292 research outputs found

    THINKING AND LANGUAGE: EEG MATURATION AND MODEL OF CONTEXTUAL LANGUAGE LEARNING

    Get PDF
    Abstract. A modeling of verbal modulation of information is an important but extremely complex task, still waiting to be fully accomplished in future hierarchical neural networks. However, it seems that basic brain mechanisms responsible for semantic/pragmatic/syntactic organization of natural language are known (Pribram, 1977). According to the oscillator model of Ellias and Grossberg (1975), the EEG rhythmicity is realistically predicted in such a way that an increase in the input causes an increase in the frequency of oscillations, and decrease in their amplitude, offering an unified explanation of EEG waves ranging from δ to γ) -which might basically be also the mechanism of information ascending upon the frontolimbic-amplification from the lower-frequency (δ, θ) unconscious form of primordial subliminal thought to the higher-frequency (α, β, γ) conscious thought (Rakovic, 1997)! It should be then pointed out that frontolimbic-amplification mechanism of pragmatic processing, in combination with the increase of dominant EEG frequency from δ to γ brainwaves during an ontogenesis (Petersen et al, 1974), implies that the mother tongue is generally memorized at low-frequency δ and θ levels (later being unconscious in adults), in contrast to second and even further languages in bilinguals and multilinguals which are memorized at high-frequency α, β, and γ levels (later being conscious in adults). This implies that second and further languages are being hardly incorporating at unconscious (automatic) levels, save only from contextual learning which enables unconscious processing of contexts -which might provide differences of the language learning in childhood and adulthood, as well as in school and in living environment (Rakovic, 1997)! Keywords: Neural networks, brainwaves, modeling of psychological functions (learning, memorizing, consciousness, thinking, language). The prevailing scientific paradigm considers information processing inside the central nervous system as occurring through hierarchically organized and interconnected neural networks. For instance, the visual information is firstly hierarchically processed at the level of retina (from the photoreceptory rods and cones, to the ganglion cells), to be then hierarchically proceeded within the levels of primary, secondary, and tertiary sensory and interpretatory cortical regions (all of them being additionally constituted of hierarchies of several neural networks) Along with the development of experimental techniques enabling physiological investigation of interactions of hierarchically interconnected neighboring levels of biological neural networks, significant contribution in establishing the neural network paradigm was given by theoretical breakthroughs in this field during the past two decade

    Neural oscillatory signatures of auditory and audiovisual illusions

    Get PDF
    Questions of the relationship between human perception and brain activity can be approached from different perspectives: in the first, the brain is mainly regarded as a recipient and processor of sensory data. The corresponding research objective is to establish mappings of neural activity patterns and external stimuli. Alternatively, the brain can be regarded as a self-organized dynamical system, whose constantly changing state affects how incoming sensory signals are processed and perceived. The research reported in this thesis can chiefly be located in the second framework, and investigates the relationship between oscillatory brain activity and the perception of ambiguous stimuli. Oscillations are here considered as a mechanism for the formation of transient neural assemblies, which allows efficient information transfer. While the relevance of activity in distinct frequency bands for auditory and audiovisual perception is well established, different functional architectures of sensory integration can be derived from the literature. This dissertation therefore aims to further clarify the role of oscillatory activity in the integration of sensory signals towards unified perceptual objects, using illusion paradigms as tools of study. In study 1, we investigate the role of low frequency power modulations and phase alignment in auditory object formation. We provide evidence that auditory restoration is associated with a power reduction, while the registration of an additional object is reflected by an increase in phase locking. In study 2, we analyze oscillatory power as a predictor of auditory influence on visual perception in the sound-induced flash illusion. We find that increased beta-/ gamma-band power over occipitotemporal electrodes shortly before stimulus onset predicts the illusion, suggesting a facilitation of processing in polymodal circuits. In study 3, we address the question of whether visual influence on auditory perception in the ventriloquist illusion is reflected in primary sensory or higher-order areas. We establish an association between reduced theta-band power in mediofrontal areas and the occurrence of illusion, which indicates a top-down influence on sensory decision-making. These findings broaden our understanding of the functional relevance of neural oscillations by showing that different processing modes, which are reflected in specific spatiotemporal activity patterns, operate in different instances of sensory integration.Fragen nach dem Zusammenhang zwischen menschlicher Wahrnehmung und Hirnaktivität können aus verschiedenen Perspektiven adressiert werden: in der einen wird das Gehirn hauptsächlich als Empfänger und Verarbeiter von sensorischen Daten angesehen. Das entsprechende Forschungsziel wäre eine Zuordnung von neuronalen Aktivitätsmustern zu externen Reizen. Dieser Sichtweise gegenüber steht ein Ansatz, der das Gehirn als selbstorganisiertes dynamisches System begreift, dessen sich ständig verändernder Zustand die Verarbeitung und Wahrnehmung von sensorischen Signalen beeinflusst. Die Arbeiten, die in dieser Dissertation zusammengefasst sind, können vor allem in der zweitgenannten Forschungsrichtung verortet werden, und untersuchen den Zusammenhang zwischen oszillatorischer Hirnaktivität und der Wahrnehmung von mehrdeutigen Stimuli. Oszillationen werden hier als ein Mechanismus für die Formation von transienten neuronalen Zusammenschlüssen angesehen, der effizienten Informationstransfer ermöglicht. Obwohl die Relevanz von Aktivität in verschiedenen Frequenzbändern für auditorische und audiovisuelle Wahrnehmung gut belegt ist, können verschiedene funktionelle Architekturen der sensorischen Integration aus der Literatur abgeleitet werden. Das Ziel dieser Dissertation ist deshalb eine Präzisierung der Rolle oszillatorischer Aktivität bei der Integration von sensorischen Signalen zu einheitlichen Wahrnehmungsobjekten mittels der Nutzung von Illusionsparadigmen. In der ersten Studie untersuchen wir die Rolle von Leistung und Phasenanpassung in niedrigen Frequenzbändern bei der Formation von auditorischen Objekten. Wir zeigen, dass die Wiederherstellung von Tönen mit einer Reduktion der Leistung zusammenhängt, während die Registrierung eines zusätzlichen Objekts durch einen erhöhten Phasenangleich widergespiegelt wird. In der zweiten Studie analysieren wir oszillatorische Leistung als Prädiktor von auditorischem Einfluss auf visuelle Wahrnehmung in der sound-induced flash illusion. Wir stellen fest, dass erhöhte Beta-/Gamma-Band Leistung über occipitotemporalen Elektroden kurz vor der Reizdarbietung das Auftreten der Illusion vorhersagt, was auf eine Begünstigung der Verarbeitung in polymodalen Arealen hinweist. In der dritten Studie widmen wir uns der Frage, ob ein visueller Einfluss auf auditorische Wahrnehmung in der ventriloquist illusion sich in primären sensorischen oder übergeordneten Arealen widerspiegelt. Wir weisen einen Zusammenhang von reduzierter Theta-Band Leistung in mediofrontalen Arealen und dem Auftreten der Illusion nach, was einen top-down Einfluss auf sensorische Entscheidungsprozesse anzeigt. Diese Befunde erweitern unser Verständnis der funktionellen Bedeutung neuronaler Oszillationen, indem sie aufzeigen, dass verschiedene Verarbeitungsmodi, die sich in spezifischen räumlich-zeitlichen Aktivitätsmustern spiegeln, in verschiedenen Phänomenen von sensorischer Integration wirksam sind

    The Effects of Alpha Oscillations on Touch Perception and Visuo-tactile Integration

    Full text link
    Previous studies have shown that touch perception and visuo-tactile integration have large inter-subject/intra-subject variations. For example, touch perception varies across trials and the temporal binding windows of visuo-tactile integration varies across subjects. I hypothesized that the variations might be due to the change of power, phase and peak frequency of brain alpha oscillations. In the first set of experiments, I examined whether the power and phase of alpha oscillations predict successful conscious touch perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity and fast signal optical imaging were recorded over the somatosensory cortex. Alpha power desynchronizations and phase at stimulus onset influence touch perception. These findings suggest that spontaneous alpha oscillations in somatosensory areas exert a strong inhibitory control on touch perception and that pulsed inhibition by alpha oscillations shapes the state of brain activity necessary for conscious perception. In the second set of experiments, I extended those studies into the multisensory domain by presenting vision and touch with varying stimulus-onset asynchronies (SOAs) and investigated how alpha oscillations contribute to the temporal dynamics of visuo-tactile integration. In one experiment, near-threshold tactile stimuli and suprathreshold visual stimuli (LED flashes) were delivered on the left middle finger with varying SOAs. Touch detection rates were significantly higher than the touch only condition when visual stimuli occurred between -150 ms and 100 ms of the tactile stimulus. The results also demonstrated that visual stimuli desynchronize and phase reset ongoing alpha oscillations to facilitate touch detection. In another experiment, I used a simultaneity judgment paradigm with varying SOAs between suprathreshold tactile and visual stimuli. The temporal binding window was negatively correlated with individual alpha frequency peak. The results also showed that prestimulus alpha power desynchronizations were linked with variations of the temporal binding window across subjects. Together these results demonstrate that alpha oscillations shape the state of brain activity and contribute to sensory processing

    Manipulating neuronal communication by using low-intensity repetitive transcranial magnetic stimulation combined with electroencephalogram

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS) modulates ongoing brain rhythms by activating neuronal structures and evolving different neuronal mechanisms. In the current work, the role of stimulation strength and frequency for brain rhythms was studied. We hypothesized that a weak oscillating electric field induced by low-intensity rTMS could induce entrainment effects in the brain. To test the hypothesis, we conducted three separate experiments, in which we stimulated healthy human participants with rTMS. We individualized stimulation parameters using computational modeling of induced electric fields in the targets and individual frequency estimated by electroencephalography (EEG). We demonstrated the immediately induced entrainment of occipito-parietal and sensorimotor mu-alpha rhythm by low-intensity rTMS that resulted in phase and amplitude changes measured by EEG. Additionally, we found long-lasting corticospinal excitability changes in the motor cortex measured by motor evoked potentials from the corresponding musle.2021-11-2

    Neural correlates of conscious visual processing

    Get PDF
    The objective of the current thesis is to evaluate the role of alpha band activity and neural trial-to-trial variability in conscious visual perception and their relationship to each other. We investigate these measures in electrophysiological recordings of monkeys as well as the electroencephalogram (EEG) of humans using a generalized flash suppression (GFS) paradigm.2021-06-0

    A model for cerebral cortical neuron group electric activity and its implications for cerebral function

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 245-265).The electroencephalogram, or EEG, is a recording of the field potential generated by the electric activity of neuronal populations of the brain. Its utility has long been recognized as a monitor which reflects the vigilance states of the brain, such as arousal, drowsiness, and sleep stages. Moreover, it is used to detect pathological conditions such as seizures, to calibrate drug action during anesthesia, and to understand cognitive task signatures in healthy and abnormal subjects. Being an aggregate measure of neural activity, understanding the neural origins of EEG oscillations has been limited. With the advent of recording techniques, however, and as an influx of experimental evidence on cellular and network properties of the neocortex has become available, a closer look into the neuronal mechanisms for EEG generation is warranted. Accordingly, we introduce an effective neuronal skeleton circuit at a neuronal group level which could reproduce basic EEG-observable slow ( 3mm). The effective circuit makes use of the dynamic properties of the layer 5 network to explain intra-cortically generated augmenting responses, restful alpha, slow wave (< 1Hz) oscillations, and disinhibition-induced seizures. Based on recent cellular evidence, we propose a hierarchical binding mechanism in tufted layer 5 cells which acts as a controlled gate between local cortical activity and inputs arriving from distant cortical areas. This gate is manifested by the switch in output firing patterns in tufted(cont.) layer 5 cells between burst firing and regular spiking, with specific implications on local functional connectivity. This hypothesized mechanism provides an explanation of different alpha band (10Hz) oscillations observed recently under cognitive states. In particular, evoked alpha rhythms, which occur transiently after an input stimulus, could account for initial reogranization of local neural activity based on (mis)match between driving inputs and modulatory feedback of higher order cortical structures, or internal expectations. Emitted alpha rhythms, on the other hand, is an example of extreme attention where dominance of higher order control inputs could drive reorganization of local cortical activity. Finally, the model makes predictions on the role of burst firing patterns in tufted layer 5 cells in redefining local cortical dynamics, based on internal representations, as a prelude to high frequency oscillations observed in various sensory systems during cognition.by Fadi Nabih Karameh.Ph.D

    Electrophysiological assessment methodology of sensory processing dysfunction in schizophrenia and dementia of the Alzheimer type

    Get PDF
    Schizophrenia and Alzheimer’s disease impacts on various sensory processings are extensively reviewed in the present publication. This article describes aspects of a research project whose aim is to delineate the neurobiology that may underlie Social Withdrawal in Alzheimer’s disease, Schizophrenia and Major Depression. This is a European-funded IMI 2 project, identified as PRISM (Psychiatric Ratings using Intermediate Stratified Markers). This paper focuses specifically on the selected electrophysiological paradigms chosen based on a comprehensive review of all relevant literature and practical constraints. The choice of the electrophysiological biomarkers were fundamentality based their metrics and capacity to discriminate between populations. The selected electrophysiological paradigms are resting state EEG, auditory mismatch negativity, auditory and visual based oddball paradigms, facial emotion processing ERP’s and auditory steady-state response. The primary objective is to study the effect of social withdrawal on various biomarkers and endophenotypes found altered in the target populations. This has never been studied in relationship to social withdrawal, an important component of CNS diseases

    From locomotion to dance and back : exploring rhythmic sensorimotor synchronization

    Full text link
    Le rythme est un aspect important du mouvement et de la perception de l’environnement. Lorsque l’on danse, la pulsation musicale induit une activité neurale oscillatoire qui permet au système nerveux d’anticiper les évènements musicaux à venir. Le système moteur peut alors s’y synchroniser. Cette thèse développe de nouvelles techniques d’investigation des rythmes neuraux non strictement périodiques, tels que ceux qui régulent le tempo naturellement variable de la marche ou la perception rythmes musicaux. Elle étudie des réponses neurales reflétant la discordance entre ce que le système nerveux anticipe et ce qu’il perçoit, et qui sont nécessaire pour adapter la synchronisation de mouvements à un environnement variable. Elle montre aussi comment l’activité neurale évoquée par un rythme musical complexe est renforcée par les mouvements qui y sont synchronisés. Enfin, elle s’intéresse à ces rythmes neuraux chez des patients ayant des troubles de la marche ou de la conscience.Rhythms are central in human behaviours spanning from locomotion to music performance. In dance, self-sustaining and dynamically adapting neural oscillations entrain to the regular auditory inputs that is the musical beat. This entrainment leads to anticipation of forthcoming sensory events, which in turn allows synchronization of movements to the perceived environment. This dissertation develops novel technical approaches to investigate neural rhythms that are not strictly periodic, such as naturally tempo-varying locomotion movements and rhythms of music. It studies neural responses reflecting the discordance between what the nervous system anticipates and the actual timing of events, and that are critical for synchronizing movements to a changing environment. It also shows how the neural activity elicited by a musical rhythm is shaped by how we move. Finally, it investigates such neural rhythms in patient with gait or consciousness disorders

    Neural Mechanisms of Sensory Integration: Frequency Domain Analysis of Spike and Field Potential Activity During Arm Position Maintenance with and Without Visual Feedback

    Get PDF
    abstract: Understanding where our bodies are in space is imperative for motor control, particularly for actions such as goal-directed reaching. Multisensory integration is crucial for reducing uncertainty in arm position estimates. This dissertation examines time and frequency-domain correlates of visual-proprioceptive integration during an arm-position maintenance task. Neural recordings were obtained from two different cortical areas as non-human primates performed a center-out reaching task in a virtual reality environment. Following a reach, animals maintained the end-point position of their arm under unimodal (proprioception only) and bimodal (proprioception and vision) conditions. In both areas, time domain and multi-taper spectral analysis methods were used to quantify changes in the spiking, local field potential (LFP), and spike-field coherence during arm-position maintenance. In both areas, individual neurons were classified based on the spectrum of their spiking patterns. A large proportion of cells in the SPL that exhibited sensory condition-specific oscillatory spiking in the beta (13-30Hz) frequency band. Cells in the IPL typically had a more diverse mix of oscillatory and refractory spiking patterns during the task in response to changing sensory condition. Contrary to the assumptions made in many modelling studies, none of the cells exhibited Poisson-spiking statistics in SPL or IPL. Evoked LFPs in both areas exhibited greater effects of target location than visual condition, though the evoked responses in the preferred reach direction were generally suppressed in the bimodal condition relative to the unimodal condition. Significant effects of target location on evoked responses were observed during the movement period of the task well. In the frequency domain, LFP power in both cortical areas was enhanced in the beta band during the position estimation epoch of the task, indicating that LFP beta oscillations may be important for maintaining the ongoing state. This was particularly evident at the population level, with clear increase in alpha and beta power. Differences in spectral power between conditions also became apparent at the population level, with power during bimodal trials being suppressed relative to unimodal. The spike-field coherence showed confounding results in both the SPL and IPL, with no clear correlation between incidence of beta oscillations and significant beta coherence.Dissertation/ThesisDoctoral Dissertation Biomedical Engineering 201
    • …
    corecore