1996 – 2001) 

In 1996, a new era of algorithms for level of detail in terrain visualization begin to 

surface. These algorithms would drive the display with view-dependent continuous level 

of detail strategies that drastically improved throughput and visual fidelity. At the time, 

there were three solutions that dominated the field: Progressive Meshes [26], Block-based 

Quad Tree simplification [27], and Triangle Bin-Tree simplification[28]. In particular, 

Real-time Optimally Adapting Meshes (ROAM) gained acceptance and widespread 

popularity in terrain visualization. ROAM Using Surface Triangle Clusters (RUSTiC) is 

an extension to the original ROAM technique that sought to further improve performance 

[29]. Dynamic Extension to Resolution (DEXTER) is a general strategy that can be used 

with a hierarchical multi-resolution strategy, like ROAM, to offer dynamic terrain [30]. 

Regardless of the specifics, these solutions still sought to reduce the polygon throughput, 
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because consumer-level graphics acceleration hardware was very limited in its processing 

power and was still the bottleneck for the system. 

3.4.1.3 Third Generation (2001 – Present) 

From 2001 to the present, graphics acceleration hardware has improved 

immensely. The improvements in hardware have induced a shift in paradigms for 

developing graphic algorithms. Currently, the GPU can process huge amounts of data in 

parallel. As a result, the trend has shifted such that it is preferred to move work from the 

CPU to the GPU and, with this shift, the majority of existing multi-resolution algorithms 

for terrain visualization became deprecated. Even though the solutions themselves were 

outdated, the theory, insight, and knowledge gained serves as a solid foundation from 

which to build a new set of solutions. Some researchers have augmented old algorithms 

and devised hybrid solutions suitable for modern GPU architectures, while others started 

anew. One popular strategy is to subdivide the terrain into manageable regions, 

dynamically generate discrete instances for each region, and manage these instances at 

runtime. Other researchers would borrow ideas from texture mapping and devise 

geometric counterparts that could help avoid the CPU bottleneck. Some of the latest 

research excels even further and moves the majority of work from the CPU to the GPU. 

A fundamental characteristic to all of these strategies is that they do not try to build an 

optimal set of data, instead striving to build a ‘good enough’ data set quickly. The change 

in attitude and working direction has produced a number of algorithms that suitably 

exploit the modern GPU. 

Over the years, a number of solutions for terrain visualization have been 

developed. Early instantiations used general purpose geometric level of detail techniques 
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that would be extended for use in terrain visualization systems. A number of surveys on 

these early algorithms are available, including [31-33]. By specifically examining the 

unique traits of terrain meshes, the second influx of research offered great improvements. 

Algorithms developed during this era have been surveyed by [34] and [35].  Second 

generation algorithms tended to address the generation of an optimal mesh using a 

variable error metric to drive the decision process. Finally, the latest incarnation of 

solutions for level of detail in terrains systems deserves special attention, because it is the 

current paradigm and most appropriate for current work in the field. The divergence from 

the past for these techniques is primarily derivative of the advances in hardware that has 

resulted in the shift of the processing bottleneck from the GPU to the CPU. As the 

capabilities of hardware have changed, the underlying principles behind the algorithms 

have also changed. Most importantly, the recent advances in graphics hardware have 

spurned newer techniques to opt for offloading work to the GPU.  

3.4.2 Algorithmic Classes 

Multi-resolution algorithms for terrain visualization seek to produce an optimal 

display that retains the visual fidelity of the original mesh with a lower processing cost. A 

number of algorithms have been proposed over the years. Although the methods work 

towards the same goal, they are unique in their characteristics and underlying mechanics. 

However, using generalized properties, it is possible to categorize methods according to 

an algorithmic type. Existing level of detail algorithms for terrain visualization can be 

classified as one of the following: Irregular Mesh, Bin-Tree Hierarchies, Bin-Tree 

Regions, Tiled Blocks, or Concentric Regions. 
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These algorithmic types serve to help unify the disparate methods under an 

overarching specification. While many methods exist under each category, there are one 

or more archetypes that act as exemplary examples of the characteristics for that family. 

3.4.3 Irregular Meshes 

Early algorithms in terrain visualization made use of irregular meshes to represent 

the terrain. The TIN layout provides an optimal surface representation, which was most 

suitable for systems when the graphics pipeline processing component was slow. 

Techniques for irregular meshes would either allow for arbitrary connectivity, such as in 

[32] and [36] or apply restrictions to the construction and representation of the mesh, 

including Delaunay triangulations as in [37] and [38]. The most commonly cited irregular 

mesh strategy for terrain visualization is the View Dependent Progressive Mesh [26]. 

3.4.3.1 Progressive Mesh 

In 1997, Hoppe evolved his earlier work on Progressive Meshes (PM) [8] into 

View Dependent Progressive Meshes (VDPM) [26]. A Progressive Mesh is a multi-

resolution technique for rendering an irregular mesh. The method uses highly detailed 

mesh as its input and, through a series of edge collapse operations, refines the mesh into 

one of lesser geometry that accurately portrays the original input mesh. During the 

simplification process, a record of decimations is kept that allows the mesh to be 

faithfully restored to its original state by performing the edge collapse’s inverse 

operation, the vertex split. The ability to remove and restore geometry from the mesh is 

the fundamental level of detail feature of a Progressive Mesh. The original Progressive 

Mesh algorithm was used across the entire mesh, which accomplished view-independent 

refinement exclusively. View Dependent Progressive Meshes sought to remedy this 
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caveat of the original algorithm by using viewing parameters to guide the edge 

collapse/vertex split decisions. The original View Dependent Progressive Mesh was 

subject to temporal incoherence, which was resolved with the introduction of 

Geomorphing [39]. Geomorphing eliminates the popping effect by smoothly interpolating 

between successive refinements. Terrain visualization was specifically used as a 

demonstrative area for View Dependent Progressive Meshes, and was considered a good 

solution at the time. 

Irregular mesh algorithms all share concepts with the Progressive Mesh in that 

they attempt to produce an optimal mesh that can be displayed at runtime by generating 

an optimal configuration of the terrain geometry. While Progressive Meshes dynamically 

update the mesh at runtime, some methods form the optimal polygonal decomposition of 

the surface offline and treat the generated instances in a discrete manner. One problem 

that arises from the use of an irregular mesh is that the executions of runtime operations 

may be slow. The irregular interrelation of primitives obligates all operations that require 

knowledge of an individual element to search and execute on the entire set of primitives. 

For example, finding the height y of the terrain at a given ),( zx coordinate requires the 

execution of intersection tests with each primitive in the mesh until it finds the one it 

intersects with. For high density, large terrains the search can be very expensive and lead 

to poor performance. Another problem with irregular mesh routines is that the entire set 

of operations for determining the optimal mesh is performed on the CPU. The current 

archetype for graphics programming is to offload as much work onto the GPU as is 

possible. In fact, recent research has shown that methods that rely on RGN data sources 
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can outperform TIN solutions because TIN methods are CPU-limited [40, 41]. As such, 

the appropriateness and applicability of irregular mesh methods has diminished. 

Irregular Mesh solutions can represent a terrain surface using the least number of 

triangles, but do so at the cost of complexity. In order to represent the surface faithfully, 

vertices can be positioned and oriented in any fashion without regard for ordering or 

regularity. The benefit of providing an optimal primitive count is largely negated because 

the GPU is well-prepared to process high polygon counts quickly. Taking into 

consideration that the optimized mesh is constructed using per-polygon operations on the 

CPU further diminishes the appeal of Irregular Mesh methods. In general, the 

maintenance of the irregular mesh and the performance loss incurred when executing 

featured operations, such as collision detection, has lead to the decline in popularity of 

Irregular Mesh methods in current terrain visualization literature and research. However, 

in systems that have strict memory limitations or require folded surfaces, irregular 

meshes may still prove applicable. 

3.4.3.2 Geomorphing 

Early work by Ferguson [7] specified the use of Geomorphs in terrain 

visualization as a means for eliminating popping. Hoppe later applied the same theory to 

View Dependent Progressive Meshes and established it as a generic solution to popping 

in terrain visualization [39].  In the context of the visualization framework, Geomorphing 

is classified as a Model Service, because of its universal application domain and, 

therefore, it can be classified as a generic runtime service for use with many level of 

detail solutions in different generations and classifiers. Geomorphing integrates with a 

number of algorithms because it only relies on the transitional vertex distance 
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information to create visually seamless transitions as vertices are removed from the 

geometry. In order to perform Geomorphing, the distance between where the position of 

a vertex and the position that it implicitly move towards is needed. Fortunately, these 

distances are either directly available or easily calculated (Figure 8).  

�
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Figure 8 Midpoint displacement results in popping artifacts. 

Removal of vertex B from ∆ABC, implicitly moves it to the midpoint M of line segment 

AC. 

 

The instantaneous switch between levels of detail results in a popping effect. 

Iteratively blending the vertex position from its origin to the midpoint of its two 

neighbors over the span of distance that exists between the two spatial locations can 

reduce, if not eradicate, the popping. A lookup table of distances that specify when one or 

more vertices are to be removed can be used when blending between levels of detail. The 

table stores values used in the computation of a blended elevation position. Consider the 

following: 

Let currentD  be the current distance from a node to a triangle T. Also, let maxD  

equal the maximum distance that T may be rendered at without impacting visual fidelity. 

As such, the blending factor for the elevation value is computed 

as maxDDBF current ÷= and the blended height is computed using Equation 2.  

Equation 2  int**)1( midpoheightmapcurrent ElevationBFElevationBFElevation +−=  

 

By applying Equation 2, the movement of the camera can be used to displace 

vertices slowly to and from the midpoint of an edge in the parent’s geometry. The 
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incremental movement places the vertex at the destination position before it is removed 

from the geometry. In this manner, the edge collapse is masked; making it non-obvious to 

the viewer. For modern hardware, it is even possible to perform blending entirely on the 

GPU; thereby offloading the additional computation required from the CPU [9].  

Geomorphing is a Model Service that is commonly employed to eliminate 

popping. The simplicity of the algorithm and its general nature makes it appropriate for 

use with a number of multi-resolution solutions. The service provided disguises errant 

features that arise due to the decimation and restoration of terrain mesh geometry.  

3.4.4 Bin-Tree Hierarchies 

Bin-Tree Hierarchies are hierarchical methods that rely on an underlying RGN 

data source to define a fast and efficient multi-resolution strategy for terrain visualization. 

Methods in this class make use of a tree data structure to encode the surface’s primitives; 

using either a Triangle Bin-Tree or Quad Tree. Bin-Tree Hierarchies offer improved 

performance because they can identify an optimal mesh each frame using the viewing 

parameters; thereby, reducing the overall amount of data processed, while still achieving 

good image quality. 

3.4.4.1 Block-based Quad Tree 

The paper by Lindstrom et al. [27] presents a technique for generating high 

fidelity terrain driven by a screen-space error metric through continuous level of detail 

refinement. The algorithm uses an RGN data source that is distributed and processed in a 

Quad Tree. The technique is described using a bottom-up refinement of surface 

geometry, but in practice it is a two-step process that performs both a top-down 

assessment and then a bottom-up refinement. The first step executes a block-based 



81 

 

simplification, while the second step refines the geometry within selected blocks on a 

per-vertex basis.  

A block is describable as a set of elevation points assigned to the block’s coverage 

area. The elevation points form a rectilinear grid of dimensions 0,1212 ≥+×+ nnn  

where edge vertices between neighboring blocks are shared. The root node of the Quad 

Tree covers the entire area and, therefore, covers the entire area of the terrain. A set of 

four ‘sibling’ blocks can be combined to create a block of lower resolution by removing 

every other vertex to create a new ‘parent’ block of the same dimension. When a vertex is 

removed, a new edge between two of its neighbors is formed. The midpoint of the edge 

corresponds to the vertex removed, and the length of the displacement from the original 

vertex to the new edge’s midpoint is the geometric error. The geometric error is directly 

related to the screen-space error that is used when determining the appropriateness of 

further reducing the geometric complexity. The geometric error is also used to determine 

the mesh complexity and, upon decision of an appropriate block, the triangles within that 

block are iteratively examined. Vertices shared by neighboring triangles are candidates 

for removal. Removing a single vertex will merge two triangles into one. The error 

introduced by the removal of the single vertex is assessed and, if deemed appropriate, the 

triangles are merged (Figure 9). Newly formed triangles become candidates for further 

merging. The two step approach is performed each frame to build a continuous level of 

detail representation of the terrain surface.  
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Figure 9 A polygonal merge operation. 

The removal of shared vertex D merges ∆ABD and ∆BCD, to produce a lower resolution 

primitive ∆ABC. 

 

The algorithm proposed suffers from complexity and visual artifacts. The block-

based approach can result in T-Junctions and cracking between neighboring blocks. In 

addition, dependencies on vertices shared by neighboring blocks must be enforced, which 

complicates the algorithm. Resolving the problems with the technique requires 

specialization that adds non-trivial functionality and increases overall algorithmic 

complexity of the solution. In addition, the specialization required can not be adapted to 

work in systems that require paging of streamed terrain data.  

3.4.4.2 ROAMing Terrain 

Duchaineau et al. published the paper ROAMing terrain: Real-time Optimally 

Adapting Meshes, which proposes a novel algorithm for continuous level of detail in 

terrain visualization [28]. In ROAM, a Triangle Bin-Tree is used to ensure that an 

optimal set of geometry is rendered during each frame by using the viewing properties. 

Unlike other approaches, ROAM does not suffer many of the problems associated with 

other multi-resolution methods, like T-Junctions and cracking. The technique is 

exclusively top-down and requires an RGN data source in order to produce the optimal 

mesh using the minimum number of triangles 

The Triangle Bin-Tree is the fundamental data structure that gives the ROAM 

algorithm its capability. In a Triangle Bin-Tree, the root node of the tree represents a 
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single right triangle and, for ROAM in particular, all triangles are assumed right isosceles 

triangles. In order to correctly represent a regularly-spaced RGN data, two Triangle Bin-

Trees are needed: one for each side of the diagonal. By performing a bisection of the 

longest edge from the vertex on the right angle, the triangle is recursively subdivided. An 

edge is created along the shortest path of the bisection to create two new similar child 

triangles (Figure 10). The subdivision is repeatedly performed until a stop condition is 

met, at which point the triangle geometry of the current node is queued for rendering. On 

successive passes over the data structure, the triangles are reassessed to determine 

whether triangles must be subdivided further, or if neighbors sharing an edge can be 

merged. When merging, the edge produced by a split operation is removed, reestablishing 

the parent node’s triangle as the current level of detail. Newly merged triangles are 

queued and the resulting triangles are evaluated for further merging. In the original 

algorithm, the split and merge operations use dual queues, but other implementations 

have been proposed that reduce the algorithmic complexity and improve runtime 

performance by working as a ‘split only’ instantiation [42]. With a split only approach, 

the mesh is built each frame starting from the parent node(s). Consequently, the mesh is 

regenerated each frame; making the algorithm strictly generative instead of incrementally 

refined. The split and merge operations of the Triangle Bin-Tree are the fundamental 

routines that give the ROAM algorithm its power. 

Unconditionally performing split and merge operations in the evaluation of the 

Triangle Bin-Tree does not prevent the problem of T-Junctions. T-Junctions are 

prevented by ensuring that immediate neighboring nodes do not differ by more than one 

level in the tree. In the situation where a triangle is to be subdivided, the neighbors are 
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queried to ensure the difference in level of detail will not exceed one. If the split will 

cause neighbors to diverge, then a forced split of the neighbor is also executed. Forced 

splits can result in a chain reaction that causes multiple forced splits of many neighbors 

that share an edge with the remaining two sides of the triangle. For the merging process, 

merges are prevented when the merge will cause the neighbors to diverge. Managing the 

triangles in this way is necessary to prevent cracking and to create a seamless surface. 

 
  

Figure 10 A polygonal split operation. 

The longest edge bisection of a right isosceles triangle produces two similar right 

isosceles triangles. ( )BCDABDABC
tionbi ∆∆ →∆ ,sec

 

 

The decision to split and merge triangles is controlled by two conditions. The first 

consideration is the terrain roughness for a given node and the second is the desired 

framerate. For the roughness calculation, the removal of vertices in a node is used to 

precompute the geometric error resulting from the deviation in height. The actual 

elevation value from the input data source and the elevation of the midpoint of the line 

that connects two neighbors, as in Geomorphing, is the deviation metric called the 

roughness. As with other techniques, the length of the displacement is used to determine 

the distance at which the child node’s geometry can be used to achieve the desired visual 

fidelity. In addition to error-driven level of detail, ROAM offers the option to throttle 

performance in order to meet a predetermined framerate at the cost of visual fidelity. 

When processing the tree, the technique can be controlled by submitting triangles higher 

in the hierarchy, which increases runtime performance but reduces visual fidelity. The 
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option to trade quality for speed is useful in systems when the framerate lags behind the 

target framerate by a sizeable margin. Surface deviation and framerate are the two factors 

that drive the split and merge decisions. 

ROAM determines the optimal mesh at runtime by resolving the minimum 

number of triangles needed to achieve a given fidelity. The optimal minimization of 

triangle throughput was once considered the primary goal for many algorithms in 

Computer Graphics; however, it has become more of an antiquated notion in the context 

of current generation graphics hardware. Initially observed problems with the technique 

were integrating a texturing scheme and the per-triangle split/merge decision. These early 

objections were addressed in an unfinished, unpublished revision of the original 

technique, termed ROAM 2.0 [43]. Regardless of the version of ROAM, they all suffer 

inherent slowness due to the expensive tree traversal and CPU-bound nature of the 

algorithm. In addition, most instantiations require excess computational workload to 

perform per-polygon operations. The per-polygon nature of the original technique 

precludes it from being suitable for the modern graphics processor. Perhaps, when 

massively parallel CPU’s become prevalent, ROAM will see a rebirth but, of this writing, 

its original popularity and appeal is diminished. 

3.4.4.3 An Improved Block-based Quad Tree 

In 1998, Röttger et al. published their work for the Real-Time Generation of 

Continuous Level of Detail for Height Fields [44]. Like the earlier work of Lindstrom et 

al, the algorithm generates a continuous multi-resolution mesh using a Quad Tree, but 

differentiates itself by using a top-down approach. Most noteworthy of the technique is 
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its native support for Geomorphing. Also, the top-down method helps facilitate simplified 

means for preventing T-Junctions, which had been a problem of the original algorithm. 

As with Lindstrom’s approach, Röttger makes use of a heightfield whose data is 

distributed throughout the nodes of a Quad Tree. The root node represents the four outer 

corners of the heightfield. Subsequent levels additively restore vertices to each quadrant 

of a parent node, which recursively adds detail back into the mesh by subdividing the 

geometry with axially-aligned bisections. Each node of the tree is rendered as a single 

quad, with leaf nodes representing the smallest distribution of vertices possible in the 

input data source. At runtime, the tree is traversed from the root down towards the leaves. 

The mesh is rendered using the fewest quads necessary for producing a visually accurate 

presentation of the terrain to the viewer. 

In determining the error metric, the roughness factor for a self-contained 

subregion of elevation data is precomputed and stored for referential evaluation at 

runtime. Specifically, the value computed is used at runtime in a comparative operation 

that specifies if the geometry housed by a node offers enough detail. Given a threshold, 

the roughness is compared against the split metric. The decision results in the subdivision 

of the current node and subsequent evaluation of its children or the submission of the 

current node’s geometry to the renderer. A lookup table that identifies the resolution used 

for each region is maintained. The table is a referential data source that is used to track 

dependency relations between neighboring nodes. Using the lookup table ensures T-

Junctions can be avoided with negligible impact on performance. Many of the principles 

used in the split decision are derivative of ROAM. 
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The approach addresses many problems found in the original Block-based Quad 

Tree method of Lindstrom’s et al, but it shares many flaws with ROAM. The tree 

traversals and random access nature of the technique are suboptimal for system 

architectures. In addition, it is CPU-bound, which limits its potential for optimality with 

the GPU and, unfortunately, the problem is inherent in the design. 

3.4.4.4 Interleaved Quad Tree 

Recognizing weaknesses of previous iterations, Lindstrom would later revisit the 

level of detail for terrain to propose another solution [5]. The new technique presented a 

divergence from previous works. It uses a top-down strategy and relies on a specialized, 

interleaved Quad Tree to address the problems of previous methods. T-Junctions are 

explicitly handled by the technique and Geomorphing can be included to eliminate 

popping. The novel trait of the solution is its use of a single data source and the 

interleaved Quad Tree, which can natively facilitate out-of-core paging using the features 

offered by the operating system. The method was later evolved into a framework for 

large terrain visualization [45]. Unfortunately, the overly complex nature of the solution 

and its reliance on operating system specific system calls make it less attractive as a 

general approach for terrain level of detail. 

At the time Bin-Tree Hierarchies were developed, hardware limitations were such 

that excess graphics processing would drastically impact overall performance. These 

methods offered improved performance by submitting a mesh consisting of a reduced 

number of primitives in order to limit data throughput. They strive to minimize the 

number of polygons rendered without sacrificing the visual fidelity. To achieve the goal, 

these techniques construct a tree structure, in which each node corresponds to a level of 
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detail. The mesh is built by traversing the tree. As each node is visited, the geometry 

associated to the node is evaluated. Comparative analysis determines which geometry is 

ready for submission to the renderer and which must be handled further. By rendering a 

smaller set of geometry, the algorithms achieve improved performance. However, with 

the recent advances in graphics hardware, Bin-Tree Hierarchies no longer fit the 

preferred programming paradigm, which puts them at a serious disadvantage. Yet, Bin-

Tree Hierarchies are still some of the most widely used and often cited techniques in 

terrain visualization.  

3.4.5 Hierarchical Regions 

The third class of multi-resolution techniques for terrain visualization is 

Hierarchical Regions. With the advent of improved graphics hardware, researchers 

sought new algorithms that make better use of new hardware features. Hierarchical 

Regions seek to make better use of the graphics hardware by submitting batches of 

polygonal data. These algorithms build off of the theory used for Hierarchical Bin-Tree 

methods, but are augmented to be more appropriate for the hardware. Hierarchical 

Regions seek to establish a continuous level of detail structure at runtime using a tree 

based reference structure, like the Triangle Bin-Tree. Central to these techniques is the 

use of precached geometry that reduces the CPU workload. Precached geometry 

eliminates costly data transfers at runtime, and allows fast switching between resolution 

instances.   

Although Hierarchical Region techniques share a similar underlying approach, 

specific algorithms differ in their specifics. Initially, the input terrain mesh is divided into 

regions. Partitioning into regions may occur on regular or irregular bounds depending on 
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the underlying data format (e.g. TIN or RGN). Regions are sorted into a tree structure, 

such as a Triangle Bin-Tree or a Quad Tree. Each region correlates to a single leaf node 

in the referential tree structure, while the root corresponds to the instanced mesh with the 

lowest level of detail. Intermediate meshes, from highest to lowest, are assigned to the 

transitional nodes along the path between the root and the leaf nodes. The process for 

generating the meshes of different resolution varies from automated methods using an 

algorithmic simplification process, such as the View Dependent Progressive Mesh edge 

removal technique, to manual asset creation by an artist. In a given frame, the viewing 

attributes are parameterized and guide the traversal. As each node is visited, the 

corresponding instance is assessed to determine whether the geometry of the given node 

offers enough detail. If the geometry does not offer enough detail, then the children nodes 

are assessed in a recursive manner. When a subregion meets the criteria for selection, the 

geometry associated with the node is rendered. Rendering executes without further 

intervention of the CPU because the geometry data is already pre-cached in video 

memory. The process is repeated every frame to establish a mesh representation that uses 

a reduced set of data. 

An error metric is computed for each node. The error metric is used for 

determining when an instance supplies enough visual fidelity. The geometry is uploaded 

and cached in video memory for quick runtime access. During runtime, the regions are 

treated as a single object that can be evaluated as a unit. For each region, the error metric 

serves as the maximum error value for the set. The error allotment is based on the 

divergence of visual accuracy from the mesh at the next highest level of detail. The 

region can safely be selected by assessing the relationship of the viewing properties and 
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the error metric, because the displacement of a single vertex will not exceed the 

maximum displacement. This guarantees that the rendering stays within a user-defined 

threshold, which is usually defined in terms of pixels.  

In addition to precached geometry, Hierarchical Regions reduce the impact of 

using a tree. After initialization, each node in the tree is associated to a batch of polygons 

that form a composite subregion of the terrain at different levels of detail. Representing a 

batch of polygons with each node reduces the depth of the tree, which contrasts with 

techniques that correlate a single polygon to a node. The reduced tree depth will speed up 

traversals and other operations. Algorithms like RUSTiC [29], CABBT [46], BDAM 

[47], and PBDAM [48] are examples of Hierarchical Regions that demonstrate the use of 

batched geometry to varying degrees of complexity and success.  

In general, Hierarchal Regions can be viewed as hybrid approaches that attempt to 

achieve better performance by proposing a solution derivative of one or more previously 

known solutions. Methods of the genre offer improved performance over the Hierarchical 

Bin-Trees because they do not make excessive transfers of runtime data, which is a result 

of the pre-cached geometry. In addition, they do not identify the terrain geometry on a 

per-polygon basis, which reduces the CPU workload. However, these methods are 

problematic because they can draw in the problems of the methods that they borrow 

from. The techniques derivative of ROAM suffer from the need to perform a tree 

traversal, which is CPU limited. Methods that use Irregular Meshes to represent the static 

geometry set the stage for slowed peripheral operations, such as collision detection. In 

addition to the problems found in the individual components, hybrid methods are subject 

to additional problems. T-Junctions and cracking can occur at the edge of discrete regions 
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and eliminating them can prove non-trivial. Also, precaching the geometry can hinder the 

incorporation of a Geomorphing solution because it depends on the underlying data 

representation and the corresponding access patterns. Lastly, these solutions necessarily 

assume added complexity over their individual counterparts. For Hierarchical Regions, 

the side effect is that the speedup gained from the inclusion of precached geometry may 

be offset by the operational and maintenance cost associated with the individual 

technique.  

Hierarchical Regions attempt to resolve problems of Hierarchical Bin-Tree 

methods by operating on batches of geometry data instead of handling individual 

polygons. By pre-caching the geometry, these techniques can reduce bandwidth usage 

and improve computational speed, but they also present a new set of drawbacks. By 

reformulating Hierarchical Bin-Tree solutions, such as ROAM, these derivative 

manifestations offer improvements. However, the overheads associated with Hierarchical 

Regions can subjugate the benefits. 

3.4.6 Tiled Blocks 

The fourth class of algorithms, Tiled Blocks, is a simple approach that offers 

excellent performance when executed on current graphics hardware. The modern GPU is 

a highly parallelized, multi-pipeline processor that can operate on hundreds of millions of 

triangles per second. Consequently, submitting an excess of polygons to the GPU for 

processing is a better alternative to burdening the CPU with identifying a minimal, 

optimal set of triangles. Tiled Block solutions submit geometry in batches that can be 

quickly rendered instead of trying to assemble an absolutely, perfect set of primitives. A 
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reasonable excess of geometry is permissible because the processing power of the GPU 

can handle it, while freeing the CPU to handle other tasks. 

Tiled Blocks approaches share much of their philosophy and theory with 

Hierarchical Regions, in that they both seek to batch polygon data as a means to improve 

performance. However, even though the motivating factors may be the same, they are 

two major distinctions that separate them. The first difference is that Tiled Blocks only 

work with an RGN data source, whereas, Hierarchical Regions allow for TIN data for the 

regional mesh, as is the case of BDAM [47]. Secondly, whereas Hierarchical Regions 

make use of a tree for referential decision making, Tiled Blocks do not specify any 

particular relational structure. Instead of the tree, Tiled Blocks rely on the imposed 

rectilinear layout of the RGN data source, and partition the world into rectangular blocks. 

Tiled Block solutions take advantage of the data source’s regularity and superimpose the 

geometric principles that govern the rectilinear distribution of each partition to achieve 

specializations that are not possible otherwise. 

3.4.6.1 Geomipmaps 

In 2000, Willem H. de Boer published an online article describing a novel multi-

resolution strategy for terrain visualization, called Geomipmapping[49]. At a time when 

few researchers would diverge from the Hierarchical Bin-Tree methods, de Boer opted to 

forge a different path, one that reduces CPU overhead by exchanging expensive per-

polygon optimizations for grouped polygon processing. Geomipmapping applies simple 

rules for creating multiple levels of detail for a subregion of the terrain. The resulting 

instances may use a higher triangle count than could be achieved with other methods, but 

building and maintaining them requires minimal CPU processing. 
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The regularity of RGN data offers opportunities for expeditious rendering and 

data processing during application execution. Elevation data for a heightfield is often 

stored in a 2D texture map because each texture element (texel) can store the elevation 

data. The Cartesian coordinate pair used for accessing into a texel are the coordinates on 

the ground plane, making it possible to perform direct indexing. One important 

observation of this storage strategy is data compression. In this strategy, it takes one-third 

of the memory required to store the same number of vertices that it would for an irregular 

mesh. The more important thing to understand is the implicit correlation of the RGN 

layout and textures. De Boer observed this relationship, decided to build upon the notion, 

and devised the technique Geomipmapping. In texture mapping, mipmapping is an 

algorithm for limiting the cost incurred from texturing a surface at different scales [50]. It 

limits the computational workload of interpolating a texture’s colors when texturing a 

polygon by using a multiple texture instances. Each instance has dimensions correlative 

to the polygon’s screen occupancy. Mipmapping uses multiple textures of progressively 

smaller dimensions and quality that are generated by filtering the original, high-detail 

texture. The filter downsamples the texture, to create the sequence of reduced quality 

images. At runtime, the hardware is designed to access the most appropriate mipmap in 

the sequence given the screen-space occupancy of the polygon being textured. In addition 

to reducing computational workload, mipmaps can be filtered using a digital imaging 

filter to help reduce runtime visual artifacts like aliasing.  

Geomipmapping borrows from the abstract concepts and generation algorithm of 

texture mipmapping on a terrain mesh described by an RGN data source. In a 

preprocessing step, a 0,1212 >+×+ nnn  heightfield is downsampled to create a 
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sequence of )1( −n geomipmaps. A heightfield at level l  is the input needed to generate 

the heightfield data for level )1( +l . Using the input dataset level l , every other elevation 

value is sampled to produce a 0,1212 11 >+×+ −− nnn heightfield. In a recursive manner, 

the newly generated dataset becomes the input dataset for the next, lower level of detail 

instance. The process is repeated until all geomipmaps are produced (Figure 11). After 

the geomipmaps are generated they can be uploaded and cached in video memory, to 

allow for faster rendering of the geometry. At runtime, only one level needs to be 

processed, since they all offer coverage over the same area; however, the one to choose is 

driven by the runtime decision making process.  

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 11 Recursive downsampling a heightfield into Geomipmap instances. 

The 99× heightfield of elevation data in (a) is downsampled to a 55× heightfield and the 

55× heightfield is used to generate the 33×  heightfield in (c). 

 

Each instance in the set of geomipmaps provides coverage for a subarea of the 

terrain. Successive levels cover the same area using half the number of vertices as its 

immediate predecessor, but with less accuracy. Removing vertices in the preprocessing 

stage creates divergences between the original topological description of the input mesh 

and the lesser detailed geomipmaps. The divergence is not noticeable assuming the 

distance from the observation point and the geometry rendered exceeds a threshold. The 

threshold is computable based on the displacement that occurs between a vertex present 
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in a parent geomipmap and the corresponding position it assumes when it is removed. As 

with other techniques, the relative vertex position is the midpoint between the 

neighboring vertices of the removed vertex. Using the Pythagorean Theorem, it is 

possible to compute the length of the vector from the point removed to the midpoint of its 

neighbors. The computed length is the value necessary for computing the maximum 

distance at which the vertex can be removed without impacting visual quality, as 

specified by the parameterized pixel error thresholdτ  (Equation 3). During the 

initialization and generation of the geomipmaps, it is necessary to compute the maximum 

height deviation for all vertices removed from a given geomipmap. Using the maximum 

height deviation ensures that the distance at which the geomipmap is selected will display 

a screen-space error that is no greater than the value ofτ . During runtime, the current 

distance to the tile is compared with the value stored in a table of distances. The 

geomipmap that uses the least geometry and is within the threshold is rendered. The 

whole process results in the fast display of high fidelity imagery. The reduction in 

geometry processed is achieved with minimal CPU overhead, making it ideal for use with 

current hardware architectures. 

Equation 3 
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Geomipmapping is a good solution for achieving multi-resolution display of the 

terrain. Building off of the theory of texture mipmapping, Geomipmapping extends the 

idea to geometry. The algorithm is simple and efficient. As with other Tiled Block 

solutions, Geomipmapping offers improved performance by preprocessing chunks of data 
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and caching the results in video memory or fast access. However, Geomipmapping can 

produce visual artifacts in the form of popping and surface discontinuity. In fact, most 

Tiled Block solutions share in these misbegotten traits, but generalized approaches 

transgress specific algorithms to solve these problems. 

The shortcomings of Tiled Blocks solutions make them an imperfect solution. 

Tiled Blocks are notoriously susceptible to popping. Although popping is resolvable 

through Geomorphing, it imbues added complexity and computational workload to the 

overall solution. Another ill-fated attribute of Tiled Blocks is that they are memory 

intensive solutions. As a generality, Tiled Block solutions preprocess and store the 

sequence of tiles simultaneously, which can consume huge amounts of system memory. 

To further complicate the matter, terrains that exceed available system memory may need 

to employ a paging solution, which can create direct conflicts with the need to preprocess 

the terrain tiles. 

Another problem with Tiled Block solutions is their propensity to produce 

discontinuity between neighboring tiles. When such a situation occurs, it is necessary to 

manage the seams between neighboring tiles. Rendering a block at level l and its 

neighbor at level k , where kl ≠  produces T-Junctions at the shared borders. The T-

Junctions often produce visible cracks that detract from the scene, too. It is necessary to 

address the discontinuity in order to create seamless tiles, which adds further complexity 

to Tiled Block algorithms.  

3.4.6.2 Stitching and Skirts 

There are two well known alternatives that serve the purpose for creating visually 

seamless tiles for Tiled Block solutions: stitching and skirts [1]. Stitching is used to 
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create absolutely seamless tiles, while skirts are a faster, less accurate resolution. 

Stitching is often described as an integrated step in many Tiled Block solutions, while 

skirts can be viewed as an additional step. As such, skirts are defined as Model Services, 

while stitching is considered an internal step in some level of detail algorithms.  

For stitching, neighboring tiles are examined to see if they will be processed at the 

same level of detail. If they are not, a strip of ‘stitching’ geometry is generated and 

processed. In the case of Geomipmapping, it is possible to skip the vertices on the shared 

edge of the higher level of detail geometry to create a seamless border (Figure 12). The 

process is repeated for all four sides of the tile that shares an edge with a neighbor and 

modifications to the geometry set are applied where necessary. The runtime cost for 

stitching can be high, which is why some systems choose to use skirts.  

 
 

Figure 12 Stitching different resolution tiles. 

Cracking is prevented by stitching the higher resolution tile to the edge vertices of its 

neighboring (lower) resolution tile. 

 

A skirt is a strip of geometry perpendicular to the ground plane and parallel to the 

tile’s edge (Figure 13). Instead of perfectly matching the seams between tiles, a skirt is 

extended from edge vertices downwards to a position below the lowest point on the entire 

terrain. The skirt follows the edge around the tile and can mask any discontinuities in the 

geometry that may be revealed as cracks. Skirts can even be precomputed along with the 

tile’s level of detail at startup, which eliminates any infringement on runtime 
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performance. As previously stated though, skirts are imperfect. While skirts can mask 

cracks in the surface, they do not address shading artifacts that can occur at T-Junctions.  

 

 
 

Figure 13 Skirts are used to hide cracking. 

The skirt placed around the higher-resolution tile hides the crack that occurs at the edge 

shared with the low- resolution tile. 

 

Tiled Block solutions are simple algorithms that offer fast and efficient online 

assembly and rendering of multi-resolution terrain meshes. Solutions, such as [51], have 

seen a resurgence in interest from researchers because of their suitability for use with 

modern graphics hardware. The rectilinear layout of each tiled region is easily 

deconstructed into triangles, triangle fans, or triangle strips for fast processing on the 

GPU. Batching the geometry allows the GPU to make optimal use of its parallelized 

architecture, providing excellent throughput to achieve better frame rates and an 

improved user experience. The simplicity of Tiled Block solutions, coupled with the 

intrinsic suitability for current hardware architecture, make it a current favorite for use in 

a number of interactive applications [52]. The primary drawback with Tiled Blocks is the 

need to manage seams between discrete tiles and necessary integration of Geomorphing, 

which impose added complexity and impact runtime performance. 

3.4.7 Concentric Regions 

Concentric Regions are the fifth and final class of algorithms for multi-resolution 

terrain visualization. As of this writing, the Geoclipmap, in two distinct instantiations, is 

the only published algorithm that demonstrates concentricity as used for level of detail in 
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terrain visualization. As with Tiled Blocks, Concentric Regions offer performance 

improvement achieved by relying on an underlying RGN data source. Concentric regions 

achieve a speedup by grouping polygons into batches that can be processed in unison, 

instead of treating each polygon individually. Whereas Tiled Block solutions partition the 

terrain into discrete, non-overlapping units; Concentric Region techniques work on a 

focal area using a windowed view of the terrain. The windowed region is centered about 

the viewer and is composed of multiple levels that overlap. The geometry within the 

window’s boundaries is incrementally updated and processed each frame to define a 

multi-resolution mesh. The incremental approach eliminates the heavyweight 

preprocessing task to offer greater flexibility and adaptability to the needs of the system.  

3.4.7.1 Geoclipmaps 

Losasso et al published the paper Geometry Clipmaps: Terrain using Nested 

Regular Grids as an innovative multi-resolution technique for terrains [4]. As with 

Geomipmaps, Geoclipmaps operate on batches of polygons to achieve faster throughput 

and improved runtime performance. Unlike Geomipmaps, they do not subdivide the 

terrain into a set of 2D linear tiles, but instead regard the terrain as a single region. The 

key to the approach is that it operates on a user-centric, windowed region of the terrain 

when processing the geometry. The user centricity offers a highly detailed mesh about the 

viewer that recedes in fidelity outwards towards the horizon. The Geoclipmap is a fast, 

efficient, and hardware-friendly multi-resolution strategy for terrain visualization. 

Geoclipmaps take advantage of the fact that a heightfield can be stored as a 

texture map in a 2D image space. The theory behind Geoclipmaps extrapolates the theory 

of texture clipmaps into the realm of 3D geometry. A texture clipmap is a technique that 
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allows a large texture to be used in a scene without requiring that the entire texture be in 

memory. It accomplishes this by offering a windowed view of texel data that is 

incrementally updated according to the visible area of the texture. For instance, when 

only a limited subarea of the texture contributes meaningful detail to the scene, the 

clipmap algorithm ensures that the visible subimage within the texture is available for 

use. However, the rest of the image may or may not be in memory at that time. As the 

view changes and the visible subimage changes, the texture data is updated accordingly. 

The algorithm updates the memory-resident data to guarantee that necessary texels are 

presently in memory. The concept of the original texture clipmap algorithm serves as the 

basis upon which Geoclipmaps are derived with the following key differences:  

1. Texture clipmaps require specialized hardware, while Geoclipmaps do not. 

 

2. Geoclipmaps use the distance of the geometry to the viewer to establish the 

displayed level of detail, whereas texture clipmaps compute per-pixel level of 

detail using the screen-space projected geometry. 

 

Geoclipmaps attempt to produce a screen-uniform tessellation of the terrain such 

that every triangle is pixel-sized. The process is generic and ignorant of the surface 

topology. Techniques for Irregular Meshes and Hierarchical Bin-Trees perform fine-

grained, computationally-heavy operations evaluating the mesh geometry to provide per-

polygon level of detail adaptation. In an effort to reduce computational cost, methods for 

Hierarchical Regions and Tiled Blocks can perform less granular operations and, in some 

cases, are able to offload excess work to the GPU. Concentric Region solutions, on the 

other hand, use a uniform tessellation of the geometry across the entire terrain to build the 

surface using each level of detail as a similar, concentric subset of rings. In doing so, the 
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need for runtime computation of geometry is minimized. It is even possible to abstract 

the logic even further and offload nearly the entire algorithm to the GPU [53].  

The Geoclipmap algorithm is simple and powerful. Performing the technique 

requires the execution of two distinct phases: initialization and runtime. During 

initialization, the heightfield is assumed to be a 1212 +×+ nn grid of elevation data stored 

in a texture map. The multi-resolution instances of the heightfield are generated using a 

standard mipmap generation technique, exclusive of any filtering [50]. The generated 

mipmaps are the complete set of the terrain’s level of detail instances, and are used 

during runtime to maintain the active geometry. If desired, it is possible to compress the 

mipmaps in order to consume less memory. Instead of operating on the entire set of data 

for each instance, Geoclipmapping operates on a windowed, subset of data each frame. 

The clipmap region is an mm ×  area within a given level of detail instance that is 

centered about the viewer and meaningful to the scene (Figure 14). At runtime, the view 

is used to assemble the clipmap region. Startup is the only time that the clipmap region 

must be completely built, because successive changes will alter an L-shaped subregion of 

the clipmap as the view changes. During execution, the clipmap regions are stored in a 

2D array and uses toroidal indexing to access the elevation data. Toroidal access is 

necessary to perform 2D queuing operations that allow for incremental updating of the 

visible elevation data within the clipmap region.  
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(a) (b) (c) 

Figure 14 Geoclipmap regions. 

The three overlapping, discrete regions in (a) are projected in (b) and then cropped in (c) 

to define the multi-resolution concentricity according to the Geoclipmap algorithm. 

 

At runtime, the following steps are performed each frame:  

1. Determine active regions: Active regions of the clipmap region are determined using 

the current viewing properties. Each )1(_ +lregionclip  is a coarser surface 

representation than its predecessor )(_ lregionclip . Therefore, the same number of data 

samples of )1(_ +lregionclip  offers greater area coverage than )(_ lregionclip because 

the grid spacing is wider. To determine the active regions, a ll ngng × sample set is 

derived from each )(_ lregionclip , where n is the clipmap region size and l

lg
−= 2 . The 

uniform sizing makes it simple and effective to construct the active regions. 

 

2. Update clipmap regions: During runtime, it is not necessary to completely rebuild the 

active region, because the clipmap regions are incrementally updated. As the viewer 

moves, it is only necessary to update the clip region in the L-shaped area that has 

changed (Figure 15). The update comes from the data source, which may be a memory-

resident data stored, streamed data store, or procedural synthesis data generator. 

 

3. Crop active regions: Active regions may be clipped to speed up processing by 

choosing the coarsest active regions that offers the desired visual fidelity. Clipping of 

active regions is performed in coarse-to-fine order, and can be controlled to achieve 

graceful degradation and throttling. One possible cause for clipping is when the viewer is 

moving too fast, and the incremental update begins to lag behind. In this case, throttling 

can be applied to force clipping of detailed geometry, which results in faster processing 

time. The general case for clipping occurs when the tessellation of geometry is too high 

and continuing to process it will result in the rendering of overly-detailed geometry. In 
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either case, the geometry of a coarser level of detail supplants the area under scrutiny to 

provide the missing surface coverage. 

 

4. Render Scene: Rendering the regions is a straightforward process. For each 

)(_ lregionactive the render process submits )(_ lregionrender  to the rendering system, 

where )1(_)(_)(_ +−= lregionactivelregionactivelregionrender . Each 

)(_ lregionrender is a concentric area of the terrain surface and produces the whole 

surface as a set of interlocking concentric surfaces. 

 

 
 

 

(a) (b) (c) 

Figure 15 Maintaining the correct clipmap region. 

As the view changes from (a) to (c), only the L-shaped region of difference in (b) needs 

to be updated, which is possible using toroidal array indexing. 

 

Each frame the four step process is repeated to achieve high fidelity terrain 

visualization in real-time. As presented, Geoclipmaps will produce discontinuous 

surfaces. The discontinuity occurs where the inner edge of a )(_ lregionrender  meets the 

outer edge of )1(_ +lregionrender . To solve the irregularity at the seam, it is necessary 

to use stitching or skirts. 

Two additional capabilities afforded by the use of Geoclipmaps are compression 

and synthesis. Compression is possible through the incorporation of a runtime texture 

decompression scheme. At runtime, the clip regions will need to be updated with new 

data as the viewer moves across the surface. Texel data is decompressed and extracted 

from the heightfield being stored as a compressed texture, in order to retrieve necessary 

elevation values. Through compression, it is possible to retain extremely large terrains in 

memory. Synthesis allows additional detail to be adaptively added to the terrain at 

runtime through procedural methods. With synthesis, it is possible to create infinitesimal 
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detail across an immeasurable area of coverage, without the need to represent the 

geometry as polygonal mesh data. Synthesis can rely on procedural or functional methods 

to generate added detail that improve surface fidelity and realism. The added capabilities, 

compression and synthesis, are two more reasons why Geoclipmaps are viewed as an 

excellent multi-resolution strategy for terrains visualization.  

Geoclipmaps suffers from limitations that make it an imperfect solution. The first 

limitation is that Geoclipmaps are susceptible to rendering the visible surface at a higher 

complexity than in other schemes. In the worst case scenario, where uniform tessellation 

across the entire heightfield occurs, the surface does not benefit from local adaptivity. As 

such, the overhead of using the solution produces that same output as not using any level 

of detail technique. The second problem with the algorithm occurs in terrain surfaces 

with highly irregular surface features, such as tall thin upshots. These features will morph 

into view late and, depending on the implementation details, the late arrival may create a 

visible artifact that detracts from the visualization. Lastly, the complexity of the 

Geoclipmap solution suggests that it may be less appropriate than other solutions for 

systems that only need to visualize smaller terrains. In particular, Tiled Block solutions 

may be more appropriate for systems where the terrain dataset and all of the levels of 

detail can fit into memory. Using Geomipmaps requires an understanding of the caveats 

in its appropriateness for use.   

3.4.7.2 Geoclipmaps (GPU) 

The original paper alluded to the fact that the technique could be executed on the 

GPU [4]. The justification for not doing so in the first place was lack of hardware support 

for Shader Model 3.0 and, specifically, vertex texture lookups. In 2005, Asirvatham et al. 
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achieved the task of porting Geoclipmaps to the GPU; thereby, affirming the original 

authors proclamation [53]. The algorithm itself did not change but, obviously, the 

implementation was refactored to make more elaborate use of the programmable graphics 

pipeline. In doing so, the overhead of the algorithm is completely offloaded, completely 

freeing the CPU. The GPU-based solution epitomizes the ideal, state-of-the-art Computer 

Graphics algorithm. 

Concentric Region solutions are the newest addition to the classes of multi-

resolution strategies for terrain visualization. Instead of performing per-polygon 

operations or partitioning the terrain into polygon sets, Concentric Region techniques use 

a focal area that reduces in quality as it moves away from the user. The uniform 

tessellation of geometry along regular grid bounds is used to create downsampled terrain 

instances. The windowed view is constructed using the distance of the viewer to the 

region in a radial fashion, which is used to determine when to switch from one level of 

detail to the next. Using this strategy, the geometry in the immediate vicinity of the 

viewer is more compact and has higher definition. Areas further away from the center use 

less geometry, which reduces the amount of processing required to render the terrain 

Although Concentric Region methods are not without flaw, they are a good alternative 

for systems that strive to make the best use of current graphics hardware. 

Level of detail is the most prevalent area of research in terrain visualization. The 

need and desire to visualize terrains surfaces that are expansive and detailed justifies the 

use of a multi-resolution strategy. Level of detail improves runtime performance by 

reducing the total amount of geometry processed, while maintaining quality that 

compares to processing the entire mesh. Early techniques sought to optimize the number 
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of triangles using techniques for Irregular Mesh refinement. Hierarchical Bin-Tree 

methods perform recursive management of the geometry to build an optimal triangulation 

using a view-dependent selection mechanism. More recently, graphics hardware has 

improved, which has lead to the preference for pushing more data through the graphics 

pipeline and limiting use of the CPU. In response, techniques started shifting focus from 

optimizing the triangle count to batch processing, such as with methods for Hierarchical 

Regions, Tiled Blocks, and Concentric Regions. Each algorithm has its own set of 

strengths and weakness, which are derivative of the intended goals and era under which it 

was created. Regardless of the specific techniques, level of detail for terrain visualization 

has generated a wealth of practical knowledge and a variety of useful techniques for use 

in research and commercial systems. 

3.5 Dynamic Terrain 

Terrain visualization is used in a number of systems to display topological land 

features for a variety of purposes. To date, the majority of research in terrain visualization 

focuses on static terrain and, consequently, many systems rely solely on static terrain 

solutions. Static terrain accurately simulates rigid terrestrial surface types; leaving the 

majority of terrain types insufficiently accounted for in virtual systems. Dynamic terrain 

offers features for terrain representation that make it suitable for simulating non-rigid 

surfaces. Currently, techniques for dynamic terrain are limited because of the complexity 

and added overhead. However, as hardware improves and various industries demand 

more realistic virtual worlds, the inclusion of dynamic terrain will become more and 

more important.  
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Unlike static terrain solutions that suffice only to imitate rigid terrain surfaces, 

dynamic terrain solutions can emulate both rigid and non-rigid surfaces. As such, static 

terrain is a dynamic terrain subtype. Many strategies used for the visualization of static 

terrains make use of optimizations and tricks that rely on the rigid nature of the static 

terrain. For instance, some level of detail techniques are inflexible because they depend 

on an underlying rigid surface to decimate and restore mesh geometry. When techniques 

do not translate directly for use in dynamic terrain solutions, new algorithms must be 

devised to accommodate the needs of a dynamic surface and to supply features lost from 

the nontransferable technique.  

As with many fields of research in Computer Graphics, dynamic terrain research 

efforts first divergence can occur in the decision of whether to devise a solution that is 

intended for offline or online rendering. Offline rendering can produce high-quality, 

realistic terrain dynamics because there are no time critical restrictions placed on the 

algorithms. The goal in offline rendering algorithms is to achieve the most realistic 

visualization; however, online rendering is not afforded the same luxury. Online 

rendering of dynamic terrain requires that the terrain dynamics manifest realistic imagery 

and operate under real-time constraints. For online methods, the level of realism attained 

should be reasonably convincing, but does not require absolute accuracy. The realism of 

the terrain dynamics may be physics-based or appearance-based. Physically accurate 

models are more realistic, but run slower. On the other hand, appearance-based models 

trade realism and general use for speed. 

Online dynamic terrain solutions are capable of altering the surface to purvey 

terrestrial information to the observer. Vertex displacement is a primary functional 
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provision of dynamic meshes and the operational construct that directs that motion is 

often considered the principle goal of researchers. Many researchers incorporate a Motion 

Control model that enforces a specific simulation model alongside the dynamic terrain 

solution. Tightly coupling the motion control to the geometry management scheme is 

common, but can create intricate dependencies that do not adapt well to other domains. 

Deformations that result from the displacement of vertices reflect the interaction of the 

terrain with an object. The realism of the deformation is bound to how well the Motion 

Control model adheres to the operational constraints and rules imposed by simulation 

model. 

3.5.1 Physics-based Approaches 

Physics-based modeling is one approach that can be used to perform terrain 

dynamics. These methods derive a representation appropriate for use in a visual system 

by using a knowledge-base that originates from the Natural and Physical Sciences. For 

highly realistic visualizations, physically accurate models offer unprecedented visuals at 

the cost of computational complexity and, potentially, runtime performance.  

One of the first published works on dynamic terrain attempted to use soil 

mechanics in order to achieve realistic terrain deformation [54]. The work presents a 

simplified computational model of soil dynamics and applies it for use in animation and 

real-time interactive simulations. Specifically, the soil model creates an accurate 

portrayal of soil manipulation by computing the soil slippage and soil mass displacement. 

The process simulates erosion of soil as it moves along a failure plane until reaching a 

state of stability. It is suitable for the simulation and display of terrestrial deformations 
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that result from actions like pushing, piling, and excavating soil. The physics-based 

model is suitable for the accurate display of soil displacement. 

The algorithm is insufficient and incomplete as a general solution for dynamic 

terrain visualization. The solution offers soil excavation as the only type of soil 

manipulation. It does not address soil compression nor does it account for soil 

composition or moisture content, which would noticeably impact the deformations 

produced and influence trafficking. The technique’s unsupported elements prevent it 

from being generalized for use in many systems. 

Chanclou et. al published a physically-based solution for terrain dynamics that 

improved upon other works [55]. In the solution, the terrain surface is as an elastic sheet 

as represented by a particle-mass. The bonds between neighboring particles dictate the 

possible configurations for the surface. Spatial displacements are driven by interactive 

forces from external objects. The objects may be either rigid-bodied or soft-bodied. The 

solution addresses both compaction and erosion using a two step approach. The first step 

simulates large-scale phenomena, facilitating the simulation and display of soil mass 

compaction and the displacement. The second step performed is a small-scale refinement 

that erodes the surface; thereby, facilitating local avalanches and general surface 

smoothing.  

The imagery produced with the method is realistic and, more importantly, the 

simulation is physically accurate. However, the extensive realism carries a high 

computational cost that precludes it from being used in real-time interactive systems. In 

addition, their model does not discuss how to model real-world ground materials, which 

is necessary if it to be considered a general solution. 
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3.5.2 Appearance-based Approaches 

Appearance-based solutions strive to create a visually plausible rendition of 

terrain dynamics without the conditional constraint of using a physically accurate model. 

Instead of rigorous mathematics and complicated mappings, appearance-based solutions 

use simplifications and fabrications to produce visually convincing phenomena. 

Appearance-based solutions are not as precise as physically-based models, but in many 

cases the performance gain justifies the loss accuracy. 

In order to convey supplementary information to the observer in animations, 

Sumner et al. propose an appearance-based solution for the display of dynamic terrains 

[56]. The solution executes quickly because the computational complexity associated 

with a physics-based animation is bypassed. It uses a four step execution cycle to create a 

visually-convincing depiction of terrain surface interactivity. The four steps are:  

1. Collision Detection: Penetration is detected by casting a ray upwards, from the 

base position of a column. A collision is detected when the ray intersects an 

object before reaching the column's maximum height. When a collision occurs, 

the height at which the collision occurs becomes the new height of the column. 

 

2. Displacement: The difference in material is computed using the previous column 

height and the new height as is determined in the collision phase. The difference 

mass is either compacted into the local column or is distributed to neighboring 

columns. The amount compressed is controlled with a user-supplied parameter, 

the compression ratio )(α . 

 

3. Erosion: In order to compensate for the displacement step, columns with excess 

accumulation are eroded to reduce the steep incline. The slope )(θ  from a column 

to its neighbor(s) is computed and, when it exceeds an upper bound, the material 

is distributed to the lower-contour neighbor. The amount distributed is the average 

height of the neighboring multiplied by a user-supplied roughness factor )(σ . 

 

4.  Particle Generation: Optionally, a particle generation process fosters the aerial 

dispersion of surface matter. Matter may adhere to the rigid-body object. The 

accumulation of matter is dispensed over time into the air as particle masses. 

When a particle comes to rest on the surface again, the volumetric amount 

associated with the particle is consumed by the contact region. 
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Each frame, the four steps are executed and the final surface configuration is 

rendered to the screen. Continual, incremental updating causes the surface changes to 

accumulate over time, which gives a tractable history of events and makes the animation 

more realistic 

The algorithm is built with practical application in mind. The authors define five 

control parameters that will affect the terrain. The surface deformation parameters are 

intended to ease use of the system by non-engineers. The user-supplied parameters are: 

1. Inside slope ( inθ ) and outside slope( outθ ): Controls the shape of mounded terrain 

material. 

o Small values result in more erosion and a gradual slope. 

o Large values result in less erosion and steeper slopes. 

 

2. Roughness (σ ): Controls the smoothness of the surface; contributing to and 

resulting from ground deformation. 

 

3. Liquidity ( stopθ ): Controls the amount of erosion per time step; perceived as the 

wateriness of the terrain material.  

 

4. Compression (α ): Controls the amount of material that can be displaced 

outwards versus downward. 

o displaced. is material All :1=α  

o displaced. is material som ,compressed is material Some :10 << α  

o compressed is material All :0=α  

 

Although the technique generates convincing results, the approach is not without 

fault. One shortcoming of the approach is that it can only produce smooth surfaces and 

particles; it does not support the generation of surface cracks or clumps. Therefore, it is 

not suitable for clayey terrains that would be subject to such features. A second problem 

is that there is no mechanism for feedback about the terrain composition, which prevents 

the integration of any terrain trafficking. In addition, velocity is not taken into 

consideration during displacement. For certain soil compositions, the piling of soil mass 
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should be greater in the direction of travel. The last problem is the need to manually 

adjust rendering parameters to produce a visually-convincing image. The need for manual 

adjustments suggests that this technique may not be suited for use in an interactive 

system.  

An improved algorithm for the control of terrain deformation was published that 

uses a specialized data structure, the Height Span Map,  to provide dynamic manipulation 

of terrestrial and granular solid surfaces [57, 58].  The work improves upon previous 

efforts in the area of dynamic terrain. Specifically, the algorithm provisions for the ability 

to visualize the displacement of terrain using concave polyhedron and to display 

displaced granular material on top of an object. The ability to achieve piling on top of 

objects adds to the realism of the visualization. A simplified form of the algorithm is 

described by the author(s) in the following three steps: 

1. Detect the collision of the object with the surface. 

 

2. Displace the disturbed (granular) surface material. 

 

3. Erode the (granular) surface materials at steep slopes. 

 

The simplified form is a formal declaration of the steps necessary to conduct 

terrain dynamics. Further refinement of the approach is elucidated as follows:  

 

1. Perform rough collision detection using the bounding geometry of the objects and 

the terrain surface. 

 

2. Update the Height Span Map for the object. 

 

3. Detect the collision between the object and each column of the Height Span Map. 

 

4. Displace granular material from the columns of the Height Span Map as impacted 

by external force(s). 

 

5. Erode steep slopes by distributing granular material to neighboring columns. 
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The algorithm relies heavily on the Height Span Map. The Height Span Map is a 

2D matrix of values the represent the minimum and maximum heights of an object. In 

other words, the objects have a 2D heightfield representation of its extents. The Height 

Span Map is necessary for the computation of vertex displacements, which is the crux of 

terrain dynamics.  

While the results are realistic, the solution is not without fault. Natively, the 

technique does not address the issue of scalability. For terrains of large size, the solution 

will impose a large memory footprint and computational overhead. To combat the 

problem, the authors suggest the possibility of integrating the solution with a multi-

resolution strategy as future work, but they have not done so as of this writing. Also, the 

surface is assumed to be fairly regular; otherwise, the technique does not perform as well. 

Another problem with the solution is that it is performed entirely in software. Using the 

CPU to maintain the Height Span Map and perform all of the collision detection is not 

good, considering current programming preferences. Finally, the technique may not be 

practical for use in some systems because the authors only achieve 7-14 frames per 

second, which is well below the ideal 30 target framerate in interactive real-time systems. 

The aforementioned methods for dynamic terrain address the problems faced in 

trying to accurately simulate the displacement and settlement of earthen materials across 

a terrain surface. All of the methods have a similar strategy: displace a volumetric 

amount of the terrain and then erode steep inclines to smooth out the surface, in an effort 

to remove unrealistic jagged upshots. Some methods are physically accurate, while other 

use made up parameter sets to control the deformation. The capability of each method is 

unique, the end results vary, and not one of them is an absolute solution.  
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3.5.3 Multi-resolution and Dynamism 

Of noteworthy concern in the preceding techniques is the lack of focus on 

integrating dynamics with a multi-resolution method. Most dynamic terrain research 

efforts focus solely on the development of the simulation model, which controls the 

deformation. However, they do not address incorporating the deformation strategy into a 

system that employs a level of detail strategy. In order to successfully use a dynamic 

terrain solution in large-scale terrain visualizations, the multi-resolution strategy and 

dynamic terrain solution must be able to co-exist.  

3.5.3.1 DEXTER 

In contrast to dynamic terrain research seeking to define a simulation model of 

terrain dynamics, Yefei He’s research focused on a specifying a mechanism for 

dynamically altering the maximal resolution of the terrain mesh within the framework of 

the system’s multi-resolution strategy [30]. Dynamic Extension of Resolution (DEXTER) 

is a used to add resolution to a mesh in a manner that seamlessly integrates with the level 

of detail method. Increasing the resolution of the mesh is necessary in cases where the 

mesh density is too sparse for effectively reflecting terrain deformations; for instance, 

when an object can exist within the boundary of a single polygon of the terrain mesh. 

Although the concept behind DEXTER is a general, He’s research focused on 

implementations specifically for Hierarchical Bin-Tree methods. The research was 

applied to techniques for the purpose of altering the original mesh by incrementally 

adding more geometry. DEXTER implementations augment multi-resolution techniques, 

such as ROAM, allowing them to better support mesh deformations. Dynamic Extension 
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to ROAM is a DEXTER implementation that was integrated into an automotive 

simulation for improving the visualization aspect of the system [59]. 

DEXTER allows geometry to be added to an in-memory mesh representation of a 

heightfield at runtime by forgoing the resolution and density specifications of the original 

mesh. Hierarchical Bin-Tree methods enforce a rule that prevents splitting the geometry 

beyond the original limits of the source mesh. The Dynamic Extension to ROAM 

bypasses this restriction in order to provide dynamic refinement of geometric details. 

Subdividing geometry is used to add detail to the mesh by performing local updates in the 

same manner that the Hierarchical Bin-Tree methods execute local tests to identify the 

geometry to use for mesh in a single frame. In this manner, the approach is used by 

dynamic terrain systems to add geometry of greater resolution at identified leaf nodes by 

recursively splitting the polygon(s). The split produces a new set of children nodes in the 

tree, which uses more polygons to represent the same area. The new, high-detail 

geometry can be manipulated to create high fidelity terrain deformations. At the same 

time, the Dynamic Extension to ROAM uses the update process in order to maintain 

other vertex values, like texture coordinates and material properties. Without DEXTER, a 

heightfield expands into a full and balanced tree; however, it use can result in a tree that 

is skewed and asymmetric. Asymmetry occurs because subdivisions can be executed 

down a single branch of recursively created geometry. A stop condition, such as a 

maximum depth, is usually employed to avoid the production of overly complex 

geometry. The Dynamic Extension to ROAM runs at interactive frame rates, which 

serves as testament to its practicality and usefulness. 
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While the Dynamic Extension to ROAM is useful, it does not achieve optimal 

results. For modern graphics hardware, Hierarchical Bin-Tree algorithms are not the 

preferred approach for terrain mesh representation. Hierarchical Bin-Tree methods suffer 

from the need to perform local updates and promote per-polygon operations. In addition, 

the solution is CPU-bound, which further limits its potential for use in modern systems. 

Another problem with this approach is that the solution presented is only suitable for 

small, local updates on the terrain, such as tire impressions. Derivative work determined 

that this strategy can produce larger deformation by using coarse geometry, but even then 

the deformation is restricted and can only reflect simple structural changes [60, 61]. The 

Dynamic Extension to ROAM was also extended to offer preservation of vertex 

properties and relationships with the use of a Direct Acyclic Graph (DAG), which was 

used to prevent errant changes in the visual presentation of the modified terrain [62]. 

Large terrain changes would distress runtime performance, possibly preventing the 

application from running at interactive frame rates. As a concept, DEXTER is a novel 

finding and useful piece of information that has its place in dynamic terrain visualization; 

however, the Dynamic Extension to ROAM suffers from shortcomings that make it 

suboptimal.  

3.5.4 General Methods for Mesh Deformation 

Although surface deformation and mesh dynamics are not exclusive to terrains, 

generic methods are not necessarily transferable for use with terrain visualization. For 

instance, T-DAG is a technique that provides adaptive multi-resolution representation for 

dynamic meshes with arbitrary deformations [63]. At first glance, T-DAG appears to be a 

good candidate for use in real-time dynamic terrains on the surface, because it supports 
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surface deformation and level of detail. However, even though it performs reasonably as 

a general solution, it is not a good option for terrain visualization because it runs much 

slower than specialized techniques. In the case of the T-DAG, performance loss can be 

attributed to the use of a TIN-data layout and slow graph operations, since it has already 

been pointed out that a TIN data source translates to a slower solution. Another general 

algorithm for deformable meshes offers multi-resolution potential using a Progressive 

Mesh strategy [64]; however, its underlying TIN data structure puts it in disfavor for 

dynamic terrain. While a number of strategies and solutions for dynamic meshes are 

known, they can not compete with techniques that specifically address dynamic terrains. 

Dynamic terrain solutions are necessary to realistically visualize interactive 

terrain surfaces. They can be used to effectively communicate supplemental information 

to the observer regarding the terrain composition; thereby, creating a richer and more 

convincing visual experience. The two approaches for performing terrain dynamics are 

physics-based and appearance-based. Physically accurate solutions strive to imitate 

reality by using computational models derived from the Natural and Physical Sciences. 

Appearance-based models attempt to imitate the visual display in a convincing manner 

using simple models that are not (necessarily) based on reality. A variety of solutions that 

address the terrain deformation process share a similar strategy. In general, methods for 

terrain dynamics perform an initial deformation of the surface and then refine the results 

to compensate for upshots and peaks that would erode in nature. For a dynamics solution 

to be truly useful, it must be easily integrated with a multi-resolution strategy for true 

scalability. Successfully using a dynamic terrain method is a non-trivial feat that will 

contribute greatly to the realism in a scene. 
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3.6 Closing 

The preceding information presented a comprehensive review of techniques in 

terrain visualization. The subject matter included a review of topics in spatial 

partitioning, texturing, level of detail, and dynamics for terrains. Each subject area was 

further decomposed and specific techniques were examined. It was shown that for each 

problem, a number of techniques are available that attempt to address the issues. The two 

goals commonly sought are to improve realism and to improve performance. While both 

goals are valid for improving the user’s experience, the means by which they are 

accomplished often conflict and compromises must be made. Coordination between 

solutions to the different problems presents another set of challenges that can further 

complicate matters. However, when the components are coordinated, the system can reap 

the benefits by displaying realistic terrain imagery at interactive frame rates. 
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4. Techniques for Dynamic Terrain 

Dynamic terrain is a distinguished approach for terrain visualization that can 

achieve an unparalleled degree of realism. Many terrain visualization systems are static 

terrain solutions, which are functionally limited. In contrast, a dynamic solution improves 

the user experience through increased realism and an interactive environment that more 

closely mimics the physical world.  

Dynamic terrain systems are often more complex than static terrain solutions 

because they allow for the modification of the surface at runtime. While the inclusion of a 

deformation strategy alone will suffice as a dynamic terrain solution in many systems, 

others may require the inclusion of a means to dynamically add geometry for selectively 

increasing mesh resolution. The approaches for deformation and mesh refinement are the 

sources of computational overhead associated with dynamic terrain. 

In this chapter, we present our contributions to the field of terrain visualization in 

the areas of runtime mesh refinement and dynamic terrain deformation. The first topic 

discussed is improving a mesh’s resolution for the purpose of dynamism. The idea we 

evolve is an extrapolation and an elaboration on He’s work in dynamic extension to 

resolution (DEXTER) [30], termed Dynamically Divisible Regions. In addition to 

presenting some intuitive approaches for polygonal subdivision, we propose our original 

technical solution for dynamically altering the resolution of a rectilinear grid of elevation 

points using the GPU. The second half of the chapter is focused on issues regarding 

terrain deformation and presents our contributions. Our first contribution is an 

algorithmic specification and formalization of the process for terrain deformation that is 
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independent of the simulation model. Secondly, we propose an original deformation 

technique that uses render-to-texture and the programmable graphics pipeline to deform 

the terrain in real-time. Since the technique adheres to the process specification we 

identified, it can be implemented to simulate either a Physics-based or an Appearance-

based model. The solutions we propose contribute to improving the design and 

development of a dynamic terrain system that can achieve greater realism in a real-time, 

interactive visual system. 

4.1 Dynamic Extension to Resolution 

Terrain meshes are comprised of a finite set of interconnected data points that 

create a discrete representation of a continuous surface. As with any digital sampling, the 

analog to digital conversion suffers from lossiness. The problem for terrain elevation 

sampling is the possibility for excluding local maxima and minima that occur between 

elevation samples. For RGN meshes, the loss is proportional to the distance between grid 

points in the network. In order to reduce lossiness, the elevation data sampling must 

occur more frequently, which increases the dataset size. As the size increases, the need to 

process and render the dataset impacts runtime performance. Obviously, the conflict of 

interest between limiting the dataset size and faithfully representing the terrain surface 

must be overcome.  

A fundamental goal when modeling the mesh is to use a sampling interval that 

limits lossiness, but does not overcompensate and generate an excessively large data set. 

For static terrain solutions, the generated mesh should be an optimal representation of the 

terrain with an ideal resolution. Unlike static terrains, the optimal resolution of the mesh 

may not be absolute for dynamic terrain systems. At runtime, a dynamic terrain is 
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expected to react to imposing forces by meaningfully displacing vertices; however, a 

problem occurs if the object imposing the force does not intersect with one or more 

vertices of the terrain mesh. Under these circumstances, no vertex displacement can 

occur, indirectly making the deformation strategy inoperative and ineffective.  

Systems susceptible to the failure of the deformation strategy may employ a 

Dynamic Extension to Resolution method to compensate for the shortcoming. Dynamic 

Extension to Resolution (DEXTER) is a generic term for increasing the resolution of a 

mesh beyond its original, maximum resolution [30]. The original work on DEXTER only 

presented implementation details specifically designated for Hierarchical Bin-Trees, like 

ROAM. Hierarchical Bin-Trees guarantee that the lowest common polygonal shape is the 

right triangle and emphasize its recursive subdivision nature. These facts were exploited 

in the Dynamic Extension to ROAM [65], which went against standard protocol by 

enabling the runtime to recursively subdivide triangles beyond the prefixed resolution of 

the original input mesh. The technique allows the mesh resolution to be dynamically 

increased in areas that require greater mesh density, while other areas remain unaffected. 

The irregular density of the mesh limits additional memory consumption at runtime in an 

intelligent manner. However, the specific technique is an extension to ROAM, which is a 

suboptimal continuous level of detail algorithm as pointed out in Section 3.4.4. In 

general, Hierarchical Bin-Trees are an antiquated approach and, therefore, the Dynamic 

Extension to ROAM is a misdirected supplement. 

4.2 Dynamically Divisible Regions 

Rather than focus on a single solution, such as ROAM, Dynamic Divisible 

Regions (DDR) are a generalized construct for Dynamic Extension to ROAM that can be 
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specialized to work with a variety of multi-resolution strategies. Specifically, a Dynamic 

Divisible Region is a subdivision surface specification for terrain visualization. 

Functionally, a DDR is used to increase the resolution of a region within the terrain mesh 

and, as a result, it must interweave seamlessly with the chosen level of detail strategy. For 

RGN meshes, a region is defined along either a right triangle or quadrilateral boundary 

that contains one or more polygons in its interior. In the case of ROAM and other 

Hierarchical Bin-Tree methods, a region is analogous to the smallest geometric unit, a 

single right triangle. For other algorithms, a region may be defined by a group of 

polygons. In the case of a Tiled Block solution, a region is a single tile represented by a 

set of )1()1( +×+ nn  rectilinear vertices that form a rectangular area composed of 

nn × quadrilateral polygons. In both cases, the Dynamically Divisible Region is a limited 

area of the terrain, and its regular polygonal shape can be algorithmically subdivided to 

offer higher resolution. 

Dynamically Divisible Regions are formed from sets of polygons that use a 

subdivision scheme to provide the extension to resolution as specified in DEXTER. The 

benefit of using Dynamically Divisible Regions is in their potential for parallelizing the 

subdivision process in two distinct ways. The first parallelization is achievable by 

subdividing two distinct regions at the same time, as long as there are no intersections 

between regions. The second possibility is to parallelize the geometry of a region by 

subdividing the polygons within a single region in parallel, which is well-suited for 

machine architectures that include multiple CPUs, multi-core CPUs, or a GPU. These 

two parallelization methods are not exclusive and can be coordinated to create extremely 

parallel software architectures.  
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The use of Dynamically Divisible Regions is not without consequence. The issue 

faced when extending mesh resolution is the potential for excess memory consumption. 

For Dynamically Divisible Regions, increasing the resolution of a region is done 

uniformly. In the worst case, where the entire set polygons describing the terrain surface 

is defined by a single region, the subdivision process will execute across the entire 

surface and unnecessarily generate an excess of geometry. In the case of extending 

regions defined by a single polygon, subdividing an individual polygon limits extensional 

geometry to regions that explicitly request increased resolution. Simultaneously, the 

performance will be impacted because the process is invoked more frequently and 

parallelization is minimized. The goal becomes finding an acceptable balance that limits 

memory consumption and offers a reasonable opportunity for parallelization. However, 

the acceptable levels for each are largely dependent on application requirements and 

available system hardware.  

4.2.1 Description 

Dynamically Divisible Regions are characterized by their ability to be refined 

from a coarser, lower-resolution mesh into a higher density one. Increasing the resolution 

of the mesh is useful for two reasons. The first reason to increase mesh resolution is to 

provide a higher quality visual presentation of the region to the user. It is possible to 

augment the subdivision scheme with a synthesis strategy that adds fine grain details to 

improve the visual fidelity of the region. The second reason for refining a region is for 

the purpose of terrain deformation. The quality of the surface deformation is closely 

related to the resolution of the mesh being deformed; particularly, in cases where the 

deformation is intended to simulate visual interaction between two objects. Visually 
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simulating the influence of an object on a soft terrain surface is exemplary of this 

situation. As mesh density increases, the deformation can more accurately represent the 

form of current and residual displacements occurring from interpenetration. As 

previously mentioned, increasing the mesh resolution leads to more memory 

consumption and use of processing resources, which can negatively impact performance.  

Dynamically Divisible Regions are a generalized construct for offering improved 

resolution at runtime. In terrain visualization, a terrain mesh is defined by a set of 

polygons. Initially, the input mesh data describing the surface presents a fixed maximum 

resolution. Dynamically Divisible Regions allow the runtime system to increase the 

resolution beyond its initial offering. Resolution is increased by subdividing the regional 

interior at runtime. Subdividing the region generates a higher resolution mesh that affords 

greater detail to the viewer and the ability to provide better reflectance of object-surface 

interaction.  

The dimension and polygon count of a region is specified by the system and is 

closely related to integrated techniques for spatial partitioning and level of detail. In some 

systems, a region may be the entire terrain, while in others a terrain will be composed of 

multiple regions. In the case of a terrain decomposed into multiple regions, it may be 

necessary to incorporate compensatory actions in the level of detail method to prevent 

cracks between neighboring regions. A region is decomposable into one or more 

polygons. For each region, the subdivision process is enacted upon all of its polygons. 

For regions with one polygon, like ROAM, only one subdivision occurs per region, and 

cracking is natively prevented by the ROAM algorithm. For regions composed of many 
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polygons, like Geomipmapping, the subdivision process executes many times in a single 

region and cracking between neighbor regions will necessitate ancillary actions. 

A terrain mesh is described by a set of data points that form a continuous surface. 

The data points are interconnected to create a representational polygon mesh. A region is 

a subarea of the terrain; therefore, a region is a subset of data points and connectivity 

information that defines one or more polygons. Since any polygon can be triangulated, a 

region can be decomposed into the set of triangles that define its surface. In addition, a 

triangle can be further refined by subdividing it into a set of lesser triangles. 

Consequently, the resolution of a region can be increased by subdividing its triangulation 

using a common technique.  

Different mesh types encourage the use of specific subdivision strategies, which is 

practical knowledge when defining the subdivision process for extending mesh 

resolution. Terrain meshes are modeled as either a Triangulated Irregular Network or a 

Regular Grid Network. An RGN mesh guarantees the triangles are right triangles, 

whereas a TIN does not. While in some systems, the primitive polygonal type associated 

with a region is a triangle, others may prefer to use a rectangle. Both primitive types are 

valid because they can be subdivided algorithmically to produce self-similar polygons. 

4.2.2 Irregular Triangles  

A TIN mesh is composed of irregular, or unregulated, triangles that define the 

surface of the terrain. In order to extend the surface resolution of a region, it is necessary 

to triangulate the encompassed area. The triangulation of the area is not guaranteed to 

produce triangles that adhere to any set of rules defining similarity or likeness; therefore, 

the extension subdivision scheme must handle the most general case. Hence, all triangles 
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must be treated individually and care must be taken to prevent the introduction of errant 

discontinuities at neighboring edges. Technique 1 provides one possible subdivision 

scheme for triangles of a TIN that prevents edge discontinuity and cracks between 

neighboring triangles. The technique is based on the rudimentary mathematical approach 

for finding the centroid of a triangle, which achieves the desired results. 

Input: Triangle ABC∆  

 

1. Compute centroid G  of ABC∆ : 
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2. Add new ABG∆ to triangle list. 

3. Add new BCG∆ to triangle list. 

4. Add new ACG∆ to triangle list. 
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Technique 1: Subdivision technique for an irregular triangle. 

 

4.2.3 Polygonal Subdivision of a Regular Grid Network 

Regular Grid Networks impose greater demands on the subdivision strategy 

employed for Dynamically Divisible Regions. Subdividing an RGN mesh must produce 

geometry that maintains the rectilinear structure of the data. The requirement ensures that 

other methods, such as a multi-resolution strategy, are valid for use with the newly 

acquired geometry. Fortunately, the data layout is ideally suited for meeting the 

requirement when subdividing the triangulated mesh, because a rectilinear grid can be 

decomposed into right triangles or rectangles. Right triangles offer the greatest control 

over the amount of newly generated geometry, but generate polygons at a ratio of 2:1 . 

On the other hand, rectangles split at a ratio of 4:1 , which can make them 

computationally faster, but also offers less control. Lastly, in this discussion a tile is the 

term used to represent a collection of polygons that can be subdivided at a ratio 
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of 4,:1 >xx . Tiles achieve improved performance at the cost of excess memory 

consumption as ∞→x . 

4.2.3.1 Right Triangles 

RGN meshes use a rectilinear grid of elevation data that guarantees the entire 

mesh can be triangulated into right triangles. Right triangles are subject to a number of 

special optimizations that can be exploited in the subdivision scheme. One common 

method for subdividing a right triangle in terrain visualization is the longest edge 

bisection, which generates two new right triangles for each triangle subdivided 

(Technique 2). This approach is the fundamental operation of the Binary Triangle Tree 

used in ROAM [28]. Bisecting a right triangle along the longest-edge produces two self-

similar right triangles that are subject to further subdivision using the same procedure. 

Most often the process is driven recursively and the stop condition is met by reaching a 

predetermined granularity or depth. A region composed of many right triangles will 

conduct the procedure multiple times, once for each triangle within its bounds. Longest-

edge bisection is the fundamental operation of the ROAM algorithm’s Binary Triangle 

Tree data structure and, consequently, it is used by the Dynamic Extension to ROAM. 

 

Input: Right Triangle ABC∆  

 

1. Compute the midpoint M of the hypotenuse BC . 
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2. Add new ABM∆ to triangle list. 

3. Add new AMC∆ to triangle list 
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Technique 2: Subdivision technique for a right triangle. 
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4.2.3.2 Rectangles 

In some systems, it is preferred to regard two right triangles in unison as a single 

rectangular polygon, such as in the Block-based Quad Tree used in [27, 44]. As a result, 

the subdivision scheme for polygonal interior can be defined in terms of a rectangle. 

There are a multitude of subdivision algorithms for rectangular polygons that will suffice 

for the purpose of extension to resolution. One approach would be to subdivide the 

rectangle into two right triangles that are subsequently subdivided using one of the 

previously mentioned approaches. Alternatively, a rectangle can be subdivided into a set 

of self-similar rectangular quadrants (Technique 3). Subdivision of the rectangle using 

this approach allows for batch processing and polygon generation, which can reduce 

overall workload by reusing shared computations. The rectangular subdivision approach 

was used in a Dynamic Extension to the Block-based Quad Tree [30]. 

Input: Rectangle ABCD  

 

1. Compute the midpoint W of AB . 

2. Compute the midpoint X of CA . 

3. Compute the midpoint Y of CD . 

4. Compute the midpoint Z of AD . 

5. Compute the centroid M of ABCD . 

6. Add new rectangle AWMZ to polygon list. 

7. Add new rectangle BXMW to polygon list. 

8. Add new rectangle CYMX to polygon list. 

9. Add new rectangle DZMY to polygon list. 

 

 

Technique 3: Subdivision technique for a rectangular polygon. 

 

4.2.3.3 Tiles (Rectilinear Grids) 

Many terrain systems operate on batches of polygons in their multi-resolution 

strategy. For the purpose of this discussion, a tile is regarded as a subset of a rectilinear 

grid data that describes a subregion of the terrain surface. Tiles are defined by a nm ×  
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rectilinear grid of elevation points, where 2,2 ≥≥ nm . The elevation set maps to a 

nm ′×′ set of adjacent rectangles, where )1(),1( −=′−=′ nnmm . Each of these rectangles 

can be subdivided to produce a new tessellation for its interior area. Subdividing all of the 

rectangles within a tile generates a higher resolution for tile as a whole. In fact, the 

subdivision process may be defined as a derivative process that executes the rectangular 

subdivision scheme multiple times in parallel.  

Unlike geometry that can be split independently, tiles are composed of a group of 

polygons that share edge vertices. As a result, the subdivision process must ensure 

continuity is preserved. In addition, the tile must be subdivided in a manner that 

maintains the characteristics of its internal rectilinear structure so that the data is 

consistent and compatible with the system’s concurrently employed algorithms relying on 

the rectilinear nature of the data. Maintaining the structure and continuity allows the 

process to be applied recursively without concern for special cases.  

Recursive refinement of a tile offers improved performance because a region can 

be subdivided using fewer operations than independently subdividing the region on a per-

polygon basis. In Technique 4, vertices )}3,4(),4,3(),2,3(),3,2{(  are shared between 

adjacent tiles and need to be computed and stored once. In this manner, subdividing a tile 

offers greater performance by optimizing parallelized execution as the dimensions of the 

tile are increased. However, the trade-off is the potential for producing geometry in 

excess of what is required. Unnecessary geometry results from the uniform subdivision 

across a tile’s internal area. As either m  or n  increase, the potential for generating 

excess geometry increases because the amount of geometry produced is directly 

proportional to the dimensions of the tile. There is an obvious conflict of interest and, 
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therefore, it is necessary to find a suitable dimension definition that maximizes 

performance while limiting the total geometry produced. 
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Input: Tile (A rectilinear grid of elevation points). 

 

For each set of 4 adjacent vertices in the input tile: 

1. Compute the midpoint between horizontally adjacent vertices. 

2. Compute the midpoint between vertically adjacent vertices.  

3. Compute the centroid of the rectangular region.  

4. Add the four newly generated rectangles to the polygon list. 
 

Technique 4: Subdivision technique for a tile. 

 

4.2.4 Hardware Considerations 

Technically, for many Dynamically Divisible Regions the subdivision technique 

can be engineered to execute on the CPU or the GPU. Unlike other runtime terrain 

system features, such as collision detection, it is understood that the subdivision process 

is executed with discretion and will execute a limited number of times. Subdivision is 

performed until a maximum resolution is attained that is suitable for deformation under 

the impact of all relevant objects in the scene. In fact, the number of subdivisions tends to 

be relatively low in a single region and is unlikely to occur every frame. Therefore, the 

subdivision process only has the potential to impede performance on occasion. Deciding 

which hardware component should handle the subdivision task is a non-negligible task, 

but the justification for one over the other is not always straightforward.   
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A terrain mesh is decomposable into a set of geometric primitives that can be 

subdivided recursively. Dynamically Divisible Regions can exploit this property to 

extend the resolution of the terrain mesh. For simple geometric primitives, like triangles 

and rectangles, the computational cost for subdividing a single polygon is low. 

Comparatively, the computational cost of subdividing a region composed of many 

polygons is high. In all cases, it possible to devise subdivision algorithms that execute on 

the CPU or the GPU. All of the algorithms for subdividing geometric entities presented 

thus far are portable to the GPU; however, not all of them are appropriate. In the case of 

general triangles and right triangles, the runtime cost in data setup, transfer, and read 

back is not compensated by porting the single polygon subdivision process to the GPU. 

On the other hand, subdividing a region composed of multiple polygons, like tiles, may 

benefit from porting. The decision of which hardware facility to use is dependent on the 

regional composition, the subdivision technique, and the hardware resource availability. 

The generation of geometry resulting from a dynamic extension to resolution 

method can contribute to improved visual quality when deforming the surface of a 

dynamic terrain. In many cases, algorithms for dynamically subdividing a DDR that can 

be executed on the CPU can be finagled to run on the GPU. For simple regions composed 

of a simple, singular polygon, the CPU is suitable. However, in the case of regions 

consisting of multiple polygons, like tiles, porting to the GPU offers the advantage of 

executing on a parallel architecture when generating the new elevation data. In such 

situations, executing the solution on the GPU may prove to be more expeditious and 

efficient. Unfortunately, the gains taken from porting subdivision from the CPU to the 

GPU are limited due to the nature of the problem. Since the dynamic process is not called 
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consistently and, in practice, is executed a limited number of times, the impact of these 

techniques to affect performance is restricted. Even still, porting to the GPU will 

contribute towards reducing CPU workload when the subdivision process is called, which 

promotes greater consistency and stability for the runtime. 

4.2.5 Subdividing Tiles on the GPU 

Tiles are well-suited for subdivision using the GPU. A tile is a subset of 

rectilinear elevation data that represents a subarea of the total terrain mesh. The locally 

maintained geometry is subject to subdivision in situations that require a dynamic 

extension to resolution. The subdivision process must produce a tessellation of higher 

resolution that maintains the rectilinear structure. The single CPU version of the 

algorithm described by Technique 4 accomplishes regional subdivision through a 

multiphase approach that computes the midpoints for the horizontal neighbors, calculates 

midpoints for the vertical neighbors, and determines the centroid for each interior 

rectangle. The sequential execution of a single processing pipeline impedes performance, 

because these computations could be executed in parallel. The parallel processing 

architecture of the modern GPU can be used to exploit this option, which can benefit 

runtime performance. 

Specialization of the subdivision process for tiles is necessary, in order to take 

advantage of the GPU. The following algorithm describes how the GPU can be used to 

execute the subdivision process for converting a nm × tile to a higher resolution 

nm ′×′ tile.  

1. Encode the nm × tile of elevation values as a nm × texture. Elevation data stored 

in a regular grid can be mapped from 3D space to 2D image space through 

straightforward encoding. Assuming y is the elevation sample, each 

vertex ),,( zyx in 3D space, can be encoded by normalizing the y  value, if 
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needed, and storing it in the pixel located at ),( zx  in the image plane. The end 

result is a nm × texture suitable for use by the GPU. 

 

2. Load the texture into video memory. With the elevation data in a suitable format, 

the nm × texture must be physically transferred to the video memory of graphics 

hardware. 

 

3. Render the texture to a screen- spaced quadrilateral, with a nm ′×′ viewport. 

Prior to rendering, the viewport and rendering properties must be configured 

appropriately. In order to change the resolution from nm ×  to nm ′×′ , the 

viewport is defined to be nm ′×′  and the perspective set up as orthographic. Once 

the configuration is set, a screen-spaced quad that reaches to the extents of the 

viewport is drawn using the encoded elevation data as its texture map. When the 

quad is drawn the fragment processor computes the interpolated values for 

missing texture coordinates using a linear image filter or through a fragment 

program. Upon completion, the render target stores the sample set that represents 

the region at a nm ′×′ resolution, albeit encoded.  

 

4. Read the nm ′×′ render target back into main memory. With the newly computed 

elevation values ready, the encoded nm ′×′ texture is read back into system 

memory by accessing the render target.  

 

5. Decode the nm ′×′ texture into a nm ′×′ tile of elevation values. Through an 

inverse transformation, the nm ′×′ texture is decoded into a nm ′×′  set of 

elevation data. In the case where y is the pixel value, each pixel in image space 

located at ),( zx can be decoded by rescaling the y value and storing it as a unique 

),,( zyx  value in the vertex data set. 

 

The process presented performs the same duties and offers the same functionality 

as the algorithm described in Technique 4; however, the entire process is executed using 

the GPU. Figure16 shows an aerial view of an input mesh at a fixed resolution. Figure 17 

shows the same mesh after it has been retessellated to a higher resolution using 

Technique 4 on the GPU. Unlike the CPU approach, the GPU method can be used to 

resample the elevation data for the purpose of increasing or decreasing resolution, 

without further specialization. The key in sampling via the GPU is the transformation of 

data from 3D space to 2D image space. In image space, the problem is equivalent to 

stretching a texture, which the hardware is readily capable to do without intervention. 
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The inverse transformation restores the encoded 2D image data back into its 3D 

counterpart, except the region’s resolution is changed. The primary bottleneck in the 

process is the transference of data from system memory to video memory and back. If the 

latency of transfer time is outweighed by the performance gain from porting, the method 

is optimal. The gain in performance is proportional to the number of polygons contained 

by a region, because of the potential for exploiting the parallelism of the GPU. In 

addition, the latency times should decrease as graphics hardware improves, which makes 

the GPU port a stronger candidate in the long term.  

 
Figure 16 The input mesh. 

The original input mm 3333 × terrain with m0.1 posts. 
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Figure 17 The dynamically divided mesh. 

The mm 3333 × terrain after the dynamic subdivision process with m25.0 posts. 

 

Dynamically Divisible Regions are a specialization of subdivision surfaces for 

terrain meshes that offer runtime extension to mesh resolution. Terrain meshes can be 

decomposed into subregions defined by one or more polygons that form a continuous 

surface. Each region that is a Dynamically Divisible Region can be extended to provide 

an increase to the resolution for its area of coverage. A Dynamically Divisible Region is a 

practical solution for terrain systems that require runtime compensatory actions for 

improving the mesh resolution. Regionally-contained polygons are subdivided in 

accordance with an algorithm that generates additional data points to achieve higher 
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detail. Since all polygonal meshes can be triangulated, the challenge becomes selecting 

the best subdivision technique to use and which hardware should undertake the task.  

4.3 Terrain Dynamism 

Dynamic terrain is most notably characterized by an interactive, deformable 

surface. In order to modify the surface, it is necessary to incorporate a runtime 

deformation strategy within the terrain visualization solution. For many topics in 

Computer Graphics surface deformation can be defined in terms of a mathematical 

function; however, in the case of terrain visualization, surface deformation is a reactive 

response to the simulated force imposed by other objects in the scene. The majority of 

research on deformation strategies in dynamic terrain visualization focuses on the 

underlying simulation model that computes the redistribution of displacements occurring 

after initial vertex movement. Physics-based approaches, like [54] and [55], direct the 

movement by applying physically-inspired rules to create a convincing virtualization of 

surface interactivity. Appearance-based methods, such as [56] and [58], use invented 

parameterization sets that simplify calculations at the cost of computational accuracy, but 

produce a reasonably convincing simulation. However, for our purposes, the rules for 

distributing the vertices based on a simulation model do not qualify as a complete 

deformation strategy.  

4.3.1 Deformation and Rendering 

Ideally, terrain deformation would be defined according to the laws of Soil 

Mechanics, allowing both the simulation and visualization systems to imitate the real 

world perfectly. Unfortunately, current computational power prevents the ideal from 

becoming a reality. Therefore, partial simulations models or fabricated algorithms are 



137 

 

adopted to provide reasonably convincing imitations. Different simulation systems are 

tolerant to different levels of complexity and exactness in the visualization of terrain 

changes. Although they both work towards a similar goal, physics-based methods are 

more computationally correct but slower, while appearance-based methods can achieve 

visually-acceptable, inaccurate results at a much lower computational cost. Both 

approaches share the same goal, but with different emphases. In response, this research 

originates a loosely-specified algorithmic approach that supports either driving factor: 

computational correctness or performance. The technique is flexible enough to allow for 

various instantiations to be specified and to be developed independently, but also offers 

enough commonality that comparative analysis is possible. The technique can be 

described by the following four stages: 

1. Determine the initial displacements for terrain vertices, as moved by the imposing 

object during the current frame. 

 

2.  Redistribute the displacement offsets in accordance with the soil simulation 

model. 

 

3. Update the periphery vertex attribute data affected by the deformation. 

 

4. Process and render the (deformed) terrain mesh.  

 

The first stage attempts to compute the incrementally displaced vertex position as 

it is changed by forces currently imposed. The second stage is the analogous to steps in 

physics-based and appearance-based methods, which attempt to define a compensatory 

process that imitates the visual, if not physical, characteristics of Soil Mechanics. The 

third stage is an intermediate step of the deformation process that is used to ensure 

peripheral data associated with vertices remain consistent with the recently altered 
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topography. Lastly, the terrain mesh is processed and rendered to screen, which presents 

the deformed terrain to the observer. 

4.3.2 Overview 

The four phase approach for dynamic terrain is a complete solution for the 

specification and development of deformation techniques in dynamic terrain. Although 

specified in general terms, each phase explicitly identifies the necessary tasks for 

deforming the terrain surface.  

In essence, the first two steps of the technique are the simulation system that is 

used to deform the terrain. Computing the initial vertex offsets and the subsequent 

redistribution is functionally descriptive enough for identify deformation routines of 

varying complexity, but is done without instilling constraints or restrictions about the 

technique.  For instance, both the physics-based method found in [55] and the 

appearance-based method presented by [56] employ a multi-step process that accounts 

for displacement and redistribution. It is conceivable that any deformation model can be 

defined in terms of these two actions. As such, it becomes possible to identify 

compatibilities and differences between methods through the generalization.  

Generalizing the deformation process distinguishes it from the implementation. 

Deformation techniques that are overly complex or offer poor performance will 

discourage the use of a dynamic terrain solution. The computational cost incurred is 

determined by the algorithmic design and implementation of the deformation strategy. In 

addition, there are a wide variety of possible solutions under this specification; ranging 

from highly-complex physics simulation to quick-and-dirty approximations. Unlike a 

specific technique, the general strategy affords flexibility that can be exercised when 
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evaluating what’s acceptable in terms of speed and computational accuracy. 

Consequently, it is possible to defer the decision regarding precision to meet the needs of 

the system without inadvertently discouraging its inclusion.  

4.3.3 Displacement Computation 

Terrain modeling produces a terrain mesh composed of an initial configuration of 

vertices, edge-connectivity data, and vertex attributes. The position of the vertex is the 

most noticeable component of the terrain’s surface description. When deforming the 

surface, the vertex position is altered to make known interaction between the terrain and 

any objects imposing force on the surface at contact points. In order to simulate 

interaction between a terrain and an object, it is necessary to offset vertices contacted by 

the object. Specifically, offsets for each affected vertex must be computed to eliminate 

any visual anomalies where an object interpenetrates the terrain when a deformation 

should occur. Offset values are assigned in accordance with the Motion Control model to 

prevent errant vertex displacement. For instance, heightfield-based systems will employ a 

constrained motion control agent that limits the displacement to the elevation only. 

Limiting changes to vertical offsets prevents movement of vertices in the direction of the 

ground plane, which serves to preserve the rectilinear structure of the data source. 

Intentionally, the initial offset of the vertex simulates the compression of the terrain. For 

many soft surfaces, compression is the most prevalent alteration resulting from 

interactivity.  

4.3.4 Displacement Redistribution 

Although simulating the compression exclusively is an option, redistributing the 

displacement values is preferable for simulating many soil compositions that are subject 
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to local avalanches. Local avalanches occur when the shears stress from a steep incline 

overcomes the shear strength and the soil travels down the failure plane until it settles in a 

stable state. Clayey soils have a high cohesion factor that can overcome the inclination of 

the soil to crumble in on its self; however, many other soil types can not. After 

compression, the ridgeline of loose, granular soil types around the impact area will 

experience localized avalanches that remain active until stabilization between the shear 

strength and shear stress is reached. At the same time, on the interior of the impact area, 

some soil compositions may partially decompress once the compaction force is removed. 

In order to simulate surface dynamics in addition to compression, it is necessary to enact 

a second simulation step that processes the surface using a soil simulation model. The 

secondary activity affords the simulation an opportunity to refine the topographical 

distribution of displacement values for the purpose of accurately reflecting the simulated 

soil composition. For a number of systems, the redistribution process is the main 

contributor to the visual system for implicitly conveying the soil composition and 

makeup. 

4.3.5 Vertex Attribute Maintenance 

Once the topography for a frame is established, it may be necessary to perform 

maintenance on vertex attributes and periphery data. Often, vertex data has locally 

associated information that contributes to the final surface appearance in the rendered 

image. There is potential for the pronouncement of visual artifacts when these attributes 

are not properly updated against the current surface configuration. Vertices are fixed in 

static terrain systems and, therefore, the data associated to a vertex does not necessitate 

dynamic runtime maintenance. Deforming a surface allows vertices to change during 
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program execution and may, therefore, require additional processing to coordinate the 

data associated to a vertex as it changes. Consequently, additional processing resources 

must be allocated to ensure that periphery data coincides with the surface as it changes 

during program execution. 

Examples of relevant vertex attributes include normals, texture coordinates, and 

colors. Deforming the surface may result in the need to recompute vertex normals, for the 

purpose of lighting calculations. Texture coordinates may need to be modified to mitigate 

the appearance of visual artifacts on revised polygons. Vertex colors can be modified in 

creative ways that offer visual cues or compensations to an observer. Logically, any data 

associated to displaced vertices may require maintenance routines to coordinate the local 

changes with the overarching surface deformation. 

4.3.6 Final Processing and Render 

As a final step, it is necessary to process the terrain data and render the image to 

the output device. During this phase, the runtime implementations for Modeling, 

Rendering, and Animation techniques, as required by the application, are subject to 

invocation. Spatial partitioning will limit the total set of geometry submitted for 

processing. Level of detail will further refine the geometry, while Geomorphing 

compensates for popping. The application of textures, shading, and atmosphere are used 

to improve the detail of the terrain. Out of this process, the final image of the interactive, 

deformable terrain is generated and sent to the output device. 

The aforementioned process provides the high level overview of what is executed 

during the simulation and visualization of a dynamic terrain solution. Each frame, the 

four-stage process is executed by following the same sequence: compute the compression 
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displacements, redistribute the displacements, update the vertex attributes, and process-

and-render the terrain dataset. In this manner, the terrain is managed each frame and 

terrain dynamism is achieved in real-time. 

4.4 Terrain Dynamism on the GPU 

In an effort to improve the field, it is necessary to evolve dynamic terrain by 

developing better algorithms that limit the overhead associated with dynamism. The 

primary source of overhead stems from computing the initial offsets and redistributing 

the displacements. These tasks are central to dynamic terrain visualization, but the 

computational complexity incurred in the implementation deters the overall attractiveness 

of such solutions. Reducing the assumed overhead by offloading additional work onto the 

GPU is a good recourse that alleviates the burden and improves the appeal of a dynamic 

terrain solution. 

When an object imposes force onto the surface of a terrain, the terrain exerts a 

force of its own in the opposite direction. If the force exerted by the terrain succumbs to 

the force exerted on the terrain, the topology will change. It is the job of the Application 

Logic in the main application system to implement the simulation models for objects in 

the scene. As such, the Application Logic component bares the burden of calculating the 

orientation of its associated objects with respect to the terrain. In this manner, the 

simulation model of an object can be coupled to the object, independent of the terrain 

system. After the simulation model has determined the orientation and position of the 

objects in the scene, one or more objects may interpenetrate the terrain surface. Even 

though the simulation model is running correctly, the visual model will suffer from 

lessened realism because it does not accurately reflect surface interactivity. In order to 
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remedy this situation, it is necessary to deform the terrain in a convincing manner where 

the visual presentation accurately imitates real world terrain interaction. 

Surface deformation occurs when an object in the scene imposes a force on the 

terrain that necessitates the simulation of terrestrial responsiveness. The overview for 

dynamic runtime deformation provides a high level guideline in the development of a 

terrain deformation technique.  A number of techniques for terrain deformation are 

possible; however, not all are ideally suited for the task. Many proposed solutions are 

incomplete because they concentrate solely on the redistribution process. In addition, the 

known solutions do not attempt to make explicit use of graphics hardware. The following 

presents a novel technique for realistic terrain deformation that makes excellent use of the 

GPU as the means for reducing computational overhead incurred from using the 

technique.  

4.4.1 Displacement Computation 

The first task in deforming a terrain surface is the computation of the initial 

offsets occurring from soil compression. In this solution, compression occurs as a 

reactive measure wherever an object penetrates the surface. The computed offset is a 

value associated to a vertex that, when applied, displaces the vertex position to a location 

that eliminates the object-terrain surface interpenetration. In most cases, the presence of 

an object will invoke displacements for multiple vertices each frame. Calculating the 

offset is a per-vertex operation that has the potential to greatly impact performance. 

Nonetheless, through the application of compression to each vertex, the surface appears 

to conform under the simulated force of the object. 
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In order to alleviate the CPU from an excessive workload, the computation of 

compression offsets can be offloaded to the GPU. In order to use the GPU, the elevation 

data must be in a format useable by the GPU. The rectilinear layout of elevation data of 

an RGN mesh is suitable for use by the GPU, but to be accessible the application must 

prepare the render state and uploading the data to video memory.  

The first step for uploading the data is to configure the rendering state. The 

configuration of the scene is as follows: 

1. Configure the render target as a depth-buffer render target. 

 

2. Configure the rendering system to use an orthographic projection.  

 

3. Configure the viewport to a nm ×  area of the render target. 

 

4. Translate the viewing position to the center of the nm × region where the object 

causing interpenetration is located. 

 

5. Lower the eye point below the lowest elevation point of the region. 

 

6. Rotate the viewing direction to be perpendicular to the ground plane. 

 

Although the preparation of the render state is used by a number of subsequent 

steps, the perspective view and application’s camera state must be preserved for the final 

processing phase. Specifying the render state and configuring the camera in this manner 

encapsulates the region of interest in the viewing volume of an orthographic projection 

(Figure 18). This setup allows the object and the terrain to be rendered from underneath 

the terrain, looking upwards, while the depth buffer specification is used for computing 

the compression displacement values. The result of preparation is a windowed view of 

the terrain centered about the area of interest that makes data transformation and 

operation on the GPU possible. 
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Figure 18 Camera state for deforming the terrain on the GPU. 

 

After configuring the camera, the elevation data must be transformed from the 

system memory format to one that the GPU can use. A transformation process can be 

used to encode the elevation data of a rectilinear region into a nm ×  texture called a 

Dynamically Displaced Height Map (DDHM). The transformation process is used to 

encode the data and transmits it from system memory to texture memory.  If the range of 

elevation data in the mesh region is not ][ 1,0 , then the values will need to be normalized. 

Inversely, a scaling factor can be applied to a normalized data set in the vertex processor 

to decode the true elevation value of the vertices. The vertex ),,( zyx in 3D space is 

encoded into a 2D image space by mapping the elevation value into the ),( zx ′′ pixel 

location, where ),(
n

z
z

m

x
x =′=′  (Figure 19). Once encoded, the elevation data is 

uploaded from system memory into texture memory, where it is accessible by the 

graphics processor.  The transformation process only needs to be executed when the 

encoded texture for a region is not resident in texture memory. All subsequent processes 

that access the elevation data can be specified read-only, which will preserve validity for 

future iterations of the algorithm. Upon completion of the transference, the region’s 
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geometric description is appropriate for use by the GPU, both in terms of format and 

physical storage medium. 
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Figure 19 Mapping elevation data into the render target. 

 

After the render state is configured appropriately and the geometry for region-of-

interest is available in texture memory, it is possible to compute the initial offsets induced 

by surface compression using the GPU. The first step in computing the compression 

offsets requires the terrain data be decoded from the texture and stored in the render 

target that is replicating functionality of the depth buffer. By rendering the elevation data 

decoded from the texture, the render target retains the region’s elevation data from the 

perspective of below the surface. Next the object or objects that are within the bounds of 

the region are processed and the depth buffer functionality afforded by the render target is 

used to determine surface visibility. In this manner, the object geometry that is closer to 

the camera than the terrain elevation will be handled by the fragment processor (Figure 

20). With the camera below the lowest elevation point of the terrain, only the vertices 

correlated to object geometry that is penetrating the terrain surface are processed. In 

addition, each fragment processed in the render target corresponds to exactly one vertex 

in the nm × region. The depth buffer is used to compute the compression offset for each 

vertex that is being compressed by an object. As each fragment in the render target is 
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processed, the actual compression offset is computed by the fragment program. The 

displacement value is stored into a second nm × render target called the Offset Map. 

Each pixel in the Offset Map has a one-to-one mapping to the vertices in the nm ×  

DDHM, which also corresponds to the nm ×  dimensions of the input region. The 

generation of the Offset Map uses the parallelized fragment processor to quickly and 

efficiently calculate the compression offset of each vertex. The parallel computation of 

vertex offsets contrasts the slower CPU-based method that relies on sequential vertex 

processing. With this approach, the offsets are expeditiously calculated on the GPU, 

leaving the CPU free to handle other processing tasks. 
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Figure 20 Recording displacement values into the Offset Map. 

Darkened arrow heads correspond to visible object surfaces that are recorded into the 

Offset Map. Hollowed arrow heads are discarded since the terrain mesh occludes the 

object and no penetration or compression is present. 

 

4.4.2 Displacement Redistribution 

Upon completion of the first task, the Offset Map stores normalized compression 

offset values for vertices displaced under the compaction of an object. The Offset Map is 

a persistent record of object penetration imposed on the regional surface over time. The 

deformation recorded in the first step is a mirrored-impression of the object, which is 
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ideal for highly cohesive soil compositions that retain form, like clay and mud. For other 

soil types, including granular soils, it is necessary to perform a compensatory 

redistributive process because the stability of the soil would not retain the compacted 

impression. 

As with computing the offsets, it is possible to offload the redistribution process 

onto the GPU; once again, alleviating the CPU from assuming the additional 

computational workload. In order to make use of the GPU, the redistribution process 

requires that the Offset Map be located in texture memory. In the preceding step, the 

Offset Map for a nm ×  region was generated by operating on a nm ×  render target. If the 

preceding steps use a render-to-texture, then the Offset Map is already present in texture 

memory. In addition, the same camera configuration, render state, and the vertex list are 

reusable for the purpose of the redistribution step. As a result, redistribution carries 

minimal overhead and integrates seamlessly with the first stage as presented.  

Redistributing the offset values on the GPU is a straightforward task because the 

preparatory work for the process is already done. The strategy is to render the Offset Map 

into a second nm × render target and, while rendering, the fragment processor is used to 

resample the offsets.  Initially, the Offset Map is maintained as a 2D image in texture 

memory. Using the render state and mesh vertices for the region being deformed, the 

Offset Map is drawn to a nm ×  render target. In some cases, it may be preferable to 

render the object and not the region in order to limit the amount of processing 

undertaken. In both cases, each fragment in the render target maps to exactly one vertex 

in the DDHM and the Offset Map. The initial displacement value for each vertex is read 

from the Offset Map, which shares a common ),( vu  coordinate with the DDHM. In 
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addition, samples can be read from neighboring values to compute a less rigid formation 

through the application of inventive filters. The sequence of lookups and blending is 

particular to the implementation and can range from highly complex to obviously simple. 

Physics-based soil simulations can use the fragment processor to compute the shear 

strengths and shear stresses in order to determine the physically-correct distribution of 

soil across the area. Appearance-based solutions can use simple weighted averages or 

other image filters to blend the surface, thereby lessening the rigidity produced by the 

compression calculation. In either case, the nm ×  render target output from the filtering 

process supersedes the input Offset Map and becomes the current Offset Map for the 

region. 

The redistribution of compression offsets allows the surface to react in a dynamic 

manner that affords greater visual realism. In addition to the clay-like soils that can be 

simulated otherwise, filtering makes it possible to simulate granular soils compositions. 

The redistributive process described makes use of the GPU in a simple and 

straightforward manner. The technique presented is analogous to the practice of image 

filtering using the GPU. Rather than focus on a specific process, the proposed strategy is 

presented in a generic manner. The intent is to dissuade the reader from thinking in terms 

of physics-based and appearance-based simulation solutions, because these are 

implementation dependent issues. With this technique, it is possible to devise customized 

implementations that meet the needs of the system, without imposing restrictions that 

would otherwise limit it from supporting the full spectrum of soil compositions and 

simulative complexities. 
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4.4.3 Vertex Attribute Maintenance 

The geometric surface of a mesh is insufficient for realistic terrain imaging. In 

addition to positional data, vertices will carry associated attributes that contribute to the 

realism of the final image. For most terrain meshes, attribute data is defined during the 

offline modeling phase or it can be computed using the mesh for referential purposes 

during initialization. For static terrain solutions, once the information is known, it 

remains fixed and can be cached for reuse during execution. Unlike static terrains, 

dynamic terrains are not stagnant, which necessitates proactive maintenance and 

coordination of the vertex attributes as the surface is deformed.  

Dynamic terrain is characterized by a deformable, interactive mesh. As the 

topography of the terrain is deformed, vertex positions are changed and the data 

associated with the vertices may require runtime services, as well. For example, the 

displacement of a set of vertices may invalidate the associated normals, texture 

coordinates, and colors. The use of cached values would negatively impact the rendered 

image, because the associated information is no longer valid given the current surface 

formation. Incorrect normals can result in the display of unrealistic shading artifacts, 

because shadows and lighting are erroneously computed. Invalid texture coordinates can 

produce exaggerations in texture stretching in areas where vertex displacements have 

expanded the shared polygonal surface area beyond an implicit threshold. Inappropriate 

vertex color assignments may result in visual discrepancies that conflict with the intended 

display of qualitative information. The displacement of vertices impacts the potential of 

peripheral data because the very intent of this data is to compliment the polygonal mesh. 

Obviously, as the polygonal mesh is modified, the relevant data may require modification 
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too; therefore, specialized maintenance routines that coordinate the vertex attributes with 

the geometry may be necessary to preserve image quality at runtime. 

Many of the common vertex attributes can be computed during initialization and 

these methods can be adapted to work during runtime, as well. Both normals and texture 

coordinates can be mathematically computed in a variety of ways. Computing the 

normals of rectilinear grid of vertices is rudimentary, if not obvious. The designation of 

texture coordinates for the various texturing strategies is also straightforward. Vertex 

colors can be manipulated through lookup tables or functional processes according to 

system-specific needs. During runtime, these methods can be executed using the newly 

displaced vertices to determine the currently correct values. However, computation 

should be limited to the areas that have undergone deformation during the frame. 

Limiting the area reduces the overall workload, which contributes to an optimal 

performance.  

Vertex attributes include the entire set of satellite data associated with a vertex 

that are used to improve the visual realism of the rendered mesh. Although normals, 

texture coordinates, and vertex colors are the most common, each application is free to 

designate and use unique attributes for specialized purposes. Since the vertex attributes 

employed in a system are application-specific, it is neither reasonable nor in the scope of 

this research initiative to present specifics algorithms and techniques for addressing such 

concerns. In lieu of proposing a specific technique for updating vertex attributes, this 

research simply acknowledges that the potential exists.  

For each vertex attribute in the system, it is important to evaluate the impact 

resulting from surface deformation and to execute the proper course of action in the case 
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where visual discrepancies arise. Although runtime maintenance of vertex attribute data 

imposes additional workload, its absence can result in visual anomalies that affect the 

system’s ability to produce realistic imagery.  

4.4.4 Data Process and Image Render 

Processing the dataset and rendering the scene is the final stage of the solution 

that gathers all the information and displays the final image. The task at hand is to 

assemble the various datasets into set of collective information that is useable by the 

graphics pipeline. Data must be organized and submitted to the renderer, which processes 

the conjoined information to generate the imagery. The output image portrays the 

deformed terrain mesh that appears to have interacted with the object; thereby, simulating 

the reactivity and dynamism of physical terrain.  

At this stage, the system must restore the rendering state, gather the relevant data, 

submit the data to processing pipeline, and execute the processing pipeline. Unlike the 

previous phases that operate on focused areas of the terrain where objects interact with 

the terrain, the final stage must process all of the terrain within the application view’s 

frustum and render it to the output device. Therefore, the camera configuration is restored 

to use the values of the application’s camera. In addition, the projection is reverted to a 

perspective projection, which restores the viewing properties and three-dimensional 

aspect to the scene. In the simplest system, the entire terrain mesh is submitted to the 

renderer; however, this is suboptimal and can unnecessarily overburden the processing 

pipeline. For advanced systems, the terrain solution will employ a spatial partitioning 

algorithm to cull large batches of geometry and a level of detail algorithm to further 



153 

 

reduce the total polygon count. In all systems the geometry is collected according to the 

internal rules of the application and submitted to the graphics processing pipeline. 

The graphics processing pipeline is designed for the exploitative use of the GPU. 

Many tasks that were executed on the CPU with a fixed-function pipeline can be 

offloaded to the GPU and the programmable pipeline. The elevation data is encoded in 

the DDHM and displacements offsets are stored in the dynamically updated Offset Maps 

for visible regions. Both the DDHM and the Offset Map are encoded as textures and 

stored in texture memory that is readily accessible by the graphics processor. The 

availability of the vertex data in texture memory is important because Shader Model 3.0 

supports vertex texture lookups, which lets the vertex processor access the information. 

Using the vertex textures lookup functionality, the DDHM and the Offset Map are used 

as displacement maps. Each vertex uses a common texture coordinate to access both the 

elevation height and its displacement offset from the textures. First the elevation data is 

decoded from the DDHM (Figure 21a). Next the offset corresponding to the elevation is 

retrieved from the Offset Map (Figure 21b). Finally, the two values are blended to 

establish the final position of the vertex (Figure 21c). The computed difference is the 

height at which each vertex is located according to the persisted deformation history. The 

process is performed on each vertex to create a faithfully-deformed, interactive surface.  

In addition to the amalgamation of displacement maps, supportive operations and 

algorithms may be executed in the vertex and fragment processors to contribute to the 

final image. Within the vertex processor, Geomorphing can be employed in an effort to 

minimize popping that can result from the use of level of detail. Texture mapping, 
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shading, and atmospheric effect techniques can be incorporated into the fragment 

processor to alter the presentation of the terrain, making the scene more realistic. 
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(a) (b) (c) 

Figure 21 Data is combined in the vertex processor. 

The rendering process uses the encoded elevation data in (a) and offsets in (b) as 

displacement maps to generate the final, deform terrain surface (c). 

 

Rendering is the final set of processing handled each frame to generate the 

imagery on the output device. The resulting image is a dynamically altered surface that 

displays object interactivity with deformation persistence. In addition to the final 

assemblage of the rendered topography, a number of supplementary tasks are handled at 

this time. Although not necessarily a part of the render process itself, spatial partitioning 

and level of detail techniques may be executed in the determinacy of the geometry to be 

processed. The polygons submitted are the items that will undergo further graphics 

processing to define the final image produced by the graphics pipeline. For deformation 

purposes, the DDHM and the Offset Map are blended within the vertex processor and the 

computed value is used to displace the vertex. During vertex and fragment processing 

methods for Geomorphing, texturing, shading, and atmospheric effects are also realized.  

4.5 Large Terrains and Dynamism 

Many research initiatives in terrain visualization are focused on resolving issues 

in handling large-scale terrains. The most common problems associated with large 
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terrains are memory consumption and processing workload; both of which can be 

exorbitant. Level of detail is the most common solution in terrain visualization, used for 

the purpose of handling large-scale terrains. The need to coordinate the dynamism routine 

with the multi-resolution strategy may be complex, but not impossible.  

The proposed technique for terrain deformation is compatible with systems that 

support large terrains through the integration with level of detail. The only stipulation 

regarding compatibility is that the level of detail technique must operate on a terrain 

along rectilinear bounds (i.e. a Regular Grid Network mesh). The rectilinear alignment of 

the data is necessary for mapping the data from system memory into texture, via the 

DDHM encoding. In addition, the regular alignment can be used to partition the terrain 

into distinct regions where each region is a discrete subpart of the larger terrain. The 

concept is not new to very-large scale terrain solutions that can incorporate a paging 

technique. Notably, each region of the terrain can maintain a DDHM and Offset Map for 

its interior area, which is necessary for deforming each region individually. By iteratively 

applying the dynamic terrain technique to each region, it is possible to deform the large 

terrain as a whole using this divide-and-conquer approach. 

The definition of the regions used for deforming a large terrain may be fixed or 

dynamic, which can make for two unique approaches in handling the terrain deformation 

process. The boundaries defining a fixed region are specified once and remain valid for 

the duration of application execution, while dynamic regions allow for the re-

specification of boundaries during program execution. Although both approaches are 

equally valid, the use of one over the other may be more intuitive given the level of detail 

technique used by the terrain system. For instance, a Tiled Block algorithm would be best 
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integrated with a fixed region approach, while a Concentric Region approach would more 

easily integrate with a dynamic approach. 

The differences between a fixed approach and a dynamic approach for the 

purpose of deformation are simple. A system using fixed regions for deformation may 

require multiple passes in a single frame, while dynamic deformation region will require 

runtime maintenance. In a fixed system it is likely that an object will intermittently cross 

regional boundaries (Figure 22). When this occurs, the deformation strategy will need to 

be executed once for reach region the object occupies. In the case of a scene with a single 

object whose bounding area is less than a single region, the algorithm will have to 

execute, at most, four times in a single frame. On the other hand, a dynamic region uses 

the object as a referential construct and dynamically redefines the region boundaries to be 

centered about the object (Figure 23).  In this manner, the region always encapsulates the 

object, which eliminates the need to execute multiple passes of the strategy for one 

object. With both approaches, as more objects are added to the scene, the offset 

computation, redistribution, attribute maintenance, and rendering tasks will be executed 

more times per frame; however, this is an unavoidable consequence. The benefit of using 

a regional approach is that it constrains the computational workload assumed by limiting 

the maximum area processed for deformation in a given frame. Large terrains introduce a 

number of unique challenges to terrain visualization. Many of the hardships incurred are 

remedied through the inclusion of level of detail. In order to provide dynamism with 

large terrains, the deformation routine can be incorporated to work using regional terrain 

partitions, instead of on the entire terrain. The two possible regional approaches are fixed 

and dynamic. For both approaches, the details of an implementation are dependent on the 
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algorithms that the deformation is to be integrated with. Yet, independent of the details, 

both succeed at providing the facilities for dynamic terrain functionality in large terrain 

systems.  

  
(a) (b) 

Figure 22 Deforming a terrain using fixed regions. 

A spherical object is entirely housed within a single fixed region (a). After moving, the 

object occupies four distinct regions (b). The deformation routine is performed once for 

each region that the object holds occupancy in during a frame of execution. 

 

  
(a) (b) 

Figure 23 Deforming a terrain using a dynamic region. 

A spherical object is housed within a dynamic region (a). After moving, the object 

remains within the bounds of the dynamic region. A runtime maintenance routine updates 

the boundary definition of the region as the object moves.  

 

4.6 Closing 

Dynamic terrain systems are an improved terrain visualization solution because it 

can actively portray an interactive surface. The commonplace presence of static terrain 

systems has established a number of basic features that are expected of the average 

terrain visualization solution. In addition to these features, dynamic terrains solutions 

must provide functionality to demonstrate its interactive nature. While the inclusion of a 

dynamic extension to resolution procedure is optional, the presence of a deformation 

technique is mandatory. Dynamic extension to resolution methods can dynamically 
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increase mesh density to offer higher quality deformation. Dynamically Divisible 

Regions are a generalized specification that can be used to work within the constraints of 

most systems. It has also been shown that it is possible to implement at least one DDR 

instantiation using the GPU. Whereas extension to resolution is optional, the deformation 

process provides the means for interactively altering the surface, which is the defining 

characteristic of a dynamic terrain. While the deformation process can be specified in 

terms of a compression displacement and redistribution of vertex positions, additional 

processing is also employed to coordinate periphery data and render the final terrain. 

Section 4.2.2 presents an algorithm that makes explicit use of the GPU to deform terrain. 

The output imagery visually simulates interactivity and dynamism that improves realism. 

The two components, dynamic extension to resolution and the dynamism strategy, create 

the distinction between a static and dynamic solution. When employed correctly, the 

result is an enhanced visual experience and, possibly, a more precise simulation.
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5. Dynamic Terrain System  

5.1 Introduction 

The thesis presents a number of novel ideas and technical solutions for application 

in terrain visualization. To support the work, we have developed a terrain subsystem 

implementation that uses these ideas to create a dynamic terrain solution for an off-road 

ground vehicle simulation system. The terrain solution is combined with an automotive 

simulation system in development by members of the Hypermedia & Visualization Lab 

(HVL) within the Department of Computer Science at Georgia State University.  The 

application demonstrates the utilitarian nature of a dynamic terrain solution as it pertains 

to visually-enhancing ground vehicle simulations. It is shown that the integration of an 

interactive deformable terrain improves the observable realism, which contributes to an 

increase in the visual credibility of the system. 

5.2 Goals 

The purpose of a terrain visualization system is to provide the user with a realistic 

presentation of the landscape that includes information to the scene while conveying 

form, texture, and presence. In order to provide a truly realistic presentation, the terrain 

must supply the observer with a convincing presentation of the surface. For many 

systems, the surface is assumed to achieve a reasonable level of realism through the use 

of texture mapping, surface shading, and atmospheric effects.  Although the rendering 

components can improve visual realism, they are insufficient for visualizing dynamism 

and interactivity. The omission of dynamic deformation limits the degree of realism that 

can be achieved in terrain systems that are intended to characterize soft, loose soil 
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compositions. The best remedy for the misaligned use of a static terrain system is to 

replace it with a dynamic solution.  

For the purpose of ground-vehicle simulation in off-road conditions, the terrain is 

most suitably represented with a dynamic terrain system. Unlike roadways, off-road 

driving conditions are considered suboptimal. For ground-vehicles, the suboptimal nature 

of off-road conditions implies the presence of non-rigid surfaces. The lack of rigidity 

means that the vehicle will cut and carve into the terrain as it traverses the surface. 

Consequently, the terrain should provide the capability to display the remnants artifacts 

left behind from vehicular contact through the presence of tread marks. Taking into 

account the possibilities for faithfully visualizing off-road driving, a dynamic terrain 

visualization system is the best approach. 

In addition to dynamism, the solution must incorporate a number of techniques 

commonly used by solutions for terrain visualization. Among the features to be included 

are texture mapping, shading, and level of detail. These features contribute to the overall 

visual appeal of the terrain and ensure that performance is maintained. The application 

acts as a testament to the practicality of augmenting a terrain solution to include 

dynamism. The final product seamlessly integrates hybridized algorithms that work 

cohesively to form a complete solution for the simulation and visualization of ground-

vehicles in off-road conditions. 

5.3 System Design 

The application is comprised of different pieces that have been constructed across 

two separate, but related, research initiatives. The first part is the vehicle simulation 

component and the second is the terrain system. The two pieces were integrated to 
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produce an application suitable for the simulation and visualization of ground vehicles 

that can interact and influence a dynamic terrain surface. While both pieces contribute 

equally to the final product, the two systems were developed independent of one another. 

Consequently, the terrain system was created as an autonomous unit to be consumed and 

used by the simulation system. Therefore, we limit the discussion of design and 

implementation issues to the terrain system and do not attempt to describe the vehicle 

simulation whatsoever. 

The terrain system was developed using the design architecture of the component 

framework as a guide. A number of simple, yet effective, techniques are implemented for 

each component to achieve improved visual quality and to increase performance. Figure 

24 is a (simplified) class diagram that describes the terrain design. The class diagram 

divulges the interface of the terrain and reveals a number of methods of the system that 

contribute to the final solution. Class attributes are unique to each object. Included in the 

solution are attributes such as vertex position, texture coordinates, and normals that are 

necessary for any terrain system, regardless of it being TIN or RGN, single or multi-

resolution, and static or dynamic. In addition, it supports dynamism in conjunction with 

level of detail, which makes it truly unique.  

The terrain solution can be characterized according to its qualities. First, the 

terrain only supports the regularly spaced set of elevation data offered by an RGN data 

source for its mesh representation. An RGN mesh was decided upon because the 

regularity and rectilinear structure of the geometry makes it suitable for specific 

algorithmic simplifications that serve to improve performance and enhance the visual 

display. Also, according to [41], RGN mesh processing can be faster than TIN mesh 
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processing on current graphics hardware. The solution also uses a custom level of detail 

method derived from [49] and [1], distinguishing it as a Tiled Block solution. While both 

Tiled Block and Concentric Region approaches are equally appropriate for use with 

modern graphics hardware, Tiled Block solutions require less complex runtime 

maintenance and, for our purposes, is the more appropriate solution. Lastly, it is as a 

dynamic terrain solution because it incorporates the GPU-based method for terrain 

deformation. Integrating the deformation technique exhibits the functional use of terrain 

dynamism while incurring only a nominal performance penalty. The terrain solution 

incorporates a number of features common to terrain visualization systems in conjunction 

with the deformation technique, making it suitable for exhibiting the functional and 

practical nature of a dynamic terrain on current computer hardware. 

5.4 Component Design 

The solution was developed using the component framework for terrain 

visualization. For each component, one or more techniques were specified and 

implemented into the solution to fulfill the requirements and meet the needs of the 

system. The framework is well-suited for discussing algorithmic decisions at a high-level, 

because it affords others the opportunity to analyze and compare the design decisions in 

relation to their own. Comparatively analyzing systems in the context of the component-

based architecture is more meaningful because it provides a formalized common 

infrastructure, as opposed to a comparison based on randomly chosen system features.  
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Figure 24 Class diagram for the terrain system. 

 

5.4.1 Modeling Components 

The terrain mesh is derived from a set of elevation data stored in an offline height 

map. The elevation values define the geometric structure of the terrain displayed to the 

user and interacted with by virtual objects. The elevation set is stored as a nn ×  

heightfield in 8-bit raw image format that is, subsequently, loaded by the application 

during startup. The raw image is transformed into a set of three dimensional vertices 
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using the transformation function ),,(),( zyxyzxf →= . Transforming the entire dataset 

produces the three-dimensional rectilinear mesh in memory. After the mesh is assembled, 

vertex attributes, including normals and texture coordinates, are dynamically computed 

by the terrain object. In addition to loading the elevation data, the initialization process 

will upload all relevant textures from offline storage and move the image data into texture 

memory. 

During initialization, the resolution of the mesh is updated using the tiled 

subdivision technique for Dynamically Divisible Regions presented in Section 4.1. 

Resolution is improved to ensure that the vehicle(s) in the system are capable of spatially 

influencing the topology during program execution. In the system, the entire terrain is 

treated as a single region, because the vehicles are free to travel anywhere. In the case of 

this system, runtime tessellation was not a requirement and pursuing that path would have 

added unnecessary complexity. As a consequence, the DDR is uniformly subdivided 

across its entire surface once at startup. Specifically, for this system, the scene is well-

defined because both the required maximum resolution and terrain extents are known at 

startup. Therefore, it is possible to conduct the subdivision process once during 

initialization. In this case, the potential for excess in total polygon count is acceptable in 

comparison to the complexity and workload associated with performing the subdivision 

process at runtime. 

5.4.1.1 Spatial Partitioning 

The mesh is composed of a rectilinear grid of elevation points, which makes it 

well-suited for spatial partitioning using tiles. Therefore, the mesh is partitioned into 

rectangular regions using its native rectilinear arrangement and neighboring tiles share 
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vertices along their common edge (Figure 25). Although each tile is self-contained, it is 

important that changes to edge vertices are shared between the neighboring partitions.  

 
Figure 25 Orthographic view of the spatially-partitioned terrain mesh. 

The 256256×  terrain is partitioned into related, but independent, 3232× tiles. 

 

Terrain partitioning makes it possible to limit the total amount of processing 

power consumed when perform certain tasks. The most obvious use of partitioning is for 

frustum culling, which removes large chunks of geometry from the processing pipeline. 

The geometry can be removed because it is not within the view frustum and, therefore, 

does not contribute any viewable content to the rendered image. In a perspective 

projection, the view frustum is a volumetric space that is defined by the near and far 
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planes, as well as the viewing angles. Any mesh geometry contained within the bounds of 

the frustum will contribute content to the final rendered image. Initially, the terrain is a 

single, large mesh. In fact, the terrain mesh is often too large to fit within the view. By 

partitioning the terrain, it is possible to quickly eliminate large chunks of data from the 

processing pipeline. In our system, partitions are defined by a rectangular volume, which 

can be used to test whether the partition is entirely inside of, partially inside of, or totally 

outside of the view frustum. In the case where the partition is entirely outside of the view, 

the partition is neither processed nor rendered. Used in this manner, partitioning improves 

the execution speed without any negative impacts. 

5.4.1.2 Level of detail 

In order to support reasonably large terrains, the system employs a custom level 

of detail technique that integrates seamlessly with the deformation strategy. The 

technique is used to reduce the total number of polygons processed by the graphics 

processing pipeline, while preserving the visual fidelity of the scene. Given the current 

view, the technique will selectively render different resolution instances of each tile, 

thereby improving performance. It is a hybrid approach that combines a number of 

different practices derived from known solutions to define a custom method. In 

particular, the technique combines elements from [1, 4, 49, 53]. Elements from each are 

integrated into a single algorithm that is simple, yet powerful.  

The technique uses the partitions defined by the spatial partitioning strategy as 

unique terrain tiles. Most of the computational burden for the technique is assumed 

during initialization, when static vertex and index buffers for data are constructed and 
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stored. These buffers are used throughout program execution, which greatly reduce the 

impact to runtime since minimal further computation is required. 

During initialization, each tile of the partitioned terrain is prepared for runtime 

use. For each tile, a set of lower resolution instances are generated by sampling every 

other vertex from its immediate higher-resolution, parent mesh. The approach for 

sampling is the same as in Geomipmapping. However, unlike Geomipmapping, this 

approach uses skirts instead of stitching to prevent cracking at the edges where neighbors 

are currently being rendered at different resolutions. Also, a set of blending values are 

computed for Geomorphing. Geomorphing is used to eliminate popping artifacts that can 

be perceived as tiles change from one resolution to the next. At runtime, the blending 

values are used in conjunction with the currently active tile instance and the viewing 

location to compute a displacement for each vertex. The displacement replaces the 

instantaneous movement of vertices with a gradual one that is less noticeable. The goal in 

devising the solution as we have, was to place the majority of the workload in the 

preprocess step, which minimizes the overhead assumed at runtime. 

During runtime, each partition in the terrain is evaluated and rendered 

independent of each other. In order to further reduce complexity, the solution borrows its 

approach for selecting the correct mesh instance from Geoclipmapping. The camera 

position is used to define the center of the region. A lookup table of radii is used to 

specify the correct resolution instance of each tile by evaluating the distance from the 

camera to the tile. Once the correct instance is decided on, the instance data for the tile is 

submitted for processing (Figure 26). The data submitted includes vertex positions, 

normals, texture coordinates, texture data, blending values, and skirts. It is even possible 
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to store all of the mesh data statically on the GPU, instead of physically transferring it 

from system memory to video memory each frame. As a result, the solution can produce 

high quality terrain imaging with a reduced total performance cost achieved through the 

hybridization of various methods to produce a fast and efficient multi-resolution strategy. 

 
Figure 26 Orthographic view of the terrain with level of detail active. 

The level of detail technique is used to identify and submit the correct resolution instance 

for processing using the location of the camera (the upper-left corner in this case). 

 

5.4.2 Rendering Components 

The focus of the system was to demonstrate the use of the component framework 

and to display the deformation strategy in action. Consequently, the components 
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incorporated for rendering were kept simple. Although elementary techniques were used, 

more elaborate approaches could be substituted to achieve more complex effects.  

The Rendering component is comprised of solutions for texturing, shading, and 

atmospheric effects. For texturing, the system uses a tiled texture to represent a grassy 

ground-cover. Tiled texturing is simple, yet effective for our demonstrative purposes. For 

shading, the texture is blended according to the surface normals to create a simple 

surface-illumination effect. Since real-time shading of terrains is a complex field that can 

easily overtax the runtime, simple shading was used to limit its impact on the application. 

For atmospheric effects, the solution is only capable of rendering fog. Fog is commonly 

supported as a hardware feature, which makes it an obvious choice for inclusion because 

of our focus on exploiting GPU features. Once again, other types of atmospheric effects 

were excluded to limit total impact on runtime performance. The decision to use simple 

methods to suffice for rendering is not indicative of system limitations. Instead, these 

methods were selected because they compliment the system design by accomplishing 

their goals without infringing on the greater goals of the system.    

5.4.3 Animation Components 

Animation is concerned with the motion of objects and their subparts in the 

virtual world. In terrain visualization, the Animation component addresses needs of both 

the terrain and the virtual objects. The terrain system is an interactive entity in the virtual 

world; therefore, it must provide the facilities necessary for interfacing with external 

objects. The Animation tasks address the most fundamental activities and functional 

features required for dynamism and interaction. Collision detection ensures that external 

objects can query the terrain in order to determine proper location and to prevent 
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erroneous interpenetrations. Motion control is used to direct the dynamism of the terrain 

as its surface is deformed according to the rules of engagement for the solution.  

Both collision detection and motion control features are included in the solution. 

Collision detection for the terrain is achieved through the provision of a query method. 

The function is used to compute the height y of the terrain at any given ),( zx location, 

which is useable by external objects. Objects may query the height to detect collisions 

and to determine where surface contact occurs between the object and the terrain. With 

respect to dynamic terrain, the computed height value is the starting point from which the 

object may sink itself into the ground for simulation and visualization purposes. The 

depth of penetration is recompensed by the deformation strategy which displaces vertices 

beneath the object to remove visible surface penetrations. The concept is that object-

terrain penetrations (i.e. collisions) are intentionally created and then compensated in 

subsequent steps by deforming the terrain. 

Vertex displacement for the terrain executes under the guidance of the motion 

control model of the solution. Out of necessity, the motion control in this solution 

enforces a constrained model where the terrain’s positional vertices can only move 

perpendicularly to the ground plane. The constrained model is necessary to preserve the 

evenly-spaced, rectilinear layout of the elevation data. As objects impose forces on the 

terrain, the vertices compact and rebound to deform its surface. The constrained model is 

implicitly enforced by the deformation technique strategy previously presented. 

Specifically, the implementation of the technique in our system uses a multi-pass render-

to-texture on the GPU to compute the displacement offsets. Using the depth buffer to 

compute the penetration depth of the object into the terrain provides the vertical 
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displacement that, in turn, preserves the regularity of the data according to the motion 

control model. 

Together, the Animation tasks provide the functionality necessary to create an 

interactive, dynamic terrain solution. Collision detection provides the starting point for 

referentially placing objects on the terrain surface. After the simulation system adjusts the 

placement of the object, the motion control model that is inherent to the deformation 

technique guides the displacement of vertices to create the illusion of object-surface 

interactivity. Together, the Animation tasks provide the means for independent entities in 

the scene to detect and interact with the terrain. 

5.4.4 Application Logic/Application-Specific Features 

In general, terrain visualization systems are designed and developed for use as a 

subsystem within an application that has a greater purpose. In our solution, the terrain 

system was designed for use in off-road ground vehicle simulation and visualization. The 

terrain system makes uses application-specific features that are implemented for use by 

the ground-vehicle solution.  In particular, the solution provides facilities for the physics-

based simulation model of the vehicle to interact and affect the terrain directly. For 

instance, the option to associate additional per-vertex information is included so that 

elemental soil properties can be loaded, and subsequently read, from localized areas of 

the terrain. The feature could be used by the simulation system to compute simulation-

relevant values such as tire-soil cohesiveness. Obviously, the cohesion of a tire on the 

terrain is not of any concern to the terrain solution; however, the system might not be 

considered complete without it presence. Considering the potential for future research, 

the terrain system could be extended in the future to make use of this capability. It is also 
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assumed that as the project evolves more application-specific features will be added to 

improve the terrain system’s functional capabilities.   

Development of a complete terrain visualization solution is not a trivial 

undertaking, but the component framework eases the design through its high-level 

abstraction of potential system features and functionality. Our research used the 

component framework in the specification of the terrain system for use in an off-road 

ground vehicle visualization and simulation. The framework offers direction and 

guidance in the creation of a terrain solution to establish parallels and differences 

between our solution and others. In addition, the framework eases the design by 

specifying those pieces necessary for accomplishing specific goals that would be unclear 

otherwise. As more researchers specify terrain visualization techniques and systems in 

the context of the component framework, comparative and collaborative work will 

conspire to improve the field. 

5.5 Technical Details 

The terrain system was built for inclusion as a subsystem in the simulation and 

visualization system for off-road ground vehicles. In particular, the solution was intended 

to compliment a physics-based vehicle simulation, by offering more visual cues regarding 

the activities and motion of the vehicle under non-ideal driving conditions. In order to 

cooperate with the rest of the system, the solution was built under certain technical 

constraints and specifications. The solution was developed in a Microsoft Windows 

environment using C++ and the OpenGL 2.0 API. In OpenGL 2.0, the GL Shading 

Language is available through extensions, which was used to access the programmable 

pipeline on the GPU. In addition, the render-to-texture features used for deformation 
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routine were achieved through the use of the framebuffer object extensions. Together, 

these features provided all of the facilities necessary for the terrain system.  

A major differentiator from the solution we developed and other systems is the 

inclusion of the deformation technique using the programmable pipeline to exploit the 

graphics hardware. For clarity, the following documents some of the technical details of 

the deformation technique, to assist others in reproducing our work.  

As previously noted, the deformation technique uses the OpenGL framebuffer 

object (FBO) extension for render-to-texture functionality. For our system, a single FBO 

is used to store the entire terrain in video memory because we imposed artificial limits on 

the total terrain size. However, one FBO per tile could be used by applications requiring 

larger terrains. Each frame, the initial offsets are computed in the areas where the 

vehicle(s) are located by configuring the FBO to use the depth buffer capability of the 

GPU. The algorithm for computing the initial offsets is as follows: 

1. Query the height(s) of the contact points for the vehicle on the terrain and position 

the vehicle accordingly. 

 

2. Execute the application-specific simulation model to sink the vehicle contact 

points into the terrain. 

 

3. Configure the view properties to the view as explained in Section 4.2.2. 

 

4. Compute the offsets by rendering to the FBO/render-target. 

 

a. Render the terrain tiles encapsulating the vehicle. 

b. Render the vehicle. 

 

i. In the fragment shader, compute the depth difference between the 

vehicle and the terrain. 

ii. Store values where the vehicle is penetrating the terrain in an offset 

map. 

 

5. Restore the previous camera view. 
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Once the initial offsets are computed, we enact a simple and effective 

redistribution process to the offset map. Since the offset map is stored as a texture, our 

solution applies a box-filter derivative to smooth away jagged edges. The filter is 

encoded in the fragment shader used to generate the offset map, which allows full control 

of pixel processing. Although the process we use for redistribution here is not physics-

based, it is conceivable to use a more elaborate fragment shader to simulate soil 

mechanics.  

After all of the offsets are computed, the terrain is ready to be processed and 

rendered. Once again, the programmable pipeline is exploited to draw the terrain. In the 

vertex shader, the terrain elevation data is translated, rotated and scaled appropriately. 

Using the ),( zx coordinates of the vertex, texture coordinates are derived and used to 

lookup the redistributed offset value in the offset map. The vertex texture lookup is a 

feature of Shader Model 3.0 that makes displacement mapping on the GPU possible. The 

original height, the redistributed offset, and the relevant Geomorphing values are used to 

compute the position of the vertex for the current frame. Next, vertex colors and texture 

coordinates are adjusted based on the associated offset of the vertex, to create an illusion 

of shading where tire tracks have carved into the surface. The results are passed onto the 

fragment shader, which renders the geometry in a straightforward manner by applying 

textures, fog, and colors on a per-pixel basis. 

The final rendered image displays a tire track carved into the terrain surface 

where the vehicle has traversed (Figures 27 and 28). The remnants of the vehicle’s 

driving path enrich the scene with visual cues and detail that improve the visual quality of 
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the image. Without the tire markings, the terrain would appear unrealistically rigid. 

Furthermore, visually recounting the movement of the vehicle is impossible. 

 
(a) 

 

 
(b) 

 

Figure 27 The vehicle deforms the terrain. 

The vehicle deforms the terrain dynamically as it moves (a) and carves tire tracks (b). 
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Figure 28 The integrated level of detail solution. 

The level of detail system is coordinated to work with the deformation technique. 

 

5.6 Test Results 

The off-road ground-vehicle system was tested to assess the performance impact 

of the deformation technique with respect to the rest of the system. The specifications of 

the computer used in the test can be found in Table 1. Two different terrain sizes were 

tested and the results are documented in Table 2.  

 

Processor Intel Xeon 3.00GHz (Dual Processor) 

 

RAM 2 GB 

 

Video Card NVIDIA GeForce 7800 GT, 256MB GDDR3 RAM, PCI-Express 

 

Operating System Windows XP SP2 

 

Table 1. Test Machine Specifications 
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65m x 65m 129m x 129m 

1m posts .25m posts .125m posts 1m posts .25m posts .125m posts 

480 fps 230 fps 75 fps 470 fps 220 fps 68 fps 

Table 2. Experimental Test Results. 

 

The results are very promising as frame rates for the solution were maintained 

well above the target 60 frames per second required of real-time graphics applications. As 

expected, performance drops as the resolution of the mesh is increased by the DDR 

subdivision of the terrain. However, an excess amount of terrain data would suggest the 

need for a more elaborate level of detail technique, the inclusion of a paging strategy, or 

in-memory data compression. As previously noted, the integration of dynamism with 

such techniques is beyond the scope of this initiative, and left as an open question for 

future research. Regardless, the data suggests that the deformation technique itself has a 

limited impact on the overall solution, which supports our assertion that current hardware 

is well-suited for and capable of supporting dynamic terrain. 
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6. Conclusion and Future Work 

6.1 Conclusion 

Currently, most research in the field of Computer Graphics is heavily geared 

towards producing photorealistic imagery, which can be computationally expensive. At 

the same time real-time computer graphics systems must maintain a minimal framerate, 

while achieving high-quality imagery. The conflict of interest between realism and 

performance is the primary point of contention in terrain visualization, which strives to 

visualize high-fidelity terrains with a nominal impact to performance. Recent advances in 

hardware afford the option to improve terrain visualization systems by improving realism 

without hindering performance. 

Static and dynamic terrains are the two approaches in terrain visualization and 

there are benefits and drawbacks with each. Static terrain uses a fixed, rigid terrain mesh 

to model the landscape, whereas dynamic terrain supports runtime surface deformation of 

the terrain model. Consequently, static terrains may only simulate hard surfaces, while 

dynamic terrains can represent any surface type.  

Currently, static terrain solutions dominate the field. The dominance arose from 

the development and widespread acceptance of techniques for static terrain that were 

developed based on concerns regarding hardware in the past. The rigid nature of a static 

terrain allows for many algorithmic optimizations that make it possible to render large 

terrain meshes in real-time. The concerns regarding performance that drove these earlier 

techniques indirectly served to entrench rigid terrain as the foremost solution. While 
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static terrain is often an acceptable solution, it is far from a complete solution, due to its 

inability to represent non-rigid terrain. 

Dynamic terrain systems can achieve a truly realistic terrain simulation and 

visualization. Unlike static terrain, dynamic terrain has the potential to support the full 

range of surface hardness, allowing external forces to mold its shape. The drawback of 

dynamic terrain is the added workload associated with extra processing and rendering 

tasks necessary for terrain dynamism. While a static terrain approach was the best option 

in previous years, computer hardware has improved greatly. These improvements afford 

researchers the opportunity to pursue new and innovative approaches in terrain 

visualization, including techniques for real-time dynamism.  

6.2 Contributions 

With regard to terrain visualization, a number of innovations are presented 

throughout the thesis that serves to improve the field. These innovations bolster the 

prospect of improving terrain visualization through guiding research focus and promoting 

the use of dynamism in modern terrain visualization systems.  

6.2.1 Component Framework for Terrain Visualization 

The first major innovation of this research is the Component Framework for 

Terrain Visualization, which defines a unifying architecture for terrain solutions. In 

addition, systems using the common architecture and componentized structure share a 

singular baseline that makes it possible to perform comparative analysis on otherwise 

disparate works. The framework is structured according to common tasks in Computer 

Graphics applications to provide a sensible construct that is both flexible and complete 

for designing a terrain system.  The high-level tasks are further decomposed into more 
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focused components that address the various challenges faced in terrain visualization. 

The distinction between components guides research directions, keeping focus on those 

topics within the problem domain of a specific component. By breaking down the system 

into its set of components, the development of these highly complex systems is eased. At 

the same time, the framework identifies relationships between the unique components, 

binding them into a collective whole. The relationships aid in diagnosing compatibility 

issues between algorithms employed for unique, yet related, tasks. Lastly, the framework 

supports adaptation and extensibility for the future, which is necessary as the field 

evolves. The framework is designed to evolve with the field, allowing new components 

to be introduced and old ones exorcised as requirements change. To demonstrate the 

practical nature of the framework, it was used in the design and development of the 

terrain system presented in Chapter 5. The component framework for terrain visualization 

improves the field through its structured, consistent approach for describing terrain 

systems, making it suitable for practical use and research purposes. 

6.2.2 Dynamic Terrain 

The second major focus of the thesis is in championing the use of dynamism in 

terrain visualization. Specific innovation in dynamic terrain include: developing the 

Dynamically Divisible Regions, specifying the tasks necessary for processing dynamic 

terrain, and originating a new technique for terrain deformation using the GPU. 

6.2.2.1 Dynamically Divisible Regions  

The first issue in dynamic terrain discussed is the potential for a terrain mesh to 

offer an inadequate mesh resolution with respect to the object(s) in the scene that impose 

the deformation. The concern is addressed through the presentation of the Dynamically 
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Divisible Region (DDR), which is a subdivision surface specification useful in the 

visualization of dynamic terrain surfaces. The DDR is derivative of Dynamic Extension 

to Resolution (DEXTER) [30]; however, a DDR defers implementation and offers 

adaptability that makes it suitable for use with multi-resolution techniques other than 

Hierarchical Bin-Tree methods. As a demonstrative means, Section 4.1 presents a 

specialized DDR technique that makes explicit use of the GPU to increase the mesh 

resolution as needed by the deformation solution. This solution was also implemented in 

by the system presented in Chapter 5 to generate a higher resolution mesh.  

6.2.2.2 Terrain Deformation Technique 

The second topic in dynamic terrain addressed herein was the identification and 

specification of four high-level tasks required to deform, process, and render a dynamic 

terrain. Previous works in the area focus on developing a specific algorithm that displaces 

local vertices according to a physics-based or appearance-based control scheme. 

Although it is important, the issue of vertex displacement is not sufficient as a complete 

dynamic terrain solution. In contrast, the thesis covers the entire process through a four 

step method that constitutes the definition of a complete solution. The process description 

for terrain dynamism identifies distinct tasks that contribute to a successful solution 

without introducing limiting compulsory requirements. As such, the procedure is a 

generic approach for dynamic terrains that can be specialized to support a multitude of 

simulation types, which translates to just as many possibilities for visualization purposes.  

Extrapolated from the development of our solution for dynamic terrain, we 

present a novel approach to terrain deformation using the GPU. Notably, the algorithmic 

steps to deform the terrain and display the results span across four high-level tasks. The 
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technique relies on the ability to transform the Regular Grid Network of elevation data 

from system memory to texture memory and, subsequently, processing that data within a 

programmable pipeline that supports Shader Model 3.0. The first step, displacement, is 

achieved by using the depth buffer functionality of the GPU to record interpenetrations of 

the surface by non-terrestrial objects, which begets the initial Offset Map. The Offset 

Map represents the displacement of vertices over time as imposed by the object. The 

second step, redistribution, is executed on offsets values through the application of a 

custom filter that achieves a visual imitation of granular soil displacement. Redistribution 

adjusts a vertex’ displacement value according to the soil simulation model, as it is 

implemented in the filter. Optionally, periphery data like normals, textures, and vertex-

colors are updated to coincide with the newly deformed terrain. Lastly, the data is 

submitted for processing and rendering, using the programmable pipeline to displace, 

deform, color, shade, and texture the terrain geometry, which outputs the final image to 

the screen. By incorporating the technique in a terrain system, it is possible to visualize 

interactive terrain dynamics while minimizing the impact on the runtime by offloading 

the majority of the work to the GPU. 

Dynamic terrain visualization is a better solution than static terrain visualization, 

and we present a foundation for developing terrain systems that support dynamism. The 

component framework is a universal tool for terrain visualization researchers and 

developers that defines and unifies various concerns and focuses within the domain of 

terrain visualization. In an effort to promote the use of dynamic terrain, the research 

presents a formalization of terrain dynamism through the specification and description of 

four high level tasks. To further encourage the use of terrain dynamics in practice, a 
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novel technique for GPU-based deformation and soil simulation is proposed. Together, 

these innovations serve to advance terrain visualization into a new era of visual realism 

that enhances the system and improves the user experience. 

A variety of people, corporations, and industries stands to benefit from the 

advancement in functionality and realism of systems for terrain visualization. 

Entertainment media, including video games and movies, generate billions of dollars in 

revenue every year. Savvy consumers have increasingly higher expectations of the media 

which they will pay for. Improving the environmental realism within the virtual world 

through interactive, reactive terrain is a monumental step of progression that can impress 

consumers and keep them coming back for more. Training and Simulation (T&S) is 

another lucrative application domain that makes extensive use of terrain visualization, but 

it is also one that saves lives. Military forces use Training and Simulation systems to train 

personnel in vehicular operations, tactical deployment, and reconnaissance missions that 

translate directly into real world activities. The goal is to provide a realistic, immersive 

experience that prepares trainees for intense situations without risking damage to 

expensive equipment or endangering human life. In fact, the desire for realistic flight 

simulators to train pilots is a major contributor to the popularity in research for terrain 

visualization. As third example, Geographic Information Systems (GIS) are focused on 

the sampling, analysis, and display of terrain data for the purpose of environmental 

research and commercial ventures, amongst others. The field is gaining notoriety as 

Global Positioning Systems (GPS) become more and more popular in various 

communities for tracking mobile entities like people and vehicles. Obviously, there is a 
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vested interested in improving the visualization of the terrain for all of these systems, 

because it directly impacts the effectiveness of the system. 

6.3 Future Research Directions 

The work completed within the thesis makes great strides in advancing terrain 

visualization; however, the solutions presented can be extended and improved upon with 

further research and development. 

6.3.1 Paging Dynamic Terrain  

In our system, we were not concerned with the issue of reading terrain data from 

an external storage device at runtime because we impose a superficial maximum terrain 

size. Paging solutions serve as the primary approach for handling the terrain data in 

systems requiring the display of very-large terrains. The primary challenge of terrain 

paging is overcoming the slow transfer times of data from external storage to faster main 

memory. In static terrain, a page can be assumed to work under a read-only, 

unidirectional flow because the data remains unchanged once it is in memory. In contrast, 

dynamic terrain is modifiable at runtime, which makes it a read/write model and, thereby, 

requires bidirectional, load-and-save data management. Since deforming the terrain 

modifies the elevation dataset, data modifications must be preserved as pages are released 

from main memory to ensure that reloading the data at a later time restores the altered 

surface. Preserving surface deformation requires the storage of the altered dataset back to 

the storage medium when the page of terrain is to be replaced. The need to perform write-

backs complicates paging; however, preserving surface modifications to paged data is 

necessary for dynamism in very-large terrain visualization. 
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6.3.2 Methods for Vertex Attribute Maintenance 

In the discussion of the tasks required for processing and rendering dynamic 

terrain, we point out the potential need to maintain vertex attributes. For the terrain 

system used in the off-road ground vehicle simulation, only vertex colors needed to be 

proactively updated. It is assumed as dynamic solutions become more common, more 

attributes will be identified that require maintenance. As these values are discovered, 

there will be a need to develop advanced methods for maintenance that make optimal use 

of available hardware. Pursuance of these methods will improve both runtime 

performance and visual fidelity. Some ideas we have considered include: 

• The generation and maintenance of normal maps for regions using the 

GPU, especially as the region undergoes runtime deformation. 

 

• The creation of dynamic procedural texture maps that can be reconfigured 

as deformation occurs to visually support surface changes, such as 

‘dirtying’ the impact area of a soft terrain. 

 

• The preservation of per-vertex soil properties that change as the vertex is 

displaced by external forces. Potential properties include cohesion, weight, 

and compressibility that could be used by the soil simulation model when 

displacing vertices. 

 

6.3.3 Physics-based Simulation 

Lastly, there are a many possibilities for improving the dynamism element in 

terrain visualization with the advent of more elaborate and meaningful simulation 

models. Primarily, we are concerned with evolving physics-based simulations for the soil 

and objects interacting with the soil. Physics-based simulations make use of the physical 

laws to guide the motion of objects and surfaces in the scene, resulting in a more realistic 

and accurate representation.  
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6.3.3.1 Improved Granular Soil Models 

Dynamic terrains that use an underlying physics-based simulation offer a more 

realistic depiction of surface interaction. In the future, we intend to develop a simulation 

model derived from Soil Mechanics that executes as part of the deformation technique 

using the GPU. Specifically, the redistribution process will be specialized to make use of 

a physics-based model akin to [54] and [55]. For systems that are more concerned with 

performance than simulation accuracy, it is possible to develop more elaborate and 

meaningful appearance-based methods, like [56] and [58], for redistribution than the box-

filter smoothing we used here. 

6.3.3.2 Extend for use with Terramechanics 

As a practical application using dynamic terrain system, future work will 

incorporate terrain dynamism with physics-based vehicular modeling that runs in real-

time. The innovation of this work is the inclusion of a Terramechanical model to produce 

a very realistic and accurate ground-vehicle simulation. Terramechanics is the study of 

tire-soil interaction, focusing on the physical laws and principles that govern land 

locomotion and mobility. Terramechanical simulation requires a physics-based 

simulation of the interactive terrain surface model and the vehicular modeling. Thus, the 

work in dynamic terrain is a necessary component to develop a complete visual system 

that includes Terramechanics.  

6.4 Final Words 

As time progresses, it is expected that hardware advancements will provide more 

processing power to be used in the software domain. It is wise to take advantage of 

available processing power by incorporating new features that serve to improve the 
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system. Terrain visualization systems are an important subsystem in a many software 

applications across a variety of problems domains. Those systems that employ a terrain 

solution are improved through the advancement of simulated and visual realism afforded 

by the terrain visualization solution. The underlying theme behind our research is to 

improve terrain visualization by encouraging a more robust and accurate representation 

of terrain in the visual system through the use of dynamic terrain. The current initiative 

has promoted dynamism through its proposals of the component framework, the 

deformation specification, and the GPU-based deformation technique. Combined with 

improvements to hardware, these contributions improve terrain visualization realism and 

enhance the user-experience. 
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